
An Efficiency Rationale for Bundling of Public Goods∗

Hanming Fang† Peter Norman‡

First Version: October 2002

This Version: April 2003

Abstract

This paper studies the role of bundling in the efficient provision of excludable public goods.

We show that bundling in the provision of unrelated public goods can enhance social welfare.

For a binary valuation parametric class of examples, we characterize the optimal mechanism and

show that allowing for bundling alleviates the well-known free riding problem in large economies

and increases the probability of public good provision. All these result are related to the idea

that bundling reduces the variance in the distribution of valuations.
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1 Introduction

Many excludable public goods are provided in bundles. An obvious example is cable TV.

Technologically, the local cable company could easily allow customers to choose whatever channels

they are willing to pay for without constraints. However, with the exception of some premium

channels and some pay-per-view programs, the basic pricing scheme usually consists of a limited

number of available packages. Another striking example is access to electronic libraries. Here, the

typical contractual arrangement is a site license that allows access to every journal in the electronic

library. While it is often possible to download articles on a pay-per-download basis, this is usually

very expensive and contracts that gives access to a subset of journals in the electronic library are

rare.

A third example, which was the initial motivation for this paper, is the casual observation that

governmental services are provided in bundles. For example, every resident in a municipality, as

long as he or she pays the property taxes, is entitled to a bundle of public services provided by

the local government including policing, highway maintenance, fire fighting, public schools etc..

Clearly some of the public services in the bundle are of no value at all for many residents. Why,

then, cannot residents only subscribe to their desired local public services?

Motivated by the above observations, this paper studies the role of bundling in the efficient

provision of (excludable) public goods. We ask a simple question: is there an efficiency rationale

to provide unrelated public goods in bundles rather than separately; and if so, why? We show that

the social surplus maximizing mechanism will always be characterized by some degree of bundling.

Thus, while “pure bundling” is not necessarily the optimal solution, there is a straightforward

argument in favor of joint provision of multiple public goods.

We consider an environment with two excludable public goods and a numeraire private good.1

Each consumer in the economy is characterized by a valuation for each of the public goods. The

valuation for consuming both public goods is assumed to be the sum of the valuations for the

individual goods. This assumption rules out bundling arising from complementarities in the utility

function. Similarly, the cost of provision of each good is independent of whether or not the other

good is provided. That is, there are no synergies on the cost side.

These separability assumptions on valuations and costs imply that the informationally uncon-

strained efficient provision rule is as follows: a public good should be provided if and only if its

1The term “excludable public goods” refers to a good which is fully non-rival, but where it is possible to costlessly

exclude any consumer from usage.
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sum of valuations exceeds its provision cost. Thus, under perfect information, there is no role for

bundling in provision; moreover, no agent will be excluded from using a public good if it is provided.

In this paper we depart from the perfect information assumption and assume that preferences

are private information to the individuals. The provision mechanism must therefore be constructed

so that truthful revelation of preferences is consistent with equilibrium. Moreover, we allow agents

to freely choose whether to participate in the mechanism, and require the provision mechanism to

be self-financing. Finally, we assume that the preference parameters are stochastically independent

across individuals. Under these restrictions, the (non-bundling) perfect information social optimum

can no longer be implemented.2

Ruling out trivial cases, use exclusions are always active in the constrained efficient mechanism.

Indeed, if the economy is large, use exclusions is essentially the only instrument that can be used

to make consumers willing to contribute a non-negligible amount to the public goods. In the

case of a single public good the constrained optimal mechanism is well approximated by standard

third-degree price discrimination: for each agent the designer sets a fixed user fee and the agent is

included if and only if she is willing to pay the fee. If all agents are ex ante identical, all agents

face the same user fee and the mechanism reduces to average cost pricing.

This characterization of the provision problem for a single good generates a simple intuition for

the usefulness of bundling. For simplicity, assume that goods are symmetric and that valuations

are drawn from the same distribution for all agents. The best mechanism that does not use the

bundling option is approximately a fixed user fee, and the fixed user fee is the same for both goods.

The crucial observation is that the average valuation for the “bundled good” is less dispersed

than the distribution of valuations for each good. If the user fee is below the expected valuation,

this suggests that fewer consumers are excluded from usage if the goods are sold only as a bundle

at a price given by the sum of the user fees. Counter examples to both steps of this reasoning are

easy to generate, but for log-concave symmetric distributions with non negative support, we show

that bundling leads to fewer exclusions.

However, there is an equally intuitive downside to bundling. While fewer agents are excluded,

the reduced dispersion of valuations also implies that the average valuation conditional on being ex-

cluded is higher under bundling than under separate provision. Thus whether or not pure bundling

2All these restrictions are essential to the analysis. Removing either the voluntary participation or the self-

financing constraint makes it possible to construct pivot-mechanisms that implement the first-best. If we remove the

independence assumption and allow correlation in valuations, an adaption of the analysis in Cremer and McLean [5]

can be used to implement the efficient outcome.
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dominates separate provision depends on parameters.

It is interesting to note that the welfare comparison between pure bundling and separate pro-

vision is non-monotonic in the cost of provision. When the cost is sufficiently low, the welfare gain

from fewer exclusions in the bundled mechanism necessarily dominates, so bundling is superior to

separate provision mechanisms. On the other hand, when the cost is high enough, it is possible

that the public goods can be provided if the goods are bundled, but not under the best mecha-

nism with separate provision, again implying that pure bundling dominates separate provision. For

intermediate costs, there may be a range where separate provision is better.

Characterizing the best mechanism under either separate provision or pure bundling is relatively

straightforward since these problems are both one-dimensional. The full design problem, however,

is truly multi-dimensional and this paper does not solve that problem in general. What we do

however, is to solve for the optimal provision mechanism in a special case where the valuation for

each good is binary. We then find that there is a strong element of bundling in the optimal solution

in the sense that types that have a low valuation for both goods always get lower priority than

“mixed” types get for their low valuation good.

There is a considerable literature on bundling of private goods. Adams and Yellen [1], McAfee,

McMillan and Whinston [7] showed that a multiproduct monopolistic producer may have incentive

to bundle commodities to maximize revenue; Nalebuff [10] showed that in oligopolistic setting,

commodity bundling may be used as an entry deterrent. While there are many similarities at the

technical level, there are significant qualitative differences between the private and public goods

cases. In particular, any bundling in the private goods case is necessarily inefficient, albeit revenue

enhancing: a profit maximizing seller with monopoly power may want to bundle two commodities,

but marginal cost pricing is always more efficient.3

The remainder of the paper is structured as follows. Section 2 presents the general model;

Section 3 compares at a general level the optimal separate provision mechanisms and the pure

bundle mechanism; Section 4 presents a special binary valuation example of our general model;

Section 5 characterizes the optimal mechanism for our binary valuations example and compares our

characterization with existing results in the literature; finally, Section 6 concludes. Most technical

proofs are collected in the appendix.

3Unless there are significant fixed costs, but these fixed costs can then be viewed as a public good.
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2 The Model

The objective of the paper is to understand whether there is an efficiency rationale for bundling

in the provision of collective goods. To do this, we imagine a fictitious social planner who seeks

maximize social surplus in an environment with multiple excludable public goods. There are two

important reasons for allowing use exclusions. Firstly, it allows use to consider large economies

without making the provision problem “impossible”. Secondly, it allows for a more intuitive form

of bundling since different consumers can consume different bundles when exclusions are possible.

The environment is set up so ex post efficiency requires that a good is provided if and only

if the sum of valuations for that good exceeds the cost of provision for that good. Any role for

bundling therefore comes from the constraints facing the planner. The constraints we impose are

all standard. Preferences are assumed to be private information, so any implementable mechanism

must be incentive compatible. Moreover, the mechanism must be self-financing, and agents are free

to opt out of the mechanism.

All these constraints are noncontroversial if thinking about the design problem as characterizing

the efficiency frontier of what may be achieved in a private market bargaining agreement, but in

particular the voluntary participation constraints may seem questionable if interpreting the goods

as government provided. One defense in this context is that the participation constraint is a reduced

form of an environment where agents may vote with their feet (ignoring that the reservation utility

then should be endogenous).

There are two excludable public goods, labeled by j = 1, 2; and n agents, indexed by i ∈ I =
{1, ..., n}. In order to obtain a tractable characterization we will focus on asymptotic results as the
number of agents n goes to infinity. Provision of either public good is a binary decision and the

cost of providing good j is denoted Cj (n) . Note that the assumption that the cost of provision

is independent of the number of users implies that the goods are fully non-rival. The rationale

for indexing costs by the size of the economy is to avoid to make the problem trivial in a large

economy. In other words, we will assume that there exists cj > 0 such that limn→∞Cj (n) /n =

cj > 0, j = 1, 2. The most useful way to think about this assumption is as a normalization of the

per capita costs of provision.

Agent i0s valuation from good j is denoted by θji . Valuations are independently and identically

distributed across agents.4 Agent i0s valuations of public goods (θ1i , θ
2
i ) are drawn from a joint

4More specific distributional assumptions will be made later when solving the model. We will momentarily work

with general distributions because the setup is easier to understand and the exposition of some intermediate results
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distribution F. The marginal distribution of good j’s valuation is denoted by F j and the conditionals

will be denoted by F 1(·|θ2i ) and F 2(·|θ1i ) respectively. The set of possible realizations of (θ1i , θ2i ) is
denoted Θi = Θ1 × Θ2, where Θj is the set of possible values for θji . For brevity, we write θi =
(θ1i , θ

2
i ) ∈ Θi, θ = (θ1, ..., θn) ∈ Πi∈IΘi ≡ Θ, θ−i = (θ1, .., θi−1, θi+1, ..., θn) ∈ Πk∈I\{i}Θk ≡ Θ−i,

and θj =
³
θj1, ..., θ

j
n

´
∈ £Θj¤n , j = 1, 2. By independence, F is the prior distribution over agent i’s

valuations θi perceived by the mechanism designer as well as other agents when the revelation game

is played. With some abuse of notation, we write F (θ) ≡ Πi∈IF (θi) and F (θ−i) ≡ Πk∈I\iF (θk)
as the joint distribution of θ and θ−i respectively.

Write Iji as the dummy variable taking value 1 when agent i consumes good j and 0 otherwise,

and ti as the quantity of private goods (or the transfer of “money”) that i sacrifices to consume

the goods (if at all). Then the utility for agent i of type (θ1i , θ
2
i ) is

I1i θ
1
i + I

2
i θ
2
i − ti. (1)

A number of restrictions are imposed with this formulation. Besides the additive separability

between “money” and the public good, it also rules out complementarities between the two public

goods, and assumes that agents are risk neutral.

2.1 General Mechanisms

In general, the outcome of any mechanism must specify the following: (1). whether or not

public good j should be provided, for j = 1, 2; (2). if public good j is provided, which agents

should be allowed access to it, for j = 1, 2; (3). how the costs of public good provision should be

shared among the agents. The set of feasible pure outcomes is thus

A = {0, 1} × {0, 1}| {z }
provision/no provision

for goods 1 and 2

× {0, 1}n × {0, 1}n| {z }
inclusion/no inclusion

for good 1 and 2 for all agents

× Rn| {z }
“taxes”

. (2)

By the revelation principle, we will, without loss of generality, restrict our attention to direct

mechanisms for which truth-telling is a Bayesian Nash equilibrium. A pure direct mechanism is

simply a map from Θ to A. Following Aumann [2], we represent a randomized mechanism as a

measurable mapping g : Θ ×X → A, where X = [0, 1] ; and x ∈ X is the outcome of a fictitious

lottery. Without loss of generality, x is assumed uniformly distributed and independent of θ.5

is clearer.

5Because A is finite, there is no technical reason to deviate from the “natural” representation of a randomized

mechanism as a map from Θ to the set of probability distributions over A. The representation is chosen only because
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A conceptual advantage of representing random mechanisms in analogy with Aumanns’ way

of representing mixed strategies is that we can decompose any mechanism in a useful way. We

denote a mechanism by M and observe that we may think of a mechanism as a 5−tuple M =

(ζ1, ζ2,ω1,ω2, τ) where,

ζj : Θ×X → {0, 1} for j = 1, 2
ωj : Θ×X → {0, 1}n for j = 1, 2 (3)

τ : Θ→ Rn.

We refer to ζj as the provision rule for good j, and interpret EXζ
j (θ, x) as the probability of

provision given announcements θ. The rule ωj =
³
ωj1, ...,ω

j
n

´
is referred to as the inclusion rules

for good j, and EXω
j
i (θ, x) is interpreted as the probability that agent i gets access to good j when

announcements are θ, conditional on good j being provided. Finally, τ = (τ1, ..., τn) is referred

to as the cost-sharing rules, where τ i (θ) , if positive, is the transfer from agent i to the social

planner when announcements are θ. In general, transfers could of course also be randomized, but

since agents are risk neutral with respect to transfers, there are no gains from randomizing over

transfers. The pure transfer rule in (3) is therefore without loss of generality.

Denote by E−i the expectation operator with respect to (θ−i, x) conditional on i0s valuation

θi. Agent i
0s conditional expected payoff when the announcements are bθ given her true valuations

θi = (θ
1
i , θ

2
i ) is

E−i

X
j=1,2

ζj(bθ, x)ωji (bθ, x)θji − τ i(bθ)
 ∀i ∈ I, θi ∈ Θi. (4)

Incentive compatibility, that is, the requirement that truth-telling is a Bayesian Nash equilibrium

in the revelation game induced byM, requires

E−i

X
j=1,2

ζj(θ, x)ωji (θ, x)θ
j
i − τ i(θ)

 ≥ E−i

X
j=1,2

ζj(bθi, θ−i, x)ωji (bθi, θ−i, x)θji − τ i(bθi, θ−i)


∀i ∈ I, θ ∈ Θ,bθi ∈ Θi. (5)

Balanced-budget constraint requires that the taxes collected should be sufficient to finance the

it generates more convenient notation than either the “natural” representation or a representation following the

“distributional approach” of Milgrom and Weber [8]).
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provision cost. We impose the ex ante balanced-budget constraint:6

E

X
i

τ i (θ)−
X
j=1,2

ζj (θ, x)Cj (n)

 ≥ 0. (6)

Finally, we impose voluntary participation or individual rationality constraint. When deciding

whether to participate in the mechanism, agents know their own valuations, but do not know

the realizations of other agents’ valuations and the outcome of the fictitious lottery x. That is,

individual rationality is imposed at the interim stage as

E−i

X
j=1,2

ζj(θ, x)ωji (θ, x)θ
j
i − τ i(θ)

 ≥ 0, ∀i ∈ I, θi ∈ Θi. (7)

A mechanism is incentive feasible if it satisfies (5), (6) and (7). A mechanism is constrained efficient

if it is incentive feasible and maximizes the expected social surplus

X
j=1,2

Eζj(θ, x)

"X
i∈I

ωji (θ, x)θ
j
i −Cj (n)

#
. (8)

As a comparison benchmark, the perfect information ex post efficient rule is as follows: public

good j is provided if and only if
P
i∈I θ

j
i ≥ Cj (n) , and if it is provided, no agents should be excluded

from its usage. It is well understood that, with more than two agents, such rule is implementable

only in trivial cases: either no public good should be provided in all situations, or the public good

can be financed by charging the lowest possible valuation. In any other cases we can apply Mailath

and Postlewaite’s [6] adaptation of the fundamental bargaining inefficiency result from Myerson

and Satterthwaite [9] to conclude that ex post efficiency is impossible to achieve.

2.2 Simple Anonymous Mechanisms

To characterize the constrained efficient mechanism, we need to maximize (8) subject to con-

straints (5), (6) and (7). We first exploit the facts that all control variables enter linearly in

both the constraints and the objective function and that the problem is symmetric to reduce the

dimensionality of the problem.

6The ex ante balanced-budget constraint is literally relevant only when the designer can access fair insurance

market against budget deficits. However, standard arguments (see Mailath and Postlewaite [6] and Cramton et al [4])

show that, for any allocation implementable with transfers satisfying the ex ante balanced-budget constraint, there

exists a transfer rule that satisfies the ex post balanced-budget constraint (i.e. resource feasibility is guaranteed for

every realization of θ) that implements the same allocation.
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Consider a simplified class of mechanisms with a generic element M = (ρ1, ρ2, η1, η2, t) where

ρj : Θ→ [0, 1] for j = 1, 2,

ηj : Θi → [0, 1] for j = 1, 2, (9)

t : Θi → R.

Here ρj is the provision rule, ηj is the inclusion rule and t is the transfer rule. Relative to (3), a

number of restrictions are built into the specification in (9): first, the inclusion and transfer rules

are the same for all agents; second, conditional on the realization of θ, the provision probabilities

ρ1 (θ) , ρ2 (θ) are stochastically independent of the inclusion probabilities
©
η1 (θi) , η

2 (θi)
ª
i=1,...n

;

and third, the inclusion and transfer rules for any agent i are independent of the realization of θ−i.

A mechanism as specified in (9) is called a simple mechanism. Furthermore, a simple mechanism

is anonymous if ρj (θ) = ρj
¡
θ0
¢
for j = 1, 2 and every θ, θ0 ∈ Θ where θ0 is a permutation of θ. The

index of an agent is completely irrelevant in anonymous simple mechanisms.

We now use the symmetry of the problem and the linearity in the payoffs to show that it suffices

for the social planner to focus on simple anonymous mechanisms.

