Abstract

Across a wide set of non-group insurance markets, applicants are rejected based on observable, often high-risk, characteristics. This paper argues private information, held by the potential applicant pool, explains rejections. I formulate this argument by developing and testing a model in which agents may have private information about their risk. I first derive a new no-trade result that theoretically explains how private information could cause rejections. I then develop a new empirical methodology to test whether this no-trade condition can explain rejections. The methodology uses subjective probability elicitations as noisy measures of agents beliefs. I apply this approach to three non-group markets: long-term care, disability, and life insurance. Consistent with the predictions of the theory, in all three settings I find significant amounts of private information held by those who would be rejected; I find generally more private information for those who would be rejected relative to those who can purchase insurance; and I show it is enough private information to explain a complete absence of trade for those who would be rejected. The results suggest private information prevents the existence of large segments of these three major insurance markets.

JEL classification numbers: C51, D82

Keywords: Private Information; Adverse Selection; Insurance

1 Introduction

Not everyone can purchase insurance. Across a wide set of non-group insurance markets, companies choose to not sell insurance to potential customers with certain observable, often high-risk, characteristics. In the non-group health insurance market, 1 in 7 applications to the four largest insurance companies in the US were rejected between 2007 and 2009, a figure that excludes those

*Harvard University and NBER (e-mail: nhendren@fas.harvard.edu). An earlier version of this paper is contained in the first chapter of my MIT graduate thesis. I am very grateful to Daron Acemoglu, Amy Finkelstein, Jon Gruber, and Rob Townsend for their guidance and support in writing this paper. I also thank Victor Chernozhukov, Sarah Miller, Whitney Newey, Ivan Werning, an extensive list of MIT graduate students, and seminar participants at The University of California-Berkeley, Chicago Booth, The University of Chicago, Columbia, Harvard, Microsoft Research New England, Northwestern, The University of Pennsylvania, Princeton, and Stanford for helpful comments and suggestions. I would also like to thank several anonymous insurance underwriters for helpful assistance. Financial support from NSF Graduate Research Fellowship and the NBER Health and Aging Fellowship, under the National Institute of Aging Grant Number T32-AG000186 is gratefully acknowledged.
who would be rejected but were deterred from even applying. In US long-term care insurance, 12-23% of 65 year olds have health conditions that would preclude them from being able to purchase insurance (Murtaugh et al. [1995]).

It is surprising that a company would choose to not offer its products to a certain subpopulation. Although the rejected generally have higher expected expenditures, they still face unrealized risk. Regulation does not generally prevent risk-adjusted pricing in these markets.

So why not simply offer them a higher price?

In this paper, I argue that private information, held by the potential applicant pool, explains rejections. In particular, I provide empirical evidence in three insurance market settings that those who have observable conditions that prevent them from being able to purchase insurance also have additional knowledge about their risk beyond what is captured by their observable characteristics. To develop some intuition for this finding, consider the risk of going to a nursing home, one of the three settings that will be studied in this paper. Someone who has had a stroke, which renders them ineligible to purchase long-term care (LTC) insurance, may know not only her personal medical information (which is largely observable to an insurer), but also many specific factors and preferences that are derivatives of her health condition and affect her likelihood of entering a nursing home. These could be whether her kids will take care of her in her condition, her willingness to engage in physical therapy or other treatments that would prevent nursing home entry, or her desire to live independently with the condition as opposed to seek the aid of a nursing home. Such factors and preferences affect the cost of insuring nursing home expenses, but are often difficult an insurance company to obtain and verify. This paper will argue that, because of the private information held by those with rejection conditions, if an insurer were to offer contracts to these individuals, they would be so heavily adversely selected that it wouldn’t deliver positive profits, at any price.

To make this argument formally, I begin with a theory of how private information could lead to rejections. The setting is the familiar binary loss environment introduced by Rothschild and Stiglitz [1976], generalized to incorporate an arbitrary distribution of privately informed types. In this environment, I ask under what conditions can anyone obtain insurance against the loss. I derive new a "no-trade" condition characterizing when insurance companies would be unwilling to sell insurance on terms that anyone would accept. This condition has an unraveling intuition similar to the one introduced in Akerlof [1970]. The market unravels when the willingness to pay for a small amount of insurance is less than the pooled cost of providing this insurance to those of

1 Figures obtained through a formal congressional investigation by the Committee on Energy and Commerce, which requested and received this information from Aetna, Humana, UnitedHealth Group, and WellPoint. Congressional report was released on October 12, 2010. The 1 in 7 figure does not subtract duplicate applications if people applied to more than 1 of these 4 firms.

2 Appendix F presents the rejection conditions from Genworth Financial (one of the largest US LTC insurers), gathered from their underwriting guidelines provided to insurance agents for use in screening applicants.

3 For example, in long-term care I will show that those who would be rejected have an average five-year nursing home entry rate of less than 25%.

4 The Civil Rights Act is a singular exception as it prevents purely race-based pricing.
equal or higher risk. When this no-trade condition holds, an insurance company cannot offer any
contract, or menu of contracts, because they would attract an adversely selected subpopulation
that would make them unprofitable. Thus, the theory explains rejections as market segments
(segmented by observable characteristics) in which the no-trade condition holds.

I then use the no-trade condition to identify properties of type distributions that are more
likely to lead to no trade. This provides a vocabulary for quantifying private information. In
particular, I characterize the barrier to trade imposed by a distribution of types in terms of the
implicit tax rate, or markup, individuals would have to be willing to pay on insurance premiums
in order for the market to exist. The comparative statics of the theory suggests the implicit tax
rates should be higher for the rejectees relative to non-rejectees and high enough for the rejectees
to explain an absence of trade for plausible values of the willingness to pay for insurance.

I then develop a new empirical methodology to test the predictions of theory. I use inform-

ation contained in subjective probability elicitations\(^5\) to infer properties of the distribution of
private information. I do not assume individuals can necessarily report their true beliefs. Rather,
I use information in the joint distribution of elicitations and the realized events corresponding
to these elicitations to deal with potential errors in elicitations.

I proceed with two complementary empirical approaches. First, I estimate the explanatory
power of the subjective probabilities on the subsequent realized event, conditional on public
information. I show that measures of their predictive power provide nonparametric lower bounds
on theoretical metrics of the magnitude of private information. In particular, whether the
elicitations are predictive at all provides a simple test for the presence of private information. I
also provide a test in the spirit of the comparative static of the theory that asks whether those
who would be rejected are better able to predict their realized loss.

Second, I estimate the distribution of beliefs by parameterizing the distribution of elicitations
given true beliefs (i.e. on the distribution of measurement error). I then quantify the implicit
tax individuals would need to be willing to pay in order for an insurance company to be able to
profitably sell insurance against the corresponding loss. I then ask whether it is larger for those
who would be rejected relative to those who are served by the market and whether it is large
(small) enough to explain (the absence of) rejections for plausible values of agents’ willingness
to pay for insurance.

I apply this approach to three non-group markets: long-term care (LTC), disability, and life
insurance. I combine two sources of data. First, I use data from the Health and Retirement
Study, which elicits subjective probabilities corresponding to losses insured in each of these three
settings and contains a rich set of observable demographic and health information. Second, I
construct and merge a classification of those who would be rejected (henceforth “rejectees”\(^6\)) in

\(^5\)A subjective probability elicitation about a given event is a question: “What is the chance (0-100%) that [event] will occur?”.

\(^6\)Throughout, I focus on those who “would be rejected”, which corresponds to those whose choice set excludes
insurance, not necessarily the same as those who actually apply and are rejected.
each market from a detailed review of underwriting guidelines from major insurance companies.

Across all three market settings and a wide set of specifications, I find significant amounts of private information held by the rejectees: the subjective probabilities are predictive of the realized loss conditional on observable characteristics. Moreover, I find that they are more predictive for the rejectees than for the non-rejectees; indeed, once I control for observable characteristics used by insurance companies to price insurance, I cannot reject the null hypothesis of no private information where the market exists in any of the three markets I consider. Quantifying the amount of private information in each market, I estimate rejectees would need to be willing to pay an implicit tax of 80% in LTC, 42% in Life, and 66% in Disability insurance in order for a market to exist. In contrast, I estimate smaller implicit taxes for the non-rejectees that are not statistically different from zero in any of the three market settings.

Finally, not only do the results explain rejections in these three non-group markets, but the pattern of private information about mortality can also explain the lack of rejections in annuity markets. While some individuals are informed about being a relatively high mortality risk, very few are exceptionally informed about having exceptionally low mortality risk. Thus, the population of healthy individuals can obtain annuities without a significant number of even lower mortality risks adversely selecting their contract.

This paper is related to several distinct literatures. On the theoretical dimension, it is, to my knowledge, the first paper to show that private information can eliminate all gains to trade in an insurance market with an endogenous set of contracts. While no trade can occur in the Akerlof [1970] lemons model, this model exogenously restricts the set of tradable contracts, which is unappealing in the context of insurance since insurers generally offer a menu of premiums and deductibles. Consequently, this paper is more closely related to the large screening literature using the binary loss environment initially proposed in Rothschild and Stiglitz [1976]. While the Akerlof lemons model restricts the set of tradable contracts, this literature generally restricts the distribution of types (e.g. “two types” or a bounded support) and generally argues that trade will always occur (Riley [1979]; Chade and Schlee [2011]). But by considering an arbitrary distribution of types, I show this not to be the case. Indeed, not only is no-trade theoretically possible; I argue it is the outcome in significant segments of three major insurance markets.

Empirically, this paper is related to a recent and growing literature on testing for the existence and consequences of private information in insurance markets (Chiappori and Salanié [2000]; Chiappori et al. [2006]; Finkelstein and Poterba [2002, 2004]; see Einav et al. [2010a] and Cohen and Siegelman [2010] for a review). This literature focuses on the revealed preference implications of private information by looking for a correlation between insurance purchase and subsequent claims. While this approach can potentially identify private information amongst those served by the market, my approach can study private information for the entire population, including rejectees. Thus, my results provide a new explanation for why previous studies have not found evidence of significant adverse selection in life insurance (Cawley and Philipson [1999]) or LTC
insurance (Finkelstein and McGarry [2006]). The most salient impact of private information may not be the adverse selection of existing contracts but rather the existence of the insurance market.

Finally, this paper is related to the broader literature on the workings of markets under uncertainty and private information. While many theories have pointed to potential problems posed by private information, this paper presents, to the best of my knowledge, the first direct empirical evidence that private information leads to a complete absence of trade.

The rest of this paper proceeds as follows. Section 2 presents the theory and the no-trade result. Section 3 presents the comparative statics and testable predictions of the model. Section 4 outlines the empirical methodology. Section 5 presents the three market settings and the data. Section 6 presents the empirical specification and results for the nonparametric lower bounds. Section 7 presents the empirical specification and results for the estimation of the implicit tax imposed by private information. Section 8 places the results in the context of existing literature and discusses directions for future work. Section 9 concludes. To keep the main text to a reasonable length, the theoretical proofs and empirical estimation details are deferred to the Online Appendix accompanying this paper.

2 Theory

This section develops a model of private information. The primary result (Theorem 1) is a no-trade condition which provides a theory of how private information can cause insurance companies to not offer any contracts.

2.1 Environment

There exists a unit mass of agents endowed with non-stochastic wealth \(w > 0 \). All agents face a potential loss of size \(l > 0 \) that occurs with privately known probability \(p \), which is distributed with c.d.f. \(F(p|X) \) in the population, where \(X \) is the observable information insurers could use to price insurance (e.g. age, gender, observable health conditions, etc.). For the theoretical section, it will suffice to condition on a particular value for the observable characteristics, \(X = x \), and let \(F(p) = F(p|X = x) \) denote the distribution of types conditional on this value. I impose no restrictions on \(F(p) \); it may be a continuous, discrete, or mixed distribution, and have full or partial support, denoted by \(\Psi \subset [0,1] \).\(^7\) Throughout the paper, an uppercase \(P \) will denote the random variable representing a random draw from the population (with c.d.f. \(F(p) \)); a lowercase \(p \) denote a specific agent’s probability (i.e. their realization of \(P \)).

\(^7\)By choosing particular distributions \(F(p) \), the environment nests type spaces used in many previous models of insurance. For example, \(\Psi = \{p_L, p_H\} \) yields the classic two-type model considered initially by Rothschild and Stiglitz [1976] and subsequently analyzed by many others. Assuming \(F(p) \) is continuous with \(\Psi = [a,b] \subset (0,1) \), one obtains an environment similar to Riley [1979]. Chade and Schlee [2011] provide arguably the most general treatment to-date of this environment in the existing literature by considering a monopolists problem with an arbitrary \(F \) with bounded support \(\Psi \subset [a,b] \subset (0,1) \).
Agents have a standard Von-Neumann Morgenstern preferences $u(c)$ with expected utility given by

$$pu(c_L) + (1 - p)u(c_{NL})$$

where c_L (c_{NL}) is the consumption in the event of a loss (no loss). I assume $u(c)$ is twice continuously differentiable, with $u'(c) > 0$ and $u''(c) < 0$. An allocation $A = \{c_L(p), c_{NL}(p)\}_{p \in \Psi}$ consists of consumption in the event of a loss, $c_L(p)$, and in the event of no loss, $c_{NL}(p)$ for each type $p \in \Psi$.

2.2 Implementable Allocations

Under what conditions can anyone obtain insurance against the occurrence of the loss? To ask this question in a general manner, I consider the set of implementable allocations.

Definition 1. An allocation $A = \{c_L(p), c_{NL}(p)\}_{p \in \Psi}$ is implementable if

1. A is resource feasible:

$$\int [w - pl - pcl(p) - (1 - p)c_{NL}(p)]dF(p) \geq 0$$

2. A is incentive compatible:

$$pu(c_L(p)) + (1 - p)u(c_{NL}(p)) \geq pu(c_L(\tilde{p})) + (1 - p)u(c_{NL}(\tilde{p})) \quad \forall p, \tilde{p} \in \Psi$$

3. A is individually rational:

$$pu(c_L(p)) + (1 - p)u(c_{NL}(p)) \geq pu(w - l) + (1 - p)u(w) \quad \forall p \in \Psi$$

It is easy to verify that these constraints must be satisfied in most, if not all, institutional environments such as competition or monopoly. Therefore, to ask when agents can obtain any insurance, it suffices to ask when the endowment, $\{(w - l, w)\}_{p \in \Psi}$, is the only implementable allocation.\(^8\)

2.3 The No-Trade condition

The key friction in this environment is that if a type p prefers an insurance contract relative to her endowment, then the pool of risks $P \geq p$ will also prefer this insurance contract relative to their endowment. Theorem 1 says that unless some type is willing to pay this pooled cost of worse risks in order to obtain some insurance, there can be no trade. Any insurance contract,

\(^8\)Focusing on implementable allocations, as opposed to explicitly modeling the market structure, also circumvents problems arising from the potential non-existence of competitive Nash equilibriums, as highlighted in Rothschild and Stiglitz [1976].
or menu of insurance contracts, would be so adversely selected that it would not yield a positive profit.

Theorem 1. (No Trade). The endowment, \(\{(w-l,w)\}\), is the only implementable allocation if and only if

\[
\frac{p}{1-p} \frac{u'(w-l)}{u'(w)} \leq \frac{E[P|P \geq p]}{1 - E[P|P \geq p]} \quad \forall p \in \Psi \setminus \{1\}
\]

(1)

where \(\Psi \setminus \{1\}\) denotes the support of \(P\) excluding the point \(p = 1\).

Conversely, if (1) does not hold, then there exists an implementable allocation which strictly satisfies resource feasibility and individual rationality for a positive mass of types.

Proof. See Appendix A.1

The left-hand side of equation (1), \(\frac{p}{1-p} \frac{u'(w-l)}{u'(w)}\), is the marginal rate of substitution between consumption in the event of no loss and consumption in the event of a loss, evaluated at the endowment, \((w-l,w)\). It is a type \(p\)'s willingness to pay for an infinitesimal transfer of consumption to the event of a loss from the event of no loss. The actuarially fair cost of this transfer to a type \(p\) agent is \(\frac{p}{1-p}\). However, if the worse risks \(P \geq p\) also select this contract, the cost of this transfer would be \(\frac{E[P|P \geq p]}{1 - E[P|P \geq p]}\), which is the right hand side of equation (1). The theorem shows that if no agent is willing to pay this pooled cost of worse risks, the endowment is the only implementable allocation.

Conversely, if equation (1) does not hold, there exists an implementable allocation which does not totally exhaust resources and provides strictly higher utility than the endowment for a positive mass of types. So, a monopolist insurer could earn positive profits by selling insurance. In this sense, the no-trade condition (1) characterizes when one would expect trade to occur.

The no-trade condition has an unraveling intuition similar to that of Akerlof [1970]. His model considers a given contract and shows that it will not be traded when its demand curve lies everywhere below its average cost curve, where the cost curve is a function of those who demand it. My model is different in the following sense: while Akerlof [1970] derives conditions under which a given contract would unravel and result in no trade, my model provides conditions under which any contract or menu of contracts would unravel.

9While Theorem 1 is straightforward, its proof is less trivial because one must show that Condition 1 rules out not only single contracts but also any menu of contracts in which different types may receive different consumption bundles.

10Also, one can show that a competitive equilibrium, as defined in Miyazaki [1977] and Spence [1978] can be constructed for an arbitrary type distribution \(F(p)\) and would yield trade (result available from the author upon request).

11It is easily verified that the no-trade condition can hold for common distributions. For example, if \(F(p)\) is uniform on \([0,1]\), then \(E[P|P \geq p] = \frac{1+p}{2}\), so that the no trade condition reduces to \(\frac{u'(w-l)}{u'(w)} \leq 2\). Unless individuals are willing to pay a 100% tax for insurance, there can be no trade when \(F(p)\) is uniform over \([0,1]\).

12This is also a difference between my approach and the literature on extreme adverse selection in finance contexts that exogenously restrict the set of tradable assets. Mailath and Noldeke [2008] provide a condition, with similar intuition to the unraveling condition in Akerlof [1970], under which a given asset cannot trade in any
This distinction is important since previous literature has argued that trade must always occur in similar environments with no restrictions on the contract space so that firms can offer varying premium and deductible menus (Riley [1979]; Chade and Schlee [2011]). The key difference in my environment is that I do not assume types are bounded away from $p = 1$.

To see why this matters, recall that the key friction that can generate no trade is the unwillingness of any type to pay the pooled cost of worse risks. This naturally requires the perpetual existence of worse risks. Otherwise the highest risk type, say $\bar{p} = \sup \Psi$, would be able to obtain an actuarially fair full insurance allocation, $c_L(\bar{p}) = c_{NL}(\bar{p}) = w - \bar{p}l$, which would not violate the incentive constraints of any other type. Therefore, the no trade requires some risks be arbitrarily close to $p = 1$.

Corollary 1. Suppose condition (1) holds. Then $F(p) < 1 \ \forall p < 1$.

Corollary 1 highlights why previous theoretical papers have not found outcomes of no trade in the binary loss environment with no restrictions on the contract space; they assume $\sup \Psi < 1$.

The presence of risks near $p = 1$ make the provision of insurance more difficult because it increases the values of $E[P|P \geq p]$ at interior values of p. However, the need for P to have full support near 1 is not a very robust requirement for no trade. In reality, the cost of setting up a contract is nonzero, so that insurance companies cannot offer an infinite set of contracts. Remark 1 shows that if each allocation other than the endowment must attract a non-trivial fraction of types, then risks arbitrarily close to 1 are not required for no trade.

Remark 1. Suppose each consumption bundle (c_L, c_{NL}) other than the endowment must attract a non-trivial fraction $\alpha > 0$ of types. More precisely, suppose allocations $A = \{c_L(p), c_{NL}(p)\}_p$ must have the property that for all $q \in \Psi$,

$$\mu(\{p| (c_L(p), c_{NL}(p)) = (c_L(q), c_{NL}(q))\}) \geq \alpha$$

where μ is the measure defined by $F(p)$. Then, the endowment is the only implementable allocation if and only if

$$\frac{p}{1-p} \frac{u'(w-l)}{w'} \leq \frac{E[P|P \geq p]}{1 - E[P|P \geq p]} \ \forall p \in \hat{\Psi}_{1-\alpha}$$

where $\hat{\Psi}_{1-\alpha} = [0, F^{-1}(1 - \alpha)] \cap (\Psi \setminus \{1\})$.

Therefore, the no-trade condition need only hold for values $p < F^{-1}(1 - \alpha)$.

For any $\alpha > 0$, it is easy to verify that the no trade condition not only does not require types nonzero quantity. However, it is easy to verify in their environment that derivatives of the asset could always be traded, even when their no trade condition holds. In contrast, by focusing on the set of implementable allocations, my approach rules out the nonzero trading of any asset derived from the loss.

13 Both Riley [1979] and Chade and Schlee [2011] assume $\sup \Psi < 1$.

14 If $F^{-1}(1 - \alpha)$ is a set, I take $F^{-1}(1 - \alpha)$ to be the supremum of this set.
near \(p = 1 \), but it actually imposes no constraints on the upper range of the support of \(P \). In this sense, the requirement of risks arbitrarily close to \(p = 1 \) is a theoretical requirement in a world with no other frictions, but not an empirically relevant condition if one believes insurance companies cannot offer contracts that attract an infinitesimal fraction of the population. Going forward, I retain the benchmark assumption of no such frictions or transactions costs, but return to this discussion in the empirical work in Section 7.

In sum, the no-trade condition (1) provides a theory of rejections: individuals with observable characteristics, \(X \), such that the no-trade condition (1) holds are rejected; individuals with observable characteristics, \(X \), such that (1) does not hold are able to purchase insurance. This is the theory of rejections the remainder of this paper will seek to test.

3 Comparative Statics and Testable Predictions

In order to generate testable implications of this theory of rejections, this section derives properties of distributions, \(F(p) \), which are more likely to lead to no trade. I provide two such metrics that will be used in the subsequent empirical analysis.

3.1 Two Measures of Private Information

To begin, multiply the no-trade condition (1) by \(\frac{1-p}p \) yielding,

\[
\frac{u'(w-l)}{u'(w)} \leq \frac{E[P|P \geq p]}{1-E[P|P \geq p]} \frac{1-p}{p} \quad \forall p \in \Psi \setminus \{1\}
\]

The left-hand side is the ratio of marginal utilities in the loss versus no loss state, evaluated at the endowment. The right-hand side is independent of the utility function, \(u \), and is the markup that would be imposed on type \(p \) if she had to cover the cost of worse risks, \(P \geq p \). I define this term the pooled price ratio.

Definition 2. For any \(p \in \Psi \setminus \{1\} \), the **pooled price ratio at** \(p \), \(T(p) \), is given by

\[
T(p) = \frac{E[P|P \geq p]}{1-E[P|P \geq p]} \frac{1-p}{p}
\]

Given \(T(p) \), the no-trade condition has a succinct expression.

