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0. PUBPOSE OF THE VOLUME

0.1.

Quantitative economic study has a threefold basis:

The Problem

it is neces-

sary to formulate economic hypotheses, to collect appropriate data,

and to confrent hypotheses with data.

The latter task, statistical

inference in economics, was discussed at a Cowles Commission con-
ference held at the University of Chicago from January 27 to Feb-

ruary 1, 1945,

1

Staff members of the Cowles Confission prepared,
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and circulated in advence, some of the papers; others were deliv-
ered by the Commission’s guests .

In its Annuel Beport for 1944 and for subsequent years, the
Commission stressed the importance of adapting statistical methods
to the peculiarities of the data and the objectives of economic
research. The economist’s objectives are similar to those of an
engineer but his data are like those of a meteorclogist. The econ-
omist is often required to estimate the effects of a given (intended
or expected) change in the “economic structure,” i.e., in the very
mechanism that produces his data. None of these changes can he
produce beforehand, as in a laboratory experiment; and since some
of the changes envisaged have never happened before, the ecofitinist
often has to estimate the results of changes that he has never
observed.

The economist can do this if his past observations suffice to
estimate the relevant structural constants prevailing before the
change. Having estimated the past structure the economist can es-
timate the effects of varying it. He can thus help to choose those
variations of structure that would produce - from a given point of
view —~ the most desirable results. That is, he can advise on pol-
icies {of a government or a firm).

Thus, practical considerations bring about the economist’s con-
cern with economic structure. Hypotheses about economie structure
are also known as economic theories. They try to state relations
that describe the behavior and environment of men and determine the
values taken at any time by economic variables such as prices, out-
put, and consumption of various goods and services, and the prices
and amounts of various assets. As there are several variables the
economic structure must involve several simultaneous relations to
determine them. In this, economic theory is analogous to theories
used in experimental science.

Also, economic variables as well as those of experimental sci-
ence are, in principle, random (stochastic) variables: that is,their
properties are described by probability distributions. In particular,
the stochastic character of the observed data can often be ascribed
to their dependence on stochastic nonobservable variables: such non-
observable variables are random “errors’ in the observation of single
variables or random “shocks” suffered by the relations conrecting

Uit guests included R, L. Anderson, T. Haavelmo, H. Hotelling, W. G.
Madow, . B. Mann, G. Tintner, and A. Wald. Staff members who partic-
ipated in the conference were L. Hurwicz, L. R. Klein, T. C. Koopmans,
B. Leipnik, J. Marschak, and H. Rubin, t. W. Anderson and T. Haavelmo
joined the staff at a later date.
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them. However, an experimenter could replace the natural conditions
by laboratory conditions. To study one of the several relatienms,
the experimenter observes the random values taken by one variable
when the other observables that determine it are made reasonably
free of the influence of errors and shocks. The economist cannot
thus control variables and isolate relations. His data are pro-
duced by the existing economic structure, as described by a system
of simultaneous relations between these random variables: the ob-
servables themselves, the errors, and the shocks. To use such data
for the estimation of the system — “structural estimation” — is a
new statistical problem.

This new statistical problem is thus forced upon the economist
by the occurrence or consideration of structural changes {including
policy changes on which his advice is sought), and by his inability
to make experiments of either of two kinds: experiments producing
in advance the considered change in structure (e.g., wind-tunnel
experiments on airplanes), and experiments in which some of the
random variables of nature are given fixed values (e.g., experi-
ments to test fundamental laws of physics). See [J.Marschak, 1947B].

The role of simultaneous equations is familiar to economic
theorists. But it has often been forgotten by economic statisticians
who tried to estimate a single stochastic relation as if no other
such relations had taken part in determining the observed values
of the variables. On the other hand, economic theorists are apt
to forget that the observed economic variables are, in general,
stochastic. To be susceptible of empirical tests an economic
hypothesis must be formulated as a statistical one, i.e., be spec=
ified in terms of probability distributions.

The statistical problem of the economist is complicated by the
fact that many an economic relationship connects current and past
values of the same or other variables involved. The economic
structure determines, accordingly, not a set of constant values,
one for each variable, but a set of probable paths, one for each
variable, provided certain initial values are given. This dynamic
character of economic structure creates, in the absence of exper-
iments, further statistical difficulties: many economic data have
the form of time series in which successive items are not independ-
ent. Statistical inference from time series of this kind in-
volves further new problems,

Thus, economic data are generated by systems of relations that
are, in general, stochastic, dynamic, and simultaneous. Occurring
Jointly, these three properties give rise to unsolved problems of
statistical inference from the observed data to the relations.



4 J. MARSCHAK I-0.1

Yet these very relations constitute economic theory and knowledge
of them is needed for economic practice.

0.2. The Discussion

All these difficulties, under names like *pitfalls in demand
and supply analysis” (Ragnar Frisch), “lack of independence in
economic time series,’ etc., have caused uneasiness for a long
time. Of the many attempts to grapple with the problem, Ragnar
Frisch’s contributions [1929, 1931, 1933, 1934, 1938] were probably
the most stimulating ones. However, he did not take full account
of the random disturbances (shocks) in the economic relations, nor
of the simultaneous character of these relations. Moreover, Frisch’s
hypotheses on random disturbances (errors) in variables were not
specified in probability terms. The latter, but not the former,
defect was corrected in the early work of Koopmans [1937] and Wald
{1940]. A new milestone was reached in 1943 when two articles were
published in Econometrica by Haavelmo [1943], and by Mann and Wald
[1943]. Haavelmo formulated the economist’s simultaneous-equations
model as a statistical hypothesis by assuming a random disturbance
{shock) in each equation, in addition to random errors in each
observable variable, and by specifying the distribution of these
(unobservable) random quantities [Haavelmo, 1944, esp. Chapter I11].
Mann and Wald outlined a solution of the estimation problem arising
from the new formulation, though only for the case of large samples,
and omitting the observation errors. For a set of short time series
of interrelated variables, the contemporary (and incomplete) work
on time series in a single variable has to be utilized as a start;
and important suggestions can also be expected from the study of
continuous random processes that is being developed currently in
the service of other sciences. As to combining shocks and errors
in one equation system, recent investigations of T. W. Anderson
and L. Hurwicz [1947] were stimulated by discussions with G.
Tintner.

For its quantitative studies of economic behavior, the Cowles
Commission had to expect much from the criticism of statisticians
who had contributed to the estimation of simultaneous equations
end to the theory of time series. Such was the object of the
conference. Farlier drafts of articles II, V, VI, XI, XII, XIV,

XV, XVI, XVII, XVI1I, XIX, were prepared for the conference.
Articles III, VIII, X, XIII, are discussions that were contrib-
uted in the conference and written up shortly afterwards.
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Articles or parts of articles added or substantially expanded later
are I, I1-2,3, 11-3.3, 114, IV, VI, VII, IX, XI-10.2, XIV, XV. The
revision was helped by discussions with persons not present at the
conference: especially on the problem of computations [II-4] with
A. Adrian Albert and John von Neumann., An alternative method of
structural estimation, that of “limited information,” suggested by
M. A. Girshick and worked out by T. W. Anderson and H. Rubin [1949],
is briefly presented in this volume by T. W. Anderson [IX]. Other
conference contributions, by L. R. Klein {1946 A] and by W. G,
Madow [1945], have been published elsewhere. Madow’s subject was
explored further by R. B. Leipnik [1947].

. The manuscript of the present volume was completed early in
1947, but publication has been delayed by typographical and other
printing difficulties.

In the next two sections of the present introductory paper,
the author has drawn freely on the results attained in the papers
that follow and on suggestions made in the daily work and discus-
sion within the Cowles Commission. His debt to Leonid Hurwicz
and Tjalling C. Koopmans is particularly heavy.

We have tried to achieve conformity in terminology and, to
same extent, in notation. However, since the several contributions
differ in purpose as well as in emphasis, rigorous uniformity is
reither possible nor desirable.

Most of the contributions to this volume presuppose' on the
part of the reader a general knowledge of mathematical principles
of statistics; to explain these principles to a more general reeder
would take more space than is available. The present introduction,
in sumuwarizing the purpose and the main results of the studies
collected in this volume, is addressed to the mathematically-minded
economist rather than to the statistician. Hence — the use made
of nonstochastic models (section 1) and the attention paid, in
the stochastic case, te the properties of populations (section 2.5.1)
as distinct from samples, This summary, too, has to be terse. For
a less compressed treatment and further economic illustrations and
applications the reader is referred to the following publications
of Cowles Commission staff members: [Girshick and Haavelmo, 1947},
[Haavelmo, 1943, 1944, 1947 A, 1947 B], [Hurwicz, 1947}, [Klein,
1946 B, 1947, 1950}, [Koopmans, 1945, 1949], [Marschak and Andrews,
1944], [Marschak, 1947 A, 1947 B]. The group continues to work on
statistical inference in eccnomics, both in general and with respect
to specific economic models! Tt is hoped that the present volume

1$ee the Annual Report of the Cowles Commission, in particular the
Five-Year Report for 1942-46,
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will stimulate further cooperation of mathematical statisticians and
economists in solving the many problems that have been indicated but
not solved in this volume. Plans are under way for a parallel mono-
graph (No. 12) of a more expository character, in which emphasis is
placed on a discussion of the main ideas and techniques developed

in this volume with the help of simple illustrative models, rather
than on formal mathematical proof.

4. NONSTCCHASTIC MODELS

FEconomic relations ave, in general, stochastic. They involve
variables whose properties are described with the aid of probability
distributions. Moreover, the estimates of parameters of these rela-
tions, obtained by statistical methods from a limited number of ob-
servations, are also random variables.

However, important distinct properties of empirical economics
can be brought out even if, for simplicity, we assume the data to
be measured exactly and to setisfy exactly the relations of theory.
The equations or inequalities serving to determine the parameters
of such relations from observations are free from random variables.
The problem of estimation degenerates into that of determination.
This simplifies the study of certain “prestatistical” problems fac-
ing the economic statistician - in particular that of idemntification
(section 1.3), and alsoc helps to see why, as indicated in section
0.1, these problems originate in the need for policy decisions in
the absence of experiments.

In the present section we shall deal with this special, or de-
generate, case to meet in particular the habits of readers with
economic rather than statistical background.

1.1, The Model

1.1.0. Denote the observable variables (or dbservables) by a
vector x = (xl, cens x”). The first, second, ..., Tth observa-

tions on ¥, succeeding each other in time, or arranged in space oOr
in any other way, form a matrix:

XOE[xn(t)]l n:]-l ey N} t:l' Py T;

or

x{1)
x(T)

=
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We call a priori information all statements (either true or
false) arrived at independently of any knowledge of X°. We call
model & the a priori information on a system of mutually consist-
ent and independent equations -

(1-1) Cpg(xa a(g)) = 0: g= lr 4y G:

where %) is a vector of P% parameters. We shall denote the vec-
tor of all parameters of the system by o= (“(1)- ceas oc“”), and
writeEPg = P; we shall also write! %= (Pps vees ch).

1.1.1, We shall assume throughout that & defines a) the form
of P, and b) the “a priori restrictions,” i.e., equations or in-
equalities in parameters «.

1.1.2. To provide this information we must make full use of
our independent knowledge of existing production conditions (teche
nology, legal statutes, etc.) and of plausible, if not necessarily
rational, individual behavior. The equations of the model must
refer to individual agents in specified markets (as consumers or
manufacturers of certain goods, or as workers, bankers, landlords,
ete. ).

1.1.3. However, to reduce the model to a manageable size,
variables referring to single individuals in finely subdivided
markets must be grouped into aggregates. Suppose the value of
some variable relevant to a practical decision (see below, section
1.2.3) is calculated on the basis of such an aggregative model.
This value will contain an error inasmich as it will deviate from
the corresponding value calculated on the basis of a true, detailed
model, with separate equations for each commodity and individuhl.
Optimum aggregation should combine highest manageability (e.g.,
shortest computations} with smallest error. This aggregation prob=
lem (which includes that of index numbers) has not been solved or
even fornmlated in detail, nor will it be studied in this volume.

1.1.4. The model & is called self-contained if G = N;
sectional if G <V,

We call a model complete if it is either self-contained or hes
the following property: & subset of x containing ¥ =¥ — G ele-
ments — call this subset 2 = (zl, cvas ZX) — is determined by £

1Subscripts indicate the elements of a vector which are acalars or func-
tions: X, - In the present article, subvectors formed from the elements
of a vector are indicated by subscripts in parentheses: ®yyy- In addition,
it will here prove convenient to use s barred letter for a®vectar whose
elements are gunctions: @.
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possibly unknown “subsidiary” equations
(1-2) CPG+k(Z) = 0, k= 1: ey K!

which are independent of the equation (1.1); the equations (1.2) do
not contain any elements of x that are not in z. Denote the latter

elements by vector y = (yl, sens yG). Then, assuming differenti-
ability,
O 9gep
(1.3) — =0, g=1 ..., G k=1 ..., &
Byg

A model that is not complete is called incomplete (or partial).

The -observables z are called exogenous and the observables y
endogenous, with respect to the model ©.

Fquation (1.1} can be rewritten as

{1.4) rpg(y, z; D"(g)) = {, g=1, ..., G

1.9. Structural Changes and Policies

1.2.1. Structure and reduced form.

1.2.1.1. We call structure S all properties of the equations

(1.4), including the properties not known a priori. Any model &

is a class of structures. Fach structure is defined by the func-

tional forms of the equations and the values of the parameters oc-
curring in them. We can write!

(1.5) S$=(q «).

When the equations (1.4) are thus fully specified we call them
structural equations. We call o the structural parameters. Con-
cepts defined in section 1.1.4 with reference to the model (“com-
plete,” “sectional” model; variables exogenous to a model; ete.)
will also be applied to a structure without causing ambiguity.

1.2.4.9. Given the structure S, equations (1.4) can be solved

for y in terms of 2z, involving new parameters which we shall denote

n what follows quantities depending on § will be introduced. _They are,
?rc‘)perly sPeaking, “functionals” with respect to the argument @ and
‘functions”’ with respect to the argument &, although we shall denote and
refer to them as “functions™ of S.
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by vector m:

(1.6) y = fle; m),

say, where T is a vector whose elements are functions. FEguation

system (1.6) is called reduced form! % depends on $; = is ob-

tained by applying a transformation to the parameters o in (1.4).
This transformation itself depends on the functions §. If we call
this transformation ﬁcp’ we can write, accordingly,

(1.7) = 'T'ccP(a): E(TS),

say; furthermore, we can also write ﬁ¢ instead of 7 to emphasize

the dependence of the functions % on the functions §. Thus

(1.8)

i plas ?rq,(a)]-

1.2.1.3. 1If the structural functions ¢ are linear, the func-
tions W and 'nCP will also be linear, and the set of parameters
?

n= ®_{x) of the reduced form corresponding to a given structure

S will be unique. If the functions ¢ are nonlinear, several sets
of parameters o may be compatible with the structure S. We shall
neglect here this complication although it does occur in economic
theory, as in the case of “multiple equilibrium” (Marshall, app. H)].

1.2.1.4. Apart from very special cases, the reduced forms
(each one characterized by a function set 7 and a parameter set m)
compatible with a given structure S will be finite in number, or
at least denumerable; in a linear model the reduced form is unique.

On the other hand the number of structures compatible with a
given reduced form (%, =) may or may not be (nondenumerably) infi-
nite. Even if the model is linear, the structure may or may not
be uniquely determined by the reduced form. (See also below, sec-
tion 1.3.)

1.2.2, Use of observations.

1.2.2.1. Suppose the period {or, say, the geographical area)
of observations consists of elements 1, ..., T, and is so chosen
that the structure maintains throughout it the value

= °, «°).

Then the following equations are satisfied by the observations X9:

1See [1X] where P and consequently ¥ are linear functions.
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(1.9) cpg{x(t)r a?g)} = 0, g= 1, PO G, t = 1,, PR T.

The structure 59 is called observational structure. We can simi-
larly consider the equations

(1.10) y(t) = 7°[z(t), =°], t=1, ..., T,
where

(1.11) w0 = ?s‘;’po

and

(1.12) nl = ’r‘rcpo(a") = ®(5°);

the “observational reduced form” is given by 7% n° It follows
from definitions that (1.10) is satisfied by observations X0,
1,2.2.2, The form of the functions ¥ _, and ﬁqﬂ is determined

by the functions §° of the model. If the latter are linear so
are the former. The model also provides restrictions on o and
these. restrictions can be transformed, by (1.12), into equations
or inequalities in 7% If the model is linear, a unique set of
parameters n° will correspond to the set of structural parameters
«®, Furthermore, if 7, the number of ohservations, is sufficient-
ly large, the equations (1.9} together with the rustrictions, de-
termine the parameters n° of the observational reduced form, given
the observations X°. We shall denote this operation by Fi, s0
that

(1.13) PA° = n°

1.2.2.3. As stated in section 1.2.1,4, a given reduced forn
may or may not determine the structure uniquely. Therefore, al-
though, as just stated, the observational reduced form can be
determined from the model, given the observations X° {if their
number 7T is sufficiently large}, it may be impossible to determine
a unique observational structure from the model and the observa-
tions however large their number I. It may sometimes be possible,
in other words, to replace a given structure by any one of an in-
finite number of other structures without contradicting the obser-
vations. There exists thus a problem of identifying a structure
{treated below in section 1.3) but no problem of identifying a
reduced form.



1-1.2 STATISTICAL INFERENCE IN ECONOMICS 11

1.2,3. Structural changes and policies.

1.2.3.1. The observational structure S° may be different from
some structure S valid for a different period (or geographical area,
etc.). Suppose we know the “structural changes” &, a transforma-

tion that carries S§° into S: S= 885° If, in addition, we know
S° from observations, we can obtain § = (¢, o) and hence also the
functions 7 and % _ and therefore the parameters = of the reduced

form. It is then possible to evaluate! y for a given z.

1.9.3.2. We shall distinguish between two kinds of structural
changes: the controllable ones, S : and the wncontrollable ones,
Sy« The former ones are also called “structural policy; " the
introduction, or abolition, of price control is an example. We
can distinguish similarly between two sets of exogenous variables:

the controllable ones,z,; and the uncontrollable ones, z,. The

fixing of z, is called ‘“nonstructural” {or “routine”} policy: for
example the annual revision of tax rates [Marschak, 1947A].

1.2.3.3. The policy-maker (on behalf of a government, of an
individual firm, etc.) tries to maximize the “gain,” or ‘“welfare,”
®, a certain function of the observables which, in principle, must
be supposed to be known to him:

(1.14) w=wly, z)= m{ﬁcp[z,' 'th,(a)], 2}

= wq,[Z: ﬁcp(rx)].

say. Thus the gain (welfare) function w and the functions ¢ of
the model combine to determine the function 0y of exogencus var-
iables which is to be maximized, given the structure (§, «).
1.2.3.4. Suppose structural changes are neither intended nor
expected for the period (or area) to which policy is to be applied,
compared with the period (or area) of observation. {The policy
consists, in this case, in fixing the value of z  only: 1t is

“honstructural.”) In this case, O _ as well as Bu is the identi-

¢
cal transformation and we have ¢ = ¢ « = a° and

{1.15) ™= o {a set of constants).
Thus the gain
(1.16) w = ol M) = wolzy 2, ™

I8ut see section 1.2.4.3 for a qualification.
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can be affected only by variations in Z,- Best policy is the value

oY

2, of Z, that gives w its maximum value & :

(1.17) & =»maxzc mqjo(zc, 2,3 nf) = Wp (. 2, n°).

By comparing the values of w for varying z, at fixed Z, the best

policy 2, can be determined for any given value of the uncontrol-
lable variables z , provided the parameters n° of the (observation-

al) reduced form are known. But 7° can indeed be found from the
observations Y° (section 1.2.2,2).. The operation (1.13),

r‘i Xe = =0,
depends on the model only and is called “predictive determinaticn
when structure is unchanged.”! COperation F provides, then, the

parameters q° to be used for the choice of policy under unchanged
structure,

1.2.3.5. As a rule, however, some structural changes will be
intended or expected, or both, That is, neither gc nor Bu will,
in general, be the identical transformation. We have § = 0 S%,;
where O = Bcgu (neglecting the question of the order in which

the transformations are applied). Further, by (1.14) and (1.15},
we have

(1.18) ©= w0y [2; 'n:(P(cx)] = w*(z; S),

say, where the form of the function w* depends on the form of the
gain function w only. Further,

(1.19) w* {2, S)

w2, 2,3 38°)

Al CH 3. B,1 9% o).
Best policy is defined by values 2, gc that jointly maximize the
gain. lLet the maximum gain be

s 0,5 9% ).

u' e

(1.20) B= w2, =z

lgee [vi].
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By comparing the values of @ for varying z, €3c,given the values

of the uncontrollable exogencus variables and given the uncontrol-
lable changes in structure, one can determine the best policies
el

(EE, 50 }, provided the observational structure S? is known. The
practical procedure is, in principle, as follows: from S° and any
given o = SC Su derive the new structure S=0 §° for the

period of policy application; from S derive the parameters = =r(S);
and compute the variables y and the gain w as in (1.14).

1.2.3.6. An operation $X°= $° determining S° from the ob-
servations f° will be called structural determination; the question
of its existence will be discussed in section 1.3. If structural
determination is possible, it is possible to derive the parameters
7 by applying in succession the operations & and O :

(1.21) n=®S)= RO S X°) = }@g A°,

say. The operation F% thus defined is called predictive determi=-
nation when structure undergoes a given change O .

1,2.3.7. Structural determination provides a master key for
predictive determination, and for the calculation of alternative
gains, for any of the various possible structural changes. The
structural changes to be considered are seldom known long in ad-
vance. Therefore, although formally == %(0& X°) can be com-
puted without a stop, it is preferable and often essential to

pause at the step BI° = S5° The knowledge of observational
structure means greater flexibility with regard to various alter=
native policies. This is one reason why people are interested
in any kind of theory!

1,2.3.8, However, the considered transformations & {struc-
tural policies and uncontrollable structural changes) and the
subset of variables relevant to the evaluation of the gain, may
happen to be such as to make the knowledge of all parameters o
of the structure S? unnecessary. A partial knowledge of S° -
some elements of «°, or perhaps some functions of them — may be
all that is needed.

1.2.3.9. It was required in section 1,1.2 that the equations
of the model describe plausible behavior of specified economic
agents, thus making full use of our a priori knowledge of behav-
ior {rational or otherwise). We now see a further practical
reason for shunning relations that do not refer to specified
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economic agents. We call such relations “anonymous,” Consider
changes in human behavior, institutions, technology. The gain
(personal or social) due to any such intended or expected change
cannot be evaluated unless behavior, institutions, and technology
are explicitly stated; such statements must be provided by the form,
and by the values of parameters, of the equaticns of the model;
that is, by the structure.

1.2.3.10, As an .example, consider the follow1ng ~ admittedly
oversimplified — model:

{1) demand for a commodity depends on its price
and on national incomej

(2} supply depends on price;

(3) demand equals supply;
and it is assumed that

{4) we can treat national income as exogencus.

Suppose we want to evaluate the effect of replacing free demand of
the public by a fixed demand determined by the government; that is,
relation (1) is replaced by

(1') demand = a constant.

If we know the form and parameters of (2} we can evaluate, with

the help of (17) and (3), the price the suppliers will ask and the
government will have to pay. Suppose, however, that instead of (1),
(2), (3), we had at our disposal the following relation obtained

by elimination of demand frem (1}, using (3}, (2}

(5) price depends on income,

This “anonymous” relation {which, in this case, is a reduced form)
can be computed from observations (section 1,2,2,2)} but cannot help
to evaluate the effect of structural policy, i.e., the effect of
replacing {1) by (1’). For another example, see [Marschak, 1947B].

1.3. Identification

1.3.1. It was remarked in section 7.92.2.3 that a given set of
observations, however numerous, or a given reduced form, will not,
in general, determine a unique structure. For a rigorous introduc-
tion to this problem of identification in the case of stochastic
models we refer to [I-2] and [IV]. For the purposes of the present
paper, it is convenient to approach the problem by using the concept
of reduced form and studying it first in the nonstochastic case.
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Consider equations (1.8) and the structure S°= (¢° «f).
Denote by G; the class of all structures S°= (¥% «2) that are

compatible with the model & and yield the same reduced form as the
structure S° The latter condition means that the following equa-
tions are satisfied identically in z:

(1.22) ¥ = fgolzi Fuow®)] = ﬁq,s[z.' 'ﬁcpf(a‘:)]-
S° is said to be uniquely identifiable by the model & if SO is the
only element of 69, i.e., if every S§2= S° Furthermore, SO is

said to be incompletely identifiable by the model & if the class
Gf contains a nondenumerably infinite number of elements. Only
in the former case is it possible to determine o® uniquely from the
parameters of the reduced form, =n° = iwo(a°), provided the func-

tions ¢° and the a priori restrictions on o® are given.
1.3.2. The concept of identifiability can be easily extended
to any subset of «°, say af.y(partial identification): for example,

all or some of the parameters of some of the equations (1.4) may be
uniquely determinable from the parameters of the reduced form.

1.3.3. If a subset of a? is nonidentifiable it is impossible
to determine it from X° hovever large the number of observations T.
If «° is completely and uniquely identifiable, it can be obtained
from X° using equations (1.9) jointly with the a priori restric-
tions, provided 7 is sufficiently large: this is structural deter-
mination, denoted in section 1.2.3.6 by 4. A similar statement
applies to any subset af,,.

1.3.4. As an example, let x= (y, Yo zﬁ) be the coordinates
of a point and let ¢g6x) =0, g=1, 2, be apair of equations
of two distinct planes. The observations on x will yield a set of
collinear points which will determine a straight line — correspond-
ing to (1,6) -~ permitting the prediction of ¥, or y, for a given z,.
But it will be impossible to reconstruct any particular pair of
planes. A (partial) identification is, however, possible if, for
example, it is known a priori that one of the planes is vertical;
in which case this plane (but not the other one) is identifiable.

1.3.5. This corresponds to the economic example of section

1.2.3.10 with y; = demand (=supply), y, = price, 2, = income.

The parameters of (2) but not those of (1) are identifiable. If
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(2) were modified into
{27) supply depends on price and wage rate,

with wage rate assumed exogenous [Koopmans, 1945 p.451] all param-
eters of the structure would become identifiable.

1.3.6. The conditions of identifiability in a linear stochas-
tic model are studied in [II-2]; their application to a nonstochas-
tic model is easily derived. The most important criteria are
supplied by the presence or absence of variables in each of the
equations of the system (1.4). In particular, the occurrence of
different exogenous variables in different equations contributes
to identifiability.

1.3.7. let the number of endogenous variables, & = 1; assume
¢; is linear, and normalize the parameters o by choosing the coeffi.
cient of y, to be equal to 1:

(1.23) ¥, =2 ayz, = 0.

The linear uniequational structure (1.23) is always identifiable,
and o= m, provided there exist no linear relations between the
z's. The proposition can be easily extended to nonlinear uniequa-
tional structures, apart from trivial modifications.

1.3.8. Predictive determination when structure is unchanged,
i.e., the operation ]?Xo in {1.13) is possible, regardless of

whether or not the observational structure S° is identifiable.
1.3.9. Predictive determination when structure undergoes a

known change O, i.e., the operation n =By X° in (1.21} is

possible when all parameters o are identifiable, and impossible

when none of them are identifiable.

1.3.10. However, the structural change © and the gain func-
ticn @ may be such as to require the knowledge of some but not all
elements of o (section 1.2.3.8); in this case partial identifi-
ability (section 1.3.2) is all that is needed. Also, < and w may
be such as to require the knowledge, not of the parameters «.® them-
selves, but of some functions of them; in which case wnique identifi-
ability of every single parameter separately is not necessary for
the choice of best policy.

1.3.11. An incomplete model has more endogenous variables than
it has equations (section 1.1.4). For example a uniequational mod-
el involving two or more endogenous variables is incomplete. The
parameters of such a model form a subset of the parameters of some
complete model. The parameters of the incomplete model may or may
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not be determinable from observations since the structure may or may
not be partially identifiable (section 1.3.2), by the complete model,
with respect to the particular subset of its parameters,

1.4, Use of Experiments

1,4.0. We shall now distinguish between: original structure S°°,

future structure S = OS8°9, and observational structure S° = §S°°,
In the preceding section observations were supposed to be made on
the original structure, so that © was the identical transformation.
This is indeed the situation in nonexperimental science. Experiments,
on the other hand, consist in applying certain transformations that
change the original structiire and in getting observations from the
new structure S° = ©5°° that is thus obtained. The transformations
€@ are chosen in such a way as to permit predictive determination
under future structure S without determining either S or the (pos-
sibly nonidentifiable) original structure 5°°, According to the
nature of the transformation ©, there are various types of experi-
ments, Two particular types of experiments deserve our attention
[Marschak, 1947 B].

1.4,1, Experiments of type I: imitation of future structure
(example: wind tunnels for testing airplanes). Here © = O,
hence S°=S and 7° = w. The structural change occurs between
S°? and S. To evaluate y for a given 2 under the future structure
S, and thus to evaluate the gain w, it suffices to determine n° by
the operation P, 4°=n (section 1.2.2.2). This does not require

identifiability of either S°° or S.

1.4.2. Experiments of type Il: creation of uniequational com-
plete structure (example:. controlled experiments in the physical
laboratory). Let the original structure S°° correspond to a model

(1.24) W0, 2 agy) =0, g=1, ..., G

Let €, be the operation of replacing all equations (1.24) but the
first by the equations

(1.25) Vg Zpegs £=2 ..., G,

where the quantities (Zhl' vees z!hG) = vector z, are fixed by

the experimenter at various values z,(1), ..., z,(7T), these
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values being mutually independent, Denote the resulting observa-
tions by matrix X ; they can be regarded as produced by an uni-
equational complete structure involving a vector of parameters
“?1)’ as follows:

6,57 = 57 = (of, o9y

that is,
(1.26) W, . 2 2, a?“) =0,
where @f = @fo, and m?l) = a?f). The vector afl) of structural

parameters is related by trivial transformations (e.g., dividing

by a constant if ¢ is linear) to the vector of parameters 1y

= u?f)) of the reduced form
(1.27) N T g (e 20 w)

Hence the subset aff) = @f))) can be determined (section 1.3.7)
even though the set a®? may be nonidentifiable.

If it is desired to determine the whole set o®®, experiments

o}

. ©,, ..., ©; can be applied in succession.

2. STOCHASTIC MODELS

2.1. BRandom Disturbances

2.1.1. The stochastic character of economic relations will
be recognized even by an out-and-out determinist. His world is,
in principle, ruled by a set of very many equations in very many
variables (both economic and other). But to make his theory
verifiable by observation he will have to shorten the set consid-
erably. The numerous causes that determine the error incurred in
measuring a variable are not listed separately; instead, their
joint effect is represented by the probability distribution of
the error, a random variable. Also, the numerous causes that
determine, say, the velocity of a gas particle are conveniently
represented by the probability distribution of this velocity, a
random variable. The economist acts similarly. He allows for
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random errors of observation; and he represents the vagaries of,
say, changing fashion by random “disturbances’ or “shocks" that
cbey certain probability distributions; he thus cuts shert the
complicated causal explanation of why tastes fluctuate in the way
they do.

The nondeterminist, on the other hand, will find it unnecessary
to give any justification for the presence of random elements in
economic models except by appealing directly to the “erratic,”
“unpredictable” character of certain types of events including
human behavior; though he, too, will have to assume those events
to be bound by certain probability distributions: even if actions
are unpredictable, certain actions remain more probable than others.

