The Evolution of Wealth Inequality Over the Lifecycle

Faculty Member: Cormac O'Dea

Proposal Description:

This posting is for applicants interested in working on a set of empirical projects aimed at better understanding the reasons for inequality in wealth holdings, with a focus the decision-making of those approaching, and in, retirement. The topics that the chosen candidate will work on include i) an evaluation of the role of cognitive ability in individuals’ economic decisions (for example, their labor supply, their saving and their spending), ii) an investigation of the implications of uncertainty around the future of Social Security for household decision-making and iii) the role of genetic influences in the determination of savings behavior. The ultimate objective of this set of research projects is to be able to understand how saving for retirement and the distribution of wealth are likely to evolve over the coming decades and how they might respond to changes in economic policy.

The chosen candidate will work closely with the faculty authors on the analysis of a variety of datasets that contain information on standard economic quantities (income, spending and wealth holdings) as well as more novel measurements (such as cognitive abilities and genetic markers) for large samples of households in the US. The chosen candidate will also be involved in the preparation of presentations and research papers.

Requisite Skills and Qualifications:

Applicants should have expect to have (by the time of taking up the position) a bachelor’s degree in economics, statistics, applied mathematics or a related field. Proven skill in the analysis of data (preferably using either Stata or R) is essential as is a keen interest in economic research.

Please apply with a cover letter, a resume, a transcript and a sample of code that you have written.

Project Type: Economics Predoctoral RA
Project Type Year: 2019 Economics Predoctoral Projects

Source URL: https://economics.yale.edu/tobin-center/2018/evolution-wealth-inequality-over-lifecycle