Proposition 1 For any incentive feasible mechanism M of the form (3), there exists an anony-

mous simple incentive feasible mechanism M of the form (9) that generates the same value of the

planner’s objective function.

Consequently, we consider in the remainder of this paper only simple anonymous mechanisms

of the form (9). The proof of Proposition 1 uses tedious but straightforward arguments and it is

relegated to the appendix. The intuition for why we can, with no loss of generality, only consider

the simple anonymous mechanisms is simple. First, because of the risk neutrality, all agents care

only about their expected probability of consuming each public good and the expected transfer;

thus nothing is gained by making transfers and inclusion probabilities functions of θ−i or by making

inclusion and provision rules conditionally dependent. Second, all agents may be treated symmetri-

cally (i.e., ηj and t is the same for all agents) since from any asymmetric mechanism, we can create

new asymmetric mechanisms that generates the same surplus by permuting the roles of the agents.

But then, if we randomize over all n! permuted asymmetric mechanisms, we obtain an incentive

feasible symmetric mechanism that generates the same surplus.7

7The exact argument has to be slightly modified because the inclusion probabilities and provision probabilities

are potentially correlated since they both depend on θi ∈ Θi.
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It can also be shown that, if the provision costs Cj (n) and conditional valuation distributions

F j of the two public goods are identical, then the two goods may also be treated symmetrically:

Proposition 2 Suppose that Θ1 = Θ2, F 1(·|θ2) = F 2(·|θ1) for any θ1, θ2 ∈ Θ1 = Θ2 and C1 (n) =
C2 (n) . Then, given any simple anonymous incentive feasible mechanism fM, there exists an incen-
tive feasible mechanismM that generates the same social surplus with the property that ρ1

¡
θ1, θ2

¢
=

ρ2
¡
θ2, θ1

¢
for all θ ∈ Θ and η1(θ1i , θ2i ) = η2(θ2i , θ

1
i ) for all θi ∈ Θi.

The idea of the proof is similar to that of Proposition 1. From any mechanism, one can

reverse the roles of the goods and construct another mechanism that generates the same surplus. A

symmetric mechanism can then be constructed by averaging the initial and the reversed mechanism.

3 Pure Bundle Versus Separate Provision Mechanisms

In this section, we compare two extreme mechanisms: in the pure bundle mechanism, agents

can access either both or none of the public goods; and in the separate provision mechanism, the

provision of the two goods are separately considered. This comparison provides useful intuition

for the optimal mechanism in the binary valuation example we will study in Section 4. Note

that, under both separate provision and pure bundle mechanisms, the designer faces a single-

dimensional problem; this allows us to compare these two extremes by appealing to known results

about provision of a single excludable public good.

3.1 Constrained Optimal Separate Provision Mechanism

In a separate provision mechanism, the mechanism designer deals with the mechanism design

problem for one public good as if the other good did not exist. It is best to imagine two separate

mechanism designers respectively in charge of the provision of the two goods, with the common

knowledge that the two designers do not share information obtained from the agents. Specifically,

a separate provision mechanism for good j is a mechanism where: (1). the provision and inclusion

probability for j depends only on valuation announcements for j; (2). the financing of j is separate

from that of the other good.

Since Proposition 1 holds also for a single public good, we only need to focus on simple anony-

mous mechanisms. The optimal separate provision mechanism is a special case of the general

characterization in Norman [11] (see his Proposition 2 and 3). The asymptotic result as n→∞ is

as follows:
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Let F j denote the marginal distribution over θji and assume that the virtual valuation θji −h
1− F j(θji )

i
/f j(θji ) is strictly increasing. Let

pjm = argmax
p∈Θj

p
£
1− F j(p)¤ . (10)

Then: (1). if pjm
h
1− F j(pjm)

i
> limn→∞Cj (n) /n, then the ex ante probability of provision under

the optimal mechanism converges to 1 as n→∞; (2). if pjm
h
1− F j(pjm)

i
< limn→∞Cj (n) /n, then

the ex ante probability of provision in any feasible mechanism converges to zero as n →∞.8 The
term pjm has a natural interpretation as the price that a profit maximizing monopolistic provider

would charge for access if the good is provided for sure. The basic intuition for the result is as

follows: as n→∞, the average probability of being pivotal goes to zero ; thus it becomes impossible
to price discriminate between agents with the same inclusion probability. Under the assumption

that virtual valuations are increasing, the best inclusion rule is a threshold rule where agents are

included if an only if their valuations are above the threshold. Hence, all agents above the threshold

must be charged with the same price. Norman [11] also shows (in his Proposition 4 and Lemma 3)

that average cost pricing is asymptotically optimal whenever the provision probability under the

optimal mechanism converges to unity, where the notion of “asymptotic optimality” is that the

difference in per capita surplus between the best average cost pricing mechanism and the optimal

mechanism can be made arbitrarily small as n is sufficiently large. Average cost pricing in this

context is simply to find the smallest p∗j such that Cj (n) /n = p∗j
£
1− F j(p∗j)¤.

3.2 Example 1: Pure Bundle versus Separate Provision Mechanisms with In-

dependent Uniform Valuation Distributions

We now provide an example to illustrate the basic ideas. Assume that θ1i and θ2i are both

uniformly distributed on [0, 1] and stochastically independent; and Cj (n) = cn for j = 1, 2 where

c < 1/4.

Under these parametric assumptions, the “monopoly price” defined in (10) is pjm = 1/2; and

pjm
h
1− F j(pjm)

i
= 1/4 > c. Thus, Norman [11]’s results discussed in Section 3.1 imply that,

under the separate provision mechanisms, it is asymptotically optimal to provide both goods with

8More generally, when the valuation of different agents are drawn from different distributions (as in Norman [11]),

the monopoly prices will be individual-specific.
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Figure 1: Bundling vs. Non-Bundling with Uniform Valuations.

probability 1 and charge a user fee equal to the average cost:9

pj∗ =
1

2
−
r
1

4
− c. (11)

Note that pj∗ < 1/2 = pjm, which is simply that a social planner sets a lower price than a profit

maximizing monopolist.

Now suppose that the mechanism designer continues to provide both goods with probability

one, but only offers the bundle at a user fee of p1∗ + p2∗.10 That is, agents have to decide whether

they are willing to pay p1∗+p2∗ for both goods and do not the option to subscribe to one good only.

Write θbi = θ1i + θ2i as agent i
0s the valuation of bundle, and fb and F b as its density function and

cumulative probability function respectively. Note that θbi has a triangular distribution on support

[0, 2] , thus fb is

fb(θbi ) =

 θbi if θbi ≤ 1
2− θbi if θbi > 1.

Figure 1 plots p.d.f of the average valuation, θbi/2, and the single good valuation θji . Under both

the separate provision mechanism and the proposed bundle mechanism, the utility loss compared

9That is, p∗j is the smallest solution to c = pj
£
1− F j(pj)¤ = pj(1− pj).

10This particular bundled mechanism is suboptimal, but allows a more straighforward comparisson with the best

mechanism with separate provision than the best pure bundling mechanism.
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to the first best is the surplus loss due to exclusions. Under the separate provision mechanism, the

measure of agents excluded from good j is represented by the rectangular area between 0 and pj∗

below the uniform density, namely F j
¡
p∗j
¢
; and under the proposed bundle mechanism, it is given

by the triangular area between 0 and pj∗ below the density of θbi/2, namely F b
¡
2pj∗

¢
.

Since pj∗ < 1/2, we have that F b(2pj∗) = 2
£
pj∗
¤2
< pj∗. Thus an immediate result is that

there are always fewer exclusions for either good under the proposed bundle mechanism. Equally

transparent from Figure 1 is that the expected (per-good) valuation conditional on exclusion is

higher in the bundling mechanism.11 This results in a trade-off where the net gain or loss from

bundling depends on pj∗, which in turn is determined by the cost c. The total expected surplus loss

due to exclusions may be calculated as

2

Z pj∗

0
θjidθ

j
i =

£
pj∗
¤2

under the separate provision mechanism andZ 2pj∗

0
(θbi)

2dθbi =
8
£
pj∗
¤3

3

under the proposed bundle mechanism. Therefore, the total expected surplus loss due to exclusion

is smaller under the proposed bundle mechanism if and only if pj∗ < 3/8, which, from Eq. (11),

would be the case if c < 15/64. Thus, if c < 15/64, the proposed bundle mechanism dominates the

separate provision mechanisms from the social planner’s view point; if 15/64 < c < 1/4, then the

proposed bundle mechanism is dominated.

As already mentioned, the proposed bundle mechanism is not the best mechanism with bundling.

The reason is that, since there is fewer exclusions when bundling at price 2pj∗, there is a budget

surplus. The mechanism can therefore be improved upon by lowering the access charge. However,

as c approaches 1/4 this positive effect becomes negligible, whereas the loss arising from the relative

increase in the expected valuation conditional on being excluded increases as c increases. Hence,

there is a range of costs where the optimal separate provision mechanism dominates the optimal

pure bundle mechanism.

11Clearly, the expected valuation conditional on being excluded is pj∗
2 in the case with separate provision. In the

case with bundling we calculate it as R 2pj∗
0

(θbi)
2dθbiR 2pj∗

0
θbidθ

b
i

=
4

3
pj∗.

Hence, the expected valuation for either good conditional on being excluded is 2
3p

j∗.
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3.3 Symmetric Log-Concave Densities

While welfare comparisons are ambiguous in general, the example in Section ?? suggests that

bundling tends to result in fewer exclusions than separate provision and thus increase mechanism

designer’s revenue (which in our model has welfare consequences due to the break-even constraint).

Not surprisingly, this is not true for arbitrary distributions. However, in this section we will

demonstrate that the logic from the uniform example can at least be extended to the class of

symmetric log-concave densities with non-negative support.

We first show that a profit maximizing monopolist will charge a price at which more than half

of its customers are included in expectation.

Lemma 1 Suppose that f is log-concave and symmetric with support [θ, θ], where θ ≥ 0. Leteθ = ¡
θ + θ

¢
/2 = Eθji , and pm = argmaxp p[1 − F (p)]. Then pm ≤ eθ. Moreover, if either f(eθ) >

1/
¡
θ − θ

¢
or θ > 0, then pm < eθ.

Notice that the only case covered in Lemma 1 where pm = eθ is when f is uniform with support£
0, θ
¤
.

Next, we state a result about convolutions of log-concave random variables due to Proschan [12].

Roughly speaking, the result is that if a random variable is generated by taking an average of two

draws from a symmetric log-concave distribution, then the distribution of the average is more

“peaked” than the underlying distribution of the two draws in the sense that the probability of a

given size deviation from the mean is smaller for the average than for the underlying distribution.12

Lemma 2 (Proschan [12]) Let f be a symmetric log-concave density and let x1 and x2 be inde-

pendently distributed with density f. Denote the support by [x, x] and the mode by ex = (x+ x) /2.
Furthermore, let FA denote the cumulative of (x1 + x2) /2. Then, for any x < t < ex we have that
FA (t) < F (t) .

Now suppose that θji , j ∈ {1, 2} has a symmetric log-concave density with support [θ, θ]. We
can use Proschan’s theorem to obtain:

Proposition 3 Suppose f j is symmetric, log-concave, has a non-negative support. and indepen-

dent from each other. Then

1. Bundling at price 2pm gives at least as high revenues as selling each good at price pm.

12We are grateful to Rustam Ibragimov for the reference of Proschan’s results.
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2. If pm < eθ, then there is a strict gain in revenue from bundling.

Proof. The expected revenue from bundling at price 2pm is

2pmPr
£
θ1i + θ2i ≥ 2pm

¤
= 2pm Pr

·
θ1i + θ2i
2

≥ pm
¸
= 2pm [1− FA(pm)] .

The result is then immediate from Lemma 2 and Lemma 1.

Proposition 3 is on revenue maximization for a monopolistic provider. But, Norman [11] show

that whether an excludable public good can be provided asymptotically (as n→∞) in the optimal
mechanism is completely determined by whether or not a profit maximizing monopolist can break

even. Thus, if we assume that Cj (n) = cn for j ∈ {1, 2} , and let pAm = argmax p [1− FA (p)] , then
an immediate corollary of Proposition 3 is as follows:13

Corollary 1 Suppose that pm < eθ. Then, for any c satisfying pm [1− F (pm)] < c < pAm £1− FA(pAm)¤,
1. the ex ante probability of provision converges to zero for both goods in any separate provision

mechanism;

2. the ex ante probability of provision converges to one in the optimal pure bundle mechanism.

To give a concrete example, note that for the uniform [0, 1] example in the previous section,

if c > 1/4, we know from Norman [11] that the probability of provision converges to zero in the

optimal separate provision mechanism. However, if the two public goods are provided in a bundle,

then pAm = 1/
√
6 and pAm

£
1− FA(pAm)

¤
= 2/

¡
3
√
6
¢ ≈ 0.272.14 Thus for any c ∈ ¡1/4, 2/ ¡3√6¢¢ ,

the public goods can be provided with probability one in the optimal pure bundle mechanism.

To summarize our discussion in this section, pure bundle mechanism may generate higher ex-

pected social surplus than the optimal separate provision mechanisms. First of all, bundle mech-

anisms exclude fewer consumers under some technical conditions (symmetric log-concavity of the

density function is a sufficient condition). Sometimes fewer exclusion arises together with a lower

expectation of the valuation conditional on exclusion, such as in the uniform example when c is

sufficiently low. In these situations, the proposed (albeit suboptimal) bundle mechanism clearly

dominates the optimal separate provision mechanisms. In other situations, however, the expecta-

tion of the valuation conditional on exclusion may be higher under the proposed bundle mechanism.

13Note, by definition, pAm
£
1− FA

¡
pAm
¢¤ ≥ pm [1− FA (pm)] > pm [1− F (pm)] .

14For p < 1/2, FA (p) = F b (2p) = 2p2. Hence the solution to max p [1− FA (p)] = p
¡
1− 2p2¢ is given by pAm =

1/
√
6 ≈ 0.408, and the maximum value is 2/

¡
3
√
6
¢ ≈ 0.272.
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Then the welfare comparison of the bundle and separate provision mechanisms depend on the trade-

off between probability of exclusion and the conditional valuation given exclusion. Intuitively, the

higher is the provision cost, the closer the average cost price is to the mean of the distribution, and

the more likely that the surplus loss per excluded agent outweighs the gains from fewer exclusion.

For this reason, bundling is advantageous for relatively low costs. It is also important to point

out that, fewer exclusion (at the sum of separate provision prices) under the bundle mechanism

implies a higher revenue, thus it is possible that public goods that could not be provided under the

separate provision mechanisms would be provided with probability one using a bundle mechanism.

This means that pure bundle mechanism also improves welfare when costs are moderately high.

Therefore, the capability of pure bundle mechanism to improve welfare can be non-monotonic in

the provision cost c.

The basic intuition for the result that pure bundle mechanism may dominate the optimal sepa-

rate provision mechanism is that the average valuation of two independent random variables is less

dispersed around its mean than the individual random variable. We qualified the above intuition

with some technical conditions of symmetric log-concavity.

We close the discussion in this section with an example to demonstrate the necessity of such

technical conditions. Suppose that, with probability α ∈ (0, 1) , θji is uniform [0, 2] and with

probability 1−α, θji takes value 1 for sure. This distribution satisfies all conditions in Proposition

3 except for log-concavity. The CDF of θji is

F (θji ) =

 α
2 θ
j
i for θji < 1

(1− α) + α
2 θ
j
i θji ≥ 1

.

The CDF of
¡
θ1i + θ2i

¢
/2 is discontinuous at 1, and the probability that it takes exact value of 1

(its mean) is (1− α)2 , smaller than the probability that θji takes on value 1 which is 1− α. Write

FA as the CDF of the average. Since the jump at the discontinuity is smaller for the average and

the density is symmetric we conclude that there exists ² > 0 such that FA(y) > F (y) for any

y ∈ (1− ², 1) . Thus it is possible that, if the two goods are bundled at a price in this interval, there
would be more exclusions with bundling than under separate provision. Also note that since there

is a range of values for y that work we may smooth the example with a continuous CDF.

3.4 Example 2: Bundling of a Large Number of Independent Goods

In the previous subsection, we presented a sufficient technical condition for the bundle mech-

anism to dominate the optimal separate provision mechanisms. An alternative approach is to
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consider a large number of public goods. Intuitively, when there are a large number of goods with

independent valuations, by the law of large number, the average valuation can be made arbitrarily

close to the mean and thus less dispersed around the mean than the valuation distribution of any

signal good.

Suppose there are an infinite sequence of “potential public goods” indexed by j = 1, 2, ... Let θji

denote agent i0s valuation for good j, and assume that for each j, θji is identically and independently

distributed across agents and for each i, θji is stochastically independent across goods. Finally,

assume that there exist finite numbers µ and σ2 such that Eθji ≤ µ and Varθji ≤ σ2 for all j.15

For this subsection, we will not impose symmetry in either costs or valuation distributions, thus

Proposition 2 will not be used.

The ex post efficient rule is to provide good j if and only if
Pn
i=1 θ

j
i ≥ Cj (n) and exclude

nobody from usage. What is the provision probability for good j under the ex post efficient rule?