2.1.2, Denote by w = le, RN wJ) the vector of nonobserv-

able random disturbances affecting economic observations, and by
x = (xl, veey xN) the vector of observable variables. We shall
call a stochasti¢c model G the a priori information on a system

of equations

(2.1): cpg(x, w; “(g)) =0, g=1, ..., G,

and on the joint distribution density
(2.2) f(w; B)r

where ¢ as well as o(g) denote parameter vectors. As in section
1.1.0 we shall write o = (&),, «ess 0(g,). We shall assume, in
particular, that a priori information exists a) on the forms of
the functions § = (¢, +.., 9;) and f; and b) on some equaticns
or inequalities in the parameters of these functions. We shall
call structure all propefties of the equations {2.1) and of the
distribution (2.2) including the properties not known a priori,

If w= 0, we have the nonstochastic case treated in section
1 of this article.
~9.1,3. 1If it is possible to substitute for w from (2.1), the
distribution density function f of the disturbances can be trans-
formed into the distribution density function of the observable
vector x:

(2.3) g,.(x),
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say. Given the form of the functions ¢ and f and given their pa-
rameters &, e, the distribution function g, and its parameters are
determined. Certain parts of the present volume [II-2 and IV] deal
with the converse problem: given the distribution (2.3) of the ob-
servables, determine the properties of the eguations (2.1) and the
properties of the distribution (2.2) of the disturbances. Well-
known methods permit estimation of the distribution of the observ-
ables (2.3) from the observations. But to use the knowledge of
that distribution to determine the properties of {2.1) and (2.2)
raises a new problem in inference, that of identification. The
relation between the stochastic model and the distribution of the
observables will show certain analogies with the relation, already
studied, between the nonstochastic model and the reduced form,

2.1.4. 'The random disturbances w may include as a subset a
vector of additive disturbaences in variables (additive errors of
observations, or briefly, errors) v = (v, ..., UF)' Thus the

model (2.1), (2.2) can be rewritten, slightly changing notation;

cpg(x— v, w') = 0
(2.4)
flv, w'), g=1, ..., G,

where the vector w' is complementary to v in w, i.e., w= (v,w').

2.1.5. There are also random disturbances in relations, espe-
cially of the additive kind, which we call for brevity shocks,
(ul, ven, uG) =4, a subset of w/. If we denote by vector w'!
the complement of 4 in w! so that w = (u, v, w'), we can rewrite
the model (again slightly changing the meaning of ¢):
— "y — .
Pglx = v, W) Uy
flu, v, w''}, g=1, ..., G.

(2.5)

2.1.6. If w' 1is empty the model may be called “simple shock-
and-error model” [T. W. Anderson and Hurwicz, 1947}, 1In the pres-
ent volume the contributions of the Cowles Commission staff are
confined to the more special case where w'/ and'v are empty: the
“simple shock model.” Other studies, [Frisch and Mudgett, 1931],
[Koopmans, 1937], [Wald, 1940), [Tintner, 1946), [Reiersgl, 1945],
and [Geary, 1942], may be said to deal with another special case:
the “simple error model,” in which both w// and u are empty.



1-2.2 STATISTICAL INFERENCE IN ECONOMICS 21

9.4.7. Although even the simpler stochastic models present
considerable difficulties, economists will probably be right in
calling the statisticians' attention to more complicated models,
j.e., those in which w” is not empty, and this for three reasonms:

(1) there may be nonadditive errors of observation;

(2) there may be nonadditive shocks, since an economic rela-
tion can be disturbed in a variety of ways (for example, a linear
relation, say a demand curve, can fluctuate owing to random changes
in its constant term as well as in any of the coefficients, see

xvi11], [X1x]);

(3) there occur "prospective"1 variables, such as prospective
profits, prices, etc., that affect people’s behavior and must enter
the equations of the model.

As a rule the economist cannot observe these (except by difficult
questioning of a sample of people). But he may have hypotheses
describing the determination of each of these variables in the
minds of people: such “forecast equations” (Hurwicz, 1946, p.130 ff.]
would relate the ‘prospective” variables to certain “actual” var-
jables (such as the current or lagged national income, ete.) or
to the observations on the “actual” variables., These additional
structural equations will be themselves subject to psychological
fluctuations, expressed as random disturbances, additive or non-
additive. By use of the forecast equations, the prospective var-
iables can be eliminated. The model thus derived can be used in
predicting effects of structural changes occurring in equations
other than the forecast equations. The derived model will involve
functions of the random disturbances that occurred in the forecast
equations. Even if they occurred additively in the forecast equa-
tions, these disturbances will enter the model, generally, in a
nonadditive fashion, i.e., as elements of w” in (2.5).

However, the remaining parts of this article and the bulk of
the monograph itself will deal with simple shock models only,
though some of the statements might be generalized to apply to the
general model (2.5},

2.2. Shock Model and Structure
9,9.1. The introduction of shocks, i.e,, additive random

bhe word “anticipated” variables is sometimes suggested. But this
would seem to exciude expectations that do not come true. The term
“expected” might be confused with the statistical term, expected

= mean} values,
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disturbances in relations {excluding other random disturbances),
can be considered as weakening the nonstochastic hypothesis (1.1):
the observable variables x = (xl, - xﬁ) are related by a sys-
tem of equations

(2.6) ‘Pg(xa a(g)) = ug ' F= 1, Ceeg G,

the distribution function (probability density) of the random vec-
tor uw={u, ..., uG) being denoted by

(2.7) flu; e)

where o ,, and e are parameter vectors. Thus each equation (other
than definitional equations that can be properly eliminated from
the system) is subject to a disturbance.

A priori information on the functions and parameters in (2.6),
(2.7) constitutes a shock model, ©. A shock structure, S, con-
sists of all properties of those functions and parameters:

S = (‘P:fl o, B).

where vector o = (“(1)' “(G))‘ If, as will be assumed, the

model supplies the forms of the functions {in addition to some a
priori restrictions on the parameters), it is permissible also to
write, more briefly, S = (&, &), provided ¢, f do not change.
The structural properties to be estimated from the observations
will then be the numerical values of &, &; or, more generally,
some relations, not known a priori, between the parameters.

2.2.2. We can apply the earlier definition (section 1.1.4) of
a self-contained model (G=N) and a sectional model (G<¥). But
the definition of a complete model and of exogenous vs. endogenous
variables must be supplemented. The *'subsidiary” system of equa- -

tions will, in general, involve random shocks of its own, so that
(1.2) becomes

(2.8) Pgep@) = ui®, k=1, ..., k=¥F-6.
Rewriting the earlier condition (1.3) as

8 9g.x
(2.9) -- =0, ¢=1, ..., G k=1, ..., K,
3y,
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we see that this condition is not sufficient to make the variables

2 determinable outside of the system (2.6). To make them thus de-

terminable, and the considered model complete, we must add the con-
dition that the shocks u of the considered model and the shocks

wl#) = @, .., u{®) of the subsidiary model be distributed
independently:
(2,10) fo(u, w'?) = £(u).£, (u12)),

where f_, f, f, are density functions. If both conditions (2.9)
and (2,10) are fulfilled, the model

o0, 2; a ) =u,
2.11) ¢ @ e
Fu; e), g=1 ..., G

is said to be complete, with y as the endogenous and = the exog~
enous set of observables,

2.2.3. The distribution {(2,3), gx(x)’ of the observable vec-
tor can always be represented as a product of a conditional and a
marginal distribution

(2.12) g x', )= gla! | x)-gu(x"),

where x/, x" is any pair of mutually complementary subsets of x.
Suppose now that thé model is complete; put x' =y, x"= gz,
and denote by vector A the parameters of the conditional distri-

bution g{y|2):
(2.13) £, 2) =gy 12 0)g,(2),

say. We observe that, by section 2.2.2, z is determined by the
subsidiary model and is independent of 4, the random disturbances
of the considered model. The parameters of the (“subsidiary’)
marginal distribution gé(z) are not related to .the parameters X
of the other factor in (2.13), the conditional distribution of
the endogenous variables

(2.14) gly 1z ).
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This distribution is determined by the structure S, as is seen by
solving the structural eguations in (2,11) for y. The reduced form,

(2.15) y = 'qqo[z, u; “cp(“)]'
differs from that of the nonstochastic case (1.8) inasmuch as it
involves the random vector u. GCiven 2, the value taken by u =

(ul, veey uG) determines the value taken by y = (yl, e, yG).

The distribution of ¥ depends on the elements of the structure
S=(f, ¢ o g); this can be expressed thus:

(2.16) gy lz;n) = gfﬂ,(y lz; ),

(2.17) A= AMa, e) = iﬁ(?(a, e} = AS).

Thus the structure S determines the form and the parameters of the
conditional distribution g(y |z; ).

On the other hand, S does not determine the distribution g, (z),
the other factor in the product in {2.13). For the purpose of es-
timating S from observations, we have to consider not the joint
distribution gx(y,z) but merely the conditional distribution glylz):
that is, we can disregard the possibly random character of z, and
treat 2 as if it were fixed in repeated samples of y.

2.2.4, The reduced form (2.15) is a system of stochastic equa-
tions, In the nonstochastic case, the prediction of y from z in-
volved knowledge of %, the parameters of the reduced form. In the
stochastic case, the prediction of y consists in estimating the
parameters (mean, variance, etc.) of the conditional distribution
of y, given z. That is, A, the parameters of the conditional dis-
tribution g(y|z; A) are to be estimated. Now consider (2.17),
and let

(2.18) 20 = R(S9) = Ma®, £9)

be the parameters of the conditional distributioen during the obser-
vation period, that is, of the distribution

(2.19) goly(t) | =(t); »°], t=1, ..., T

It is possible to compute from observations an estimate 1° of the
vector A? by an operation
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(2.20) B Xo= o,

operation [ is called predictive estimation when structure is un-
changed. The notation is analogous to but not identical with that
of (1.13) of the nonstochastic case. There we dealt with predictive
determination of the reduced form, here with predictive estimation
of the distribution of observables.

2,2.5., If changes of structure are intended or expected, the
operation Fﬂ will, in general, not suffice for the prediction of
y from =z,

Suppose it is possible to compute estimates (3°, e°) of the
parameter vectors (a°, &%) of the observational structure S°. Call
this operation

(2.21) est S9 = (a° e%) = dX°.

# thus denotes structural estimation (analogous to the structural
determination of section 1.2.3.6). Now let the observational struc-
ture undergo a change &: i.e., O08%°= S, The estimates I of the

parameters A of the new distribution of observables are obtained
by the operation

L =Na,e)=1[3 (@ e%]
(2.22)
= %8 81°) = By 1,

say; the aoperation F% is called predictive estimation when struc-
ture undergoes a given change O .

Whether optimal properties of the estimates a®, e are preserved
under subsequent transformations &, X, depends on the estimating
methods; in particular, the function y of a maximum-likelihood es-
timate of a parameter 9 is the maximum-likelihood estimate of the
function y(8).

2,2.6. One can interpret the operations (2.20) and (2.22) more
generally. [° and ! may be used to denote, not the point estimates
of the parameters A° and A, but the estimates of the parameters of
the joint distribution of those estimates or the estimates of their
confidence regions. However, this interpretation need not be ap-
plied in the present article.

2.2.7. Structural estimation is needed, in particular, when
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structural changes are intended, i.e., when structural policies

are being undertaken. This was shown in section 1.2.3.5 with
regard to structural determination when the model was nonstochastic,
Section 2.5.1.3 illustrates the stochastic case.

We have to modify the earlier treatment since y and consequently
the gain (welfare} w as previously defined are random variables.
For example, the real income (of a firm or of a nation, as the case
may be) is the quotient of money income over price level, i.e., a
function of endogenous variables y. PReal income therefore depends
con the value of exopgenous variables z and on the distribution
gy | z;2), and is a random variable. We must, accordingly, rede-
fine the gain (welfare) w, i.e., the quantity which the policy-
maker tries to maximize. The policy-maker will prefer a high mean
value of real income to a low mean value; he may possibly at the
same time prefer a small variance of income to a large variance.

In short, he will prefer certain probability distributions of in-
come to others. He will maximize a guantity « that is a function-
al of the probability distribution function of income! But the
probability distribution of income depends on the value of the
exogenous variables z and on the distribution g(y | z; 2). Since
the form of g is fixed a priori (depending on the function forms
¢, f of the model), the gain o is & known function of the dis-
tribution parameters A and of z enly. By (2.17) the parameters
A depend on the structure S in a way uniquely determined by the
model. The structure S is, in turn, (analogously to section 1.2}
the result of controlled or uncontrolled changes applied to the
observational structure. Thus

(2.23) A= R(S) = K3, 5,

Furthermore, the exogenous variables can be either controlled (z_)

or uncontrolled {2 ) by the policy-maker. His aim is thus to get

g

(2.24) 5,:%_8"),

~

- - - -~
where o is a known gain function, and 2,, J

= w(gc’ zu:

¢ are, respectively,
the optimal values of controllable exogenous variables and of

1Compare [Hurwicz, 15946, p.132], [Tint.ner, 1942]. This statement can be
shown to be implied in the statement that the mean value of utility of
real income is maximized,
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controllable structural changes. That is, & is a maximum of @ with
respect to policies (=, 50).

To estimate the best policy (2,, 8 ), for a given set {(z , O )
e’ e w Yyl

of uncontrolled exogenous variables and uncontrelied structural
changes, one has to have an estimate of the observational structure
59, i.e., to have the estimates (g% e°) of the observational struc-
tural parameters {u°, £°).

In practice, the maximization of w with respect to policies con-
gists in estimating for each considered policy (zz, Bc)' the param-~

eters L. of the conditional distribution of y given z, and the con-
sequent probability distribution of (say) real income. The policy
which gives the probability distribution that is preferable to all
others is then chosen.

2.2.8. Relation between regression, reduced form, and structural
equations. Sometimes the series of alternative policies considered
will be such as to make it unnecessary to know the joint conditional
G-variate distribution (2.14) of all endogenous variables after the
change in structure. Tt may suffice to know the distribution of
some particular subset, say y ;, of y, that is, the distribution

(2.25) gy Uarr 28 Mgy
Such conditional distribution is easily derived from the general

conditional distribution (2.14)! The set ¥(g) 18 called the predic-

tand; the predictor is, in this case, the whole exogenous set z,
Practical importance may be attached in particular to the simplest
case, viz., the univariate conditional distributions

(2.26) g1y lzrn), oL, golyglzsng).

In particular, one may be interested in the first moments of such
distributions, e.g., in the expectation

(2.27) S()’l [ 2) :R(Z;X(l))-

R is the regression function of ¥, on g. Its parameters, denoted

here by the vector %(;,, are called regression coefficients if R
happens to be linear, so that, writing X1y = (Xio’ Xypr cee XiK)‘

1See [V ]
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£
(2.28) €0, {2 = ;Xlkzk + Xgq-

A sufficient condition for the function R in (2.27) to be linear is
that the functions ¢, f of the model be linear and normal, respec-
tively. We can then conveniently split the structural coefficients

o into two subsets B = {pgh} and Y= {ng], @gh=1, ..., G;
£=0, ..., X}, denoting respectively the coefficients of endog-

enous and of exogenous variables; further we can choose the con-

stant terms Y, so as to make Eu = 0. The model (2.11) becomes:

Y
@
2

g=1, ..., G,
(2.29) h=1

X
Bon % T E‘fghzk T Y T Y

fu),

where f(u) is normal. In this case the reduced form (2.15) will
also be linear; for example the first equation of the reduced form

will be
K

(2.30) ¥, = ;'fclk #, + M, + a linear function of u.

Taking the expectation of y, given z, we find that the regression
coefficients ¥, and the coefficients %1y of the reduced form
coincide: see (2.28).

Furthermore, suppose our complete model consists of one equa-
tion only (G=1); if we choose the units of the z's so as to make
By = 1, we can write the unique structural equation as

X
(2.31) n - k2=0Y1k Zy "N Tt
In this particular case the coefficients of the reduced form

will coincide not only with the regression coefficientsy, but
also with the structural coefficients Y, [This applies, of

course, also to the case where a complete model involvipg G >1
variables can be split into G uniequational complete models such

as (2.31); in each of which, one endogenous variable depends on
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exogenous variables only.] In general, however, there will be no
such coincidence. An example will be given in section 2.5.1.2,

2.2.9, Predicting exogenous variables. If the conditional
distribution (2.19) estimated from past cbservations is known ta
remain valiad for ¢ >7T, this distribution, or any of its practical-
1y relevant conditional distributions (2.23) can be used, respec-
tively, as the future distribution of y, or of a subset y ,,, for
given future values of z.

However, it may also be desirable to make predictions about ex-
ogenous variables, in particular the uncontrolled ones, z, . It is
seen from section 2,2,7 that the choice of best policy presupposes

the knowledge of uncontrolled factors: z, as well as Su. It s
possible to estimate future values of the variables z, if they are

related to observable variables that do not enter the model consid-
ered, For example, suppose prediction is done on behalf of a firm
to help it in the choice of its policies., The firm's sales is an
endogenous variable in the model describing the demand and produc-
tion conditions for the firm's product. This model contains na-
tional income as an exogenous variable which the firm cannot control.
The national income itself is an endogenous variable of another
model; this may also include exogenous variables such as foreign
crops (which affect the demand for this country’s exports of man-
ufactured goods, and hence affect this country’s income). Thus

the firm will be interested in predicting national income, using
distributions such as (2.26), where y; would denote national in-
come, and Z will include foreign crops z . However, another var-
iable endogenous to the national economy model - e.g., the imports
¥, — can be usefully inciuded in the predictor set, if, in the
future; information on national income becomes available later
than information on imports. The prediction of y, for a given z

and a specified value of y, is more accurate than the prediction
of y; from 2 with the value of y, unspecified. Thus, it may be

useful to derive from the cbservational distribution g°(y 13)
a distribution

(2.32) E‘?d,.,.)(y(d, i }'(T)’ Z),

say; this distribution is more general than (2.25) in that its pre-
dictor set (yr,z) includes endogenous variables, Yiry In partic-

ular, we may derive a regression equation to estimate
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(2.33) €@y |y, 2).

We may also want to estimate a variable exogenous not only to
the relevant model (e.g., the model of the firm) but also to the
model (e.g., of the national economy) from the variables of which
it has to be estimated. For example, foreign crops z, may be of
direct interest to the firm and also may influence national imports
¥y ; but observations on factors determining foreign crops may be
unavailable. If data on yz,become known earlier than those on z,,

z, can be estimated from ¥y . This case differs from the preceding
one inasmuch as z, may be a nonstochastic variable. However, it
may be possible to use the past distribution g%y | z: A°) of the
observables to derive a confidence region for z, (looked upon as

a parameter): values of z; such as would give rise to the known
values of ¥q only with a small probabilit.y (lower than A preas-

signed significance level) will lie outside the confidence limits

for z,.

2.2.9,1. These remarks are of same importance in view of many
attempts to use endogenous variables as predictors; e.g., to pre-
dict national income from contemporaneous imports, or retail sales,
etc. It may be possible to determine such a relation from past
observations. But its usefulness is limited to the cases- just
mentioned. To choose between various national policies, it cannot
be useful to be able to predict national income from imports, since
the latter are themselves affected by any policy chosen. For pur-
poses of private policies, on the other hand, such prediction can
be useful. But such prediction is possible only inasmuch as in- .
formation on imports is available earlier than that on national
income; and only if, in addition, the relevant aspects of the
national economic structure can be assumed unchanged between the
period of observation and the time when the private policy is
going to be applied. The same considerations are valid for the
case when, because of a lag in the available data, variables en-
dogenous to the national economy are used to estimate exogenous
ones.,

2.3. Identification

2.3.4. In section 1.3 it was shown for nonstochastic models
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that structure can be determined to the extent that the a priori
conditions (i.e., the model) suffice tomake the structure uniquely iden-
tifiable. In this case, only one structure will correspond Lo a
given reduced form. Or, in terms of parameters: if only one set «°
corresponds to a given set m°, then, since w° can always be deter-
mined from (sufficiently numerous) cbservations, the set o? can

also be so determined.

In the stochastic case, a structure is said to be uniquely iden-
tifiable by the model if only ¢ne structure compatible with the
model corresponds to a given conditional distribution of the obser-
vations. Or, in terms of parameters: if enly one set a®, €%, cor-
responds to a given set A°, then, since A% can be estimated from
the observations, the structural parameters o, ¢ can also be so
estimated.

2.3.2. The structural transformations 5c R Bu and the gain

functional » may be such as to make idemtifiability of all param-
eters a®, €° unnecessary for the choice of best policy. Section
1,3.10 on partial identifiability applies accordingly.

2.3.3. If the structure, or a part of it, is not identifiable
its estimation is not possible, however nuierous the observations
on the variables treated as observables in the model. However,
observations on other variables may provide additional information
(which is a priori with respect to the structure considered; see
section 1.1.0) such as to make the structure, or its relevant part,
identifiable. The failure of a model to identify the structure is
not a ground for rejecting the model; rather, it calls for addi-
tional information, to be provided by a new type of observations.
Suppose, for example, that the relation describing the investment
behavior of the aggregate of American firms is not identifiable
within a model that involves, in addition to this relation, rela-
tions describing the behavior of consumers, lenders, etc, This
would make it necessary to add a new type of information, based,
e.g., on records of single firms, or on interviews with business-
men.

2.3.4. The a priori information provided by the model may
involve the parameters o of the structural equations as well as
the parameters & of the shock distribution. If no a priori infor-
mation on the parameters e of the shock distribution exists, and
if a nonstochastic structure

(2.34) 90, 27 0) =0, g=1 ..., G
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is not. completely identifiable, then the parameters « of the sto-
chastic structure

P (y, &) (X( )) - u_,
(2.35) ¢ ¢ d
Flu; e), g=1, ..., G,

will also not be completely identifiable; but information on the
distribution f{(u;e), if available, may make (2.35) completely iden-
tifiable, Thus the example in section 1.3.5 may or may not hold
for the stochastic case if information on the shock distribution
is available: such as the knowledge that the shocks on the demand
side are not correlated with those on the supply side; or knowledge
of the ratio between the variances, etc.: [Frisch, 1933], [Mann
and Wald, esp. p.219], [Marschak and Andrews, ¥ 18-22], and
sections 2.5.1.1, 2.5.1.4 below. |

2.3.5. In particular, a uniequational complete model is com-
pletely identifiable, apart from trivial transformations (section
1.3.7). Hence the remarks in section 1.4,2, on the role of exper-
iments {(of type IT) in making the observational structure identi-
fiable, will apply. If, in addition (section 2.2.8), the uniequa-
tional complete model generated by an experiment is linear with
shocks distributed normally, the structural coefficients will not
only be identifiable but will coincide with the regression coef-
ficients. The model can then also be regarded as one in which
one (the “dependent”) variable is subject to measurement errors
while all others are free from such errors: a familiar case in
the history of the application of statistics to experiments. It
arises in nonexperimental science only if the mechanism producing
the observations can be adequately represented by a model involv-
ing only one nonlagged endogenous variable.

2.4. Dynamic Models

9.4.1. A model'is called dynamic if it has at least one of
the following two properties: 1) at least one observable variable
occurs in the structural equations with values taken at various
points of time (this includes the case of time derivatives, differ-
ences, and integrals over time); 2) at least one equation contains
functions of time (trend, seasonal fludtuations, etc.). If the
first property is present the model is called multitemporal; if
both properties are absent, it is called unitemporal.



1-2.4 STATISTICAL INFERENCE IN ECONOMICS 33
2.4.2. We obtain a discrete multitemporal shock model if the

equations in (2.11) are replaced by

(2036) ch[y,(t)v =g y’(thy!); zr(t)v sy 3'(t_'fzr);°‘-(g)] = ug(t).r

and the distribution of shocks in (2.11) by

(2.37) Fflu(t), ..., u(t-ty'); e,

The time interval between two successive observations is chosen as
a time unit; time lags smaller than 1 are not admitted by the mod-
el; Ty and 1, denote the largest time lag with which the corres-

ponding variables occur; and t takes all integral values through
the time interval during which the model is supposed to be valid.

2.4.3. A case of great practical importance arises when suc-
" cessive shocks are mutually independent; that is,

Flu(t), u(t-1), ..., u(t—-ry,)]
= flu(@)]-flu(t-1)] - - + Flu(t-<)],

(2.38)

say. If this condition is fulfilled then, as shown in [I-f] and
{XVIT], lagged variables can be treated as additional variables in
Judging the identifiability of a structure. Lagged endogenous var-
iables can then be treated as if they were fixed in repeated samples
(i.e., like exogenous variables). The following model can then be
regarded as a complete one:

(2.39) ch[y(t), 2(t); a) = ug(t), g=1, ..., G

(2.40) Fult) ; €],
where the notation in (2.36) has been changed as follows:
y'(t) = y(t)

(2.41) [y’(t-1), ..., y’(t—ﬂ:y,), z'(t), ..., z’(t—-'cz,)] = z(t)

i

“jointly dependent variables,”

“predetermined variables,”

il

following Koopmans’ terminclogy [XVII].
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2.4.4, It is plausible to assume, as in (2,38), the statisti-
cal independence of successive shocks if the time interval between
two successive observations is not too short, It would be more
realistic to study models in which at least some of the observables
y(t), 2(t), and also some of the shocks u(t) are functions of a
continuous time variable. Some properties of such continuous sto-
chastic models are outlined in [XVI]. However, the remainder of
this volume deals with discrete models and most of the time assumes
condition (2.38) to be valad. .

2.4.5, The reduced form defined in (2.15) applies to the multi-
temporal model with variables y(t) and z(¢) defined by (2.41). The
variables on the wight-hand side of the reduced form (the predictor
set) occur with lags no higher than those in the structural equa-
tions. However, other kinds of predictor sets can be considered.
In the separated form each nonlagged variable is expressed as de-
pending only on its own lagged values and on the exogenous variables
with or without lags; this is possible because, by "shifting time
back,” one can obtain enough structural equations to eliminate the
lagged values of other endogenous variables. One can go further
and eliminate the lagged values of all endogenous variables, leav-
ing only the exogenous variables (with and without lags) as the
predictor set: the resolved form.

As shown by Tinbergen, the separated form (his “final equa-
tion”) can be used to build up, year by year, the path of a single
endogenous variable beginning with given initial values and giving
effect every year to changes in exogenous variables; that is, the
solution of each equation of the reduced form (locked upon as a
difference equation) expresses the predictand variable as a func-
tion of time {“cyclical fluctuations”) and of exogenous variables.

Corresponding to the reduced, the separated, and the resolved
forms in which a multitemporal model can be written, there are
three kinds of distributions with which predictive estimation
under unchanged structure can be concerned, and which can be es-
timated (in principle) regardless of whether the structure is or
is not identifiable. However, as will be shown below (section
2.5.3), only in the case of reduced form, but not in the case of
separated and of resclved form, is the estimation amenable to
known methods.

2.5. Estimation

92.5.0. Before we summarize the results obtained in this
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volume with regard to the estimation of relevant parameters from
finite samples, we shall restate and illustrate certain population
properties. We shall then discuss the estimation of regression
equations, and of complete and incomplete structures, and add a
few remarks on the choice of models.

2.5.1. Population properties. Important differences between,
on the one hand, the structural parameters o, and, on the other,
the parameters n of the reduced form and the regression parameters
X, will be briefly restated. (It is understood that the parameters
to be treated here are generated by the observational structure S9;
but the superscript ¢ is omitted from the symbols where no ambigu-
ity arises.) To fix the ideas we shall assume the model to be
linear with normally distributed shocks and shall give examples
when certain elements of X or = are or are not equal to some ele-
ments of o,

While X and m can always be estimdted from observations, the
same is not true of the structural parameters o unless they are
identifiable. Furthermore (section 2,2.8) the coefficients m,,,
of that equation of the reduced form which determines the endog-
enous variable y, , are equal to the coefficients ¥ () of the corre-
sponding regression equation, If there exists a structural equa-
tion telating y, to the exogenous subset 2 and containing no
endogenous variables, its coefficients a¢yy will also be equal to
Xqay provided this structural equation, if stated together with
the distribution - ji("l)' say — of its shock-variable, consti-
tutes a complete model. The latter condition implies (section
2.2.2) that #, is distributed independently of the shock variables
Uy, «vry Ug entering the remaining structural equations. If the
structural equation considered contains lagged endogenous vari-
ables, and if successive shocks are independent, the statements
just made can be extended so as to include in z not only the
exogenous but also the lagged endogenous variables (section 2.4.3).

For example, structural and regression coefficients will coin-
cide in each of the following complete models (each is assumed to
be linear, with successive shocks independent and normally dis-
tributed; the choice of the “dependent” variable in the regression
will be indicated in each case by the phrase describing the model).
Of these four models, the first three are uniequational, while the
last one can be partitioned into two uniequational complete models!

I . . . . .
A more complicated model partitionable inte four uniequational models
is given in [Bentzel and Wold, p.104].
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(1} Current yield per acre depends on current tem- .
perature and current rainfall,

(2) Current yield per acre depends on current tem-
perature and rainfall, and also on' the amount of fertilizers fixed
by the experimenter.

(3) Current yield per acre depends on current and
past temperature and rainfall, and on the decision farmers made in
the previous year regarding the amount of fertilizers.

(4) Market price of a nonstorable good depends on
supply (demand eguation); supply depends on previous year's price
(supply equation); the behavior of buyers and that of sellers un-
dergo mutually independent shocks. '

2.5.1.1. In the following example! on the other hand, each
structural equation contains more than one endogencus variable, and
cannot therefore (taken together with the distribution of its shock
variable) be regarded as a complete model in itself; but the two
equations together constitute a complete model. We shall show that
the structural coefficients will not be equal to any of the regres-
sion coefficients. Let ¥ (national product, identical with nation-

al income, or the supply of all goods) and y, (demand for all goods)
obey the following equations for any time %:

1l

y2(t) - ﬁl yl(t) - 539

yz(t) - yl(t)

u,(t) (behavior of buyers),

I

uz(t) (behavior of producers).

The model does not contain predetermined variables. Its random
shocks are ul(t) (“shift of demand”) and u)(f) (“failure to adjust

production to demand”). Each pair of values ul(t),uz(t) determines

y1(8) = [uyt) — ugfe) + gyl / (1= gy,
v2(8) = [uyt) — Byut) + 8] / (1= 8,).

Suppose successive shocks are independent and the joint distribu-
tion f[ ul(t), uz(t)] of the shocks is normal and independent of time.

lror more fully developed examples from the same branch of economics see
[Haavelmo, 1947 A].
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Let its moments be

{(2.42) Euyt) uft) = 0; Eul(t) = oy ; Eul(t) = a.

Then the distribution g (yl'yz) of the cobservables is normal and has
moments

€y =8y, =8/ (1-8); o, , = (o7 131"22)/(1'531)2:
(2.43) o

= (ot 0)/ (1-8); o, . = (o, + Blo,,)/ (18,

o]
yin Yoy

These are four mutually independent equations (not counting the
identity 8y1 = E‘y2 ) to determine the four unknown structural
parameters S = (B;, By, 93y, Oy, ) from the parameters of the dis-
tribution g(yl, yz) of the observables. The structural parameters

‘are completely identifiable.

2.5.1.2. Consider now the regression of Yy OM Yt
Elyy Iyy) = X% + %,

say, and
(2.44) % = crj‘,lyz/cryly1 = (0’11+ B1095) / (o T 022),

which approaches g, or 1 as o}, /o5, >0 or »a, respectively.
Thus B,, the “marginal propemsity to spend,” is distinct from the
regression coefficient X, of spending (yz) on income (yl), except

in a limiting case when the behavior of buyers is not subject to
random shocks (while the behavior of producers is).

