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l. INTRODUCTTION

A wide class of probiems in sconowetric theory concern statistical

inference in linear models when thsre are & rriord corstrainte on The parameters.

f
i

The famous “slumiltenecus eguatlons Troblen” with identifyving restrictione
is pernaps the most notable exsmpls. Albhough these problema have received
considerable attention over the past twenty years, there remain a number of
gaps in the theory. In the present paper an attempt is made to develop some
of the basic regults of a general clazszinsl theory of sstimation in the
presence of a priori informatilcn and %o ag
econome?ric models. In a subseqguens paper The problem of efficiently
stimating paremeters of gimuliancous sguation syshems will be examined as a
special case of this gereral theory. Ihere the value of overidentifying
structural restrictions in increasing the aefficiency of reduced fopm

eztimation will be anslyzed in zuine dobail,

The epproach taken hers is in “he classical gtabtighbical traditicn of

evaluating estimating procedurzs on the bvasis of their sanpling distributions

The aunthor is Assistant Profeszor of Econcmics at Northwestern University.

This paper, s portion of & decteoral dlssertation submitbted to the
Magsachugsetts Ingtitute of Technology. was written in part while the author was
a member of the Cowles Foundation research stafl io Spring, 1965,
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(or at least on the basis of approximations Lo these distributions).l

Specifically, a "best” estimator is defined to be one which has smﬁl}est

varilance out of fhe ciass of all unbliaged estimators using the avallable a

priori informetion. Although this classical, minimum-variance-unbiased approach has
been used in most previous studies in econometrlic theory, it is not completely
satisfactory. inen the types of loformstion economists possess and the uses

they wish to make of theixr estimsted models, 1t is likely that the classical
stabistical criteria are often inapproprisie for econometrics. For many problems
involving a Eziggginformation, 8 Bayesgian decision-theoretic approach seems much
more natural than the classical approach. Nevertheless, it is of considerable interest
to see how a priori information cen be incorporated into the classical theory, if
for no other resson than to compare the clagssical results wilth the Bayesian results.
The present paper thus ignores decislon theoretic considerations and is completely

Telassical.™

The concern of this papsr ie zoisly with the problewm of optimal
point estimation. The theory of cpbilmal methods of testing hypotheses or of
forming confidence regions ig nobt discussed explicitly, although optimal
estimates often form the basis for optiwal tests and optimal confidence regions.
There are two reasons for concentrating on polnt egtimation, First, the theory
of estimation can be presented at a very general, yet useful, level without

getting involved in the details of sgpecial cases or in the difficult distribution

The approach is classical in the sensge that it is the one taught in the
majority of postwar textbooks. Only a few decades ago, however, the word
classical was used to describe the Bayssian view. Our definition seems to
be consistent with medern usgage.



theoretic problems which axize in the theory of hypothesis testing. Second,
the most common decigion-thecretic approaches to econometric problsms are
based on uses (e.g., forecasting) for which optimal decisions are essentially
equivalent to optimal estimates. Hence the parallel between the classical and

Bayesian approaches is made clesrest via the theory of point estimation.

The literaturs on estimation under a priori constraints is rather
limited. The only case that has been examined in great detall 1s that of the
linear model under linear constraints,l The more general problam has bzen
snalyzed 1n 2 relatively few articles, most notably the early Cowles Commission
studies [%, 201, a series of articles by Aitchison and Silvey [1,2, 24], and a
section of the recent book by Malinvaud L22, Chapher 9]. Some of the results
which follow are contalned in the above-mentioned works, although their impllca-

)
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tions and generality seem not 4o have been previously explorsd.

2. A FRINRL INFORMATION

One of the major problsms Lo shabtisblcal inference 12 Lo dewelop
methods of wsing sample information to obbaln estimates of unknown paramelers.
However, there are many examples in the various areas of statistical applica-
tion where the shatistician possesses, in addition to the sample, a priori

information about the perameters, For example, the econcmetriclan may know

L See, for example, Theil {26, pp.331-33], Chipman and Rac 18], or

Goldberger [13, pp. 255-65].

2 The approach taken in the present paper is probably most similar to that

of Hammersley [15] although his topic 1ls guite differsnt. The present
paper is also closely related to s recent article by Kisin [18].
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from theoretical arguments that the marginal propensity to consums lies
between zero and one or that a demand function is homogensous of degres
zero in prices and income. Our purpese 13 to exploye the gain in

efficiency which results from making use of such g priori information when

estimating the parameters from & sampls.

Let the vector of unknown paramsters be dencted by € . A pricri

information on the vector 6 wmay bs skpressed in a muwbher of different ways.

stochastic information and nonstoshasbic information. The examplies above
concerning the aggregate consumpticon funsction and the demand funetion are

illustrations of nongtochastis informabion si

b
3
&
44

¢ no rapdom or propabllisztiz

concepts are introduced. In the one cas valuss of 0

(the marginal propensity to congume } L@ reshricted to a finihe interval
rather than being allowed to sssums sny valus on the real Lins. Io the othsr
case, The space of possible values for the various prise and income
coefficients is restricted to lis in a subspace defined by the homogenelity
postulate. In generel, nonstochastiz information bakes the form of restricting
(making smaller) the set of possible values the vecbor 6 may take. There are,
of course, many ways to describve {or to generate) zuch a resbricted seb, Thres
simpie methods which have particular relevance to eccnomeirics are anslyisd in
the following sections.

Stochastic informatlon is sxpresgsed by wmeans of a random varilable
whose probability distribution involves @ . Such informstion may arise in

elther of two gquite different ways. On the onsg hand, the statlsticlan may



treat ¢ 1tself as though it were a randem variable distributed according
to some known subjective probability law. That ls. the gtatistician

expresses his "betting distritvution,” the odds he would give (or take) on

gambles concerning the value of 6 . On the other hand. the statisticzi

may treat € as a nonsbochastic parameter but may possess an estimats 6

m

€

as a result of a previous sampls. In guch a case the probabllity distribution
of g will generally depend oo 0 . In both cages the sbabisgticlan mast
incorporate stochastic pricr Information with the new sampls information. The
former approach, of course, is Bayzsian in spirit and doss not £it into the
classical framework of minimum-variance-unbiased estimation. The latter
approach, however, iz perfectly classical since it simply involvss The combining
of two samples (using a relative fregusncy inberpretation of probanllityd,

Since the analysis in this paper is bazed on the classical Theory, only ths
" pap ¥ ¥

second type of stochastic information will bs discussed,

The outline of ths r=sb

study 1z as follows. In the nsxh
sectlon the classical thecry of estimation without a priori Information is
sumarized. In Sections L-7, four differsut ways of sxpre sslng a priocri
informatlon are presented and thelr impact on estimabion efficisncy sxamined.

In a later paper some of these resulis will be applisd o the zass of sztimabing
a system of simultanecus linesr squaiicns when there aps nonghochastisz

overidentifying restrictionz on the struchture.

5. UNCONSTRAINED ESTIMATION

Since the purpose of this paper is to generalizs some of the

important classical thecrems on efficlent estimation sc that they apply
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to the case where a priori informstion concerning the parametzrs 1s svailable,
1t will be useful to begin by stating the clasgsical thegrems of uncopstrainsd
estimation. First 1t will be neceszary to develop the rsguired nobtation and
assumptions. For ease of presentation; the analysis will bz conduoted wndsy
the assumption of indepsndent Eampling{from‘identiaal prooatility dletribatlonsg
of the "continuous type.” Ths generalizations to more general sampling schemes
and to more general classes of probability distribubtlors do not caltsze any
particular difficultie=. ILet Xn. s a vestor random variable repressnting

the sample outcome of 1n independent repetitions of an experiment., Ths

4B

Joint probability function for Xn is assumed to be reprssented by a conbtinuous

dengity functlion

(5.1) £ i, )
where x represents the vector of obssrvations and where 6 iz 9 vastur of
m unknown parameters,

The density function (3.1} iz zsssumed to satizfy a number of

regularity conditlonz. Since these conditions ars dizscussed in detail

elsevhere {9, pp. 500-501], they are merely summarized trizfly hers:

a) The set of posgsible values for 6 , denotsl by A. 1= an opan

subset of m-dimensional FEuclidean space.

b) 8, the set of x-values for which (3.1} iz strictly posibive,

does not depend on € .

