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ABSTRACT 

The basic ideas of Cournot and those who came after him are related to the recent work 

of Nash and his notion of an “equilibrium point.” It is shown that the Nash equilibrium 

point incorporates the main contribution of Cournot to the solution of the duopoly 

problem and that the major criticism that may be made against the Cournot equilibrium 

may also be made against the Nash equilibrium. It is then indicated to what use this 

weakness might be put in the study of bargaining.  
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Foreword 

The paper Some Notes on Cournot and the Bargaining Problem by Marc Nerlove was 

written in August 1953 and is remarkable in its grasp of essentials and in its maturity, 

given that Nerlove was only 19 years of age at the time. Nerlove had been an 

undergraduate at the University of Chicago. He took his first year of graduate study at the 

Johns Hopkins University, 1952-53, but returned to Chicago for the summer of 1953. He 

was fortunate enough to obtain a summer job as research assistant to Professors Jacob 

Marschak and Tjalling Koopmans at the Cowles Commission. That summer, in partial 

fulfilment of his joint commitment to Marschak, he wrote the afore mentioned paper. 

Marschak did not pay attention to it and the paper was forgotten by Nerlove, lost from his 

files and does not appear on his CV. It has recently been retrieved from the Jacob 

Marschak Papers at UCLA.  

The 1953 paper pointed out that in the Cournot-Nash equilibrium each agent 

makes a particular incorrect assumption about the other's out-of-equilibrium behavior. 

This is noteworthy, given its date. Nerlove recapitulated Nash's proof of the existence of 

a mixed strategy Nash equilibrium and provided a simple example of how to calculate it.  

But Nerlove probed deeper. He knew about “conjectural variation” from Frisch 

(1933), rephrasing it as “each producer believes that the output of his rival depends on his 

own output in some definite fashion,” and proceeded to discuss the appropriateness of the 

Nash equilibrium in the Cournot model, leading to a suggested definition of a “strong 

equilibrium.”  
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This line of reasoning in Nerlove’s brief paper is very interesting, as it predated 

Bresnahan (1981) by more than 25 years. Nerlove's “strong equilibrium” captured the 

same idea as Bresnahan's “consistent conjectures equilibrium”. The “strong equilibrium,” 

if it exists, is a “consistent conjectures equilibrium.” No further analysis was offered by 

Nerlove. Bresnahan's “consistent conjectures equilibrium” received criticism, which 

would also apply to Nerlove's suggested definition of a “strong equilibrium.” The 

essentially dynamic character of the argument was later captured in a dynamic model by 

Maskin and Tirole (1987). Later literature on learning and evolution puts more emphasis 

on Cournot's fictitious play, thereby enhancing the relevance of this process. On the other 

hand, it might be argued that evolution leads to conjectural variations (Dixon and Somma 

2003). 

Nerlove’s proof of the existence of equilibrium is not for games in extensive form. 

Each player is assumed to choose strategies for the whole of the play simultaneously. 

Understanding of games in extensive form and the complications thereof came later, with 

Schelling (1958). 

Nerlove had indeed taken an interest in game theory even earlier; his 

undergraduate honors thesis in mathematics was titled On the Theory of Games. It had 

won him a prize and was published in the Student Essay Annual in 1952. 

Some Notes on Cournot and the Bargaining Problem 
 

In 1838 Augustin Cournot showed, in his famous discussion of the two mineral springs, 

that on certain assumptions a determinate equilibrium solution is obtained for the duopoly 

problem and that this solution can be extended from duopoly to oligopoly. It is not 
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consonant with our purpose here to discuss Cournot’s extension to problems of oligopoly, 

but to attempt an extension of Cournot’s basic assumptions and concept of a solution to 

the general two-person bargaining situation. 

The Cournot solution for undifferentiated duopoly is based upon the assumption 

on the part of each rival that the other will go on producing a definite quantity 

irrespective of what he himself produces. By substituting this constant quantity into the 

demand function, the duopolist can now proceed to equate his individual marginal 

revenue with marginal cost and thus maximize his own profits. Since initially neither 

duopolist is likely to guess the output of his rival correctly, outputs will be altered 

subsequently until, in fact, the assumption on the part of each rival that the other will not 

alter his output becomes correct. The characteristic feature of the Cournot model is that if 

each duopolist continues to assume that the other will not change his rate of output, then 

ultimately they will prove to be correct although during the approach to equilibrium they 

will be wrong. 