2.5.1.3. This example also illustrates the different practical
purposes of estimating 8,, By or X,, Xg- Suppose a firm expects a
given change in the economic structure; for example, a rise in the
“marginal propensity to spend” whereby 8, will be replaced by £8;
suppose the other three structural parameters are known to stay un-
changed. If the firm wants to use old observations on Yiv Yy
to predict the distribution of these variables under the new cir-
cumstances, it will have first to obtain By, By» Gy, Gy from
observations, and then insert the new set of structural parameters
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(kpl, Bor Opy- 052) into (2.43)}, Furthermore, if the firm wants to
estimate national spending from national income (because the latter
is published earlier than the former; section 2,2.9.1), it will have
to use, not the old regression coefficient (2.44), but a new regres-
sion coefficient, (o), *+ % ﬁlcéz)/’(oil + 6,,). This cannot be ob-
tained from x;, but can be obtained from the old structural param-
eters (ﬁl, Bor 01y 052) since £ is known. Only if the structure is
known to remain unchanged can ¥, be used.

2.5.1.4. 1f the structure were not identifiable, there would be
no way to predict effects of known structural) changes. This would
be the case, for example, if the a priori assumption - in (2.42) -
of noncorrelated shocks could not be admitted. We should then have
five structural parameters to detérmine; the four equations {(2.43)
would therefore not suffice. On the other hand, the structure
would be identifiable, even with the noncorrelation assumption
dropped, if a different predetermined variable had been introduced
into each of the two equations of, the model.

2.5.2. Estimation of regression coefficients. When structure
is known to remain unchanged, estimates of regressicn coefficients
¥, together with other parameters of the distribution of observables,
help to estimate the future distribution of predictand variables for
given values of others, and hence to estimate future positions of
maximum gain. When, on the other hand, structure is known to under-
go a given change, the estimation of future values of variables re-
quires knowledge of the structural parameters (o, €). We have seen
(section 2.2.8) that in the special case of certain uniequational
complete models {(and of models that can be decomposed into such uni-
equational complete models), « = x. In this case, if ¢ = ¢(X9) is
a function of observations X that is an unbiased estimate of the
parameters x, then Eq = % = o; that is, ¢ can serve as an unbiased
estimate of structural parameters. In general, however, there is
no equality between o and . Therefore a function of observations
that is an unbiased estimate of ¥ cannot be an unbiased estimate of
o, even for infinitely large samples. If such a function is used
as an estimate of o for prediciive estimation under a structure
subjected to given changes, the future endogenous variables, and
hence the future gains, will be estimated with a bias; consequently,
other than optimal policies will be chosen.

This does not make the estimation of regression coefficients
useless: uniequational complete models of the appropriate type may
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exist; and structures do not always change. Hence our interest in
reconsidering the properties of regression coefficients.

In a general multitemporal model, the variables are connected
by a set of equations

P[0 (8, oo nE=<) m(8), oo, y4lt- 1), 2] = Uy,

g=1, ..., G

where z denotes exogencus variables {lagged as well as nonlagged).
The regression equation for y, - denoting by (y(,r), z) the whole
predictor set — 1is

En® ly 2l = Rly(,y. 2),

which has not been studied in general. The simplest case is that
of the linear regression equation with Y(r) €mpty:

V¢
(2.45) Ely()iz] = 21 X1p%p + Xyo 5

it is satisfied when yl(t) and z are connected by an uniequational

unitemporal model, cf. (2.31):
X
(2.46) yl(t) - zl: Y122, ~ Yip = ul(t),

provided successive shocks u,(t), u(t+1), ..., are normally and

independently distributed. Certain optimal properties of the
least-squares estimate of X (=¥} are well established for this
case. The case has to be generalized in two important directions
(possibly, but not necessarily, preserving the assumptions of lin-
earity and normality of the structure): 1) the complete model may
be made multiequational; 2) the complete model may be made multi-
temporal.

- In the case of multiequational {but unitemporal) model, the
properties of the least-squares estimate and the maximum-likelihood
estimate of the regression coefficients, and in particular the con-
ditions of equivalence of these two estimates, have been studied
in [VI] and [VII] by Hurwicz and Koopmans for large as well as small
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samples.

For the case of a uniequational multitemporal model with only
one lag,

(2.47) »(t) = ay,(t-1) + ult),

where ul(t) is distributed normally with. a constant variance and
with zero covariances Eul(t)ul(t’), t #t!) Hurwicz [XV] shows

that the least-squares estimate of the regression (and structural)
coefficient « has a bias, For T = 20 (a length of time series
common to economic studies based on annual data of the interwar
period), the bias approaches 9 per cent as o » 0. The bias seems
to disappear as the sample increases or as o » 1.

9.5.3, This bias in the regression estimates from short time
series will in general exist in every multitemporal model. If the
model is multiequational, there arises, in addition, the question
of the choice of predictors. Each predictand variable can be ex-
pressed as a fungtion of the predictor variables and of the shock
variables as in (2.15) and (2.30). Only contemporary shock var-
iables will be. involved provided the predictor variables occur
with the same lags as those of the structural equations. Such is
the case with the reduced form (see section 2,4.5). The predictand
will then be relajed to the predictor by an equation such as (2.30),
where the z's would stand for exogenous as well as lagged endoge-
nous variables; and where the successive random terms will be inde-
pendent. In this case, least-squares large-sample estimates of the
coefficients of the variables will have the usual optimal proper- -
ties. But it is different in the case of the “resolved” and the
“separated” forms (section 2.4.5). In these cases, structural
shocks relating to various points of time will be contained in the
same equation, as the result of eliminating certain endogenous var-
iables after replacing ¢t by t—1, t—2, ..., or “shifting the time
back.” Therefore successive random terms of a ‘resolved” or a
“separated” form are not independent; and the least-squares esti-

mates of corresponding regression equations will, in general, be
biased

2.5.4. As stated in section 2,3.2, expected or intended struc-
tural changes may be of such a nature that the estimation of all
the parameters of a complete model is not nmecessary for purposes of

1
Pointed out by Haavelmo. See [Klein, 1946 B, p.303 f.].
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prediction and policy: hence the practical importance of partial
structural estimation, i.e., the estimation of a selected set of
parameters. Such estimation is possible if the set of parameters
in question is identifiable, even though some or all of the remain-
ing parameters may not be identifiable, In particular, the estima-
tion of the parameters of a few selected structural equations, or
even of a single structural equation (e.g., demand equation) has an
obvious practical interest.

On the other hand, the expected or intended changes of struc-
ture may not be known long beforehand. It is therefore often desir-
able to have estimated the structure completely.

2.5.5. The method of complete structural estimation most fully
discussed in the volume is that of maximum likelihood. The joint
probability density of all the observed values of the variables is
regarded as a function (the likelihood function) of the structural
parameters. Those values of the parameters for which this function
attains its highest value are called maximum-likelihood estimates.
In important classes of cases these estimates are “consistent”
(they converge with probability 1 to the true values in the limit
for infinitely large samples) and “efficient” {they have, in large
samples, variances that never exceed those of any other normally
distributed estimate). In [Mann and Wald] are discussed the maxi-
mim-likelihood estimates obtained when all available a priori in-
formation is used and when the model is as follows: a completely
identifiable complete system of linear difference equations with
no exogenous variables; shocks mitually independent; the model gen-
erates a stationary process, i.e., the observable variables would
converge in time to constant values if shocks were absent. ‘These
authors proved the consistency (but not the efficiency) of the es-
timates under these conditions; they also showed that, in the ab-
sence of a priori restrictions, the structure is not identifiable.
In [I1-3] Koopmans and Hubin estimate the parameters of a complete
linear model that is more general owing to the introduction of ex-
ogenous variables. Their discussion also covers the estimation of
the parameters of some identifiable structural equations if other
equations of the complete system are not identifiable. They give
a proof of the consistency of the estimates which takes account of
these two generalizing assumptions. In [XIV] Rubin extends the
proof to a simple case of a nonstationary (“explosive”} process.

There is an alternative maximum-likelihood method for obtain-
ing consistent estimates of structural parameters: each equation
of the structure is estimated separately via the reduced form as
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described in section 2.5.6. For each equation. this procedure has
to use at least as much a priori information as is necessary to
make that equation identifiable; but it leaves unused a (possibly
large} part of the remaining a priori information. This method
will therefore lead, in general, to less efficient estimates (i.e.,
larger sampling variances of the estimates) than the maxipmm-like-
lihood method using all information described above, although both
kinds of estimates have the consistency property. For brevity, we
call the two estimation methods “information-preserving maximum-
likelihood estimation™ and *‘limited-information maximum-likelihood
estimation,” respectively. The latter method is also known as the
“method of reduced forms.”

The practical usefulness of the consistency property of esti-
mates diminishes if the sample becomes small. Small sample proper-
ties of structural estimates have not been studied, except [XV] for
the uniequational multitemporal model, equation (2.47) of the pres-
ent article. The bias found in the estimate in this case suggests
that in general both proposed methods of estimating multitemporal
structures are biased if applied to short time series.

2.5.6. Incomplete (partial} structurel estimation. A complete
model (and structure) was defined above, in sections 1.1.4, 1.2.1.1,
and 2.2.2. C(bviously the limited-information maximum-likelihood
method just described can be used to estimate complete as well as
incomplete structures. At the time when this introduction is being
written this method appears to be best developed. But other sug-
gestions for estimating incomplete structures will also be discussed
below (section 2.5.6.1) after adding a few more remarks on the re-
duced forms method.

The coefficients m of a linear reduced form (2.30) are regres-
sion coefficients of a nonlagged endogencus variables on exogenous
and lagged endogenous variables. Their least-squares estimates
have the consistency property. At the same time, they are functions
of the structural parameters. This suggests that consistent esti-
mates of structural coefficlents can be obtained by applying appropri-
ate transformations to the least-squares estimates of the coefficients
of the reduced form. Similarly, parameters (e.g., the variance)} of
the estimated distribution of the random terms of the reduced form
can be transformed into the parameters of the distribution of the
shocks in the structural equations. The suggestion has been famil-
iar for some time' but has been applied rigorously for the first

lSee, for example, [Mann and Wald, p.219], {Haavelmn, 1944, pp. 103 - 104].
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time by T. W. Anderson, M. A. Girshick, and H. Rubin; their joint
work is summarized in [IX]. Since an equation of the reduced form
has as many unknown coefficients as there are predetermined vari-
ables in the system, it will, in general, have more parameters than
the structural equations (or egquation) to be estimated, Hence
equations connecting the unknown estimates of structural parameters
with estimates of parameters of the reduced form may be more numer-
ous than the number of these unknowns. To aveid this overdetermin-
acy, part of the available information has to be dropped. In par-
ticular, the method of reduced forms, which has been applied so far
only to one equation at a time — in [Girshick and Haavelmo], [Haav-
elmo, 1947 A}, [Klein, 1947, 1950] ~ does not use the observations
on jointly dependent variables outside of this equation, though it
does use the observations on predetermined variables of the system.
The only a priori information this method uses are the linear re-
strictions on the parameters of the equation in question (including
the prescription as to which variables enter this equation).

2.5.6.1. Other procedures of incomplete structural estimation
were suggested by Koopmans [1945] and by Wald [VIII]. To estimate
the parameters of F (<G) structural equations, Koopmans proposed
the following approximation method. The G-F “complementary”
equations of the model are “sketched in,” e.g., by using admittedly
biased single-equation least-squares estimates or some a priori
guesses, Then proceed with the estimation of the parameters of the
F equations to be estimated, The estimates of the remaining param-
eters of the complete model will then be improved compared with
what they would be if the complementary part of the model were en-
tirely neglected.

Wald's suggestion, [VIII], is different: even if we do not know
anything about the complementary part of the model, our a priori
knowledge about the F equations that interest the investigator may
be sufficient to exclude hosts of originally admissible hypotheses
about these equations, and thus to construct confidence regions for
parameter estimates. For example, if we know that successive
shocks are independent, then a set of values of the structural
parameters must be rejected whenever the estimate of shocks com-
puted from observations (the “residuals”) fails to have approxi-
mately the characteristics of a random series. The elaboration of
the method will consist of showing how to use a priori knowledge
concerning an incomplete model to construct shortest confidence
regions. Essentially, the difference between Koopmans' and Wald's
suggestions on the estimation of incomplete models consists in
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attaching different weight te our knowledge of the complementary
part of the entire medel.

The method of reduced forms makes use of the maximmm-likelihood
principle, since least-squares estimates of regression coefficients
are maximum-likelihood estimates (under normally distributed
shocks); however, it leaves unused certain types of available a
priori knowledge. In Wald’s approach to incomplete systems, still
fewer known restrictions are used.

For a given number F (<G) of equations that are to be estima-
ted, the choice of method will depend on two considerations: the
mathematical and computational simplicity on the one hand, and the
degree of use of available information on the other. For F =1,
the reduced forms method is less laborious than the approach via
the estimation of the complete system (Wald’s method has not yet
been studied in this respect). But the complete estimation has one
advantage over the other methodsr it utilizes in full the a priori
information on the model as well as the observations on all vari-
ables of the system.

2.6. The Choice of Model

There are many competing sets of a priori restrictions that
can be imposed upon the structural parameters without contradic-
ting what we know of human behavior and environment; and there is
a wide variety of functional forms to specify the relations and
distributions involved. It is often asserted that the choice is
much wider in economics than in other empirical sciences. The
usual testing considers only one hypothesis {and its negation) at
a time. This is an inadéguate procedure when a number of hypoth-
eses classifiable according to a large number of attributes are
in competition. In this volume no attempt is made to approach
this problem} In fact, the present volume is little concerned
with the testing of hypotheses. Yet, the following remarks im-
plied in the basic ideas of this volume seem appropriate.

A completely identifiable structure is said to be “just iden-
tifiable” by the model if the omission of one of the a priori
restrictions of the model makes the structure incompletely identi-
fiable; a completely identifiable structure that is not Just
identifiable is called overidentifiable. If several alternative
overidentifying models are acceptable on a priori grounds, each

1
See [Wald, 1942, pp. 8 - 9], [Brookner]. This is the problem of
“multiple (as distinguished from dual) decisions.”



1-3.1 STATISTICAL INFERENCE IN ECONOMICS 45

of them (and its negation) can be tested against data by the exist-
ing methods; this is, in fact, attempted in {IX-6]. However, new
methods are needed to test the whole set of such models simultane-
ously,

Regarding the great variety of functions equally appropriate,
on a priori grounds, to describe structural economic relations,
one may expect some help from the statisticians’ recent attempts
at nonparametric estimation of distribution functions [Wald and
Wolfowitz]. Certain weak a priori restrictions on the structural
relations, such as the sign of certain partial derivatives, the
independence of successive shocks, etc., the economist can assert
with better conscience than the restrictions upon, say, the degree
of polynomials chosen to deseribe the structural relations. If
confidence limits for joint probability densities of the variables
could be estimated on the basis of such weak restrictions, predie-
tive estimation under properly defined structural changes might
become possible without introducing stronger but less justifiable
hypotheses.

3. THE PLAN OF THE VOLUME

3.1. This volume is concerned with empirical inference in
economics. The bulk of its contents is determined by the stochas-
tic character of economic models. Their character as systems of
simulteneous equations requires certain modifications of the
usual inference method. The usual method is appropriate when no
changes in structure are expected or intended, so that no struc-
tural estimation is needed; or when structural estimation is based
on experiments which isolate single equations that constitute the
complete model by making all variables but one predetermined; or
when experiment is used to reproduce the structural change consid-
ered (section 1.4 above). The modifications of the inference
method that are necessary when none of these conditions is satis-
fied are treated in Part One: “‘Simmltaneous Equation Systems.”
The dynamic character of economic models calls for modifications
in the technique of inference, especially drastic in the treatment
of small samples; these modifications are discussed in Part Two:

“ Problems Specific to Time Series.” Part Three, on “Specifica-
tion of Hypotheses,” discusses the construction of models of the

type analyzed in the earlier parts of this article, and other more
general ones,



46 J. MABRSCHAK 1-3.1

3.1.1. In particular, Part One deals with three subjects sep-
arately: identification, estimation, and computation, Koopmans,
Rubin, and Leipnik treat these problems extensively in [II}, and
the discussion that follows is organized according to the three
headings.

3.1.2. Koopmans and Rubin establish criteria for identifica-
tion of linear dynamic systems. Their extensive treatment of this
especially important case is followed by comments of three authors:
Hurwicz, in [IV], provides the logical basis of the problem in its
general formulation; Wald, in [III], contributes certain general
criteria for identifiability; and Haavelmo, in [V], confronts ‘
Ragnar Frisch’s technique of bunch maps (devised to establish the
presence or absence of multicollinearity in the data of a model
based on errors without specified distribution) with the theory of
models of similtanecus equations involving shocks with specified
distributions,

3.1.3. The logical foundations of structural estimation, com-
pared with predictive estimation under changed or unchanged struc-
ture, is given by Hurwicz, in the introductory sections of [VI].
The more technical parts of this paper study the properties of
least-squares estimates of regression coefficients when the com-
plete model is multiequational. For one of Hurwicz’s results ~
the equivalence of least-squares and maximum-likelihood estimates
of regression coefficients - Koopmans gives an alternative proof
in [VII].

The procedure of complete structural estimation by the maximum-
likelihood method is developed in this volume more fully than the
methods of incomplete (partial) structuvral estimation. To the for-
mer, the extensive article [II-3] by Koopmans, Rubin, and Leipnik
is devoted. Methods of incomplete structural estimation, summa-
rized above in section 2,5,6, are discussed only briefly: by Wald,
fVIII], who has sketched a nonparametric approach, and by T. W.
Anderson, [I1X], who presents the results obtained in a forthcoming
larger article [T. W. Anderson and Rubin, 1949] on the method of
reduced forms,

3.1.4. A difficult task, for the first time explored in this
volume, is to develop appropriate techniques for the computation
of meximum-likelihood estimates that utilize all a priori informa-
tion contained in the multiequational model. When the model con-
sists of a single equation, the maximization of the likelihood
function with respect to structural parameters yields a system of



1-3.2 STATISTICAL INFERENCE IN ECONOMICS 47

“pormal equations” {familiar from multiple-regression theory) that
is linear in the maximum-likelihood estimates: the usual single-
equation least-squares method of estimating parameters is a special
case of the maximum-likelihood method. When, however, the model
has two or more equations, the “normal equations” have to be re-
placed by more general equations, from which to compute maximum-
likelihood estimates of the structural parameters. (If the struc-
ture is not uniguely identifiable, these equations will be depend-
ent and the estimates indeterminate in some degree.) The maximum-
likelihood equations are nonlinear in the estimates. The direct
solution of these equations is therefore troublesome. Koopmans,
Bubin, and Leipnik [1-4] have provided iterative methods to solve
these equations with any desired deree of approximation. On this
problem, much help was derived from the advice of von Neumann and
from Hotelling [X]. More recently, the methods involved were dis-
cussed and explored from a more general point of view by Chernoff
(1949].

Since the likelihood function will have, in general, several
maxima, it would be important to know their number and to ensure,
by a proper choice of initial values, that successive iterations
approach that set of values of parameters which corresponds to the
highest of the likelihood maxima. These problems are as yet un-
solved.

3.2, The fact that economic models are, in general, dynamic
and have the nature of “stochastic processes” of a time variable
gives rise to special problems treated in Part Two. Here the
existence of simultaneous equations is provisionally relegated to
the background and the study is occasionally confined to a uni-
equational model.

3.2.1. The first division of Part Two (“Trend and Seascnals”)
may be said to specify the gemeral (possibly nonlinear) model by
using certain information on the possible role of the exogenous
variable, time. A specified econcmic model of this kind is stud-
ied in Hurwiez’s article [XI] on variable parameters in stochastic
processes; structural estimation is the author’s objective. In
the two other articles of the section, given by guests of the
Cowles Commission, Mann and R. L. Anderson, less reliance 1s
placed on knowledge from economic theory; correspondingly, no
attempt is made to estimate economic structure. Rather than esti-
mating structural parameters, these two articles discuss how to
test the hypothesis that no trend, or that no seasonal fluctuation,
is present. Mann [XII] has devised a new nonparametric test
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against trend (applicable in situations like quality control of
successive products of a machine); R. L. Anderson [XII] gives ac-
count of the analysis of variance as used in testing for the pres-
ence of seasonality in a unitemporal (lagless) system.

3.2.2. The second division of Part Two (“Estimation Problems”)
considers the consequences of relaxing certain assumptions that in
Part One were shown to be sufficient to make maximum-likelihood
estimates unbiased: in particular, the assumption that the samples
are large, and the assumption that the model describes a stationary
process.

Problems of short time series were discussed at the conference
by Madow and Hurwicz. The former’s paper, [Madow, 1945}, contained
an exact formula through which the distribution of the autocorre-
lation coefficient of a discrete series when its population value
differs from zero is connected with the corresponding distribution
when the population value equals zero; the latter was derived in
" {Koopmans, 1942], [Dixan], and elsewhere. This formula applies to
a circular series, i.e., a series in which the first and last ele-
ments are identical: a condition often satisfied in space series
(as in the sampling of families around a block). The removal of
this last condition is thus the only remaining step for the full
solution of the problem, Hurwicz [XV] shows that, in short one-
variable series, the least-squares estimate of the autoregression
coefficient has a very considerable bias. This is a case when the
regression coefficient equals the structural coefficient — hence
the presence of bias in estimated structural coefficients is also
proved. Moreover, in one of the cases treated (fixed initial val-
ue of the variable) the least-squares estimate equals the maximum-
likelihood estimate. Hence, maximum-likelihood as well as least-
squares estimates of both structural and regression coefficients
are generally biased. This is an important warning since the
time series that we have to use to estimate dynamic economic
structures are short.

The assumption of stationary processes is discussed by Rubin
[XIV]. He shows that, in the case of one variable, this assumption
is not necessary for the consistency of maximum-likelihood esti-
mates. This is important since economic “explosions” (speculative
panics, etc., often described by economists as “cumulative pro-
cesses”) are known to occur.

3.2.3. The third division of Part Twe, unlike the preceding
two divisions, dérives its importance not so much from specifying
or relaxing the model of Part One as from correcting it. Koopmans’
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article [XVI}, which constitutes this division, suggests treating
variables as functions of a continuous time variable instead of
breaking up the continuous economic process into arbitrary periods
of finite length. In addition to being more realistic the intro-
duction of a continuous time variable helps to solve the following
important paradox. In Part One of this volume, the answer to the
question of whether a variable occurred with or without a time lag
could, under certain circumstances, decide whether or not a system
was identifiable and hence susceptible to estimation of all its
parameters. The presence or absence of a time lag could also, un-
der certain other circumstances, decide whether or not the estima-
tion of some parameters by the single-equation least-squares method
was subject to bias. Thus a lag of one day would appear to make
an enormous difference for the statistician. Koopmans shows that
this is not the case: as the time unit is being diminished, the
assumption of independent successive disturbances becomes less and
less permissible; and it is on the latter assumption that the above
statements of Part One were based. A similar result is obtained
for the discrete case by Hurwicz Xrj. 1f proper mathematical
treatment of stochastic models can be developed, such models prom-
ise to be a more accurate and more flexible toocl for inference in
economics than the discrete models used heretofore.

3.3. Quite naturally, certain “maintained hypotheses”(as dis-
tinct from the “considered hypotheses” that are being tested on
the basis of data) had to be specified throughout the volume. For
example, linear relations were assumed, the effects of the pres-
ence of predetermined variables discussed, continuous and discrete
models compared. Part Three is called “Specification of Hypoth-
eses,” with a view to more particular needs of economics.

It is introduced by Koopmans’ article [XVII], in which he
gives formal criteria for the successive delimitation of the exog-
enous and the predetermined variables. These criteria are not
based on the distinction between “economic’ and ‘honeconomic” var-
iables; they refer, instead, to the algebraic role played by a
given variable in the model. For example: unless significant
lags exist between the economic facts and the political facts
that are affected by them and that, in turn, affect economic facts,
economic caunsation of politics must be treated as one of the rela-
tionships of the complete system. This shows the importance of
the questions raised in Parts One end Two: how to deal with incom-
plete systems, and how to determine whether or not lags are sig-
nificant.
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The “nonadditive random disturbances” treated by Hurwicz in
[XVIII] are studied to take into account the economists’ view that,
for example, the erratic variations in taste - from year to year
or from person to person — do not necessarily affect the demand
equation’s constant term only; e.g., a change in slope of a linear
demand curve may accompany its shift. This complicates the mathe-
matics of statistical inference quite considerably. A beginning
has been made in Rubin's brief article [XIX] that concludes the
volume,

3.4. A number of major problems remain unsolved. It suffices
to list some of those already mentiomed in various places of this
introduction: observation errors (and the problem of nonobservable
variables in general); multiple decisions; problems of aggregation;
continuous stochastic processes. FEven where the statistical inves-
tigation has proceeded beyond the definition of the problem, the
results obtained so far are subject to severe limitations, Struc-
tural estimation from small samples is in its beginnings; nonlinear
relations, often called for in economic theory, have hardly been
approached, etc. All these problems will require much further work
on the part of statisticians.
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1., DESCRIPTION OF THE SYSTEMS CONSIDERED

1.1. The economic and statistical basis of a system of equa-
tions. The analysis and explanation of economic fluctuations has
been greatly advanced by the study of systems of equations connect-
ing economic variables. The construction of such a system is a
task in which economic theory and statistical method combine.
Broadly speaking, considerations both of economic theory and of
statistical availability detérmine the choice of the variables.
Economic theory predominates in the definition of the *behavior
equations” describing a certain type of economic decisions taken
by a certain category of economic agents, and in the specification
of the variables that may possibly enter each behavior equation
(i.e., of the conditions that may affect that decision by that
group of agents). “Institutional equations” describe behavior
patterns set by law or rule. Technical knowledge enters into the
definition, and selection of variables, of the “technical equa-
tions” expressing the physical relation between input and output
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in production. A fourth group of equations, usually referred to as
“identities"” (like the savings-investment identity), which occupy a
place in economic literature out of proportion to their theoretical
triviality, should be classified as deriving directly from the def-
initions of the variables through the principles of economic ac-
counting. Theoretical preconceptions, statistical evidence, and
sometimes mere assumption or approximation, are intermingled in the
determination of the form of each equation, as regards linearity and
as regards the occurrence and length of time lags. All these things
being determined, it is almost entirely left to statistical methods
to estimate the numerical values of the coefficients in the equa-
tions, and to assess the possible degree of error in those estimates,
subject to the assumptions made.

Several equation systems of this kind have been constructed by
Tinbergen [1939] and others for different comntries and periods. We
shall in this article assume a general knowledge of the nature of
those systems, and of the uses to which they are put.

Tinbergen gives ample consideration to the economic assumptions
on which these systems are based. Only recently has attention been
directed systematically to the specific problems of statistical
method involved in estimating the coefficients of any equation that
forms part of such a system of equations. Haavelmo [1943, 1944]
bas pointed out that the methods developed for the measurement of a
single relationship under conditicns of experimental control over -~
or at least independent determination of ~ all variables except the
one “dependent” variable, are inadequate if we are faced with a
system of simultaneous equations between the variables. He has in-
dicated the general principles of a statistical method appropriate
to the latter situation. Mann and Wald {1943] have applied these
principles to give a statistical treatment of large samples of a
number of variables which satisfy an equal number of linear differ-
ence equations.

1.2, Specifying the joint distribution of all variables. The
main principle advanced by Haavelmo is that tlie measurement of a
system of equations should be based on a specification of the joint
probability distribution of all values of all variables involved.
This principle has been generally accepted in other applications of
statistical method. Probably, economic statisticians have largely
been unaware of the fact that their methods did not satisfy this
requirement. Actually, the probability distributions that were em-
ployed always referred to one equation taken im isolation, and dis-
tributions specified with regard to different equations were usual-
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ly incompatible.

1.3. Exogenous and endogenous variables. This article is
concerned with linear systems of difference equations of the fol-
lowing general form:

(1.1) 2 Eﬁgt'ty {t—=) + 2 Eng'rzk(t ) =u (t)

i=1 T=0 E=1T=

=12 ...,6 t=1,2 ..., T

This form is slightly more general than that studied by Mann and
Wald in that we consider G equations centaining both G endogenous
variables yi(t) and X exogenous variables zk(t). The latter are

defined as variables that influence the endogenous variables but
are not themselves influenced by the endogenous varisbles. It
will be clear that at this stage the distinction between exogenous
and endogenous variables is a theoretical, a priori distinction
on which statistical evidence may or may not be obtained at a
later stage. Because of the general interdependence of econemic
variables, exogencus variables are most likely to be found among
noneconomic phenomena like temperature, rainfall, earthquake in-
tensities, etc, Both endogenocus and exogenous variables are
assumed to be observable.

In the equations (1.1) the exogenous variables are treated as
if they are given functions of time, the values of which remain
the same in repeated samples. Another contribution to this volume,
[XVII}, is devoted to the justification of this procedure, which
we shall here assume to be correct.

1.4. The disturbances in the equations. The distribution of
the endogencus variables is then defined by means of the not
directly observable disturbances u/(t). The latter are terms in
the equations specified only to the extent that they are assumed
to be subject to a joint probability distribution. Because of
the presence of these terms, the system (1.1} is called a system
of stochastic equations.

It will be assumed here that the u (t) have a joint probabil-
ity distribution of the form

r
(1.2) t1'[ Flug(t), vov, ug®))dugle) ... duglt),
=1
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The assumption (1.2) implies independence of disturbances in suc-
cessive time intervals, 1t also implies that the disturbances are
independent of the values of the exogenous variables. The condi-
tions. to be imposed on the distribution function f are not the same
in the various sections of this article. In all cases, we shall
assume that first-order moments exist and are equal to zero,

(1.3) Eu(t) = 0,

g
and that second-order mements (variances and covariances),
(1-4) eug(t) uh(t) = Ugh r

also exist., In certain sections of this article we shall go fur-
ther and assume that f(ul' vees uG) represents the joint normal
distribution function of G variables.

The assumed distribution of the u {t) defines the joint distri-

bution of all values yi(t) of the endogenous variables for which

t=1, ..., T, provided we specify in addition that any values
y&t) for which £<0 and which occur in (1.1) are regarded as

given mumbers that remain the same in repeated samples,

1.5. Economic interpretation of the disturbances in the equa-
tions. In each behavior equation, the disturbance is interpreted
as representing the joint effect, on the behavior described by
that equation, of all variables of minor individual importance
that have not been explicitly introduced inte the system of equa-
tions. For instance, random variation in consumers’ tastes will
lead to a certain amount of shifting in the curve of consumers’
demand. Similarly, in the technical relations between input and
output, a certain amount of random shifting in the relationships
is due to a large number of minor causes of variation not explic-
itly studied. The term “random” is used here in the sense of the
assumptions (1.2), (1.3}, and (1.4), made regarding the disturb-
ances in the equations.

1.6. Errors of measurement or disturbances in the variables.
It is important to note that in the interpretation of disturb-
ances just given, each disturbance is associated with an equation
of the system, and not with a variable. This excludes the inter-
pretation of the “disturbances in the equations” as errors of
measurement. If errors of measurement occur to a marked degree,
separate provision must be made for them in the probability dis-
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tribution of observed variables by introducing additional “disturb-
ances in the variables.” 1In order to concentrate on the effect of
disturbances in the equations, we shall assume in this study that
all variables are measured without error. Systems in which “dis-
turbances in the equations” {also called “shocks”) and “disturbances
in the variables” (also called “errors™) occur side by side have
been studied in [T. W. Anderson and Hurwic:z],

1.7. Nonstngularity of ©. For some purposes the mathematical
treatment of systems like (1.1) is simplified if we can restrict
ourselves to cases in which there is no functional relation (as
distinct from stochastic dependence) between the G disturbances
ug(t) for any ¢. This requires in particular that the matrix ==

[-Uﬁh ] defined by (1.4) be nonsingular.