Corollary 2. (Quantification of the barrier to trade) The no-trade condition holds if and only if

\[
\frac{u'(w-l)}{u'(w)} \leq \inf_{p \in \Psi \setminus \{1\}} T(p)
\]

15 More precisely, for any \(\alpha > 0 \) and \(\gamma \in (0,1] \), there exists \(u(\cdot) \) and \(F(p) \) such that \(F(\gamma) = 1 \) and the no trade condition in equation(2) holds.
Whether or not there can be trade depends on only two numbers: the agent’s underlying valuation of insurance, \(\frac{u'(w-l)}{u'(w)} \), and the cheapest cost of providing an infinitesimal amount of insurance, \(\inf_{p \in \Psi \setminus \{1\}} T(p) \). I call \(\inf_{p \in \Psi \setminus \{1\}} T(p) \) the minimum pooled price ratio.

The minimum pooled price ratio has a simple tax rate interpretation. Suppose for a moment that there were no private information but instead a government levies a sales tax of rate \(t \) on insurance premiums in a competitive insurance market. The value \(\frac{u'(w-l)}{u'(w)} - 1 \) is the highest such tax rate an individual would be willing to pay to purchase any insurance. Thus, \(\inf_{p \in \Psi \setminus \{1\}} T(p) - 1 \) is the implicit tax rate imposed by private information. Given any distribution of risks, \(F(p) \), it quantifies the implicit tax individuals would need to be willing to pay so that a market could exist.

Equation (4) leads to a simple comparative static.

Corollary 3. (Comparative static in the minimum pooled price ratio) Consider two market segments, 1 and 2, with pooled price ratios \(T_1(p) \) and \(T_2(p) \) and common vNM preferences \(u \). Suppose

\[
\inf_{p \in \Psi \setminus \{1\}} T_1(p) \leq \inf_{p \in \Psi \setminus \{1\}} T_2(p)
\]

then if the no-trade condition holds in segment 1, it must also hold in segment 2.

Higher values of the minimum pooled price ratio are more likely to lead to no trade. Because the minimum pooled price ratio characterizes the barrier to trade imposed by private information, Corollary 3 is the key comparative static on the distribution of private information provided by the theory.

In addition to the minimum pooled price ratio, it will also be helpful to have another metric to guide portions of the empirical analysis.

Definition 3. For any \(p \in \Psi \), define the magnitude of private information at \(p \) by \(m(p) \), given by

\[
m(p) = E[P|P \geq p] - p
\]

The value \(m(p) \) is the difference between \(p \) and the average probability of everyone worse than \(p \). Note that \(m(p) \in [0, 1] \) and \(m(p) + p = E[P|P \geq p] \). The following comparative static follows directly from the no-trade condition (1).

Corollary 4. (Comparative static in the magnitude of private information) Consider two market segments, 1 and 2, with magnitudes of private information \(m_1(p) \) and \(m_2(p) \) and common support \(\Psi \) and common vNM preferences \(u \). Suppose

\[
m_1(p) \leq m_2(p) \quad \forall p \in \Psi
\]

Then if the no-trade condition holds in segment 1, it must also hold in segment 2.
Higher values of the magnitude of private information are more likely to lead to no trade. Notice that the values of \(m(p) \) must be ordered for all \(p \in \Psi \); in this sense Corollary 4 is a less precise comparative static than Corollary 3.

3.2 Testable Hypotheses

The goal of the rest of the paper is to test whether the no-trade condition (1) can explain rejections by estimating properties of the distribution of private information, \(F(p|X) \), for rejectees and non-rejectees. Assuming for the moment that \(F(p|X) \) is observable to the econometrician, the ideal tests are as follows. First, do rejectees have private information (i.e. is \(F(p|X) \) a non-trivial distribution for the rejectees)? Second, do they have more private information than the non-rejectees, as suggested by the comparative statics in Corollaries 3 and 4? Finally, is the quantity of private information, as measured by the minimum pooled price ratio, is large (small) enough to explain (the absence of) rejections for plausible values of agents’ willingness to pay, \(\frac{u'(w-l)}{w'} \), as suggested by Corollary 2?

Note that these tests do not involve on any observation of adverse selection (i.e. a correlation between insurance purchases and realized losses). Instead, these ideal tests simulate the extent to which private information would afflict a hypothetical insurance market that pays $1 in the event that the loss occurs and prices policies using the observable characteristics, \(X \).

To implement these tests, one must estimate properties of the distribution of private information, \(F(p|X) \), to which I now turn.

4 Empirical Methodology

I develop an empirical methodology to study private information and operationalize the tests in Section 3.2. I rely primarily on four pieces of data. First, let \(L \) denote an event (e.g. dying in the next 10 years) that is commonly insured in some insurance market (e.g. life insurance). Second, let \(Z \) denote an individual’s subjective probability elicitation about event \(L \) (i.e. \(Z \) is a response to the question: “What is the chance (0-100%) that \(L \) will occur?”). Third, let \(X \) continue to denote the set of public information insurance companies would use to price insurance against the event \(L \). Finally, let \(\Theta^{Rej} \) and \(\Theta^{NoRej} \) partition the space of values of \(X \) into those for whom an insurance company does and does not offer insurance contracts that provide payment if \(L \) occurs (e.g. if \(L \) is the event of dying in the next 10 years, \(\Theta^{Rej} \) would be the values of observables, \(X \), that render someone ineligible to purchase life insurance).

The premise underlying the approach is that the elicitations, \(Z \), are non-verifiable to an insurance company. Therefore, they can be excluded from the set of public information insurance companies would use to price insurance, \(X \), and used to infer properties of the distribution of:

\(^{16}\)To condense notation, \(L \) will denote both a probabilistic event and also the binary random variable equal to 1 if the event occurs and 0 if the event does not occur (i.e. \(\Pr\{L\} = \Pr\{L = 1\} = E[L] \)).
private information.

I maintain the implicit assumption in Section 2 that individuals behave as if they have true beliefs, P, about the occurrence of the loss, L.\footnote{The approach therefore follows the view of personal probability expressed in the seminal work of Savage [1954]. The existence of beliefs P are guaranteed as long as people would behave consistently (in the sense of Savage’s axioms) in response to gambles over L.} But there are many reasons to expect individuals not to report exactly these beliefs on surveys.\footnote{For example, they may not have the training to know how to answer probabilistic questions; they may intentionally lie to the surveyor; or they may simply be lazy in thinking about their response. Indeed, existing research suggests the way in which the elicitation is conducted affects the reported belief elicitation (Gigerenzer and Hoffrage [1995], Miller et al. [2008]), which suggests elicitations do not measure true beliefs exactly. Previous literature has also argued that the elicitations in my settings should not be viewed as true beliefs due to excess concentrations at 0, 50%, and 100% (Gan et al. [2005], Hurd [2009]).} Therefore, I do not assume $Z = P$. Instead, I use information contained in the joint distribution of Z and L (that are observed) to infer properties about the distribution of P (that is not directly observed).

I conduct two complementary empirical approaches. Under relatively weak assumptions rooted in economic rationality, I provide a test for the presence of private information and a nonparametric lower bound on the average magnitude of private information, $E[m(P)]$. Loosely, this approach asks how predictive the elicitations are of the loss L, conditional on observable information, X. Second, I use slightly stronger structural assumptions to estimate the distribution of beliefs, $F(p|X)$, and the minimum pooled price ratio. I then test whether it is larger for the rejectees and large (small) enough to explain a complete absence of trade for plausible values of $u'(w-l)/u'(w)$, as suggested by Corollary 2.

In this section, I introduce these empirical approaches in the abstract. I defer a discussion of the empirical specification and statistical inference in my particular settings to Sections 6 and 7, after discussing the data and settings in Section 5.

4.1 Nonparametric Lower Bounds

Instead of assuming people necessarily report their true beliefs, I begin with the weaker assumption that people cannot report more information than what they know.

Assumption 1. Z contains no additional information than P about the loss L, so that

$$\Pr\{L|X,P,Z\} = \Pr\{L|X,P\}$$

This assumption states that if the econometrician were trying to forecast whether or not an agents’ loss would occur and knew both the observable characteristics, X and the agents true beliefs, P, the econometrician could not improve the forecast of L by also knowing the elicitation, Z. All of the predictive power that Z has about L must come from agents’ beliefs, P.\footnote{This assumption would be clearly implied in a model in which agents’ formed rational expectations from an information set that included X and Z. In this case $\Pr\{L|X,P,Z\} = P$. But, it also allows agents’ beliefs to be}
Proposition 1. Suppose $\Pr\{L|X,Z\} \neq \Pr\{L|X\}$ for a positive mass of realizations of Z. Then, $\Pr\{L|X,P\} \neq \Pr\{L|X\}$ for a positive mass of realizations of P.

Proposition 1 says that if Z has predictive information about L conditional on X, then agents’ true beliefs P has predictive information about L conditional on X – i.e. agents have private information. This motivates my test for the presence of private information:

Test 1. (Presence of Private Information) Are the elicitations, Z, predictive of the loss, L, conditional on observable information, X?

Although this test establishes the presence of private information, it does not provide a method of asking whether one group has more private information than another. Intuitively, the predictiveness of Z should be informative of how much private information people have. Such a relationship can be established with an additional assumption about how realizations of L relate to beliefs, P.

Assumption 2. Beliefs P are unbiased: $\Pr\{L|X,P\} = P$

Assumption 2 states that if the econometrician could hypothetically identify an individual with beliefs P, then the probability that the loss occurs equals P. As an empirical assumption, it is strong, but commonly made in existing literature (e.g. Einav et al. [2010b]); indeed, it provides perhaps the simplest link between the realized loss L and beliefs, P.

Under Assumptions 1 and 2, the predictiveness of the elicitations form a distributional lower bound on the distribution of P. To see this, define P_Z to be the predicted value of L given the variables X and Z,

$$P_Z = \Pr\{L|X,Z\}$$

Under Assumptions 1 and 2, it is easy to verify (see Appendix B) that

$$P_Z = E[P|X,Z]$$

so that the true beliefs, P, are a mean-preserving spread of the distribution of predicted values, P_Z. In this sense, the true beliefs are more predictive of the realized loss than are the elicitations.

This motivates my first test of whether rejectees have more private information than non-rejectees. I plot the distribution of predicted values, P_Z, separately for rejectees ($X \in \Theta_{Reject}$) and non-rejectees ($X \in \Theta_{NoReject}$). I then assess whether it is more dispersed for the rejectees.

biased, so that $\Pr\{L|X,P,Z\} = h(P)$ where h is any function not dependent on Z. In particular, $h(P)$ could be an S-shaped function as suggested by Kahneman and Tversky [1979].

Assumptions 1 and 2 are jointly implied by rational expectations in a model in which agents know both X and Z in formulating their beliefs P. In this case, my approach views Z as a “garbling” of the agent’s true beliefs in the sense of Blackwell ([1951], [1953]).
In addition to visual inspection of P_Z, one can also construct a dispersion metric derived from the comparative statics of the theory. Recall from Corollary 4 that higher values of the magnitude of private information, $m(p)$, are more likely to lead to no trade. Consider the average magnitude of private information, $E[m(P)|X]$. This is a non-negative measure of the dispersion of the population distribution of P. If an individual were drawn at random from the population, one would expect the risks higher than him to have an average loss probability that is $E[m(P)|X]$ higher.

Although P is not observed, I construct the analogue using the P_Z distribution. First, I construct $m_Z(p)$ as the difference between p and the average predicted probability, P_Z, of those with predicted probabilities higher than p.

$$m_Z(p) = E_{Z|X}[P_Z|P_Z \geq p, X] - p$$

The $Z|X$ subscript highlights that I am integrating over realizations of Z conditional on X. Then I construct the average magnitude of private information implied by Z in segment X, $E[m_Z(P_Z)|X]$. This is the average difference in segment X between an individual’s predicted loss, and the predicted losses of those with higher predicted probabilities. Proposition follows from Assumption 1 and 2.

Proposition 2. (Lower Bound) $E[m_Z(P_Z)|X] \leq E[m(P)|X]

Proof. See Appendix B.

Proposition 2 states that the average magnitude of private information implied by Z is a lower bound on the true average magnitude of private information. Therefore, using only Assumptions 1 and 2, one can provide a lower bound to the answer to the question: if an individual is drawn at random, on average how much worse are the higher risks?

Given this theoretical measure of dispersion, $E[m_Z(P_Z)|X]$, I conduct a test in the spirit of the comparative statics given by Corollary 4. I test whether rejectees have higher values of $E[m_Z(P_Z)|X]$:

$$\Delta_Z = E[m_Z(P_Z)|X \in \Theta^{Reject}] - E[m_Z(P_Z)|X \in \Theta^{NoReject}] > 0$$

Stated loosely, equation (6) asks whether the subjective probabilities of the rejectees better explain the realized losses than the non-rejectees, where “better explain” is measured using the dispersion metric, $E[m_Z(P_Z)|X]$. I now summarize the tests for more private information for the rejectees relative to the non-rejectees.

Test 2. (More Private Information for Rejectees) Are the elicitations, Z, more predictive of L for the rejectees: (a) is P_Z more dispersed for rejectees and (b) is $\Delta_Z > 0$?
Discussion In sum, I conduct two sets of tests motivated by Assumptions 1 and 2. First, I ask whether the elicitations are predictive of the realized loss conditional on X (Test 1); this provides a test for the presence of private information as long as people cannot unknowingly predict their future loss (Assumption 1). Second, I ask whether the elicitations are more predictive for rejectees relative to non-rejectees (Test 2). To do so, I analyze whether the predicted values, P_Z, are more dispersed for rejectees relative to non-rejectees. In addition to assessing this visually, I collapse these predicted values into the average magnitude of private information implied by Z, $E[m_Z(P_Z)]$ and ask whether it is larger for those who would be rejected relative to those who can purchase insurance (Equation 6).

The approach is nonparametric in the sense that I have made no restrictions on how the elicitations Z relate to the true beliefs P. For example, P_Z and $m_Z(p)$ are invariant to one-to-one transformations in Z: $P_Z = P_{h(Z)}$ and $m_Z(p) = m_{h(Z)}(p)$ for any one-to-one function h. Thus, I do not require that Z be a probability or have any cardinal interpretation. Respondents could all change their elicitations to $1 - Z$ or $100Z$; this would not change the value of P_Z or $E[m_Z(P_Z)|X]$.

But while the lower bound approach relies on only minimal assumptions on how subjective probabilities relate to true beliefs, the resulting empirical test in equation (6) suffers several significant limitations as a test of the theory that private information causes insurance rejections. First, comparisons of lower bounds of $E[m(P)|X]$ across segments do not necessarily imply comparisons of its true magnitude. Second, orderings of $E[m(P)|X]$ does not imply orderings of $m(p)$ for all p, which was the statement of the comparative static in $m(p)$ in Corollary 4. Finally, in addition to having limitations as a test of the comparative static, this approach cannot quantify the minimum pooled price ratio. These shortcomings motivate a complementary empirical approach, which imposes structure on the relationship between Z and P and estimates of the distribution of private information, $F(p|X)$.

4.2 Estimation of the Distribution of Private Information

The second approach estimates the distribution of private information and the minimum pooled price ratio. For expositional ease, fix an observable, $X = x$, and let $f_P(p)$ denote the p.d.f. of the distribution of beliefs, P, given $X = x$, which is assumed to be continuous. For this approach, I expand the joint p.d.f./p.m.f. of the observed variables L and Z, denoted $f_{L,Z}(L,Z)$ by

21In principle, Z need not even be a number. Some individuals could respond to the elicitation question in a crazy manner by saying they like red cars, others that they like Buffy the Vampire Slayer. The empirical approach would proceed to analyze whether a stated liking of red cars versus Buffy the Vampire Slayer is predictive of L conditional on X. Of course, such elicited information may have low power for identifying private information about L.

integrating over the unobserved beliefs, \(P \):

\[
 f_{L,Z}(L, Z) = \int_0^1 f_{L,Z}(L, Z|P = p) f_P(p) \, dp \\
 = \int_0^1 (\Pr \{L|Z, P = p\})^L (1 - \Pr \{L|Z, P = p\})^{1-L} f_{Z|P}(Z|P = p) f_P(p) \, dp \\
 = \int_0^1 p^L (1 - p)^{1-L} f_{Z|P}(Z|P = p) f_P(p) \, dp
\]

where \(f_{Z|P}(Z|P = p) \) is the distribution of elicitations given beliefs. The first equality follows by taking the conditional expectation with respect to \(P \). The second equality follows by expanding the joint density of \(L \) and \(Z \) given \(P \). The third equality follows from Assumptions 1 and 2.

The goal of this approach is to specify a functional form for \(f_{Z|P} \), say \(f_{Z|P}(Z|P; \theta) \), and a flexible approximation for \(f_P \), say \(f_P(p; \nu) \), and estimate \(\theta \) and \(\nu \) using maximum likelihood from the observed data on \(L \) and \(Z \). To do so, one must impose sufficient restrictions on \(f_{Z|P} \) so that \(\theta \) and \(\nu \) are identified. Because the discussion of functional form for \(f_{Z|P} \) and its identification is more straightforward after discussing the data, I defer a detailed discussion of my choice of specification and the details of identification to Section 7.1. At a high level, identification of the elicitation error parameters, \(\theta \), comes from the relationship between \(L \) and \(Z \), and identification of the distribution of \(P \) is a deconvolution of the distribution of \(Z \), where \(\theta \) contains the parameters governing the deconvolution. Therefore, a key concern for identification is that the measurement error parameters are well identified from the relationship between \(Z \) and \(L \); I discuss how this is the case in my particular specification in Section 7.1.22

With an estimate of \(f_P \), the pooled price ratio follows from the identity, \(T(p) = \frac{E[P|P \geq p]}{1 - E[P|P \geq p]} \) 1-p P . I then construct an estimate of its minimum, \(\inf_{p \in [0, 1]} T(p) \). Although \(T(p) \) can be calculated at each \(p \) using estimates of \(E[P|P \geq p] \), as \(p \) increases, \(E[P|P \geq p] \) relies on a smaller and smaller effective sample size. Thus, the minimum of \(T(p) \) is not well-identified over a domain including the uppermost points of the support of \(P \). To overcome this extreme quantile estimation problem, I construct the minimum of \(T(p) \) over the restricted domain, \(\hat{\Psi}_\tau = [0, F_P^{-1}(\tau)] \cap (\Psi \setminus \{1\}) \). For a fixed quantile, estimates of the minimum pooled price ratio over \(\hat{\Psi}_\tau \) are continuously differentiable functions of the MLE parameter estimates of \(f_P(p) \) for \(p \leq F_P^{-1}(\tau) \).23 So, derived MLE estimates of \(\inf_{p \in \hat{\Psi}_\tau} T(p) \) are consistent and asymptotically normal, provided \(F_P(p) \) is continuous.24 One can assess the robustness to the choice of \(\tau \), but the estimates will become unstable as \(\tau \to 1 \).

While the motivation for restricting attention to \(\hat{\Psi}_\tau \) as opposed to \(\Psi \) is primarily because

22Indeed, not all distributions \(f_{Z|P} \) are identified from data on \(L \) and \(Z \) since, in general, \(f_{Z|P} \) is an arbitrary two-dimensional function whereas \(L \) is binary.

23Non-differentiability could hypothetically occur at points where the infimum is attained at distinct values of \(p \).

24To see this, note if \(F_P(p) \) is continuous then \(T(p) = \frac{1 - p F_P(p) - \int_0^p F_P(p) \, dp}{1 - F_P(p)} \), so that \(T(p) \) is continuous in the estimated parameters of \(F_P \).
of statistical limitations, Remark 1 in Section 2.3 provides an economic rationale for why
\(\inf_{p \in \Psi \setminus \{1\}} T(p) \) may not only be a suitable substitute for \(\inf_{p \in \Psi \setminus \{1\}} T(p) \) but also may actually be
more economically relevant. If contracts must attract a non-trivial fraction \(1 - \tau \) of the market
in order to be viable, then \(\inf_{p \in \Psi \setminus \{1\}} T(p) \) characterizes the barrier to trade imposed by private information.

Given estimates of \(\inf_{p \in \Psi \setminus \{1\}} T(p) \) for rejectees and non-rejectees, I test whether it is larger
(smaller) for the rejectees (Corollary 3) and whether it is large (small) enough to explain a
complete absence of (presence of) trade for plausible values of people’s willingness to pay, \(\frac{u'(w-l)}{u'(w)} \),
as suggested by Corollary 2.

Test 3. *Quantification of Private Information* Is the minimum pooled price ratio larger for the rejectees
relative to the non-rejectees; and is it large enough (small enough) to explain an absence of (presence of)
trade for plausible values of agents’ willingness to pay?

5 Setting and Data

I ask whether private information can explain rejections in three non-group insurance market
settings: long-term care, disability, and life insurance.

5.1 Short Background on the Three Non-Group Market Settings

Long-term care (LTC) insurance insures against the financial costs of nursing home use and
professional home care. Expenditures on LTC represent one of the largest uninsured financial
burdens facing the elderly with expenditures in the US totaling over $135B in 2004. Moreover,
expenditures are heavily skewed: less than half of the population will ever move to a nursing
home (CBO [2004]). Despite this, the LTC insurance market is small, with roughly 4% of all
nursing home expenses paid by private insurance, compared to 31% paid out-of-pocket (CBO
[2004]).

Private disability insurance protects against the lost income resulting from a work-limiting
disability. It is primarily sold through group settings, such as one’s employer; more than 30% of
non-government workers have group-based disability policies. In contrast, the non-group market
is quite small. Only 3% of non-government workers own a non-group disability policy, most of
whom are self-employed or professionals who do not have access to employer-based group policies
(ACLI [2010]).

Life insurance provides payments to ones’ heirs or estate upon death, insuring lost income or
other expenses. In contrast to the non-group disability and LTC markets, the private non-group

\[\text{Medicaid pays for nursing home stays provided one's assets are sufficiently low and is a substantial payer of long-term stays.} \]
\[\text{In contrast to health insurance where the group market faces significant tax advantages relative to the non-
group market, group disability policies are taxed. Either the premiums are paid with after-tax income, or the benefits are taxed upon receipt.} \]
life insurance market is quite big. More than half of the adult US population owns life insurance, 54% of which are sold in the non-group market.\footnote{Life insurance policies either expire after a fixed length of time (term life) or cover one’s entire life (whole life). Of the non-group policies in the US, 43% of these are term policies, while the remaining 57% are whole life policies (ACLI [2010]).}

Previous Evidence of Private Information Previous research has found minimal or no evidence of adverse selection in these three markets. In life insurance, Cawley and Philipson [1999] find no evidence of adverse selection. He [2009] revisits this with a different sample focusing on new purchasers and does find evidence of adverse selection under some empirical specifications. In long-term care, Finkelstein and McGarry [2006] find direct evidence of private information by showing subjective probability elicitations are correlated with subsequent nursing home use. However, they find no evidence that this private information leads to adverse selection: conditional on the observables used to price insurance, those who buy LTC insurance are no more likely to go to a nursing home than those who do not purchase LTC insurance.\footnote{They suggest heterogeneous preferences, in which good risks also have a higher valuation of insurance, can explain why private information doesn’t lead to adverse selection.} To my knowledge, there is no previous study of private information in the non-group disability market.

