Appendix to Lecture 5. Proofs

I now show that the limit appearing in the definition of the Riemann integral \(\int_{a}^{b} f(y) \, dy \) exists, when \(f \) is a continuous function. First of all, I need a definition and a lemma.

Definition: If \(f : A \to B \), where \(A \) is a subset of \(\mathbb{R}^n \) and \(B \) is a subset of \(\mathbb{R}^k \), then \(f \) is uniformly continuous, if for every \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that \(||f(x) - f(y)|| < \varepsilon \) whenever \(||x - y|| < \delta \).

Lemma 5.17: Let \(f : A \to B \), where \(A \) and \(B \) are subsets of \(\mathbb{R}^n \) and \(\mathbb{R}^k \), respectively. If \(A \) is compact and \(f \) is continuous, then \(f \) is uniformly continuous.

That is, every continuous function is uniformly continuous on a compact set.

Proof: Let \(\varepsilon > 0 \). Since \(f \) is continuous, for every \(x \in A \), there is a \(\delta > 0 \) such that if \(||x - y|| < 2\delta \), then \(||f(x) - f(y)|| < \varepsilon/2 \). Then \(\{ B_{\delta}(x) \mid x \in A \} \) forms an open cover of \(A \), where \(B_{\delta}(x) = \{ y \in A \mid ||y - x|| < \delta \} \). Since \(A \) is compact, the Heine-Borel theorem implies that there is a finite subcover \(B_{\delta}(x(1)), B_{\delta}(x(2)), \ldots, B_{\delta}(x(M)) \). Let \(\delta = \min(\delta_x, \delta_{x(1)}, \ldots, \delta_{x(M)}) \). Suppose that \(x \) and \(y \) in \(A \) are such that \(||x - y|| < \delta \). Then \(x \in B_{\delta}(x(m)) \), for some \(m \), so that \(||x - x(m)|| < \delta \). Since \(||x - y|| < \delta \), \(||y - x(m)|| \leq ||y - x|| + ||x - x(m)|| < 2\delta \), and hence \(||f(y) - f(x(m))|| < \varepsilon/2 \). Similarly, since \(||x - x(m)|| < \delta \), it follows that \(||f(x) - f(x(m))|| < \varepsilon/2 \). Hence \(||f(y) - f(x)|| \leq ||f(y) - f(x(m))|| + ||f(x(m)) - f(x)|| < \varepsilon/2 + \varepsilon/2 = \varepsilon \).

Theorem 5.18: If \(f : [a, b] \to \mathbb{R} \) is continuous, where \(a < b \), then
\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \frac{b-a}{N} \left(a + \frac{n}{N} (b-a) \right) \text{ exists.}
\]

Proof: It is sufficient to show that the sequence in \(N \), \(\frac{1}{N} \sum_{n=0}^{N-1} \frac{b-a}{N} \left(a + \frac{n}{N} (b-a) \right) \), is Cauchy. Let \(\varepsilon > 0 \). Since \(f \) is continuous and the interval \([a, b]\) is compact, \(f \) is uniformly continuous by the previous lemma. Let \(\delta > 0 \) be such that \(||f(x) - f(y)|| < \frac{\varepsilon}{2(b-a)} \), if \(||x - y|| < \delta \). Let \(K \) be so large that \(\frac{b-a}{K} < \delta \). I show that if \(M > K \), then \(||y - x|| < \delta \).
\[
\sum_{n=0}^{K-1} \frac{b - a}{K} f\left(a + \frac{n}{K} (b - a)\right) - \sum_{m=0}^{M-1} \frac{b - a}{M} f\left(a + \frac{m}{M} (b - a)\right) \leq \varepsilon,
\]

so that the sequence \(\sum_{n=0}^{N} \frac{b - a}{N} f\left(a + \frac{n}{N} (b - a)\right)\) is Cauchy.