We consider two cases of public goods. First, if Eθji > limn→∞C
j (n) /n = cj , then there exists N

such that Cj (n) ≤ ncj +n(Eθji − cj)/2 for every n ≥ N. Applying Chebyshev’s inequality, we have

Pr

"
nX
i=1

θji ≤ Cj (n)
#
≤ Pr

"
nX
i=1

θji ≤
n(Eθji + c

j)

2

#
= Pr

"
nX
i=1

θji − nEθji ≤ −
n(Eθji − cj)

2

#
(12)

≤ Pr

"¯̄̄̄
¯
nX
i=1

θji − nEθji
¯̄̄̄
¯ ≥ n(Eθji − cj)2

#
=
4Var

³P
i θ
j
i

´
n2(Eθji − cj)2

≤ 4σ2

n2(Eθji − cj)2
.

Hence, for every ε > 0 we can find some N 0 such that the probability that the ex post efficient rule

provides good j is at least 1− ε. Second, if Eθji < c
j , then a similar argument establishes that the

first best provision probability converges to zero as the number of agents goes to infinity. Since only

the first case is interesting, so we will now assume that there exists δ > 0 such that Eθji − cj ≥ δ

for all j for the remainder of this section.16

We now show that when the number of public goods is sufficiently large, bundle mechanisms

can approximate the ex post efficient rule. Let m be the number of public goods and we will study

what happens when m→∞. Let ² > 0 and consider an anonymous mechanism where all m public

goods are provided for sure (ρj (θ) = 1 for all θ ∈ Θ and all j) and where the inclusion and transfer
15This is guaranteed if there exists an interval [a, b] such that Θj

i ⊂ [a, b] for every j.
16If Eθji > c

j for some goods, but the inequality is reverersed for others the analysis still applies as long as there

are sufficiently many goods that should be provided in a large economy according to the ex post efficient rule. Goods

for which the first best probability of provision converges to zero may simply be dropped from the bundle and the

rest of the analysis carries over.
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rules are given by,

ηj(θ) =

 1 if
P
j θ
j
i ≥

P
j Eθ

j
i − εm

0 if
P
j θ
j
i <

P
j Eθ

j
i − εm

j ∈ {1, ...,m} (13)

t(θ) =


P
j Eθ

j
i − εm if

P
j θ
j
i ≥

P
j Eθ

j
i − εm

0 if
P
j θ
j
i <

P
j Eθ

j
i − εm

In words, whether an agent gets access to a good depends only on her announced valuation for

the whole bundle: if her total announced valuations exceeds the threshold
P
j Eθ

j
i − εm, then she

gets access to the bundle and pays a user fee of
P
j Eθ

j
i − ε; otherwise she is excluded from the

bundle and pays nothing. Truth-telling is a dominant strategy for this mechanism and participation

constraints are satisfied. Thus we only need to check the budget balance constraint (6).

By the assumption of a uniform upper bound σ2 for the variances of θ1i , ...θ
m
i , we can use

Chebyshev’s’ inequality to get

Pr

X
j

θji −
X
j

Eθji < −εm
 ≤ Var

³P
j θ
j
i

´
ε2m2

≤ mσ2

ε2m2
=

σ2

ε2m
. (14)

Since the right hand side converges to zero as m → ∞, there exists m̄ < ∞ for every ε > 0 such

that, for every m ≥ m̄,

Pr

 mX
j=1

θji −
mX
j=1

Eθji < −εm
 ≤ ε. (15)

The interpretation of (15) is that the probability that an agent is excluded to consume the bundle

in mechanism (13) can be made arbitrarily small as m is sufficiently large. Thus, for every ε > 0,

there exists m̄ such that, for all m ≥ m̄, the expected user fee collected in the proposed bundle
mechanism, Ent (θ) , satisfies

Ent (θ) ≥ n (1− ε)

 mX
j=1

Eθji − εm

 . (16)

Since we are considering the case in which there exists N such that for all n ≥ N, Cj (n) ≤
n(Eθji + c

j)/2 for every j, we know that, for all m ≥ m̄, n ≥ N,

Ent (θ)−
mX
j=1

Cj (n) ≥ n (1− ε)

 mX
j=1

Eθji − εm

− n mX
j=1

(Eθji + c
j)/2. (17)
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Let δ > 0 be the uniform bound of Eθji − cj (Eθji − cj ≥ δ for all j), and µ be the uniform bound

of Eθji (Eθ
j
i ≤ µ for all j), we have

n (1− ε)

 mX
j=1

Eθji − εm

− n mX
j=1

(Eθji + c
j)/2

=
n
hPm

j=1(Eθ
j
i − cj)

i
2

− nε
 mX
j=1

Eθji + (1− ε)m


≥ nm

½
δ

2
− ε [µ+ (1− ε)]

¾
Thus if we pick ² < δ/ [2 (1+ µ)] , inequality (17) implies that when m and n are sufficiently large,

the proposed bundle mechanism satisfies budget balance constraint. Moreover, as inequality (15)

shows, the probability that an agent is excluded can be made arbitrarily small (i.e. approaching the

ex post efficient rule of “never exclude”) when m is sufficiently large. We thus conclude that the

proposed bundle mechanism can approximate arbitrarily well the outcome of the first best efficient

mechanism as m and n are both sufficiently large.

However, under the optimal separate provision mechanism, the problem collapses to a special

case of a model considered in Norman [11], and it is known from his results that the probability

of exclusion is bounded away from zero. The example thus illustrates that bundling the goods

together may improve economic efficiency.

The intuition for the above double infinity (n and m both go to infinity) asymptotic results

is as follows. By selling usage of the goods only as a bundle, the valuations of individual goods

become irrelevant and the mechanism designer only need to provide consumers to reveal the average

valuation of the bundle. But, the distribution over the average valuation collapses into a mass point

as the number of goods in the bundle is taken to infinity, so the informational problem essentially

disappears. Unlike the case with private goods, efficiency is not compromised when all agents are

provided access to the public goods even when their valuations to particular goods may be below

the per capita costs.

4 The Model with Binary Valuations

So far, we have demonstrated the welfare improvement potential of pure bundle mechanism over

optimal separate provision mechanisms under two sets of conditions: (1). there are finite number

of public goods but the valuation distributions are symmetric and log-concave; (2). the number of
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public goods is large. However, the optimal mechanism with multiple public goods may not involve

pure bundling. To characterize the optimal mechanism, we consider a simple discrete version of

our general model for tractability.

Suppose that there are two public goods and the valuation of each public good is a binary random

variable and independent. For tractability, we assume that the two public goods are symmetric in all

respects. More explicitly, the valuation for good j can either be “high” (θji = h) or “low” (θ
j
i = l).

Thus the type space for an individual is Θi = {(h, h) , (h, l) , (l, h) , (l, l)} . For notational brevity
we will henceforth write θi = hh instead of (h, h) , θi = hl instead of (h, l) , and analogously for

other valuations. In the baseline model we also assume that α = Pr[θ1i = h] = Pr[θ
2
i = h] ∈ (0, 1) ,

implying that the probability distribution F over Θi is:
17n

α2,α (1− α) ,α (1− α) , (1− α)2
o
.

Finally, we assume that costs are given by C1 (n) = C2 (n) = cn. The most important simplification

here is that costs are the same for both goods, which together with the symmetry on the demand

side will allow us to restrict attention to symmetric optimal mechanisms. The per capita costs are

also kept constant, which does simplify the notation, but would be easy to relax.

An ex post optimal mechanism is to provide good j if and only if
Pn
i=1 θ

j
i > (≥)Cj (n) = cn. If

h ≤ c “never provide” is thus ex post optimal, which can be trivially implemented. Furthermore,
if l ≥ c “always provide” is ex post optimal and can be implemented by charging a constant tax
equal to c. We therefore maintain the assumption that l < c < h in order to keep the problem

interesting.

4.1 Asymptotic Provision Probabilities under the Optimal Separate Provision

Mechanisms

In this section, we establish as a benchmark the asymptotic provision probabilities of the two

public goods when the provision problem for each public good is considered in isolation. As we

argued in Section 3.1, we need only to consider simple anonymous symmetric mechanisms.

To emphasize that the solution depends on the size of the economy we denote a separate

provision mechanism for the provision of good j in an economy of size n by (ρjn, η
j
n, t

j
n), where

17While independence across agents is absolutely crucial for the analysis, independence across goods is not.

Everything would go though with rather minor modifications with a probability distribution of the formn
σ (hh) , σ(m)

2
, σ(m)

2
,σ (ll)

o
, where σ (m) is the probability of a “mixed type”. That is, as long as the symmetry

is kept we can handle positive or negative correlation between the valuation for the goods rather easily.
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ρjn : {1, ..., n}→ [0, 1] and ρjn (m) denotes the probability of provision if m agents announce a high

valuation for good j; ηjn ∈ [0, 1] is the inclusion probability for type l and tjn = (tjn(h), tjn(l)) are the
transfers. In principle it is also possible to exclude agents of type h, but this tightens the downwards

incentive constraint for type h and is an option that will never be used, so we immediately build

that in to the mechanism to simplify notation. Arguments similar to Propositions 2 and 3 in

Norman [11] can be used to get a tight characterization of the asymptotic provision and inclusion

rules under the optimal separate provision mechanisms:

Proposition 4 (Norman [11]) Consider a sequence of economies of size {n}∞n=1 . Then,

1. if αh < c, limn→∞ Eρjn (m) = 0 for any sequence of feasible mechanisms
n
ρjn, η

j
n, t

j
n

o
;

2. if αh > c, limn→∞ Eρjn (m) = 1 for any sequence of constrained optimal mechanisms
n
ρ̂jn, η̂

j
n, t̂

j
n

o
.

Moreover, the sequence
n
ρjn, η

j
n, t

j
n

o
satisfies:

lim
n→∞ ηjn =

αh− c
αh− l ,

lim
n→∞ t

j
n(l) =

αh− c
αh− l l,

lim
n→∞ t

j
n(h) =

·
1− αh− c

αh− l
¸
h+

αh− c
αh− l l.

The formal proof is omitted here, instead we provide an heuristic explanation for the result.18

Since the effect on the provision probability from any individual announcement is negligible in a

large economy, the incentive constraint for a type-h agent is roughly that

Ebρjn (m)h− btjn(h) ≥ Ebρjn (m)bηjnh− btjn(l).
and the participation constraint for the low type dictates that btjn(l) = Ebρjn (m)bηjnl. Because the
incentive constraint for the high type binds in the optimal mechanism, budget balance then requires

that, approximately,

Ebρjn (m) c = αbtjn(h) + (1− α)btjn(l) ≈ α
£btjn(l) + Ebρjn (m)h ¡1− bηjn¢¤+ (1− α)btjn(l)

= btjn(l) + αEbρjn (m)h ¡1− bηjn¢
= Ebρjn (m)bηjnl +Ebρjn (m)αh ¡1− bηjn¢ . (18)

18Details available on request from the authors.
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Hence, bηjn ≈ (αh− c) / (αh− l) follows from (18) since in the limit it is valid to ignore the effects

from being pivotal. Note that, by inspecting (18), if αh < c, (since by assumption, l < c as well),

then limn→∞ Ebρjn (m) = 0. Otherwise the budget balance constraint must be violated for large n.
On the other hand, if instead αh > c, it is feasible to provide for sure (for any n) with the transfers

specified in Proposition 4, and inclusion probability bηjn = (αh− c) / (αh− l) . Conditional on this
inclusion probability, the ex post efficient rule is to provide public good j whenever

mh+ (n−m)bηjnl ≥ cn,
⇐⇒ m

n
h+

n−m
n

bηjnl ≥ c.
An application of Chebyshev’s inequality guarantees that

plim

µ
m

n
h+

n−m
n

bηjnl¶ = αh+ (1− α)
αh− c
αh− l l > αh > c.

Thus, the ex post efficient provision rule conditional on the given inclusion probability converges

towards “always provide”. Hence limn→∞ Ebρjn (m) = 1 in the optimal mechanism. The limits for
the transfers can then be obtained by substituting limn→∞Ebρjn (m) = 1 back into the incentive and
participation constraints.

4.2 Example 3: Improvement when Bundling is Allowed

Asymptotically, the optimal separate provision mechanisms characterized in Propositions 4

may not be efficient. First of all, the asymptotic provision probability is zero when αh < c while

efficiency requires that the public good be provided whenever αh + (1− α) l > c; second, when

αh > c, there is still inefficiency due to positive probability of exclusion of low valuation agents,

even though the public good is provided asymptotically with probability 1. Before we characterize

the optimal provision mechanism with bundling, we first provide an example to demonstrate that

improvement can be indeed be achieved via bundling by showing a particular incentive compatible,

balanced-budget voluntary mechanism (that may not necessarily be optimal) can improve upon the

mechanisms without bundling.

Suppose that αh+ (1− α) l > c. Consider the following provision mechanism with bundling:

• thh = thl = tlh = 2c/
¡
2α− α2

¢
, tll = 0;

• ηhh = ηhl = ηlh = 1, ηll = 0.

• ρ1 (m) = ρ2 (m) = 1 for all m ∈ {0, 1, ..., n} , i.e. always provide the public goods.
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Notice that the (ex ante) budget balance constraint holds for any n by construction of the

mechanism since

α2thh + (1− α)αthl + α(1− α)tlh + (1− α)2 tll

=
£
α2 + (1− α)α+ α(1− α)

¤ 2c

2α− α2
= 2c.

It can also be verified that all the incentive compatibility constraints are satisfied for any n if

h+ l − 2c/ ¡2α− α2
¢ ≥ 0.

Now, suppose that the valuations of each public good satisfies that l < c, and αh < c, then by

Proposition 4, we know that the provision probability without bundling converges to zero for each

good. However, if h+ l ≥ 2c/ ¡2α− α2
¢
, the mechanism proposed above will provide both public

goods with probability one. It is also easy to show that there exists configurations of l, h, c such

that l < c,αh < c and h+ l ≥ 2c/ ¡2α− α2
¢
. We summarize the above discussions as follows:

Claim. Fix any c > 0,α ∈ (0, 1) . There exists h > l such that the provision probability under

the optimal separate provision mechanisms is zero but they are provided with probability one

under the proposed bundle mechanism.

The range of values of h and l for any c > 0, and α ∈ (0, 1) for which the above-proposed
bundling mechanism outperforms the optimal mechanism without bundling is depicted in Figure 2.

The intuition for the improvement of bundling mechanism is as follows. In the revenue maximizing

mechanism without bundling, only high valuation types are included in the public good provision,

thus a fraction α2 of the agents are included in both goods, and a fraction 2α (1− α) agents are

included on one and only one good, and the remainder agents are excluded from both goods. In

the proposed bundling mechanism, all agents are included in both public goods except that type-ll

agents are excluded from both. Thus in the bundling mechanism, more agents contribute since

only (1− α)2 consumers are excluded, even though the contribution is smaller per agent.

4.3 The Full Design Problem with Binary Valuations

We will now solve the design problem to maximize social surplus (8) subject to the incentive

compatibility constraints in (5), the feasibility constraint (6) and the participation constraints (7).

Appealing to Proposition 1 and 2, we consider only simple anonymous mechanisms that treat

the two public goods symmetrically. For each θ ∈ Θ ≡ {hh, hl, lh, ll}n , let x ≡ (xhh, xhl, xlh, xll)
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Figure 2: The Bundling Mechanism Outperforms Optimal Non-bundling Mechanism in the Shaded Region.

denote the number of agents announcing different types, and let

Xn =
n
x ∈ {0, ..., n}4 : xhh + xhl + xlh + xll = n

o
. (19)

be the set of possible values x (θ) can take when there are n agents. The anonymity of the mechanism

implies that the provision rule depends only on the number of agents who announce different

valuation combinations. That is, with some abuse of notation, the class of mechanisms we consider

is

M =
³©

ρj , ηj
ª
j=1,2

, t
´
, j ∈ {1, 2} , (20)

where ρj : Xn → [0, 1] , ηj = (ηjhh, η
j
hl, η

j
lh, η

j
ll) ∈ [0, 1]4 and t = (thh, thl, tlh, tll) ∈ R4 satisfy

ρ1 (xhh, xhl, xlh, xll) = ρ2 (xhh, xlh, xhl, xll) , (21a)

η1hh = η2hh, η
1
hl = η2lh, η

1
lh = η2hl, η

1
ll = η2ll, thl = tlh. (21b)

To ease notation, we define

sj(x, η) =
³
ηjhhxhh + ηjhlxhl

´
h+

³
ηjlhxlh + ηjllxll

´
l − cn

as the surplus generated if good j = 1, 2 is provided in state x (given truth-telling) if the inclusion

probability is ηj.
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Now we provide more details of the constraints that a mechanism m ∈ M must satisfy. First,

we need to be explicit about the probability distribution of the random variable x. For any x =

(xhh, xhl, xlh, xll) ∈ Xn, the probability mass of x, denoted by an (x) is:

an (x) =
n!

xhh!xhl!xlh!xll!