5.2 Data

To implement the empirical approach in Section 4, the ideal dataset contains four pieces of information for each setting:

1. Loss indicator, L, corresponding to a commonly insured loss in a market setting
2. Agents’ subjective probability elicitation, Z, about this loss
3. The set of public information, X, which would be observed by insurance companies in the market to set contract terms
4. The classification, Θ^{Reject} and $\Theta^{NoReject}$, of who would be rejected if they applied for insurance in the market setting

The data source for the loss, L, subjective probabilities, Z, and public information X, come from years 1993-2008 of the Health and Retirement Study (HRS). The HRS is an individual-level panel survey of older individuals (mostly over age 55) and their spouses. It contains a rich set of health and demographic information. Moreover, it asks respondents three subjective probability elicitations about future events that correspond to a commonly insured loss in each of the three settings.

Long-Term Care: "What is the percent chance (0-100) that you will move to a nursing home in the next five years?"
Disability: "What is the percent chance that your health will limit your work activity during the next 10 years?"

Life: "What is the percent chance that you will live to be AGE or more?" (where AGE ∈ {75,80,85,90,95,100} is respondent-specific and chosen to be 10-15 years from the date of the interview) 29

Figures 1(a,b,c) display histograms of these responses (divided by 100 to scale to [0, 1]). 30 These histograms highlight one reason why it would be problematic to view these elicitations as true beliefs. As has been noted in previous literature using these subjective probabilities (Gan et al. [2005]; Finkelstein and McGarry [2006]), many respondents report 0, 50, or 100. Taken literally, responses of 0 or 100 imply an infinite degree of certainty. The lower bound approach remains agnostic on the way in which focal point responses relate to true beliefs. The parametric approach will take explicit account of this focal point response bias in the specification of $f_{Z|P}(Z|P; \theta)$, discussed further in Section 7.1.1.

Corresponding to each subjective probability elicitation, I construct binary indicators of the loss, L. In long-term care, L denotes the event that the respondent enters a nursing home in the subsequent 5 years. 31 In disability, L denotes the event that the respondent reports that their health limits their work activity in the subsequent 10-11 years. 32 In life, L denotes the event that the respondent dies before AGE, where AGE ∈ {75,80,85,90,95,100} corresponds to the subjective probability elicitation, which is 10-15 years from the survey date. 33

5.2.1 Public Information

To identify private information, it is essential to control for the public information, X, that would be used by insurance companies to price contracts. For non-rejectees, this is a straightforward requirement which involves analyzing existing contracts. But for rejectees, I must make an assumption about how insurance companies would price these contracts if they were to offer them. My preferred approach is to assume insurance companies price rejectees separately from those to whom they currently offer contracts, but use a similar set of public information. Thus, the primary data requirement is the public information currently used by insurance companies

29 I construct the corresponding elicitation to be $Z^{\text{die}} = 100\% - Z^{\text{live}}$ where Z^{live} is the survey elicitation for the probability of living to AGE.

30 The histograms use the sample selection described in Subsection (5.2.3)

31 Although the HRS surveys every two years, I use information from the 3rd subsequent interview (6 years post) which provides date of nursing home entry information to construct the exact 5 year indicator of nursing home entry.

32 The loss is defined as occurring when the individual reports yes to the question: “Does your health limit your work activity?” over the subsequent five surveys, which is 10 years for all waves except AHEAD wave 2, which corresponds to a time interval of 11 years because of a slightly different survey spacing. Although the HRS has other measures of disability (e.g. SSDI claims), I use this measure because the wording corresponds exactly to the subjective probability elicitation, which will be important for the structural assumptions made to estimate the minimum pooled price ratio.

33 The HRS collects date of death information that allows me to establish the exact age of death.
Figure 1: Subjective Probability Histograms
in pricing insurance.

The HRS contains an extensive set of health, demographic, and occupation information that allows me to approximate the set of information that insurance companies use to price insurance. Indeed, previous literature has used the HRS to replicate the observables used by insurance companies to price insurance in LTC and Life (for LTC, see Finkelstein and McGarry [2006] and for Life, see He [2009]), and I primarily follow this literature in constructing this set of covariates. Appendix C.1 provides a detailed listing of the control specifications used in each market setting.

The quality of the approximation to what insurers actually use to price insurance is quite good, but does vary by market. For long-term care, I replicate the information set of the insurance company quite well. For example, perhaps the most obscure piece of information that is acquired by some LTC insurance companies is an interview in which applicants are asked to perform word recall tasks to assess memory capabilities; the HRS conducts precisely this test with survey respondents. In disability and life, I replicate most of the information used by insurance companies in pricing. One caveat is that insurance companies will sometimes perform tests, such as blood and urine tests, which I will not observe in the HRS. Conversations with underwriters in these markets suggest these tests are primarily to confirm application information, which I can approximate quite well with the HRS. But, I cannot rule out the potential that there is additional information which can be gathered by insurance companies in the disability and life settings.\footnote{In LTC, insurance companies are legally able to conduct tests, but it is not common industry practice.}

While the preferred specification attempts to replicate the variables used by insurance companies in pricing, I also assess the robustness of the estimates to larger and smaller sets of controls.\footnote{While it might seem intuitive that including more controls would reduce the amount of private information, this need not be the case. To see why, consider the following example of a regression of quantity on price. Absent controls, there may not exist any significant relationship. But, controlling for supply (demand) factors, price may have predictive power for quantity as it traces out the demand (supply) curve. Thus, adding controls can increase the predictive power of another variable (price, in this case). Of course, conditioning on additional variables X' which are uncorrelated with L or Z has no effect on the population value of $E[m(P)|X \in \Theta]$.} As a baseline, I consider a specification with only age and gender. As an extension, I also consider an extended controls specification that adds a rich set of interactions between health conditions and demographic variables that could be, but are not currently, used in pricing insurance. I conduct the lower bound approach for all three sets of controls. For brevity, I focus exclusively on the preferred specification of pricing controls for the parametric approach.

5.2.2 Rejection Classification

Not everyone can purchase insurance in these three non-group markets. To identify conditions that lead to rejection, I obtain underwriting guidelines used by underwriters and provided to insurance agents for use in screening applicants. An insurance company’s underwriting guidelines list the conditions for which underwriters are instructed to not offer insurance at any price...
and for which insurance agents are expected to discourage applications. These guidelines are generally viewed as a public relations liability and are not publicly available.\footnote{An example of these guidelines is presented in Appendix F and a collection of these guidelines is available on my website. Also, many underwriting guidelines are available via internet searches of “underwriting guideline not-for-public-use pdf”. These are generally left on the websites of insurance brokers who leave them electronically available to their sales agents and, potentially unknowingly, available to the general public.} Thus, the extent of my access varies by market: In long-term care, I obtained a set of guidelines used by an insurance broker from 18 of the 27 largest long-term care insurance companies comprising a majority of the US market.\footnote{I thank Amy Finkelstein for making this broker-collected data available.} In disability and life, I obtained several underwriting guidelines and supplement this information with interviews with underwriters at several major US insurance companies. Appendix F provides several pages from the LTC underwriting guideline from Genworth Financial, one of the largest LTC insurers in the US.\footnote{A collection of underwriting guidelines from these three markets are available from the author upon request and are posted on my website.}

I then use the detailed health and demographic information available in the HRS to identify individuals with these rejection conditions. While the HRS contains a relatively comprehensive picture of respondents’ health, sometimes the rejection conditions are too precise to be matched to the HRS. For example, individuals with advanced stages of lung disease would be unable to purchase life insurance, but some companies will sell policies to individuals with a milder case of lung disease; however, the HRS only provides information for the presence of a lung disease.

Instead of attempting to match all cases, I construct a third classification in each setting, "Uncertain", to which I classify those who may be rejected, but for whom data limitations prevent a solid assessment. This allows me to be relatively confident in the classification of rejectees and non-rejectees. For completeness, I present the lower bound analysis for all three classifications.

Table 1 presents the list of conditions for the rejection and uncertain classification, along with the frequency of each condition in the sample (using the sample selection outlined below in Section 5.2.3). LTC insurers generally reject applicants with conditions that would make them more likely to use a nursing home in the relatively near future. Activity of daily living (ADL) restrictions (e.g. needs assistance walking, dressing, using toilet, etc.), a previous stroke, any previous home nursing care, and anyone over the age of 80 would be rejected regardless of health status. Disability insurers reject applicants with back conditions, obesity (BMI > 40), and doctor-diagnosed psychological conditions such as depression or bi-polar disorder. Finally, life insurers reject applicants who have had a past stroke or currently have cancer.

Table 1 also lists the conditions which may lead to rejection depending on the specifics of the disease. People with these conditions are allocated into the Uncertain classification.\footnote{I also attempt to capture the presence of rarer conditions not asked in the HRS (e.g. Lupus would lead to rejection in LTC, but is not explicitly reported in the HRS). To do so, I allocate to the uncertain classification individuals who report having an additional major health problems which was not explicitly asked about in the survey.} In addition to health conditions, disability insurers also have stringent income and job characteristic
underwriting. Individuals earning less than $30,000 (or wages below $15/hr) and individuals working in blue-collar occupations are often rejected regardless of health condition due to their employment characteristics. I therefore allocate all such individuals to the uncertain category in the disability insurance setting.

Given these classifications, I construct the Reject, No Reject, and Uncertain samples by first taking anyone who has a known rejection condition in Table 1 and classify them into the Reject sample in each setting. I then classify anyone with an uncertain rejection condition into the Uncertain classification, so that the remaining category is the set of people who can purchase insurance (the No Reject classification).

5.2.3 Sample Selection

For each sample, I begin with years 1993-2008 of the HRS. The selection process varies across each of the three market settings due to varying data constraints. Appendix C.2 discusses the specific data construction details for each setting. The primary sample restrictions arise from requiring the subjective elicitation be asked (e.g. only individuals over age 65 are asked about future nursing home use) and needing to observe individuals in the panel long enough to construct the loss indicator, L, in each setting.\footnote{Note that death during this subsequent time horizon does not exclude an individual from the sample; I classify the event of dying before the end of the time horizon as $L = 0$ for the LTC and Disability settings as long as an individual did not report the loss (i.e. nursing home entry or health limiting work) prior to death.} For LTC, the sample consists of individuals aged 65 and older; for disability the sample consists of individuals aged 60 and under\footnote{The disability question is asked of individuals up to age 65, but I exclude individuals aged 61-65 because of the near presence of retirement. Ideally, I would focus on a sample of even younger individuals, but unfortunately the HRS contains relatively few respondents below age 55.}; and for life, the sample consists of individuals over age 65. Table 2 presents the summary statistics for each sample. I include multiple observations for a given individual (which are spaced roughly two years apart) to increase power.\footnote{All standard errors will be clustered at the household level. Because the multiple observations within a person will always have different X values (e.g. different ages), including multiple observations per person does not induce bias in the construction of $F(p|X)$.}

There are several broad patterns across the three samples. First, there is a sizable sample of rejectees in each setting. Because the HRS primarily surveys older individuals, the sample is older, and therefore sicker, than the average insurance purchaser in each market. Obtaining this large sample size of rejectees is a primary benefit of the HRS; but it is important to keep in mind that the fraction of rejectees in the HRS is not a measure of the fraction of the applicants in each market that are rejected.

Second, many rejectees own insurance. These individuals could (and perhaps should) have purchased insurance prior to being stricken with their rejection condition. Also, they may have been able to purchase insurance in group markets through their employer, union, or other group which has less stringent underwriting requirements than the non-group market.
However, the fact that some own insurance raises the concern that moral hazard could generate heterogeneity in loss probabilities from differential insurance ownership. Therefore, I also perform robustness checks in LTC and Life on samples that exclude those who currently own insurance. Since Medicaid also pays for nursing home use, I also exclude Medicaid enrollees from this restricted LTC sample. Unfortunately, the HRS does not ask about disability insurance ownership, so I cannot conduct this robustness check for the disability setting.

Finally, although the rejectees have, on average, a higher chance of experiencing the loss than the non-rejectees, it is not certain that they would experience the loss. For example, only 22.5% of rejectees in LTC actually end up going to a nursing home in the subsequent 5 years. This suggests there is substantial unrealized risk amongst the rejectees.

5.2.4 Relation to Ideal Data

Before turning to the results, it is important to be clear about the extent to which the data resembles the ideal dataset in each market setting. In general, I approximate the ideal dataset quite well, aside from the necessity to classify a relatively large fraction of the sample to the Uncertain rejection classification. In Disability and in Life, I classify a smaller fraction of the sample as rejected or not rejected as compared with LTC. Also, for Disability and Life I rely on a smaller set of underwriting guidelines (along with underwriter interviews) to obtain rejection conditions, as opposed to LTC where I obtain a fairly large fraction of the underwriting guidelines used in the market. In Disability and Life I also do not observe medical tests that may be used by insurance companies to price insurance (although conversations with underwriters suggest this is primarily to verify application information, which I approximate quite well using the HRS). In contrast, in LTC I classify a relatively large fraction of the sample, I closely approximate the set of public information, and I can assess the robustness of the results to the exclusion of those who own insurance to remove the potential impact of a moral hazard channel driving any findings of private information. While re-iterating that all three of the samples approximate the ideal dataset quite well, the LTC sample is arguably the best of the three samples.

6 Lower Bound Estimation

I now turn to the estimation of the distribution of P_Z and the lower bounds of the average magnitude of private information, $E [m_Z (P_Z) \mid X]$, outlined in Section 4.1.
6.1 Specification

All of the empirical estimation is conducted separately for each of the settings and rejection classifications within each setting. Here I provide an overview of the preferred specification, which controls for the variables used by insurance companies to price insurance. I defer a detailed discussion of all three control specifications to Appendix D.1.

I estimate the distribution of \(P_Z = \Pr \{ L | X, Z \} \) using a probit specification

\[
\Pr \{ L | X, Z \} = \Phi (\beta X + \Gamma (age, Z))
\]

where \(X \) are the control variables (i.e. the pricing controls listed in Table A1) and \(\Gamma (age, Z) \) captures the relationship between \(L \) and \(Z \), allowing it to depend on age. With this specification, the null hypothesis of no private information, \(\Pr \{ L | X, Z \} = \Pr \{ L | X \} \), is tested by restricting \(\Gamma = 0 \).\(^{44}\)

I choose a flexible functional form for \(\Gamma (age, Z) \) that uses full interactions of basis functions in age and \(Z \). For the basis in \(Z \), I use second-order Chebyshev polynomials plus separate indicators for focal point responses at \(Z = 0, 50, \) and \(100 \). For the basis in age, I use a linear specification.

With infinite data, one could estimate \(E [m_Z (P_Z) | X] \) at each value of \(X \). However, the high-dimensionality of \(X \) requires being able to aggregate across values of \(X \). To do this, I assume that conditional on ones’ age and rejection classification, the distribution of \(P_Z - \Pr \{ L | X \} \) does not vary with \(X \). This allows the rich set of observables to flexibly affect the mean loss probability, but allows for aggregation of the dispersion of the distribution across values of \(X \).\(^{45}\)

I then estimate the conditional expectation, \(m_Z (p) = E [P_Z | P_Z \geq p, X] - p \) using the estimated distribution of \(P_Z - \Pr \{ L | X \} \) within each age grouping and rejection classification. After estimating \(m_Z (p) \), I use the estimated distribution of \(P_Z \) to construct its average, \(E [m_Z (P_Z) | X \in \Theta] \), where \(\Theta \) is a given sample (e.g. LTC rejectees). I construct the difference between the reject and no reject estimates,

\[
\Delta_Z = E [m_Z (P_Z) | X \in \Theta^{Reject}] - E [m_Z (P_Z) | X \in \Theta^{NoReject}]
\]

and test whether I can reject a null hypothesis that \(\Delta_Z \leq 0 \).

6.2 Statistical Inference

Statistical inference for \(E [m_Z (P_Z) | X \in \Theta] \) for a given sample \(\Theta \) and for \(\Delta_Z \) is straightforward, but requires a bit of care to cover the possibility of no private information. In any finite sample,

\(^{44}\)At various points in the estimation I require an estimate of \(\Pr \{ L | X \} \), which I obtain with the same specification as above, but restricting \(\Gamma = 0 \).

\(^{45}\)Note also that I only impose this assumption within a setting/rejection classification – I do not require the dispersion of the rejectees to equal that of the non-rejectees. Also, note that this assumption is only required to arrive at a point estimate for \(E [m_Z (P_Z) | X \in \Theta] \), and is not required to test for the presence of private information (i.e. whether \(\Gamma = 0 \)).
estimates of \(E[m_Z(P_Z)|X \in \Theta] \) will be positive (\(Z \) will always have some predictive power in finite samples). Provided the true value of \(E[m_Z(P_Z)|X \in \Theta] \) is positive, the bootstrap provides consistent, asymptotically normal, standard errors for \(E[m_Z(P_Z)|X \in \Theta] \) (Newey [1997]). But, if the true value of \(E[m_Z(P_Z)|X \in \Theta] \) is zero (as would occur if there were no private information amongst those with \(X \in \Theta \)), then the bootstrap distribution is not asymptotically normal and does not provide adequate finite-sample inference.\(^{46}\) Therefore, I supplement the bootstrap with a Wald test that restricts \(\Gamma(\text{age}, Z) = 0 \).\(^{47}\) The Wald test is the key statistical test for the presence of private information, as it tests whether \(Z \) is predictive of \(L \) conditional on \(X \). I report results from both the Wald test and the bootstrap.

I conduct inference on \(\Delta Z \) in a similar manner. To test the null hypothesis that \(\Delta Z \leq 0 \), I construct conservative p-values by taking the maximum p-value from two tests: 1) a Wald test of no private information held by the rejectees, \(E[m_Z(P_Z)|X \in \Theta^{\text{Reject}}] = 0 \), and 2) the p-value from the bootstrapped event of less private information held by the rejectees, \(\Delta \leq 0 \).\(^{48}\)

6.3 Results

I begin with graphical evidence of the predictive power of the subjective probability elicitations in each sample. Figures 2(a,b,c) plot the estimated distribution of \(P_Z - E[P_Z|X] \) aggregated by rejection classification for the rejectees and non-rejectees, using the preferred pricing control specification.\(^{49}\)

Across all three market settings, the distribution of \(P_Z - \Pr\{L|X\} \) appears more dispersed for the rejectees relative to non-rejectees. In this sense, the subjective probability elicitations contain more information about \(L \) for the rejectees than for the non-rejectees.

Table 3 presents the measurements of this dispersion using the average magnitude of private information implied by \(Z \). The first set of rows, labelled “Reject”, presents the estimates for the rejectees in each setting and control specification. Across all settings and control specifications, I find significant evidence of private information amongst the rejectees (\(p < 0.001 \)); the subjective probabilities are predictive of the realized loss, conditional on the set of insurance companies use to price insurance and also are predictive conditional on the baseline controls (age and gender) and the extended controls.

In addition, the estimates provide an economically significant lower bound on the average magnitude of private information. For example, the estimate of 0.0358 for the LTC price controls specification indicates that if a rejectee was drawn at random, one would expect the average

\(^{46}\)In this case, \(\hat{\Gamma} \to 0 \) in probability, so that estimates of the distribution of \(P_Z - E[P_Z|X] \) converge to zero in probability (so that the bootstrap distribution converges to a point mass at zero).

\(^{47}\)The event \(\Gamma(\text{age}, Z) = 0 \) in sample \(\Theta \) is equivalent to both the event \(\Pr\{L|X,Z\} = \Pr\{L|X\} \) for all \(X \in \Theta \) and the event \(E[m_Z(P_Z)|X \in \Theta] = 0 \).

\(^{48}\)More precise p-values would be a weighted average of these two p-values, where the weight on the Wald test is given by the unknown quantity \(\Pr\{E[m_Z(P_Z)|X \in \Theta^{\text{Reject}}] = 0 | \Delta \leq 0 \} \}. \) Since this weight is unknown, I use these conservative p-values that are robust to any weight in \([0,1]\).

\(^{49}\)Subtracting \(E[P_Z|X] \) or equivalently, \(\Pr\{L|X\} \), allows for simple aggregation across \(X \) within each sample.
Figure 2: Distribution of $P_Z - \Pr \{L|X\}$
probability of higher risks (with the same observables, X) to be at least 3.58pp higher, which is 16% higher than the mean loss probability of 22.5% for LTC rejectees.

The third set of rows in Table 3 provides the estimates of ΔZ. Again, across all specifications and market settings, I estimate larger lower bounds on the average magnitude of private information for the rejectees relative to those served by the market. These differences statistically significant at the 1% level in LTC and life, and positive (but not significant at standard levels) in disability.\(^{50}\)

Not only do I find smaller amounts of private information for the non-rejectees, but I cannot actually reject the null hypothesis of no private information amongst this group once one includes the set of variables insurers use to price insurance, as indicated by the second set of rows in Table 3.\(^{51}\) This provides a new explanation for why previous research has not found significant amounts of adverse selection of insurance contracts in LTC (Finkelstein and McGarry [2006]) and Life insurance (Cawley and Philipson [1999]). The practice of rejections by insurance companies limits the extent to which private information manifests itself in adverse selection of contracts.

6.4 Age 80 in LTC insurance

LTC insurers reject applicants above age 80 regardless of health status. This provides an opportunity for a finer test of the theory by exploring whether those without rejection health conditions start to obtain private information at age 80. To do so, I construct a series of estimates of $E[m_Z(P_Z)]$ by age for the set of people who do not have a rejection health condition and thus would only be rejected if their age exceeded 80.\(^{52}\)

Figure 3 plots the results for those without health conditions (hollow circles), along with a comparison set of results for those with rejection health conditions (filled circles).\(^{53}\) The figure

\(^{50}\)The estimated magnitudes for the uncertain classification generally fall between the estimates for the rejection and no rejection groups, as indicated by the bottom set of rows in Table 3. In general, the theory does not have a prediction for the uncertain group. However, if $E[m_Z(P_Z) | X]$ takes on similar values for all rejectees (e.g. $E[m_Z(P_Z) | X] \approx m^R$) and non-rejectees (e.g. $E[m_Z(P_Z) | X] \approx m^{NR}$), then linearity of the expectation implies

$$E[m_Z(P_Z) | X \in \Theta^{Uncertain}] = \lambda m^R + (1 - \lambda) m^{NR}$$

where λ is the fraction in the uncertain group who would be rejected. Thus, it is perhaps not unreasonable to have expected $E[m_Z(P_Z) | X \in \Theta^{Uncertain}]$ to lie in between the estimates for the rejectees and non-rejectees, as I find. Nevertheless, there is no theoretical reason to suppose the average magnitude of private information is constant within rejection classification; thus this should be viewed only as a potential rationalization of the results, not as a robust prediction of the theory.