Now each “identity” that is present among the equations (1.1)
makes all elements ih the corresponding row and colum of the matrix
2 vanish, because by their nature identities are not subject to
disturbances. However, the variables entering into a given iden-
tity, and the coefficients with which they enter, are always known
a priori (often the coefficients are +1 or —1). It is therefore
possible, whenever the assumption of nonsingularity of % is desir-
able for mathematical reasons, to remove the identities from the
system by elimination of as many variables as there are identities
to be removed. For instance, the identity “volume of production
equals real income’” can be removed by replacing the variable ‘vol-
ume of production,” wherever it occurs, by the variable “real in-
come.” A less trivial example: if the profit margin is conceived
to be a determining factor of investment activity, the identity
defining the profit margin can be removed by replacing the variable
“profit margin” in the equation explaining investment activity by
the linear combination “product price less the sum of factor prices
per unit of product.” The latter example shows that the elimina-
tion of variables defined by identities may introduce a priori pro-
portionalities or other restrictions among the coefficients occur-
ring in the remaining equations of the system. We shall revert to
these a priori restrictions below.

In the case in which the identities have thus been disposed of,
it is Teasonable to assume that no functional relation exists be-
tween the disturbances in different behavior equations and techni-
cal equations. This can be seen if we ask ourselves what, for
instance, would be implied in an exact proportionality of the dis-
turbances in two given equations. This would mean, not only that
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precisely the same minor causes would be operative in the random
shifts of each of these relationships, but also that the relative
strengths with which these causes operate in each equation are the
same — an obvious impossibility. A similar, slightly more compli-
cated argument applies to disqualify the assumption of a functional
relation invelving disturbances in more than two equations.

1.8, Jointly dependent variables and predetermined variables.
Besides the distinction between endogenous and exogenous variables,
it is desirable to introduce another classification of variables,
which is based partly on the former distinction, and partly on the
timing of each variable. That is, for the purposes of the classi-
fication now to be introduced,it will be necessary to regard for
instance yi(t) and yi(t—-l), and generally all variables measured
with different time lags, as different variables.

The equations (1.1) for a given value of ¢ are intended to de-
scribe the process of the formation of the endogenous variables
yi(t) at time %, under the influence of earlier values yi(t—-r),
t>1, of the endogenous variables, of the exogenous variables
zk(t——'c), t>0, and of the disturbances ug(t). CGeneralizing a
terminology of single-equation least-squares regression theory,
the values )g(t), without time lag, of the endogenous variables
may be called jointly dependent variables at time £. To bring out
more clearly that the equations {1.1) describe the formation of

the jointly dependent variables, these equations may be written in
the form

g
?=:1 Bgiq y(t) =

(1.5)
4] TU X TD
- i2=1 El Bgin ylt-1) - )§1 «:;o Yo gft—-<) + ug(t).

The right-hand member contains, besides the disturbances, a group
of variables that we shall call predetermined variables at time t.
%eh%dvﬂmsh@—ﬂ,{ZLof&em@@m&vmhMmam
predetermined in a temporal sense, in that their values yi(t*-T)
for a given value of ¢ are determined by variables and disturbances
relating to time intervals preceding t. In particular, they are
unaffected by the disturbances ug(t) of the time interval £. The
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exogenous variables zgt) without time lag are predetermined in the
logical sense that they are influenced only by causes outside the
economic system studied, and are independent of all other variables
and disturbances (measured at time ¢ or earlier} included in the
system of equations. The lagged exogenous variables Zk(tﬁ-T), T>1,
are predetermined in both senses.

1.9. Nonsingularity of By. Although the need for the foregoing
classification will become clear only when we come to estimation
problems, it is introduced here because of a related basic assump-
tion that is of general importance. If the right-hand member in
(1.5) represents a set of causal factors in the determination of
the dependent variables yi(t) in the left-hand members, without any

causal action in the opposite direction, then it is necessary to
specify that the matrix

ﬁ11 0 e ﬁ14?0

(1.6) B, = SRR

Bero o+ Bgeo

! |

be nonsingular. For if B, were singular, there would be a set of

numbers lg, £g=1, ...,G, not all equal to zero such that
a
(1.7) gz=:1 ?\g ﬁgio = 0.

Writing w g(t) for the right-hand member in (1.5), the validity of
(1.7) would then entail a linear restriction,

G
(1.8) El A w8 = 0,

ot the expressions represented by u%(t). Such a restriction, how-
ever, is contrary to the assumed direction of causation, and is in
particular incompatible with the fact that.there is no linear
functional dependence between the stochastic variables u%(t).
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The foregoing argument needs amendment in case (1.5) contains

identities, because in that case the corresponding quantities ug(t)

vanish. Suppose that the equations (1.5) for g=1, ..., G, are
identities, and that for ¢=G,+1, ..., G the equations involve

disturbances of positive variance. Then a restriction (1.8) is
compatible with the assumed direction of caunsation if and only if

(1.9) Mga1 =TT = A= 0

The only form of nonsingularity permissible in B, in the present

case is therefore, according to (1.7), linear dependence among the
first G, rows, each of which contains the coefficients of an iden-

tity. Such linear dependence is, of course, precluded by the sim-
ple reason that any linear dependence should be removed from the
(fully known) identities before they are admitted to the system of
equations.

There is, of course, no a priori reason why a number of behav-
ior equations could not happen to be such that B, is singular.

But there i1s good empirical evidence that this case can be ruled
out, at least in dynamic equation systems. For if B, were sin-
gular {or even if its determinant value detZB0 were very small
compared with its term largest in absolute value)}, small disturb-
ances in any direction in the space of the disturbance vector

u = @ﬁ. cees ”G) incompatible with the linear restriction (1.7),

would lead to infinite (or very large) simultaneous changes in the
variables yi(t)' Such phenomena have not been observed. Although

small causes occasionally have great effects in economic develop-
ments, in such cases time is required for the effects to material-
ize. _

One could not haveT%qual confidence in a statement that the matrix B

with elements Egi = 2 B

i . describing a corresponding static system
T=1

obtained through the neglect of all time lags, is far from being singular.
It is easily seen, however, that if B is singular for such a static sys-
tem, then the deterministic dynamic system obtained from (1.5) by omitting
the disturbances and giving arbifrary constant values to the exogenous
variables daoes not in general have a solution asymptotically appreaching
a set of finite equilibrium values,
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1.10. Timing of the variables. The nonsingularity of B, 'in

particular excludes the possibility that one of the variables
y{(t) would not occur at all in the equations (1.1) except with a

positive time lag. A variable of that kind properly belongs among
the exogenous variables because a past quantity cannot be influ-
enced by present developments. An objection to this reascning
might be that the timing with respect to which the variables are
defined may be variéd at will by a transformation,

| y?(t) =ylt+e), i=1...,6
(1.10)

)=zt +0,), k=1, ..., kL

However, such transformations cannot be regarded as permissible
for our purposes ~ except in the trivial case where all quantities
6; and 6, are equal. The time variable is more than an index used

to distinguish successive values of one and the same variable. It
indicates historical time - the medium in which causation and in-
teraction between economic and other variables takes place. There-
fore the matrix B, must be such that the endogenous variables,
which by their definition are in continuous and instantaneous in-
teraction with each other, are all represented in the system (1.1)
by simultaneous values with zero time lag (t=0). Further light

is thrown on this important point in another contribution already

referred to {XVII].

1.11. The problem of identification. The statistical measure-
ment of a system of equations like (1.1) involves two logically
distinct and successive problems, which have here been called the
problem of the idei:tification of each equation and the problem of
the estimation of the parameters of each equation. Section’ 2 is
devoted to the former of these problems, which arises especially
with regard to data governed by more than one equation at the same
time. It originates from the fact that, if a system like (1.1) is
viewed only as a mathematical specification of the joint probabil-
ity distribution of the observable variables, it can be written in
many different ways. Any linearly independent system of G linear
combinations of the equations (1.1} with a correspondingly trans-
formed distribution of the disturbance terms will be a mathemati-
cally equivalent way of defining the probability distribution of
the variables,

let a “way of writing” the system be called a representation



I1-1.11 MEASURING EQUATION SYSTEMS 63

of the distribution of the variables. Two representations are
called observationally equivalent if they define the same probabil-
1ty distribution of the variables. Haavelmo [1944, p. 91] uses the
expression “indistinguishable on the basis of the observations” to
describe two equivalent representations, because even if the prob-
ability distribution of the observations were fully known ~ the
best that can be expected from statistical methods — there would
still be no way to distinguish observationally equivalent repre-
sentations. The distribution of the variables can be looked upon
as determining the set of all cbservationally equivalent represen-
tations of it, and is completely defined by any of these represen-
tations. Mathematically speaking, it is immaterial which represen-
tation is employed, except that it will be desirable to choose a
simple one, Economically, however, different representations of
the same system are not at all equivalent.

The study of a system of equations like (1.1} derives its sense
from the postulate — already implicit in earlier parts of this sec-
tion — that there exists one and only one representation in which
each eguation corresponds to a specified law of behavior {attrib-
uted to a specified group of economic agents), to a specified tech-
nical law of production, or to a specified identity. Let us call
these particular equations the structural equations, because they
are the elements of which the dynamic economic structure of society
is composed. The representatien composed of the structural equa-
tions may be called the representation according to economic struc-
ture, or briefly the structural representation. Any discussion of
'the effects of changes in economic structure, whether brought about
by gradual trends or by purposive policies, is best put in terms of
changes 1n the structural equations, For those are the elements
that can, at least in theory, be changed one by one, independently.
For this reason, it is important to have the system (1.1) in a form
in which the greatest possible number of its equations can be iden-
tified and recognized as structural equatienms, '

Suppose for a moment that the structural representation be
known to investigator A, who as a mathematical exercise derives an-
other representation from it by taking linear combinations. In
that process, the economic identity of the structural equations is
lost, and when A hands the derived representation over to B without
disclosing its source or method of computation, B is faced with the
problem of identifying among all linear combinations of the equa-
tions of the representations given to him, the structural equations
that alone reflect specified laws of economic behavior, of the
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technique of production, or of economic accounting.

1.12. The a priori restrictions. The position of our investi-
gator B corresponds exactly to the position of the econemetrician
who sets out to measure a system of economic relations. Statisti-
cal observation will in favorable circumstances permit him to esti-
mate, with a precision again subject to estimation, the character-
istics of the probability distribution of the variables. Under no
circumstances whatever will passive statistical observation permit
him to distinguish between different mathematically equivalent
ways of writing down that distribution. Because he has no experi-
mental control over economic variables, the simultaneous validity
of all the structural equations prevents him from isolating and
individually observing any one of them on a statistical basis
alone. The only way in which he can hope to identify and measure
individual structural equations implied in that system is with the
help of a priori specifications of the form of each structural
equation,

The most important instrument of identification is a specifi-
cation as to which variebles may enter into which structural egua-
tions with which possible time lags., Assuming now that the system
(1.1) is the structural representation, this can be expressed
mathematically by putting equal to zero all coefficients of terms
that do not enter into the respective equations,

_ _ (1)
ﬁgr’zr'rr_ 0, r=1 2, ..., R[3 .
(1.11) (1) (1) p(l}  n(i) 4 pll) = p(l)}
=0, r=RkC+1, L., B4R, ORVIRRYY =RV
Y?rkfrr g g Y g Y o

Sometimes it is useful to state these restrictions on the coeffi-
cients in a slightly more general form which includes (1.11) as a
special case,

G 0 (e r =Y (g)
T T
(1.12) igl TZQO Xriz B in +k§ g Ve Yo e = O

The special case (1.11} will be distinguished from (1.12) as the
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case of single-parameter restrictions. The form (1.12) of restrie-
tions, in which the quantities X:%ﬁ and wﬁ%ﬁ are a priori known
constants, permits inclusion of cases where the ratio of two coef-
ficients in the same equation, or another linear relation between
the coefficients of an equation, is given a priori. FExamples of
this type of restriction have already been given.

Tt will be noted that each condition (1.12) connects only coef-
ficients that occur in the same structural equation. There is a
further type of restrictions involving coefficients occurring in
different equations. This can again be illustrated with the exam-
ple of the profit margin. Assume that the profit margin enters as
such into at least two behavior equations, whereas none of its con-
stituents enters explicitly. Suppose further that the definition
of the profit margin, with the help of which we wish to eliminate
that variable, contains an unknown parameter. (This may happen,
for instance, if the conversion factor by which the price of any
given factor of production is related to the unit of product is not
known.) The type of restriction arising from such a situation is
one in which two coefficients, of the variables y; and yi, , Te-

spectively, are required to have the same ratio in " two dlfferent
structural equations (numbered g_ and gl

ﬁgrirTr lBgr”;’rcr
(1.13) = Q.
Porinn,  Peire,

Similar restrictions may arise from the approximation of a distrib-

uted time lag by a linear combination of terms with discrete lags.

If a variable y, is supposed to occur with the same lag distribu-
r

tion in two equations numbered g, and g/, this leads to a restric-
tion of the type

Poim,  Poim
(1.14) = Q.

Peripr,  Peiu

While the restrictions (1.12) are linear in the unknown coefficients
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Boinr Ygrrr restrictions like (1.13) and (1.14) are bilinear, and
lead to greater mathematical complications in what follows. We
shall assume that there are Rﬁf) bilinear restrictions of the types
(1.13) and (1.14), possibly involving coefficients Bginr Youn of
both endogencus and exogenous variables.

The restrictions (1.11) or (1.12), (1.13), and (1,14} — and
such similar restrictions as we may wish to add later — will be
called the a priori restrictions. In section 2 we investigate nec-
essary and sufficient conditions under which the a priori restric-
tions suffice to identify a given equation (1.1} as a specified
structural equation. On this basis we shall distinguish, and in-
clude in subsequent sections, the case, not covered by Mann and
Wald [1943], in which one or more but not all of the structural
equations can be identified within the system.

It will be seen that, even in the case where the a priori re-
strictions are insufficient in number and variety to permit identi-
fication of all structural equations, there may be among the a pri-
ori restrictions one or more that can be omitted without thereby
removing further equations from the list of identifiable ones. “A
priori” restrictions of this kind are in principle subject to sta-
tistical testing (on the basis of the remaining a priori restric-
tions}). For this reason, statistical evidence was quoted, in the
opening paragraph of this article, as one of the bases for a deter-
mination of the form of the structural equations. If restrictions
supported to a degree by statistical evidence are nevertheless im-
posed a priori, this will in general reduce the sampling variances
of the estimates of some or all parameters subject to estimation.
The use of a priori réstrictions should therefore be resorted to
whenever the theoretical grounds are strong enough. To make pos-
sible a formal mathematical treatment according to established
procedures of statistical inference, we shall in this article re-
gard the “a priori restrictions” strictly as given a priori and
imposed without reference even to the possibility of statistical
test, It goes without saying that we should eliminate from consid-
eration sets of a priori restrictions that are mutually incompat-
ible or mutually dependent.

1.13. A priori restrictions on the distribution of disturb-
ances. It may well happen that one or more specified structural
equations cannot be identified on the basis of such a priori re-
strictions of the forms (1.12), (1,13), and (1.14) as are consid-
ered theoretically justified. We shall therefore study further a
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priori restrictions on the matrix I of the variances and covari-
ances of the disturbances, which require that the covariance between
the disturbances in two specified equations shall vanish. The ele-
ments of I that are thereby required to vanish may or may not fol-
low a regular pattern. One particular pattern is of interest both
because of its special mathematical consequences and because the
assumptions involved may present a fair approximation to reality,

In this pattern (which is here formulated for systems from which

all identities have been removed) it is supposed that the G equa-
tions can be classified into ¥ groups of Gyy Gy, «v-y Gy equations

respectively, with G, + G, + --* + G, = G, such that the disturb-
ances ug(t) of equations in different groups are independent. In
that case, the matrix 2 can be partitioned into the form

I ]

™~
pt

=

[=-]

(1.15) T =

where each of the matrices %,, ..., 2, is positive definite. Each

element Tops g<h, of T that is thereby prescribed to be zero
gives rise to an a priori restriction, which turns out (see section
2) to be equivalent to a bilinear restriction in the elements of
the corresponding rows of the coefficient matrix [ B I']. For

this reason we shall denote by Ro' the total number of such restric-

tions, and write R&l) +R§“ + R, = R. The particular choice of

vanishing elements indicated by the partitioning in (1.15) is sim-
pler than other choices because it is invariant under inversion of
prs

1.14. Inequalities as a priori restrictions. A further class
of a priori restrictions that can often be based on economic con-
siderations is inequalities. Frequently, the sign of coefficients
Bgit OF Ygrr is known beforehand. Sometimes it may be possible to
prescribe the sign of, or set another limit to, the correlation of
the disturbances in the structural equations, In the present arti-
cle we do not study the question of how to give effect to restric-
tions of this kind.
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1.15. Rules of normalization. The equations (1.1) as well as
the restrictions (1.12), (1.13}, and (1.14) are homogeneous in the

coefficients BgiT and Yok and the parameters Sap, for each value of

g, 1.e., they are unaffected by a change in scale

] _ ]
(1.16) Bg‘i-'l'.' BE'LT" ngT - Ug ngt N Ugh - Ug O'Ehuh,

of each equation (1.1). It will be useful sometimes to fix the
scale factors v, by imposing a normalization rule on each equation.

The precise form of the normalization rule is obvicusly a matter
of choice, and different normalization rules are most convenient
in different problems. We shall consider the following two of
many possible alternative sets of G normalizing restrictions:

§l

(1.17a) ﬁgigﬂ 1, £=12 ..., G

{1.17)

|
(-

(1.17b) Oge = L
In the case of the first rule (1.17a) there should of course be no
conflict with (1.11) or (1.12). The second rule (1.17b) still
leaves open the choice of the sign of one of the nonvanishing co-
efficients " g” or “vy” in each equation.

Because of the trivial nature of the question of normalization,
we shall sometimes omit specification of a normalization rule. It
is therefore useful to introduce the convention that the gth equa-
tion can be called completely identified by the a priori restric-
tions even if its scale has not been fixed, prov1ded the ratios
between all its coefficients and the quantities gg' Oghs h#p,

are determinate. In case normalization rules are specified, they
will be comprised in the term “a priori restrictions.”

1.16. Summary of subsequent sections. In section 2, we dis-
cuss conditions for the identifiability of a given structural
equation under a priori restrictions of the type (1.12), (1.13},
(1.14), or (1.15). Necessary and sufficient conditions for iden-
tifiability under the restrictions (1.12) are derived (section
2.2}. In section 2.4, the problem of extending these conditions
to cases where restrictions of the types (1,13), (1.14), (1.15)
are added is discussed but not solved. Means are indicated in
section 2.3 to make possible the estimation of certain identifi-
able structural equations, even if certain other equations remain
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unidentifiable. General observations indicating the incomplete
state of our knowledge with regard to identification problems con-
clude this sectien.

Sections 3.1 and 3.2 deal with those properties of the likeli-
hood function, before and after imposition of a priori restrictions,
which are relevant to the maximum-likelihood method of estimation,
It is found that whenever restrictions are imposed on structural
equations that are not indispensable for the identification of
those equations, the likelihood function is prevented from reaching
its unrestricted absolute maximum, except in a set of samples of
probability zero. Under such restrictions, maximum-likelihood es-
timates using all a priori information can only be obtained by com-
putational procedures essentially more complicated than the least-
squares method applied to the “reduced form" without regard to re-
strictions. Section 3.3 discusses and generalizes results regard-
ing the limiting distribution of the maximum-likelihood estimates
reached by earlier writers.

In section 4, iterative computation methods for the maximum-
likelihood estimates are developed and discussed for the two cases
in which the covariance matrix £ of the disturbances is diagonal
(section 4.3), and unrestricted (section 4.4). Unsolved problems
connected with these methods are indicated.

Sections preceded by the symbol * can be passed over in a
first reading without seriously affecting the understanding of the
remaining parts of the article.

2. THE IDENTIFICATION OF ECONOMIC RELATIONS

2.1. The Concept of Identification

2.1.1. Earlier discussions of the identification problem. The
first systematic discussion of the problem of identification was
given by Frisch in an unpublished memorandum [1938]. Frisch’s
terminology is rather different from that employed here, and the
concepts are slightly different in that the disturbances and their
distribution are not explicitly introduced in his formulae. Never-
theless, the underlying ideas are to a large extent the same, and
the present authors desire to acknowledge their indebtedness, and
to emphasize the support found in Frisch’s memorandum for the dis-
cussion of the problem of identification in this article.

Frisch indicates that what is here called the identification
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problem arises from the passive nature of economic observations.
There is no possibility of independently varying the several factors
entering a given behavior equation. The only observations available
are those which by assumption satisfy all structural equations si-
multaneously.

The same point is emphasized by Haavelmo, who has continued and
extended Frisch’s work in a very general discussion [Haavelmo, 1944,
pp. 91-98] of one central problem in identification: the formulation
of conditions under which a¢ll structural relations of the system can
be identified. Haavelmo also does not use the term identification,
but describes the above mentioned problem as the “problem of conflu-
ent relations” or, alternatively, as the “problem of arbitrary pa-
rameters,’ and classifies it under the heading “estimation.” As
regards this classification, it appears to the present authors that
the identification problem is concerned with the unambiguous defi-
nition of the parameters that are to be estimated -~ a logical prob-
lem that precedes estimation. It is therefore not a problem in
statistical inference, but a prior problem arising in the specifi-
cation and interpretation of the probability distribution of the
variables. As such it deserves separate classification,

Haavelmo’s discussion of the “problem of confluent relations”
is more general than the present discussion of identification prob-
lems in that he does not in any way restrict the functional form
of the equatiens concerned. The conditions to be given below for
the identifiability of all structural equations in a linear system
could therefore be obtained as a specialization of Haavelmo’s re-
sults, although we shall derive them directly. The present discus-
sion, while restricted to linear systems, goes further in that we
also discuss conditions under which any one particular structural
equation can be identified.

2.1.2. Notation. It will be convenient to wse a matrix nota-
tion for the equation system (1.5) in which-the distinction between
jointly dependent and predetermined. variables introduced in section
1.8 is given explicit expression, whereas that between endogenous
and exogenous variables is concealed. The variables and the dis-
turbances will be represented by row vectors, and the coefficients
will be regarded as the elements of matrices, as follows:

(2.1) y(t) = [y -y,



11-2,1,2 MEASURING EQUATION SYSTEMS 71

2(6) = [n(t-1 0 =) 5() oo gli-o),

u(t) = [ul(t) ug(t)],
[ }

Bllﬂ tee plGO

(2.1) B

ﬁ010 e BGGO

Pur ++- PBig@ Yo o0 ipe®

H
1

Bou1 -+ Beet® Yoro --- YgpO

Here the vector y(t) of G = K5 elements comprises the variables
jointly dependent at time £, and the vector z(t) of Xz elements,

say, comprises all variables predetermined at time t. The matrix
B has previously been denoted by B,. In this notation, the equa-

tions (1,1) can be written as follows:
(2.2) By'(t) + r2/(t) = w(¢),

where y’ denotes the column vector which is the transpose! of the
row vector ¥. The probability density function f{tﬁ(t), ceas

4 (t)} of the disturbances will be denoted by f{u(t)}. Occasion-
ally, the argument ¢ of y, 2, 4 will be omitted.
For some purposes even the distinction between dependent and

predetermined variables is irrelevant., Then we shall denote the
equation system by

For reasons to be stated in the footnote on p. 81, we have reversed the
more usual notation in which the transposition sign denotes a row vector,
its absence a column vector.
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K

X

(2.3) Elagkxk:ug, §=1 ... 6, K =K +K =G+E,

or Ax' =u', where A=[B T], x=[y =z].

2.1.3. Observationally equivalent structures. The concept of
identifiability is to be defined with reference to the joint dis-
tribution function Fj of all observations, as determined by (1.2),

(1.1}, and the requiremént, that all values Zk(t) and those values
of yi(t) for which t <0 are given constants. In order to write Fy
explicitly as a distribution function in terms of the variables
yi(t), i=1, .,.,6G; t=1, ..., T, it is necessary to regard
{1.1) as a transformation expressing the u (t) in terms of the
yi(t). It is well known (see for instance [Wilks, p. 28]) that the
absolute value of the volume element transforms according to

| du()) du(®) - du®) | =dp] dy ) an) oyl |,
(2.4)
; 8{u1(1), cer, w1} u.(2), ...,uG(Z); ;ul(T), ...,uG(T)}
' F

a{y]_(l): 2oy yGO-);yl(Q): LR y@(z): e ;yl(T), e lyg(T)} .

Here J, represents the absolute value of the Jacobian determinant
of the transformation (1.1). In evaluating the elements aug(t)/
Byi(t’) of the determinant in (2.4) we find that

du (t) But)
(2.5) =g & -
8y, (')

= 0,
ayi(t)

gio'’

1f ¢'>%¢. Viewed as a matrix, the Jacobian in (2.4) can therefore
be partitioned as follows:
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B
0 B

(2.6) '
0 0 B

if, as before, B= [ ng ]. It follows that the determinant val-
ue of this matrix is independent of the elements Bug(t)/a yi(t’)
with #/< ¢ [which have been left blank in (2.6)], and equals

(2.7) Jp (B) = ldet B,

where the symbol “det” followed by a square matrix denotes the cor-
responding determinant. By assumption, the Bgio are such that det

B differs from zerc (see section 1.9). The distribution function
therefore equals

r
(2.8) Fp = |detB lf-tl:llf{By’(t) + 1 2(t) }.

In all integrations over the whole or part of the sample space,
this function must, of course, be multiplied with the volume ele-
ment dy (1) -+ dyl(D).

The nature of the identification problem has already been ex-
plained in section 1.1, We shall now formalize it by introducing
the following concepts:

DEFINITION 2.1.3.1. A structure S consists of a set of values
of the coefficient matrices B and T' (of which B is nonsingular),
and a distribution function f(u) of the vector u of disturbances.

DEFINITION 2.1.3.2. Two structures S= (B, T', f) and 5% =
(B% % f% are called (observationally) equivalent if they imply
the same probability distribution of the observations, i.e., if,
for all values of T, yf’(t), zk(t),
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r
detT(B)tI;Ilf{By’(t) + D)) =

(2.9) T
detT(Be)tl}lfe{ B® () + 1° 21(2)).

This equivalence is denoted by S~ S It follows from these def-

initions that equivalence of structures is transitive: if S~ S°
and S®~ 5% then S~ 5%

We shall derive necessary and sufficient conditions for the
equivalence of two structures. For that purpose, we restate cer-
tain restrictions which both structures are required to satisfy,
and which are implied in the assumptions made in sections 1.4 and
1.9 respectively:

ASSUMPTION 2.1.3.3.
E{u(t) | 2(t)} = Bu(t) = 0.

This assumption is a consequence of the independence of u(t) from
the exogenous variables as well as from previous values u(t’),

t! < t, of the disturbance vector, which together with exogenous
variables determine the predetermined (lagged) endogencus variables
now included in z(%).

ASSUMPTION 2.1.3.4.
det B # 0.

Solving (2.2) for y’ through premultiplication with B we ob-
tain

(2.10) y'(¢) =—87 1 2'(t) + Blu(t).
For any equivalent structure S®we likewise have
(2.11) y(t) ==~ B®31%2(2) + B®W®(t).

Since the identity {2.9) in Definition 2.1.3.2 should hold for all
values of T, it implies the identity
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(2.12)  ldetBI-ABy'(E) + T 2'(t)} = ldet B®|-r3{ B®yAt) + T® 2/(t)}

of the conditional probability distributions of y{(t) for given z(t)
according to the two structures. It follows that, upon taking con-
ditional expectations in (2,10) and (2.11) for given values of z(t),
and using Assumption 2.1.3.3, the same function of the elements of
2(t) mst result from both structures:

(2.13) E{y'() | 2()} =~ B 1 2/(t) = — B®10® 21(2).

Consequently

(2.14) , 8?1 = B®1r®,
The square matrix of order G
(2.15) r = p®p?

is nonsingular by Assumption 2.1.3.4, and satisfies, on account of
(2.15) and (2.14),

(2.16) B®= 1 B, r*=rr, w® =y,

the last equality in (2.16) being obtained from the first two by
(2.2} and its counterpart for the equivalent structure S%

Conversely, let S be a given structure, and let S® now be a
structure derived from S by the transformation (2.16) where Y is
any nonsingular matrix of order G. It is easily seen that 5% is
then equivalent to S. For (2.16) now implies successively the non-
singularity of B® (2.14), and

(2.17} B®1u®(t) = 3% yu(t) = B uw(2).

Hence (2.10) and (2.11) define the same conditiocnal distribution
(2.12) of the dependent variables, for any set of predetermined
variables and for any distribution function f(u) of #. The two
structures S and S$ thus define the same distribution function
(2.9} of the observed variables and are accordingly equivalent.
It will be noticed that in (2.16) the coefficient matrices B
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and T occur in the same manner. It is therefore appropriate to
express the result just obtained in the notation introduced by

(2.1):

THEOREM 2.1.3.5. A necessary and sufficient condition for the
equivalence of two structures S= (4, F@)) ond 5% = (4% F%u®))
satisfying Assumptions 2.1.3.3 and 2.1.3.4 is that they are con-
nected by a linear transformetion

(2.180) A¥=1a,
(2.18u) w® =Y,
with nonsingular matrix Y,

2.4.4. Two interpretations of the implied transformation of
the parameters L. We note that the transformation (2,18q} implies
a transformation for the covariance matrix I of the disturbances
whenever that matrix exists. This transformation, together with
(2.180), can be written in matrix form as follows:

(2.18x) A% =712,
(2.18)

(2.18¢) ®=rx Y.

It should be stressed that the present discussion of the iden-
tification problem is based on the assumption that all available
knowledge regarding the distribution function F(u) of the disturb-
ances is expressed by Assumption 2.1.3.3., If additional informa-
tion on the functional form of f were available, the possibility
exists that such information could be used for identification pur-
poses. However, it is easily seen that there is an alternative
case, in which the conclusions as regards identifiability of struc-
tural equations are precisely the same as under the present assump-
tions. This is the case in which the very general Assumption
2.1.3.3 is replaced by the special assumption that f{(u) represents
a nonsingular joint normal distribution of the disturbances u,,

o In this case, the space of structures S becomes the space of
the parameters Ggpr O and (2.180) supplants (2.18u) in the def-

inition of a linear transformation in the “parameter space.” When-
ever the transformation (2.18) is quoted in what follows, either
of the two interpretations just given is applicable.
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It so happens that any additicnal restrictions on f(u) which
we shall consider in what follows are restrictions on the param-
eters o ,. These restrictions have the same identifying effects

whether f(u) is previously restricted only by Assumption 2.1.3.3
and the assumption that % exists, or whether f(u) is previously
restricted to the form of the normal distribution. For this rea-
son, it will be convenient from now on to discuss the identifica-
tion problem in terms of points (4, %} in the parameter space
rather than in terms of structures S = (4, f(u)). We therefore
supplement Definition 2.1.3.3 by

DEFINITION 2.1}.3.6. Two points (4, Z) and (A@, 2% in the ra-
rameter space are called (observationally) equivalent if they are
connected with equivalent siructures.

Theorem 2.1.3.5 can now alsc be interpreted as stating conditions
for the equivalence of two points in the space of the parameters
A and Z.