The numbers \(a + \frac{n}{K} (b - a)\), for \(n = 0, 1, \ldots, K\), and \(a + \frac{m}{M} (b - a)\), for \(m = 0, 1, \ldots, M\), form \(Q\) distinct numbers, where \(Q \leq K + M\). Let these numbers be \(t_0, t_1, \ldots, t_q\), where \(a = t_0 < t_1 < \ldots < t_q = b\). Let

\[
I = \sum_{q=0}^{Q-1} (t_{q+1} - t_q) f(t_q).
\]

It is sufficient to show that \(I - \sum_{n=0}^{K-1} \frac{b - a}{K} f\left(a + \frac{n}{K} (b - a)\right) < \varepsilon/2\), if \(K\) exceeds \(\frac{b - a}{\delta}\), since if we replace \(K\) by \(M\), where \(M > K\), we have the inequality \(I - \sum_{m=0}^{M-1} \frac{b - a}{M} f\left(a + \frac{m}{M} (b - a)\right) < \varepsilon/2\) as well. For \(n = 0, \ldots, K-1, a + \frac{n(b - a)}{K} = t_{q(n)}\), for some \(q(n)\), where \(q(n) < q(n+1)\), for all \(n\). Notice that if \(q\) is a positive integer such that \(q(n) \leq q \leq q(n+1)\), then

\[
\left| a + \frac{n}{K} (b - a) - t_q \right| \leq \frac{b - a}{K} < \delta,
\]

so that

\[
\left| f(t_q) - f\left(a + \frac{n}{K} (b - a)\right) \right| \leq \frac{\varepsilon}{2(b - a)}.
\]

This inequality explains the last inequality in the following series of equations and inequalities.

\[
\left| I - \sum_{n=0}^{K-1} \frac{b - a}{K} f\left(a + \frac{n}{K} (b - a)\right) \right|
\]

\[
= \sum_{q=0}^{Q-1} f(t_q) (t_{q+1} - t_q) - \sum_{n=0}^{K-1} \frac{b - a}{K} f\left(a + \frac{n}{K} (b - a)\right)
\]

\[
= \sum_{n=0}^{K-1} \left[\frac{b - a}{K} f\left(a + \frac{n}{K} (b - a)\right) - \sum_{q=q(n)}^{q(n+1)-1} f(t_q) (t_{q+1} - t_q) \right]
\]
\[
= \sum_{n=0}^{K-1} \left[f(t_{q(n)}) \sum_{q+q(n)}^{q(n+1)-1} (t_{q+1} - t_q) - \sum_{q=q(n)}^{q(n+1)-1} f(t_q) (t_{q+1} - t_q) \right]
\]
\[
\leq \sum_{n=0}^{K-1} \sum_{q=q(n)}^{q(n+1)-1} \left| f(t_{q(n)}) - f(t_q) \right| (t_{q+1} - t_q)
\]
\[
< \sum_{n=0}^{K-1} \frac{\varepsilon}{2(b-a)} \frac{b-a}{K} = \frac{\varepsilon}{2}.
\]

Use has been made of the facts that \(t_{q(n)} = a + \frac{n}{K} (b-a) \) and \(\sum_{q=q(n)}^{q(n+1)} (t_{q+1} - t_q) = \frac{b-a}{K} \).

I now prove the fundamental theorem of calculus, theorem 5.15. First I require a lemma.

Lemma 5.19: If \(f: [a, b] \rightarrow \mathbb{R} \) is continuous, where \(a < b \), then

\[
\left| \int_a^b f(y) \, dy \right| \leq \int_a^b |f(y)| \, dy.
\]