¢} The equation

(3.2) ffn(x, 0)dx = 1
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is satisfied for a1l ¢ in A . The integral in (3.2) is a multivariate

integral over the finite-dimensional sample space 8§ .

d) For all 6 in A and a2lmost every x , the functions fn(xj e)
and log fn(x, 8) possess partial derivatives with respect to € up to the
third order. These derivatives are bounded by a function Ki(x) which is
finltely integrable over S . Furthermore, the third partial derivative of
log £ is bounded by a function Kg(x) that has finite expected value. Hence,

twice differentlation under the integral sign of (3.2) is possible.
e) The information matrix ({defined below) is positive definite.

The above regularify conditions are needed in order to derive the
classical theorems of estimation. Since these theorems are proven in the
literature, most of the above conditions will not be explicitly used in the
sequel. It may be noted in passing that most of the familiar distributiouns
satisfy the above assumptions. (Discrete distributions can be included if
the integrals are replaced by sums.) The most notable excephions are the
rectangular distribution and truncated distributions with the point of
truncation depending on 6 . Although it iz possible to prove some of the
classical theorems using weaker regularity conditions, no attempt te do seo

will be made here,

The traditional theory of estimation as develcped by Fisher,
Cramer, Rao and others, is concerned with finding efficient, or at least
asymptotically efficient, estimators of the unknown pa ameter vector 6 on

the basis of the sample Xn . An estimator t(Xn) is a vector of functions
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which does not depend on the unknown € . An estimator is unbiased if
(3.3) Elt] & [t(x)f (x, 0)dx = 6

for every € in A . An unbiased estimator t ig efficient if its covariance

matrix

(5.@ V= [vij] = [E(ti - 91)(t3 - ej)]

ieg at least as small as that of any other unbiased estimator. That is, *

ig efficient if, for every © in A, V

. VS is negative semidefinite for

ell unbiased estimators s .

Since it is often impossible to find an efficient estimator, it
is useful to have an approximate concept. Consider a sequence of samples

X Xps wens X (where the index refers to the sample size) and the corres-

1772

ponding sequence of density functions f f2, sy fn , Where each fi is a

l}
function of the same parameter vector 6 . A sequence of estimators
tl(Xl), tE(X2)’ cees tn(Xn) (where tn represents the estimafor based on a

sample of size n) is couslstent if,
(3.5) Plim [tn(xn)} =0 .

A consistent estimator tﬁ (or more precisely, a consistent estimator
sequence [tn) } is sald to have an agymptotic covariance metrix Vt if,

for all 6 in A , the sequence of random variables &fﬁ(tn - 6)} converges
in distribution to a random veariable with mean zero and covariance matrix Vt .
A consistent estimator tn igs sald to be asymptofically efficient if Vt - VS

is, for all 6 din A , negative semidefinite for all consistent estimators sn .



w9 =

Asymptotic efficiency is usually defined only for a given class of consistent
estimators (e.g. those satisfying certain regularity assumptions) since the
class of all consistent estimators is not sufficiently well behaved. Note alsg
that, whereas efficiency (for fixed n) is defined only for estimators with
finite second moments, asymptotic efficiency requires only that the limiting

distributions have finite second moments.

The basic theories of efficient estimation are usually shated in
terms of the so-called information metrix. it Xn is a ssmple of size n

and fn(x, §) 1is its demsity function, the information matrix is defined as

© 3%10g £ (X, 0) dlog T diog f_

(5°6) R = -FK. n = B n o .
S 6,98, 38, 36,
1 J i J

1 [

where the last equality is verified by differentiating equation (3.2). The

asymptotic information matrix associated with a seguence of samples Xl’ Lo

¢ 0o ;

and a sequence of densities f., f eesy 18 defined a=z

1 T2’

(3.7) R=lim %R .
nn
Ir¥eo
It will be assumed that for every € in A, R and each Bh exiat and

are positive definite.

Two major results of classical estlmation theory may now be stated;

THEOREM A. The matrix Rgl i1s a lower bound for the covarlancs matrix of any
unblased estimator of €@ . There exists an unblased estimator whose variance
attains this bound if and only if the logarithmie derivative of the likelihood

function L takes the form

We shall use the phrases "likelihood function” and "joint density function®
interchangeably when referring to fn(x3 &) .
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o log fn
(3.8) ——— =R (t -
30

fap]
—

where t , a vector not depending on 5 , is the minimum varianze bound (MyR)
estimator.

THEOREM B. The matrix R'l

1s "essentially® a lower bound for the asymptotic
covariance matrix of any consishent estimator of ¢ . Purthermore this lower

bound is asttained by tse maximum likelihood estimator,

These two results have o long history and are associsted with such
statisticians as H. Cramer, D. Dugue, R. A. Fisher, M. Frachet, and 2. k. Rao,

For convenience, Theorem A will sometimes be referred to &s *he Jramey-Fao

e

inequality and Theorem B as the asymptotic Cramer-Fao inequalivwy.

The remainder of this paper will deal with generalizations and
applications of these two inegualities when a priori information 1s available.
First, however, some comments concerning these classical thenrems are in order.
It is clear that equation (%.8) is quite restrictive and *tha* ocnly for a few

1

density functions will the bound R; be attainable.? Mereover . If the bound

%L will in gen=ral not be

=3

is attainable for one set of parameters 0 ,

attaineple for any new set of parameters obtained by nonlinear franzf-rma‘iosn.

(For example, in the one-parameter case, If tne lower bound is attainabls for 6 ,
. , ) 2 . _ -1, PR

the bound is ngt attainable for €% .) Sinece the bound R~ is not usually o

best lower bound, it may reasonably be asked whether the bound iz worth much

attention. The enswer to the question lies in the fact that, for large n |,

For proofs of the two classical theorems see Kendell and Stuart [16, pp. 8-60]
and the references cited there.

The bound will be attainable only if thers exists a set of n cufficient
statistics. This will be the cage only if fn is a member of the Tittman-
Koopman class of densities.
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the difference hetween the hest possible bound and Rgl is very small.
Hence the Cramer-Rac inequality gives an epproxlmate expression for the
lowest attainable variance of an unbiased estimator. The assumption of un-
blasedness is crucial to the small-sample classical theory since uniformly
best estimators without the unbiasedness constraint do not exist. For
large n , however, this constraint is unimportant since the distribution
of an asymptotically efficient estimator can always be approximated by a

distrivution with mean € .

The asymptotic Cramer-Rea¢ inequality is a statement of the above-
mentioned spproximation. Although R;l may not be attainable for finite
n, R"l is always attainable in infinite samples. The word "essentially™
in the statement of the second theorem allows for certain pathologscal cases
where covariance mabrices, for a few values of ¢ , are smaller than R;l .
These cages can be eliminated by stating regularity conditions on the class
of estlmators congldered or by redefining efficlerncy by changing the phrase
"for all @ " +to the phrase "for all © except for a set of measure zero."

A precise statement of the asymptotic inequality where careful account is

taken of the conditions needed for its validity can be found in IeCam [21].