2.1.5. Equivelent points in the restricied parameter space.
The identification problem in this article consists in the study
of the extent to which there exist nontrivial transformations
(2,18) which preserve the a priori restrictions. The following
definitions are helpful in developing the concept of identifica-
tion.

DEFINITION 2.1.5.1. By the restricted parameter space we un-

derstand the set of those points (A, I) in the parameter space
that satisfy the a priori restrictions.

It will further be useful to rule out as irrelevant certain trivial
transformations that do not affect the economic identity of the
equations whose identification is studied.

DEFINITICON 2.1.5.2. A transformation {2.18) is called triviel
with respect to the g th structurel equation if it involves only a
change of scale

& — 2] _ .2
: o B w o E* [4) - Ug g (43 y
(2.19) £y 8% o ;-0:30 080 080
hi:] _—
gt ety G Ceren £ 7 &

in the parameters of that equation.
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The concept of identifiability of a structural equation is now
defined as follows:

DEFINITION 2.1.5.3. The g, th structural equation in (2.3) is
satd to be identifiable by a set of a priori restrictions, in the
point (4, L) of the restricted parameter space, if each point
(4%, £%) in the restricted parameter space, equivalent to (A, B),

is obtainable from (4,'Z) by a transformation (2.18) which is triv-
ial with respect to the g th equation.

DEFINITION 2.1.5.4. The system {2.3) of structural equations
is said to be identifiable by a set of a priori restrictions, in
the point (A, Z) of the restricted paremeter space, if each of its
equations is thereby identifiable.

If the latter definition is applied with reference to a set of
a priori restrictions that includes an unambiguous normalization
rule for each structural equation (2.3), the definition of identi-
fiability of the system (2.3) is equivalent to requiring that the
set of points in the restricted parameter space, equivalent to
(4, B), consist only of the point (4, B).

2.2. Identification of One Structural Equation under
Linear Restrictions

2.2.1. Necessary and sufficient conditions for identifiability
of a given structural equation under linear single-parameter re-
strictions. Let us first consider the case of the identification
of the g th equation by linear a priori restrictions of the single-
parameter form (1.11), which require certain specified « , to van-
ish. It is useful to rearrange the conditions (1.11) in the order
of the structural equations to which they apply:

= 0'
(2.20) ek,

r=R_ +1L ... R, R-F_,=R. g=1 ..6

with By =0, Ry =R +Ry + - +R;=RW,

THEOREM 2.2.1. A necessary end sufficient condition for the
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identifiability, under Assumptions 2.1.3.3 end 2.1.3.4 of the g,th

structural equation in (2.3) by the a priori restrictions (2,20),
is that the matrix

o) =
(2.21) AP0 = Loy

=1 .... G, = +1, ..., R,
4 r Rgo-l 1 &
obtained from the complete matrix A of the coefficients %gp by se-
lecting those columns k= k_  for which %, is required to van-

-
ish, is of rank! G — 1,

Obviocusly, A%0) cammot have a rank higher than G—1 because
its gyth row consists of zeros only. Stated in other words, the
condition in Theorem 2.2.1 requires that from the g,th row of the
matrix A = [ o ] we can select in at least one way G—1 ele-
ments that the a priori restrictions require to be zero, such that
the determinant obtained by combining the colums of those elements
with all other rows differs from zero. If this theorem is true,
the following corollary ensues.

COROLLARY TC THEOREM 2.2.1. A necessary condition for the
identifiability of the gyth structural equation by the a priori

restrictions (2.20) is that the number Rgﬁ of these restrictions

involving coefficients of the & th equation be at least equal to
the number G of structural equations less one.

In order to prove the theorem let us first assume that Y =
[ U 1 defines a transformation of the type (2.18), which pre--

serves those restrictions (2.20) for which r = Rgo at 1, ..., l'i"gu .
Then

a
o ) s -
2.2) o, = h2=:1ugo" ap =0 r=R L Ry

Because of (2.20) the term with h = g can be omitted from the

A matrix X is said to be of rank p, if at least one of the determinants
of order p, and none of the determinants of order p+1, that can be
formed from the elements of X, is different from zero. Obviously, p
cannot exceed the number of rows or columms in X,
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summation. As a consequence of the condition specified in Theorem
2.2.1, the system of homogeneous equations (2.22), in which the

Ugoh with h#ga are now regarded as G—1 unknowns, has the rank

G~ 1 (for the omission of a row of zeros from a matrix does not

affect its rank). We can therefore in at least one way select from
(£o) (€

(2.22) G- 1 equations, \:I;.t)h r=n . » ++e» Tg., » say, in which
the determinant A(go; n 0 s ey C;‘_g)) of the coefficients of

the unknowns differs from zero. It follows that

(2.23) u, =0

for A7 g, , and the transformation Y can only be of the type (2.19)
admitted in Definition 2,1.5.2. This proves that the condition
stated in Theorem 2.2,]1 is sufficient for 1dent1f1ab111ty of the
g, th structural equation,

That this condition is also necessary is seen if we now assume
that the g th equation is identifiable and that therefore the only
noflsingular transformations Y satisfying (2.22) if (2.20) holds
are those that satisfy (2.23). Suppose that at the same time A(€0)

has a rank lower than G ~1. Then (2.22) would possess at least

{1} (2)

two linearly independent solutions vu p and v o say, of which

8o
the first can be taken to satisfy (2.23), The more general solu-
tion Vg, b =N u“) 12, uézi then satisfies (2.23) only if A, =

0. Since A, and the other rows (g#gﬁ) of T can always be selected
s0 that T coincides with the identical transformation (with unit
matrix) when A, = 0, there are values A, # 0 of %, (e.g., ina
neighborhood of A, =0) for which Y is nonsingular, but as stated
does not satisfy (2.23). This contradicts the assumption made at

the beginning of this paragraph. Therefore a rank G — 1 of 40’
is also necessary.

2.2.2. Identifiability conditions under more general linear
restrictions. Theorem 2,2.1 can easily be generalized to the case
where the linear a priori restrictions take the form (1.12). It
will be useful now to write these restrictions in matrix form:
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(2.24) algde, =0, g=1, ..., G

Here oc(g) is a row vector! containing the elements of the gth row

of A. The matrix @; is the transpose of a matrix Qg of rank R _,

containing in Rg rows and £, columns the coefficients “X” and “y”
of those restrictions (1.12) that refer to the gth structural equa-
tion in (2.3). (It is permissible to take the rank of %, equal to

the number of its rows, since otherwise the restrictions expressed
by (2.24) would not be independent.)} Again

(2.25) Ry + - +R,=RY,

We consider only such transformations (2.18) that preserve the re-
strictions (2.24). BHence, if Vg is the gth row of T = Ty

(2.26) 2(g) @é = ugA@;, g=1, ..., G

By a repetition of the previous reasoning, it is seen that the g, th

condition (2.26) will then and only then require the elements of

. . I .
Vg {except Ugogo) to vanish, if A@EO (of which the g, th row con-

sists of zeros only) has the rank G — 1. We therefore have

THEOREM 2.2.2. A necessary and sufficient condition for the
identifiability, under the Assumptions 2.1.3.3 and 2.1.3.4, of the
gy th structural equation by the a priori restrictions (2.24) is

that AQE', has the rank G— 1.
o

Since the rank of &, is assumed equal to the number Rg of its rows

(the number of independent restrictions imposed on the gth struc-
tural equation), and since the rank of a matrix cannot increase
through premultiplication with another matrix, we have

COROLLARY TO THECREM 2.2.2. A necessary condition for the

lYectors are here considered as one-row matrices rather than the more com-
monly used one-column matrices in order to be able to treat rows of A as
vectors, with A in the form corresponding to the natural way (1.1) of
writing the structural equations.
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identifiability, under the assumptions of Theorem 2.2.2, of the g,th

structural equation by the a priori restrictions (2.24) is that the
number of independent restrictions expressed by Q (i.e., the num-

ber of rows of qu) be at least G- 1.

2.2.3. Identifiability almost everywhere in the parameter space.
It is of interest to note that the identifiability of the g;th struc-

tural equation depends only on the matrix Qg expressing the restric-
’ 0

tions on that particular equation, and on the coefficient matrix A.
In practice, however, the elements of A are unknown before estima-
tion, and are not known exactly after estimation. Uncertainty with
regard to the rank of A@;o may therefore remain even after estima-

tion, A gquestion that can be answered before estimation, however,
is whether, in cases where p(@? })>G— 1, the a priori restric-
0

tions (2.24) with g # &, i.e., those restricting structural equa~
tions other than the one whose identification is studied, do or do
not reduce the rank of.Aég below G — 1 identically, i.e., for

all values of A permitted by (2.24). If the a priori restrictions
are in the form (2.20), this question can be decided in a simple way
by exhaustive study of a diagram of the elements of the matrix A, in
which a zero is entered for every element required to be zero by
(2.20), and a cross for every other element. A determinant A ex-
tracted from A is then not idemtically zero if at least one term of
the determinant can be found that is the product of elements repre-
sented by crosses only.

The generalization of this technique to the case of restrictions
in the form (2.24), although mathematically interesting, is somewhat
complicated in operation. It appears preferable, for this particu-
lar purpose, to reduce to a minimum the number of restrictiens not
in the form (2.20). This can be achieved by retaining the identi-
ties as part of the equation system. This is a possible procedure
because the assumption of nonsingularity of I has not been used in
the present discussion of identification problems, and identities
are therefore admissible to the equation system of which identifica-
tion properties are studied. In this case, of course, no identifi-
cation problem arises with respect to the identities themselves,
since these are completely known already. If a few restrictions
(2.24) remain that cannot be reduced to the form (2.20), it is ad-
visable first to carry out the analysis indicated while ignoring
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those particular restrictions, investigating thereafter whether or
not the conclusions are changed by the presence of these restric-
tions,

Assuming that most situations arising in practice can be dealt
with in such mammer, we shall not attempt to formulate a general

theorem covering all cases under which the rank of A@é may be
o

identically below that of @go . In section 2.2.4, however, we shall

discuss some interesting special cases in which this occurs. Mean-
while, it is already possible to make the following genmeralization:
All criteria for identifiability formulated above are in terms of
ranks of matrices. Since a determinant is a linear function of any
element, and of the elements in any row, a matrix that under linear
restrictions of the type (2.20) or (2.24) attains a required rank
in one point of the parameter space, attains the required rank in
all points except for a set of measure zero. Thus a structural
equation that is not identically unidentifiable under such restric-
tions, is identifiable almost everywhere in the parameter space.

*2.2.4. Cases vhere the rank of A@; is identically below

¢
that of Qé . Let us now consider some special cases in which the
o
rank of A@é is identically less than that of @é on account of
0 []

the restrictions imposed on the other structural equations. Since

the rank of & is at the same time the number R of rows in & _,
) £ &

every nonvanishing vector A p containing Rgo elements satisfies
0
Y

(2.27) LY # 0.

Let p(X) represent the rank of any matrix X. Then, if

! ! —_
(2.28) p(a3y) < olg; )= R,

for all values of A satisfying (2.24)}, there exists for every such

value of A a nonvanishing vector X s such that
0

4 — . | — r= &' !
(2.29) Atllgo 7\’80 =0, or AE'=0, where E'= @30 lgo # 0.
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Now there are two possible cases. It may occur that a constant vec-
tor A exists for which (2.29) is satisfied by all values of A per-
mitted by (2.24). In this case the restriction

(2.30) alg) 8'= 0,
E constant, must hold for each row a(g), g=1, ..., G, of A, as
a consequence of (2.24), i.e., there exist vectors kg such that
. Pal — g2 =
(2.31) @glg £, g=1, ..., G

This means that the restrictions on the individual structural equa-
tions imply at least one restriction (2.30), which is common to all
of them. The coefficients g of this common restriction do not de-

pend on A, but can be determined or selected on the basis uf the Qg'

g=1, ..., G, alone. It follows that the number E; of variables
%, can be reduced by one without changing the nature of the problem
studied, This is obvious in the special case that £ has only one
nonvanishing element, say £;, because then the a priori restrictions
imply that the variable x, doés not actually occur in any one of the

structural equations. The same conclusion can be drawn as follows
if § is any other constant vector. Let E be a nonsingular square

matrix of order X  containing E as its first row. Then the linear
transiormation

(2.32) AR =A% B gt =x'9

of variables x and coefficients A leads to a situation where the a
priori restrictions imply af} =0, g=1, ..., G, that is, where
the variable xf does not actually ocecur,

Alternatively, it may occur that (2.29) can be satisfied only
by a vector E which itself depends on A. A simple example is that
of G =3 equations where the a priori restrictions require a sub-
matrix consisting of the Zth and lth columns of A to be as follows:

(2.33) 0 0 ,
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with ¢;,, @5;, and the remaining elements of «(1) and «(2) unre-
stricted. Here we must take

(2.34) Ep = —o037, Ep = g, E, =0 if m#k, I,

to obtain a restriction (2.30) common to all structural equations.
However, the first G- 1 = 2 structural equations have two inde-
pendent constant restrictions in common! and are not identifiable.

*2.3. Treatment of Unidentifiable Structural Equations
by Linear Dummy Restrictions

*2.3.1. Dummy restrictions to produce formal identifiability,
In case one or more structural equations are not identifiable,
this fact should not be allowed to interfere with the estimation
of such other equations as are identifiable. We may even wish to
go further and estimate such linear functions of the parameters of
the unidentifiable equations as are not affected by the lack of
identification. From the point of view both of estimation and com-
putaticn, therefore, it is an important problem to write the param-
eters {A, X) as functions of two sets of parameters, 8, and ®, say,
of which the first uniquely defines a set of points in the restrict-
ed (A, &) space, while variation of the second set of parameters
9, only causes the point (4, Z) to vary within a set of equivalent
points in that space. Using Wald’'s extemsion of the identifiabil-
ity concept to individual parameters [III], we may say that the
parameters (A, &) are written as functions of a set of identifiable
parameters 6, and a set of wnidentifiable parameters 6, .

A device whereby the separation of 6, and 9, can be carried out
is the addition to the original a priori restrictions of dummy re-
strictions such that the so augmented set of restrictions ensures
identifiability. The dummy restrictions are then made to contain
as many parameters 6, as are required to define a point within a
set of equivalent points. It will be clear that this device is ap-
plicablg only within a region of the restricted parameter space, in
which the matrices A.@é, g=1, ..., G, have constant ranks. For
the sake of simplicity, we shall only discuss the case of a region
in which the rank of each A @é equals that of the corresponding

e is again true here that the variables Xy, and Xy occur oenly in the
linear combination o4,%, + o3;%;, but this does not permit us to re-
duce the number of variables because ®y) and O3, are unknown.
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restriction matrix 3. That is, we shall disregard the case in
which the rank of an A@é is identically depressed on account of
restrictions on the structural equations other than the gth.

*2.3.2. A lemma. In preparation for a theorem stating what
can be achieved by dummy restrictions, we shall first prove

LEMMA 2.3.2. If © and ¥ are two matrices with an equal number
of rows, such that!
(2.35) ol 2 w)<p(a)+ p(¥),

then there exist two nonvanishing vectors » and w such that

(2.36) A+ ¥ =0, &N # 0,

Let c(3) denote the number of colums of &, and assume first as a
special case that

(2.37) o(®) = ¢(3), o(¥) = c(¥).

(It is only with respect to this special case that the lemma is
used in the present section; the further case (2.39) is added for
later use, see sections 3.2.5 and 4.3.4.6.) Then, from (2.35) and
(2.37),

(2.38) ol® ¥)<c(d w).

Hence there exists a nonvanishing vector [ A ] satisfying the
equality in (2.36). However, this cannot be a vector such that A
vanishes, because then the equality in (2.36) would imply ¥u' =
with p’ # 0, which is precluded by the second condition in (2.37).
Similarly, the first condition in (2.37) precludes the vanishing
of 3%/ now that A# 0,

Now assume, more generally, that

(2.39) p(®) < c(a), o(¥) < o(¥).

Then it is possible, wherever an inequality sign in (2,39) applies,

1Square brackets [ ] denoting matrices are omitted when a matrix appears
as argument of the functiens p( ), r( ), ¢( ).
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to delete one or more colums from & or ¥ or both, so as to obtain
matrices & and ¥ respectively such that

(2.40) p(@) = o(®) = ¢(3), e(¥) = p(®) = (D),

and, from (2.35) and (2.40),

(2.41) (T ¥)<pla ¥)<p(@) + p(W).

The conditions (2.40) and (2.41) are equivalent to (2.35) and

(2.37) with & and ¥ replaced by § and ¥. Hence there exist nonvan-
ishing vectors X and [ such that

(2.42) TXHUE’ =0, TRAO.

By adding zero elements in the proper places, these can be completed
to vectors A and p satisfying (2.36).

*2.3.3. The number and type of dummy restrictions reguired.
We shall now study the impostition of dummy restrictions on the gth
structural equation in the neighborhood of such a point A, in the
space of the parameters A in which

L) = '

(2.43) p( 4, ag) p(ég).
As before, the restriction matrix Qg is so chosen that

ry — ry —
(2.44) p(2;) = c(g}) = &,
equals the number of independent restrictions imposed on the gth
structural equation. Since the gth row of Aotié' consists of zeros
only, we may as well operate with a matrix 4, obtained from 4, by
deleting the gth row, and write instead of (2.43)

(2.45) p(gho@é) = p(@s',).

For reasons of notational symmetry, we shall in the remainder
of this section 2.3 occasionally use the symbol £ yr introduced in
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section 2.1.2 as synonymous with G (the number of structural equa-
tions and of dependent variables). Suppose now that

(2.46) R, <6-1=K -1,

that is, that the gth structural equation is not identified by the
original restrictions (2.24). We shall continue to refer to the
restrictions (2.24) as the a priori restrictions, and to regard
them as the basis for the concept of equivalence according to Def-
inition 2.1.3.6. We now wish to achieve identification of the gth
equation by the addition to (2.24) of dummy restrictions which we
denote

LB Y -7
(2.47) «(g) g, 0, C(Qg ) E,.

We shall of course require that the dummy réstrictions are inde-
pendent of each other and of the a priori restrictions, i.e.,

gf F0) Y = T
(2.48) p(@g 3, ) R, + R,

THEOREM 2.3.3. If in o point (4,, B,) of the parameter space
the following conditions are satisfied

(a) the a priori restrictions (2.24),
(b) the rank condition (2.45),

(c) the insufficiency (2.46) of the number Rg of
independent (2.44) a priori restrictions on
the gth structural equation to identify that
equation,

then there exists o neighborhood N of (A, £,) in the a priori

restricted parameter space, and o matrix EﬁoJ defining

(2.49) E% =6G-1- Ré

dummy restrictions (2.47) on the gth structurel equation, which
are tndependent, mutually and from the a priori restrictions,
such that

(i) to each point (4, %) in ¥ can be found at
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least one equivalent point satisfying the
dummy restrictions (2,47),

(11) the a priort and dummy restrictions taken in
combination tdentify the gth structural equa-
tion.

The statement (i) in this theorem assures that no probability dis-

tribution of the observations permitted by the a priori restrictions

is deprived of representation by imposing dummy restrictions.
Introducing the notation

(2.50) Ty = Y Eém 1,

we shall first show that there exists a matrix 3/®? with the num-
ber of columns F} as given by (2.49), such that

(2.51) ol A () My =¢-1= K, - 1= o(F' (g) (),

The first step is to choose an arbitrary orthogonal complement

of gAO’ that is, a matrix % such that both

¢
Z0Y Yy = B0y = N =

(2.52) p(8, )=V ) =K K +1=K, +1,

say, and

(2.53) Ao @ =o.

However this choice is made, we must have
o E 0y = o Fr )y - K +1.
(2.54) ol 2, 3 }=cl e, 3 ) Rk, + K,

For otherwise, according to Lemma 2,3.2, nonvanishing vectors A
and 1g exist such that

ol £ 500, 5 .
(2.55) @g lg'+ @E lg 0,

g

and, on account of (2.53),

EL A =
(2.56) Ae ‘,\g 0,
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which is incompatible with (2.44) and (2.45).
Because of (2.54), we can, as the next step, choose a matrix
5&;“” with a number of rows F o as given by (2.49), such that

(2.57)  B'(p)

r o F0 F10) 1 = [ Frrgy0) S0
[e) &7 9 ]1=13(" o]

1s a nonsingular square matrix of order £ =KX + K,. The non-

singularity of @’(gﬂo) ensures that (2. 48) is satlsfled It fol-
lows further that

(2.58) p( Ay T (@) ) = p(,a,),

because postrmltiplication with a nonsingular square matrix does
not affect rank. On the other hand, from (2.53) and (2.57),

(2.59) a3 (@) ) = ol 8, T(0)O).

Finally, since the structural equations are independent [see also

(1.6)],

(2.60) p(4g) = K, = 1+ p(,a,).

Combining (2.58), (2.59), and (2.60), we have completed the proof
of the first equality in (2.51). The second equality in (2.51)
follows directly from (2.48}, (2.49), and the nonsingularity of
3(9.)(0)

Since a determinant is a contimuous function of its elements,
it follows from (2.51) that

(2.61) (AT (@) = K - 1= o))

in a neighborhood g”ﬁ of the point A, in the space of the param-

g

eters A subject to the & priori restrictions (2.24).

Let ¥ be a neighborhood of the point {4;, Z,) in the restricted
parameter space such that for all points (4,, B,) in #, the coor-
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dinates _A define a point A in gﬂ&. We shall now show that ¥ and

g
qé?’ have the properties required in the theorem.

To satisfy condition (i) we associate with any point (A, ) of
¥, a point

(2.62) A=Ta, T=YQD Y,

by the following choice of the transformation T,

[ 1 e 0 0 0
0 1 0 0 0
(2.63) Y= v, Yy g 1 Vs g1 e | s
0 0 0 1 0
0 0 0 0 1
i |

in which the vector

v

(2.64) gu(g) = Yyy 46 ]

Y61 Yg,g1’

of as yet unspecified elements in the gth row u(g} of Y is deter-
mined by

(2.65) gu(g)-gA-E'(g)(ﬁ) = — alg)- $'(g)0).

As a consequence of (2.61), there is always one and only one solu-
tion gu(g) to this condition. Rewriting (2.65) as

(2.66) a(g) - 3'(g)? = v(g)-a-F ()™

"

0,

we see, in connection with (2.50), that the point (2.62) satisfies

both the a priori conditions (2.24) and the dummy restrictions
(2.47).
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Finally the uniqueness of the sclution gu(g) of (2.65) implies
that any other point (&%, £®) that is obtainable from (4, 2) by a
linear transformation (2.62) and satisfies the combined (a priori
and dunmy) restrictions is obtainable from (&, I} by a transforma-
tion that is trivial with respect to the gth structural equation
(see Definition 2.1.5.2). For, the combined restrictions on the
gth equation are expressed by (2.66), which permit free choice only
of the diagonal element v, in u{g}). This shows that condition

(ii) of the theorem is also satisfied.

*2.3.4. The degree of indeterminacy of an a priori unidentifi-
able structural equation. It is of interest now to consider the
reverse problem that arises after estimation has been carried out
subject to dummy restrictions added to obtain formal identifiabil-
ity: From a parameter point (&, %) that satisfies both the a pri-
ori and the dummy restrictions, reconstruct the set of all equiva-
lent points (A, £) in the restricted parameter space; i.e., all
points obtained through linear transformations inverse to {2.62)
and satisfying the a priori restrictions but not necessarily the
dummy restrictions. Since the identification problem under the
restrictions (2.24) can be studied for each equation separately,
it is sufficient to study those transformations for which A differs
from £ only as regards the gth row a{g) or

(2.67) gA: gA’

This means that we can confine ourselves to transformations
(2.68) a=171 3, z=1x1 %y,

with a matrix Y™ inverse to a matrix Y of type (2.63). It is eas-

ily seen that Y™ itself then is of the same type, with nondiagonal
elements in the gth row equal to

(2.69) wh = - Uy h# g.

For the gth row of A this gives us in particular

(2.70) alg) = a(g) - gv(g)'g'ﬁ,'
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and, through postmuitiplication with ¢é(°) and @’(0) respectively,
using (2.24), (2.50), and (2.66),

— LT £(0)
(2.719) 0 gu(g) gA Qg ,
(2.71)
= Lm0y -
{2.719 ofg) @é gu(g) gA Qé .

Of these conditions, (2.71r) expresses the restrictions on Y™},
arising through (2.69) from the fact that a(g) must satisfy the a
priori restrictions. The left-hand member in (2.717) arises from
the fact that a(g) is not bound by the dummy restrictions. It is
easily seen that precisely those linear combinations of the ele-
ments of a(g) which are the elements of the vector

8 = [ YA
(2.72) . 8, = alg) g,

can be chosen arbitrarily before, according to (2.61), (2.67), and

(2.69), T! and therewith a{g) is fully determined. Therewith we
have proved:

THEOREM 2.3.4. If under the conditions of Theorem 2.3.3 the
parameter point (&, T) satisfies both the a priori restrictions
(2.24) and the dummy restrictions (2.47) identifying the gth struc-
tural equation, the set of points (A, I), equivalent to (&, T) but
satisfying only the a priori restrictions, is obtained from the
latter point by a transformation (2.68) with a matrix YT of which
the gth row is through (2.69) determined from (2.71), with arbi-
trary choice of the vector §é of dummy parameters (2.72).

The theorem does not stipulate that the remaining rows of Y cor-
respond to the form (2.63), since no assumptions were made as to
the identifiability of the remaining structural equations. It will
be clear, however, that the transformed point (2.68) must satisfy
the a priori restrictions (2.24) on all structural equations.

2.4. Identification of a Set of Structural Equations
under Linear and Bilinear Restrictions

2.4.1. Problems arising from additional types of restrictions,
We shall now discuss identification problems that arise if two fur-
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ther types of a priori restrictions are added, each of which binds
the parameters of one structural equation to those of another. The
first type is given by (1.13) or (1.14), which is rewritten in
slightly different notatiocn in (2.73a). The second type (2.730)
expresses absence of correlation (or, under the normality assump-
tien, independence) between the disturbances in two equations.

o oL
% 1
(2.730) % Eh d=0, r=1, .., R?,
“r ok %n
(2.73) rr rr
g:r < hl:
(2.730) O n = 0,

r=RP+ 1, ..., B4R,

For the time being, we shall assume no particular pattern for the
occurence of zeros among the elements of %. Later we shall say a
few words concerning the special pattern (1.15).

If a given structural equation can already be identified on the
basis of the restrictions (2.24) alone, the imposition of addition-
al restrictions (2.73) of course does not detract from the identi-
fiability of that equation. The only identification problem of in-
terest in connection with the restrictions (2.73) is therefore un-
der what circumstances an equation not identifiable on the basis
of (2.24) alone can be identified if the restrictions (2.73) are
added.

Each of the restrictions (2.73) comnects two structural equa-
tions, numbered g, and hr’ which we shall call the two equatiens

referred to in that restriction. [Similarly, we shall speak of

the one equation referred to by any one of the restrictions (2.24).]
The restrictions (2.73) link up the identification problem of in-
dividual equations, and statements regarding identifiability will
therefore in general relate either to the whole set of structural
equations (2.3) or to subsets thereof which only in special cases
may consist of one single equation.

2.4.2. The additional restrictions are bilineer, 1f the pa-
rameters A, D satisfy the a priori restrictions (2.24) and (2.73),
to which we shall add the normalization rules (1.17a), the re-
quirement that the transformed parameters (2.18) shall satisfy the
same restrictions leads to the following expression of the
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R&D + R&z) +R0. + G a priori restrictions in terms of the rows

Vg £ 1, «.., G, of the transformation matrix Y:

(2.741) (2.7410) U(g)'A‘@é =0, R restrictions,

®Y +6
o (2.741n) vig):A-u{i_) =1, one restriction,
restrictions) £
g=1 ..., G
2,74) .
( o(g,)-Auk,)  ulg,)A(L)
((2.74bc) =0
ola, )4 (k) vk, )AL (2)
(2.74b)
{2) — {2}
ma ﬂ*RU 4 r=1, ceen B,
restrictions)

\(2.74ba) ulg,) Bk, ) =0,

r=R3 +1, ..., BP +&,.

Here u(k) is the kth row of the unit matrix of order K. ie, a

vector of which the 2th element is 1 and all other elements are
0. The normalization rules (2.741) are nonhomogeneous in the el-
ements of Y.

All other restrictions in (2.74) will be referred to as the
homogeneous restrictions. The two types of restrictions under
(2.74b), while being quadratic in the elements of Y, are linear in
the elements of any row of Y. For this reason we shall refer to
(2.74b) as the bilinear restrictions.

The occurrence of bilinear restrictions greatly complicates
the identification problem. The following discussion should be
regarded as a first exploration of the field, and does not lead to
firm criteria such as were derived for linear restrictions only.

2.4.3. The solution Y= I 1is always present. It is imper-
tant to note that, because the parameters A and I are assumed to
satisfy the a priori restrictions (1.17a), (2.24), and (2.73), the
system of restrictions (2.74) and any of its subsystems always



96 KOOPMANS, RUBIN, AND LEIPNIK I11-2.4.3

permit of one particular solution ¥, viz., the identical transfor-
mation

(2.75) Y = 1I,

where I represents the unit matrix of order K. For this reason
there can never be too many compatible restrictions for identifi-
cation. There can only be either too few or a sufficient number,

2.4.4, Unique, multiple, ond complete identification. We
shall discuss the identifiability of a given subset S of the struc-
tural equations (2.3), containing the ¥ equations for which g =
£+ ---» £y, on the basis of a given subset X of the restrictions

(2.74). This discussion is concerned with matrices of the type

[ I
Vg, 1 . Vg, @
(2.76) r$ =] -
L "ng . "gHG

combining the rows, corresponding to the equations of S, of a solu-
tion T of the subset R of the restrictions (2.74).

DEFINITION 2.4.4.1. A subset S of the structural equations
will be said to be uniquely identifiable by a subset R’ of the re-
strictions (2.74) that includes all normalization rules (2.741In)
relevant to S, if for all solutions Y of R’ we have

(2.77) r = I[Gs- 61"

where ItG ¢] Tepresents a unit matrix of order Gg adjoined to a
s'

zero matriz of G columns., We shall speak of multiple identifica-
tion if to all solutions Y of R' there corresponds a finite number
of different matrices Y° that exceeds one, and of incomplete iden-

tification if the number of different matrices Y% is infinite.
Complete identification means either unique or multiple identifi-
cation.

Incomplete identifiability is, of course, synonymous with un-
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identifiability. In order to obtain conformity with Definition
2.1.5.3 we add:

DEFINITION 2.4.4.2. A subset S of the structural equations
will be said to be uniquely, multiply, or incompletely identifiable
with respect to a subset R of the homogeneous restrictions in
{2.74} if, after addition to R of the normelization rules relevant
to 8, it is so identifiable in the sense of Definition 2.4.4.1.

The possibility of complete but multiple identification arises,
of course, from the presence of quadratic restrictions in (2.74).
A simple example is that of three equations in three variables, in
which the a priori restrictions assume the form

(2.78)
(2.78h) Gl TGy T 0y =0, Gy Ty T oy T 1.