\(^{51}\)Of course, the difference between the age and gender specification and the price controls specification is not statistically significant. Also, the inability to reject a null of no private information is potentially driven by the small sample size in the Disability setting; but the LTC sample of non-rejectees is quite large (>9K) and the sample of non-rejectees in Life is larger than the sample of rejectees.

\(^{52}\)To ensure no information from those with rejection health conditions is used in the construction of $E[m_Z(P_Z)]$ for those without health conditions above age 80, I split the Reject sample into two groups: those who do not have a rejection health condition (and thus would only be rejected because their age is above 80) and those who do have a rejection condition. I estimate P_Z separately on these two samples using the pricing specification outlined in Section 6.1.

\(^{53}\)The graph presents bootstrapped 95% confidence intervals adjusted for bias using the non-accelerated proce-
suggests that the subjective probability elicitations of those without rejection health conditions become predictive of L right around age 80 – exactly the age at which insurers choose to start rejecting applicants based on age, regardless of health status. Indeed, from the perspective of $E [m_Z (P_Z)]$, a healthy 81 year old looks a lot like a 70 year old who had a stroke. This is again consistent with the theory that private information limits the existence of insurance markets.

6.5 Robustness

Moral Hazard As discussed in Section 5.2.3, one alternative hypothesis is that the private information I estimate is the result of moral hazard from insurance contract choice, not an underlying heterogeneity in loss probabilities. To assess whether this is driving any of the results, I re-estimate the average magnitude of private information implied by Z on samples in LTC and Life that exclude those who currently own insurance. For LTC, I exclude those who own private LTC insurance along with those who are currently enrolled in Medicaid, since it pays for nursing home stays. As shown in Table 2, this excludes 20.6% of the sample of rejectees and 19.5% of non-rejectees. For Life, I exclude those with any life insurance policy. Unfortunately, this excludes 63% of the rejectees and 65% of the non-rejectees; thus the remaining sample is quite small.

Table 4 presents the results. For LTC, I continue to find significant amounts of private information for the rejectees ($p < 0.001$), that is significantly more than for the non-rejectees ($\Delta Z = 0.0313, p < 0.001$), and cannot reject the null hypothesis of no private information for
the non-rejectees \((p = 0.8325)\). For Life, I estimate marginally significant amounts of private information for the rejectees \((p = 0.0523)\) of a magnitude similar to what is estimated on the full sample \((0.0491 \text{ versus } 0.0587)\). I estimate more private information for the rejectees relative to the non-rejectees, however the difference is no longer statistically significant \((\Delta Z = 0.011, p = 0.301)\), which is arguably a result of the reduced sample size. I also continue to be unable to reject the null hypothesis of no private information for the non-rejectees \((p = 0.2334)\). In short, the results suggest moral hazard is not driving my findings of private information for the rejectees and more private information for the rejectees relative to the non-rejectees.

Additional Robustness Checks Appendix D.2 contains a couple of additional robustness checks. I present the age based plots, similar to Figure 3, for the Disability and Life settings and show that I generally find larger amounts of private information across all age groups for the rejectees in each setting. I also present an additional specification in life insurance that includes additional cancer controls, discussed in Appendix C.1, that are available for a smaller sample of the HRS data; I show that the estimates are similar when introducing these additional controls.

6.6 Summary

In all three market settings, I estimate a significant amount of private information held by the rejectees that is robust to a wide set of controls for public information. I find more private information held by the rejectees relative to the non-rejectees; and I cannot reject a null hypothesis of no private information held by those actually served by the market. Moreover, a de-aggregated analysis of the practice of LTC insurers rejecting all applicants above age 80 (regardless of health) reveals that healthy individuals begin to have private information right around age 80 – precisely the age chosen by insurers to stop selling insurance. In sum, the results are consistent with the theory that private information leads to insurance rejections.

7 Estimation of Distribution of Private Information

While the lower bound results, and in particular the stark pattern of the presence of private information, provides support for the theory that private information would afflict a hypothetical insurance market for the rejectees, it does not establish whether the amount of private information is sufficient to explain why insurers don’t sell policies to the rejectees. This requires an estimate of the minimum pooled price ratio, and hence an estimate of the distribution of private information, \(F (p|X)\). To do so, I follow the second approach, outlined in Section 4.2: I impose additional structure on the relationship between elicitations, \(Z\), and true beliefs, \(P\), that allows for a flexible estimation of \(F (p|X)\).
7.1 Empirical Specification

7.1.1 Elicitation Error Model

Elicitations Z may differ from true beliefs P in many ways. They may be systematically biased, with values either higher or lower than true beliefs. They may be noisy, so that two individuals with the same beliefs may have different elicitations. Moreover, as shown in Figures 1(a,b,c) and recognized in previous literature (e.g. Gan et al. [2005]), people may have a tendency to report focal point values at 0, 50, and 100%. My model of elicitations will capture all three of these forms of elicitation error.

To illustrate the model, first define the random variable \tilde{Z} by

$$\tilde{Z} = P + \epsilon$$

where $\epsilon \sim N(\alpha, \sigma^2)$. The variable \tilde{Z} is a noisy measure of beliefs with bias α and noise variance σ^2 where the error follows a normal distribution. I assume there are two types of responses: focal point responses and non-focal point responses. With probability $1 - \lambda$, an agent gives a non-focal point response, Z^{nf},

$$Z^{nf} = \begin{cases}
\tilde{Z} & \text{if } \tilde{Z} \in [0, 1] \\
0 & \text{if } \tilde{Z} < 0 \\
1 & \text{if } \tilde{Z} > 1
\end{cases}$$

which is \tilde{Z} censored to the interval $[0, 1]$. These responses are continuously distributed over $[0, 1]$ with some mass at 0 and 1.

The second type of responses are focal point responses. With probability λ an agent reports Z^f given by:

$$Z^f = \begin{cases}
0 & \text{if } \tilde{Z} \leq \kappa \\
0.5 & \text{if } \tilde{Z} \in (\kappa, 1 - \kappa) \\
1 & \text{if } \tilde{Z} \geq 1 - \kappa
\end{cases}$$

where $\kappa \in [0, .5)$ captures the focal point window. With this structure, focal point responses have the same underlying structure as non-focal point responses, but are reported on a scale of low, medium, and high as opposed to a continuous scale on $[0, 1]$. As a result, non-focal point responses will contain more information about P than will focal point responses. Therefore, most of the identification for the distribution of P will come from those reporting non-focal point values.

Given this model, I have four elicitation parameters to be estimated: $\{\alpha, \sigma, \kappa, \lambda\}$, which will

54 Note that I do assume the act of providing a focal point response is not informative of P (λ is not allowed to be a function of P). Ideally, one would allow focal point respondents to have differing beliefs from non-focal point respondents; yet the focal point bias inherently limits the extent of information that can be extracted from their responses.
be estimated separately in each market setting and classification. This allows for the potential that rejectees have a different elicitation error process than non-rejectees.

7.1.2 Flexible Approximation for the Distribution of Private Information

With infinite data, one could flexibly estimate \(f(p|X) \) separately for every possible value of \(X \) and \(p \). Faced with finite data and a high dimensional \(X \), this is not possible. Since the minimum pooled price ratio is essentially a function of the shape of the distribution of \(f(p|X) \) across values of \(p \), I choose a specification that allows for considerable flexibility across \(p \). In particular, I assume \(f(p|X) \) is well-approximated by a mixture of beta distributions,

\[
 f(p|X) = \sum_i w_i \text{Beta}(p|a_i + \Pr \{L|X\}, \psi_i) \tag{8}
\]

where \(\text{Beta}(p|\mu, \psi) \) is the p.d.f. of the beta distribution with mean \(\mu \) and shape parameter \(\psi \). With this specification, \(\{w_i\} \) governs the weights on each beta distribution, \(\{a_i\} \) governs the non-centrality of each beta distribution, and \(\psi_i \) governs the dispersion of each beta distribution. The flexibility of the beta distributions ensures that I impose no restrictions on the size of the minimum pooled price ratio. For the main specification, I include 3 beta distributions. Additional details of the specification are provided in Appendix E.1.

7.1.3 Pooled Price Ratio (and its Minimum)

With an estimate of \(f(p|X) \) the pooled price ratio is easily constructed as \(T(p) = \frac{E[P|P \geq p, X]}{1-E[P|X]} \frac{1-p}{p} \) for each \(p \), where \(E[P|P \geq p, X] \) is computed using the estimated \(f(p|X) \). Throughout, I focus on estimates evaluated for a mean loss characteristic, \(\Pr \{L|X\} \). In principle, one could analyze the pooled price ratio across all values of \(X \); but given the specification, focusing on differing values of \(X \) or \(\Pr \{L|X\} \) does not yield an independent test of the theory. In Appendix E.2, I

55The p.d.f. of a beta distribution with parameters \(\alpha \) and \(\beta \) is given by

\[
 \text{beta}(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}
\]

where \(B(\alpha, \beta) \) is the beta function. The mean of a beta distribution with parameters \(\alpha \) and \(\beta \) is given by \(\mu = \frac{\alpha}{\alpha + \beta} \) and the shape parameter is given by \(\psi = \alpha + \beta \).

56In principle, the event of no private information is captured with \(\psi_1 \to \infty \), \(a_1 = 0 \), and \(w_1 = 1 \). For computational reasons, I need to impose a cap on \(\psi_i \) in the estimation. In the initial estimation, this cap binds for the central most beta distribution in both the LTC No Reject and Disability No Reject samples. Intuitively, the model wants to estimate a large fraction of very homogenous individuals around the mean. Therefore, for these two samples, I also include a point-mass distribution with weight \(w_0 \) in addition to the three beta distributions. This allows me to capture a large concentration of mass in a way that does not require integrating over a distribution \(f(p|X) \) with very high curvature. Appendix E.1 provides further details.

57While equation 8 allows for a very flexible shape of \(f(p|X) \) across \(p \); it is fairly restrictive in how this shape varies across values of \(X \). Indeed, I do not allow the distribution parameters to vary with \(X \). This is a practical necessity due to the size of my samples and the desire to allow for a very flexible shape for \(f(p|X) \). Moreover, it is important to stress that I will still separately estimate \(f(p|X) \) for the rejectees and the non-rejectees using the separate samples.
show the results are generally robust to focusing on values of \(\Pr \{ L | X \} \) at the 20, 50, and 80th percentiles of its distribution.

As described in Section 4.2, I estimate the analogue to the minimum pooled price ratio, \(\inf_{p \in \hat{\Psi}_T} T(p) \), for the restricted domain \(\hat{\Psi}_T = [0, F^{-1}(\tau)] \). My preferred choice for \(\tau \) is 0.8, as this ensures at least 20% of the sample (conditional on \(q \)) is used to estimate \(E[P | P \geq p] \) and produces estimates that are quite robust to changes in the number of approximating beta distributions. For robustness, I also present results for \(\tau = 0.7 \) and \(\tau = 0.9 \) along with plots of the pooled price ratio for all \(p \) below the estimated 90th quantile, \(F^{-1}(0.9) \).

7.1.4 Identification

Before turning to the results, it is important to understand the sources of identification for the model. As discussed above, much of the model is identified from the non-focal point responses. If the elicitation error parameters were known, then identification of the distribution of \(P \) is a deconvolution of the distribution of \(Z^{nf} \); thus, the empirical distribution of non-focal elicitations provides a strong source of identification for the distribution of \(P \) conditional on having identified the elicitation error parameters.\(^{58}\)

To identify the elicitation error parameters, the model relies on the relationship between \(Z^{nf} \) and \(L \). To see this, note that Assumptions 1 and 2 imply

\[
E \left[Z^{nf} - P \right] = E \left[Z^{nf} \right] - E \left[L \right]
\]

so that the mean elicitation bias is the difference between the mean elicitation and the mean loss probability. This provides a strong source of identification for \(\alpha \).\(^{59}\) In practice, the model calculates \(\alpha \) jointly with the distribution of \(P \) to adjust for the fact that the non-focal elicitations are not censored over \([0, 1]\).

To identify \(\sigma \), note that Assumptions 1 and 2 imply

\[
\text{var} \left(Z^{nf} \right) - \text{cov} \left(Z^{nf}, L \right) = \text{var} \left(Z^{nf} - P \right) + \text{cov} \left(Z^{nf} - P, P \right)
\]

(9)

where \(\text{var} \left(Z^{nf} - P \right) \) is the variance of the non-focal elicitation error and \(\text{cov} \left(Z^{nf} - P, P \right) \) is correction term that accounts for the fact that I allow non-focal elicitations are censored on \([0, 1]\).\(^{60}\) The quantity \(\text{var} \left(Z^{nf} \right) - \text{cov} \left(Z^{nf}, L \right) \) is the variation in \(Z \) that is not explained by \(L \).

\(^{58}\)If \(Z^{nf} \) were not censored on \([0, 1]\), then \(P \) would be non-parametrically identified from the observation of the distribution of \(Z^{nf} = \tilde{Z} \) (this follows from the completeness of the exponential family of distributions). However, since I have modeled the elicitations as being censored at 0 and 1, some distributions of \(P \), especially those leading to a lot of censored values, may not be non-parametrically identified solely from the distribution of \(Z^{nf} \) and may also rely on moments of the joint distribution of \(Z^{nf} \) and \(L \) for identification.

\(^{59}\)Indeed, if \(Z^{nf} \) were not censored on \([0, 1]\) this quantity would equal \(\alpha \).

\(^{60}\)To see this, note that

\[
\text{var} \left(Z^{nf} \right) = \text{var} \left(Z^{nf} - P \right) + \text{var} \left(P \right) + 2 \text{cov} \left(Z^{nf} - P, P \right)
\]
Since the primary impact of changing σ is to change the elicitation error variance of $Z^{nf} - P$, the value of $\text{var} \left(Z^{nf} \right) - \text{cov} \left(Z^{nf}, L \right)$ provides a strong source of identification for σ.61 Finally, the fraction of focal point respondents, λ, and the focal point window, κ, are identified from the distribution of focal points and the loss probability at each focal point.

7.1.5 Statistical Inference

Bootstrap delivers appropriate confidence intervals for the estimates of $\inf_{p \in [0,F^{-1}(\tau)ﾉ]} T(p)$ and the values of $f_P(p|X)$ and $F_P(p|X)$ as long as the estimated parameters are in the interior of their potential support. This assumption is violated in the potentially relevant case in which there is no private information. In this case, $\psi_1 \to \infty$, $w_1 = 1$, and $a_1 = 0$. As with the lower bound approach, the problem is that in finite samples one may estimate a nontrivial distribution of P even if the true P is only a point mass. Because the parameters are at a boundary, one cannot use bootstrapped estimates to rule out the hypothesis of no private information.

To account for the potential that individuals have no private information, I again use the Wald test from the lower bound approach (see Table 3) that tests whether $\Pr \left\{ L|X,Z \right\} = \Pr \left\{ L|X \right\}$ for all X in the sample (by restricting $\Gamma = 0$).62 I construct 5/95% confidence intervals for $\inf_{p \in \psi, T(p)}$ by combining bootstrapped confidence intervals and extending the 5% boundary to 1 in the event that I cannot reject a null hypothesis of no private information at the 5% level. Given the results in Table 3, this amounts to extending the 5/95% CI to include 1 for the non-rejectees in each of the three settings.

I will also present graphs of the estimated p.d.f., $f_P(p|X)$, c.d.f., $F_P(p|X)$, and pooled price ratio, $T(p)$, evaluated at the mean characteristic, $\Pr \left\{ L|X \right\} = \Pr \left\{ L \right\}$, in each sample. For these, I present the 95% confidence intervals and do not attempt to incorporate information from the Wald test. The reader should keep in mind that one cannot reject $F(p|X) = 1 \{ p \leq \Pr \left\{ L|X \right\} \}$ at the 5% level for the non-rejectees in any of the three settings.63 Also, for the estimated and

$$\text{cov} \left(Z^{nf}, L \right) = \text{cov} \left(Z^{nf} - P, P \right) + \text{cov} \left(P, L \right) = \text{cov} \left(Z^{nf} - P, P \right) + \text{var} \left(P \right)$$

where the latter equality follows from $\Pr \left\{ L|P \right\} = P$. Subtracting these equations yields equation 9.

61More generally, Assumptions 1 and 2 impose an infinite set of moment conditions that can be used to identify the elicitation parameters:

$$E \left[P^N|L = 1 \right] \Pr \{ L \} = E \left[P^{N+1} \right]$$

It is easy to verify that $N = 0$ provides the source of identification for α mentioned above and $N = 1$ provides the source of identification for σ. This expression suggests one could in principle allow for a richer specification of the elicitation error; I leave the interesting but difficult question of the nonparametric identification conditions on the elicitation error for future work.

62This test also has the advantage that mis-specification of $f_Z|P$ will not affect the test for private information. But in principle, one could use the structural assumptions made on $f_Z|P$ to generate a more powerful test for the presence of private information. Such a test faces technical hurdles since it involves testing whether $F(p|q)$ lies along a boundary of the set of possible distributions and must account for sample clustering (which makes a likelihood ratio test inappropriate). Andrews [2001] provides a potential method for constructing an appropriate test; but this is left for future work.

63Estimates of the p.d.f., c.d.f., and minimum pooled price ratio exhibited considerable bias in the bootstrap estimation, especially among the life and disability settings since they have smaller samples. To be conservative, I
confidence intervals of $F_P(p|X)$, I impose monotonicity in a conservative fashion by defining $F_P^5(p|X) = \min_{\hat{p} \leq p} \hat{F}_P^5(p|X)$ and $F_P^{95}(p|X) = \max_{\hat{p} \geq p} \hat{F}_P^{95}(p|X)$ where $\hat{F}_P^5(p|X)$ and $\hat{F}_P^{95}(p|X)$ are the estimated point-wise 5/95% confidence thresholds from the bootstrap.

7.2 Estimation Results

Qualitatively, no trade is more likely for distributions with a thick upper tail of high risks, the presence of which inhibit the provision of insurance to lower risks by raising the value of $E[P|P \geq p]$. In each market setting, I find evidence consistent with this prediction. Figure 4 presents the estimated p.d.f. $f_P(p|X)$ and c.d.f. $F_P(p|X)$ for each market setting, plotted for a mean characteristic within each sample using the price controls, X.

The solid line presents estimates for the rejectees; the dotted line for non-rejectees. Across all three settings, there is qualitative evidence of a thick upper tail of risks as $p \to 1$ for the rejectees. In contrast, for the non-rejectees, there is less evidence of such an upper tail.

Figure 4 translates these estimates into their implied pooled price ratio, $T(p)$, for $p \leq F^{-1}(0.8)$, and Table 5 presents the estimated minimums over this same region, $\inf_{p \in [0,F^{-1}(0.8)]} T(p)$. Across all three market settings, I estimate a sizable minimum pooled price ratio for the rejectees:

- LTC: 1.82 (5/95% CI $[1.657, 2.047]$),
- Disability: 1.66 (5/95% CI $[1.524, 1.824]$),

In contrast, in all three market settings I estimate smaller minimum pooled price ratios for the non-rejectees. Moreover, consistent with the prediction of Corollary 3, the estimated differences between rejectees and non-rejectees are large and significant in both LTC and Disability (roughly 59%); for Life the difference is positive (8%) but not statistically different from zero.

The estimates suggest that an insurance market cannot exist for the rejectees unless they are willing to pay a 82% implicit tax in LTC, a 66% implicit tax in Disability and a 42% implicit tax in Life. These implicit taxes are large enough relative to the magnitudes of willingness to pay found in existing literature and those implied by simple models of insurance. For LTC, there is no exact estimate corresponding to the willingness to pay for a marginal amount of LTC insurance, but Brown and Finkelstein [2008] suggests most 65 year olds are not willing to pay more than a 60% markup for existing LTC insurance policies. For disability, Bound et al. [2004] calibrates present confidence intervals that are the union of bias-corrected confidence intervals (Efron and Gong [1983]) and the more traditional studentized-t confidence intervals. In practice, the studentized-t confidence intervals tended to be wider than the bias-corrected confidence intervals for the disability and life estimates. However, the use of either of these methods does not affect the statistical conclusions.

This involves setting $Pr\{L|X\} = Pr\{L\}$ in equation (8) within each sample (e.g. $Pr\{L\} = 0.052$ for the LTC No Reject sample - the other means are reported in Table 2). Appendix E.2 shows the general conclusions are robust to focusing on other values of $Pr\{L|X\}$ in each sample; I focus on the mean since it is the most in-sample estimate.

More specifically, the results of Brown and Finkelstein [2008] imply that an individual at the 60-70th percentile of the wealth distribution is willing to pay roughly a 27-62% markup for existing LTC insurance policies. This is not reported directly, but can be inferred from Figure 1 and Table 2. Figure 2 suggests the break-even point for insurance purchase is at the 60-70th percentile of the wealth distribution. Table 2 shows this corresponds to individuals being willing to pay a tax of 27-62%. Their model would suggest that those above the 80th percentile
Figure 4: Distribution of Private Information
the marginal willingness to pay for an additional unit of disability insurance to be roughly 46-109%. This estimate is arguably an over-estimate of the willingness to pay for insurance because the model calibrates the insurance value using income variation, not consumption variation, which is known to be less variable than income. Nonetheless, the magnitudes are of a similar level to the implicit tax of 66% for the disability rejectees. Finally, if a loss incurs a 10% drop in consumption and individuals have CRRA preferences with coefficient of 3, then \(\frac{u'(w-l)}{u'(w)} = 1.372 \), so that individuals would be willing to pay a 37.2% markup for insurance, a magnitude that roughly rationalizes the pattern of trade in all three market settings. In short, the size of the estimated implicit taxes suggest the barrier to trade imposed by private information is large enough to explain a complete absence of trade for the rejectees.

