Sieve “Parametric" Likelihood Ratio Bootstrapped Confidence Sets for Semiparametric Likelihood Models Under Partial Identification

Faculty Member: Xiaohong Chen

Proposal Description:

We provide methods for inference on a finite-dimensional parameter of interest, \(\theta \), in a semiparametric probability model when an infinite-dimensional nuisance parameter, \(g \), is present. We construct confidence sets for \(\theta \) that are robust to the model parameter \((\theta, g)\) being partially-identified or irregular (i.e., slower than root-\(n \) estimable). This allows practitioners to examine the sensitivity of their estimates of \(\theta \) to more relaxed assumptions on \(g \) in a general likelihood setup. To construct these robust confidence sets for \(\theta \), we invert a (penalized) sieve (log-)likelihood ratio (LR) statistic. We derive the asymptotic null distribution of the sieve LR under partial-identification, which is nonstandard when \(\theta \) is not point-identified. We present conditions under which a sieve “parametric" bootstrapped LR statistic consistently estimates the complicated limiting null distribution of the original-sample sieve LR. Our robust confidence sets are asymptotically efficient when the true \(\theta \) parameter belongs to the interior of the parameter space and is by chance point-identified and regular.

This proposal seeks a Tobin RA (or Robin RAs) to run some Monte Carlo studies to check the performance of the bootstrapped LR procedure in finite samples.

Requisite Skills and Qualifications:

a good programmer in R or Matlab; knows some basic statistics and econometrics.

Award: Shawn Luciani
Tobin Application Link: Tobin Application
Project Type: Tobin
Project Year: 2019
Term: Spring 2019

Source URL: https://economics.yale.edu/undergraduate/tobin/spring-2019/sieve-parametric-likelihood-ratio-bootstrapped-confidence-sets