If for convenience we impose the normalization condition in (2,78b)

only on the original matrix Z but not on % we find that the re-
maining conditions (2.78) for the transformed matrices A% and £°
permit, not only of any transformation with a diagonal matrix T
corresponding to a change of scales, but also of the transformation
of which the elements are cbtained from

— 2 2
1 T %2 %13 (o) +og) + gy oy gy 0y
(2.79) Vyp T oy {0y Gy 0y = gy gy o) ),

Vg = oy {0y gy oy — ayy oy o‘21)'

by cyclical permutation (followed again by any change of scales).
In the case of complete but multiple identification, the number
of solutiens can sometimes be reduced, or even unique identifica-
tion can be achieved, through additional a priari restrictions in
the form of inequalities (see section 1). The use of such restric-
tions with respect to the elements of I in a case of incomplete
identification has been demonstrated by Marschak and Andrews [1944].
In the remainder of this section we shall concentrate on the
question of completeness or incompleteness of identifiability, ir-
respective of the number of sclutions in the case of complete iden-
tification. We shall first make some remarks on the counting of
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restrictions as an indication of identifiability. Thereafter, we
ghall discuss in which respects procedures based on counting alone
may be insufficient to establish either identifiability or lack of
identifiability.

*2.4.5. Criteria of identifiaebility based on the counting of
restrictions. Apart from # normalization factors (ane for each
row), the matrix (2.76) contains H(G — 1) unknowns. If R contains
at least H(G ~ 1) homogeneous restrictions, however, these may

still be unevenly divided between the different rows of Y5, leaving
some rows undetermined for lack of an adequate number of restric-
tions. In formulating principles for counting restrictions on in-
dividual rows, it is necessary to remember that each of the bilin-
ear restrictions (2.745) refers to two rows of Y%, and obviously
should not be counted as a new restriction with regard to the iden-
tification of each of those two rows., These considerations lead

to the following definition,

DEFINITION 2.4.5. The subset R of the restrictions (2,74} will
be said to be adequate in number and variety with respect to (the
identification of) the subset S of the structural equations {(2.3)
if it is possible to assign each bilinear restriction (2.74) occur-
ring in R to one of the two equations (2.3) to which it refers in
such a way, that the number of homogeneous linear equations
(2.741R) in R referring to, plus the number of bilinear conditions
(2.74b) in R assigned to, each equation of S is at least G — 1.

*2.4.6. The completed subset of structural equations. The
concept. introduced by Definition 2.4.5 can be applied in particular
to the identification of the set of all equations (2.3) by the set
of all restrictions (2.74). If some of the equations (2.3) camnnot
be identified for lack of an adequate number and variety of a pri-
ori restrictions, it becomes necessary to develop criteria that are
of assistance in finding the largest subset S that can be identi-
fied.

DEFINITION 2.4.6.1. The subset Ry of a priori restrictions

(2.74) associated with a given subset S of the structural eguations
consists of all homogeneous linear conditions (2.741h) referring

to an equation of S and all bilinear conditions (2.74b) referring
to two equations of S.

DEFINITION 2.4.6.2. A subset §; of the structural equations
will be called a completed subset if a} the subset Rsb of restric-
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tions (2.74) associated with S, is adequate in number and variety
with respect to Sy and b) there exists no larger subset S’ that
contains all the equations of S, and one or more others besides,
and with respect to which the associated subset Rg, of the restric-
tions (2.74) is adequate in number and variety.

THEOREM 2.4.6. There is at most one completed subset S; of
the structurael equations (2.3).

Suppose there are two different subsets S and S, satisfying
Definition 2.4.6.2. Obviously S, cannot ke a subset of S, or vice
versa, because then either §; or S, would not be a completed sub-
set. On the other hand, if S| and S, have no equations in common,
the combination S; + S, of both sets would possess an associated

subset R‘5'1+52 = RSl + Ii’S2 of restrictions (2.74) which is adequate

in number and variety with respect to S, +5,, contrary to the
assumption made about S;. In the third possible case, in which §
and S, have a set §;5, in common, which differs from both S, and
Sy, it cen likewise be inferred that, contrary to the assumption

regarding i, , the set R31+32 of restrictions (2.74) associated

with the combination S, + S, is of the requisite number and vari-
ety with respect to §; +S,. This is seen by assigning the bilin-
ear restrictions (2.74b) in R‘Sl"Sz (which contains the combination

li’S1 + R82 of IE'S1 and RSz) in the following way. The bilinear re-

strictions (A) (see Fig. 2.4.6) in A, are assigned in the same way

as they were assigned to meet the requirements of Definition 2.4.5
with respect to 5;. The equations of S, are thereby provided with
an adequate number and variety of a priori restrictions. Then the

bilinear restrictions (B) in R; but not in R, are assigned as
2 1

they were to meet the requirements of Definition 2.4.5 with respect
to S,. This adequately provides the equations in S, = S5, — §5,,
that is, the equations in S, but not in §;, because the restric-

tions in RSI now excluded from consideration do not refer to these
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equations. It follows that, irrespective of how any member of the
third group of bilinear restrictions in R51+ 5 * namely those nei-

ther in By nor in Ry , are assigned, the requirements of Defini-
1 2

tion 2.4.5 are always met with respect to §, + Sz' The assumption
of two different completed subsets S, and S, has therewith been

disproved.

Structural . o
Equations Bilinear Restrictions
and Linear I_‘____ 8,
Restrictions 8, . ’1'
|
I
8, C | B
8 |
g I
.
83 8 A
5,
Y | L__]
Figure 2.4.6

*2.4.7. Construction of the completed subset. It 1s of inter-
est to give an example in which the completed subset can easily be
constructed. This is the case in which the bilinear restrictions
require T to be diagonal, while the structural equations can be
ordered in such a way that there are g— 1 homogeneous linear re-
strictions on the gth equation. Then the Gth structural equation
is subject to an adequate number of linear restrictions alone, and
the G— 1 bilinear restrictions

(2.80) o, =0, £=1, ..., 6-1,

referring to it can be assigned one by one to each of the first
G—1 equations. This provides the (G—1)th structural equation
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with an adequate number of restrictions, and the G—2 remaining bi-
linear restrictions

(2.81) gy, g = O =1 ..., G=2,

referring to it can now be assigned to the first G—2 equations., A
repetition of this process shows that the completed subset S; con-
tains all structural equations. '

This example suggests a practical procedure for constructing
the completed subset S;. First the set S, of those structural

equations, for which the linear restrictions (2.74b) alone are ad-
equate in number and variety, is included in S;. Then bilinear

restrictions connecting the equations of S with the remaining ones
are assigned to equations cutside S,, and the equations thereby

provided with an adequate number of restrictions are included in
S,. This process is repeated until it has become impossible to in-

clude in S further equations one by one. Thereafter, it may still

be possible to include small sets of three or more, counting also

bilinear restrictions connecting the equations being included as a
seL,

*2.4.8, Lack of sufficiency of criteria based on counting. It
has already been indicated that counting of restrictions alone is
inconclusive in establishing identifiability. The condition that
a structural equation belongs to the completed subset S, is neither

necessary nor sufficient for its identifiability. Unfortunately,
the formulation of necessary and sufficient conditions generalizing
those established for linear restrictions is a task beset with con-
siderable difficulties owing to the presence of nonlinear restric-
tions. Nevertheless, cases in which equations inside S are uniden-
tifiable, or equations outside §; are identifiable, are “exception-

al” 1n one sense or another, and we shall presently discuss the
nature of the “exceptions,”

'an addivional peint of interest in this example is that the rows of Y
can be obtained successively (from the bottom row up), each as the solu-
tion of a linear equation system. Therefore, if, under the a priori re-
strictions stated, the set of structural equations is completely identi-
fiable at all, it is uniquely identifiable, in spite of the fact that
among the restrictions imposed, G(§ -1} /2 are bilinear.
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A structural equation belonging to S; may fail to be identifi-

able (as was also found in the case of linear restrictions discussed
earlier in this section) through a functional dependence of the
relevant restrictions (2.74) on Y. Such functional dependence may
come about because the parsmeters A, T happen to fall within a set
of measure zerc in the parameter space. Or it may even come about
everywhere in the parameter space, as a result of the special nature
of the a priori restrictions. Examples of the latter possibility
were discussed in section 2.2.4., Another simple example is the case
where the a priori restrictions are invariant for the interchange
of two of the structural equations. These two equations are then
inevitably unidentifiable, because the only case in which an inter-
change of two equations is innocuous, i.e., the case of complete
equality of corresponding coefficients “a” and of corresponding co-
variances “¢” connecting the two equations with other eguations of
the system, is precluded by the assumed nonsingularity of B.

*2.4.9. Lack of necessity of criteria based on counting. A
new element in the situation, which did not arise under linear re-
strictions only, is the fact that to belong to the completed subset
is not even necessary for identifiability of a given structural
equation, This is due to two restrictions on the parameter space
which follow from the nature of the problem studied. The first of
these is the restriction to real values of the parameters A, I.
This restriction had no effect under linear a priori restrictions,
since linear systems of equations with real coefficients only per-
mit of real solutions. Quadratic or even bilinear systems possess
no such property. Therefore, the possibility exists in the present
case, that the a priori restrictions (including rules of normaliza-
tion) confine Y to a point set in the complex space of all its ele-
ments, of which all real points are such that the g,th row of Y

equals the corresponding row of the unit matrix -~ even though the
g,th structural equation be outside of the completed subset S,.

The condition that this shall occur is in the nature of a tangency
condition.! We have not attempted either to prove {by the construc-
tion of an example} the possibility of such an occurrence under bi-
linear restrictions, or to prove its impossibility. One would ex-
pect such a tangency to oceur only on a point set of measure zero
in the parameter space, but the possibility cannot be excluded

lan ellipsoid and 2 plane in three-dimensional space may have only one
real point in common, although they represent only two inhomogeneous
equations in three unknowns.
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without proof that it could occur everywhere in the parameter space
as a result of a special choice of a priori restrictionms.

'*2.4.10. Restrictions requiring a certain partitioning of A
and B. The second relevant restriction on the parameter space is
the nonsingularity of B, and therefore of Y. That this restriction
may affect the identification problem appears from a constructed
example which was kindly brought to our attention by A. Wald. The
following formulation contains Wald’s example as a special case.

Let the a priori restrictiens be such that, if the structural
equations are in a certain way exhaustively subdivided into two
sets, 3; and S;;, and if at the same time the dependent variables
are arranged in a certain order, the matrices B and I partition as
follows:

BII BI o z:II 0
(2.82) B= %=

3

0 Brn 0 PI—

In addition to the restrictions implied in (2.82), there may be
further linear and bilinear restrictions involving the elements of
Zyrs Iomp Bip By w Bp T and the remaining elements of A.

In order that the transformation (2.16) shall preserve the
partitioning (2.82), we must have

®  _ _

(2.83p) Bpy =Yg B, =0,
(2.83) {

(2.830) 551 = Yyg B,y Lr Y yuZpn T o= 0.
Now the nonsingularity of B requires that B, ; be nomsingular. It
follows from (2.83p) that
(2.84) Y . =0,

Consequently, the nonsingularity of Y requires that Yy g be nonsin-

gular. From this, (2.830), (2.74), and the nonsingularity of 3 p,
it also follows that

(2.85) T =0,
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so that Y partitions as follows

Y, O
(2.86) T= :
0 Tpg

This result means that, if no further bilinear restrictions con-
necting a structural equation of S; with one of S, are introduced,

the identification problems of the two sets of structural equa-
tions have been separated. For the only transformations permitted
by (2.86) are those within each set of equations.

Let there be G; structural equations in Sp, Gy 1n Sg ., with
Gy + Gg=G. Then a counting criterion for the separate identifi-
ability of the equations of S, or a subset thereof, on the basis
of restrictions additional to (2.82) which refer exclusively to
equations of S;, can be formulated as follows: A completed subset
S® of S, is again defined by Definition 2.4.6.2, with this modi-
fication, that only restrictions additional to (2.82) are counted;
and that their number and variety is deemed adequate if the re-
quirements of Definition 2.4.5 are met with G; substituted for G.

Now it is possible for S}O) to be nonempty, or even to contain
all equations of S;, even though the unmodified application of
Definition 2.4.6.2 to the total set S;, . of G structural equations
leads to an empty completed subset S; of S;, . This is seen most
clearly in Wald’s example, which takes G; =1, Gz 2, and as-
sumes no restrictions besides (2.82). Then G, - 1=0, and S;U)
consists of the one equation in S;, whereas §; is empty. Similar
examples with higher values of G; can easily be constructed.

The medified counting criterion just indicated for the identi-
fiability of structural equations in S;, and a similar criterion
with reference to S;; , can be subsumed under a more general cri-
terion applicable to the full set S of structural equations. In
this general criterion both the restrictions (2.82) and any addi-
tional restrictions are counted under the unmodified Definitions
2.4.5 and 2,4.6.2, but the G; Gy restrictions on I in (2.82) are
to be counted as equivalent to the linear restrictions (2.85) on
Y, g» i-e., on the rows of T corresponding to the equations of
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S;, with G restrictions falling on each of the Gy equations of §;.
This procedure is justified because any attempt to comstrue the bi-
linear conditions (2.830) arising from (2.82) as restrictions on
the equations of S; would require Y| ; to have a positive rank,
which was shown to be incompatible with the nonsingularity of T,
This general criterion can also be used if the additional restric-

tions contain further bilinear restrictions connecting an equation
of 5, with one of 5.

The foregoing discussion also applies in the more general case
in which, instead of the partitioning (2.82) of B, we have (after
some rearrangement of the variables x, into two groups 1 and 2) a
similar partitioning

An o Ay
0 Ay,

(2.87) A=

of the rectangular matrix A, provided A;, is square and nonsingu-
lar. The case (2.82) in which 4, is a submatrix of B, however,

is especially important, and will be studied further in section
3.2.7 in conmection with estimation problems.

2.4,11. Other special cases, In special cases where the num-
ber of structural equations is moderate or the number of bilinear
restrictions small, or both conditions hold, a more conclusive
discussion of the identification problem than was given here for
the general case, may be more easily possible. An example is the
study of the measurement of production functions [Marschak and
Andrews, 1944] already referred to.

Another example may be briefly indicated without attempting
rigorous statement. This is the case in which no structural equa-
tion is subject to fewer than G—2 homogeneous linear restric-
tions, while for the set S of those equations that do not possess
at least the adequate number G- 1 of such restrictions, the defi-
ciency is just made up by the bilinear restrictions between them.
Further analysis then needs tec be concerned only with the equa-
tions of S, and with the matrix Y® containing the correspending
rows of Y. The elements of any row of Y° can now be expressed as
a linear function of two of them. Writing 6, for the ratio of

those elements in the row v,, we easily sée that the bilinear re-
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lations take the form
(2.88) i egeh + lgn egr + g S + Ven = 0.

Since by assumption the number and variety of linear and bilinear
restrictions on the equations of S is just adequate, each variable
0, enters into two restrictions (2.88) together.with 6, and 8; re-
spectively, say. The elimination of 6, from these two restrictions
leads to the same type of restriction between 6, and 6,. Continu-
ation of this process of elimination must finally lead to a restric-

tion

2 =
(2.89) "y eg + 7‘g Bg + vy 0

connecting 8, with itself, If all bilinear restrictions have been
eliminated in this process, there is unique, multiple, or incom-
plete identification, according as (2.89) has one, two, or infinite-
ly many solutions. If there are one or more other sets of bilinear
restrictions connecting other subsets of the rows of Y5, these must
be investigated in the same manner, until all bilinear restrictions
have been accounted for.

2.5. Incompleteness of the Present Discussion
of Identification Problems

2.5.1. Dummy restrictions if some a priori restrictions are
bilinear. It has already been pointed out that the present ap-
proach has not led to necessary and sufficient conditions for iden-
tifiability in the general case of linear and bilinear restrictioms,
and is not likely to do so without considerable further study. For
that reason, no study has been made of the degree of indeterminacy
of a priori unidentifiable structural equations with the help of
dummy restrictions.

9.5.2, Wald’s criterion for identifiability. In [III], by a
different approach, Wald obtains a criterion in terms of ranks of
matrices, which is both necessary and sufficient, applies to each
parameter separately rather than to all parameters of a structural
equation as a group, and permits a much more general class of a
priori restrictions. Against these advantages must be set the fact
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that the matrices whose rank must be examined generally have a much
higher order, equal to or exceeding the square of the number X of
variables in the structural equations' (2.3).

2.5.3. Other indications of possibly incomplete identification.
Both Wald's criterion, and the criteria developed in this section,
are inevitably stated in terms of the unknown values of the param-
eters. It has already been indicated that there are exceptional
point sets (of measure zero) in the parameter space, in which the
matrices involved in the critkria suffer a decrease in rank, and in
which therefore the parameters are subject to a greater degree of
indeterminacy than was already recognized by the general analysis
of the identification problem, The practical question then arises,
whether a parameter point within the exceptional set could have
produced the actual sample of observations with any degree of like-
lihood. Fortunately, there are further indications of such an oc-
currence: the maximum of the likelihood function must then be very
“flat” with respect to one or more particular permissible direc-
tions in the parameter space — permissible as regards the a priori
restrictions. In the most extreme case the maximum is completely
“flat,” i.e., it is reached along a curve, surface, etc., rather
than in a point. Such situations reveal themselves 1) through
slow convergence of the iterative computation procedure (in the ex-
treme case through more rapid convergence to a solution which de-
pends on the initial values used, section 4,3.3.41), and 2)
through very high (in the extreme case, infinite) values of the es-
timated sampling variances of parameters errcnecusly believed de-
terminate. In this way deficiencies in the analysis of identifica-
tion problems will come to light in later stages of the investiga-
tion. It will be clear, however, that the computational stage can
be handled mich more efficiently, if all indeterminacies in the pa-
rameter space have already been recognized through the study of
identification problems.

2.5.4. Identification should be based on a minimum of firmly
established assumptions. It is therefore important to make the
prior analysis of identification problems as complete and general
as possible. 1In particular, one should avoid as much as possible
employing assumptions that might not be satisfied by the data, and
which are at the same time essential to the conclusions reached

In the equations {2.3), it will be remembered, values of the same eco-
nomic variable measured with different time lags are to be considered as
different variables.
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regarding the identifiability of structural egquations. For this
reason, the present discussion of identification problems has been
made independent of the assumption of normality of the distribution
of disturbances. This is in contrast with those parts in subse-
quent sections, especially the evaluation of sampling variances of
maximum-likelihood estimates, in which the normality assumption was
already known to be relatively harmless, even if the data do not
strictly correspond to it.

For the same reason, the present authors are inclined to rely
more firmly and more extensively on restrictions invelving the co-
efficients A that have a good basis in economic considerations,
than on restrictions on the covariance matrix I of disturbances, au
least until the nature of the disturbances has been more fully ana-
lyzed by theory and observation.

2.5.5. Linearity of the structural equations. The question
should be raised whether the assumption that the structural equa-
tions are linear does not conceal from view possible further cases
of indeterminacy in the measurement of economic relations that need
not be strictly linear. To answer this question it is necessary to
formulate what is the alternative to linearity. If the alternative
is the addition of higher-degree terms in the variables to obtain
polynomial expansions, the answer is that the present analysis can
be extended to cover such cases as follows, First the present anal-
ysis is applied to the equation system obtained by omitting all non-
linear terms to find for any point in the restricted parameter
space a set I, of transformations preserving the a priori restric-
tions on the linear terms. As long as the vanishing of all nonlin-
ear terms is-not excluded a priori, the set T preserving, every-
where in the relevant part of the parameter space, any a priori re-
strictions on the nonlinear terms in addition to those on the lin-
ear terms, can only be a subset of I;. Because of the algebraic
independence of terms of different degrees under linear transforma-
tions, 7; can thus be narrowed down to T by successively applying
the restrictions, if any, on the terms of each of the higher de-
grees. This reasoning indicates that the admission of nonlinear
terms does not lead to new indeterminacies unsuspected in the lin-
éar case,

Another possible situation is that in which the a priori re-
strictions prescribe linearity for some structural equations, and
for some other equations, a type of relationship that excludes lin-
earity (e.g., hyperbolic or exponential). While the general mathe-



11-2.5.6 MEASURING EQUATION SYSTEMS 109

matical treatment of identification problems in such cases might
be more difficult, we conjecture that again the set T would in
some sense be narrower than in the corresponding case where all
equations are linear. For this reason, we believe, “mixed” pre-
scriptions of this type, as regards the form of the equations, are
more likely to conceal than to reveal cases of indeterminacy of
economic parameters, except where indubitable a priori evidence
exists as regards the validity of such prescriptions.

2.5.6. Transformations in the parameter space inwolving shifts
in time. It should be pointed out that among the assumptions on
which the present discussion of identification problems is based,
there is still at least one of the undesirable type against which
we have just put in a word of warning. That is, there is one as-
sumption that may not be too well fulfilled by the data, whereas
its removal may open up new possibilities of indeterminacy. This
is the assumption of independence between disturbances in succes-
sive time units,

The proof of Theorem 2.1.2 is based on that assumption. One
example is sufficient to show that this basic theorem does not hold
without the independence assumption. Suppose that we admit serial
correlation between disturbances relating to successive time
points, but do not think it justified to impose any particular
mathematical form on the autocorrelation function! Consider the
system of two equations

I

oo *,(t) +oopyg 2 (6= 1) + ooy, 2 (E=1) = u,(2),
(2.90)

%10 #{E) + agyq xy(t) = ut),

in which the open spaces indicate the coefficients prescribed to

be zero. Each of these equations is identifiable under the assump-
tions of Theorem 2.1.2. But under the present assumptions, the
transformation

up(t) = uy(t) + aut—1),

ug(£) = uft),

(2.91)

Hurwicz demonstrates in [XI-10.2] that certain specific assumptions re-
garding the form of the autocorrelation functions restore identifiability.
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preserves the form of the equations (2,90), and the assumed form
of the distribution of the disturbances, which now permits corre-
lation between uf(t) and u?(t-—l). The transformation (2.91) af-

fects the coefficients of the first equation according to

@ - — _
(2.92) o = %10 ogg = o T Mgy g=1 2

The first equation (2.90) has thus ceased to be identifiable,

The transformation (2.91) permits one of the structural equa-
tions to be shifted in its timing before it is linearly combined
with another equation, If such transformations are permissible,
the study of identification problems is greatly complicated even
if the a priori restrictions are linear. It is argued in [xv1]
that these problems can perhaps be studied more fruitfully if at
the same time the time varisble is made continuous rather than
discrete.

3. [ESTIMATION OF THE PARAMETERS

3.1. Properties of the Unrestricted Likelihood Function

3.1.1., Maximum-likelihood estimation using all a priori re-
strictions. We now turn to the problem of estimating the param-
eters ﬁgit’ Yeurr Ogh of the distribution function (2.8). It is

assumed that the study of identification problems has shown wheth-
er or not the various structural equations on which this distribu-
tion is built are uniquely identified by the a priori restrictions.
It is further assumed that this analysis has revealed the extent
and nature of the indeterminacy in the parameters of those equa-
tions that are not uniquely identified.

We shall now make a more restrictive assumption on the nature
of the distribution function f(u) of the disturbances, at least
for the purpose of constructing estimates of the parameters:

ASSUMPTION 3.1.1, The disturbances Uy have a joint normal

distribution function with nonsingular covariance matrix I =
- -1
[ oy 1= [of]™,
¢

{3.1) Flu) = (207 HC deth B exp—% g%lué’ o‘ghuh .
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We shall use as estimates those functions of the observations which
for this choice of f(u) constitute maximum-1likelihood estimates of
the parameters. If (3.1) is inserted in (2.8), the probability
density (2.8) in any particular sample point, i.e., for any partic-
ular set of observations y(t), 2(¢), t=1, ..., T, is a function
of the parameters B, T, I, known as the likelihood function. The
maximam-likelihood estimates here considered are those values

(3.2) B, C S

of the parameters for which, subject to all the a priori restric-
tions, the likelihoed function reaches its highest maximum., Fol-
lowing Mann and Wald, the properties of these estimatez can then be
studied both under the same normality assumption for the distribu-
tion of the disturbances, and under some less restrictive assump- .
tion.

3.1.2. Maximum-likelihood estimates under partial disregard of
a priori information. T. W. Anderson and Rubin have indicated®
other estimates based on a suggestion of M. A, Girshick., .These es-
timates are obtained by mathematically simpler, and in most cases
less laborious, computational methods. These estimates are maxi-
mun-likelihood estimates under disregard of a suitably chosen part
of the a priori information available. The simplification of com-
putational problems is obtained at a cost of increased sampling
variances of the estimates (reduced efficiency of the method of es-
timation). Further comparison with this elegant method, called the
“ceduced-form method™ will be made in section 3.2.1. In the re-
mainder of this article, the term ‘“maximum-likelihood estimates”
will be used for such estimates obtained with the aid of all a pri-
ori information available. Where a distinctive expression is need-
ed, the term “information-preserving maximum-likelihood method”
will be used for the method of estimation here applied.

3.4.3. Classification of the variables. For most of the pres-
ent section, the relevant distinction is that between “jointly de-
pendent” and “predetermined” variables, made in the introduction.
The importance of this distinctien is based on the fact that the
coefficients of the jointly dependent variables enter the Jacobian
(2.2) of the transformation (2.1), whereas those of the predeter-
mined variables do not. In the equations defining the maximum-
likelihood estimates, and in the formulae for their estimated as-

1[1949] and unpublished manuscript. See also [IXJ.
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ymptotic sampling variances and covariances, the position of the
jointly dependent variables has similarities with that of the one
dependent variable in the single-equation least-squares method.

Cn the contrary, in these equations and formulae the predeter-
mined variables occur without any distinction as te whether they
are exogenous variables, or lagged values of endogenous variables,
The latter distinction is relevant in the present context only in
one instance: in the proof of consistency of the maximum-likelihood
estimates. That the distinction is irrelevant elsewhere, is, of
course, connected with the fact that the present study is confined
to large-sample approximations.

3.4.4. Notation. We shall therefore continue to use the nota-
tion introduced in section 2.1.2. We restate the partitioning of
coefficients and variables

(3.3 A=[B T], x={y =1,
and the equation system {1.1) in this notation,
(3.4) Ax'(t) = By'(t) + rz'(t) = «'(¢),
where x'(t) is the transpose of x, and

(3.5) u(t) = [ ul(t) ua(t) 1, G = [(y,
‘We shall more fully use the symmetric notation Ky =G, K,, and
K, = ]{y t £, for the number of jointly dependent, of predetermined,

and of all variables respectively.

If (3.1) is substituted in the likelihood function (2.8) and
logarithms are taken, we obtain in the new notation!

[

-;’;logF =L=La)=- 3K log 2t + logdet B

B2

(3.6)

—

— <= log det & — -%tr E'lAHmA’.

]

Here Hﬂ( is the observed symmetric ‘‘moment” matrix

lee X, the trace of a square matrix X, denctes the sum of all diagonal ele-
ments of X.
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I

(3.7 ¥ :—%[Exk(t) (t)]:% x(t) x(t),

of all variables xk(t,), and partitions according to

X M
_ ¥y ¥z
(3.8) K=, :
zYy 22

3.1.5. Positive definiteness of ¥, . In what follows we shall
assume that the sample obtained is one of those, occurring with
probability ome, for which ¥, is nonsingular and therefore posi-
tive definite. (A symmetric matrix H, . is called positive definite
if a¥ _a’ >0 for every nonvanishing vector (one-row matrix) a.
A nonsingular moment matrix is positive definite because a ¥ a' =

1
7 za x(t) x(t) a’ is a sum of squares of the vector products
t

ax(t), t=1, ..., T, while a ¥, .a’'=0 for some nonvanishing
a would entail the singularity of #_..) It follows that Myy and
¥, . have ranks equal to their respective orders Ky and K, .

3.1.6, The reduced form of the structural equations and its
parameters. We shall first study the maximum properties of L with-
out imposing any a priori conditions on the parameters 4, I. From
Theorem 2,1.3.5, we know that any maximum properties of the likeli-
hood function should be preserved by a transformation of the type
(2.18), which we rewrite in the new notation

(3.9) INERSY 2=y oy,

A unigue representation of each set of mutually equivalent
points (see Definition 2.1.3.6) in the unrestricted parameter space

is obtained by writing Y= B! in (3.9), which makes
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(3.10) B® =1,

if I denotes the unit matrix of order Ky' The fact that each

equivalent point set contains one and only one point satisfying
{3.10) corresponds to the féct that each system (3.4) can be writ-
ten in one and only one way in what has been called the reduced
form [Mann and Wald, p. 201, equation: (85)] :

£
.t'—‘»z M., 2 (z) + v.(t), i=1 ..., £,
y(t) ey ik %1, £1) y

(3,11) or
yi(t) — wa(t) = (¢),

in which each equation contains only one of the independent vari-
ables, yk(t)' k=1, ..., Ky, with unity as coefficient. Here

we have written —II for the value of A® in (3.9) corresponding to
(3.10), and we shall write @ for the corresponding value of 1%

wkz = evk(t)'vl(t)r h, L= 1; LN E;:

Q= Svj’,(t)-vy(t) .

{3.12}) or

It follows that Q, and therefore also Q7, are symmetric and posi-
tive definite, since B is nonsingular. In this notation, {3.9)
becomes

{(3.13) [I -m] =384, ol =g’y B,
Since

(3.14) log det B — %log det I = %log det(B’ T B),
the function L in (3.6) can now be written as

L=L{-1, Q) = “%G log 2 + %log det Q7!
(3.15)

1 4 _
-z (@, - X, 0"~ 0 + 1N, 1))
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Because of the uniqueness of the reduced form, there is no trana-
formation in the (II, Q) space, other than the identical transforma-
tion, which preserves the form of (3.15).

3.1.7. Rules for the differentiation of functions of matrices.
Before proceding to maximize (3.15) it will be useful to state a
few rules regarding the differentiation of a matrix X(g) =
[xmn(E_.)] with respect to a scalar parameter E. If X is square or
rectangular, and if ¥ 1s a constant matrix with the same number of
rows and columns respectively, we have, because of the linearity
of the trace cperation,

d "o dX
(3.16) ag tri XY ) = tr(d—g Y’) N

If X is square, let X™"denote the cofactor of x,,, such that the

typical element of the inverse X1 of X is x™= X"/ det ),
Then we have

dx
a_ det X 2 xnn__on

317 L log det X = 2 L. ISy

] dg 8 det X det X dg *

d =1
An expression for rre is derived as follows:
X dy™ ax™ ) g

. =7, = rlt+xy = =, = =7 =X

(3.18) x~=1 de i 0 de X 3z X

Therefore, if Y is also square, of the same order, and constant,

(3.19) ¢ er(L1Y) =~ ¢r (X“l o X1 Y’).
dg dg

3.1.8. Maximizing the likelihood function with respect to II.
The study of the maximum properties of L{-1I, Q) is facilitated by
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maximizing L in two successive steps as follows: First we consider
§2 as a given matrix, and determine the value P of II at which the
quadratic form L(-T, @) in the elements of O has a maximum (for
variations of 0 only).

Writing

(3.20) N=FP+e g
in (3.15}, we have

-1, o) 1 ) .
—— T =, — 4 - 4 !