Robustness to choice of \(\tau \) The results in Table 5 focus on the results for \(\tau = 80\% \). Table 6 assesses the robustness of the findings to the choice of \(\tau \) by also presenting results for \(\tau = 0.7 \) and \(\tau = 0.9 \). In general, the results are quite similar. For LTC and Disability, both the minimums for the rejectees and non-rejectees are obtained at an interior point of the distribution, so that the estimated minimum is unaffected by the choice of \(\tau \) in the region \([0.7, 0.9]\). For Life, the minimums are obtained at the endpoints, so that changes in \(\tau \) do affect the estimated minimum. At \(\tau = 0.7 \), the minimum pooled price ratio rises to 1.488 for the rejectees and 1.423 for the non-rejectees; at \(\tau = 0.9 \) the minimum pooled price ratio drops to 1.369 for the rejectees and 1.280 for the non-rejectees. In general, the results are similar across values of \(\tau \).

Additional Robustness Checks The results in Tables 5 and 6 evaluate the minimum pooled price ratio for a characteristic, \(X \), corresponding to a mean loss probability within each sample, \(\Pr \{ L | X \} = \Pr \{ L \} \). In Appendix E.2, I show that the estimates are quite similar if, instead of evaluating at the mean, one chooses \(X \) such that \(\Pr \{ L | X \} \) lies at the 20th, 50th or 80th quantile of its within sample distribution. The minimum pooled price ratio for rejectees ranges from 1.77 to 2.09 in LTC, 1.659 to 1.741 in Disability, and 1.416 to 1.609 in Life. For the non-rejectees I estimate significantly smaller magnitudes in LTC and Disability and the estimated differences between rejectees and non-rejectees for Life remain statistically indistinct from zero.

of the wealth distribution are willing to pay a substantially higher implicit tax; however Lockwood [2012] shows that incorporating bequest motives significantly reduces the demand for LTC insurance in the upper income distribution.

See column 6 of Table 2 in Bound et al. [2004]. The range results from differing samples. The lowest estimate is 46% for workers with no high school diploma and 100% for workers with a college degree. The sample age range of 45-61 is roughly similar to the age range used in my analysis.

To the best of my knowledge, there does not exist a well-estimated measure of the marginal willingness to pay for an additional unit of life insurance.

Because of the choice of functional form for \(f_P (p|X) \), these should not be considered separate statistical tests of the theory. The functional form is restrictive in the extent to which the shape of the distribution can vary across values of \(X \) within a rejection classification. But, nonetheless it is important to ensure that the results do not change simply by focusing on different levels of the index, \(\Pr \{ L | X \} \).
Figure 5: Pooled Price Ratio
8 Discussion

The results shed new light on many existing patterns found in existing literature and pose new questions for future work.

8.1 Annuities

There are no rejections in annuity markets. Indeed, annuity companies generally post the same prices to all applicants based solely on their age and gender. At first glance, it may seem odd that I find evidence of private information about mortality that, I argue, leads to rejections in life insurance. But annuities, which provide a fixed income stream regardless of one’s length of life, insure the same (yet opposing) risk of living too long.

However, the pattern of private information found in this paper can explain not only why applicants for annuities are not rejected, but also why previous literature has found adverse selection in annuity markets (Finkelstein and Poterba [2002, 2004]) but not life insurance markets (Cawley and Philipson [1999]). My results suggest that although some people, namely those with health conditions, know that they have a relatively higher than average mortality risk, few people know that they have an exceptionally lower than average mortality risk. There’s only one way to be healthy but many (unobservable) ways to be sick. Thus, annuity companies can sell to an average person without any major health conditions without the risk of it being adversely selected by an even healthier subset of the population. Annuities may be adversely selected, as the sick choose not to buy them, but by reversing the direction of the incentive constraints, rejections no longer occur.\(^\text{69}\)

8.2 Welfare

My results suggest that the practice of rejections by insurers is constrained efficient. Insurance cannot be provided without relaxing one of the three implementability constraints. Either insurers must lose money or be subsidized (relax the resource constraint), individuals must be convinced to be irrational (relax the incentive constraint), or agents’ outside option must be adjusted via mandates or taxation (relax the participation constraint). However, policymakers must ask whether they like the constraints. Indeed, the first-best utilitarian allocation is full insurance for all, \(c = W - E[p]L\), which could be obtained through subsidies or mandates that use government conscription to relax the participation constraints.

However, literal welfare conclusions based on the stylized model in this paper should be highly qualified. The model abstracts from many realistic features such as preference heterogeneity, moral hazard, and the dynamic aspect of insurance purchase. Indeed, the latter may be quite important for understanding welfare. Although my analysis asks why the insurance market

\(^{69}\)Moreover, the presence of private information amongst those with health conditions may explain why annuity companies are generally reluctant to offer discounts to those with health conditions.
shuts down, I do not address why those who face rejection did not purchase a policy before they obtained the rejection condition. Perhaps they don’t value insurance (in which case mandates may lower welfare) or perhaps they face credit constraints (in which case mandates may be beneficial). Unpacking the decision of when to purchase insurance in the presence of potential future rejection is an interesting direction for future work.

8.3 Group Insurance Markets

Although this paper focuses on non-group insurance markets, much insurance is sold in group markets, often through one’s firm. For example, more than 30% of non-government US workers have group-based disability insurance; whereas just 3% of workers have a non-group disability policy([ACLI 2010]). Similarly, in health insurance 49% of the US population has an employer-based policy, whereas only 5% have a non-group policy.\(^70\)

While it is commonplace to assume that the tax advantage status for employer-sponsored health insurance causes more insurance to be sold in group versus non-group health insurance markets, tax advantages cannot explain the same pattern in disability insurance. Disability benefits are always taxed regardless of whether the policy is sold in the group or non-group market.\(^71\) This suggests group markets may be more prevalent because of their ability to deal with informational asymmetries. Indeed, group markets can potentially relax participation constraints by subsidizing insurance purchase for its members. Identifying and quantifying this mechanism is an important direction for future work, especially for understanding the impact of government policies that attempt to promote either the individual or the group-based insurance market.

8.4 Private Information versus Adverse Selection

There is a recent and growing literature seeking to identify the impact of private information on the workings of insurance markets. Generally, this literature has searched for adverse selection, asking whether those with more insurance have higher claims. Yet my theoretical and empirical results suggest this approach is unable to identify private information precisely in cases where its impact is most severe: where the insurance market completely shuts down. This provides a new explanation for why previous literature has found mixed evidence of adverse selection and, in cases where adverse selection is found, estimated small welfare impacts (Cohen and Siegelman [2010], Einav et al. [2010a]).

Existing explanations for the oft-absence of adverse selection focus on preference heterogeneity (see Finkelstein and McGarry [2006] in LTC, Fang et al. [2008] in Medigap, and Cutler et al. [2008] for a broader focus across five markets). At a high level, these papers suggest that in some

\(^70\) Figures according to Kaiser Health Facts, www.statehealthfacts.org.

\(^71\) If premiums are paid with after-tax income, then benefits are not taxed. If premiums are paid with pre-tax income (as is often the case with an employer plan), then benefits are taxed.
contexts the higher risk (e.g. the sick) may have a lower preference for insurance. Unfortunately, this paper cannot directly shed more light on whether those with different beliefs have different utility functions, u. Indeed, I do not estimate demand and instead assume u is constant throughout the population. But future work could merge my empirical approach to identify beliefs with traditional revealed preference approaches to identify demand, thereby identifying the distribution of preferences for insurance conditional on beliefs and further exploring the role of preference heterogeneity in insurance markets.

But it is important to note that my results raise concerns about the empirical conclusion that the sick have lower demand for insurance; such studies generally have not considered the potential that the supply of insurance to the sick, especially those with observable health conditions, is limited through rejections.\footnote{Finkelstein and McGarry \citeyear{2006} note that rejections could pose an issue and provide a specification that excludes individuals with health conditions leading to rejection (Table 4), but they do not exclude individuals over age 80 who would be rejected solely based on age. Fang et al. \citeyear{2008} does not discuss the potential that rejections limits the extent of adverse selection in Medigap. Although Medigap insurers are not allowed to reject applicants during a 6-month open enrollment period at the age of 65, beyond this grace period rejections are allowed and are common industry practice in most states.}

It may not be that the sick don’t want insurance, but rather that the insurers don’t want the sick.

\section{Conclusion}

This paper argues private information leads insurance companies to reject applicants with certain observable, often high-risk, characteristics. In short, my findings suggest that if insurance companies were to offer any contract or set of contracts to those currently rejected, they would be too adversely selected to yield a positive profit. More generally, the results suggest that the most salient impact of private information may not be the adverse selection of existing contracts, but rather the existence of the market itself.

\section*{References}

D He. The life insurance market: Asymmetric information revisited. *Journal of Public Economics*, Jan 2009. 5.1, 5.2.1, C.1

Congressional Budget Office. *Financing Long-Term Care for the Elderly*. Congressional Budget Office, Apr 2004. 5.1

<table>
<thead>
<tr>
<th>Classification</th>
<th>Long-Term Care</th>
<th>Disability</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Condition</td>
<td>% Sample</td>
<td>Condition</td>
</tr>
<tr>
<td>Rejection</td>
<td>Any ADL/IADL Restriction</td>
<td>7.5%</td>
<td>Back Condition</td>
</tr>
<tr>
<td></td>
<td>Past Stroke</td>
<td>8.3%</td>
<td>Obesity (BMI > 40)</td>
</tr>
<tr>
<td></td>
<td>Past Nursing/Home Care</td>
<td>13.6%</td>
<td>Psychological Condition</td>
</tr>
<tr>
<td></td>
<td>Over age 80</td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>Uncertain</td>
<td>Lung Disease</td>
<td>10.7%</td>
<td>Arthritis</td>
</tr>
<tr>
<td></td>
<td>Heart Condition</td>
<td>29.6%</td>
<td>Diabetes</td>
</tr>
<tr>
<td></td>
<td>Cancer (Current)</td>
<td>15.4%</td>
<td>Lung Disease</td>
</tr>
<tr>
<td></td>
<td>Hip Fracture</td>
<td>1.3%</td>
<td>High Blood Pressure</td>
</tr>
<tr>
<td></td>
<td>Memory Condition1</td>
<td>0.9%</td>
<td>Heart Condition</td>
</tr>
<tr>
<td></td>
<td>Other Major Health Problems2</td>
<td>26.8%</td>
<td>Cancer (Ever Have)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blue-collar/high-risk Job3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wage < $15 or income < $30K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other Major Health Problems2</td>
</tr>
</tbody>
</table>

1 Memory conditions generally lead to rejection, but were not explicitly asked in waves 2-3; I classify memory conditions as uncertain for consistency, since they would presumably be considered an "other" condition in waves 2-3.

2 Wording of the question varies slightly over time, but generally asks: "Do you have any other major/serious health problems which you haven't told me about?"

3 I define blue collar/high-risk jobs as non-self employed jobs in the cleaning, foodservice, protection, farming, mechanics, construction, and equipment operators

4 Basel cell (skin) cancers are excluded from the cancer classification

Note: percentages will not add to the total fraction of the population classified as rejection and uncertain because of people with multiple conditions.
Table 2: Sample Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Long-Term Care</th>
<th></th>
<th>Disability</th>
<th></th>
<th>Life</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Reject</td>
<td>Reject</td>
<td>Uncertain</td>
<td>No Reject</td>
<td>Reject</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Subj. Prob (mean)</td>
<td>0.112</td>
<td>0.171</td>
<td>0.132</td>
<td>0.276</td>
<td>0.385</td>
<td>0.335</td>
</tr>
<tr>
<td>(std dev)</td>
<td>(0.195)</td>
<td>(0.252)</td>
<td>(0.207)</td>
<td>(0.245)</td>
<td>(0.264)</td>
<td>(0.263)</td>
</tr>
<tr>
<td>Loss</td>
<td>0.052</td>
<td>0.225</td>
<td>0.073</td>
<td>0.115</td>
<td>0.441</td>
<td>0.286</td>
</tr>
<tr>
<td>(std dev)</td>
<td>(0.222)</td>
<td>(0.417)</td>
<td>(0.26)</td>
<td>(0.32)</td>
<td>(0.497)</td>
<td>(0.452)</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>71.7</td>
<td>79.7</td>
<td>72.3</td>
<td>54.6</td>
<td>55.0</td>
<td>55.3</td>
</tr>
<tr>
<td>Female</td>
<td>0.618</td>
<td>0.619</td>
<td>0.557</td>
<td>0.453</td>
<td>0.602</td>
<td>0.590</td>
</tr>
<tr>
<td>(std dev)</td>
<td>(0.486)</td>
<td>(0.486)</td>
<td>(0.497)</td>
<td>(0.498)</td>
<td>(0.49)</td>
<td>(0.492)</td>
</tr>
<tr>
<td>Health Status Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td>0.479</td>
<td>0.613</td>
<td>0.551</td>
<td>0.000</td>
<td>0.553</td>
<td>0.346</td>
</tr>
<tr>
<td>(std dev)</td>
<td>(0.5)</td>
<td>(0.487)</td>
<td>(0.497)</td>
<td>(0)</td>
<td>(0.497)</td>
<td>(0.476)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.141</td>
<td>0.181</td>
<td>0.150</td>
<td>0.000</td>
<td>0.090</td>
<td>0.082</td>
</tr>
<tr>
<td>(std dev)</td>
<td>(0.348)</td>
<td>(0.385)</td>
<td>(0.357)</td>
<td>(0)</td>
<td>(0.287)</td>
<td>(0.274)</td>
</tr>
<tr>
<td>Heart Condition</td>
<td>0.000</td>
<td>0.401</td>
<td>0.432</td>
<td>0.000</td>
<td>0.083</td>
<td>0.061</td>
</tr>
<tr>
<td>(std dev)</td>
<td>(0)</td>
<td>(0.49)</td>
<td>(0.495)</td>
<td>(0)</td>
<td>(0.275)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Sample Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations (Ind x wave)</td>
<td>9,027</td>
<td>11,259</td>
<td>10,976</td>
<td>763</td>
<td>2,216</td>
<td>5,534</td>
</tr>
<tr>
<td>Unique Individuals</td>
<td>4,379</td>
<td>3,587</td>
<td>5,291</td>
<td>391</td>
<td>1,280</td>
<td>3,018</td>
</tr>
<tr>
<td>Unique Households</td>
<td>3,206</td>
<td>2,887</td>
<td>3,870</td>
<td>290</td>
<td>975</td>
<td>2,362</td>
</tr>
<tr>
<td>Fraction Insured</td>
<td>14.0%</td>
<td>10.5%</td>
<td>14.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction Insured (Incl Medicaid)</td>
<td>19.5%</td>
<td>20.6%</td>
<td>19.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 I transform the life insurance variable to 1-Pr(living to AGE) to correspond to the loss definition
2 Calculated based on full sample prior to excluding individuals who purchased insurance
Table 3: Lower Bound Results

<table>
<thead>
<tr>
<th>Classification</th>
<th>LTC</th>
<th>Disability</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age & Gender</td>
<td>Price Controls</td>
<td>Extended Controls</td>
</tr>
<tr>
<td>Reject</td>
<td>0.0336***</td>
<td>0.0358***</td>
<td>0.0313***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0038)</td>
<td>(0.0037)</td>
<td>(0.0036)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>No Reject</td>
<td>0.0048</td>
<td>0.0049</td>
<td>0.0041</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0018)</td>
<td>(0.0018)</td>
<td>(0.0018)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.2557</td>
<td>0.3356</td>
<td>0.3805</td>
</tr>
<tr>
<td>Difference: Δz</td>
<td>0.0288***</td>
<td>0.0309***</td>
<td>0.0272***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0041)</td>
<td>(0.0041)</td>
<td>(0.0039)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Uncertain</td>
<td>0.009***</td>
<td>0.0086***</td>
<td>0.0079***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0024)</td>
<td>(0.0025)</td>
<td>(0.0024)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0001</td>
<td>0.0014</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

1 Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000 repetitions)
2 p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero
3 p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap

*** p<0.01, ** p<0.05, * p<0.10
Table 4: Robustness to Moral Hazard: No Insurance Sample

<table>
<thead>
<tr>
<th></th>
<th>LTC, Price Controls</th>
<th></th>
<th>Life, Price Controls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Sample</td>
<td>Excluding Insured</td>
<td>Primary Sample</td>
<td>Excluding Insured</td>
</tr>
<tr>
<td>Reject</td>
<td>0.0358***</td>
<td>0.0351***</td>
<td>0.0587***</td>
<td>0.0491*</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0037)</td>
<td>(0.0041)</td>
<td>(0.0083)</td>
<td>(0.0115)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0523</td>
</tr>
<tr>
<td>No Reject</td>
<td>0.0049</td>
<td>0.0038</td>
<td>0.0249</td>
<td>0.0377</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0018)</td>
<td>(0.0019)</td>
<td>(0.007)</td>
<td>(0.0107)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.3356</td>
<td>0.8325</td>
<td>0.1187</td>
<td>0.2334</td>
</tr>
<tr>
<td>Difference: Δ_2</td>
<td>0.0309***</td>
<td>0.0313***</td>
<td>0.0338***</td>
<td>0.011</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0041)</td>
<td>(0.0046)</td>
<td>(0.0107)</td>
<td>(0.0157)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.301</td>
</tr>
<tr>
<td>Uncertain</td>
<td>0.0086***</td>
<td>0.0064</td>
<td>0.0294***</td>
<td>0.0269</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.0025)</td>
<td>(0.0024)</td>
<td>(0.0054)</td>
<td>(0.0078)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0014</td>
<td>0.1130</td>
<td>0.0001</td>
<td>0.1560</td>
</tr>
</tbody>
</table>

1 Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000 repetitions)

2 p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero

3 p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap

*** p<0.01, ** p<0.05, * p<0.10
Table 5: Minimum Pooled Price Ratio

<table>
<thead>
<tr>
<th></th>
<th>LTC</th>
<th>Disability</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject</td>
<td>1.827</td>
<td>1.661</td>
<td>1.428</td>
</tr>
<tr>
<td>5%¹</td>
<td>1.657</td>
<td>1.524</td>
<td>1.076</td>
</tr>
<tr>
<td>95%</td>
<td>2.047</td>
<td>1.824</td>
<td>1.780</td>
</tr>
<tr>
<td>No Reject</td>
<td>1.163</td>
<td>1.069</td>
<td>1.350</td>
</tr>
<tr>
<td>5%¹</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>95%</td>
<td>1.361</td>
<td>1.840</td>
<td>1.702</td>
</tr>
<tr>
<td>Difference</td>
<td>0.664</td>
<td>0.592</td>
<td>0.077</td>
</tr>
<tr>
<td>5%²</td>
<td>0.428</td>
<td>0.177</td>
<td>-0.329</td>
</tr>
<tr>
<td>95%</td>
<td>0.901</td>
<td>1.008</td>
<td>0.535</td>
</tr>
</tbody>
</table>

Note: Minimum Pooled Price Ratio evaluated for X s.t. Pr(L|X) = Pr(L) in each sample

¹/²5/95% CI computed using bootstrap block re-sampling at the household level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test for presence of private information is less than .05; Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (non-accelerated) percentile intervals from Efron and Gong (1983).
Table 6: Minimum Pooled Price Ratio: Robustness to τ

<table>
<thead>
<tr>
<th>Quantile Region: Ψ_τ</th>
<th>LTC</th>
<th></th>
<th></th>
<th></th>
<th>Disability</th>
<th></th>
<th></th>
<th></th>
<th>Life</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-70%</td>
<td>0-80%</td>
<td>0-90%</td>
<td>0-70%</td>
<td>0-80%</td>
<td>0-90%</td>
<td>0-70%</td>
<td>0-80%</td>
<td>0-90%</td>
<td>0-70%</td>
<td>0-80%</td>
<td>0-90%</td>
</tr>
<tr>
<td>Reject</td>
<td>1.827</td>
<td>1.827</td>
<td>1.827</td>
<td>1.661</td>
<td>1.661</td>
<td>1.661</td>
<td>1.488</td>
<td>1.428</td>
<td>1.369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%¹</td>
<td>1.661</td>
<td>1.657</td>
<td>1.624</td>
<td>1.518</td>
<td>1.524</td>
<td>1.528</td>
<td>1.124</td>
<td>1.076</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>2.250</td>
<td>2.047</td>
<td>2.030</td>
<td>1.824</td>
<td>1.824</td>
<td>1.795</td>
<td>1.815</td>
<td>1.780</td>
<td>1.754</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Reject</td>
<td>1.163</td>
<td>1.163</td>
<td>1.163</td>
<td>1.069</td>
<td>1.069</td>
<td>1.069</td>
<td>1.423</td>
<td>1.350</td>
<td>1.280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%¹</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>1.361</td>
<td>1.361</td>
<td>1.366</td>
<td>1.918</td>
<td>1.840</td>
<td>1.728</td>
<td>1.750</td>
<td>1.702</td>
<td>1.665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>0.664</td>
<td>0.664</td>
<td>0.664</td>
<td>0.592</td>
<td>0.592</td>
<td>0.592</td>
<td>0.065</td>
<td>0.077</td>
<td>0.089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%²</td>
<td>0.430</td>
<td>0.428</td>
<td>0.407</td>
<td>0.158</td>
<td>0.177</td>
<td>0.215</td>
<td>-0.344</td>
<td>-0.329</td>
<td>-0.340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>1.026</td>
<td>0.901</td>
<td>0.922</td>
<td>1.026</td>
<td>1.008</td>
<td>0.970</td>
<td>0.505</td>
<td>0.535</td>
<td>0.558</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹/5/95% CI computed using bootstrap block re-sampling at the household level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test for presence of private information is less than .05; Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (non-accelerated) percentile intervals from Efron and Gong (1983).

²/5/95% CI computed using bootstrap block re-sampling at the household level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test for presence of private information for the rejectees is less than .05; Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (non-accelerated) percentile intervals from Efron and Gong (1983).
Supplementary Appendix to Private Information and Insurance Rejections

For online publication only

This Appendix contains supplementary material for Private Information and Insurance Rejections. Appendix A contains the proof of Theorem 1 and discusses Remark 1. Appendix B provides proofs for the lower bound approach discussed in Section 4.1. Appendix C discusses the data, including details for the covariate specifications and the sample selection. Appendix D discusses the empirical specification for the lower bound estimator and presents additional robustness checks referred to in Section 6.5. Section E provides details on the specification and estimation of the structural approach referred to throughout Section 7. Finally, Section F presents the a selection of pages from the LTC underwriting guidelines of Genworth Financial.

A Theory Appendix

A.1 Proof of No-Trade Theorem

I prove the no-trade theorem in several steps. First, I translate the problem to a maximization problem in utility space. Second, I prove the converse of the theorem directly by constructing an implementable allocation other than the endowment when Condition (1) does not hold. Third, I prove the no trade theorem for a finite type distribution. Fourth, I approximate arbitrary distributions satisfying Condition (1) with finite type distributions and pass to the limit, thus proving the no trade theorem for a general type distribution.