Qur concern 1s the generalization of the claszical theorems for non-pathological
cases and hence all of the results that follow should be understood to regquire
the same gualifications az dizcussed here. We begin by examining the increase
in efficiency which is possible when steochastic information from a previous

sample is present.
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L. CASE I: PREVIOUS SAMPLE

4,1. The Minlmum Variance Bound

Suppose that the statistician has available fo him, in addition to
the sample Xn , another independent sample from which he obtains the estimator
6 . Suppose further that the statistician knows that 6 is aistributed accord-
ing to the probability density fo(gp &) . That is, the vrobability law for 5
is a known function of the unknown parameter € . Then the Joint density function

for Xn and 6 is given by

(k.1) £(8, x; ) = £ (x5 0) - 7 (8, 0)

as long as Xn and § are indepsndently distributed.

It fo and fn satisfy all the regularity condltions of Section 3
then f will also. Thus, all the assumptions of the Cramer-Rao inequality

are satisfied if one treats f &z the density function for the sample (Xn, 8)

If the information matrix for f is denoted by ﬁﬁ , it follows from the mul-

tiplicative form of (L4.1) that

(4.2) R =R *+R,

where Ro is the information matrix assoclated with fo +» Since all three

1

matrices are positive definite, it follows that B; - ﬁ;l is positive

definite.l Henée we have the result that the lower bound for the variance

See Appendix A.
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of an unbiased estimgbor is decreased when information from a previous sample

is uged.

The question of the attainability of the bound in finite samples
is difficult to answer in general. Although 1t does not appsar possible
to speclfy easily interprefable necessary conditions for the attalnsbility of the
lower bound, an interesting set of sufficient conditions can be established.
Recall that the (Cramer-Rac bhound can be attained if and only 1f £ can be
expressed in the form
(4.3) 9108 £ F (4% . o)

| 56 2

where £ le an estimator indepeudens of € . Suppose that fn and fo
can be written as

o log T
————= =R (t - 6)
o6

—
£
L
e

—

o log fc
— =B (s - 0}
where 1t depends on Xn and 8 depende on 8 ., That is, suppose that
is a MVB estimator of 6 when only Xn is avéilable and that s 1is a MWB

egtimator when only 8 is availsble.

An expression for the logarithmic derivative of £ Iis obtained by

adding the two equabions of (L.l):

O0logf ©Ologf 0 log £,
a6 08 L

(J{-°5) AT ‘l + 81
‘ w (Rn + RO,L(Rn + RO) (Rnt Rs) - €]

= R t* - 3
R (4% - 0)
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Thus we have the reguired form as long as
(4.6) t* = (R_+R)NRt +Rs)
n o] I o]

does not depend on 6 . It is clear that t* will be independent of 8
ifr Rn and Ro do not depend on 6 . This is overly strong, however; it
is sufficient that Bn and RO each factors into a matrix independent of

@ end a common scalar which may depend on € .

The above discussion may be sumarized in the followling extenslon

of Theorem A:

THEOREM 1. In the presence of stochastic prior information expressed by an
independent estimator of € , the matrix ﬁ;l defined by (4.2) is a lower
pound for the covariance matrix of any unbiased estimator of 6 . The bound,
however, is attainable only under restrictive conditions. One set of
sufficient con&itions is that both fn and fo can be written in the form
(5.8) with R and R not depending on 6 {except perhaps for identical

scalar multiples).

4.2. An Example

Consider the normal regression model

(4.7} y =3B +u

where y is an n-dimensional vector of observations on a random variable,
X dis a nxm matrix of nonstochastic variables, B is a vector of m

unknown parameters end u is a vector of n independent normal random
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errors with zero mean and covariance mabtrix 021 . The likelihood function

for the sample is

1
o Sz 1 -2 : .

(4.8) £.(ys B, 07) = (20”) © expl- 3 0™y - X8)'(y - ¥B.) .
The logarithmic derivatives are

o log T
(4.9) 8~ XX (b - B)

OB o

o log f '
4.10 - GRS S-S )
(4:20) 32 208 0

where b = (X'X)";X'y is the least-squares eshimator. The information

matrix for B and o is the (m+ 1) x (m + 1) matrix

,.* bt
1 4
y: X' 0
(4.11) R =
0 2
T
< g
- -

Because Rn ig bleock diagonal, the Cramer-Eac bound for £ may be
examined separately from that for a® . Tb.is apparent that (4.9) is of the
form (5.8); however, equation (4.10) is not since u'u/n depends on the
parameter B . Thus, as is usuval with the normal distribution, the Cramer-
Rao bound is not attalnable for 02 . No unbiased esgtimator has a variance

as low as 2 oli"/n . However, the least-squares estimator b does have

the covariance matrix GE(X'X)_l and hence is a MVB estimator of B .
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Suppose now that there exists a previous sample from the same

process. That is, the statisticlan has avallable an observation on an

n0~dimensional normal. random vector Ve and an n,6xm matrix Xo such

that E[yol =Xfp and Var[yO} = 623 . The likelihood function for the
sample Y _ will be ‘of the same form as (4.8) with subscripts on y, n, and

X . The joint sample {y, yq} will have a normal density £ such that

d log f Lo : 1 .
. - Kl Y} ob meen X1 ‘e
(L.12) 5 X (n - B+ . }@.Ozio(bo 8)

op e

E

I

L orvv oo vy VR F L
—;g(x X+ XX )00 - B)

_ novn ufu + ula -
(4.13) e loggf . @o [ 0o _ Ga]
o g 20 0

-1
where b* = (X'X + XX )Xy Xly.) . Hence b¥ iz an MYB estimator

of B with covariance matrix equal t¢ the bound GQ(X‘X + XK )“l , the
5o

northwest submatrix of

B 1 ]
o {XE XX ) C
= 1
(h.1h) R~ | .
0 20
n-+n
L O

The combined sample gives rise to an efficient estimator for B
and an attainsble Cramer-Rac bound because both samples come from the same
stochastic process. If, however, the second seumple came from a process

with a different varlance, ¥ would depend on the unknown ¢~ sand the
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bound would not be attainavle. Prior information which is derived from a
different stochastic process than that which produces the sample will in

general not give rise to an estimator whose variance equals the lower bound.

4.3. The Asymptotic Bound

In order to complete the analysis of stochastic prior information,
our attention must turn to the asymptotic case and an extension of Theorem B.

Defining the asymptotic informstion matrix for £ by
(4.15) R = 1lim 1/n R, = ln 1/n [Rn + RO] s

we can argue as sbove that, since R  satisfies the same regulsrity condi-
tions as R , the clagsical theorem applies. The only remaining question is

the value of R . This, of course, depends on the value of
(4.16) lim 1/n R,

If it is supposed that the prior information does not change as the sample Xn
gets larger, then R  is a fixed matrix and the limit in (4.16) is simply the
zero matrix. As the sample gets larger, the prior information plays a smaller

role. In the limit, it is of absolutely no value.

A more interesting case is to assume that the prior information
is of the same order of magnitude as the sample information. In other words,
it can be assumed that the limit in (4.16) is a positive definite matrix ﬁo .

This asswmption should be interpreted as follows: We are interested in an

approximation %o ﬁn which is valid for "large” n . By "large” one means a
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sample size small encugh to occur in practice, but large enough to make the
approximation error reasonably small. For such a sample, Ro/n may very

well be much larger than the spproximation error. In such cages it is
convenient to accept the fiction that R, 1s a function of n and that (4.16)
possesses a nonzero limit ﬁo . Then one can conclude that stochastic
information reduces the bound for the asymptotic covariance matrix of a con-

sistent estimator. These results can be summarized in the following:

THEOREM 2. 1In the presence of stochastic prior information expressed by an
independent estimator, the matrix R © defined in (4.15) is essentially a
lower bound for the asymptotiec covariance matrix of any consistent estimator
of 6 . This lower bound is attained by the maximum-likelihocod estimator
{where f 1is the relevant likelihood function). The matrix ﬁ-l differs from
R-l only if the prior information is of the same order of magnitude as the
sample information. If the prior information is Independent of n there is

no gein in asymptotic efficiency.