The Cournot model may be extended by dropping the assumption that each rival 

assumes that the other’s rate of output is fixed and replacing it by the assumption that 

each producer believes that the output of his rival depends on his own output in some 

definite fashion. The assumed change in one’s rival’s output due to an incremental 

change in one’s own output is usually termed “conjectural variation”, see Frisch [1933]. 

Thus the original Cournot model may be thought of as a species of the extended model in 

which “conjectural variation” is zero. 

The extended Cournot model may be illustrated by the following schematic 

diagram (Fig. 1). 1  is a function which maps the set of present outputs of duopolist 2, 
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{ 2q }, into the set of next period outputs of duopolist 1, { 1q }. Similarly, 2  maps { 1q } 

into { 2q }. The mapping is carried out in the following way: Given the present output of 

one’s rival, a function relating changes in one’s own output to changes in his own 

marginal cost curve, and the demand for the product, one calculates that output, say 1q , 

which will maximize one’s own profit, taking account of the belief, of course, that the 

rival’s output will vary with one’s own in some definite fashion. Outputs will be altered 

until each producer no longer has the desire to alter his output, i.e., cannot increase his 

profit, given his rival’s output and his conjectured relation between that output and his 

own. Thus the point of equilibrium is that point at which 1  and 2  cross. 
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There is, of course, no necessity that such a point exist or that it be unique. If 1  

crosses 2  from below, the point of intersection is clearly not an equilibrium, for to the 

right of the intersection 1’s output tends to rise and 2’s output tends to fall. The functions 

1  and 2  need not be monotonic; and, hence, 1  may intersect 2  at many points, more 

than one of which may be an equilibrium. For our purposes it does not seem worthwhile 

to derive conditions on the marginal cost and revenue curves and the conjectured 

relations of output of the two producers that would insure the existence and unicity of an 

equilibrium. [Should the reader be interested in such a discussion, the best, to my 

knowledge, may be found in Stackelberg [1934], especially chapter 4 and the 

mathematical appendix. Fellner [1949] gives an excellent English discussion of 

Stackelberg’s work, see chapter 3, and Lewis [1948] uses Stackelberg’s indifference 

maps to show that certain traditional duopoly equilibria (Cournot and others) do not lie 

on the Edgeworth Contract Curve, i.e., possess Pareto optimum properties.]  

The basic ideas involved in the Cournot solution are, then:  a) that each of the two 

rivals believes that his opponent will react in a certain definite way to his own action 

(including the possibility that he will not act at all), and  b) that there exists at least one 

set of two actions, one on the part of each rival, such that profit, utility, or some other 

measure of satisfaction, will be maximized for each action separately given the other 

action as some function of the first. It is clearly not necessary to assume, with Cournot, 

that the only course of action a producer may take is to vary the quantity he produces. 

Had Cournot been writing in 1953 instead of 1838, he might have formulated his problem 

in terms of strategies and the maximization of utility rather than quantity produced and 

the maximization profit. 
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In a recent communication Nash [1950a] has formulated the Cournot solution in a 

theory of games fashion. In two-person constant sum games “minimax” rationality and 

“saddle point” equilibrium can be attained simultaneously. When the number of players 

is increased beyond two and/or the game is made variable-sum, a specific von Neumann 

solution does not, in general, exist. By sacrificing “minimax” rationality and defining a 

solution in terms of the Cournot type equilibrium property, Nash has arrived at an uneasy 

compromise. 