Most of the steps of the proof are straightforward. Indeed, it is arguably quite obvious that condition (1) rules out the profitability of any pooling contract. The theoretical contribution is to show that condition (1) also rules out the profitability of separating contracts. Indeed, the ability for insurance companies to offer separating contracts is an important ingredient in previous models of this environment (Spence [1978], Riley [1979], Chade and Schlee [2011]). In Lemma (A.5), I show that condition (1) implies the profitability of a menu of contracts is bounded above by the profitability of a pooling allocation.

A.1.1 Utility Space

First, translate the problem to utility space so that the incentive and individual rationality constraints are linear in utility. Let \(c(u) = u^{-1}(u) \) denote the inverse of the utility function \(u(c) \), which is strictly increasing, continuously differentiable, and strictly convex. I denote the endowment allocation by \(E = \{(c_L(p), c_{NL}(p))\}_p = \{l_l, l_l\}_p \). Let us denote the endowment allocation in utility space by \(E^U = \{u(w - l), u(w)\}_p \). To fix units, I normalize \(u_{NL}(1) = u(w) \).
Given a utility allocation \(A^U = \{u_L (p) , u_{NL} (p)\} \), denote the slack in the resource constraint by
\[
\Pi (A^U) = \int [w - pl - pc (u_L (p)) - (1 - p) c_{NL} (p)] dF (p)
\]

I begin with a useful lemma that allows us to characterize when the endowment is the only implementable allocation.

Lemma A.1 (Characterization). The endowment is the only implementable allocation if and only if \(E^U \) is the unique solution to the following constrained maximization program, \(P1 \)

\[
P1 : \max_{\{u_L (p) , u_{NL} (p)\}} \int [w - pl - pc (u_L (p)) - (1 - p) c (u_{NL} (p))] dF (p)
\]

s.t. \(pu_L (p) + (1 - p) u_{NL} (p) \geq pu_L (\hat{p}) + (1 - p) u_L (\hat{p}) \quad \forall p, \hat{p} \in \Psi \)

\[
pu_L (p) + (1 - p) u_{NL} (p) \geq pu (w - l) + (1 - p) u (w) \quad \forall p \in \Psi
\]

Proof. Note that the constraint set is linear and the objective function is strictly concave. The first constraint is the incentive constraint in utility space. The second constraint is the individual rationality constraint in utility space. The linearity of the constraints combined with strict concavity of the objective function guarantees that the solutions are unique. Suppose that the endowment is the only implementable allocation and suppose, for contradiction, that the solution to the above program is not the endowment. Then, there exists an allocation \(A^U = \{u_L (p) , u_{NL} (p)\} \) such that \(\int [w - pl - pc (u_L (p)) - (1 - p) c (u_{NL} (p))] dF (p) > 0 \) which also satisfies the IC and IR constraints. Therefore, \(A^U \) is implementable, which yields a contradiction. Conversely, suppose that there exists an implementable allocation \(B \) such that \(B \neq E \). Let \(B^U \) denote the associated utility allocations to the consumption allocations in \(B \). Then, \(B^U \) satisfies the incentive and individual rationality constraints. Since the constraints are linear, the allocations \(C^U (t) = t B^U + (1 - t) E^U \) lie in the constraint set. By strict concavity of the objective function, \(\Pi (C^U (t)) > 0 \) for all \(t \in (0,1) \). Since \(\Pi (E^U) = 0 \), \(E^U \) cannot be the solution to the constrained maximization program. \(\square \)

The lemma allows me to focus attention on solutions to \(P1 \), a concave maximization program with linear constraints.

A.1.2 Necessity of the No Trade Condition

I begin the proof with the converse portion of the theorem: if the no-trade condition does not hold, then there exists an implementable allocation \(A \neq E \) which does not utilize all resources and provides a strict utility improvement to a positive measure of types.

Lemma A.2 (Converse). Suppose Condition (1) does not hold so that there exists \(\hat{p} \in \Psi \backslash \{1\} \) such that \(\frac{\hat{p}}{1-\hat{p}} \frac{u'(w-\hat{l})}{u'(w)} > \frac{E[p \mid P \geq \hat{p}]}{1 - E[p \mid P \geq \hat{p}]} \). Then, there exists an allocation \(\hat{A}^U = \{(\hat{u}_L (p) , \hat{u}_{NL} (p))\}_{p}\).
and a positive measure of types, \(\hat{\Psi} \subset \Psi \), such that

\[
p\hat{u}_L(p) + (1-p)\hat{u}_{NL}(p) > pu(w-l) + (1-p)u(w) \quad \forall p \in \hat{\Psi}
\]

and

\[
\int [W - pL - pc(\hat{u}_L(p)) - (1-p)c(\hat{u}_{NL}(p))] \, dF(p)
\]

Proof. The proof follows by constructing an allocation which is preferable to all types \(p \geq \hat{p} \) and showing that the violation of Condition (1) at \(\hat{p} \) ensures its profitability. Given \(\hat{p} \in \Psi \), either \(P = \hat{p} \) occurs with positive probability, or any open set containing \(\hat{p} \) has positive probability. In the case that \(\hat{p} \) occurs with positive probability, let \(\hat{\Psi} = \{\hat{p}\} \). In the latter case, note that the function \(E[P|P \geq p] \) is locally continuous in \(p \) at \(\hat{p} \) so that WLOG the no-trade condition does not hold for a positive mass of types. WLOG, I assume \(\hat{p} \) has been chosen so that there exists a positive mass of types \(\hat{\Psi} \) such that \(p \in \hat{\Psi} \) implies \(p \geq \hat{p} \). Then, for all \(p \in \hat{\Psi} \), I have \(\hat{\Psi} \subset \Psi \) such that

\[
\frac{p}{1-p} \frac{u'(w-l)}{u'(w)} > \frac{E[P|P \geq p]}{1-E[P|P \geq p]} \quad \forall p \in \hat{\Psi}
\]

Now, for \(\varepsilon, \eta > 0 \), consider the augmented allocation to types \(p \in \hat{\Psi} \):

\[
\begin{align*}
\hat{u}_L(\varepsilon, \eta) &= u(w-l) + \varepsilon + \eta \\
\hat{u}_{NL}(\varepsilon, \eta) &= u(w) - \frac{1-\hat{p}}{\hat{p}} \varepsilon
\end{align*}
\]

Note that if \(\eta = 0, \varepsilon \) traces out the indifference curve of individual \(\hat{p} \). Construct the utility allocation \(A^U(\varepsilon, \eta) \) defined by

\[
(\hat{u}_L(p), \hat{u}_{NL}(p)) = \begin{cases}
(u(w-l) + \varepsilon + \eta, u(w) - \frac{\hat{p}}{1-\hat{p}} \varepsilon) & \text{if } p \geq \hat{p} \\
(u(w-l), u(w)) & \text{if } p < \hat{p}
\end{cases}
\]

Note that for \(\varepsilon > 0 \) and \(\eta > 0 \) the utility allocation \((\hat{u}_L(p), \hat{u}_{NL}(p)) \) is strictly preferred by all types \(p \geq \hat{p} \) relative to the endowment utility allocation. Therefore, \(A^U_\varepsilon \) is individually rational and incentive compatible. I now only need to verify that there exists an allocation with \(\varepsilon > 0 \) and \(\eta > 0 \) which does not exhaust resources. I have

\[
\Pi(\varepsilon, \eta) = \int [w - pl - pc(\hat{u}_L(p)) - (1-p)c(\hat{u}_{NL}(p))] \, dF(p)
\]

Notice that this is continuously differentiable in \(\varepsilon \) and \(\eta \). Differentiating with respect to \(\varepsilon \) and evaluating at \(\varepsilon = 0 \) yields

\[
\frac{\partial \Pi}{\partial \varepsilon}|_{\varepsilon=0} = \int \left[-pc'(u(w-l+\eta)) + \frac{\hat{p}}{1-\hat{p}} (1-p)c'(u(w)) \right] 1 \{p \geq \hat{p}\} \, dF(p)
\]
which is strictly positive if and only if
\[E[P|P \geq \hat{p}] c'(u(w - l + \eta)) < \frac{\hat{p}}{1 - \hat{p}} (1 - E[P|P \geq \hat{p}]) c'(u(w)) \]

Notice that this is continuous in \(\eta \). So, at \(\eta = 0 \), I have
\[\frac{\partial \Pi}{\partial \varepsilon}|_{\varepsilon = 0, \eta = 0} > 0 \iff \frac{\hat{p}}{1 - \hat{p}} u'(w - l) > E[P|P \geq \hat{p}] \]
and thus by continuity, the above condition holds for sufficiently small \(\eta > 0 \), proving the existence of an allocation which both delivers strictly positive utility for a positive fraction of types and does not exhaust all resources.

This shows that Condition (1) is necessary for the endowment to be the only implementable allocation.

\[\Box \]

A.1.3 Useful Results

Before showing that Condition (1) is sufficient for no trade, it is useful to have a couple of results characterizing solutions to P1.

Lemma A.3. Suppose Condition (1) holds. Then for all \(c_L, c_{NL} \in [w - l, l] \),
\[\frac{p}{1 - p} \frac{u'(c_L)}{u'(c_{NL})} \leq \frac{E[P|P \geq \hat{p}]}{1 - E[P|P \geq \hat{p}]} \quad \forall p \in \Psi \setminus \{1\} \]
and if \(c_L, c_{NL} \in (w - l, l) \),
\[\frac{p}{1 - p} \frac{u'(c_L)}{u'(c_{NL})} < \frac{E[P|P \geq \hat{p}]}{1 - E[P|P \geq \hat{p}]} \quad \forall p \in \Psi \setminus \{0, 1\} \]

Proof. Since \(u'(c) \) is decreasing in \(c \), I have \(\frac{u'(c_L)}{u'(c_{NL})} \leq \frac{u'(w - l)}{u'(w)} \). Therefore, the result follows immediately from Condition (1). The strict inequality follows from strict concavity of \(u(c) \). \[\Box \]

Lemma A.4. In any solution to P1, \(c_L(p) \geq w - l \) and \(c_{NL}(p) \leq w \).

Proof. Suppose \(A = \{c_L(p), c_{NL}(p)\}_p \) is a solution to P1. First, suppose that \(c_L(\hat{p}) < w - l \). For this contract to be individually rational, I must have \(c_{NL}(\hat{p}) > w \). Incentive compatibility requires \(c_L(p) \leq c_L(\hat{p}) < w - l \forall p < \hat{p} \) and \(c_{NL}(p) \geq c_{NL}(\hat{p}) > w \forall p < \hat{p} \). Consider the new allocation \(\tilde{A} = \{\tilde{c}_L(p), \tilde{c}_{NL}(p)\} \) defined by
\[\tilde{c}_L(p) = \begin{cases} c_L(p) & \text{if } p > \hat{p} \\ w - l & \text{if } p \leq \hat{p} \end{cases} \]

\[4 \]
Lemma A.5. Suppose to

To begin, suppose that

A.1.4 Sufficiency of the No Trade Condition for Finite Types

I then pass to the limit to cover the case of arbitrary distributions.

Improved by lowering the utility provided to types

Then \(\tilde{A} \) is implementable (IC holds because of single crossing of the utility function). It only remains to show that \(\Pi(A) < \Pi(\tilde{A}) \). But this follows trivially. Notice that the IR constraint and concavity of the utility function requires that points \((c_L(p), c_{NL}(p))\) lie above the zero profit line \(p(w - l - c_L) + (1 - p)(w - c_{NL})\). Thus, each point \((c_L(p), c_{NL}(p))\) must earn negative profits at each \(p \leq \tilde{p}\).

Now, suppose \(c_{NL}(\tilde{p}) > w\). Then, the incentive compatibility constraint requires \(c_{NL}(p) > w\ \forall p \leq \tilde{p}\). Construct \(\tilde{A}\) as above, yielding the same contradiction.

I now prove the theorem in two steps. First, I prove the result for a finite type distribution. I then pass to the limit to cover the case of arbitrary distributions.

A.1.4 Sufficiency of the No Trade Condition for Finite Types

To begin, suppose that \(\Psi = \{p_1, ..., p_N\}\). I first show that Condition (1) implies that the solution to P1 is a pooling allocation which provides the same allocation to all types.

Lemma A.5. Suppose \(\Psi = \{p_1, ..., p_N\}\) and that condition (1) holds (note that this requires \(p_N = 1\)). Then, the solution to P1 is a full pooling allocation: there exists \(\bar{u}_L, \bar{u}_{NL}\) such that

\[
(u_L(p), u_{NL}(p)) = (\bar{u}_L, \bar{u}_{NL}) \text{ for all } p \in \Psi \setminus \{0, 1\}, u_L(1) = \bar{u}_L, u_{NL}(0) = \bar{u}_{NL}.
\]

Proof. Let \(A_U = \{u_L^+(p), u_{NL}^+(p)\}_p\) denote the solution to \(P\) and suppose for contradiction that the solution to \(P\) is not a full pooling allocation. Let \(\hat{p} = \min\{p|u_L^+(p) = u_L^+(1)\}\), let \(\hat{p}_- = \max\{p|u_L^+(p) \neq u_L^+(1)\}\). The assumption that \(\Psi\) is finite implies that \(\hat{p} > \hat{p}_-\). Let us define the pooling sets \(J = \{p|u_L^+(p) = u_L^+(1)\}\) and \(K = \{p|u_L^+(p) = u_L^+(\hat{p}_-)\}\). I will show that a profitable deviation exists which pools groups \(J\) and \(K\) into the same allocation. First, notice that if \(\hat{p} = 1\), then clearly it is optimal to provide group \(J\) with the same amount of consumption in the event of a loss as group \(K\), since otherwise the IC constraint of the type \(\hat{p} = 1\) type would be slack. So, I need only consider the case \(\hat{p} < 1\).

Notice that if the IR constraint of any member of group \(J\) binds (i.e. if the IR constraint for \(\hat{p}\) binds), then their IC constraint implies that the only possible allocation for the lower risk types \(p < \hat{p}\) is the endowment. This standard result follows from single crossing of the utility function. Therefore, I have two cases. Either all types \(\tilde{p} \in \Psi \setminus J\) receive their endowment, \((c_L, c_{NL}) = (w - l, w)\), or the IR constraint cannot bind for any member of \(J\). I consider these two cases in turn.

Suppose \(u_L^+(p) = u(w - l)\) and \(u_{NL}^+(p) = u(w)\) for all types \(\tilde{p} \in \Psi \setminus J\). Clearly, I must then have that the IR constraint must bind for type \(\tilde{p}\), since otherwise profitability could be improved by lowering the utility provided to types \(\tilde{p} \in \Psi \setminus J\). I now show that the profitability
of the allocation violates the no-trade condition. The profitability of A^U is

$$\Pi (A^U) = \int_{p \in J} [w - pl - pc (u^*_L (\hat{p})) - (1 - p) c (u^*_{NL} (\hat{p}))] dF (p)$$

Now, I construct the utility allocation A^U_t by

$$(u_t^L (p), u_t^*_{NL} (p)) = \begin{cases} (u (w - l) + t, u (w) - \frac{p}{1 - \hat{p} t}) & \text{if } p \in J \\ (u (w - l), u (w)) & \text{if } p \notin J \end{cases}$$

Since the IR constraint binds for type \hat{p}, I know that there exists \hat{t} such that $A^U_t = A^U$. By Lemma A.4, $\hat{t} > 0$ and A^U_t satisfies IC and IR for any $t \in [0, \hat{t} + \eta]$ for some $\eta > 0$. Since profits are maximized at $t = \hat{t}$ and since the objective function is strictly concave, it must be the case that

$$\frac{d \Pi (A^U_t)}{dt} \big|_{t=\hat{t}} = 0$$

where

$$\frac{d \Pi (A^U_t)}{dt} \big|_{t=\hat{t}} = \int_{p \in J} \left[p^t (u^*_L (p)) - (1 - p) c^t (u^*_{NL} (p)) \frac{\hat{p}}{1 - \hat{p}} \right] dF (p)$$

Re-arranging and combining these two equations, I have

$$\frac{\hat{p}}{1 - \hat{p}} \frac{u^t (c (u^*_{L} (\hat{p})))}{u^t (c (u^*_{NL} (\hat{p})))} = \frac{E [P | P \geq \hat{p}]}{1 - E [P | P \geq \hat{p}]}$$

which, by strict concavity of u, implies

$$\frac{\hat{p}}{1 - \hat{p}} \frac{u^t (w - l)}{u^t (w)} > \frac{E [P | P \geq \hat{p}]}{1 - E [P | P \geq \hat{p}]}$$

which contradicts Condition (1).

Now, suppose that the IR constraint does not bind for any member of J. Then, clearly the IC constraint for type \hat{p} must bind, otherwise profit could be increased by lowering the utility provided to members of J. So, construct the utility allocation B^U_ϵ to be

$$(u^\epsilon_L (p), u^\epsilon_{NL} (p)) = \begin{cases} (u^*_L (\hat{p}) - \epsilon, u^*_{NL} (\hat{p}) + \frac{\hat{p}}{1 - \hat{p}} \epsilon) & \text{if } p \geq \hat{p} \\ (u^*_L (p), u^*_{NL} (p)) & \text{if } p < \hat{p} \end{cases}$$

so that B^U_ϵ consists of allocations equivalent to A^U except for $p \in J$. By construction, B^U_ϵ, is IR for any ϵ. Moreover, because of single crossing and because types are separated (finite types), B^U_ϵ continues to be IC and IR for $\epsilon \in (-\eta, \eta)$ for some $\eta > 0$ sufficiently small. Therefore, I
must have \(\frac{d\Pi(B_U)}{d\varepsilon}|_{\varepsilon=0} = 0 \), which implies

\[
\frac{d\Pi(B_U)}{d\varepsilon}|_{\varepsilon=0} = \int_{p \in J} \left[pc' \left(u_L^* (\hat{p}) \right) - (1 - p) c' \left(u_{NL}^* (\hat{p}) \right) \right] dF (p) \\
= \Pr \{ p \in J \} \left[E [P|P \geq \hat{p}] \frac{1}{u' (c (u_L^* (\hat{p})))} - (1 - E [P|P \geq \hat{p}]) \frac{1}{u' (c (u_{NL}^* (\hat{p})))} \right] \\
= 0
\]

which implies

\[
\frac{\hat{p}}{1 - \hat{p}} \frac{u' (c (u_L^* (\hat{p})))}{u' (c (u_{NL}^* (\hat{p})))} = \frac{E [P|P \geq \hat{p}]}{1 - E [P|P \geq \hat{p}]}
\]

which, by strict concavity of \(u \), implies

\[
\frac{\hat{p}}{1 - \hat{p}} \frac{u' (w - l)}{u' (w)} > \frac{E [P|P \geq \hat{p}]}{1 - E [P|P \geq \hat{p}]}
\]

which contradicts Condition (1). Therefore, if Condition (1) holds, the only possible solution to \(P1 \) is a full pooling allocation. \(\square \)

All that remains to show is that a full pooling allocation cannot be a solution to \(P1 \).

Lemma A.6. Suppose Condition (1) holds. Then, the only possible full-pooling solution to \(P1 \) is \(E^U \).

Proof. Suppose for contradiction that \(A^U \neq E^U \) is a full-pooling solution to \(P1 \). Let \(u_L^*, u_{NL}^* \) denote the full pooling allocations \(A^U \). Recall \(p_1 = \min \Psi \) is the lowest risk type. Note that the IR constraint for the \(p_1 = \min \Psi \) type must bind in any solution to \(P1 \). Otherwise, profits could be increased by providing all types with less consumption, without any consequences on the incentive constraints of types \(p > p_1 \). Consider the allocations \(C_t^U \) defined by

\[
(u_t^L, u_{NL}^t) = (u_L^* + (1 - t) (u (w - l) - u_L^*), u_{NL}^* + (1 - t) (u (w) - u_{NL}^*))
\]

so that when \(t = 1 \) these allocations correspond to \(A^U \) and \(t = 0 \) corresponds to the endowment. Because the IR constraint of the \(p_1 \) type must hold, I know that these allocations must follow the iso-utility curve of the \(p_1 \) type which runs through the endowment. Differentiating with respect to \(t \) and evaluating at \(t = 0 \) yields

\[
\frac{d\Pi(C_t^U)}{dt}|_{t=0} = E [P|P \geq p_1] c' (u (w - l)) - (1 - E [P|P \geq p_1]) c' (u (w)) \cdot \frac{p_1}{1 - p_1}
\]

where \(\frac{p_1}{1 - p_1} \) comes from the fact that I can parameterize the iso-utility curve of the \(p_1 \) type by
\(u_L - \tau, u_{NL} + \frac{p_1}{1-p_1} \tau \). But rearranging the equation, I have

\[
\frac{d\Pi(C^U_1)}{dt}\bigg|_{t=0} = -E[P|P \geq p_1] \frac{1}{u'(w-l)} + (1 - E[P|P \geq p_1]) \frac{1}{u'(w)} \frac{p_1}{1-p_1}
\]

\[
= \frac{1 - E[P|P \geq p_1]}{u'(W-L)} \left(-\frac{E[P|P \geq p_1]}{1 - E[P|P \geq p_1]} + \frac{u'(w-l)}{u'(w)} \frac{p_1}{1-p_1} \right) < 0
\]

which yields a contradiction of Condition (1) at \(p = p_1 \).

Therefore, I have shown that if \(\Psi \) is finite, then if Condition (1) holds, the only possible allocation is the endowment. It only remains to show that this property holds when \(\Psi \) is not finite.

A.1.5 Extension to Arbitrary Type Distribution

If \(F(p) \) is continuous or mixed and satisfies the no-trade condition, I first show that \(F \) can be approximated by a sequence \(F_n \) of finite support distributions on \([0,1]\), each of which satisfy the no-trade condition.

Lemma A.7. Let \(P \) be any random variable on \([0,1]\) with c.d.f. \(F(p) \). Then, there exists a sequence of random variables, \(P_N \), with c.d.f. \(F^N(p) \), such that \(F^N \to F \) uniformly and

\[
E[P_N|P_N \geq p] \geq E[P|P \geq p] \quad \forall p, \forall N
\]

Proof. Since \(F \) is increasing, it has at most a countable number of discontinuities on \([0,1]\). Let \(D = \{ \delta_i \} \) denote the set of discontinuities and WLOG order these points so that \(\lim_{\epsilon \to 0} F(\delta_i) - \lim_{\epsilon \to 0} F(\delta_i) \) is decreasing in \(i \) (so that \(\delta_1 \) is the point of largest discontinuity). Then, the distribution \(F \) is continuous on \(\Psi \setminus D \). For any \(N \), let \(\omega_N \) denote a partition of \([0,1]\) given by \(2^N + \min \{N,|D|\} + 1 \) points equal to \(\frac{j}{2^N} \) for \(j = 0,\ldots,2^N \) and \(\{ \delta_i | i \leq N \} \). I write \(\omega_N = \left\{ p_j^N \right\}_{j=1}^{2^N+\min\{N,|D|\}+1} \). Now, define \(\hat{F}^N : \omega_N \to [0,1] \) by

\[
\hat{F}^N(p) = F \left(\max \{ p_j^N | p_j^N \leq p \} \right)
\]

so that \(\hat{F}^N \) converges to \(F \) uniformly as \(N \to \infty \).