¡
α2
¢xhh [α (1− α)]xhl [α (1− α)]xlh

h
(1− α)2

ixll
. (23)

Now we write down the incentive compatibility constraints. In principle, there are a total

of twelve incentive constraints to be satisfied. However, in our environment, types are naturally

ordered as hh being the “highest type”, hl and lh being “middle types” and ll being the “lowest

type”. We therefore conjecture that only downwards incentive constraints are relevant and will

therefore ignore all upwards constraints as well as the constraints between type hl and lh. Once

the solution to the relaxed problem is fully characterized, we will verify that the other omitted

constraints are satisfied. Finally, it is easy to check that if hh is better off announcing her true

type than type hl and hl is better off announcing her true type than ll, then there are no incentives

for hh to announce ll. Together with the symmetry of the mechanism (21), we have two distinct

incentive constraints constraints:

2η1hh
P
x∈Xn−1 an−1 (x) ρ

1 (xhh + 1, xhl, xlh, xll)h− thh ≥
η1hl
P
x∈Xn−1 an−1 (x)ρ

1(xhh, xhl + 1, xlh, xll)h

+η1lh
P
x∈Xn−1 an−1 (x) ρ

1(xhh, xhl, xlh + 1, xll)h− thl,
(24a)

η1hl
P
x∈Xn−1 an−1 (x)ρ

1(xhh, xhl + 1, xlh, xll)h

+η1lh
P
x∈Xn−1 an−1 (x)ρ

1(xhh, xhl, xlh + 1, xll)l − thl ≥
η1ll
P
x∈Xn−1 an−1 (x) ρ

1(xhh, xhl, xlh, xll + 1) (h+ l)− tll,
(24b)

where (24a) states that type-hh agents do not have incentives to mis-report as type hl; and (24b)

states that type-hl agents do not have incentives to mis-report as type ll.

Next, given that all downward incentive constraints and the participation constraint for type

ll are fulfilled it follows by a standard argument that the participation constraints for types hh, hl

and lh are also fulfilled.19 Hence, using symmetry (21), we can write the only relevant participation

constraint as

2η1ll
X

x∈Xn−1
an−1 (x)ρ1(xhh, xhl, xlh, xll + 1)l − tll ≥ 0. (25)

19The argument is that, by incentive compatibility, all higher types are better off than pretending to be type ll.

Since the payoff from pretending to be ll is higher than the payoff for a (truth-telling) type ll, interim indivdual

rationality follows for any other type.
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Finally, the budget balance constraint can be simplified considerably due to the simple transfer

schemes and the constant per capita costs. That is,

E

X
i

τ i (θ)−
X
j=1,2

ρj (x)Cj (n)

 =
X
i

Eτ i (θ)−
X
j=1,2

Eρj (x)Cj (n)

= n

α2thh + α (1− α) [thl + tlh] + (1− α)2 tll −
X
j=1,2

Eρj (x) c

 .
We may thus express the budget balance constraint (6) in per capita form, using symmetry (21)

and the explicit expression for Eρj (x), as

α2thh + α (1− α) 2thl + (1− α)2 tll − 2c
X
x∈Xn

an (x) ρ
1 (x) ≥ 0. (26)

Using again the symmetry (21), we can thus express the relaxed programming problem as:20

max
{ρ1,η1,t}

2
X
x∈Xn

an (x)ρ
1 (x)

"¡
η1hhxhh + η1hlxhl

¢
h+

¡
η1lhxlh + η1llxll

¢
l

n
− c
#

(27)

s.t. (24a)-(24b), (25) and (26),

η1θi ≥ 0, 1− η1θi ≥ 0 for each θi ∈ Θi, (28)

ρ1 (x) ≥ 0, 1− ρ1 (x) ≥ 0 for each x ∈ Xn, (29)

where the social planner’s objective function is written in per capita form.

Lemma 3 There exists at least one optimal solution to (27).

The proof is standard by first compactifying the constraint set and then applying Weierstrass

Theorem.

5 The Optimal Mechanism

It can be shown that Slater’s’ condition for constraint qualification holds, so the Kuhn-Tucker

conditions are necessary for an optimum. Since we know that a solution to (27) exists, these first

order conditions therefore provide a characterization of the optimal mechanism, provided that the

constraints that we ignored when formulating (27) are satisfied at the candidate solution.

20The multiplicative constant 2 in the objective function is redundant, but it aids interpretations by keeping the

units in the objective function and the constraints comparable.
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Constraint Multiplier

IC (24a) λhh

IC (24b) λhl

IR (25) λll

BB (26) Λ

η1θi ≥ 0 γθi

1− η1θi ≥ 0 φθi

ρ1 (x) ≥ 0 γ (x)

1− ρ1 (x) ≥ 0 φ (x)

Table 1: Notation of multipliers.

5.1 Relationship Between Multipliers

Taxes enter linearly into all constraints and are not constrained by boundaries. It is therefore

convenient to begin the analysis by taking first order conditions with respect to tθ. This allows us

to express the multiplier of any other constraint as a linear scaling of the multiplier of the feasibility

constraint. Table 1 lists our notations for associated multipliers to optimization problem (27).

The first order conditions with respect to t = (thh, thl, tll) are,

(w.r.t. thh) −λhh + Λα2 = 0,
(w.r.t. thl) λhh + λhl + Λ2α (1− α) = 0,

(w.r.t. tll) λhl − λll + Λ (1− α)2 = 0.

(30)

We thus immediately conclude:

Lemma 4 In any solution to (27) the multipliers (λhh,λhl,λll,Λ) satisfy: λhh = α2Λ,λhl =¡
2α− α2

¢
Λ, and λll = Λ.

5.2 Optimal Inclusion Rules

We now characterize the optimal inclusion rules η1. To ease the statement of the result, we

define two linear functions G : [0, 1]→ R and H : [0, 1]→ R as

G (Φ) ≡ (1−Φ) 2l +Φ
·
2α− α2

α (1− α)
l − α2

α (1− α)
h

¸
, (31)

H (Φ) ≡ (1−Φ) 2l +Φ
·

2

(1− α)2
l − 2α− α2

(1− α)2
(h+ l)

¸
.
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The result is:

Lemma 5 Let M = (ρ1, ρ2, η1, η2, t) be a symmetric solution to (27) and let Φ = Λ/ (1+ Λ) ,

where Λ is the associated multiplier on the resource constraint. Also, suppose that E
£
ρj (x) |θi

¤
> 0

for all θi ∈ Θi and j = 1, 2. Then,

1. η1hh = η2hh = η1hl = η2lh = 1;

2. η1lh = η2hl =


1 if G (Φ) > 0

y ∈ [0, 1] if G (Φ) = 0

0 if G (Φ) < 0;

3. η1ll = η2ll =


1 if H (Φ) > 0

y ∈ [0, 1] if H (Φ) = 0

0 if H (Φ) < 0.

The formal is proof is relegated to the appendix. Here we provide an interpretation of this

result. Note that Φ = Λ/ (1+ Λ) ∈ [0, 1] , and G (Φ) ≥ 0 if and only if

(1−Φ)
Term 1z }| {

α (1− α) 2l +Φ

Term 2z }| {£
α (2− α) l − α2h

¤
≥ 0. (32)

for all Φ. To understand term 2 in expression (32), consider two candidate inclusion rules. The first

candidate is η1lh = η2hl = η1ll = η2ll = 0, which states that agent i is given access to good j if and only

if her announced valuation for good j is h. Since high valuation agents are willing to pay h for access

to a good, the expected revenue from such an inclusion rule is at most 2h×α2+h×2α (1− α) = 2αh

from each agent. The second candidate inclusion rule is η1lh = η2hl = 1 and η
1
ll = η2ll = 0, which states

that an agent is given access to both goods as long as one of her announced valuation is high. Under

this inclusion rule, all agent types except ll could be charged h+ l for access to both goods. This

results in an expected revenue per agent of at least
£
α2 + 2α (1− α)

¤
(h+ l) = α (2− α) (h+ l) .

Thus, the marginal revenue effect of increasing η1lh and η2hl from 0 to 1 is given by

α (2− α) (h+ l)− α2h = α (2− α) l − α2h,

which is term 2 in expression (32). Term 1 in expression (32), 2α (1− α) l, on the other hand,

captures the marginal increase in per capita surplus from increasing η1lh and η2hl from 0 to 1.

Thus we show that G (Φ) is essentially a weighted average of the optimality conditions for an
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unconstrained social planner and a profit maximizing provider, where the weight on term 2 — the

effect on revenue — is higher when the shadow price of revenue, namely, Λ, is higher.

Clearly, if both term 1 and term 2 are positive, then both the social planner and monopolistic

provider prefers setting η1lh = η2hl = 1. On the other hand, if term 2 is negative, i.e. if α (2− α) l <

α2h, then some algebra on expression (32) shows that G (Φ) ≥ 0 if

Φ ≤ Φ∗lh =
(1− α) 2l

α (h− l) .

Clearly, Φ∗lh > 0 but Φ∗lh < 1 only when α (2− α) l < α2h. That is, when there is a conflict of

interest between the surplus maximizing social planner and a revenue maximizing monopolistic

provider, η1lh = η2hl = 1 will be optimal only when Λ, or the shadow price of resources is sufficiently

low. To summarize, item 2 of Lemma 5 could be restated as: there exists a critical value Φ∗lh ∈ (0, 1)
such that G (Φ) ≥ 0 if and only if Φ ≤ Φ∗lh.

Analogously, H (Φ) ≥ 0 if and only if

(1−Φ) (1− α)2 2l +Φ [2l − α (2− α) (h+ l)] ≥ 0.

The term (1− α)2 2l is the gain in social surplus when η1ll and η2ll are increased from 0 to 1; and

the term 2l − α (2− α) (h+ l) is the revenue effect of such a change. Thus, H (Φ) is again a

the optimality conditions for an unconstrained social planner and a profit maximizing provider. If

2l−α (2− α) (h+ l) > 0, the H (Φ) > 0 for sure and η1ll = η2ll = 1 is optimal. Otherwise, H (Φ) ≥ 0
if and only if

Φ ≤ Φ∗ll =
(1− α)2 2l

α (2− α) (h− l) .

Note
Φ∗lh
Φ∗ll

=
2− α

1− α
> 1.

This implies that type-hl or type-lh agents are always “first in line” to get access to the good

for which they have a low valuation in the following sense: if η1ll = η2ll > 0, then we know that

Φ ≤ Φ∗ll < Φ∗lh, thus η1lh = η2hl = 1; symmetrically, if η
1
lh = η2hl < 1, then we know Φ ≥ Φ∗lh > Φ∗ll,

then η1ll = η2ll = 0. We summarize the above discussion as:

Lemma 6 Suppose that E
£
ρj (x) |θi

¤
> 0 for all θi ∈ Θi and j = 1, 2. Let Φ = Λ/ (1+ Λ). The

optimal inclusion rule satisfies:

1. All agents with a high valuation for good j is included with probability one for using good j if

it is provided;
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2. If Φ < Φ∗ll < Φ
∗
lh, then all agents get access to both public goods.

3. If Φ = Φ∗ll < Φ
∗
lh, then η1ll = η2ll ∈ [0, 1] and η1lh = η2hl = 1.

4. If Φ∗ll < Φ < Φ
∗
lh, then η1ll = η2ll = 0 and η

1
lh = η2hl = 1.

5. If Φ∗ll < Φ = Φ
∗
lh, then η1ll = η2ll = 0 and η

1
lh = η2hl ∈ [0, 1]

6. If Φ∗ll < Φ
∗
lh < Φ, then η1ll = η2ll = η1lh = η2hl = 0

While we have not yet determined the value of Λ in the optimal mechanism, we have a rather

simple characterization of the optimal inclusions as a function of the still unknown multiplier on

the resource constraint.

5.3 Optimal Provision Rules

Now we analyze the optimal provision rules ρj (x). Take the first order condition with respect

to ρ1 (x) in maximization problem (27), we obtain

2an (x)

·
(η1hhxhh+η

1
hlxhl)h+(η

1
lhxlh+η

1
llxll)l

n − c
¸
+ λhh

£
2η1hhan−1 (xhh − 1, xhl, xlh, xll)h

¤
−λhh

£
η1hlan−1 (xhh, xhl − 1, xlh, xll)h− η1hlan−1 (xhh, xhl, xlh − 1, xll)h

¤
+λhl

£
η1hlan−1 (xhh, xhl − 1, xlh, xll)h+ η1lhan−1 (xhh, xhl, xlh − 1, xll) l

¤
−λhl

£
η1llan−1 (xhh, xhl, xlh, xll − 1) (h+ l)

¤
+ λll2η

1
llan−1 (xhh, xhl, xlh, xll − 1) l

−Λan (x) 2c+ γ (x)− φ (x) = 0,

(33)

where we adopt the convention that if xhh = 0, then an−1 (xhh − 1, xhl, xlh, xll) = 0; and so on.

Using the following identities between multinomials,

an−1 (xhh − 1, xhl, xlh, xll) = an(x)
α2

xhh
n , an−1 (xhh, xhl − 1, xlh, xll) = an(x)

α(1−α)
xhl
n

an−1 (xhh, xhl, xlh − 1, xll) = a(x)
α(1−α)

xlh
n , an−1 (xhh, xhl, xlh, xll − 1) = 1

(1−α)2
xll
n ,

(34)

exploiting the relationships between multipliers in Lemma 4, and substituting η1hh = η1hl = 1 due

to Lemma 5, we can simplify (33) to

2

·
(xhh+xhl)h+(η1lhxlh+η1llxll)l

n − c
¸
(1−Φ)

+α2Φ
h
2 1
α2
xhh
n h− 1

α(1−α)
xhl
n h− η1lh

1
α(1−α)

xlh
n h
i

+α (2− α)Φ
h

1
α(1−α)

xhl
n h+ η1lh

1
α(1−α)

xlh
n l − η1ll

1
(1−α)2

xll
n (h+ l)

i
+Φ2η1ll

1
(1−α)2

xll
n l −Φ2c+ γ(x)−φ(x)

an(x)
= 0,

(35)
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where Φ = Λ/ (1+ Λ) . This condition can be interpreted as a weighted average of surplus (the

term multiplied by 1−Φ) and profit maximization (the terms multiplied by Φ).
We can collect terms in (35) and simplify it as

2xhhn h+ 2
xhl
n h− 2c+ xlh

n η1lh

G(Φ)z }| {½
(1−Φ) 2l +Φ

·
α (2− α)

α (1− α)
l − α2

α (1− α)
h

¸¾

+xlh
n η1ll

H(Φ)z }| {½
(1−Φ) 2l +Φ

·
2

(1− α)2
l − α (2− α)

(1− α)2
xll
n
(h+ l)

¸¾
+ γ(x)−φ(x)

an(x)
= 0.

(36)

¿From Lemma 5, we know that η1lh = 0 if G (Φ) < 0 and η1ll = 0 if H (Φ) < 0. Therefore, if we

define

Q1
³x
n
,Φ
´
≡ xhh

n
h+

xhl
n
h+

xlh
n

max {0, G (Φ)}
2

+
xll
n

max {0, H (Φ)}
2

− c. (37)

(36) can be further simplified as

2Q1
³x
n
,Φ
´
+

γ (x)− φ (x)

an (x)
= 0.

Lemma 7 Let M = (ρ1, η1, t) be an optimal solution to (27) and Φ = Λ/ (1+ Λ) where Λ is the

multiplier associated with the constraint (26) at the optimal solution. Then,

1. ρ1 (x) = 1 whenever Q1 (x/n,Φ) > 0,

2. ρ1 (x) = 0 whenever Q1 (x/n,Φ) < 0.

Analogously, given the multiplier Λ associated with the balanced-budget constraint at the op-

timal solution, the optimal provision rule for good 2 is determined by the value of a function

Q2
³x
n
,Φ
´
≡ xhh

n
h+

xlh
n
h+

xhl
n
max {0, G (Φ)}+ xll

n
max {0, H (Φ)}− c,

such that ρ2 (x) = 1 whenever Q2 (x/n,Φ) > 0 and ρ2 (x) = 0 whenever Q2 (x/n,Φ) < 0.

To summarize, we have characterized the optimal inclusion and provision rules for any given

value of the Lagrange multiplier Λ associated with the balanced-budget constraint. Such charac-

terization provides some partial information regarding the asymptotic provision probability in the

optimal mechanism with bundling. For example, the above characterization tells us that αh > c is a

sufficient but not necessary condition for the provision probability to converge to one.21 In contrast,

21Recall that in the example in Section 4.2, the proposed bundling mechanism achieves provision with probability

one for cases when αh < c.
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in the model without bundling, αh > c is the necessary and sufficient for asymptotic probability

one provision. To see this, write µ =
³
α2,α (1− α) ,α (1− α) , (1− α)2

´
as the asymptotic propor-

tions of agents with different valuation combinations hh, hl, lh, and ll; and write Φn = Λn/ (1+ Λn)

where Λn is the associated multiplier on the resource constraint in the optimal solution when the

number of agents in the economy is n. Note that

lim
n→∞Q

1
³x
n
,Φn

´
= Q1 (µ,Φ)

= αh+ α (1− α)max {0,G (Φ)}+ (1− α)2max {0, H (Φ)}− c (38)

where Φ = limn→∞Φn. Thus a sufficient condition for Q1 (µ,Φ) > 0 (and hence probability one

provision of public good 1 asymptotically) is αh > c. A similar conclusion can be obtained for

public good 2.