5. CASE II: CONSTRAINT EQUATIONS

5.1 The Minimum Variance Bound

One of the easiest ways of expressing nonstochastic prior information
is by means of a set of equations which 6 is constrained to satisfy. For
example, if @ 1s the vector of all price and lncome elasticities of demand
in a many-commodity market, the theory of utility maximization subject to
constraimt implies that certain weighted sums of these elasticities must equal

zero. JIn general, suppose that the set of possible values that the unknown
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Parameter vector € may take is restricted to Ag s the solution set of

k equations
(5.1) gi(e) =0 (1 =1, eee, k)

where k is less than m , the number of unknown parameters. Suppose
further that the g; are continuous and possess partial derivatives of at
least the second order. It will be assumed that the matrix of first pertial
derivetives

agi

(5.2) G = [gij] = gé'—
o

hag full row rank k when evaluated at the true parameter 6° « That is,

the equations (5.1) are functionally independent in a neighborhood of e° .

The derivation of a lower bound for the variasnce of an unbiased
estimator proceeds as follows. Since Ag is not an open set in m-space,
Theorem A is not applicable. However, 1t can easily be modified. For any

unblased estimator +
(5.3) Sty -6.) £ (x, 0) dx =0 (1 =1, veu, m)

for all € in Ag s the solution set of (5.1). Iet 6° be the true parsmeter

and 91 be another vector in Ag + Then, for a1l 1 ,

(5.4) J(ey - eg)[fn(el, x) - fn(e°, x)Jdx = 91 - eg .

Defining Yy = Qi - 82 and using the mean value theorem, we can write

of
Q
(5’5) f(ti - ei)[ ? 55? Yj]dx =V
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*
where the partial derivatives are evaluated at 6 , a point between 91 and
6° . Then, turning to logarithms and defining ¢ = (cl, cens cm)’ to be an
arbiltrary nonstochastic vector, we have
0 log f
o n
(5.6) J ? e, (t; - 67) J}n . ? —-—Eggu— v J}n ax = ? c,¥;

*
where fn is also evaluated at € ., Application of the Cauchy-Schwartz

inequality to (5.6) yields
(5.7) e + y'RYy > (cty)®

where V¥* 1s the second-moment matrix of . t around 6° using the
density f (x, 0%) and R; is the information matrix evaluated at 6% . The
inequality (5.7) must hold for all y such that 6% is in A, - But, spplica-

tion of the mean value theorem to (5.1) yields
(5.8) G y=0

where G** is the Jacoblan matrix G evaluated at some vector 9** between
6° ana ol . as |¥| approaches zero, V* approaches the true covariance
matrix of t, R: approaches the true information matrix Rn , and G**
approaches GO . S8ince (5.7) must hold for all 91 is Ag y 1t must aelso
hold in the limit as |y| goes to zero (along a path in Ag). Hence, after
dividing the inequality (5.7) and the equation (5.8) by |y| , one finds
that in the limit the following inequality holds:

(5.9) c'Ve > (el

C
Y
¥ Rny
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for all y satisfying the constralnt
(5.10) %y =0 .

A lower bound for c¢'Ve is obtained by finding the maximum value
the right hand side of (5.9) may take. This leads to the following extremal

problem:

meximize (c‘y)2
y
subject to

¢°y = 0

' =
y'Ry=1.

This problem is easily solved using the method of Lagrange multipliers. The

ineq_ua.lity (5.9) becomes c'Vc > c‘Pnc s Where Pn is given byl

R R, NS SUIES. BT SR |
(5.11) P =R R G (GBn G') GR " ,

a matrix having rank m - k 2 1§ meximum 1s attained when y 1is any

mltiple of Pnc .

This result .can be expressed more simply in terms of the bordered

information matrix

(5.12) | R g!

For notational convenience the superscript on ¢ is dropped. In the sequel
all derivatives are eveluated at the true parsmeter ©0° unless otherwlse stated.

2 See Appendix A.
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and its conformably partitioned inverse
-1

(5.13) = .

Thus the Cramer-Rao bound for the variance of an unbiased estimetor when
Prior constraints are used is given by the m x m northwest submatrix of the
inverted bordered informastion matrix. 'The decrease in the bound due to the

prior information is given by

.1 [ IRS: NS N |
(5.1k4) R™-P =R"G (GRn G*) GR ~ ,

a positive semidefinite matrix having rank equal to the number of constraints X .l

Glven the constraint equations, it is possible to relax the asswaption
that Rn ig nonsingular. The extremal problem just solved is the same as the
problem

maximize (c'y)2
N

subject to
Gy =0
y'(hn F0'G)y =1 .
If the matrix R + G'G is nonsingular, then equations (5.11)-(5.14) remain

valid if Rn is replaced by Rn + G'G . The lower bound is then giﬁen by the

appropriate submatrix of

See Appendix A.



R+ G'G G' ?n *
(5.15)

il

- (.

In this case the availability of a prlori information makes estimation
possible. Without The information the parameters could not be estimated

at all,

The bound Pn is, of course, attainable only under restrictive
conditions. Typlecally, no unbiased estimator cen be found with a covarience
matrix equal to Pn + From the gbove derivation, it is seen that the bound
ig attainable only if the Cauchy-Schwartz inequality when applied £o (5.6)
remains an equality for y = Pnc and all c¢ . This will occur if and oniy
if, for all x, fn is of the form

d log fn
(5.16) P~ = t -8
where t does not depend on & . Although it does not seem possible to
state more useful necessary conditions for this to hold, it is possible to

present an interesting set of sufficient conditions.

Suppose that there exists a MVB estimator when there is no a priori
informstion. This means that the likelihood function can be written in the form
(3.8). Suppose further that the constraints (5.1) are linear so that they take
the form GO = a . In that case one can writé

o log £ 1 o log £,

= ~Lsy =1, 4y-1 -
P —— = [I-R7G'(GR ¢) GR" —55—

(5.17)

fi

[T - R;lG‘(GR; G')‘lG](s -0)

H

(s - R;llG'(GR;le')‘l(Gs -a) - 6]
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where neither G nor & depends on 6. Then, iIf Bn 1s independent of 6
except for at most a scaler multiple, (5.17) is of the form needed for an

attainable bound. The MVB estimator is given by
(5.18) s¥* =g - R;lG'(GR;lG')"l(Gs -a).

The results obtained above may be summarized as follows:

THEOREM 3. In the presence of prior knowledge expressed by a set of k
independent constraint equations, the matrix P glven in (5.11) is a lower
bound for the covariesnce matrix of any unbiased estimator of © . The
possible efficiency gain R;l- Pn is a positive semidefinite mstrix of rank

Sufficient (but not necessary) conditions for Pn to be attainable are

a) R;l is attainable when the constraints are ignored,

b) R can be written as the product of a matrix which does not

depend on 8 and a scelar which may depend on & ,

¢) The congtraints gi(e) are linear.

5.2. The Asymptotic Bound

The asymptotic extension of Theorem 3 is straightforward. It is

merely necessary to deflne

(5.19) P = lim % P =R - R'lG'(GR'lG')'lGR'l

n
oo
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which is the m x m northwest submatrix of

1 - “
iR t R '
= G G

(5.20) 1im = .

[on]
<
[en]
o

Then one cen stete:

THEOREM 4. TIn the presence of prior informetion expressed by a set of
constraint equations, the matrix P is essentially a lower bound for the
asymptotic covariance matrix of any consigtent estimator of 6 . %he
efficiency galn R T - P is a positive semldefinite matrix having rank k .

The bound is attained by the constrained maximum-likelihood estimator.