Unfortunately, I cannot be assured that \(\hat{F}^N \) satisfies the no-trade condition at each \(N \). But, I can perform a simple modification to \(\hat{F}^N \) to arrive at a distribution that does satisfy the no-trade condition for all \(N \) and still converges to \(F \). To do so, consider the following modification to any random variable. For any \(\lambda \in [0,1] \) and for any random variable \(X \) distributed \(G(x) \) on \([0,1]\) define the random variable \(X_\lambda \) to be the random variable with c.d.f. \(\lambda G(x) \) and \(\Pr \{ X_\lambda = 1 \} = 1 - \lambda \). In other words, with probability \(\lambda \) the variable is distributed according to \(X \) and with probability \(1 - \lambda \) the variable takes on a value of 1 with certainty. Notice that \(E[X_\lambda|X_\lambda \geq x] \) is continuously decreasing in \(\lambda \) and \(E[X_0|X_0 \geq x] = 1 \forall x \).
Moreover, because \(\lambda \) which satisfies the no-trade condition for all \(F \) of \([0, 1] \), note that for each \(\hat{\lambda} \) the augmented allocation \(\omega \) is the solution to \(\Pi (A) = (\hat{u}_L (p), \hat{u}_{NL} (p)) \neq (w - l, w) \) is the solution to P1 under distribution \(F \), so that the maximum exists. Given \(\lambda, \) I define the new approximating distribution, \(F (p) \), by
\[
F (p) = \lambda F (p)
\]
which satisfies the no-trade condition for all \(N \). The only thing that remains to show is that \(\lambda \to 1 \) as \(N \to \infty \).

By definition of \(\lambda \), for each \(N \) there exists \(\tilde{p} \) such that
\[
E \left[P_{\lambda_{N_{\lambda}}} | P_{\lambda_{N_{\lambda}}} \geq \tilde{p} \right] = E [P | P \geq \tilde{p}]
\]
Moreover, because \(\lambda \) is bounded, it has a convergent subsequence, \(\lambda_{N_k} \to \lambda^* \). Therefore,
\[
E \left[P_{\lambda^*} | P_{\lambda^*} \geq q \right] \to E [P_{\lambda^*} | P_{\lambda^*} \geq q]
\]
uniformly (over \(q \)) as \(k \to 0 \), where \(P_{\lambda^*} \) is the random variable with c.d.f. \(\lambda^* F (p) \). Moreover,
\[
E \left[P_{\lambda_{N_k}} | P_{\lambda_{N_k}} \geq q \right] \to E [P_{\lambda^*} | P_{\lambda^*} \geq q]
\]
uniformly (over \(q \)) as \(k \to 0 \). Therefore,
\[
E \left[P_{\lambda_{N_k}} | P_{\lambda_{N_k}} \geq \tilde{p} \right] \to E [P | P \geq \tilde{p}]
\]
so that I must have \(\lambda^* = 1 \).

Therefore, the distribution \(P_{\lambda_{N_k}} \) with c.d.f. \(F_{\lambda_{N_k}} (p) = \lambda_{N_k} F_{\lambda_{N_k}} (p) \) for \(k \geq 1 \) has the property
\[
E \left[P_{\lambda_{N_k}} | P_{\lambda_{N_k}} \geq p \right] \geq E [P | P \geq p] \quad \forall p
\]
and \(F_{\lambda_{N_k}} (p) \) converges uniformly to \(F (p) \).

Now, returning to problem P1 for an arbitrary distribution \(F (p) \) which satisfies the no-trade condition. Let \(\Pi (A | F) \) denote the value of the objective function for allocation \(A \) under distribution \(F \). Suppose for contradiction that an allocation \(\hat{A} = (\hat{u}_L (p), \hat{u}_{NL} (p)) \neq (w - l, w) \) is the solution to P1 under distribution \(F \), so that \(\Pi (A | F) > 0 \). Let \(F^N (p) \) be a sequence of finite approximating distributions which satisfy the no-trade condition and converge to \(F \). Let \(w_N = \{p^N \} \) denote the support of each approximating distribution. For any \(N \), define the augmented allocation \(\hat{A}_N = (\hat{u}_L^N (p), \hat{u}_{NL}^N (p)) \) by choosing \((\hat{u}_L (p), \hat{u}_{NL} (p)) \) to be the most
preferred bundle from the set \(\{ u_L(p_j^N), u_{NL}(p_j^N) \} \). Since \(\hat{A} \) is incentive compatible, clearly I will have \((\hat{u}_L(p_j^N), \hat{u}_{NL}(p_j^N)) = (\hat{u}_L(p_j^N), \hat{u}_{NL}(p_j^N)) \). By single crossing, for \(p \neq p_j^N \) agents with \(p \in (p_{j-1}^N, p_j^N) \) will prefer either allocation for type \(p_j^N \) or \(p_j^N \).

Clearly, \(\hat{A}_N \) converges uniformly to \(\hat{A} \). Since \(\hat{A}_N \) satisfies IC and IR by construction, the no-trade condition implies that the allocation \(\hat{A}_N \) cannot be as profitable as the endowment, so that

\[
\Pi(\hat{A}_N|F_N) \leq \Pi(E|F_N) = 0 \quad \forall N
\]

By the Lebesgue dominated convergence theorem (\(\Pi(\hat{A}_N|F_N) \) is also bounded below by \(- (W + L)\)),

\[
\Pi(\hat{A}|F) \leq 0
\]

Which yields a contradiction that \(\hat{A} \) was the optimal solution (which required \(\Pi(\hat{A}|F) > 0 \)) and concludes the proof.

A.2 Remark 1

A proof of Remark 1 follows in the same manner as the proof of the no trade condition. It is straightforward to see how the no trade condition holding for values \(p \leq F^{-1}(1 - \alpha) \) rules out the tradability of pooling contracts that attract a fraction \(\alpha \) of the population. To see how it also rules out separating contracts, one can repeat the analysis of Lemma A.5 noting that the measure of the sets \(J \) and \(K \) must be at least \(\alpha \).
B Properties of the Lower Bound Estimator

This section formally derives the properties of the nonparametric lower bound approach presented in Section 4.1 and provides a proof of Proposition 2.

First, note that P is a mean-preserving spread of P_Z:

\[
\]

where the first equality follows from Assumption 1, the second equality follows from Assumption 2, the third equality follows from the law of iterated expectations (averaging over realizations of P given X and Z), and the fourth equality is the definition of P_Z.

Let $Q_P(\alpha)$ to be the α-quantile of P,

\[
Q_P(\alpha) = \inf_q \{q|\Pr\{P \leq q\} \geq \alpha\}
\]

and $Q_\alpha(P_Z)$ to be the α-quantile of the analogue,

\[
Q_{P_Z}(\alpha) = \inf_q \{q|\Pr\{P_Z \leq q\} \geq \alpha\}
\]

Note that $E[m(P)]$ can be represented as a weighted average of these quantiles:

\[
E[m(P)] = \int_0^1 [E_{\tilde{\alpha}} [Q_P(\tilde{\alpha}) - Q_P(\alpha)|\tilde{\alpha} \geq \alpha]] d\alpha
= \int_0^1 \frac{1}{1 - \alpha} \left[\int_{\tilde{\alpha} \geq \alpha} [Q_P(\tilde{\alpha}) - Q_P(\alpha) d\tilde{\alpha}] \right] d\alpha
= \int_0^1 \int_{\tilde{\alpha} \geq \alpha} \frac{Q_P(\alpha)}{1 - \alpha} d\tilde{\alpha} d\alpha - E[P]
= \int_0^1 Q_P(\tilde{\alpha}) \int_0^{\tilde{\alpha}} \frac{1}{1 - \alpha} d\alpha d\tilde{\alpha} - E[P]
= \int_0^1 [Q_P(\alpha) - E[P]] \log\left(\frac{1}{1 - \alpha}\right) d\alpha
\]

Now it is straightforward to prove Proposition 2.

Proof of Proposition 2 The fact that P is a mean-preserving spread of P_Z implies that

\[
\int_x^1 Q_{P_Z}(\alpha) d\alpha \leq \int_x^1 Q_P(\alpha) d\alpha \quad \forall x \in [0,1]
\]
So,

\[
E[m(P)] - E[m_Z(P_Z)] = \int_0^1 [Q_P(\alpha) - Q_{P_Z}(\alpha)] \log \left(\frac{1}{1 - \alpha} \right) d\alpha
\]

\[
= \int_0^1 [Q_P(\alpha) - Q_{P_Z}(\alpha)] \int_0^\alpha \frac{1}{1 - \tilde{\alpha}} d\tilde{\alpha} d\alpha
\]

\[
= \int_0^1 \int_0^\alpha [Q_P(\alpha) - Q_{P_Z}(\alpha)] \frac{1}{1 - \tilde{\alpha}} d\tilde{\alpha} d\alpha
\]

\[
= \int_0^1 \int_{\tilde{\alpha}}^1 [Q_P(\alpha) - Q_{P_Z}(\alpha)] \frac{1}{1 - \tilde{\alpha}} d\alpha d\tilde{\alpha}
\]

\[
\geq 0
\]

where the last inequality follows from the fact that \(\int_{\tilde{\alpha}}^1 [Q_P(\alpha) - Q_{P_Z}(\alpha)] d\alpha \geq 0 \) for all \(\tilde{\alpha} \) because \(P \) is a mean-preserving spread of \(P_Z \).
C Data Appendix

C.1 Covariate Specification

The variables used in the pricing and full controls specifications for each market are presented in Table A1. These specifications, along with the baseline age and gender specification, cover a wide range of variables that insurance companies could potentially use to price insurance and allow for an assessment of how the potential frictions imposed by private information would vary with the observable characteristics insurance companies use to price insurance.

LTC In LTC, the pricing specification primarily follows Finkelstein and McGarry [2006] to control for variables insurers use to price insurance, along with the interaction of a rich set of health conditions to capture how insurance companies would price contracts to whom they currently reject. I include age and age squared, both interacted with gender; indicators for ADL restrictions, an indicator for performance in the lowest quartile on a word recall test, and indicators for numerous health conditions: presence of an ADL or IADL, psychological condition, diabetes, lung disease, arthritis, heart disease, cancer, stroke, and high blood pressure. For the extended controls specification, I add full interactions for age and gender, along with interactions of 5 year age bins with measures of health conditions, indicators for the number of living relatives (up to 3), census region, and income deciles.

Disability For disability, I construct the pricing specification using underwriting guidelines and also rely on feedback from interviews with a couple of disability insurance underwriters at major US insurers. In general, there are three main categories of variables used in pricing: demographics, health, and job information. The pricing specification includes age, age squared, and gender interactions; indicators for self employment, obesity (BMI > 40), the presence of a psychological condition, back condition, diabetes, lung disease, arthritis, a heart condition, cancer, stroke, and high blood pressure. I also include a linear term in BMI to capture differential pricing based on weight. Finally, I include wage deciles to capture differential pricing by wage.

The extended controls specification includes full interactions of age and gender, full interactions of wage deciles, a part time working status indicator, job tenure quartiles, and a self employment indicator. I also include interactions between 5 year age bins and the following health variables: arthritis, diabetes, lung disease, cancer, heart condition, psychological condition, back condition, and BMI quartiles. I also include full interactions between 5 year age bins and BMI quartiles. I also include full interactions of several job characteristic variables: an indicator that the job requires stooping, the job requires lifting, and the job requires physical activity. Finally, I include interactions between 5 year age bins and census region (1-5).

Note that for the no reject sample many of these health conditions will in practice drop out of the estimation because, for example, there are no people with ADLs in the no reject sample.
In general, my conversations with underwriters suggest I have a decent approximation to the way in which insurers currently price insurance. However, as discussed in the main text, I do not observe the results of medical tests and attending physician statements, which sometimes feed into the underwriting process. Underwriters suggest the primary role of such tests is to verify application information, not for independent use in pricing; but there may be some additional factors not included in my regressions that disability insurers could use to price insurance.\footnote{Even if one believes insurers would use more information to price policies to the rejectees, it should be clear that my approach will still be able to simulate the extent to which private information would afflict an insurance market if insurers priced using the set of observables I use from the HRS. With additional data future work could explore different specifications and perhaps even make prescriptive recommendations to underwriters about relevant variables for reducing informational asymmetries.}

Life For life, the pricing specification primarily follows He [2009] who tests for adverse selection in life insurance. The preferred specification includes age, age squared, and gender interactions, smoking status, indicators for the death of a parent before age 60, BMI, income decile, and indicators for a psychological condition, diabetes, lung disease, arthritis, heart disease, cancer, stroke, and high blood pressure. I also include a set of indicators for the years between the survey date and the AGE corresponding to the loss.\footnote{I also include this in my age & gender and extended control specifications for life.}

The extended controls specification adds full interactions of age and gender; full interactions between age and the AGE in the subjective probability question; interactions between 5 year age bins and smoking status, income decile, census region, and various health conditions (heart condition, stroke, non-basal cell cancer, lung disease, diabetes and high blood pressure); BMI; and an indicator for death of a parent before age 60.

In general, I approximate the variables insurers use to price insurance fairly well. As with disability insurance, life insurers often require medical tests and attending physician statements from applicants; and, as with disability insurance, my conversations with underwriters suggest that the primary role of such tests is to verify application information and ensure that there is no presence of a rejection condition. But, I cannot rule out that such information could be used by insurance companies to price insurance.

Although I can well approximate the variables insurers use currently to price insurance, the data does have one key limitation in constructing the variables insurers would use to price insurance to the rejectees. A common rejection condition is the presence of cancer. If insurers were to offer insurance to people with cancer, they would potentially price differentially based on the organ in which the cancer occurs. Unfortunately, the HRS does not report the organ in which the cancer occurs in all years. Fortunately, the 2nd wave (1993/1994) of the survey does provide the organ in which a cancer occurs; therefore, to assess whether pricing differentially based on the organ of the cancer would reduce the amount of (or potentially remove all) private information, I construct a sample from 1993/1994 and include a full set of indicators for the cancer organs (54 indicators). These results are discussed in Section D.2.2 and the main conclusions of the
lower bound analysis in life insurance continue to hold.

C.2 Sample Selection

For all three settings, I begin with years 1993-2008 (waves 2-9) of the HRS survey (subjective probability elicitations are not asked in wave 1).

LTC For LTC, I exclude individuals I cannot follow for a subsequent five years to construct the loss indicator variable; years 2004-2008 are used but only for construction of the loss indicator. Also, I exclude individuals who currently reside in a nursing home or receiving specialized home care. Finally, I exclude individuals with missing observations (either the subjective probabilities, or observable covariates). For consistency, I exclude any case missing any of the extended control variables (results are similar for the price controls and age/gender controls not excluding these additional missing cases).

The primary sample consists of 9,051 observations from 4,418 individuals for the no reject sample, 10,108 observations from 3,215 individuals for the reject sample, and 10,690 observations from 5,190 individuals for the uncertain sample. In each sample, I include multiple observations for a given individual (which are spaced roughly two years apart) to increase power. All standard errors are clustered at the household level.

In addition to the primary sample, I construct a sample that excludes those who own insurance to assess robustness of my results to moral hazard. For this, I drop the 13% of the sample that owns insurance, along with an additional 5% of the sample currently enrolled in Medicaid.

Disability For disability, I begin with the set of individuals between the ages of 40 and 60 who are currently working and report no presence of work-limiting disabilities. Although individuals are To construct the corresponding loss realization, I limit the sample to individuals who I can observe for a subsequent 10 years (years 2000-2008 are used solely for the construction of the loss indicator). The final sample consists of 936 observations from 491 individuals for the no reject classification, 2,216 observations from 1,280 individuals for the reject classification, and 5,361 observations from 1,280 individuals for the uncertain classification.76 Note that the size of the no reject sample is quite small. This is primarily due to the restriction that income must be above $70,000. As discussed in Section _, the individual disability insurance market primarily exists for individuals with sufficient incomes. Thus, many of these individuals enter the uncertain classification.

Life For the life sample, I restrict to individuals I can follow through the age corresponding to the subjective probability elicitation 10-15 years in the future, so that years 2000-2008 are used

76Ideally, I would also test the robustness of my results using a sample of those who do not own disability insurance, but unfortunately the HRS does not ask about disability insurance ownership.
solely for the construction of the loss indicator. Since the earliest age used in the elicitation is 75, my sample consists of individuals aged 61 and older. The final sample consists of 2,689 observations from 1,720 individuals for the no reject classification, 2,362 observations from 1,371 individuals for the reject classification, and 6,800 observations from 4,270 individuals for the uncertain classification. Similar to LTC, I include those who own life insurance in the primary sample (64% of the sample) but present results excluding this group for robustness.

D Lower Bound Appendix

D.1 Lower Bound Specification

Here, I discuss the construction of the lower bound estimates. I begin with a detailed discussion of the specification for the pricing controls specification and then discuss the modifications for the age/gender and extended controls specifications.

Aside from differences in the variables $X, Z,$ and L, the specifications do not vary across the 9 samples (LTC, Life, Disability + Reject, No reject, Uncertain classifications). For the pricing controls specification, I model $\Pr\{L|X, Z\}$ as a probit,

$$\Pr\{L|X, Z\} = \Phi(X\beta + \Gamma(age, Z))$$

where X contains all of the price control variables. The function $\Gamma(age, Z)$ captures the way in which the subjective probabilities affect the probability of a loss. In principle, one could allow this effect to vary with all observables, X; in practice, this would generate far too many interaction terms to estimate. Therefore, I allow Z to interact with age but not other variables. Note that this does not restrict how the distribution of $\Pr\{L|X, Z\}$ varies with X and Z; it only limits the number of interaction coefficients. The distribution of $\Pr\{L|X, Z\}$ can and does vary because of variation in Z conditional on X. Indeed, the results are quite similar if one adopts a simple specification of $\Pr\{L|X, Z\} = \Phi(X\beta + \gamma Z)$.

I choose a flexible functional form for $\Gamma(age, Z)$ that uses full interactions of basis functions in age and Z:

$$\Gamma(age, Z) = \sum_{i,j} \alpha_{ij} f_i(age) g_j(Z)$$

For the basis in Z, I use second-order Chebyshev polynomials for the normalized variables,
\[Z = 2(Z - 50\%), \text{ plus separate indicators for focal point responses at } Z = 0, 50, \text{ and } 100: \]

\[
g_1(Z) = \tilde{Z} \]
\[
g_2(Z) = \left(2\tilde{Z}^2 - 1\right) \]
\[
g_3(Z) = 1 \{ Z = 0\% \} \]
\[
g_4(Z) = 1 \{ Z = 50\% \} \]
\[
g_5(Z) = 1 \{ Z = 100\% \} \]

For the basis in \textit{age}, I use a linear specification, \(f_1(\text{age}) = \text{age} \) (note that any constant terms are absorbed into \(X\beta \)).

I estimate \(\beta \) and \(\{ \alpha_{ij} \} \) using MLE (the standard probit command in Stata) and construct the predicted values for \(\Pr \{ L|X,Z \} \). Given these predicted values, I plot the distribution of \(\Pr \{ L|X,Z \} - \Pr \{ L|X \} \) aggregated within each setting and rejection classification. To do so, I also need an estimate of \(\Pr \{ L|X \} \). For this, I use the same specification as above, except I exclude \(\Gamma(\text{age}, Z) \), so that

\[\Pr \{ L|X \} = \Phi(X\tilde{\beta}) \]

I again estimate \(\tilde{\beta} \) using MLE and construct the predicted values of \(\Pr \{ L|X \} \).

Now, for each observation, I have an estimate of \(\Pr \{ L|X,Z \} \) and \(\Pr \{ L|X \} \). Therefore, I can plot the predicted empirical distribution of \(\Pr \{ L|X,Z \} - \Pr \{ L|X \} \) in each sample. For ease of viewing, I estimate a kernel density, using the optimal bandwidth selection (the default option in Stata), and plot the density in Figure 2.

I then construct an estimate of the average magnitude of private information implied by \(Z \). With infinite data, I could construct an estimate of \(E[m_Z(P_Z)|X] \) for each value of \(X \); in practice, I need to aggregate across values of \(X \) within a sample to gain statistical power. To do this aggregation, I rely on the assumption that the distribution of \(\Pr \{ L|X,Z \} - \Pr \{ L|X \} \) does not vary conditional on age. Thus, I can aggregate across the residual distribution to construct, for each age, the average difference between one’s own probability and the probability of worse risks. I construct the residual, \(r_i = \Pr \{ L|X,Z \} - \Pr \{ L|X \} \) for each case in the data. Then, within each age, I compute the average residual, \(\Pr \{ L|X,Z \} - \Pr \{ L|X \} \) of those with higher residuals within a given age (i.e. for an observation with \(r_i = x \), I construct \(\hat{r}_i = E[r_i|r_i \geq x, \text{age}] \)). Note that this is where I use the assumption that the distribution of \(\Pr \{ L|X,Z \} - \Pr \{ L|X \} \) does not vary conditional on age. I then construct the average of \(\hat{r}_i \) in the sample, which equals \(E[m_Z(P_Z)|X \in \Theta] \) for the given sample \(\Theta \).

For the age/gender controls specification, I use the same specification as for the price controls, but replace \(X \) with the saturated set of age/gender variables. However, for the extended controls specification, the number of covariates is too large for a probit specification. Aside from the computational difficulties of maximizing the probit likelihood, it is widely known that the probit
yields inconsistent estimates of Γ in this setting when the dimensionality of X increases (this is analogous to the problem of doing a probit with fixed effects). I therefore adopt a linear specification, $L = \beta X + \Gamma (age, Z) + \epsilon$, to ease estimation with the very high dimensionality of X. Under the null hypothesis that the linear model is true, this approach continues to deliver consistent estimates of Γ even as the dimensionality of X increases. For Γ, I use the same basis function approximation as used above (of course it now has a different interpretation).

D.2 Lower Bound Robustness Checks

This section presents several robustness checks of the lower bound analysis.

D.2.1 Age Analysis

First, I present estimates of the average magnitude of private information implied by Z separately by age for the disability and life settings. Figure 6 presents the results, along with bootstrapped standard errors. I also split the results separately for males and females in disability to ensure that the results are not driven by age-based sample selection in the HRS (the HRS samples near retirement individuals and includes their spouses regardless of age).

As one can see, the results suggest generally that there is more private information for the rejectees relative to non-rejectees, conditional on age.