For the sake of exposition, and following Samuelson [1950], let us give the 

Cournot-Nash definition for the two-person case only. Let there be two rival bargainers, 

A and B, and denote by 1s  and 2s  their respective pure or mixed strategies, which they 

vary directly so as to maximize 1 1 2( , )u s s  and 2 1 2( , )u s s . A’s Cournot reaction locus 

(corresponding to 1  in Fig. 1) is defined by the value of 1s which maximizes 1u  for a 

given 2s  or 2s  as a function of 1s . This value is not necessarily unique, but we shall 

denote any such value by 1 2( )s s . We may similarly define B’s reaction locus by the value 

2 1( )s s  which maximizes 2u  for a given 1s , and this corresponds to 2  in Fig. 1. The 

solution defined by Cournot-Nash is, thus, the intersection of  1 2( )s s  and 2 1( )s s , call the 

point  0 0
1 2,s s , such that,  

 0 0 0
1 1 2 1 1 2( , ) ( , );u s s u s s   (1) 

 0 0 0
2 1 2 2 1 2( , ) ( , ).u s s u s s   (2) 

So much for the definition of equilibrium. Need such an equilibrium point always 

exist? Nash [1950a] shows that the answer is yes, if we do not confine ourselves to 

simple-discrete pay-off matrices and to pure strategies, but admit mixed strategies and/or 
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continuous decisions, and if we assume 1u  and 2u  to have simple convexity properties in 

terms of the variables 1s  and 2s . Nash’s proof of the existence of the equilibrium is 

roughly as follows (See Nash [1950a] and [1951]): 

Let us assume the von Neumann-Morgenstern utility postulates for each 

individual. These assumptions suffice to show the existence of a utility function, 

assigning a real number to each anticipation of an individual. This utility function is not 

unique, i.e., the origin and the unit of measurement are arbitrary. Thus, every linear 

transformation of the utility function also satisfies the postulates; i.e., if u  is a utility 

function then so is a u b  , with 0a  . Let A and B be anticipations of an individual, then 

such a utility function will have the following properties: 

1) ( ) ( )u A u B  is equivalent to the statement that A is preferable to B for the 

individual in question; similarly, ( ) ( )u A u B  or ( ) ( )u A u B  is equivalent to saying that 

the individual is indifferent as between A and B or that he prefers B to A, respectively. 

2) If 0 1p   then ( (1 ) ) ( ) (1 ) ( )u p A p B p u A p u B         ; i.e., the utility 

function is linear in its arguments.1       

Nash defines a two-person anticipation as a combination of two one-person 

anticipations. We have two bargainers, each with a certain expectation corresponding to 

each possible outcome of the bargaining situation. Each two-person anticipation is 

defined as an ordered pair of one-person anticipations, to which the assumed one-person 

utility functions are applicable if applied component-wise. I.e., if (A, B) is a two-person 

anticipation and 1u  and 2u  are the utility functions of the two bargainers, then 

                                                 
1 Utility and its relationship to game theory and the bargaining problem, and particularly the problem of the 
transferability of utility will be discussed in a later paper. Suffice it to say that Nash’s formulation of the 
bargaining problem avoids problems of transferability. 
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1)  1 1( , ) ( ), andu A B u A  

2) 2 2( , ) ( ).u A B u B   

Furthermore, if (A, B) and (C, D) are two two-person anticipations and 0 1p  , 

then ( , ) (1 ) ( , )p A B p C D     is defined as ( (1 ) , (1 ) )p A p C p B p D        . Thus, for 

example 

 
1 1 1

1

1 1

( , ) (1 ) ( , ) ( (1 ) , (1 ) )

( (1 ) )

( ) (1 ) ( )

p u A B p u C D u p A p C p B p D

u p A p C

p u A p u C

            
    
    

 

and so on. 

 Each possible outcome of the bargaining situation is a two-person-anticipation of 

the form (A, B), or, allowing for the possibility of mixed strategies on the part of the 

bargainers, a probability combination of such anticipations. Given the utility functions 1u  

and 2u  of the two bargainers, the set of all possible outcomes can be transformed into a 

set of points of the form  1 2,u u , where 1u  and 2u are real numbers. The set of points lies 

in the 1u   2u  plane and is arbitrary with respect to the position of the origin and the 

determination of scale. 

Since every possible outcome, (A, B), is the result of an action or series of actions 

performed by the bargainers, 1u  and 2u  in  1 2,u u  may be regarded as functions of two 

pure strategies 1  and 2 , chosen by the first and second bargainers, respectively. 