Proof: Since

\[
\int_a^b f(y) \, dy = \lim_{N \to \infty} \sum_{n=0}^{N-1} \frac{b-a}{N} f\left(a + \frac{n}{N} (b-a)\right),
\]

it follows that

\[
\left| \int_a^b f(y) \, dy \right| = \left| \lim_{N \to \infty} \sum_{n=0}^{N-1} \frac{b-a}{N} f\left(a + \frac{n}{N} (b-a)\right) \right| = \lim_{N \to \infty} \left| \sum_{n=0}^{N-1} \frac{b-a}{N} f\left(a + \frac{n}{N} (b-a)\right) \right|
\]
\[
\leq \lim_{N \to \infty} \sum_{n=0}^{N-1} \frac{b-a}{N} \left| f\left(a + \frac{n}{N} (b-a)\right) \right| = \int_a^b |f(y)| \, dy,
\]

where the second equation applies because the absolute value is a continuous function, the inequality follows from the triangle inequality for the absolute value, and the last equation is the definition of the integral of the continuous function \(|f(y)|\).

Proof of theorem 5.15: Let \(c \in (a, b) \) and let \(\varepsilon \) be a positive number. Since \(f \) is continuous, there is a positive number \(\delta \) such that \(|f(x) - f(c)| < \varepsilon \), if \(|x - c| < \delta \). Lemma 5.19 implies that if \(c < x < c + \delta \), then
\[\left| \int_{c}^{x} (f(y) - f(c)) \, dy \right| \leq \int_{c}^{x} |f(y) - f(c)| \, dy \leq \int_{c}^{x} \, dy = |x - c|. \]

Therefore if \(c < x < c + \delta \), then
\[\left| \int_{a}^{c} f(y) \, dy - \int_{a}^{c} f(y) \, dy - f(c) (x - c) \right| = \left| \int_{a}^{x} f(y) \, dy - f(c) (x - c) \right| \leq \varepsilon |x - c|. \]

Similarly, if \(c - \delta < x < c \), then
\[\left| \int_{a}^{c} f(y) \, dy - \int_{a}^{c} f(y) \, dy - f(c) (x - c) \right| = \left| \int_{x}^{c} (-f(y) + f(c) (c - x)) \, dy \right| \leq \varepsilon |x - c|. \]

Therefore if \(|x - c| < \delta \), then
\[\left| \int_{a}^{c} f(y) \, dy - \int_{a}^{c} f(y) \, dy - f(c) (x - c) \right| \leq \varepsilon |x - c|, \]

so that
\[\frac{dF(c)}{dx} = \left. \frac{d}{dx} \int_{a}^{x} f(y) \, dy \right|_{x=a} = f(c), \]

by the definition of the derivative. Since differentiable functions are continuous, \(F(x) \) is continuous in \(x \), for \(c \in (a, b) \).

It remains to be shown that \(F \) is continuous at \(a \) and \(b \). It should be clear from the definition of the Riemann integral that
\[F(a) = \int_{a}^{a} f(y) \, dy = 0. \]

Let \(\varepsilon \) be a positive number. Since \(f \) is continuous, there is a positive number \(\delta \) such that \(\delta \leq \varepsilon \) and \(|f(x) - f(a)| < \varepsilon \), if \(x - a < \delta \) and \(|f(x) - f(b)| < \varepsilon \), if \(b - x < \delta \). If \(x - a < \delta \), then
\[|F(x) - F(a)| = \left| \int_{a}^{x} f(y) \, dy \right| \leq \int_{a}^{x} |f(y)| \, dy \leq \int_{a}^{x} (f(a) + \varepsilon) \, dy \leq (x - a)(f(a) + \varepsilon) \]
\[\leq \varepsilon (f(a) + \varepsilon), \]

where the last inequality follows because \(x - a < \delta \leq \varepsilon \). Since \(\varepsilon (f(a) + \varepsilon) \) may be made arbitrarily small, \(F \) is continuous at \(a \).
Similarly if $b - x < \delta$, then

$$\left| F(b) - F(x) \right| = \left| \int_x^b f(y) \, dy \right| \leq \int_x^b |f(y)| \, dy \leq \int_x^b |f(b) + \varepsilon| \, dy \leq (b - x)(f(b) + \varepsilon)$$

$$\leq \varepsilon(f(b) + \varepsilon),$$

so that F is continuous at b. \qed