5.4 Asymptotic Results

In this section, we provide a full characterization of the asymptotic provision probability in

an optimal mechanism. We index the mechanisms by the size of the economy by
n
ρjn, η

j
n, tn

o2
j=1

,

where ρjn : Xn → [0, 1] is the provision rule for good j, and η1n =
¡
η1n (lh) , η

1
n (ll)

¢
are the prob-

abilities that type-lh and ll agents are allowed access to good 1 conditional on provision, and

η2n =
¡
η2n (hl) , η

2
n (ll)

¢
are the probabilities that type-hl and ll agents are allowed access to good 2

conditional on provision; and tn is the transfer rule. Note that we have used our result from Lemma

5 that other types are included with probability 1 in any optimal mechanism. Our main result is:

Proposition 5 Let
n
ρjn, η

j
n, tn

o2
j=1

be a sequence of optimal mechanism. Then, the following holds:

1. if max {2αh,α (2− α) (h+ l)} > 2c, then limn→∞ Eρjn (x)→ 1 for j = 1, 2;

2. if max {2αh,α (2− α) (h+ l)} < 2c, then limn→∞ Eρjn (x)→ 0 for j = 1, 2;

3. if α (2− α) (h+ l) > 2c, then there exists N < ∞ such that η1n (lh) = η2n (hl) = 1 for every

n ≥ N , η1n (ll) = η2n (ll) for every n and

lim
n→∞ η1n (ll) = lim

n→∞ η2n (ll) = η∗ll,

where

η∗ll =
α (2− α) (h+ l)− 2c
α (2− α) (h+ l)− 2l ∈ (0, 1) ;
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BundlingÂExclusion No Exclusion Exclusion

No Bundling

Eρj∗n → 0

(Mailath and

Postlewaite [6])

Eρj∗n → 0, if αh < c

Eρj∗n → 1, if αh > c
(Norman [11])

Bundling Allowed

Eρj∗n → 0

(Mailath and

Postlewaite [6])

Eρj∗n → 0,

if max {2αh,α (2− α) (h+ l)} < 2c;
Eρj∗n → 1,

if max {2αh,α (2− α) (h+ l)} > 2c
(This Paper)

Table 2: The Asymptotic Provision Probability under Different Bundling and Exclusion Possibilities.

4. If 2αh > 2c > α (2− α) (h+ l) ,then there exists N <∞ such that η1n (ll) = η2n (ll) = 0 for all

n ≥ N and η1n (lh) = η2n (hl) for every n and

lim
n→∞ η1n (lh) = lim

n→∞ η2n (hl) = η∗lh

where

η∗lh =
2α2h− 2c

2α2h− α (2− α) (h+ l)
∈ (0, 1) .

5.5 Summary

In Sections 4 and 5, we studied the optimal bundling mechanism in an environment with n

agents and two public goods. Each agent’s valuations for the public goods are independent and

take values h and l with probability α and 1−α respectively. Suppose that the per capita provision
cost of each public good is c ∈ (l, h) . Table 2 summarizes our results and the existing results in
the literature with different possibilities of bundling and exclusion. The efficiency rationale for the

bundling in the provision of excludable public goods is clearly demonstrated in large economies.

6 Conclusion

This paper studies the role of bundling in the optimal provision of multiple excludable public

goods in large economies. We show that bundling in the provision of unrelated public goods

can enhance social welfare. For a binary valuation parametric class of examples, we characterize

the optimal mechanism and show that allowing for bundling alleviates the well-known free riding
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problem in large economies and increases the probability of public good provision. All these result

are related to the idea that bundling reduces the variance in the distribution of valuations.

While we solved for the optimal mechanism for the provision of multiple public goods in a very

specific example, the intuition highlighted in this paper that bundling of unrelated public goods

can play an important role in the efficient mechanism is more general. Under reasonable conditions,

bundling decreases the set of agents excluded from the public goods and it allows the mechanism

designer to collect more revenues, which in turn implies that public goods may be more likely

provided.

There are two interesting directions where we can extend this paper. First, can we characterize

the optimal mechanism for the provision of multiple public goods when the valuation distributions

are more general? Second, will a social planner sometimes find it optimal to bundle the provision of

private goods with a public goods to alleviate the free-riding problem in the public good provision?
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A Appendix: Proofs of Main Results

Proof of Proposition 1. Proposition 1 follows from the following two claims:

Claim 1 For any incentive feasible mechanism M of the form (3), there exist an incentive feasible

mechanism µ³
ρj , ηj1, ..., η

j
n

´
j=1,2

, t1, ...., tn

¶
(A1)

that generates the same social surplus, where ρj : Θ→ [0, 1] is the provision rule for good j,

ηji : Θi → [0, 1] is the inclusion rule for agent i and good j,and ti : Θi → R is the transfer

rule for agent i.

Proof. Pick an arbitrary mechanism M = (ζ1, ζ2,ω1,ω2, τ) and let k ∈ [0, 1] . For j = 1, 2 and
i ∈ I, define the functions ρj : Θ→ [0, 1] , ηji : Θi → [0, 1] , ti : Θi → R by

ρj (θ) = EXζ
j (θ, x) =

Z 1

0
ζj (θ, x)dx

ηji (θi) =


E−iωji (θ,x)ζ

j(θ,x)

E−iζj(θ,x)
=

R
Θ−i

R 1
0 ωji (θ,x)ζ

j(θ,x)dxdF(θ−i)R
Θ−i

R 1
0 ζj(θ,x)dxdF(θ−i)

if
R
Θ−i

R 1
0 ζ

j (θ, x) dxdF (θ−i) > 0

k if
R
Θ−i

R 1
0 ζ

j (θ, x) dxdF (θ−i) = 0

ti (θi) = E−iτ (θ) =
Z
Θ−i

τ (θ) dF (θ−i) .

Consider agent i of type θi ∈ Θi who announces θ̂i ∈ Θi. Suppose
R
Θ−i

R 1
0 ζ

j
³
θ̂i, θ−i, x

´
dxdF (θ−i) =

0. In this case, we know that E−i
h
ζj(θ̂i, θ−i, x)ωji (θ̂i, θ−i, x)

i
= 0 since ωji (θ̂i, θ−i, x) is bounded

between 0 and 1. Thus agent i0s expected payoff is −ti(θ̂i) = −
R
Θ−i τ

³
θ̂i, θ−i

´
dθ−i under both the

original and the simple mechanism. In the other case where
R
Θ−i

R 1
0 ζ

j
³
θ̂i, θ−i, x

´
dxdF (θ−i) > 0,

agent i0s utility given the mechanism
µ³

ρj , ηj1, ..., η
j
n

´
j=1,2

, t1, ..., tn

¶
is

E−i

X
j=1,2

ρj
³
θ̂i, θ−i

´
ηji

³
θ̂i
´
θi − ti

³
θ̂i
´

=
X
j=1,2

E−iζj
³
θ̂i, θ−i, x

´ E−iωji ³θ̂i, θ−i, x´ ζj ³θ̂i, θ−i, x´
E−iζj

³
θ̂i, θ−i, x

´ θi − E−iτ
³
θ̂i, θ−i

´
=

X
j=1,2

E−iωji
³
θ̂i, θ−i, x

´
ζj
³
θ̂i, θ−i, x

´
θi − E−iτ

³
θ̂i, θ−i

´

= E−i

X
j=1,2

ωji

³
θ̂i, θ−i, x

´
ζj
³
θ̂i, θ−i, x

´
θi − τ

³
θ̂i, θ−i

´ ,
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which is the utility that agent i of type θi obtains if she announces type θ̂i under the original

mechanism M = (ζ1, ζ2,ω1,ω2, τ). Hence, all incentive and participation constraints continue to

hold when we change fromM to the simplified mechanism. Moreover, since

E−i

X
j=1,2

ρj (θ) ηji (θi) θi

 = E−i
X
j=1,2

ζj (θ, x)ωji (θ, x) θi

 for every θi,

it follows by integration over Θi and summation over i that

E

X
i∈I

X
j=1,2

ρj (θ) ηji (θi) θi

 = E
X
i∈I

X
j=1,2

ζj (θ, x)ωji (θ, x) θi

 .
By construction we also have that ρj (θ) = EXζ

j (θ, x) for every θ. Thus E
£
ρj (θ)Cj (n)

¤
=

E
£
ζj (θ, x)Cj (n)

¤
, implying thatX

j=1,2

Eρj (θ)

"X
i∈I

ηji (θi) θi −Cj (n)
#
=
X
j=1,2

Eζj (θ, x)

"X
i∈I

ωji (θ, x) θi −Cj (n)
#
.

Hence, the original and the simplified mechanisms generate the same social surplus. Finally, ti (θi) =

E−iτ (θ) implies that
P
i∈I Eti (θi) =

P
i∈I Eτ (θ), thus the balanced-budget constraint is also

unaffected. We conclude that the simplified mechanism constructed in (A1) generates the same

social surplus and satisfies all the constraints if the original mechanismM is incentive feasible.

Claim 2 For every simplified incentive feasible mechanism of the form (A1), there exists an anony-

mous simple incentive feasible mechanism fM of the form (9) that generates the same social

surplus.

Proof. Suppose that a simplified mechanism M =

µ³
ρj , ηj1, ..., η

j
n

´
j=1,2

, t1, ..., tn

¶
of the form

(A1) is incentive feasible. For any given θ ∈ Θ, let Pk (θ) ∈ Θ denote the k-th permuta-

tion of θ; P (θ) = {P1 (θ) , ..., Pn! (θ)} the set of all possible permutations; and, for i ∈ I, let
P ik (θ) ∈ Θi denote the agent i0s type in permutation Pk (θ); and χik ∈ I denote the index of
the agent who has i0s valuation θi in permutation Pk (θ) .

22 For each k ∈ {1, ..., n!} , construct
Mk =

µ³
ρjk, η

j
k1, ..., η

j
kn

´
j=1,2

, tk1, ..., tkn

¶
from the simplified mechanism M as

ρjk (θ) = ρj (Pk (θ)) ∀ θ ∈ Θ, j = 1, 2,
ηjki (θi) = ηj

χik
(θi) ∀ θi ∈ Θi, j = 1, 2, i ∈ I,

tki (θi) = tχik
(θi) ∀ θi ∈ Θi, , i ∈ I.

22To illustrate, suppose n = 3, (θ1, θ2, θ3) = ((1, 2) , (3, 2) , (2, 1)) . Consider, for example, purmutation k given by

Pk (θ) = ((3, 2) , (1, 2) , (2, 1)) . Then P
1
k (θ) = (3, 2) and χ1k = 2.
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Now let mechanism fM =

µ³eρj,eηj1, ...,eηjn´
j=1,2

,et1, ...,etn¶ be
eρj (θ) =

1

n!

n!X
k=1

ρjk (θ) ∀ θ ∈ Θ, j = 1, 2

eηji (θi) =

Pn!
k=1E−i

h
ρjk (θ)

i
ηjki (θi)Pn!

k=1E−i
h
ρjk (θ)

i ∀ θi ∈ Θi, i ∈ I, j = 1, 2

eti (θi) =
1

n!

n!X
k=1

tki (θi) ∀ θi ∈ Θi, i ∈ I.

By construction, mechanism fM is anonymous since eρj (θ) = eρj ¡θ0¢ if θ0 is a permutation of θ. Now
we argue that eηji (θi) is the same for all i ∈ I. Consider agent i and i0, and suppose that θi = θi0 . It

is to see that, by construction, the sets
n
E−i

h
ρjk (θ)

i
ηjki (θi)

on!
k=1

and
n
E−i0

h
ρjk (θ)

i
ηjki0 (θi0)

on!
k=1

are identical; moreover, E−i
£eρj (θ)¤ = E−i0

£eρj (θ)¤ . Therefore eηji (θi) = eηji0 (θi0) for all i, i0 ∈ I if
θi = θi0 . Finally, it is clear that eti (θi) = eti0 (θi0) for all i, i0 ∈ I if θi = θi0 . Thus there exists eηj (θi) ,et
such that

³eηji (·) ,eti (·)´ = ¡eηj (·) ,et (·)¢ for all i ∈ I. Therefore mechanism fM is of the form (9).

Now we show that fM is incentive feasible and maximizes the social planner’s expected surplus.

First, since M and Mk are identical except for the permutation of the agents, we have, for k =

1, ..., n!,

X
j=1,2

E

(
ρjk (θ)

"X
i∈I

ηjki (θi) θ
j
i −Cj (n)

#)
=
X
j=1,2

E

(
ρj (θ)

"X
i∈I

ηji (θi) θ
j
i −Cj (n)

#)
. (A2)

Hence,

X
j=1,2

E

(eρj (θ)"X
i∈I
eηj (θi) θji −Cj (n)

#)

=
X
j=1,2

E

 1n!
n!X
k=1

ρjk (θ)

X
i∈I

Pn!
k=1 E−i

h
ρjk (θ)

i
ηjki (θi)Pn!

k=1E−i
h
ρjk (θ)

i θji −Cj (n)


=
X
j=1,2

X
i∈I
EθiE−i

 1n!
n!X
k=1

ρjk (θ)

Pn!
k=1 E−i

h
ρjk (θ)

i
ηjki (θi)Pn!

k=1 E−i
h
ρjk (θ)

i θji

− E
"
1

n!

n!X
k=1

ρjk (θ)

#
Cj (n)

=
X
j=1,2

X
i∈I
Eθi

(
1

n!

n!X
k=1

E−i
h
ρjk (θ)

i
ηjki (θi) θ

j
i

)
− E

"
1

n!

n!X
k=1

ρjk (θ)

#
Cj (n)

=
X
j=1,2

X
i∈I
E

(
1

n!

n!X
k=1

h
ρjk (θ) η

j
ki (θi) θ

j
i

i)
− E

"
1

n!

n!X
k=1

ρjk (θ)

#
Cj (n)
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=
1

n!

n!X
k=1

X
j=1,2

E

(
ρjk (θ)

"X
i∈I

ηjki (θi) θ
j
i −Cj (n)

#)

=
X
j=1,2

E

(
ρj (θ)

"X
i∈I

ηji (θi) θ
j
i −Cj (n)

#)
,

where the last equality follows from (A2). Hence the social surplus generated by the simple anony-

mous mechanism fM is identical to that by original mechanism M.

Now we show that the constructed mechanism fM is incentive feasible. First, since the agents’

valuations are drawn from identical distributions and Mk and M only differ in the index of the

agents, we have Eρjk (θ) = Eρ
j (θ) and E

P
i∈I tki (θi) = E

P
i∈I ti (θi) for all k. Thus

E
X
i∈I
eti (θi)− X

j=1,2

Eeρj (θ)Cj (n)
= E

X
i∈I

1

n!

n!X
k=1

tki (θi)−
X
j=1,2

E
1

n!

n!X
k=1

ρjk (θ)C
j (n)

= E
X
i∈I
ti (θi)−

X
j=1,2

Eρj (θ)Cj (n) ,

hence the simple mechanism fM is budget balanced if the original mechanism M is. Second, we

note that incentive compatibility holds for any permuted mechanism, i.e.,

E−i
X
j=1,2

ρjk(θ)η
j
ki (θi) θ

j
i − tki(θi) ≥ E−i

X
j=1,2

ρjk(
bθi, θ−i)ηjki(bθi, θ−i)θji − tki(bθi, θ−i) (A3)

∀i ∈ I, and θi,bθi ∈ Θi.
Hence,

E−i
X
j=1,2

eρj(θ)eηj (θi) θji − et(θi)
= E−i

X
j=1,2

"
1

n!

n!X
k=1

ρjk (θ)

# Pn!
k=1E−i

h
ρjk (θ)

i
ηjki (θi)Pn!

k=1E−i
h
ρjk (θ)

i θji −
1

n!

n!X
k=1

tki (θi)

= E−i
X
j=1,2

1

n!

n!X
k=1

E−iρjk (θ) η
j
ki (θi) θ

j
i −

1

n!

n!X
k=1

tki (θi)

=
1

n!

n!X
k=1

E−i X
j=1,2

ρjk (θ) η
j
ki (θi) θ

j
i − tki (θi)


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≥ 1

n!

n!X
k=1

E−i X
j=1,2

ρjk(
bθi, θ−i)ηjki(bθi, θ−i)θji − tki(bθi, θ−i)


= E−i

X
j=1,2

1

n!

n!X
k=1

ρjk(
bθi, θ−i)ηjki(bθi, θ−i)θji − 1n!

n!X
k=1

tki(bθi, θ−i)
=

X
j=1,2

E−ieρj(bθi, θ−i)eηji ³bθi´ θji − et(bθi),
where the inequality follows from (A3). Hence fM is incentive compatible. Finally, fM also satisfies

the participation constraints hold because, as is clear from the third line in the above calculation,

all the permutation mechanisms satisfy participation constraints.

Proof of Proposition 2.