A complete proof of Theorem 4 is very lengthy and difficult.
Fortunately, however, the classical proofs of Theorem B can be epplied
with only minor modification. It 1s necessary to show that the likelihood
functlon defined on the restricted psrameter space Ag satisfies the regularity
essumptions agsumed by LeCam [21]. This has been done by Aitchison and Silvey
{2] in the course of deriving the asymptotic distribution of the constrained

maximum-llkelihood estimator.

The method of maximum likelihood is by no meens unigue in giving
estimators with optimal large-sample properties. Another general principle
of estimation -~ the method of minimum chi-gquare -~ slsc gives rise to

asymptotically efflcient estimators.l Consider the quadratic form

1 The minimup~chi~gguare method or some veriant of it is used by Malinvaud

{22, pp. 2B3-86], who refers to it as the minimum distence method, and by
Basmann [4,5] vwho refers to it as the generalized classical estimating method.
For further discussion of the general principle see Ferguson [10].
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(5.21) o(6) = (t - 6)*R(t - 8)

where t 1s an estimator of 0 which is asymptotically normal and efficient
when there are no constraints; R is the asymptotle informeticen metrix R
evaluated at 6 =t . The estimator %t might be, for example, the unconstrained
meximum-likelihood estimator. 1In any case, t 1is an estimator which is
asymptotically normal with mean 6 and covariance matrix R . The

varisble np converges in distribution to a chi-square variate as n ap-

proaches infinity. The minimum-chi-square estimator of € in the presence

of the prior information is given by € , the solution to the following extremal

problem:
min (t - 6)'R(t - 0)
6
(5.22)
subject to

g(6) =0 .

The linearized minimum chi-square estimator is given by o¥* , the solution to

the modified extremsl problem:

min {t - 6)'R(¢t - @)
o

(5.23)

subjeet to

g(t) +G(o - t) =0
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wvhere G i1s the Jacoblen matrix G evaluated at 6 =t . The solution
to the first extremsl problem cannot be given explicitly. The solution to

the second problem, however, is easily obtained as
(5.24) 6* = t - Rar(ar Yo ) Ya(t)

where, for typographical reasons, we have omitted the "hat" from R end G .

The basic theorem of the minimum-chi-square method is that both & and
6% gre asymptotically efficient. We shall indicate the proof for the case of
0¥ » referring the reader to Chiang [7] and Ferguson [10] for the complete proof.

Using the mean value theorem, we can write {5.24) as

*

(5.25) 6% - 6% = [1 - B (ar™er) Ye* (¢ - 0°)

where G¥ is G evaluated at some point between t and 6° « Let the
expression in square brackets be denoted by A . Then Plim A = FR ,

1
Hence n (é‘* - 60) has the same asymptotic distribution as PR n2(t - 60) s

-

But the latter random vaeriable is asymptotically normal with mean zero snd

coveriance matrix
PRR™IRP = P

Hence 6% has en asymptotic iraria.nce equal to the Cramer-Rao lower bound.

It is important to emphasize that the optimality of the minimm-chi-
square estimator depends crucially on the assumption that the unconstrained
egtimator t has an asymptotic covariasnce matrix egqual to R-l « Only if such

an estimator +, can be eapily calculated will the minirmm-chi-sguare approach
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be a practical method. Fortunately, for many problems met in practice an

easy-to-calculate, efficient estimator for the unconstrained problem exisfs.

5.3. An Bxample

An important example where the hound. Pn is attainable in finilte

samples is the normal linear regression model with linear constraints.l

t

Congider sgain the regresgion egquation

vhere y is an n-dimensional vector of observations on a random variable,
X isa nxm matrix of nonstochastic variables, £ 1s & vector of m
unknown parameters, and u is a vector of n independent normal random

2
errors with zero mean and constant variance o .

Suppose that the prior constraints are of the form

(5.27) B =a.

Since the information matrix for (B, 02) is block diagonal and the
constraints do not involve 02 s @attention can be focused solely on B .

The information matrix for B is

(5.28) R = o 3(X")

n

and the logasrithmic derivative of the likellhood ﬁunction is

o log £,

(5-29) —— =X (b - B)

1
This case has been treated by Theil [26, pp. 331-33] and by Chipmen

and Rao {8].
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where b is the least-squares estimator (X'X)-lX'y . The constrained

least-squares estimstor is found by the use of Lagrange multipliers to be
A- 1 "ll r "11"1

(5.30) B=5b- (XX) ¢ a(XX)"G6'] (G ~ a)

and the covariance matrix for é is

(5.31) B = o ((x'%)™ - (@) Terlaxx) ter 1 tex )l

Hence a is & MVB estimator in the presence of the a priori information.
Under plausible conditions on XX , a is also asymptotically efficlent; but
that is a much weaker result. It is easy to verify that the constrained
leagst-squares estimstor B is also the constralned maximm-liikelihood and

minimim-chi-square estimator.

6. CASE III: CONSTRAINT PARAMETERS

6.l. The Minimm Variance Bound for @

A third way of expressing prior information is to assume that the
elements of @ are related functionally to ancther set of paramelers., Iet o
he a vector of r unknown parameters. Suppose that the statisticlan knows

that each 6, is a given functlon dfthe elements of « . That is,

(6.1) o, = hi(a) (i =1, vos, m)

where each hi possesses bounded partiel derivatives of at least thg second

order. It ls assumed that the matrix of first partial derivatives

Bhi-
(6.2) H= [hij} = | —=

%,
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has constant rank p 1n an open neighborhood containing the true parameter
a® . It is further assumed that the set of possible values that « may take

is an open set in r-dimensionsal Euclidean space.

Thege assumptions are strong enough to insure that, in a neighbor-
hood of 6° , m~p of the Qi can be expresgsed as functions of the remaining
o o That is, it is possible to comvert the m equations (6.1) and the r new
variables into m - p congtraint equations involving only the ei . Hence, the
case being considered here is essentially equivalent to the case presented in
the previous section. However, for a number of problems (of which the
simultaneous equations problem is an important example), the form (6.1)
is more natural snd more essily interpreted than the derived constraint equations.
Furthermore, it will be possible here to derive covariance matrices for estimates

of poth &« and 0 .

We begin by assuming that H has full row rank r . The assumption
will be dropped later. The derivation of the variance bound for this case can
be split into two parts. First, a lower bound for V6 s ‘the covariance matrix
of an unbiased estimator of 6 , 1is obtained; then a lower bound for Va 5 the
covariance matrix of an unbiased estimator of &« , is obtained. For the first
part, much of the derivation of Section 5 is relevant. Equations (5.4) = (5.7)
are still valid except that the values of .y (that is, A8) for which they
hold now differ. Instead of the set Ag E el is now constrained to lie in
A, , ‘the solution set of (6.1), The same limit argument applies as before
since h 1is assumed to he conﬁinucusly differentiable. The basic inequality

(5-9) remains valid but (5.10) now must read



(6.3) y=Hz

where 2z (representing AQ) may take any value in the neighborhoed. of the
origin in r-space. The lower bound for c'Véc is obtained by solving the

constrained extremal problemzl

subject 1o

y‘Rny = 1

z unrestricted.
This, however, is the same as the problem:

max (c*Hz)e
z

subject to

17y ¢ =
z'H RnHz 1

The solution to the latter problem is obtained using the method
of Lagrange multipliers. The objective function is maximized when

Z = Nnc where

(6.4) N = H(H*RnH)”lH'

is a matrix having rank » . The value of the objective function at the

maximp is c'Nnc . Hence, the Cramer-Rao inequality becomes

1 Again, for notational convenience, we drop the superscript on :
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(6.5) c'Wye > c'H(H'RnH)"lH*c .

The decrease in the bound due to the constraints, R;l - N , 1is shown in

Appendix A to be a positive semidefinite matrix of rank m - 1 .