Because of the way a two-person anticipation has been defined, 1u  and 2u  are bilinear 

forms in 1  and 2 . Thus, for mixed strategies, 1u  and 2u  are mathematical expectations 

of the two bargainers. 
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Let 1s  and 2s  represent possible mixed strategies of the first and second 

bargainers, respectively, then the existence of a Cournot-Nash equilibrium resolves into 

the question of whether there exists a pair of strategies 0 0
1 2( , )s s  or a point 0 0

1 2( ),u u  such 

that: 

1) For all 1s , 0 0 0 0
1 1 1 2 1 1 2( , ) ( , )u u s s u s s  . 

2) For all 2s , 0 0 0 0
2 1 2 2 1 2( , ) ( , )u s s u s s  . 

By defining a suitable transformation on the set of ordered pairs of mixed 

strategies 1 2{( , )}s s , it is possible to show that fixed points under this transformation are 

equilibrium points and vice versa, provided only that the mapping 1 2( , )s s    1 2,u u  is 

continuous and provided the image set  1 2{ , }u u  is closed, bounded and convex. It is then 

possible to apply the Kakutani extension of the Brouwer fixed-point theorem to show the 

existence of such a point, see Kakutani [1941]. 

Clearly the mapping 1 2( , )s s    1 2,u u is continuous by virtue of the assumption 

of the von-Neumann-Morgenstern utility postulates. Furthermore, it does not seem 

unreasonable to assume that the set  1 2{ , }u u  is bounded. By virtue of the continuity of 

the mapping the set  1 2{ , }u u is then closed, so that any continuous function of the 

utilities assumes a maximum value for the set at some point of the set. There is, however, 

no necessity to assume the convexity of the set  1 2{ , }u u , as Nash does, as shown by the 

theorem below. 

Let S   1 2{ , }u u  and let any two-person expectation be of the form (A, B) and 

be the result of either two pure strategies, 1 2( , )  , or two mixed strategies 1 2( , )s s . The 
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convexity of S  means simply that given any two points in S, say 0 0
1 2( ),u u  and 1 1

1 2( , )u u , 

then any convex linear combination of them, such as a point 

0 0 1 1
1 2 1 2 1 2( , ) ( , ) (1 ) ( , )p pu u p u u p u u      where 0 1p  , is also in S. Now the points 

0 0
1 2( ),u u  and 1 1

1 2( , )u u  were the result of applying the utility operators of the first and 

second bargainers to anticipations 0 0( , )A B  and 1 1( , )A B , which, without loss of generality, 

we can assume to be the result of the two pairs of pure strategies, 0 0
1 2( , )   and 1 1

1 2( , )  . 

We want to prove the following theorem: 

Theorem: Given any p, 0 1p  , and any 0 0
1 2( ),u u S  and 1 1

1 2( , )u u S, and 

utility functions 1u  and 2u  such that (A, B)   1 2,u u and 1u  and 2u  satisfy the von 

Neumann-Morgenstern utility postulates, then there exists an ( , )p pA B such that 

0 0 1 1
1 2 1 2 1 2( , ) ( , ) (1 ) ( , )p pu u p u u p u u     . 

Proof: Let 0 1 0 1( , ) ( (1 ) , (1 ) )p pA B p A p A p B p B        ; i.e., ( , )p pA B  is the 

result of the pair of mixed strategies 0 1 0 1
1 1 2 2( (1 ) , (1 ) )p p p p           .  

Then  

0 1 0 1
1 2 1 2 1 1 2 2( , ) ( ( ), ( )) ( ( ) (1 ) ( ), ( ) (1 ) ( ))p p p pu u u A u B p u A p u A p u B p u B         

 

because, since we have assumed the von Neumann-Morgenstern utility postulates, u is 

such that ( (1 ) ) ( ) (1 ) ( )u p a p b p u a p u b         . By the definition of 0
1u  etc. we have,

0 1 0 1 0 0 1 1
1 2 1 1 2 2 1 2 1 2( , ) ( (1 ) , (1 ) ) ( , ) (1 ) ( , )p pu u p u p u p u p u p u u p u u              .  

Therefore S is convex. 
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Before we discuss the actual process of locating the Cournot-Nash equilibrium 

points for games, we might at this point go into some of the objections to the basic 

concept underlying this solution to the bargaining problem and the question of its 

relevance to experimental work in bargaining. 