D.2.2 Organ Controls for Life Specification

The specifications for life insurance did not include controls for the affected organ of cancer sufferers. As a result, the main results identify the impact of private information assuming that the insurer would not differentially price insurance as a function of the organ afflicted by cancer. It seems likely that insurers, if they sold insurance to cancer patients, would price differentially based on the afflicted organ. Fortunately, organ information is provided in the 1993/4 wave of the survey (it is not provided in other waves). Therefore, I can assess the robustness of my finding of private information using a sample restricted to this wave alone.

In the second column of Table A2, I report results from a specification restricted to years 1993/1994 which includes a full set of 54 indicators for the affected organ added to the extended controls specification. The finding of statistically significant amounts of private information amongst the rejectees continues to hold ($p = 0.0204$). Moreover, the estimate of $E \left[m_{Z} (P_{Z}) | X \in \Theta^{Reject} \right]$ remains similar to the preferred (pricing) specification (0.0308 versus 0.0338 for the primary specification). While insurers could potentially price differentially based on the afflicted organ, doing so would not eliminate or significantly reduce the amount of private information held by the potential applicant pool.
Figure 6: Magnitude of private information by age
E Structural Estimation

E.1 Specification Details

I approximate the distribution, $f(p|X)$, using mixtures of beta distributions,

$$f(p|X) = \sum_i w_i \text{Beta}(a_i + \Pr\{L|X\}, \psi_i)$$

where $\text{Beta}(\mu, \psi)$ is the p.d.f. of the beta distribution with mean μ and shape parameter ψ. Note this parameterization of the beta distribution is slightly non-standard; the Beta distribution is traditionally defined with parameters α and β such that the mean is $\mu = \frac{\alpha}{\alpha+\beta}$ and the shape parameter $\psi = \alpha + \beta$.

In the main specification, I use three beta distributions, $i = 1, 2, 3$. Also, I make a couple of simplifying restrictions to ease estimation. First, I only estimate two values of the shape parameter; one for the most central beta, $\psi_1 = \psi_{\text{central}}$, and one for all other beta distributions, $\psi_i = \psi_{\text{noncentral}}$ ($i = 2, 3$). This helps reduce the non-convexity of the likelihood function. Second, I constrain the shape parameters, ψ_i, such that $\psi_i \leq 200$. This restriction prevents ψ_i from reaching large values that introduce non-trivial approximation errors in the numerical integration of the likelihood over values of p (these numerical errors arise when $f_P(p|X)$ exhibits extreme curvature). Changing the levels of this constraint does not affect the results in the LTC Reject, Disability Reject, Life No Reject, and Life Reject samples. However, the LTC No Reject and Disability No Reject initial estimates did lie on the boundary, $\psi_i = 200$ for the most central beta. Intuitively, these samples have little amounts of private information so that the model attempts to construct a very highly concentrated distribution, $f_P(p|X)$. To relax this constraint, I therefore include an additional point mass at the mean, $\Pr\{L|X\}$, that helps capture the mass of people with no private information (note that inserting a point mass at the mean is equivalent to inserting a beta distribution with $a_i = 0$ and $\psi_i = \infty$). This computational shortcut improves the estimation time and helps remove the bias induced by the restriction $\psi_i \leq 200$.

In addition to these constraints, Assumptions 1 and 2 also yield the constraint $\Pr\{L|X\} = E[P|X]$, which requires $\sum_i w_i a_i = 0$. Imposing this constraint further reduces the number of estimated parameters. I also censor the mean of each beta distribution, $a_i + \Pr\{L|X\}$ to lie in $[0.001, 0.999]$. I accomplish this by censoring the value of a_i given to observations with values of X such that $a_i + \Pr\{L|X\}$ is greater than 0.999 or less than 0.001. I then re-adjust the other values of a_i and w_i for this observation, to ensure the constraint $\sum_i w_i a_i = 0$ continues to hold. If the parameter values and values of X are such that $a_2 + \Pr\{L|X\} < 0.001$, I then define $a_2 = 0.001 - \Pr\{L|X\}$ and then adjust a_3 such that $a_2 w_2 + a_3 w_3 = 0$. In some instances, it may be the case that $a_2 = 0.001$ and $a_3 = 0.999$; in this case, I adjust the weights w_2 and w_3 to

\footnote{For example, non-convexity arises because a dispersed distribution can be accomplished either with one beta distribution with a high value of ψ or with two beta distributions with lower values of the shape parameters but differing values of a_i.}
ensure that $\sum w_ia_i = 0$ (note that weight w_1 is unaffected because $a_1 = 0$).

Given this specification with three beta distributions and the above mentioned restrictions, there are six parameters to estimate: two parameters capture the relative weights on the three betas, two parameters capture the non-centrality of the beta distributions (a_1 and a_2), and the two shape parameters, ψ_{central} and $\psi_{\text{noncentral}}$. Finally, for the LTC No Reject and Disability No Reject samples I estimate a seventh parameter given by the weight on the point-mass, w_{ptmass}.

Estimation In each of the six samples, estimation is done in two steps. First, I estimate Pr $\{L|X\}$ using the probit specification described in Section D.1. Second, I estimate the six beta mixture parameters, \{w_1, w_2, a_1, a_2, \psi_{\text{central}}, \psi_{\text{noncentral}}\}, along with the four elicitation error parameters, \{\sigma, \kappa, \lambda, \alpha\} using maximum likelihood. As is standard with mixture estimation, the likelihood is non-convex and can have local minima. I therefore start the maximization algorithm from 100+ random starting points in the range of feasible parameter values.

In addition, I impose a lower bound on σ in the estimation process. It is straightforward to verify that, under the null hypothesis, I have $\sigma \geq \min \left\{ \text{var} \left(Z^{nf} \right) - \text{cov} \left(Z^{nf}, L \right), \sqrt{\frac{3}{8}} \right\}.$ In reality, the distribution of Z is concentrated on integer values between 0 and 100%, and in particular, multiples of 5% and 10%. In some specifications, the unconstrained maximum likelihood procedure would yield estimates of $\sigma \approx 0$ and distributions of P that attempt to match the integer patterns of Z. In other words, the model attempts to match the dearth of Z values between 5.01% and 9.99%, and the higher frequency at $Z = 10\%$. By imposing the constraint $\sigma \geq \min \left\{ \text{var} \left(Z^{nf} \right) - \text{cov} \left(Z^{nf}, L \right), \sqrt{\frac{3}{8}} \right\}$, these pathological outcomes are removed. Re-assuringly, the constraint does not locally bind in any of my samples (i.e. I find estimates of σ between 0.3 and 0.45, whereas values of $\text{var} \left(Z^{nf} \right) - \text{cov} \left(Z^{nf}, L \right)$ fall consistently around 0.2 in each setting).

E.2 Robustness

Table A3 presents the minimum pooled price ratio evaluated at other points along the distribution of Pr $\{L|X\}$ in each sample. The table presents the estimates at the 20th, 50th, and 80th quantile of the Pr $\{L|X\}$ distribution. The first set of rows presents the results for the Reject samples. The first row presents the point estimates, followed by the 5/95% confidence intervals, and finally by the value of Pr $\{L|X\}$ corresponding to the given quantile. The second set of rows repeats these figures for the non-rejectees. In general, the results are quite similar to the values reported in Tables 5 and 6, which considered a characteristic corresponding to the mean loss, Pr $\{L|X\} = \text{Pr} \{L\}$.

78The bootstrapping procedure for standard errors will repeat the entire estimation process (i.e. both steps 1 and 2) for each bootstrap iteration.
E.3 Estimation Results Details

Measurement error parameters Table A4 presents the estimated measurement error parameters. In general, I estimate values of σ between 0.29 and 0.46, indicating that elicitation are quite noisy measures of true beliefs. Roughly 30-42% of respondents are focal point respondents, and the focal point window estimate ranges from 0 to 0.173. The estimate of $\kappa = 0$ indicates that focal point respondents choose to report an elicitation of 50%, regardless of their true beliefs. Finally, I estimate moderate bias of magnitudes less than 10% in all samples except the LTC Rejectees, for whom I estimate a substantial 28.6pp downward bias. Although many factors could be driving this result, it is consistent with the hypothesis that many individuals do not want to admit to a surveyor that they are going to have to go to a nursing home.

Beta Mixture Parameters Table A5 presents the estimated parameters for $f_P(p|X)$, along with the bootstrapped standard errors.

F Selected Pages from Genworth Financial Underwriting Guidelines

The following 4 pages contain a selection from Genworth Financial’s LTC underwriting guideline which is provided to insurance agents for use in screening applicants. Although marked “Not for use with consumers or to be distributed to the public”, these guidelines are commonly left in the public domain on the websites of insurance brokers. The printed version here was found in public circulation at http://www.nyltcb.com/brokers/pdfs/Genworth_Underwriting_Guide.pdf on November 4, 2011. I present 4 pages of the 152 pages of the guidelines. The conditions documented below are not exhaustive for the list of conditions which lead to rejection - they constitute the set of conditions which solely lead to rejection (independent of other health conditions); combinations of other conditions may also lead to rejections and the details for these are provided in the remaining pages not shown here.
LONG TERM CARE INSURANCE
UNDERWRITING GUIDE

Provided by the Genworth Underwriting Department

Long Term Care Insurance Underwritten by Genworth Life Insurance Company, and in New York by Genworth Life Insurance Company of New York Administrative Offices: Richmond, VA.
INTRODUCTION

Underwriting is the process by which an applicant’s current health, medical history and lifestyle are evaluated to determine a risk profile. The underwriter’s decision to accept or decline an applicant is determined by matching the profile to guidelines, which outline the limits of acceptable risk to the company.

We underwrite applicants in the age range 18-79. We do not modify the coverage applied for, nor do we apply extra premiums. We make every attempt to issue the desired coverage at the corresponding published premium.

The information in this manual reflects over 30 years of experience...the longest in the Long Term Care insurance industry. While not all-inclusive, enough information is presented to help you in most situations you will encounter. A hotline number is included should you have questions or run into an unusual circumstance.

An appeal process is also outlined in the event you disagree with our underwriting evaluation. We are always willing to have a second look, especially when additional information not included in the original application file is made available.

We value our relationship with you and look forward to providing high quality service and underwriting for you and your clients.
UNINSURABLE CONDITIONS
Acquired Immune Deficiency Syndrome (AIDS)
ADL limitation, present
AIDS Related Complex (ARC)
Alzheimer's Disease
Amputation due to disease, e.g., diabetes or atherosclerosis
Amyotrophic Lateral Sclerosis (ALS), Lou Gehrig's Disease
Ascites present
Ataxia, Cerebellar
Autonomic Insufficiency (Shy-Drager Syndrome)
Autonomic Neuropathy (excluding impotence)
Behçet's Disease
Binswanger's Disease
Bladder incontinence requiring assistance
Blindness due to disease or with ADL/IADL limitations
Bowel incontinence requiring assistance
Buerger's Disease (thromboangiitis obliterans)
Cerebral Vascular Accident (CVA)
Chorea
Chronic Memory Loss
Cognitive Testing, failed
Cystic Fibrosis
Dementia
Diabetes treated with insulin
Dialysis, Kidney (Renal)
Ehlers-Danlos Syndrome
Forgetfulness (frequent or persistent)
Gangrene due to diabetes or peripheral vascular disease
Hemiplegia
Hoyer Lift
Huntington's or other forms of Chorea
Immune Deficiency Syndrome
Korsakoff's Psychosis
Leukemia-except for Chronic Lymphocytic Leukemia (CLL) and Hairy Cell Leukemia (HCL)
Marfan's Syndrome
Medications
 Antabuse (disulfiram)
 Aricept (donepezil HCl)
 Campral (acamprosate calcium)
 Cognex (tacrine)
 Depade (naltrexone)
 Exelon (rivastigmine)
 Hydergine (ergoloid mesylate)
 Namenda (memantine)
 Razadyne (galantamine hydrobromide)
 Reminyl (galantamine hydrobromide)
 ReVia (naltrexone)
 Vivitrol (naltrexone)
Memory Loss, chronic
Mesothelioma
Multiple Sclerosis (MS)
Muscular Dystrophy (MD)
Myelofibrosis
Organ Transplants, except kidney transplants
Organic Brain Syndrome (OBS)
Oxygen use except if used for headaches or sleep apnea
Paralysis/Paraplegia
Parkinson's Disease
Pneumocystis Pneumonia
Polyarteritis Nodosa
Posterolateral Sclerosis
Quad Cane use
Quadriplegia
Senility
Spinal Cord Injury with ADL/IADL limitations
Stroke (CVA)
Surgery scheduled or anticipated (except cataract surgery under local anesthesia)
Takayasu's Arteritis
Thalassemia Major
Total Parenteral Nutrition (TPN) for regular or supplementary feeding or administration of medication
Waldenstrom's Macroglobulinemia
Walker use
Wegener's Granulomatosis
Wernicke-Korsakoff Syndrome
Wheelchair use
Wilson's Disease
<table>
<thead>
<tr>
<th>Covariate Specifications</th>
<th>Long-Term Care</th>
<th>Disability</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, Age*2, Gender</td>
<td>Full interactions of Age, Age*2, Gender</td>
<td>Full interactions of Age, Age*2, Gender</td>
<td></td>
</tr>
<tr>
<td>Gender*age</td>
<td>Gender</td>
<td>Gender</td>
<td>Genderage2</td>
</tr>
<tr>
<td>Genderage2</td>
<td>Full interactions of Age, Age*2, Gender</td>
<td>Full interactions of Age, Age*2, Gender</td>
<td>Gender</td>
</tr>
<tr>
<td>Extended Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word Recall Performance¹</td>
<td>Word Recall Performance¹</td>
<td>Full interactions of wage decile</td>
<td>Full Interactions of wage decile</td>
</tr>
<tr>
<td>Indicators for ADL/IADL Restriction</td>
<td>Indicators for ADL/IADL Restriction</td>
<td>Indicators for Self Employed</td>
<td>Indicator for years to question²</td>
</tr>
<tr>
<td>Psych Condition</td>
<td>Psychological Condition</td>
<td>Obese</td>
<td>AGE in subj prob question</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Diabetes</td>
<td>Back condition</td>
<td>Indicator for death of parent before age 60</td>
</tr>
<tr>
<td>Lung Disease</td>
<td>Lung Disease</td>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td>Arthritis</td>
<td>Lung Disease</td>
<td></td>
</tr>
<tr>
<td>Heart Disease</td>
<td>Heart Disease</td>
<td>Arthritis</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>Cancer</td>
<td>Heart Condition</td>
<td>BMI</td>
</tr>
<tr>
<td>Stroke</td>
<td>Stroke</td>
<td>Cancer</td>
<td>Smoker Status</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>High blood pressure</td>
<td>Stroke</td>
<td>Indicator for lowest quartile performance on word recall test</td>
</tr>
<tr>
<td></td>
<td>Interactions between 5 yr age bins and the presence of:</td>
<td>Back condition</td>
<td>Indicator for death of parent before age 60</td>
</tr>
<tr>
<td></td>
<td>Number of Health Conditions (High bp, diabetes, heart condition, lung disease, arthritis, stroke, obesity, psych condition)</td>
<td>Psychological condition</td>
<td>BMI</td>
</tr>
<tr>
<td></td>
<td>Number of ADL / IADL Restrictions</td>
<td>Back condition</td>
<td>BMI Quartile</td>
</tr>
<tr>
<td></td>
<td>Number of living relatives (<3)</td>
<td>BMI Quartile</td>
<td>Full interactions of BMI quartile</td>
</tr>
<tr>
<td></td>
<td>Past home care usage</td>
<td>BMI</td>
<td>5 year age bins</td>
</tr>
<tr>
<td></td>
<td>Census region (1-5)</td>
<td>Income Decile</td>
<td>Full interactions of BMI quartile</td>
</tr>
<tr>
<td></td>
<td>Income Decile</td>
<td>Wage Decile</td>
<td>5 year age bins</td>
</tr>
<tr>
<td></td>
<td>Past home care usage</td>
<td>Full interactions of BMI quartile</td>
<td>5 year age bins</td>
</tr>
<tr>
<td></td>
<td>Census region (1-5)</td>
<td>Full interactions of Job requires stooping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full interactions of Job requires lifting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full interactions of Job requires phys activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Interactions of 5 year age bins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Census region (1-5)</td>
<td></td>
</tr>
</tbody>
</table>

¹Indicator for lowest quartile performance on word recall test

²Full indicator variables for number of years to AGE reported in subjective probability question
<table>
<thead>
<tr>
<th></th>
<th>Preferred Specification</th>
<th>Organ + Extended Controls (1993/1994 Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject</td>
<td>0.0587***</td>
<td>0.0526***</td>
</tr>
<tr>
<td>s.e.¹</td>
<td>(0.0083)</td>
<td>(0.0098)</td>
</tr>
<tr>
<td>p-value²</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>No Reject</td>
<td>0.0249</td>
<td>0.0218</td>
</tr>
<tr>
<td>s.e.¹</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>p-value²</td>
<td>0.1187</td>
<td>0.3592</td>
</tr>
<tr>
<td>Difference: (\Delta Z)</td>
<td>0.0338***</td>
<td>0.0308**</td>
</tr>
<tr>
<td>s.e.¹</td>
<td>(0.0107)</td>
<td>(0.0121)</td>
</tr>
<tr>
<td>p-value³</td>
<td>0.0000</td>
<td>0.0260</td>
</tr>
<tr>
<td>Uncertain</td>
<td>0.0294***</td>
<td>0.0342***</td>
</tr>
<tr>
<td>s.e.¹</td>
<td>(0.0054)</td>
<td>(0.0063)</td>
</tr>
<tr>
<td>p-value²</td>
<td>0.0001</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

¹Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000 repetitions)
²p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero
³p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap

*** p<0.01, ** p<0.05, * p<0.10
Quantile of Index, Pr\{L	X\}		LTC		Disability		Life						
	Mean	20%	50%	80%	Mean	20%	50%	80%	Mean	20%	50%	80%	
Reject	1.827	2.090	1.849	1.776	1.661	1.687	1.659	1.741	1.428	1.416	1.436	1.609	
5%	1.657	1.901	1.684	1.562	1.524	1.550	1.522	1.550	1.076	0.987	0.987	0.987	
95%	2.047	2.280	2.280	2.280	1.824	1.825	1.825	1.879	1.780	1.846	1.846	2.054	
Pr\{L	reject\}	0.225	0.124	0.207	0.314	0.441	0.293	0.430	0.578	0.572	0.351	0.589	0.791
No Reject	1.163	1.168	1.160	1.171	1.069	1.064	1.068	1.072	1.350	1.621	1.390	1.336	
5%	1.000	1.000	1.000	1.000	0.932	0.926	0.926	0.926	1.000	1.000	1.000	1.000	
95%	1.361	1.665	1.665	1.665	1.840	1.967	1.967	1.967	1.702	2.050	2.050	2.050	
Pr\{L	No Reject\}	0.052	0.021	0.041	0.076	0.115	0.069	0.105	0.147	0.273	0.073	0.194	0.458
Difference (Reject - No Reje)	0.664	0.922	0.689	0.605	0.592	0.623	0.591	0.669	0.077	-0.204	0.045	0.272	
5%	0.428	0.583	0.444	0.341	0.177	0.069	0.069	0.069	-0.329	-5.050	-5.050	-5.050	
95%	0.901	1.261	1.261	1.261	1.008	1.178	1.178	1.178	0.535	4.641	4.641	4.641	

1/95% CI computed using bootstrap block re-sampling at the household level (N=250 Reps); 5% level extended to include 1 if p-value of F-test for presence of private information is less than .05; Bootstrap CI is bias corrected using the non-accelerated procedure in Efron (1982).

2/95% CI computed using bootstrap block re-sampling at the household level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test for presence of private information for the rejectees is less than .05; Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (non-accelerated) percentile intervals from Efron and Gong (1983).
Table A4: Elicitation Error Parameters

<table>
<thead>
<tr>
<th></th>
<th>LTC</th>
<th></th>
<th></th>
<th>Disability</th>
<th></th>
<th></th>
<th>Life</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Reject</td>
<td>Reject</td>
<td></td>
<td>No Reject</td>
<td>Reject</td>
<td></td>
<td>No Reject</td>
<td>Reject</td>
</tr>
<tr>
<td>Standard Deviation (σ)</td>
<td>0.293</td>
<td>0.443</td>
<td>0.298</td>
<td>0.311</td>
<td>0.422</td>
<td>0.462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.015)</td>
<td>(0.009)</td>
<td>(0.025)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction Focal Respondents (λ)</td>
<td>0.364</td>
<td>0.348</td>
<td>0.292</td>
<td>0.417</td>
<td>0.375</td>
<td>0.383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.046)</td>
<td>(0.01)</td>
<td>(0.032)</td>
<td>(0.018)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal Window (κ)</td>
<td>0.173</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.058)</td>
<td>(0.015)</td>
<td>(0.073)</td>
<td>(0.053)</td>
<td>(0.014)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias (α)</td>
<td>-0.078</td>
<td>-0.286</td>
<td>0.086</td>
<td>-0.099</td>
<td>0.034</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.025)</td>
<td>(0.01)</td>
<td>(0.041)</td>
<td>(0.017)</td>
<td>(0.014)</td>
<td>(0.016)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1,000 repetitions)
<table>
<thead>
<tr>
<th></th>
<th>LTC</th>
<th>Disability</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Reject</td>
<td>Reject</td>
<td>No Reject</td>
</tr>
<tr>
<td>Weight on Beta 1</td>
<td>0.005</td>
<td>0.848</td>
<td>0.001</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.066)</td>
<td>(0.247)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>Weight on Beta 2</td>
<td>0.142</td>
<td>0.065</td>
<td>0.059</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.057)</td>
<td>(0.246)</td>
<td>(0.093)</td>
</tr>
<tr>
<td>Non-centrality of Beta 1</td>
<td>0.500</td>
<td>0.065</td>
<td>0.059</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.057)</td>
<td>(0.246)</td>
<td>(0.093)</td>
</tr>
<tr>
<td>Non-centrality of Beta 2</td>
<td>-0.527</td>
<td>0.021</td>
<td>-0.054</td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.036)</td>
<td>(0.058)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Shape parameter for Beta 1</td>
<td>11.185</td>
<td>31.488</td>
<td>190.752</td>
</tr>
<tr>
<td>Shape parameter for Beta 2 and Beta 3</td>
<td>27.940</td>
<td>36.318</td>
<td>66.992</td>
</tr>
<tr>
<td>s.e.</td>
<td>(36.391)</td>
<td>(46.674)</td>
<td>(46.846)</td>
</tr>
<tr>
<td>Weight on point mass at mean</td>
<td>0.817</td>
<td>0.833</td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>(0.116)</td>
<td>(0.263)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1,000 repetitions).