6.2, The Minimum Variance Bound for «

The second part of the problem is to find a lower bound for Va .
Here the procedure is guite simple. Since the functions fn and h are

continucusly differentisble, the compound function
(6.6) £ [x, n{a}] = £2(x, )

is a density function which satisfies the regvlarity assumptions of Section 3.

Hence the informetion matrix for « iIs obtalned by the chaln rule:

d log £* d log f 36
(6-7) 11 = ¥ n o k
Aai k aek aai
2 x 2 . 2
o” log f " log f_ 08, 96 d log f o o
(6.8) 3. 553 B_k _R,g 1 - S
G aczj kp aek aep aai Sa, s aek aai Baj

The second term on the right of (6.8) has zero expectation since

o log f of
J nfnmf.,._‘iz-.__a_.ffnﬁ _é_lgoo
aek aek aek aek



o

Thus
(6.9) BQlogf:
.9 “E ——2 = =% r h_.
20, 20, . Pt Tip"py

and, if H hes rank r , the inverted infermation metrix for «a is

-1
= t
(6.10) M (H RnH) .
The Cramer-Rao ineguality becomes
_ -1
t ] ) ]
(6.11) c'Ve >c'Mec=c (H RnH) e .

There exists an unbiased estimator whose variance equals the lower
bound only under certain restrictive conditions. Agein, linearity of the
constraints provides the simplest example., Suppose t 1is a MVB estimator
when no constraints are present and hence

o log £
(6.12) -~ 3 4 R(t-8) .
o8

If the constraints (6.l1) are linear so that they are of the form
(6.13) 6 =HY + a ,

one can write
o log fn
(6.14) Nn _BE—— = Nan(t - Ha - &)

~ [H(H'R )™ H'R (t - &) +a] - @
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and, using (6.7),

(6.15) o log f: o log z
215 M —— B e————2
T k& de

il

(H'RnH)'lﬂ'Rn(t - Ha - a)

I

[(e*B_H)™H'R (t - &)] - @ .

But, analogous to (5.16), the bound is attainable if the right hand sides
of (6.14) and (6.15) are the difference between the estimator and the
parameter. This is the case if Rn does not depend on «a (except for

perhaps a scalar multiple).

6.3 The Finite-sample Theorems

In summary we can state

THEOREM 5. In the presence of prior information expressed by a set of
constraint parameters o which are related to € by known differentiable
equations (6.1}, the matrix N, given in (6.4) is a lower bound for the
covariance matrix of any unbiased estimator of © and the matrix Mﬁ

given in (6.10) is a lower bound for the covariance matrix of any unbiased
estimator of « . The possible efficlency gailn R;l - Nn is a positive semi-
definite matrix of rank m - r . Sufficient (but not necessary) conditions

for Mﬁ and Nn to be attainable are
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a) R“l is attainable when the constraintes are ignored,

b) R_ can be written as the product of a matrix which does not

depend on 6 and a scalar which may depend on 6 ,

¢) the constraints hi(a) are all linear.

Agein these results can be expressed more simply in terms of a

bordered information matrix. Consider the square matrix of order 2m + r

R 0 -I
(6.16) @n =|0 0 H
| I H 0

which is partitioned into three row blocks (the first containing m rows,

the second contasining r rows, and the thifd containing m rows) and

similarly three column blocks. This matrix turns out to be minus the

expected value of the second partial derivetive matrix of the Lagrangean
m

(6.17) L{6, a A} = logf (x, 8) + = alo, - h, ()]

_ _ n {=1 i i

where the Li are taken to have zero expected value.l That is,

82 L 82 L 82 L
06361 d6oxt J0AA!

(6.18) @ o= -E 1 P il .
n cads' oot a0 !

3% 1, 3° 1, o 1,
oadet  oat IAOA!

1 Tne meaning of the assumption E[A,] = 0 is not clear. This lack of

interpretation is not crucial, how&ver, since (6.16) 1s introduced solely
for notational purposes.



- 36 -

It is easily verified that the conformably partitioned inverse has the form

Nn #* ¥*

G
(6.19) a = * M *
L_* ¥* *

with Mn and Nn on the diagonal. Thus the inverse elements of a suitably
bordered informetion matrix give lower bounds for the covariance matrices

of any unbiased estimator of 6 end a .

6.4, The Asymptotic Bounds

The asymptotic extension of Theorem 5 is straightforward.

Defining
1 1
M=1lim — M and N=1lim =X
n n nn
which sre diagonal blocks of
— — =) —
1.
= - * *
| n Rn v I N
Q"lalim 0 0 B =1 M ¥
-1 q 0 * * *

one can state

THEOREM 6. In the presence of prior information expressed as (6.1), the
matrices N and M are lower bounds for the asymptotic cmrariancé

matrices of any consistent estimators of 6 and @ . The efficiency gain



..37_

in estimating 6 is given by R - , & positive semidefinite matrix of
rank m - r . The bound is attained by the constrained maximum likelihood

estimator.

Again the proof of the asymptotic theorem follows from applying
the classical proofs of Theorem B. The minimm-chi-square estimators of 6
and @ are also asymptobtically efficient, #*These are defined as the solution

to the extremal problem

min (t - 8)'R(t - 8)
2]

subject to 8 = h{a)

where t i1s asymptotically normal with mean € and covariance matrix Rt

6.5 Identification

Tt is of some interest 1o relax the assumption that the matrix H
has full column rank. It is clear that the assumptlon hes been used often in
the above discussion since it is necessary for the inversion of the matrix H'FH .
However, with some modifications, it is possible te generalize the results to
handle the cazse where p ig less than r . In the derivation of the lower
bound for the covariance metrix of an estimstor of 6 s function (c'y)2
was meximized over the set of all y such that y = Hz . That is, y was
required to be in the colwmn space of H . Suppose now that the columns of H
are linearly dependent. Then the column space of H 1s spanned by a subset of
the column vectors of H . Let Hl be the matrix formed by such a subset.
Then the constraint y = Hz can be replaced by the constraint y = lel o

That is, the set of all y that can be written in the form y = lel for
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some  z, is identical to the set of all y +that can be written as y = Hz
for some z . Hence equation (6.5, is valid if H is replaced by Hl - The
& priori information increases the efficiency in estimating 6 as long as 0
the rank of H (and also the number of columns in Hl) » 1s less than m ,

the number of rows of H .

The problem of estimating efficiently the parameter @ is not so
easily handled. Indeed; even when H has rank r there is a basic problem
that we have not yet faced, The probability law for the sample 1s, according
to our assumptions, uniquely debermined by the parameter 6 . If there is
associated with the true parametsr 6° more than one vector Q@ satisfying

the equation
(6.20) 6° = n(a) ,

it is not possible to speak of & “true” parameter a° . Unless there is more
& priori information concerning the parsmeter &« , any solution of (6.20)

is “true® in the sense that it implies the correct probability distribution of
the observable sample. Hence estimation of o 1is possible only if h is =

mapping such thsat e° has a unique image vector ao o

This problem of estimating <« when the likelihood function is in
terms of © is the essence of the famous "identification problem" in
statigtical inference. Although it would. take us too far afield to dilscuss
this problem at length here, it should he clear that the solution depends on
the properties of the Jacobian matrix H . If H has rank r when evaluated

at some vector o° which satisfies (6.20), then a® is at least locally u,nique.l

1 Unfortunately, it need net he globally unique.
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If, however, for some a® satisfying (6.20) H has rank less than r ,

then there will exist an infinite number of solutions to (6.20).:L Hence,

if H nowhere has full column rank, it is clesr that « is not ildentified.