” 2tr{s’a (Myzf + fﬂzy ny, P PH,, @ )}
(3.21)

_ ~1
= — er{Q (Myz - Hx‘fzz)f’}
in connection with the symmetry! of ¥ and 9. Furthermore
d’L
— = -1 '
(3.22) T tr(Q fﬂzzf)
identically in e, and in particular for &= 0.
A necessary condition for a maximum of (-1, @) in O =P is

dL
that (-——) shall vanish for all possible values of P. It is
de/e=0 >

seen from (3.2]1) that this requires

_ = = e
(3.23) Hyz' P¥_=0, or P Myz M
using the nonsingularity of #,,. There is therefore only one ex-
tremum of L, which is reached in a point 0,.= Pyz which proves
to ke independent of Q. Moreover, this extremum is actually a

maximum (and since we are dealing with a quadratic function, an

absolute maximum) because (3.22) is a negative definite quadratic
form in the elements of f For the matrices Q! and X,,, being
positive definite, can be decomposed (see [9], p. 246) according
to

g —
(3.24) el =w'y,  K_=RR,

lyse has been made of the properties tr ¥} = ¢tr Y'X = tr X! which
follows directly from the gefmition of the trace.
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where ¥ and X are real, Thereby (3.22) turns into the negative sum
of squares!

dl

(3.25) — == tr{(¥PR)(¥PR)').
de

The reader will have noticed that the elements

X
N = 1k : —
{3.26) M, = 2 ; with [ (zz)} zz :

ik lzKy+lmtlm(zz)'

Lk=E 4L, .. K,
of the ith row of the matrix P represent the coefficients of the
elementary regression of the dependent variable y,(f), 1<i < }Ty,

on the predetermined variables zlgt), k= Ky+1, . ﬁ’x
the coefficients estimated by the single-equation least-squares

method.

, 1.e.,

3.1.9. Maximizing the likelihood function with respect to f.
The second step is to insert (3.23) in the expression (3,15) for I,
which on account of the symmetry of Mzz becomes

(3.27)  LQ)y=- %Ky log2n + % log det % — —%tr(g"l-zﬂyy),

where

Z = =1
(3.28) My =My — Mo MM

is again positive definite, becnuse it is the moment matrix of the

“residuals” vf(t} = y,;(t) E']‘tt 5, ”zl(t) 1i=1, ..., I(y,

from the elementary regressions of each of the dependent variables
separately, on all predetermined variables. We shall now maximize
(3.27) with respect to the variations of R or of @', If we write

{3.29) Q=7 4+ 7, V=, V=7

_)
Use iz madé of the properties {YFN! = FY! and tr(XX!) = E(x ).
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the assumed symmetry of Z and 7 and the positive definiteness of V
will ensure positive definiteness of @™ in an n-neighborhood of
n=0 for any particular value of K' For, if mfl and w{i represent
the absolute minima of vQ} v' and vVw' = v¥ v’ respectively,
under the restriction vv' = 1, and | n1| the similarly restricted
absolute maximum of l’UK‘U’L we have wl'l > 0, m'l"l > wIl—— I—qll 'qll >0
for sufficiently small values of |n|. Using (3.16) and (3.17}, we

have from (3.27)

dL(@) 1 1 2 _1 2
(3.30) _d‘TT- = —2 tI‘(Q Z) - § tr(g- Myy) = -§ t!‘{(g - Myy)z} R
and, using (3.19),
d?L
(3.31) (—2) =— 5 (VW)
dn 1.'__'0 -3 >

From (3.30) we see that L(R) has one stationary value, which is
reached if Q equals

= &
(3.32) W= Myy'

This stationary value is a maximum because the quadratic form (3.31)
can be shown to be negative definite in the elements of _T)/', by an
argument similar to that used in the case of (3.22), and using the
symnetry of _V)'

There are various ways of proving that (3.32) indicates the ab-
solute maximum of L(R) in the space of symmetric and positive defi-
nite matrices @', Perhaps the most elementary proof is as follows:
If @71 (1) is a matrix in that space different from W', the matrix

(3.33) eleyzea() + -9k, o0=<ex<],
is easily shown to belong to the same space. The function

(3.34) L(e) = L{ a(8))
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possesses continuous first and second derivatives with respect to
g for 0< 9 < 1. These derivatives satisfy the two conditions

dl(e d*I(e
(3.35) (®) = qQ, (2)< 0 for 0<8<]1.
do Jo-g de

The first condition is satisfied because a stationary value L(Q)

is reached for Q! = @ 1(0). The second condition is satisfied

because the negative definiteness of (3.31) is not dependent on W
satisfying the maximum conditions (3.32). It follows from (3.35)
by use of Taylor’s theorem, that

- _ A -
(3:38)  L{r(l)} = L) = £(0) + 4 2( ) < L(0) = L(W1),
2 dB e=el’
where €' represents some number between 0 and 1.

3.1.10. The absolute maximum of the likelihood function, By
inverting the transformation (3.13) we can summarize the maximum
properties of the likelihood function in the following

THEOREM 3.1.10. In the absence of any a priori restrictions
the logarithmic likelihood function (3.6) has one and only one
maximum value

(3.37) Loy = ——;I(y(l + log 2m) — % log det(¥,, — M, M2 X, ),

which is an absolute meximum. This maximum is reached in each
poini

B = any nonsingular square matrix of order I(y,
(3.38) r=-BP,

T=BW¥B,

of the set of points equivalent to the point

(3.39) B=1I, T=-P=-M Ml n=W=H, K, KZ K,
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This theorem establishes the uniqueness of the maximum of the like-
lihood function in the unrestricted parameter space, in the sense
that there is one and only one set of mutually equivalent points on
which the maximum is reached.

We add an expression for the likelihood function that is de-
rived from (3.15) with the help of (3.39)
(3.40)

1 1 a1 g
L=-5Klog2n + 5 log det 0™ — Zer( (W + (P~ i, (P-1)"}),

and that brings out clearly the significance of the statistics P
and ¥ established by Theorem 3.1.10.

3.2. Properties of the Restricted Likelihood Function

3.2.1, The case in which the restricted likelihood function
can attain its absolute maximum, In the case where a priori re-
strictions are introduced, a somewhat weaker theorem can be formu-
lated as long as the a priori restrictions do not prevent the like-
lihood function from attaining its absolute maximum (3.37).

THEOREM 3.2.1. Under a priori restrictions of any kind that
permit the likelihood function to attain its absolute maximum in
some point (A, L), this maximum is attained only in all points
(4%, 2%) of the restricted parameter space that are equivalent to
the point (A, ),

This theorem follows immediately from Theorem 3.1.10 and Defi-
nition 2.1.5.1. Tt should be noted that Theorem 3.2.1 does not
preclude the existence of one or more relative maxima where the
likelihood function attains a value lower than (3.37).

The question of whether or not the a priori restrictions per-
mit the likelihood function to attain its absolute maximum is im-
portant for two reasons. In the first place this question is-con-
nected with the relations between the reduced-form method' based
essentially on single-equation least-squares procedures, and the
maximum-likelihood method preserving all a priori information, as
applied in this article. According to Theorem 3.1.10, as long as
the absolute maximum of the likelihood function can be reached,
the information-preserving maximum-likelihood method of estimation
1s mathematically equivalent to the single-equation least-squares

1See section J.1.2 and also [IXJ.
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method applied to each equation of the reduced form:{3.11), For
the respective rows of P in (3.39) are identical with the estimates
obtained for the coefficients of the corresponding equations (3.11)
by the latter method. After P and W have been determined from
(3.39), it is then possible to determine the transformation (3.38)
so as to satisfy the a priori restrictions.

The second reason is connected with the computation of maximum-
likelihood estimates, and is a consequence of the first reason. In
case L attains the value [ _ ., the procedure just described always
leads to the absolute meximum of the likelihood function. In case

L cannot attain L .., the maximum-likelihood equations are essen-
" tially nonlinear, and the only practicable methods of computation
available are iterative methods, So far we do not know with cer-
_ tainty under what conditions each of these methods converges to the
absclute maximum. One may possibly be led to a relative maximum,
depending on the initial values chosen at the start of the itera-
tive procedure, and the particular method of iteration used. As
far as our present results reach, therefore, the case where L can-
not attain the value L . 1s subject to an uncertainty which is ab-

sent when [, . can be attained.

3.9.92. Attainability of the absolute maximum under linear and
bilinear restrictions, For these reasons, to which another will
be added in section 4,3.3.4, it is important to know under which

conditions L .. can be attained, that is, under which conditions

(3.38) is compatible with the a priori restrictions. If the latter
consist of the linear restrictions (2.24) combined with the bilin-
ear restrictions (2.73), this question must be answered from an

equation system obtained by inserting {3.38) in these restrictions:

(3.411R) ple) -1 P]@; =0,
g=11 ..., K,

(3.411n) sl@[-I P u(z‘g) =1, 7

ple -1 P1u,)  pgl-T P1vQ)
(3.41ba) =0,
B, -1 P1ufk,)  pGI[-I P,

- (2}
r=1, ..., Ru .



122 KOOPMANS, RUBIN, AND LEIPNIK 11-3,2.2

_ — pl2) (2)
(3.41b0) Blg, ) ¥ p'(h ) =0, r=R2 +1, ..., RY +R&_,

where 1(2) is again the kth row of the unit matrix of order K. We
shall, for convenience, refer to these equations as follows:

(3.411h)
(3.411)
(3.411n)
(3.41)
{3.41ba)
~ (3.41b)
(3.41bo)

The metrix [~7 P ] in (3.41) is put together in amalogy to
(3.42) [-I ul=-38'[B 1]=-pB1a,

as defined in (3.13).

The equations (3.41) are similar in form to the equations
(2.74), and the present problem is therefore closely related to
the identification problem. Nevertheless, there are two impor-
tant differences in the two problems, one in the assumptions, and
one in the question to be answered. In the identification prob-
lem, it is known by assumption that the equations (2.74) have at
least one real solution Y =17, and the question to be answered
is under what conditions there is only one, or a finite number of
real solutions. In the present problem it is not known whether
there is at all a real solution B to the equations (3.41), and
the question is under what conditions there is at least one solu-
tion. To obtain an answer to the present question, the counting
of equations and variables is even less conclusive than in the
identification problem, For even in a case in which, on the basis
of counting, the number of real or complex solutions B is believed
to be finite almost everywhere in the space of P and W, we cannot
without further analysis say that the part of the sample space in
which all solutions are complex is of weasure zero.

We have so far not succeeded in finding genmeral conditions for
the existence of at least one real solution, However, the itera-
tive computation procedures for solution of the maximum-1ikelihood
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equations to be described in section 4 lead to such solutions if
they exist, provided the computation is started with suitable ini-
tial values — although again we do not know precisely which initial
values are suitable,

3.2.3. Attainability of the absolute maximum under linear re-
strictions only. It is not difficult to state exact conditions
for the attainability of the absolute maximum of L in the case
where only linear a priori restrictions of the type (2.24} are in-
troduced. This leads to the conditions (3.411h) which we wish to
be satisfied by at least one real solution B.

THEOREM 3.2.3.1. A necessary condition for the attainability
of the absolute maximum of the likelihood function under the homo-
geneous linear a priori restrictions (2.24) is that a) none of
the matrices f’@é, £€=1, .... K, has a rank exceeding K&-— 1.

A necessary and sufficient condition is that, in addition to a),
b) the consequently nonempty set of solutions B of (3.41lk) con-
tains at least one nonsingular solution (det B # 0).

THEOREM 3.2.3.2. A necessary condition for the attainability,
almost everywhere in the sample space, of the absolute maximum of
the likelihood function under the homogeneous linear a priori re-
strictions (2.24) is that none of the matrices &, g =1, ..., £,

. g y
has a rank exceeding E& - 1.

Theorem 3.2.3.1 follows directly from the conditions for the ex-
istence of a solution of a homogeneous system of linear equations.
Theorem 3.2.3.2 follows because the conditien that the rank of

}’@é shall fall below X& if the rank of @é is at least X& entails

a restriction on P satisfied only on a point set of measure zero
in the sample space,

3.2.4. Connections between attainability of the absolute max-
imun of the likelihood function and identifiability of structural
equations. It is of interest to compare Theorem 3.2.3.2 with The-
orem 2.2.2 and its corollary, The latter states that identifia-
biiity of the gth structural equation reguires the rank of &, to
be at least X, — 1. Theorem 3.2.3.2 states that attainability of
the absolute maximum requires that rank to be at most K; - 1 (for
all values of G), Thus, if independent linear restrictions on
the coefficients of the gth equation are added one by one (begin-
ning in & situation where L . is attainable), the point at which
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in general complete identification of the gth structural equation
is attained almost everywhere in the parameter space, is at the
same time the point beyond which no further restrictions referring
to the eguation can be added without preventing L .. from being
attainable almost everywhere in the sample space.’

A similar situation is found under quite general a priori re-
strictions, which we shall denote ‘

(3.43) ¢4, 2)=0, r=1, ..., R

We shall assume these restrictions to be independent’, compatible,
and to imply normalization of all structural equations. We shall
further assume that the functions ¢_ possess continuous derivatives
with. respect to the parameters A, I.

DEFINITION 3.2.4.1. By the restricted reduced parameter space
we understand the space of the parameters

(3.44) n=-8'r, a=38lzp?, det @ # 0,
subject to such restrictions,

(3.45) v, @, Q) =0,

if any, as are a consequence of (3.43).

The usefulness of this definition is based on the fact, recog-
nized above, that the parameters I, Q of the reduced form uniquely
specify the distribution of the observed variables. In other
words, there is a one-to-one correspondence between the points of
the reduced parameter space and the sets of mutually equivalent

points in the restricted parameter space {see Definitions 2.1.4
and 2.1.5.1).

DEFINITION 3.2.4.2. The spdce of the statistics X, will be

called the moment space. The space of the statistics P and ¥ de-
fined by (3.39) and (3.42) will be called the reduced moment space.
We exclude from these spaces any singuler values of M, or W, which

will be referred to as arising from “singular ” samples.

Lihe concept of independence for the purposes of this discussion is sharply
defined by Definition 3.2.5 below.
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On the basis of the foregoing definitions, the condition (3.38)
for attainment of the absolute maximum of the likelihood function
can be rewritten as

(3.46) n=Pr Q=¥

for this 1s obtained if the expressions (3.38) for A and ¥ are sub-
stituted in (3.44). We thus have:

THEOREM 3.2.4.1. A necessary and sufficient condition for the
attainability of the absolute maximum of the likelihood function
for a given nonsingular sample of observations, is that, to the
point P, W in the reduced moment space, there corresponds, by
(3.46), a point II, Q that belongs to the restricted reduced param-
eter space, i.e., satisfies the restrictions (3.45).

This theorem shows that the attainability of the absolute max-
imum of L under given restrictions depends only on the statistics
P, ¥, not on the statistics M., on which, as shown in (3.40), the
likelihood function also depends. Moreover, the attainability of

L oy does not even depend on P and ¥ if the set of restrictions

(3.45) is empty.

We can now state an important theorem, which indicates the con-
nection between identifiability of structural equations and attain-
ability of the absolute maximum of the likelihood function, alluded
to at the beginning of the present section J3.2.4.

THEOREM 3.2.4.2. Let N, be a region of positive measure in the

reduced moment space, in each point of which the likelihood function
can attain its absolute maximum under the restrictions (3.43). Let
Nﬂ be the corresponding region, according to (3.46), in the reduced

paremeter space. Assume that in every point of N’q the structural

equations belonging to a nonempty set S are completely identifiable.
Then, the addition to (3.43) of one further restriction, which is
independent in ”11 (in the sense of Definition 3.2.5 below) of the

original restrictions (3.43), and which refers to equations of S
only, will prevent the likelihood function from attaining its abso-
lute maximum almost everywhere in N,q.

*3.2.5. Proof of Theorem 3.2.4.2. Denote by 6=[8; 6;]
a vector {one-row matrix) containing, under the notation 61 =1,

«es; P, all elements of A and ®. Let g contain, under the notation
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O, p=1, ..., Py, all elements of those rows of A corresponding

to structural equations belonging to the set S and those elements
of T referring to two equations of S. Let 6 with elements 6y

p=P; +1, ..., P, contain all remaining parameters. Let the

vector 7 = n{(8) contain all P® elements of T and R, and £ those
of P and W,

The assumptions with regard to X, and N"l respectively, stated
in the theorem, imply, owing to Theorem 3.2,4.1, that in every
point 7 of ¥, the equation system (3.43), (3.44) admits at least
one solution 8, and further that among those solutions, there is
only a finite number of different values of 85. It follews from

theorems regarding implicit functions, that (3.43) and (3.44) de-
fine 65 as an implicit (multivalued) function of 7, of which the
derivatives are found from

B,-88L + B_o80',= 0

S b -3 V=8 4
(3.47)

Hs'aeé + H‘S.SGLS - B'ﬂl,

by elimination of 88 . Here

- - F' =
94 Ao 09y o9
CEN aePS ae%ﬂ dey
(3.48) gg = . , &= ' .
Berp O%p B4p g
o, T o 186, 8@
L 1 }I’S, | I }:S;bl P ]

and Hy, H.; are defined similarly with respect to the elements of
n = n{e).

The fact that (3.47) possesses at least one solution
[ 8o, B0 } for any 57 requires that

(3.49) p 5 = p( 3, I ) + e H Hy ).
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For the only alternative to (3.49) is that the right-hand member
exceeds the left-hand member, in which case there would, according
to Lemma 3.2.2, exist two nonvanishing vectors g, 71 such that

(3.50) [

-al
31

| -
i
@

But then we could conclude from the existence of a solution of

{3.47) that
(3.51) 0"+ f{6y = [én =0,

and values of 8% not satisfying (3.51) would not permit a solution
of (3.47), contrary to the assumption made.
On the other hand, it is known that, after elimination of 86,

(3.47) has only a finite number of solutions 88g, which in view of

the linearity of the system (3.47) can only be one. The uniqueness
of this solution is essentially a property of the humogeneous sys-
tem of equations obtained from (3.47) by writing & = 0. From the
uniqueness of 58, it follows that

(3.52) el - = p + p

For otherwise, according to Lemma 2.3.2, two nonvanishing vectors

§S' 8.y would exist such that

(3.53) =0,

and a scalar multiple of 8= [ 53 E-S ] could be added to the
solution 88 = | 88, 86 g ] of (3.47) to produce other solutions
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for the same value of 8r, which differ in regard to 885, In addi-
tion, we have

(3.54) P =P

which is the highest rank a matrix of Py columms can attain. For,
if the left-hand member in (3.54) were less than Pg, then a nonvan-
ishing vector 6= [ 8; 0_g ] could be found, a scalar multiple
of which could be added to the solution 6= [ 80, 806, ] of
(3.47) to produce other solutions for the same value of 8v, which
differ in regard to B6.

Now suppose that an additional a priori restriction -
(3.55) 9(8,) = 0

is imposed such that Nﬁ contains at least one point 7, in which

(3.43), (3.44), and (3.55) have a solution 8. (If no such point
exists the theorem is already true.) We shall investigate what
are the conditions to be satisfied by the derivatives of ¢ and Py
in that point in order that the absolute maximum of the likelihood
function is attainable everywhere in a neighborhood of the corre-
sponding point £, = n, of the reduced moment space. For that to
be so, 1t is necessary that i1f the row

O e
.56 0_ El—  — 0
(3.5 L 0] 8o, do, %

s 0
+1 F
b S

3

is added to the matrix [ L2 ], the system (3.47) so enlarged
or

¢34se§ =0,

.8gf .8qf = !
HS 564 + H-S SG_S &',
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satisfies the properties established for the original system (3.47).
This would have the following consequences: From (3.54), applied
both to the original and to the enlarged system, it follows that

g ©s
(3.58) o = P =pl &
H, H,

From (3.52) applied to both members of (3.58) follows

P 0
&y 2.5 s
H B
g Hog
Hy Hg

since the addition of a row of zeros to the last matrix in (3.52)
does not change its rank. From (3.49) applied to both members of
(3.59)

Pg 0
(3.60) el 2, 25) =p

2y 2

, This, then, is a necessary condition for the existence of a
solution of the enlarged system (3.57) for every value of &n. It
will now be showh that if (3.60) is not satisfied, the only values
of &n permitting such a solution are those subject to a linear re-
striction of the type (3.51). If (3.60) is not true, we must have

gs O
(3.61) ol & B5) = ¢ - 1.
3, B

Suppose then that 81 is such that a solution of the enlarged
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system (3.57) exists. The validity of (3.58) and (3.59) is not
affected by the fact that 87 now represents one particular value,
instead of all possible values. For the proof of the equalities
for the enlarged system, equivalent to (3.52) and (3.54) respec-
tively, depends only on the uniqueness of the solution with regard
to 89, and this was already recognized as being a property of the

homogeneous system obtained from (3.57) by taking &n = 0.
From (3.59), (3.61), and (3.49), we conclude

¢, ¥
S Pg 0
(3.62) pl 25 b g =g + P( HS H—S) -1,
i Lo
S -
HS H-S

from which, as before, we can derive the existence of a linear re-
striction on &n of the type (3.51).
It is well known that, if (3.60) is satisfied everywhere in Nn,

then @(GS) = @([ 8y O, 1) is a function of the remaining func-
tions ¢ (), end (3.55} is either dependent on or incompatible with

(3.43). The present theorem could probably be proved on the assump-
tion that (3.60) holds in Nﬂ only on a set of measure zero. We

shall make a somewhat different assumption, which is better adapted
to this particular proof, and is sufficient for our purposes:

DEFINITION 3.2.5. The restriction (3.55) is called irdependent
in N, of the restrictions (3.43), if (3.60) is not satisfied in any

point in N_ in which (3.43), (3.44), and (3.45) permit a solution

n
8 (or 4, 3).

If this is the case, the set of points Tp in Nﬁ in which (3.43),

(3.44), and (3.55) permit a solution 6 can only be of measure zero,
because from any one such point, any neighboring points can now
only be reached by variations &n subject to a linear restriction.

A special case in which the additional restriction satisfies
Definition 3.2.5 is, of course, that in which (3.60) is not satis-
fied in any point in Nﬂ'

*3.2.6. Tabular summary of possible cases. We shall now apply
Theorem 3.2.4.2 to the case of linear and bilinear a priori restric-
tions (2.24) and (2.27). 1t may be useful to set out the various
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TABLE 3.2.6
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CONNECTION BETWEEN IDENTIFIABILITY OF STRUCTURAL EQUATIONS
AND ATTAINABILITY OF THE ABSOLUTE MAXIMUM OF THE LIKELEHOOD FUNCTION

Note:

This classification excludes point sets of measure zero in the

parameter space (col. 3) and in the sample space (col. 4} and is subject to

other exceptions discussed in sections 2.4,8 - 10,

It is agsumed that the

a priori restrictions are compatible and that they are mutually independent
in the sense of Definition 3.2.5. :

Possible Cases

Statements relating to these cases

()

The completed
subset! E% of
the structural
equations

{A) is empty.

{B) is not empty
but does not con-
tain all struec-

tural equations.

(C} contains all
structural equa-

tiohs.

(2)

The a priori re-
strictions in the
associated subset?

RS of {3.41) are
1}

with respect to Sb

{1} just adequate
in number and va-
riety?

(2} more than
just adequate in
number and vari-
ety?

{1) just adequate
in number and va-
riety?

{2) more than
just adequate in
number and vari-
ety?

(3)

The following
structural egqua-
tions are com-
pletely identifi-
able:

none.

only those of SO'

only those of 5.

all structural
equations.

all structural
equations,

4)

Cen the likelihood
function attain
its absolute max-
imumn?

Only if among the
solutions B of
(3.41) there is a
real solution?
Only if among the
solutions B of
(3.41) there is a
real solution.

No.

Only if among the
solutions B of
(3.41) there is a
real solution?

No.

lgee Definition 2.4.6.2.

25ee Definition 2.4.6.1.

33ee Definition 3.2.6.

4If the a priori restrictions comsist of linear restrictions cnly, this

clause can be replaced by an unqualified “yes.”

It may be stated without
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cases as to identifiability and attainability of the absolute maxi-
mum of I in a tabular form based on the counting of restrictions,
even though the validity of this criterion is subject to exceptions
already noted. 1In connection with Thm. 3.2.4.2, it is desirable to
supplement Definition 2.1.5.5 by

DEFINITION 3.2.6. A subset R of the a priori restrictions
(2.28) will be said to be just adequate in number and variety with
respect to (the identification of) a subset S of the structural
equations if it is adequate in the sense of Definition 2.1.5.5 but
loses -that property if any of the restrictions in R are omitted.

3.2,7. A factorization of the likelihood function. A further
remark may be made about the case where the a priori restrictions
imply a simultaneous partitioning (2.82) or

Bi:1 B Zy O
{3.63) B= . 2=

0 BlII[ 0 Z"1:[]1

of the matrices B and Z. It 1s easily seen that this entails a
factorization of the likelihood function, expressed by the follow-
ing splitting-up of its logarithm (3.6) into two terms

(3.64) LA, 2) = Ly(&y, By) + LylAg By
where
1 1
LI =——-I( log 2n -+ 1log detBII -3 log det 3,
(5.65) — g (A B A,
L]I = —l]{Hlog 2n + log det Byg — :—é log det Irn

1
-5 “(Eun Ay ¥ a0).

In {XVII] this factorization property of the likelihood function

proof that the “yes” applies even if the number of linear restrictions re-
ferring to each structural equation is IS‘ - 1.
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is used to justify the concept of exogenous variables. Here it is
sufficient to remark that, if no further a priori restrictions
comect the structural equations with coefficients A; with those
having coefficients A, the estimation problems of these two sub-
systems of the system of structural equations have been effectively
separated. For the two terms in (3.64} then depend on entirely
independent sets of parameters, and the function (3.64) can only
reach its maximum if each of the two terms reaches its own maximum.
It should be noted that the expressions (3.65) for L; and Ly
are of precisely the same form as the original logarithmic likeli-
hood function (3.6). The variables indicated by the subscript I
occur as dependent variables in L while the variables correspond-

ing to the subscript I do not occur in Ly (the moments ¥ 5 are

multiplied into vanishing coefficients). The variables correspond-
ing to the subscript I occur as predetermined variables in Ly, in

which the variables corresponding to the subscript I represent the
dependent variables.

3.3. lLarge-Sample Properties of the Maximum-Likelthood Estimates

3.3.1, Assumptions. In this section 3.3 we shall discuss the
large-sample properties of the maximum-likelihood estimates of the
parameters of the system (1.1} of structural equations. Following
Mann and Wald, [1943, P 192}, we shall assume that the equation
system is stable., Beverting to the notation of section 1, we ex-
press this by the following two assumptions:

ASSUMPTION 3.3.1.1. All roots ¢ of the equation

TD "EU
D_ Tq__rc
(3.66) det [2 B{t) p* ""] = det |2 By P :l =0,
T=10 T=0
g; 1= ]-! 2 Ky;
satisfy
(3.67) lel| < 1.

ASSUMPTION 3.3.1.2. If
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(3.68) m"’kzx (v, ', T) = %‘ E z,(t - )zt - x!),
t=1

is a moment of two exogenous variebles zk(t) and zI(t), there
exists a finite limit

{3.69) lim m T, ©f, T) = = , T
o zkz!( * ) p"“’kz:(‘r ")

for every k, 1, ©, and T/,

Regarding the distribution of the disturbances we shall make
two alternative assumptions:

ASSUMPTION 3.3.1.3. The distribution function f(ul, cees uﬂ-)

. . . ¥
of the disturbances possesses finite (4 + ¢)th-order moments for
some ¢ > 0. Its first-order moments vanish and its second-order
moments form e nonsingular metrix 3.

Alternatively, we shall specify a particular distribution
admitted under Assumption 3.3.1.3.

ASSUMPTION 3.3.1.4. The disturbonces u;, ..., 4y have a

. e . y .
joint normal distribution (3.1) with mean zero and nonsingular
second~order moment matrix I.

Values y(t), t < 0, of endogenous variables, with a timing
preceding the period 1 < ¢t < T during which the dependent var-
iables are observed, are treated (together with the values of the
exogenous variables) as given constants which remain the same in
repeated samples.

3.3.2. (Quasi-maximum-likelihood estimates. Under Assumption
3.3.1.4, the distribution function of the observations 1&(1). vees
xK(T) is

y

<AH T -7
(3.70)  FQ . & Z) = (20 7 .det’B.det Beexp(- %br(ﬂ'lA M A}
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As a function of the parameters A, I, we have called (3.70) the
likelihood function, and defined maximum-likelihood estimates as
the values of the parameters that, subject to the a priori restric-
tions, maximize this function. Under the wider Assumption 3.3.1.3,
(3.70) has no necessary connection with the distribution of the
observations. Nevertheless, we can use the function (3.70) to de-
fine estimates of the parameters by the same maximizing procedure.
In these circumstances, we shall call (3.70) the quasi-likelihood
function, and call the maximizing values of its parameters quasi-
maximun-likelihood estimates, We shall also discuss some large-
sample properties of these estimates,

3.3.3. Results of Mann and Wald, A very thorough analysis of
large-sample properties of the quasi-maximum-likelihood estimates
has been given by Mann and Wald [1943]. The system considered by
these authors satisfies Assumption 3.3.1.1 and a slightly more re-
strictive version of Assumption 3,3.1.3. Their system does not
contain exogenous variables 2(f) (except a constant term in each
equation). Finally, they assume that each equation is completely
identified. Our main concern in the present section 3.3 is to in-
dicate that Mann and Wald's results can be extended to the case
where exogenous variables satisfying Assumption 3.3.1.2 are present,
and to the case where same but not all of the structural equations
are identifiable. We shall first discuss the large-sample proper-
ties of the moment matrix X ., and thereafter those of the quasi-

maximum-1likelihood estimates.

3.3.4. Asymptotic distribution of the moments. Extended to
include systems with exogenous variables, Mann and Wald’s results
regarding the moments can be stated as follows:

THEOREM 3.3.4. Under Assumptions 3.3.1.1, 3.3.1.2, and
3.3.1.3, the expected value

(3.71) €Y. _ =M

xx xx

of the moment matrix M, possesses the properties a) that

(3.72) lim M, = M,

[ EY:

exists and is finite and b) that those elements of
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(3.73) M, — M,
which are subject to sampling vaeriation have a joint asymptotically
normal distribution with a variance-covariance matriz of order T7%

The matrix ¥, comprises the square and cross moments of the
endogenous variables y; (with and without time lags), the cross
moments between the endogencus variables ¥g and the exogenhous var-
iables z, (with and without time lags), and the square and cross

moments (3.68) of the exogenous variables. Since the latter vari-
ables are treated as given functions of time (see [XVII]) not sub-
ject to a probability distribution, the elements (3.68) of ¥ _ are
likewise given functions of T, equal to the corresponding elements
of M_ .,

xx

We shall not indicate in detail the incorporation of exogenous
variables in Mann and Wald’s proof, since a socmewhat different
proof ineluding exogenous variables will be published by one of
the present authors [Rubin, 1948].

3.3.5. A property of the logarithmic gquasi-likelihood func-
tion, In the remainder of this section 3.3, we shall notationally
combine in one vector © all elements of A and I, and we shall write
M, M instead of M;x' M, Occasionally, in particular in the pres-
ent section 3,3,5, we shall distinguish notationally between the
true values & of these parameters, and the argument & of the guasi-
likelihood function (3.70). The logarithmic quasi-likelihood func-
tion (divided by T),

(3.74) L, B = —;'IOg F(¥, ©)

as written out in (3.6), is linear in the moment matrix M. Its ex-
pected value therefore equals

(3.75) .EL(M, 8) = L(M ©),

a function we shall refer to as the expected logarithmic quasi-
likelihood function. The expected moment matrix M occurring in
(3.75) depends, for any given T, only on the fixed values of the
exogenous variables zgt), on the requisite number of initial val-

ues xgt). t < 0, of all variables, and on the true values 6 of
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the parameters. We express the last-menticned dependerice by
(3.76) M = M(e).