Proof. Consider a simple anonymous incentive feasible mechanism fM =
©eρj,eηj ,etª2

j=1
. Let cM be

the “mirror image” of fM in the sense that the roles of goods 1 and 2 are reversed. Specifically, for

every θ = (θ1, θ2) let

bρ1 ¡θ1, θ2¢ = eρ2 ¡θ2, θ1¢ and bρ2 ¡θ1, θ2¢ = eρ1 ¡θ2, θ1¢ ,bη1(θ1i , θ2i ) = eη2(θ2i , θ1i ) and bη2(θ1i , θ2i ) = eη1(θ2i , θ1i ),bt(θ1i , θ2i ) = et(θ2i , θ1i ).
(A4)

We now show that mechanism cM is also a simple anonymous incentive feasible mechanism that

generates the same social surplus as mechanism fM. Notice that
Ebρ1 ¡θ1, θ2¢bη1(θ1i , θ2i )θ1i = Eeρ2 ¡θ2, θ1¢eη2(θ2i , θ1i )θ1i
=
R
θ1∈(Θ1)n

hR
θ2∈(Θ2)n eρ2 ¡θ2, θ1¢eη2(θ2i , θ1i )θ1iΠnk=1dF 2(θ2k|θ1k)iΠnk=1dF 1(θ1k)

=
R
θ2∈(Θ2)n

hR
θ1∈(Θ1)n eρ2 ¡θ1, θ2¢eη2(θ1i , θ2i )θ2iΠnk=1dF 2(θ1k|θ2k)iΠnk=1dF 1(θ2k)

=
R
θ2∈(Θ2)n

hR
θ1∈(Θ1)n eρ2 ¡θ1, θ2¢eη2(θ1i , θ2i )θ2iΠnk=1dF 1(θ1k|θ2k)iΠnk=1dF 2(θ2k)

= Eeρ2 ¡θ1, θ2¢eη2(θ1i , θ2i )θ2i ,
(A5)

where the third equality comes from the fact that labeling of the integrand variables is arbitrary,

and the fourth from the assumption that F 1(·|v) = F 2(·|v). Similarly,

Ebρ2 ¡θ1, θ2¢bη2(θ1i , θ2i )θ2i = Eeρ1 ¡θ1, θ2¢eη1(θ1i , θ2i )θ1i
Ebt(θ1i , θ2i ) = Eet(θ1i , θ2i ) (A6)

Together, (A5) and (A6) imply that the ex ante utility for each i ∈ I is the same under mechanismcM as that under mechanism fM. Moreover, since C1 (n) = C2 (n) and Ebρ1 ¡θ1, θ2¢ = Eeρ2 ¡θ1, θ2¢
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and Ebρ2 ¡θ1, θ2¢ = Eeρ1 ¡θ1, θ2¢ , the expected provision costs are the same, thus cM and fM generate

the same social surplus. Since provision costs are the same and Ebt(θ1i , θ2i ) = Eet(θ1i , θ2i ), cM satis-

fies balanced-budget constraint (6). We finally show that cM satisfies participation and incentive

compatibility constraints. Calculations similar to that in (A5) show that

E−ibρ1 ¡θ01i , θ1−i, θ02i , θ2−i¢ = E−ieρ2 ¡θ02i , θ1−i, θ01i , θ2−i¢ ,
E−ibρ2 ¡θ01i θ1−i, θ02i , θ2−i¢ = E−ieρ1 ¡θ02i , θ1−i, θ01i , θ2−i¢ .

Write U(θi, θ
0
i;cM) for the expected utility of type θi agent from announcing θ0i under mechanismcM. We have

U
³
θ1i , θ

2
i , θ

01
i , θ

02
i ;cM´ = E−i X

j=1,2

bρj ¡θ01i , θ1−i, θ02i , θ2−i¢bηj ¡θ01i , θ02i ¢ θji − bt(θ1i , θ2i )
= E−ieρ1 ¡θ02i , θ1−i, θ01i , θ2−i¢eη1 ¡θ02i , θ01i ¢ θ2i +E−ieρ2 ¡θ02i , θ1−i, θ01i , θ2−i¢eη2 ¡θ02i , θ01i ¢ θ1i − et(θ2i , θ1i )
= U

¡
θ2i , θ

1
i , θ

02
i , θ

01
i ,M

¢
Thus participation constraint holds for type θi =

¡
θ1i , θ

2
i

¢
consumer under mechanism cM if and

only the participation constraint of type
¡
θ2i , θ

1
i

¢
consumder is satisfied under mechanism fM. Same

is true for the incentive compatibility constraint. We conclude that cM is incentive feasible and

generates the same social surplus as fM.
Now construct a new mechanism M where

ρj (θ) =
1

2
eρj (θ) + 1

2
bρj (θ) ,

ηj (θi) =
eηj (θ)E−ieρj (θ) + bηj (θ) E−ibρj (θ)

E−ieρj (θ) + E−ibρj (θ) ,

t (θi) =
1

2
et (θi) + 1

2
bt (θi) .

By construction of mechanim cM , mechanism M is symmetric. Arguments similar to those above

show that mechanism M satisfies budget balanced, incentive compatible and participation con-

straints. We now show that mechanismM generates the same social surplus as mechanism fM.We
also notice that

Eρ1 (θ) η1(θ1i , θ
2
i )θ

1
i

= E

·µ
1

2
eρ1 (θ) + 1

2
bρ1 (θ)¶ eη1(θ1i , θ2i )E−ieρ1 (θ) + bη1(θ1i , θ2i )E−ibρ1 (θ)

E−ieρ1 (θ) + E−ibρ1 (θ) θ1i

¸
= Eθi

·µ
1

2
E−ieρ1 (θ) + 1

2
E−ibρ1 (θ)¶ eη1(θ1i , θ2i )E−ieρ1 (θ) + bη1(θ1i , θ2i )E−ibρ1 (θ)

E−ieρ1 (θ) + E−ibρ1 (θ) θ1i

¸
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=
1

2
Eeη1(θ1i , θ2i )eρ1 (θ) θ1i + 12Ebη1(θ1i , θ2i )bρ1 (θ) θ1i

=
1

2
Eeη1(θ1i , θ2i )eρ1 (θ) θ1i + 12Eeη2(θ1i , θ2i )eρ2 (θ) θ2i ,

where the last equality follows from (A5). Symmetrically

Eρ2 (θ) η2(θ1i , θ
2
i )θ

2
i =

1

2
Eeη2(θ1i , θ2i )eρ2 (θ) + 12Eeη1(θ1i , θ2i )eρ1 (θ) θ1i ,

thus, X
j=1,2

Eρj (θ) ηj(θ1i , θ
2
i )θ

j
i =

X
j=1,2

Eeρj (θ)eηj(θ1i , θ2i )θji .
Moreover,

E
2X
j=1

ρj (θ)Cj (n) = E

·
1

2
eρ1 (θ) + 1

2
bρ1 (θ)¸C1 (n) + E·1

2
eρ2 (θ) + 1

2
bρ2 (θ)¸C2 (n)

= E

·
1

2
eρ1 (θ) + 1

2
eρ2 (θ) + 1

2
eρ2 (θ) + 1

2
eρ1 (θ)¸C1 (n)

= E
2X
j=1

eρj (θ)Cj (n) ,
where the equalities come from (A4) and the assumption that C1 (n) = C2 (n) . Hence the expected

provison costs are unchanged. Thus, the total expected social surplus generated by mechanism M

is the same as in fM.
Proof of Lemma 1.

Proof. Pick any 0 ≤ ² ≤ (θ − θ)/2. Log-concavity and symmetry implies that

ln f(eθ) = ln f

µ
1

2

³eθ − ²´+ 1
2

³eθ + ²´¶ ≥ 1
2
ln f(eθ − ²) + 1

2
ln f(eθ + ²)

= ln f(eθ − ²) = ln f(eθ + ²),
thus f(eθ) ≥ f (θ) for all θ ∈ [θ, θ]. Hence, f(eθ) ≥ 1/ ¡θ − θ

¢
, since otherwise,

R θ
θ f (θ) dθ ≤R θ

θ f(
eθ)dθ = f(eθ) ¡θ − θ

¢
< 1, a contradiction. We can also check that log-concavity of f implies

that p[1− F (p)] is strictly single-peaked over [θ, θ]. Now,
d

dp
p[1− F (p)]|

p=eθ = 12 − eθf(eθ) ≤ 12 − eθ
θ − θ

=
1

2
− 1
2

θ + θ

θ − θ
≤ 0,

thus together with the single peakedness, we know that p[1−F (p)] is decreasing in p for all p ≥ eθ.
Hence pm ≤ eθ. Finally, if f ³eθ´ > 1/ ¡θ − θ

¢
or θ > 0, d {p[1− F (p)]} /dp is strictly negative when

evaluated at p = eθ. Thus pm < eθ.
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Proof of Lemma 5.

Proof. [Step 1] Consider first the Kuhn-Tucker optimality conditions with respect to η1hh. They

are given by

2
X
x∈Xn

an (x)ρ
1 (x)

xhhh

n
+ 2λhh

X
x∈Xn−1

an−1 (x)ρ1(xhh + 1, xhl, xlh, xll)h+ γhh − φhh = 0

γhhη
1
hh = 0,φhh(1− η1hh) = 0, γhh ≥ 0,φhh ≥ 0.

All terms except γhh − φhh in the first order condition are strictly positive, so γhh − φhh < 0.

The only possibility for this is that φhh > 0, which requires that η
1
hh = 1 for the complementary

slackness constraint to be fulfilled. η2hh = 1 follows from proposition 2.

[Step 2] The first order condition with respect to η1hl reads

2
X
x∈Xn

an (x) ρ
1 (x)h

xhl
n
− λhh

X
x∈Xn−1

an−1 (x) ρ1 (xhh, xhl + 1, xlh, xll)h (A8)

+ λhl
X

x∈Xn−1
an−1 (x) ρ1 (xhh, xhl + 1, xlh, xll)h+ γhl − φhl = 0.

Use the multinomial relationship between an (x) and an−1 (x) , we obtain

an (x) =
n

xhl
α (1− α)an−1 (xhh, xhl − 1, xlh, xll) , (A9)

holds for any x such that xhl ≥ 1. HenceX
x∈Xn

an (x)ρ
1 (x)h

xhl
n

=
X

x∈Xn:xhl≥1

n

xhl
α (1− α)an−1 (xhh, xhl − 1, xlh, xll) ρ1 (x)hxhl

n

= α (1− α)h
X

x∈Xn:xhl≥1
an−1 (xhh, xhl − 1, xlh, xll) ρ1 (x)

= α (1− α)h
X

x∈Xn−1
an−1 (x)ρ1 (xhh, xhl + 1, xlh, xll) . (A10)

Substituting (A10) into (A8), we obtain the condition

2α (1− α)h− λhhh+ λhlh+ bγhl − bφhl = 0,
where

bγ1hl =
γhlP

x∈Xn−1 an−1 (x)ρ
1 (xhh, xhl + 1, xlh, xll)

,

bφ1hl =
φhlP

x∈Xn−1 an−1 (x)ρ
1 (xhh, xhl + 1, xlh, xll)

.
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By hypothesis of the Lemma,

E
£
ρ1 (x) |θi = hl

¤
=

X
x∈Xn−1

an−1 (x)ρ1 (xhh, xhl + 1, xlh, xll) > 0.

Thus the “rescaled multipliers” are well-defined, weakly positive, and equal to zero if and only if

the “original multiplier” is equal to zero. From Lemma 4, we know that λhh = α2Λ and λhl =¡
2α− α2

¢
Λ, where Λ is the multiplier on the balanced budget constraint. Hence the condition (??)

can be rewritten as

2α (1− α)h− α2Λh+ α(2− α)Λh+ bγ1hl − bφ1hl = 2α (1− α)h+ 2αΛh+ bγ1hl − bφ1hl = 0.
Since 2α (1− α)h+ 2αΛh > 0, we conclude that bφ1hl > 0. Hence η1hl = 1 for all x by the comple-
mentarity slackness condition. By Proposition 2, η2lh = 1 follows. Steps 1 and 2 thus proves part

(1) of the lemma.

[Step 3] Consider the optimality conditions for η1lh. To economize on derivations, we immedi-

ately observe thatX
x∈Xn−1

an−1 (x) ρ1(xhh, xhl, xlh + 1, xll) =
X

x∈Xn:xlh≥1
an−1(xhh, xhl, xlh − 1, xll)ρ1(x), (A11)

and write the optimality condition as

2
P
x∈Xn an (x) ρ

1 (x) xlhn l − λhh
P
x∈Xn:xlh≥1 an−1(xhh, xhl, xlh − 1, xll)ρ1(x)h

+λhl
P
x∈Xn:xlh≥1 an−1(xhh, xhl, xlh − 1, xll)ρ1(x)l + γlh − φlh = 0.

(A12)

Again using a multinomial relationship that, for xlh ≥ 1,

an (x) =
n

xlh
α (1− α)an−1 (xhh, xhl, xlh − 1, xll) ,

we haveX
x∈Xn

an (x)ρ
1 (x)

xlh
n
l =

X
x∈Xn:xlh≥1

an (x) ρ
1 (x)

xlh
n
l

=
X

x∈Xn:xlh≥1

n

xlh
α (1− α)an−1 (xhh, xhl, xlh − 1, xll)ρ1 (x) xlh

n
l

= α (1− α) l
X

x∈Xn:xlh≥1
an−1 (xhh, xhl, xlh − 1, xll) ρ1 (x)

= α (1− α) lE
£
ρ1 (x) |θi = lh

¤
.
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Plug this into (A12) and simplify, we obtain

0 = 2α (1− α) l − λhhh+ λhll + bγlh − bφlh
= 2α (1− α) l − α2hΛ+

¡
2α− α2

¢
Λl + bγlh − bφlh

= α (1− α) (1+ Λ)

(
(1−Φ) 2l +Φ

"¡
2α− α2

¢
α (1− α)

l − α2

α (1− α)
h

#
+

bγlh − bφlh
(1+ Λ)α (1− α)

)

= α (1− α) (1+ Λ)

"
G (Φ) +

bγlh − bφlh
(1+ Λ)α (1− α)

#

where bγlh (x) and bφlh (x) are respectively γlh (x) and φlh (x) multiplied by 1/E £ρ1 (x) |θi = lh¤ .We
thus conclude that G (Φ) > 0 must imply that bφlh > 0, hence by complementary slackness, η1lh = 1.
Symmetrically, G (Φ) < 0 must imply that bγlh > 0, hence η1lh = 0. If G (Φ) = 0, then the value

of both multipliers must be zero, which imposes no restrictions on η1lh. Proposition 2 implies that

η2hl = η1lh, which completes the proof of part (2) of the lemma.

[Step 4] Finally, we consider the optimality condition for η1ll. Using an identity similar to (A11),

we can write the first order condition for η1ll as

2
X

x∈Xn:xll≥1
an (x)ρ

1 (x)
xll
n
− λhl

X
x∈Xn:xll≥1

an−1(xhh, xhl, xlh, xll − 1)ρ1(x) (h+ l)

+λll
X

x∈Xn:xll≥1
an−1(xhh, xhl, xlh, xll − 1)ρ1(x)2l + γll − φll = 0.

Using a multinomial identity

an (x) =
n

xll
(1− α)2 an−1 (xhh, xhl, xlh, xll − 1) ,

we can again rewrite the first order condition as

0 = (1− α)2 2l + Λ
£
2l − ¡2α− α2

¢
(h+ l)

¤
+ bγll − bφll

= (1− α)2 (1+ Λ)

(
1

1+ Λ
2l +

Λ

1+ Λ

"
2

(1− α)2
l −

¡
2α− α2

¢
(1− α)2

(h+ l)

#
+

bγll − φ

(1− α) 2 (1+ Λ)

)

= (1− α)2 (1+ Λ)

·
H (Φ) +

bγll − φ

(1− α) 2 (1+ Λ)

¸
.

where bγll and bφll are respectively γll and φll multiplied by 1/E
£
ρ1 (x) |θi = ll

¤
. Arguing as in the

previous case completes the proof.
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Proof of Proposition 5.

We proceed with a few useful lemmas. The first lemma says that as n → ∞, Q1 ¡xn ,Φn¢ →
Q1 (µ,Φn) in probability:

Lemma A1 For any ² > 0 there exists N such that Pr
¡¯̄
Q1
¡
x
n ,Φn

¢−Q1 (µ,Φn)¯̄ ≥ ²¢ ≤ ² for

every n ≥ N.

Proof. Fix an arbitrary ² > 0. Let Yi (θi;Φn) be a transformation of the random variable θi given

by

Yi (θi;Φn) =


h− c if θi ∈ {hh, hl}

max {0,G (Φn)}− c if θi = lh

max {0,H (Φn)}− c if θi = ll

.

Since Yi (θi;Φn) has bounded support, there exists σ
2 <∞ such that the variance of Yi (θi;Φn) is

less than σ2 for any Φn ∈ [0, 1] . Moreover, {Y (θi;Φn)}ni=1 is a sequence of i.i.d. random variables

and

EθiYi (θi;Φn) = αh+ α (1− α)max {0, G (Φn)}+ (1− α)2max {0,H (Φn)}− c = Q1 (µ,Φn) .

Since for any sequence of realizations {yi (θi;Φn)}ni=1
nX
i=1

yi (θi;Φn)

n
=
xhh
n
h+

xhl
n
h+

xlh
n
max {0,G (Φn)}+ xll

n
max {0,H (Φn)}− c = Q1

³x
n
,Φn

´
,

we can apply Chebyshev’s inequality to obtain

Pr
³¯̄̄
Q1
³x
n
,Φn

´
−Q1 (µ,Φn)

¯̄̄
≥ ²
´
= Pr

Ã¯̄̄̄
¯
nX
i=1

yi (θi;Φn)

n
− EθiYi (θi;Φn)

¯̄̄̄
¯ ≥ ²

!

≤ Var [Yi (θi;Φn)]

n²2
≤ σ2

n²2
.

Hence, Pr
¡¯̄
Q1
¡
x
n ,Φn

¢−Q1 (µ,Φn)¯̄ ≥ ²¢ ≤ ² for all n ≥ N = σ2/²3 <∞.
The second lemma is an application of the Stirling’s Lemma:

Lemma A2 Let Y be a random variable with Binomial (n, p) distribution. For any ² > 0 and

p ∈ (0, 1) there exists N <∞ such that the binomial distribution with parameters p, n satisfies

Pr (Y = y) =
n!

y! (n− y!)p
y (1− p)n−y ≤ ²

for every n ≥ N and y ∈ {0, ..., n} .
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Proof. Fix an arbitrary ² > 0. The most probable value for y is the unique integer y∗ (n) satisfying

np− 1 ≤ y∗ (n) ≤ np+ 1, and the corresponding probability is

Pr (y∗ (n)) =
n!

y∗ (n)! [n− y∗ (n)]!p
y∗(n) (1− p)n−y∗(n) .