In such a case the constraint equations define new parasmeters «Q which cannot
themselves be estimated. Nevertheless, as long as p 1s less than m the
constraints sill impose restrictions on & and are important in increasing

the efficiency aof estimating 8 . The above discussion can be summerized in the

following table which indicates the various possibilities.

p =71 p<1‘

-0 locally identified | not identified

no restrictions on 6 |no restrictions on 6

o locally identified |@ not identified

psm 6 restricted & regtricted

One further possibility that should be examined is that some
elements of G may be ldentified but the others are not. Again the matrix H
is the basis of the analysis. Suppose the vector @ 1is partitioned into two

parts, al and a2 . Consider the eq_uationg

(6.21) Hiy Bl |99 ©
| Hyy | |90, 0
1

This is true under the assumption made previously that the rank of H is
constant in an open neighborhood of & . For a complete discunsion of this
point and the whole problem of unigue identifiability, see Fisher [11].

2 H is evalusted at some o° which satisfies (6.20).
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which is obtained by differentiating {6.20). The partitioning of H into
two row blocks can be done in many different ways. Suppose, however, that

there exigts a partitioning such that H hag full column rank and that H

1l 12
is a matrix of zerocs. If this is the casge, dai hag the unique solution zero
even if the full matrix H does not-bave full column rank. Since multipl&ing
(6.21) by a nonsingular matrix is permissible, the following result can be
stated. If H factors into AB where A is nonsingular and B is of the

form

(6.22)

with Bll having full column rank, then Qi is locally identified. If 0&

is identified it may be egtimated by an estimator whose covariance matrix is

no less than the appropriate submatrix of (H{Rﬂl)ml where H, contains all

1
the independent columns of H , inciuding all those associated with al .

6.6. A Generalization

If we combine the ftwo types of constraints consldered in this and
the previous section, a more general treatment is possible. Suppose, for
example, that in addition t¢ the set of constralnts defining the new para-

meters & there are also -constraints on & ¢

g, = h {a) (1 =1, coo, m)

gi‘(a) = O (i = lj c ooy k) o
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Agein assuming that all the functions are continucusly differentieble, we

form the Jacobian matrix

(6.24)

where G and H are the kxr end mx r matrices

‘Bgi Bhi
@ = S Hea S5 o
L4 _

The parameter & will be locally identified if, when 6 = 8° ,

(6.25) da = 0O

Q2

has a unique solution zero. That is, & will be locally identified if [H' G']
has full row rank r . If in addition & has full row rank k , the bordered

information matrix will possess an inverse:

_ - -1
R 0 -I © "ﬁ'**q
n n
0O 0 HY G° £ M * *

(6.26) o

_ sI H 0 © ****l
0O G 0 O * * % % |

Using the methods of the preceding sections; one finds that the
covariance matrix for any unblased estimator of & and @ must satisfy

the following inequalities:



T

Var 8 > N_ = HM H®
~ n n

(6.27)

Var a>M =Q - Q3 (ses') ™t aq
where
(6.28) Q = (H’RnH o G"@)“l .

The ssymptotic version of these inequalities is obvious. Again, the
constrained maxlmm-likelihood esztimstor is asymptotically efficient
and has a covariance matrix equal to the lower bound., The minimum-chi-
square estimator, the solubtion of
min {t - h{a&)]'R(t ~ h{a)]
a .

subject to glo) =0 ,

is also asympbotically efficient 1f t is asymptotically normal and

efficient without the constraints.

To Celw wid & ANES AT e s

Perhaps the most natural way to express a priori information about
the unknown parameter vector € is by means of a set of inequalities. For
is greater than gzerc and that © lies

2

between zero and one. In this section we explore the gain in estimation

example, one might know that 61

efficiency which can result from such constraints. Speciflically, we shall
assume that the statistician knows that the true parameter 6° lies in A* s
an open subset of A . The assumption that A® is open 1s mede so that

f (x, 8) will be differentiable at 6° .

o



- b3 -

As in the previous three sections, it would seem that use of in-
equality constraints should reduce the Cramer-Rao lower bound for the variance
of an unbiased estimator. In fact, however, this is not the case. The
Cramer-Rac inequality was derived for an arbitrary open parameter space . 4 .
Since the lower bound does not depend on A , restricting A to A*  cannot
lower the bound. The same argument alsc applies to the asymptotic Cramer-~-Rao

inequality. Putting this more formally, we have

THEOREM 7. Déspite the presence of a priorl information which restricts 6
to an open subset of A , ths lower bound for the variance of an unbiased
egtbimator of 6 remains R;l . Furthermore; the unconstrained maximum
likelihood estimator remains asymptotically efficient with covariance matrix

gt .

According to Theorem 7, inequallty consiraints are of no value
in increasing efficiency as long as the rsquirement that estimators be
unbiased is maintained. Furthermors, even 1f one drops the assumption of
unbiagedness, it remains true that, asymptotically, inequality consiraints do
not help. For large n the probability that the maximum likelihood estimator
violates the constraints is almost zero; hence there is nothing to gain by

maximizing subject to constraint.

To interpret Theorem 7 to mean thait inequality constraints are
worthless would be a serious error. Rather, it points out that the classical
theory, which is based on unbiasedness on the one hand and asymptotic

approximations on the other, has important weaknesses. Nonstochastic prior
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informetion according to this theory increases efficlency only 1f it reduces
the dimensionality of the parameter space. Since inequality constraints do

not reduce dimensionality, they cannct increase efficiency. But this result
depends crucially on the way we have defined efficiency. A qulte different
answer would result under a more suitable definition which would remove the
assumption of unbiasednesz and simply be in terms of minimum mean squared
error. Unfortunately, with such a definition, it can be shown that no efficient
estimator exists independent of 6 . However, it is possible to make some
statements concerning the improvement of estimation precision under a priori

informetion when the unbliasedness aszumphion is dropped.

Let us, for the rest of this section, use the following definition:

An estimator sn ig better than an estimator tn if

(7.1) E{(sn - 6)“5{sn -8)] g;E[(tn -~ 6)'B(t - 6)]

for all positive definite {or gemidefinite) matrices B and for all &

in the parameter space, with strict insquality occurring for some 6 and B .
Now suppose 'tn is an unbiased estimator of @ which does not use the

& priori information and which has a covariance matrix equal to the bound
R;l . Define the m-dimensional vector z(t, B) to be that vector in & ,
the closure of A® , which is closest to t 1in the metric B . That is,

z satisfies

(7.2) (t = z)"B(t = z) = min (t - x)'B(t - x} -
Xeh
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Then consider the new egtimator sn defined as
t  if t €A
n n

(7“3) S = [
| z  if tngﬂ

The estimator 5, is equal to tn if tn happens to satisfy the constraints.
Ir tn does not satisfy the congtraints, 8, equals that vector on the
boundary of the constraint set which is "closest® to tn . This new

estimator will be a function of the sample Xn , the matrix B in the

loss function (7.1), and the constraint set A* . We shall prove in

Appendix B the following result:

THEOREM 8., If the parameter 6 is known to lie in an open convex set A |
the egtimator Sn ig at least as good as the estimator tn » Moreover, if

Pr[tnaA*] does not equal one, S, is better then tn .

The estimator 5, will of course be biased {otherwise it would
violate Theorem ?) and will depend on the matrix of the quadratic loss
?unctiono Nevertheless it is an estimator that has smaller mean squared
error than tn s the estimator which attaineg the Cramer-Rao lower bound.

Since s, converges to tn as"n approeches infinity, there is no
asymptotic version of Theorem 8 unless we againl accept the fictiom that the
a priori information increases with n . For small samples, however, consider-

able gain in efficiency may be possible.

1 ¢r. section 4.3 above.
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The assumption of convexity is restrictive, yet often met in
Practice. For example, the set of linear inequalities C6 >1b or the
positive definite quadratic form (6 - b)'C(6 - b) <1 both give rise to
open convex sets., Finding the estimator s, will involve solving the
guadratic programming problem in ('?02)° This may in practice be quite difficult
although some algorithms do exist. PFinally, it should be noted that 8 is
by no means an optimal estimator. All we have shown ig that it is better
than tn « Without turning to Bayesian or minimex arguments, it is impossible
to even define the problem of optimal estimation when the unbiasedness

criterion is dropped.