It is essential to realize that, as long as rivals make Cournot assumptions about 

each other’s behavior, the analysis cannot be adjusted in such a way to make the rivals 

right for the right reasons, instead of describing a situation in which they turn out to be 

right for the wrong reason. If an individual knew that his rival was reacting along one of 

the reaction functions, say 2 1( )s s , then he would not be reacting along 1 2( )s s . Instead he 

would try to select the point along 2 1( )s s  which was optimal from his own point of view. 

Normally the point so selected would not be the intersection point. Therefore, if we make 

the assumption that the two rivals are aware of the “true” reaction functions, then the 

“true” reaction is no longer true! Hence, the assumption that the two rivals know of each 

other that they react à la Cournot is an inconsistent assumption. A determinate 

equilibrium of the Nash-Cournot type is not what might be called a “rational” solution. 

Generally speaking, if the two rivals change their rather arbitrary and incorrect 

assumption about each other’s behavior, then there will be no tendency towards a 

restoration of the Cournot-Nash equilibrium. The kind of stability which exists in the 

Cournot-Nash equilibrium is of very little importance because the equilibrium proves 

unstable as soon as one rival becomes doubtful about his rival’s behavior. 

It is possible to define what might be termed a strong equilibrium point which 

would be immune to the above criticism; i.e., to the unilateral waking up by one of the 
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passive Cournot-Nash rivals. All that is required is that in addition to the condition on 

0 0
1 2( , )s s  given above in (1) and (2) we add the condition: 

 0
1 1 1 2 1( , ( ));u u s s s   (3) 

 0
2 2 1 2 2( ( ), ).u u s s s    (4) 

That is, the equilibrium strategy for each rival must be optimum,  not only against 

the other’s equilibrium strategy, but also with respect to any other of his own when the 

rival plays optimally against that other strategy. I strongly suspect that this definition of a 

strong equilibrium point restricts, to the class of game with ordinary von Neumann-

Morgenstern saddle points in pure strategies, the existence of games with strong 

equilibrium points.    

The Cournot-Nash weak equilibrium has the advantage of being easily calculable 

for normalized games of the non-constant-sum type. I believe quite definitely that 

deviations from a Cournot-Nash equilibrium in an experimental game will be extremely 

useful in measuring the effect of the learning process upon the ultimate outcome of a 

bargaining situation; for, as indicated above, the Cournot-Nash equilibrium is an 

“irrational” or non-optimum equilibrium which nonetheless possesses from the 

standpoint of the bargainer some important characteristics of an optimum. Other factors 

will undoubtedly play a role in producing outcomes significantly different from Cournot-

Nash equilibrium, and the relationship of the equilibrium to other factors needs more 

looking into. 

It is worth noting that both the initial experiment and the Cournot-Nash 

equilibrium concept presuppose an attempt to exclude collusion. To what degree this may 
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be achieved and relevance of the Cournot-Nash equilibrium to situations where it cannot 

be excluded is an important consideration. 

To illustrate how a Cournot-Nash equilibrium is actually found, let us consider a 

simple game. Let A and B be the two players, who have control over the sets of pure 

strategies 1 2{ , }a a  and 1 2{ , }b b  respectively. The pay-off matrices for A and B are as 

follows:  

Table 1 

A  B 

 1b  2b    
1a  2a  

1a  5 -4  1b  -3 5 

2a  -5 3  2b  4 -4 

 

Let A play 1a with probability p and 2a with probability (1-p), and let B play 1b  

with probability q and 2b with probability (1-q). A’s mathematical expectation, which we 

assume he wished to maximize is  

 
5 4 (1 ) 5 (1 ) 3 (1 ) (1 )

17 7 8 3
aV p q p q p q p q

p q p q

               
       

  

B’s mathematical expectation is  

 
3 5 (1 ) 4 (1 ) 4 (1 ) (1 )

16 8 9 4
bV p q q p q p p q

p q p q

                
        

  

Taking partial derivatives and setting them equal to zero we have two equations 

which may be solved for equilibrium p and q: 
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17 7 0;

16 9 0.

a

b

V
q

p

V
p

q


  




   


  

Hence, the equilibrium point is  

 1 2 1 2

9 7 7 10
( , )
16 16 17 17

a a b b    

and the expected equilibrium pay-off to A is 
5

17
 and to B is 

1

2
.  
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