Let

s (r) =
r!√

2πe−rrr+1/2
.

By Stirling’s Formula, for every ² > 0 there exists R (²) such that |s (r)− 1| < ² for all r ≥ R (²) .
Observing that

n! = s (n)
√
2πe−nnn+

1
2 ,

y∗ (n)! = s (y∗ (n))
√
2πe−y

∗(n)y∗ (n)y
∗(n)+ 1

2 ,

[n− y∗ (n)]! = s (n− y∗ (n))√2πe−(n−y∗(n)) [n− y∗ (n)]n−y∗(n)+ 1
2 ,

we obtain

n!

y∗ (n)! [n− y∗ (n)]!

=
s (n)

s (y∗ (n)) s (n− y∗ (n))
√
2πe−nnn+

1
2

√
2πe−y∗(n)y∗ (n)y

∗(n)+ 1
2
√
2πe−(n−y∗(n)) [n− y∗ (n)]n−y∗(n)+ 1

2

=
s (n)

s (y∗ (n)) s (n− y∗ (n))
nn+

1
2

√
2πy∗ (n)y

∗(n)+ 1
2 [n− y∗ (n)]n−y∗(n)+ 1

2

.

Note that for any p ∈ (0, 1) , limn→∞ y∗ (n) =∞ and limn→∞ [n− y∗ (n)] =∞. Hence, there exists
N <∞ such that y∗ (n) ≥ R (²) and n−y∗ (n) ≥ R (²) , implying that s (n) ≤ 1+², s (y∗ (n)) ≥ 1−²,
and s (n− y∗ (n)) ≥ 1− ². We can thus bound the probability of y∗ (n) by.

Pr (y∗ (n))

=
s (n)

s (y∗ (n)) s (n− y∗ (n))
nn+

1
2

√
2πy∗ (n)y

∗(n)+ 1
2 [n− y∗ (n)]n−y∗(n)+ 1

2

py
∗(n) (1− p)n−y∗(n)

≤ (1+ ²)

(1− ²)2
nn+

1
2

√
2πy∗ (n)y

∗(n)+ 1
2 [n− y∗ (n)]n−y∗(n)+ 1

2

py
∗(n) (1− p)n−y∗(n)

=
(1+ ²)

(1− ²)2
py
∗(n) (1− p)n−y∗(n)

√
2nπ

h
y∗(n)
n

iy∗(n)+ 1
2
h
n−y∗(n)

n

in−y∗(n)+ 1
2

.

Since y∗ (n) /n = argmaxp∈[0,1] py
∗(n) (1− p)n−y∗(n) , we know that
py
∗(n) (1− p)n−y∗(n)h

y∗(n)
n

iy∗(n) h
n−y∗(n)

n

in−y∗(n) ≤ 1.
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Therefore,

Pr (y∗ (n)) ≤ (1+ ²)

(1− ²)2
1

√
2nπ

h
y∗(n)
n

i 1
2
h
n−y∗(n)

n

i 1
2

≤ (1+ ²)

(1− ²)2
1q

2nπ
¡
p− 1

n

¢ ¡
1− p− 1

n

¢ → 0 as n→∞.

Hence, there exists N 0 <∞ such that

(1+ ²)

(1− ²)2
1q

2nπ
¡
p− 1

n

¢ ¡
1− p− 1

n

¢ ≤ ².
Implying that Pr (y∗ (n)) ≤ ² for any n ≥ max {N,N 0} . Since ² was arbitrary the result follows.

Now let

ρji (θi) = E
£
ρj (x) |θi

¤
(A13)

be agent i0s perceived probability that public good j will be provided when agent i annouces type θi.

The following lemma shows that as n→∞, agent i0s announcement would not affect the perceived
probability of provision, i.e., the probability of any individual agent being pivotal approaches zero

as n→∞ :

Lemma A3 For every ² > 0 there exists N such that
¯̄
ρ1i (θi)− ρ1i (θ

0
i)
¯̄ ≤ ² for every θi, θ0i ∈ Θi in

any truth-telling mechanism for any economy where n ≥ N .

Proof. We only prove the result for (θi, θ
0
i) = (hh, ll) . The proof for other type combinations

proceed step by step in the same way and are left to the reader. Using the now-standard recursive

formula for multinomial probability mass function, we have

ρ1i (hh) =
X

x∈Xn−1
an−1 (x)

£
ρ1(xhh + 1, xhl, xlh, xll)

¤
ρ1i (ll) =

X
x∈Xn−1

an−1 (x)
£
ρ1(xhh, xhl, xlh, xll + 1)

¤
.

Let ρ1 maximize the difference between ρ1i (hh) and ρ
1
i (ll) and let ρ

1
i (hh) and ρ

1
i (ll) be the perceived

provision probabilities when the provision rule is ρ1. That is,

ρ1 ∈ arg max
ρ1:Xn→[0,1]

X
x∈Xn−1

an−1 (x)
£
ρ1(xhh + 1, xhl, xlh, xll)− ρ1(xhh, xhl, xlh, xll + 1)

¤
, (A14)

47



It is clear that the solution to (A14) is given by

ρ1 (x) =

 1 if an−1(xhh − 1, xhl, xlh, xll) ≥ an−1(xhh, xhl, xlh, xll − 1)
0 if an−1(xhh − 1, xhl, xlh, xll) < a−1(xhh, xhl, xlh, xll − 1).

(A15)

Using the explicit formula for an−1 (x), we can express (A15) as

ρ1 (x) =

 1 if xhh
α2
≥ xll

(1−α)2

0 if xhh
α2
< xll

(1−α)2 .
(A16)

Fix an arbitrary ² > 0 and let m = xhl + xlh ≤ n− 1. Since m is a binomial random variable with

parameters p = 2α (1− α) and n− 1, we know, by law of large numbers, that there exists N <∞
such that

Pr

µ
m

n− 1 ≥ 2α (1− α) + ²

¶
≤ ²

2
(A17)

for every n ≥ N. Moreover, conditional on m, xhh is binomially distributed with parameters

p0 = α2/ [1− 2α (1− α)] and n− 1−m. Thus, we know from (A16) that, conditonal on m, there

exists a single value xhh (m) such that ρ
1(xhh (m)+1, xhl, xlh, xll) = 1 and ρ

1(xhh (m) , xhl, xlh, xll+

1) = 0; and for all other realizations the of xhh, the provision proability is unaffected by agent i
0s

announcement. Lemma A2 implies that there exists N 0 <∞ such that

Pr (xhh = xhh (m)|m) ≤ ²

2
(A18)

for all n such that n− 1−m ≥ N 0.

Now let n∗ = max
n
N, N 0

1−2α(1−α)−² + 1
o
< ∞. Then, N 0 ≤ (n− 1) [1− 2α (1− α)− ²] for all

n ≥ n∗. Hence, for all n ≥ n∗,

Pr [n− 1−m ≤ N 0] = Pr [m ≥ (n− 1)−N 0]

≤ Pr [m ≥ (n− 1)− (n− 1) [1− 2α (1− α)− ²]]
= Pr

h
m
n−1 ≥ 2α (1− α) + ²

i
≤ ²

2

(A19)

where the last equality follows from (A17). Hence, for n ≥ n∗, n− 1−m ≤ N 0 with probability of

at least 1− ²/2. Thus, for n ≥ n∗,

ρ1i (hh)− ρ1i (ll) =
P
x∈Xn−1 an−1 (x)

£
ρ1(xhh + 1, xhl, xlh, xll)− ρ1(xhh, xhl, xlh, xll + 1)

¤
=
Pn−1
m=0Pr (m) Pr (xhh = xhh (m)|m)

=
Pn−1−N 0
m=0 Pr (m)Pr (xhh = xhh (m)|m) +

Pn−1
m=n−N 0 Pr (m) Pr (xhh = xhh (m)|m)

≤Pn−1−N 0
m=0 Pr (m) ²2 +

Pn−1
m=n−N 0 Pr (m)

= ²
2 Pr [n− 1−m ≥ N 0] + Pr [n− 1−m ≤ N 0] ≤ ²

(A20)
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where the second equality follows from the definition of xhh (m) ; the first inequality follows from

(A18); and the last inequality follows from (A19).

Similarly, let ρ1 solve

ρ1 ∈ arg min
ρ:Xn→[0,1]

X
x∈Xn−1

an−1 (x)
£
ρ1(xhh + 1, xhl, xlh, xll)− ρ1(xhh, xhl, xlh, xll + 1)

¤
, (A21)

and let ρ1
i
(hh) and ρ1

i
(ll) be the associated perceived provision probabilities when the provision

rule ρ1. A solution to (A21) is

ρ1 (x) =

 1 if xhhα2 <
xll

(1−α)2

0 if xhh
α2
≥ xll

(1−α)2 ,
(A22)

which is just reversing of provision rule ρ1. Hence, conditional onm, ρ1(xhh (m)+1, xhl, xlh, xll) = 0

and ρ1(xhh (m) , xhl, xlh, xll + 1) = 1; and for all other values for xhh, agent i
0s announcement does

not affect the provision probability. It thus immediately follows from out previous calculations that

ρ1
i
(hh)− ρ1

i
(ll) = −

n−1X
m=0

Pr (m)Pr (xhh = xhh (m)|m) ≥ −². (A23)

It follows from (A20) and (A23) that, for any conceivable provision rule,

−² ≤ ρ1
i
(hh)− ρ1

i
(ll) ≤ ρ1i (hh)− ρ1i (ll) ≤ ρ1i (hh)− ρ1i (ll) ≤ ².

The implication of Lemma A3 is as follows: as n → ∞, the perceived provision probability
of public goods are little affected by agent i0s own announcement; thus such perceived provision

probability must be near the ex ante probability of providing the good.

Lemma A4 For every ² > 0, there exists N such that, for all n ≥ N, ¯̄Eρ1 (x)− ρ1i (θi)
¯̄ ≤ ² for

all θi ∈ Θi in any truth-telling mechanism.

Proof. Fix ² > 0 arbitrarily. Let N be such that
¯̄
ρ1i (θi)− ρ1i (θ

0
i)
¯̄ ≤ ² for every n ≥ N, θi, θ0i ∈ Θi.

Then ¯̄
Eρ1 (x)− ρ1i (θi)

¯̄
=

¯̄
α2ρ1i (hh) + α (1− α) ρ1i (hl) + α (1− α)ρ1i (lh) +

¡
1− α2

¢
ρ1i (ll)− ρ1i (θi)

¯̄
≤ α2

¯̄
ρ1i (hh)− ρ1i (θ

0
i)
¯̄
+ α (1− α)

¯̄
ρ1i (hl)− ρ1i (θi)

¯̄
+α (1− α)

¯̄
ρ1i (lh)− ρ1i (θi)

¯̄
+ (1− α)2

¯̄
ρ1i (ll)− ρ1i (θi)

¯̄
≤ α2²+ α (1− α) ²+ α (1− α) ²+ (1− α)2 ² = ².
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(Proof of Proposition 5). Now we use the above lemmas to prove Proposition 5. We prove

the four parts of the proposition in order.

(Part 1) We first prove part 1. Note from (38), we know that Q1 (µ,Φn) ≥ αh − c for
any Φn ∈ [0, 1] , hence limn→∞Q1 (µ,Φn) ≥ αh − c. Thus if αh > c, part 1 of the proposition

immediately follows from Lemmas 7 and A1. Suppose instead that α (2− α) (h+ l) > 2c ≥ 2αh.
Then,

Q1 (µ,Φn) = αh+ α (1− α)max {0,G (Φn)}+ (1− α)2max {0,H (Φn)}− c
≥ αh− c+ α (1− α)G (Φn)

= αh− c+ α (1− α)

½
l (1−Φn) +Φn

·
2α− α2

2α (1− α)
l − α2

2α (1− α)
h

¸¾
= (1−Φn) [αh+ α (1− α) l − c] +Φn

·
α (2− α) (l + h)

2
− c
¸
.

Observe that

αh+ α (1− α) l =
α (2− α) (l + h)

2
+

α2

2
(h− l) > α (2− α) (l + h)

2
.

Hence, Q1 (µ,Φn) ≥ α(2−α)(l+h)
2 − c > 0 if α (2− α) (h+ l) > 2c, then for all Φn ∈ [0, 1] , implying

that limn→∞Q1 (µ,Φn) > 0.Thus by Lemmas 7 and A1, limn→∞ Eρjn (x) → 1 for j = 1, 2. This

proves part 1.

(Part 2) We now prove part 2. Suppose to the contrary that there exists a (sub) sequence

of optimal incentive compatible, balanced-budget voluntary mechanism with provision rules for

public good 1, ρ1n (x) , such that limn→∞ Eρ1n (x) = ρ > 0. We will now derive a contradiction that

the mechanism can not have a balanced budget.

Now we can use the definition of ρji (θi) in (A13) to re-write the incentive compatibility constraint

(24b), after using the characterization of inclusion rule in Lemma 6, as

ρ1i (hl)h+ ρ1i (lh) η
1
lhl − thl ≥ ρ1i (ll) η

1
ll (h+ l)− tll ≥ ρ1i (ll) η

1
ll (h− l) , (A24)

where the second inequality comes from the participation constraint (25). Pick an arbitrary ² > 0.

Then, by Lemma A4, there exists finite N such that for every n ≥ N1 and each θi ∈ Θi, for j = 1, 2,¯̄̄
ρji (θi)− Eρ1n (x)

¯̄̄
< ²1 ≡ ²

3h
. (A25)

Substituting (A25) into (A24), we obtain that for all n ≥ N1,£
Eρ1n (x) + ²1

¤ ¡
h+ η1lhl

¢− thl ≥ £Eρ1n (x)− ²1¤ η1ll (h− l) ,
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which implies that

thl ≤ Eρ1n (x)
£
h
¡
1− η1ll

¢
+
¡
η1lh + η1ll

¢
l
¤
+ ²1

£
h+ η1lhl + η1ll (h− l)

¤
< Eρ1n (x)

£
h
¡
1− η1ll

¢
+
¡
η1lh + η1ll

¢
l
¤
+ 3h²1|{z}

²

. (A26)

Similarly, incentive constraints (24a) can be rewritten as:

thh ≤ 2ρ1i (hh)h−
£
ρ1i (hl) + ρ1i (lh) η

1
lh

¤
h+ thl.

Again, by Lemma A4, there exist N2 such that for all n > N2,

thh < 2
£
Eρ1n (x)

¤
h− Eρ1n (x)

¡
1+ η1lh

¢
h+ thl + ²

= Eρ1n (x)
¡
1− η1lh

¢
h+ thl + ²

< Eρ1n (x)
¡
1− η1lh

¢
h+Eρ1n (x)

£
h
¡
1− η1ll

¢
+
¡
η1lh + η1ll

¢
l
¤
+ ²

= Eρ1n (x)
£¡
2− η1ll − η1lh

¢
h+

¡
η1lh + η1ll

¢
l
¤
+ ². (A27)

Finally, from the participation constraint (25), there exists N3 such that for all n > N3,

tll < 2Eρ
1
n (x) η

1
lll + ². (A28)

Now consider two cases:

CASE 1: η1ll = η2ll = 0 and η1lh = η2hl = ηm ∈ (0, 1) . In this case, we have tll = 0 from type-ll0s

participation constraint. Using (A26)-(??), we can bound the total expected tax revenue as follows:

α2thh + α (1− α) (thl + tlh) + (1− α)2 tll

< α2 {Eρn (x) [(2− ηm)h+ ηml] + ²}+ 2α (1− α) {Eρn (x) (h+ ηml) + ²}
= Eρn (x)

©£
α2 (2− ηm) + 2α (1− α)

¤
h+

£
α2 + 2α (1− α)

¤
ηml

ª
+ ²0

= Eρn (x)
©£
α2 (2− ηm) + 2α (1− α)

¤
h+ α (2− α) ηml

ª| {z }
≡Z1(ηm)

+ ²0

Note that
∂Z1 (ηm)

∂ηm
= α (2− α) l − α2h = [α (2− α) (h+ l)]− 2αh.

Therefore,

Z1 (ηm) <

 Z (1) = α (2− α) (h+ l) if 2αh ≤ α (2− α) (h+ l)

Z (0) = 2αh if 2αh > α (2− α) (h+ l) ,
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which implies that

α2thh + α (1− α) (thl + tlh) + (1− α)2 tll < Eρn (x)max {2αh,α (2− α) (h+ l)}+ ²0.

Thus if max {2αh,α (2− α) (h+ l)} < 2c, then the budget balance condition can not be satisfied
when n is sufficiently large.