8. SUMMARY

We have shown in the preceding sections hcw‘g 253251 information can
be incorporated into the classical theory of estimation. In the first three
cases both finite-sample and asymptotic results were possible., Unfortunately,
the last case pointed out the difficulty of the classical approach. Finite-
gample results depend crueially on the unblesedness asgumption, a criterion
that is not easily defended, Asymptobtic results are necessarily only
approximately valid in application and the accuracy of the approximation is
almost never known. Thus the results of this paper. 1like all those of

classical statistics, must not bs overstated.

A partienlarly interesting gquestion arises in the case where the
Cramer-Rac bound is attaineble when no a priori informstion is present but

the modified bound is not attainable with the & priori information. Suppose,
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for example, one wishes to estimate the coefflclent vector of the regres-
sion model (k.7). If no prior information is availeble the least-squares
egtimator is best. If the pricor informstion is in the form of a nonlinear
constraint equation, the bound Pn will neot usually be attalnable. But the
maximum likelihood estimator will have a sampling distribution which can be
approximated by a distribution which has & covariance matrix P . Since P
is smaller than 3"1. one can conclude that the M, estimator é is better

then the least-square estimator b as far as the approximation is valid. But

the properties of b are known exactly whereas the properties of § are known
only ‘approximately. It is possible that b is better than é -- that using
the a priori informwation on the basgis of large-sample theory actually makes
things worse., Thus one has the cholce of uaing the estimator b which has
known properties or using é which for large n 1is definitely better but for

small n is perhaps worse.

The answer depends, of course, on how close the approximation is.
But it alsc depends on our loss function. If our loss function 1s really an
unbounded. quadratic function (which is the basls presumably for minimum variance
estimtes), then any estimator whose distribution has thick enough tails will
be rejected becausge of infinite varience. Yet the ML estimator under
constraint may very well have Infinite variance for every sample size n
but, for large n , be approximated by a distribution with finite variance.
What is needed to analyze these gquestions is a more careful theory ¢f the
appropriate (truncated, loss function. This issue is touched upon by

Chernoff [6] but the problem remains unsettled. Until these issues are
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better clarified in the statistical literature, all asymptotic results,
including the ones given here; must be treated with caution. Nevertheless,

it is probably useful tec treat the asymptotic results as approximately valid

until more evidence is available.
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APPENDIX A

We shall derive hers gome of the properties of the covariance
matrices which are discussed in this paper. Iet R be an m x m positive
definite matrix, & a kx m mabtrix having rank k, and H an mxrr

matrix having rank r . Consider the four matrices

A =R - P B et (a0 TR

Ay = P = R - p lariar~Ye ) et
Ay = N = H(H"RH)'“JW

A, = R - W= B . m(EeR) tw

We shall show that all four matrices are positive semidefinite with the rank

of Al equal to k ;, the rank of A. egual to m - k& , the rank of A,5

2
equal to 1» , and the rank of Ah equal to m - r .

The derivation is bazed on the following facts:l
(1) Every positive definite matrix has a positive definite inverse.

(2) If A is positive definite, then there exists a nonsingular matrix

D such that A = D'D .

(3) If D is nomsingular and B is positive semidefinite with rank

p s then D'HED i3 also pogitive semidefinite with rank p .

(4) If B is symmetric and idempotent (i.e., B! = B = Be) , then

B is positive semidefinite with rank equal to the trace of B .

1 See, for example; Graybill [12, pp. 1-17].
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Since RL is positive definite it may be written as D'D . Then,

defining the new matrices

X' = gD

Y = GD',
we can write

A = DUY(Y'Y)" YD = D'B,D

"
4

D'D - D’Y(Y'Y)’“J“Y'D = D'(I - B))D

= DIX(X'X) XD = D'BD

o
|

A, =D'D - D(X'X)™X'D = D*(T - B,)D
It is easy to verify that Bl’ o I Bl’ end I - BE are all
idempotent and symmetric. Therefore, the Ai are positive semidefinite with

the following ranks:

i

plA) tely(r) ™) = trlyn) ) - tr(L ] = k

i
i

p(4,) tr[Im] tr[Bl] =m -k

H

o(hy) = tx[B,] = tx[(X'%)™X'X] = tx[1 ] = r

1]

§

D(Ah) tr[Im] tr[Be] =me-7

where use has been made of the fact that tr[AB] = tr[BA] .

Another useful result concerning matrices is given by the following

theorem:
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THEOREM. If A 1is positive definite and B positive semideflinite,
then (A + B)”l exists and is positive definite. Furthermore, At (A + B)ul

is positive semidefinite having rank equal to the rank of B .
Proof, et C=A+ B . Then, for all vectors x ,

X'Cx = x'Ax + x'Bx >0 .

Thus C 1s positive definite. But all posltive definlte matrices possess
positive definite inverses. By'premultiplying by A and postmultiplying

by C 1t is easily verified that

wal =] -1, .~1
Hence A" - ¢™* has rank equal to the rank of B .

Finally we must show that Ateet i positive semidefinite.

Suppose first that B is nonsingular., Then
(a~tac™t)™L = o57a = (4 + B)B™MA = aB71A + 4

is the sum of two positive definite matrices and is therefore positive

definite. Thus its inverse A“'BC™' mst be positive definite.

If B ie singular, consider the function
-1 -1
Me, x) =x'{A - (A+ B+ eI) Ix

vhere ¢ is & scalar, 8ince B + ¢l 1s positive definite for e >0 , we
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know froem the above that
ae, x) >0

for all vectors x as long a8 € >0 . Purthermore, (e, x) is

continmuous at e = 0 . Hence A(0, x) >0 for a1l x :; Thus, even if B

is singular, At oot s positive semidefinite.
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APPENDIX B

We shall prove in this appendix Theorem 8 of Section 7. Consider

first the following lemma:

Lemme 1. Let S be a closed convex set in n-dimensional Euclidean space,
Let 4 be a distance function. Let %t be a point exterior to S and

let =z be a polnt in 8 such that

(B.1) d(z, t) <d(s, t)
for all points & in 8 . Theﬁ,

(B.2} a(z, x) < a(t, x)

for all x in 8 .

Proof: Suppose the lemma is false and that y is & point in S such that
d(z, y) >da(t, y) . Then let r be that point on the line segment (z, y)
such that a(r, y) = d(t, y) . Due to the convexity of S, r is in 8 and
hence r is distinct from t . Construct the triangle which has vertices at
r, t, and y . Sinece d(t, y) = d{r, y) the angle try must be strictly
less than 90o . (It may even be zero if r , t , and y are collinear).
Hence the angle gzrt must necessarily be greater: than 900. Thus the liﬁe seg-
ment (z, t) is the longest side of the obtuse triangle ztr . But this
means that T is a point in S such that a{r, t) <a(z, t) . Since the

assumption that d(z, y) >d(t, y) leads to the violation of (B.1l) we must
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conclude that no such point y exists.

This lemme can be applied to the case considered in Theorem 8. ILet
S be A and

(B.3) (s, x)} = (s - x)'B(s -~ x)

Then the point =z defined by (7.2) satisfies (B.1). Recall from (7.3)
thet t and s are identical wherever t is in A and 5, equals

z whenever t’n ig exterior to A . Since A i® donvex, it follows that
(B.4) (t, - 6)'B{t - 08) >(s - 6)B(s -0)

as long as t s exterior to A . If this occurs with positive probability

then
(B.5) E(t;n - 6)'B(tn - 8) >E(sn - e)ﬂn(sn e) .

S8ince the boundary of A 1s a set of messure zero, Pr{tn € A*] is the same

as Prlt e 2] =and the theorem is proved.
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