CASE 2: η1ll = η2ll = ηl ∈ (0, 1) , η1lh = η2hl = 1. We can again use (A26)-(??) to bound the total

expected tax revenue as follows:

α2thh + α (1− α) (thl + tlh) + (1− α)2 tll

< α2 {Eρn (x) [(1− ηl)h+ (1+ ηl) l] + ²}+ α (1− α) 2Eρn (x) {[h (1− ηl) + (1+ ηl) l] + ²}
+(1− α)2 [2Eρn (x) ηll + ²]

= Eρn (x)
n£
α2 + 2α (1− α)

¤
(1− ηl)h+

£
α2 + 2α (1− α)

¤
(1+ ηl) l + 2(1− α)2 ηll

o
+ ²

= Eρn (x)

α (2− α) (1− ηl)h+ α (2− α) (1+ ηl) l + 2 (1− α)2 ηll| {z }
Z2(ηl)

+ ²
Note that Z2 (0) = α (2− α) (h+ l) and Z2 (1) = 2α (2− α) l + 2 (1− α)2 l = 2l. Since Z2 (ηl) is

linear in ηl, we have

Z2 (ηl) ≤ max {Z2 (0) , Z2 (1)} = max {α (2− α) (h+ l) , 2l} .

If max {2αh,α (2− α) (h+ l)} < 2c, then max {α (2− α) (h+ l) , 2l} < 2c since by assumption

l < c. Therefore there exists N 0 such that for all n > N 0, the budget balance condition will not be

satisfied under any incentive compatible voluntary mechanism.

(Part 3) Suppose to the contrary that there does not exist N such that η1n (lh) = η2n (hl) = 1

for all n ≥ N. Then, taking a subsequence if necessary, we have that η1n (lh) = η2n (hl) < 1 for all

n, which, by Lemma 6, implies that ηjn (ll) = 0 for all n in the sequence. The per capita surplus

generated by the optimal mechanism Mn in the n
th economy in the sequence, denoted by S (Mn) ,

is then

S (Mn)

n
=

2Eρ1n (x)
£
(xhh + xhl)h+

¡
η1n (lh)xlh + η1n (ll)xll

¢
l − cn¤

n

≤ 2E
£
(xhh + xhl)h+ xlhl − ρ1n (x) cn

¤
n

= 2 [αh+ α (1− α) l]− 2Eρ1n (x) c
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From Part 2, we know Eρ1n (x)→ 1 as n→∞. Thus each ε > 0 there exists N such that

S (Mn)

n
≤ 2 [αh+ α (1− α) l − c] + ε. (A29)

Now we show that Mn can be domonated by an alternative mechanism as n → ∞. Consider a
sequence of mechanisms

nfMn

o∞
n=1

, where, for each n,

eη1n (lh) = eη2n (hl) = 1eη1n (ll) = eη2n (ll) = η∗ll =
α (2− α) [h+ l]− 2c
α (2− α) [h+ l]− 2letn (hh) = etn (hl) = etn (lh) = (1− η∗ll) (h+ l) + η∗ll2letn (ll) = 2η∗llleρjn (x) = 1 for all x ∈ Xn

We observe that the participation constraint for type ll holds with equality since

E−i
X
j=1,2

eρjn (x)eηjn (ll) l − etn (ll) = 2η∗lll − 2η∗lll = 0.
The downward incentive constraint for type hl also holds with equality since

E−i
£eρ1n (x)eη1n (hl)h+ eρ2n (x)eη2n (hl) l − etn (hl)¤ = h+ l − etn (hl)

= h+ l − [(1− η∗ll) (h+ l) + η∗ll2l] = η∗ll (h+ l)− η∗ll2l

= E−i
£eρ1n (x)eη1n (hl)h+ eρ2n (x)eη2n (hl) l − etn (hl)¯̄ θi = ll¤ .

Similarly, the downward incentive constraints and participation constraints for all other types of

agents also hold. Finally, fMn is also budget balanced for all n since, with some albegra, one can

show that

E

X
i∈I
etn (θi)− X

j=1,2

eρjn (x) cn
 = 0.

Now, the expected per capita surplus generates by fMn is

S
³fMn

´
n

= α22h+ 2α (1− α) (h+ l) + (1− α)2 η∗ll2l − 2c
= 2 [αh+ α (1− α) l − c] + (1− α)2 η∗ll2l

Let ε = (1− α)2 η∗lll > 0, we know from (A29) that there exists N <∞ such that

S (Mn)

n
≤ 2 [αh+ α (1− α) l − c] + ε =

S
³fMn

´
n

− ε <
S
³fMn

´
n

,

53



which implies that mechanisms Mn could not be optimal for n ≥ N, a contradiction.
Now we have concluded that in the sequence {Mn} , η1n (lh) = η2n (hl) = 1 for every n ≥ N.

What is left to show is that η1n (ll) does converge to η
∗
ll in the sequence {Mn} . Suppose first that

there exists a subsequence such that η1n (ll)→ η0 < η∗ll. An argument as the one above shows that,

for every ε > 0, there exists N <∞ such that

S (Mn)

n
≤ 2

h
αh+ α (1− α) l + (1− α)2 η0l − c

i
+ ε.

Again consider the alternative sequence of mechanisms
nfMn

o
constructed above. Pick ε =

(1− α)2 (η∗ll − η0) l, we find that

S
³fMn

´
n

− S (Mn)

n
≥ (1− α)2

¡
η∗ll − η0

¢
2l − ε = (1− α)2

¡
η∗ll − η0

¢
l > 0.

thus again constradicts the optimality of the mechanism Mn is better when n is sufficiently large.

Finally, suppose there is a subsequence such that ηjn (ll)→ η0 > η∗ll. We now argue that such a

mechanism could not be budget balanced. Let

ε =
(η0 − η∗ll) [α (2− α) (h+ l)− 2l]

4 (1+ α)
> 0.

Then, since η1n (ll) + η2n (ll)→ 2η0 it follows that to satisfy the participation constraint for type ll

for all n there must be some N1 such that

tn (ll) ≤ 2η0l + ε

for all n ≥ N1. Moreover, there exists N2 such that η1n (lh) = η2n (hl) = 1for n ≥ N2. Thus the
incentive constraint that type hl does not imitate type ll reduces to

ρ1in (hl)h+ ρ2in (hl) l − tn (hl) ≥ ρ1in (ll) η
1
n (ll)h+ ρ2in (ll) η

2
n (ll) l − tn (ll)

⇒ tn (hl) ≤ tn (ll) +
£
ρ1in (hl)− ρ1in (ll) η

1
n (ll)

¤
h+

£
ρ2in (hl)− ρ2in (ll) η

2
n (ll)

¤
l

By Lemma A3, limn→∞ ρjin (hl) = limn→∞ ρjin (hl) = limn→∞ Eρ
j
n (x) = 1. This, together with the

assumption that limn→∞ η1n (ll) = η0, implies that there exists N3 such that

tn (hl) ≤ tn (ll) +
¡
1− η0

¢
(h+ l) + ε.

Similarly, the incentive constraint that type hh does not announce hl implies that

tn (hh) ≤ tn (hl) + ε.
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Hence, the expected per capita revenue of the mechanism satisfies

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll)

≤ £
α2 + 2α (1− α)

¤
tn (hl) + α2ε+ (1− α)2 tn (ll)

≤ £
α2 + 2α (1− α)

¤ £
tn (ll) +

¡
1− η0

¢
(h+ l) + ε

¤
+ (1− α)2 tn (ll) + α2ε

= tn (ll) +
£
α2 + 2α (1− α)

¤ ¡
1− η0

¢
(h+ l) + 2αε

≤ 2η0l + ε+
£
α2 + 2α (1− α)

¤ ¡
1− η0

¢
(h+ l) + 2αε

= η02l +
¡
1− η0

¢
α (2− α) (h+ l) + ε (1+ 2α) .

Since there exists N4 <∞ such that E
£
ρ1n (x) + ρ2n (x)

¤
c ≥ 2c− ε, we have

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll)− E
£
ρ1n (x) + ρ2n (x)

¤
c

≤ ¡
η0 − η∗ll

¢
(2l − α (2− α) (h+ l)) + 2ε (1+ α)

=
¡
η0 − η∗ll

¢
(2l − α (2− α) (h+ l)) +

(η0 − η∗ll) [α (2− α) (h+ l)− 2l]
2

= −(η
0 − η∗ll) [α (2− α) (h+ l)− 2l]

2
< 0.

Hence, the mechanism must violate the balanced-budget constraint for n ≥ max {N1,N2,N3, N4}.
We conclude that there can be no subsequence of optimal mechanisms such that ηjn (ll)→ η0 6= η∗ll,

proving the claim.

(Part 4) This part is proved analagous to Part 3. Suppose to the contrary that in the

sequence of mechanisms {Mn} , there exists no N such that η1n (ll) = η2n (ll) = 0 for all n ≥ N.
Then there must be a subsequence where η1n (ll) = η2n (ll) > 0, which from Lemma (6) we know that

η1n (lh) = η2n (hl) = 1 for all n along the subsequence. Hence limn→∞ η1n (lh) = limn→∞ η2n (hl) =

1 and limn→∞ η1n (ll) = limn→∞ η2n (ll) = η0 ≥ 0. Let

ε =
2c− α (2− α) (h+ l)

4 (1+ α)
> 0.

We can then use the same calculations as in Part 3 to conclude that there exists N <∞ such that

the revenues collected satisfy

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll) < η02l +
¡
1− η0

¢
α (2− α) (h+ l) + ε (1+ 2α)

≤ α (2− α) (h+ l) + ε (1+ 2α) .
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Moreover, there exists N2 such that E
£
ρ1n (x) + ρ2n (x)

¤
c ≥ 2c− ε, hence

α2tn (hh) + 2α (1− α) tn (hl) + (1− α)2 tn (ll)− E
£
ρ1n (x) + ρ2n (x)

¤
c

≤ α (2− α) (h+ l) + ε (2 + 2α)− 2c
= −2c− α (2− α) (h+ l)

2
< 0,

violating the balanced-budget constraint. Establishing that limn→∞ η1n (lh) = limn→∞ η2n (hl) = η∗lh
proceeds along the same lines as those in Part 3.

B Appendix: Proof of Technical Lemmas

Proof of Lemma 2.

Proof. We can, with no loss of generality, assume that the distribution is symmetric around 0. That

is, we can assume x = −x, where x > 0, and let ex = 0. For 0 < λ < 1/2 and t ∈ [x, 0] , we define

eF (t,λ) = Pr [λx1 + (1− λ)x2 ≤ t] =
Z x

−x
F

µ
t− (1− λ)u

λ

¶
f (u)du

where the second inequality uses the symmetry in density, f (u) = f (−u) . Taking the derivative
with respect to λ we have that

∂ eF (t,λ)
∂λ

=
1

λ2

Z x

−x
f

µ
t− (1− λ)u

λ

¶
(u− t) f (u)du

=
1

λ2


Z t

−x
f

µ−t+ (1− λ)u

λ

¶
(u− t) f (u)du| {z }

≡T1

−
Z x

t
f

µ−t+ (1− λ)u

λ

¶
(u− t) f (u) du| {z }

≡T2

 .
Using change of variable v = t− u in the first integral, we get

T1 =

Z t

−x
f

µ
(1− λ) (u− t)− λt

λ

¶
(u− t) f (u− t+ t)du

= −
Z t+x

0
f

µ− (1− λ) v − λt

λ

¶
vf (t− v) dv

= −
Z t+x

0
f

µ
(1− λ) v + λt

λ

¶
vf (v − t) dv,

where the last equality uses the symmetry of the density. Now, since t ≤ 0, v− t ≥ v. Thus we can
use our notational convention that f (u) = 0 if u /∈ [−x, x] to rewrite T1 as

T1 = −
Z x

0
f

µ
(1− λ) v + λt

λ

¶
vf (v − t) dv.
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Similarly, use change of variable v = u− t, we have

T2 =

Z x

t
f

µ
(1− λ) (u− t)− λt

λ

¶
(u− t) f (u− t+ t)du

=

Z x−t

0
f

µ
(1− λ) v − λt

λ

¶
vf (v + t)dv.

Again, note that if t < 0, then for all v ≥ x, [(1− λ) v − λt] /λ > (1− λ)x/λ ≥ x since λ ≤ 1/2,
thus f ([(1− λ) v − λt] /λ) = 0 for all v ≥ x. =Hence we can rewrite T2 as

T2 =

Z x

0
f

µ
(1− λ) v − λt

λ

¶
vf (v + t) dv.

Hence,

λ2
∂ eF (t,λ)

∂λ
= T1 + T2 =

Z x

0
v [f (rv − t) f (v + t)− f (rv + t) f (v − t)] dv,

where r = (1− λ) /λ > 1. Note

f (rv − t) f (v + t)− f (rv + t) f (v − t) = −
Z −t

t

d

ds
[f (rv − s) f (v + s)] ds

=

Z −t

t

£
f 0 (rv − s) f (v + s)− f (rv − s) f 0 (v + s)¤ ds| {z }

≡T3

.

Consider two cases. In the first case, rv + t ≥ v − t. Since t < 0, this implies that rv − s ≥ v + s
for any s < −t. Since log-concavity of the density f impies

f 0 (rv − s)
f (rv − s) ≤

f 0 (v + s)
f (v + s)

,

thus,

f 0 (rv − s) f (v + s)− f (rv − s) f 0 (v + s) ≤ 0 for all s ∈ (t,−t)

Hence in this case T3 ≤ 0. In the second case, rv + t < v − t. Then let s∗ = (r − 1) v/2 < 0. We
can rewrite T3 as

T3 =

Z t+2s∗

t

£
f 0 (rv − s) f (v + s)− f (rv − s) f 0 (v + s)¤ ds

+

Z −t

t+2s∗

£
f 0 (rv − s) f (v + s)− f (rv − s) f 0 (v + s)¤ ds,
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where we note that t < t+ 2s∗ < −t under the restriction in this case that rv + t < v − t. But,Z −t

t+2s∗

£
f 0 (rv − s) f (v + s)− f (rv − s) f 0 (v + s)¤ ds

= −
Z −t

t+2s∗

·
d

ds
f (rv − s) f (v + s)

¸
ds

= f (rv − t− 2s∗) f (v + t+ 2s∗)− f (rv + t) f (v − t)
= f (rv − t− (r − 1)v) f (v + t+ (r − 1)v)− f (rv + t) f (v − t)
= f (v − t) f (t+ rv)− f (rv + t) f (v − t) = 0.

Hence,

T3 =

Z t+2s∗

t

£
f 0 (rv − s) f (v + s)− f (rv − s) f 0 (v + s)¤ ds.

Since s∗ < −t we have that t+ 2s∗ < s∗. Thus some simple calculation shows that rv − s > v + s
for all s ≤ t+ 2s∗.23 Hence, again using log-concavity, we have

f 0 (rv − s) f (v + s) ≤ f 0 (v + s) f (rv − s) for any s ≤ t+ 2s∗.

Thus T3 ≤ 0 in this case as well. We henceforth conclude that for any t < 0,

λ2
∂ eF (t,λ)

∂λ
≤ 0.

Finally, to show that the inequality is strict, we notice that for t < 0 and v > (x+ t) /r we have

that rv − t > x⇒ f (rv − t) = 0

λ2
∂ eF (t,λ)

∂λ
=

Z x

0
v [f (rv − t) f (v + t)− f (rv + t) f (v − t)]| {z }

≤0 for all v
dv

≤
Z x+t

x+t
r

v [f (rv − t) f (v + t)− f (rv + t) f (v − t)] dv

= −
Z x+t

x+t
r

vf (rv + t) f (v − t)dv

Since v − t < x for v < x + t and rv + t < x for v ≤ x−t
r and x+t

r < x−t
r it follows that

f (rv + t) f (v − t) > 0 over the interval £x+tr ,min©x−tr , x+ tª¤ . Since
x+ t

r
< min

½
x− t
r
, x+ t

¾
for any r > 1 and − x < t < 0

23It suffices to show that rv − (t+ 2s∗) > v + (t+ 2s∗) . To see this, note

rv − (t+ 2s∗) = rv − [t+ (r − 1) v] = v − t
> v + s∗ > v + (t+ 2s∗) .
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it follows that λ2∂ eF (t,λ) /∂λ < 0. Hence
FA (t) = eF (t, 0) + Z 1

2

0

∂ eF (t,λ)
∂λ

dλ = F (t) +

Z 1
2

0

∂ eF (t,λ)
∂λ

dλ < F (t)

for every −x < t < 0, which completes the proof.

Proof of Lemma 3.

Proof. For each x ∈ X, j = 1, 2, θi ∈ Θi we have that ρj (x) ∈ [0, 1] , ηjθi ∈ [0, 1] . Next, we note
that if tll < 0 and all constraints are satisfied, then a deviation where taxes are changed from t to

t0 = (thh, thl, tlh, 0) and where inclusion and provision rules are unchanged will satisfy all constraints

in the relaxed program (27). Similarly, if all constraints hold and tlh < −l − h then the deviation
to

t0 = (thh, thl,−l − h,max (0, tll))

will satisfy all constraints (in the relaxed program). A symmetric argument restricts thl ≥ −h− l.
Finally, if thh < −3h− l, then a deviation to

t0 = (−3h− l,max (thl,−l − h) ,max (tlh,−l − h) ,max (0, tll))

will leave all constraints satisfied. We conclude that there is a lower bound t > −∞ such that for

any mechanism where tθi < t for some θi, there exists an alternative mechanism that supports the

same allocation (and therefore generates the same surplus) where tθi ≥ t. Also, if tθi > t = 2h for
some θi then at least one constraint in (27) must be violated. We therefore conclude that there is no

loss in generality to restrict tθi to be a number in
£
t, t
¤
. All constraints and the objective function

are linear in the choice variables and therefore continuous so we conclude that the optimization

problem has a compact feasible set and a continuous objective. It is easy to check that the feasible

set is non-empty, which proves the claim by appeal to the Weierstrass Theorem.
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