The function (3.75) possesses the following important property:

THEOREM 3.3.5. Under Assumption 3.3.1.3, the expected loga-
rithmic likelihood function

(3.77) L{ m(e), 8}

reaches its (unrestricted) absolute maximum with respect to the
parameters © in the point

(3.78)

ol
It
@

We shall first prove this theorem under the normality Assump-
tion 3.3.1.4. In that case the function F(¥, ©) serves both as
distribution function of the observations, and as a function de-
fining ‘the maximum-likelihood estimates. Therefore, if dx stands

for a’xl{l) e dx}[ (T), and Sdx for integration over the
y
whole sample space, we have [F(¥, 6)dx = 1, and
0=_2_ fF(M e)dx = dx ) 3l°ngx
e e>)dx
go CE
(3.79)

I}

8 5 = | & €1o5x(4, 8
laé fF(”'e) logF(M.e)de_:g 5 € log F(H, e)j_éze,

1}

a ~ _nal 8 "
T [gsme) ]§=e— T[ aéL{M(e), 8} ]6=

using (3.75) in the last equality. The differentiations with re-
spect to @ and B are performed without regard to the a priori re-
strictions., On the other hand, we know from Theorem 3.3.10, that
the function (3.77)} of an unrestncted 6 is stationary only in
points where its absolute maximum is reached. It follows from
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(3.79) that that maximum is reached for 8 = 6.

The moments X entering in the definition (3.71) of the func-
tion (3.76) can be expressed, for any value of 7, as quadratic or
linear functions of the disturbances u_(t}. This is seen most
readily by repeated substitution of the right-hand member of the
reduced form (3.11) for the y,(¢) in the definition (3.7) of the
moments, taking t =T, T-1, ..., 1, successively. It follows
that the function M(8) remains the same under the more general
Assumption 3.3.1.3 regarding the distribution of the disturbances.
Consequently (3.79), and therewith Theorem 3.3.5, are also valid
under Assumption 3.3,1.3.

3.3.6. Consistency of quasi-maximum-likelihood estimates of
tdentifiable parameters. It will be clear that any statement re-
garding consistency' of guasi-maximum-likelihood estimates can
relate only to the estimation of parameters that are uniquely
identifiable in a neighborhood of the true parameter point ©.
Since maximum-likelihood estimation is invariant for functional
transformation in the parameter space, we can achieve greater
generality and flexibility by formulating our statements in terms
of identifiable functions of the parameters 0, defined as follows:

Let the a priori restrictions be denoted, as in (3.43), by

(3.80) W) = [ge) - )] =o.

The restrictions {3.80) define the restricted parameter space,
within which as before (section 2.1.5) we distinguish sets of
mutually equivalent points ©, or briefly “equivalent point sets.”

DEFINITION 3.3.6.1. A parameter { = £(8) is called uniquely
identifiable in a region "N of the restricted parameter space if

it is constant, within "V, on any set of mutually equivalent
points,

Let nle) = [Th(e) coe e nP$(6)] represent, as before,
the 7® parameters T, Q of the reduced form (3.11) of the struc-
tural equations.
1an estimate tq of a parameter Bq. derived from a sample of size 7, is
called consistent if, for any >0, lim P(lt -0 i > e) = (, where P(E)

Fam q q

denotes the probability of an event £; This relationship of % and Gq

is also denoted by plim t = © .
Toe ¢ 8



11-23.3.7 MEASURING EQUATION SYSTEMS 139

DEFINITION 3.3.6.2. The a priori restrictions (3.80) will be
called regular in the paremeter point 9 if in e neighborhood LA

of that point in the unrestricted parameter space the following
three conditions are satisfied:

(i) the functions ¢ (8) possess continuous third deriv-

atives,
(ii) 4
¢
{3.81) - 1=K,
el
(iii) g 4
n ¢ ® Y
3.82 ol — — | = R,
(3.82) p( To' de') P® +

say, is constant.
On the basis of these definitions, we shall prove:

THEOREM 3.3.6. Let r(e) = [gl(e) <. gQ(e) ] be a set
of Q parameters that

(i) are uniquely identifiable in o neighborhood "Ny of
the true parameter point © in the parameter space
as restricted by means of a priori restrictions
(3.80) regular in that point,

(11) possess continuous third derivatives in a neighbor-
hood Ny of © in the unrestricted parameter space

containing ﬂﬁe, and

(iii) in Ny satisfy

dg dep
3.83 =2 = )
(3.83) p( de’ de') 0+R

. O - ~ .
Then the quasi-maximum~likelihood estimates { of { are consistent,
and have an asymptotically normal distribution with variance-covar-
iance matrix of order T7.

*3.3.7. Three lemmgs. In order to prove this theorem, we
shall first establish the following three lemmas.

LEMMA 3.3.7. If the restrictions (3.8C) are regular in the
point 8, they imply exactly
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(3.84) R® = p- g®°®

independent restrictions

= . _ dy \ _
(3.85)  w(n) = | yy{n) ¥,0(m) ] =0, p(a,) = R®,

on the parameters m(0) of the reduced form, in a neighborhood ¥y
of the point 6.

Since the parameters of the reduced form are independent,

dn
3.86) — | = pre®,
( ) p(de,)

in any region of the parameter space {excluding, of course, the
points with det B= 0). It follows from (3.81), (3.82), (3.84),
and (3.86) that

(3.87) 0 < R®® < p, so 0 < B® < R.

1f R®>0 and hence R*®< R, it follows from (3.81), (3.82},
and (3.86) that there exists a vector function of R elements

yln, @) = [\vl(n, @) oo wke(n, ¢) } such that in Ny
ka3
o' o
(3.88) tp{n(e), cp(G)} = 0, P = R®.
Oy
ae’
Moreover, these functions must be such that, in the point set H’n,qo

on which ¥ is mapped through the functions n(8) and ¢(8),

¥ — E+ L]
) - - 1= g%,
(3.89) P(B r) p(a ')
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For, if for instance p(8y / ') were less than R® there would
exist a vector function x(, ¢} containing R® elements such that

on N’ﬂ: P’
(3.90) S = q, 2 =g,
o 2"

In this case the equations

Oy
dn do an’
3,91 — e =
(3.91) de’ de’ By 0
B!

obtained from (3.88) by differentiation with respect to 6' would
possess a linear combination

By
d d on'
3.92) |1 e 4 r= =g, @ #o,
de’ do' | | ay | de’
3o

in contradiction with the regularity condition (3.8l) on the a
priori restrictions. Writing now

(3.93) y{n) = yin, 0)

(3.85) follows from (3.88) and (3.89),

We note for later use that in "Ny, as a consequence of (3.91)
and (3.93)

5.08) dq dy(n)  dp\ dp dy(n,pr  de \ _ [de
: 1 Ervinceralvl Bl ] ey aer)  Plae)’
de’ dn’ de’ de’ 3y de’ de

LEMMA 3.3.7.2. If Z and E are twe matrices with equal numbers
of rows and columns respectively, and & is a third metrix with an
equal number of rows, such that
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(3.95) pl Z~8) @)=p(2),
then
(3.96) ol Z ) =p(R 3).

Proof: It follows from (3.95) that there exists a matrix @ such
that

(3.9M) Z- % = & 1I.
Hence

(3.98) olz @)=p((B+em 3)=p(r o)

LEmMA 3.3.7.3. If 8,9, and & are three matrices with an
equal number of rows, such that

(3.99)  plz &)= p(® + p(@), o®=c@®, p@=c@,
and

(3.100) ply ) = p(3),
then _
(3.101) (8 w) = o(® + p(¥).

Proof: It follows from (3.100) that there exists a matrix P such
that

(3.102) ¥ = % P.

Now, if the left-hand member in {3.101) were smaller than the
right-hand member, there would according to Lemma 2.3.2 exist two
vectors A and p such that

(3.103) Ex + ¥pf= BV + apyu’ =90, En £ 0.

Regarding Pu’ as a new vector R’, this is in contradiction with
(3.99), since the second condition in (3.103) precludes the van-
ishing of {» B]. It is easily seen that the last two conditions
in (3.99) only facilitate the proof, and can be dispensed with if
necessary,
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*3.3.8, First part of the proof of Theorem 3.3.6. It was
noted in section 3.1.6 that the parameter vector 1(6) of the re-
duced form is constant on each equivalent point set in the unre-
stricted parameter space, and that n{(6) assumes different values
on any two different equivalent sets. Consequently, the same is
true in the restricted parameter space. It follows from Defini-
tion 3.3.6.1 that £{0) is in "Ny a one-valued function E(n) of
n{e):

(3.104) t(e) = g{n(e)} whenever  ¢(8) = 0.

Since £{©), n(8), and ¢(8) have continuous third derivatives
with respect to the elements of © in an unrestricted neighborhood
Ny of 8, £(n) must have continuous third derivatives with respect

to the elements of 7. Therefore, (3.104} implies that in a re-
stricted neighborhood "Ny of 6, viz., in the set "'Iv’e of those

points in N for which ¢(6) =0,

g dn dg de \ _ [ dp) _
Q.19 e (Ter‘ o an)  aer) ” P\aer) T F

Thus the matrices Z =df/de’, B=(dn/de’){de/dn’) and &=
dp/de’ satisfy the condition of Lemma 3.3.7.2, and, from (3.83)
and (3.96), we have

dn d
(3.106) p(,o%,?i., _j_‘;l,) = 0+R.

Since this is the maximum possible rank for a matrix of ¢ + &
colums, we also have in 7V o

dn d
(3.107) p(-gg’-gﬁ-’) =0

According to (3.81), (3.101), (3.106), end (3.107), the matri-
ces B= (dn/de'}dg/dn’'), ¥= (dn/de'){dy/dn'), end 3=
dp/de’, satisfy the conditions of Lemma 3.3.7.3. It follows,
using (3.89), (3.101), and (3.107}, that in 'rNe
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dn [dg dy dn dg dn dy. o
3.108 a1 T L O T . ) .
(3:108) P( do’ [d-n' dn'D P(de’ a doray) 2R

Since the rank of a matrix product does not exceed the rank of
either of the two factors, we must have

dg dy ®
3.109 — —_— > Q+KR
( ) p(dﬂ' dﬂ') =0

in the point set "N on which "N, is mapped by the function 1(9).
However, 0 + P® is also the number of colums of the matrix in
(3.109). Hence, in "N,

dg dy dg dy e)'
3.110 s T A R PR
(3.110) P(d‘q’ d‘n’) C( dn' d‘n’ Q+R '

and, because of the continuity of the functions involved, (3.110)
holds also in a neighborhood N”l’ of the point set "¥_, in the

space of the unrestricted parameters 7 - provided y is regarded as
that function y(n) of n only, defined by (3.93).
It follows from (3.110) that

(3.111) S®= PP-0-R® > 0.
The equality sign holds only if f represents a complete set of
identifiable parameters. However, whenever 5% > 0 we can because

of (3.110) choose a vector function x(n) = [xl('q) < )(Se(ﬁ)]

in ¥_ having S® elements, with continucus third derivatives, such
that in ¥
n

dg - @ d
a2y e =2, 2 KN = gy pes® = 0.
dn dn, dn

The matrix in (3.112) has thus been made square and nonsingular,
and there exists in H"’l an inverse function n{g&, vy, ¥), i.e., a

one-valued function with continuous third derivatives such that
identically in ¥,

(3.113) nen), y(n), x(n)} = n, g(n) = ¢.
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3.3.9. Second part of the proof of Theorem 3.3.6. We shall

summarize the results reached in the previocus section 3.3.8, At
the same time, we shall revert to the notation used in section
3.3.5, whereby the argument 8 of the likelihood function, and
functions 7= #(8), € = L(8), etc., of 8, are distinguished
from the true parameter point & and the corresponding functional
values = =7%(0), ¢ =1IZ(8), etc., by placing bars on the former
quantities.

It has been found that the P® parameters 7 of the reduced form
of the structural equation can be expressed in a neighborhood ¥
of v in the unrestricted space of the parameters 7, as one-valued
and uniquely invertible functions 7= %{({, ¥, ) possessing con-
tinuous third derivatives, of

(i) the  identifiable parameters ¢ = £(8),
(ii) the B® functions T(7) expressing the restrictions
(3.85) on 7 arising from the a priori restrictions (3.80) on 8.
(iii) S® auxiliary parameters ¥ = %(8), with S® =
Pe- Q- R® > 0.
We go on to describe maximum-likelihood estimation of the pa-
rameters {, under the restrictions (3.80) in terms of the functions

that have been introduced. We start from the likelihood function
(3.74) in the reduced form (3.15), now to be denoted

(3.114) L = L%(H, W),

a function possessing continuous derivatives of all orders. 1In
this function we substitute

(3.115) 7= A, 0, %)

— thus automatically satisfying the restrictions (3.80) — and max-
imize with respect to ¥ for any constant f. Let the maximizing
value of ¥ be denoted

(3.116) L=, 7).

This function is one-valued in a neighborhood of ¥ =M, [ =1,
because of (3.112), and of the negative definiteness of 3%L(M, %)

/ 8%’ 87 in the point § = m, to be shown below in (3.121). Fur-
thermore, it possesses continuous second-order derivatives because
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of the continuity of the third-order derivatives of H(Z, 0, X).
We insert the value (3.116) in (3.115),

(3.117) 7= 5L 0 3, g},

and write

(3.118) L = L°(w, ®(Z, o, 3, ©))] = L®®(X, )

for the function so obtained. It follows from the invariance of
any maximizing process for continuocus functional transformation of
the parameters that the value £ of maximizing L*®(¥, ) repre-
sents the maximum-likelihoed estimate of the parameter vector .
Explicitly,

(3.119) g = (o),

if 8 is that value of © maximizing the likelihood function in its
original form (3.6), subject to the restrictions (3.80),
It was shown in the proof of Theorem 3.1.10 that the matrix

2 1@ =
(3.120) SLW W
an' on
is negative definite in any point %= 7(6) such that the original
likelihood function L(¥, ©) reaches its unrestricted absolute max-
imum in 6. Theorem 3.3.5 states that L(M, 8) reaches its unre-

stricted absolute maximum in the true parameter point 8, Since
n= %(9), it follows that

(3.121) A% = (-w)

%! 07

n=n

is negative definite. We shall now prove that in consequence

(3.122) 2%® = (_____82‘5@9(”' E))
ai' ag E:[_'

is also negative definite, where £ = £(8) is the true value of
the parameter vector .
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If we insert M for ¥ in (3.117) and regard M as constant, 7 is
expressed as a function

(3.123) 7= 8E 0, 3 T) = 1@,

say, of T alone, which possesses continuous first and second deriv-
atives, the first being

(6'?1' . & B'ﬁ) g *
¥ Fr ot — SFr
g’ B ) g, em,E) 95
say. In particular, owing to Theorem 3.5.5,

(3.125) ALY = 7.

(3.124)

Differentiating (3.118) with respect to £, after substituting
M for N, we have,

L@O > = ;] -
5126 81°%m, T) _ @_(BL (v, 11))

O 4 U

Because of Theorem 3.3.5, the quantities AL% /8%’ in (3.126) vanish
for £ =C. Therefore, and because continuous second derivatives of
H(C) exist, we have, using (3.125),

{3.127) A%® = pA®w,

% g

From (3.127) we conclude that the quadratic form

where

(3.128) H

{3.129) 2 %% = AW 2 =y LBy,

say, is equal to a negative definite quadratic form, in which,
owing to (3.112), y = 2z H vanishes only if 2 vanishes. Hence K5@
is negative definite, and therefore nonsingular,

It follows from Theorem 3.3.5 and from the definition of the
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maxinum-likelihood estimate ¥ of £, that the vector function
oo = - O eey »
(3.130)- L°°K, ©) = ri o, 2)

vanishes in the point ¥=x, £ =C. Let us consider the Taylor
expansion

. @7y, T
0 = 1%%(0,2) - 1®°%M, () = —a—_—tr{(}{— M) M
9z au! Pt

(3.131) + (E_ £) %% +

from which we can solve for f;\— ¢ by postmultiplication with (A®®)-1,

3T >
(3.132) £~ g=—|:?6€-tr{(M—M)a—L~5%—’i)-H (%% +

Reference to the form (3.6) of the likelihood function L(¥,6) shows
that the coefficients of the elements ¥ — M in (3.132) do not all _
vanish., It follows that i — € is of the same order of magnitude T %
as ¥ — M. The usual analysis of the quadratic term, omitted from
(3.131}, which is to be taken in a point intermediate between the

two points (¥,Z) and (M, £), will show that this term is of order T,
because of the continuity of the second derivative of the likelihood
function (3.114) and of the functions R{(f, 0, ¥) and X, 7).
Therefore, E‘ € is linear in ¥ — M up to terms of order T™'. The-
orem 3.3.6 follows from this observation combined with Theorem 3.3.4.

3.3.10. Asymptotic sampling variances and coveriances of the
maximum-likelihood estimates 6 Mann and Wald’s analysis shows that
the expressions for the asymptotic sampling variances and covariances
of the maximum-likelihood estimates & are greatly simplified by the
normality Assumption 3.3.1.4 regarding the distribution of the dis-
turbances. We shall here deal only with that case. The following
derivation differs from that given by Mann and Wald [1943, pp. 213 -
214] only in that it applies to any set of parameters Z uniquely
identifiable in a neighborhood of {, rather than to a complete set
of identifiable parameters 8.
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Under Assumption 3.3.1.4, the function F in (3.70), now to be
denoted F(¥, 8), alse represents the probability density in the
sample space. Writing

(3.133) [z 3] =&,

we define, analogously to (5.114),

(3.134) Fd, 8) = Fo(, %)

and, somewhat differently from (3.118),

(3.135) FoLH, RE 0, 3)) = FW, @) .

with gimilar formulae in terms of L = (1/ 1) logF. Finally, we
define

~ 8 ~
(3.136) M, &) = — LN, &).
e

Then, in the point &= w= [£  x],

7 7 " log F(i, o) 8 log F(M,
e T e Tha) = 12 [Fha) 22 (,0) 8log FUH,w)

60.)’ aw
~ . "
~ T-zfa_F(_M,w) 9 log F( m} i
O’ dw
F(H,
= 72 f[_.?.._ {F(M,o)) 8 log ( b.))}
a(ﬂ’ aw
~ 8% log F(K,w)
(3.137) - Forw T8 ] i

Hi

a ~ 8 log E'(M,m)
=2 __—_ }F M ) ————— dx
Bm'f ) P)

w ~
~ 82 log F(M,w)
- T2 [ FH, e —— D ——dx
f ) o
BZE(M, w)
Ba'’ Bw

0o - 718
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8% L(M, w) _

- 771 A,
A’ dw

= ——T-l

say.
On the other hand, we have a Taylor expansion

- lMw) = LMD - 10w
3.13
( 8) :(A- )a'ZL(M,m) o
em e ow' Bw '

where the omitted term is of order T % relative to the term shown,
because of the continuity of the third derivatives of the likeli-
hood function (3.114) and of the function n(g, 0, x). The nonsin-
gularity of the matrix

82 E(M.w) _ 7

3.139) L,
( B! Bw

in a neighborhood of the point ¥ = M follows directly from that of
the matrix A® defined by (3.121) and from the continuity of the
derivatives involved. Therefore,

(3.140) S-w= - L0f,o) ™! +
and from (3.137)

(3.14) €6 - o)@-w) = - TTITALT + -,
in which the omitted term is of order T % relative to the term
shown.

Owing to Theorem 3.3.4, property a), and the continuity of
the relevant derivatives of the likelihood function,

(3.142) lim Az A

exists and is finite. Furthermore, because of property b) of the
same theorem,
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(3.143) plimL = A_.

T

It follows from (3.141), (3.142), and (3.143), that
plim TE(& - 0/ )& - w) = - A |
T

_ This is the desired result in case ¥ is empty, i.e,, in case

{ = @ represents a complete set of unrestricted perameters. If L
is not complete, we shall use subscripts £ and ¥ to indicate the

partitioning of matrices illustrated by

~ ~

Aep By

-~

ﬂzxr;’&x

(3.144) A

Our problem then is to evaluate

(3.145) plim T€E' - ¢)E- 1) = - (K1),

s> ®

in terms that permit estimation on the basis of the quantities {
only, For this purpose we shall use the identity [Hotelling, 1943-
1, p. 4‘]

(3.146) (g = (g - Ay K A0

We recall the function §(¥,Z) defined in (3.116), which we now
need only for the argument ¥ = M. Besides the possession of a
sufficient number of derivatives, the only property of this func-
tion used in the proof of Theorem 3.3.6 is that

(3.147) xOLg) = x.
At present, we must also use the property that, owing to the def-
inition of {(¥,Z),

8LM, ®)

(3.148) & ) =
3){_ )-(.=$\(.(MJ§)

0.
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We differentiate (3.148) with respect to T,

27 27 (y = a(u ¥
(3.149) O Le) - 87L0LE) HR0LE) = 0,
o%’ 8¢ KX 0L J3=00D)

substitute £ = £ using (3.147), and solve as follows:

d if(M)t..) -

. _ -1 ~
{3.150) ot = %(XA)@ ,

using the nonsingularity of.AX which follows from the negative
definiteness of A®, X
On the other hand, if we write

(3.151) Lo, @ = 14, T, B,
we have, from a comparison with (3.118),

(3.152) 1%, ©) = L{n, T, R0},
and hence, using (3.148),

BL“(M,ﬁ) . (BE(M, ﬁ;)’()

(3.153) L ) .
a§ B Jz=%04,8)

Differentiating once more with respect to [ and substituting {=1¢,
we obtain, using (3.150),

so o BIMLY _ BTIO0LT, ) | 87L0nY, %) 85 (D)
ac’ g g’ ag ag’ &% og

_ = O B
= Agr 7 Mgy Ay Ay

(3.154)

Comparison with (3.145) and (3.146) fow yields
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(3.155) plimn TE (€7 - ¢ )WE - ¢) = - (4%971,

I s

In practice, the matrix Azf must be estimated from a large

sample. According to {3.143), a consistent estimate of A®® is also

a consistent estimate of ﬁi? . According to Theorems 3.3.4 and

3.3.6 and the continuity of the relevant derivatives, the former
quantity can again be estimated consistently by substituting ¥ for
M and maximum-likelihood estimates E for £. This completes the
proof of

THEOREM 3.3.10. Uhder Assumption 3.3.1.3 (normally distributed
disturbances), the product of the number of observations T and the
matrix of sampling variances and covariences of the maximum-likeli-
hood estimates £ of o set of parameters satisfying the conditions
of Theorem 3.3.6 is consistently estimated by

2 ®®M"
(3.15%)  estTE(E —t)(E—-1) = - (3—1‘_—&—‘53
o' ot E:g

as defined further by (3.118).

In section 4,.4.13 this theorem will be used to determine sam-
pling variances and covariances of the estimates of the parameters
A in cases where the sampling variances and covariances of the es-
timates of 2 are not required.

4. COMPUTATION OF THE MAXIMUM-LIKELIHOOD ESTIMATES

4.1. Introductory Remarks

4,1.1, Nature of the computation problem. Apart from special
cases, the equations to be satisfied by the maxinum-likelihood es-
timates of the parameters A, T are essentially nonlinear and of a
type that does not lend itself easily to direct solution. We shall
therefore study iterative methods in which a sequence of successive
approximations to the solution is obtained in such a way that the
essential step in the determination of each approximation consti-
tutes a linear problem.

The present discussion is exploratory. In section 4,5 we men-
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tion several important problems that are left unsolved.

The authors wish to acknowledge very valuable help received
from J. von Neumann with respect to the present problem, in the
form of suggestions and advice only partially acknowledged by spe-
cific reference in what follows. Much support was also found in
analogies with Hotelling’s iterative method [Hotelling, 1943] for
inverting a matrix.

4.1.2. Notation. We shall follow the rule of denoting func-
tions of the observations by italic characters, using that notation
also for the maximum-likelihood estimates, 4, S, and for successive
approximations, 4 , Sn' to these estimates, This notation will

also be used for the initial values 4;, S;, even though the latter

need not (but frequently will) be functions of the observations.
We shall continue to use 4, ¥ for the arguments of the likelihood
function in general. Occasionally we shall use ® to denote an ar-
bitrary matrix of the same nuwnber of rows and columns as A, but
which is not necessarily subject to the restrictions imposed on A,

4.1.3. Positive definiteness of H}x' As before, we shall
assume throughout that the moment matrix ¥,__ of the observed vari-

ables is positive definite. This assumption fails to be fuifilled
only in cases occurring with probability zero, provided all linear
identities are eliminated from the structural equation beforehand,

4.1.4. A special case of a priori restrictions, Before dis-
cussing the computation problem under the most general types of a
priori restrictions that we have studied, it may be useful in a
special and simple case to indicate a heuristic principle which
has led to the computation methods discussed in what follows. In
this case we assume that there is no correlation between the dis-
turbances in different structural equations, and that normalization
is imposed by taking

(4.1) % = TI.

We shall further assume that the only restrictions on the coeffi-
cients of the structural equations are single-parameter restric-
tions prescribing that certain coefficients are zero, the number of
such restrictions on each equation being sufficient for its unique
identification everywhere in a region N of the parameter space that
contains the highest restricted maximum of the likelihood function
as an internal point. The logarithm of the latter function, from
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(3.6) and (4.1), is found to be, after division by 7,

(4.2) %‘logF = L(A) = const + log detB - letr(A ¥, A,

4.1.5. The tterative procedure now involves only the coeffi-
cients of the dependent variables. It will be noted that the co-
efficients I' of the predetermined variables occur only in the last
(quadratic) term in (4.2). Tt is therefore useful first to maxi-
mize the likelihood function with respect to the nonprescribed el-
ements of T only: the meximizing values T so obtained being func-
tions of the elements of B. The last terms in (4.2) can be writ-
ten as a sum of G terms of the type

- 5 alehh (e = — 3 (pe)H,8e) + 28(e)H, (&)
+ (@), ¥},

(4.3)

each term containing only coefficients of the corresponding struc-
tural equation indicated by g. Let the vector of = [p€ 8] be
obtained from the gth row ofg) = [g(g) v(g)}] of A by deleting
all elements that are prescribed to be zero. let NE= ¥ = ¥'f

be obtained from ¥, by deleting the corresponding rows and columns,

Then we wish to maximize
(4.4) - 5g'M§z g _ —Yg ng 18

by variation of Y€ only. It is easily seen that the maximizing
values Y€ of v£ are

og — =1
(4.5) yé€ = ~ 5‘?‘”53'(}4’52) .
When these values are inserted in (4.3), (4.2) becomes

[
(4.6) I*(B) = const + log det B - 1 Esg-zﬂjy-@’g.

2 g:l

where
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e — yE — NE .(ME )" LyE
(4.7) NS, = ME - ME-(ME)VME

The problem has now been reduced to finding the maximizing value
B of Bin (4.6). After this has been determined, the corresponding
maximizing value C of T' can be evaluated from (4.5}, The computa-
tional advantage of this procedure is that the elements of C do not
need to be recomputed with each iteration in the determination of B,
but can be found directly from the result of the last iteration de-
termining 5.

4.1.6. Revision of a single row. Let B, represent a suitable

initial value from which, through successive improvements, we at-
tempt to reach the value B maximizing (4.6). The heuristic princi-
ple referred to above consists in revising only one row of B, at a
time, as follows:

We write

(4.8) By = By 4.

and determine another matrix B ;, which equals B; ; in all elements

except those of the first row, the latter being determined so as to
maximize (4.6). This leads to the first-order condition!

(4.9) dg,greof by = by c M =0,

where cof bg , stands for a row vector containing as elements the
cofactors in Bo , of the corresponding elements of bo 1» and where
the scalar quantity do’1 equals

(4.10) dy, = det B, | = (6§ ccof’ b )7,

accordlng to the Laplace expansion of detf% ;- Since the elements of
cof b are independent of the quant1t1es bo ,1 Dow regarded as un-

knowns, we have a system (4.9) of linear eguations in the unlnowns
bﬁ 1+ do,1 and one quadratic equation (4.10).

Because of the positive definiteness of X, ,, and therefore that
of Zg;y' the unknowns bo , can be solved uniquely from (4.9) in

1Secund-order conditions will be discuassed in the general case below, see
gection 4.3.3.3.
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terms of do,l as

(4.11) by, = dycof bh - (ML)

The one remaining unknown d, 1 is found, from (4.10) and (4.11),to
satisfy

2
(4.12) (dg,1)" = {cof by ;- (¥,

Yl cof! b%’l}—l,

and can if desired be computed as the positive or negative square
root of the right-hand member of (4.12). This indeterminacy of
the sign of do,l was to be expected, since the normalization rule
(4.1) admits simultaneous changes in sign of all elements in any
row of A.

4.1.7. Successive versus simultaneous revision of rows of B,.
There are two important alternative ways in which the principle of
revision of a row of B,, just described in terms of the first row,
can be applied to all rows. In the first alternative, to be called
successive revision of the rows of B,, the next step is to find a
matrix Bo.2 which equals Bﬂ.1 in all elements except those of the

second row, the latter being determined again so as to maximize
(4.6). In this way all rows are modified successively, the result
of revision of the last row

(4.13) Bog = B,

being considered the result of the first complete iterative revi-
sion of the initial matrix B,.

The row-by-row revision just described, by which B, is obtained
from B,, is economical for relatively small orders G of B, so that
the computation of new cofactors after the revision of each row is
not too laborious. Where economical, the row-by-row revision has
a special flexibility in that one may depart from strict successive
revision to give a higher frequency of revision to slowly converg-
ing subsets of the structural equations.

For larger systems, however, economy in terms of both quantity
and standardization of work favors an alternative definition of B,
which requires simultaneous revision of all rows of By. In this

procedure, B is defined, for every g, as being obtained from By o

¢,z
by the same process described above for B, ;. Finally B, is such
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that its gth row,
(4.14) blg) = b, [e),

is equal to the gth row of B e Although one would expect slower
convergence per iteration of this procedure, the saving through

simultaneous computation of the cofactors of all elements cuts down
the work per iteration to an extent increasing with G. All proce-
dures studied in what follows require simultaneous revisions of all
rows of By. An additional reason for this choice is that general-
ization of the procedure to the case where no restrictions are im-
posed on the covariance matrix Z of the disturbances is easier and

more natural if 4, is defined by simultaneous revision of all rows
of 4.

4,1.8. Use of arbitrary scale faciors in the approximations.
A slight further saving arises if we realize that the only nonlin-
ear operation in the procedure, viz., the computation of dg from
(4.12), 'which serves only to determine common scale factors for
the elements of each row of B,, need not be carried out for any
iteration except the last one. [The term “scale factor” or “scale”
is used here as distinct from “normalization” because it applies
only to a row ag) of A, not to the corresponding row ofg) or col-
umn o{g) of Z. While normalization is a matter of choice, the
scale factor adjusting the absolute value of ag) to that of o(g)
or ¢__ is of course determined by maximizing the likelihood func-
tion. See also equation (4.112) below.)

The elements of any row of B enter linearly and homogeneously
in all relevant operations, their ratios being the relevant un-
knowns. For the determination of these ratios it is therefore
permissible to choose any suitable value for do,g' for instance,
unity. In what follows, it is found most suitable to substitute
the known quantity det™ Bo,o for the unknown quantity det™ By, g
even though the latter would give better scale factors in succes-
sive approximations. The effect of this substitution on the scale
factors of the approximations B, will be studied below. Its advan-
tage is that each iteration is thereby completely reduced to a lin-
ear process, which can now be written

(4.15) b§-HE, = u(e)-BiThaE
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Here 3¢ is a matrix of which each element is either 0 or 1, such
that a(g)of' is a vector containing enly those elements of o which

are not prescribed to be zero, and iu(g) is the gth row of the iden-
tity matrix of appropriate order.

4,1.9. Saving through factorization of the likelihood function,
In what follows we consider quite general homogeneous linear re-
strictions on the elements of 4, each restriction involving ele-
ments of one row ofg) only. Before specializing the restrictions
on I, we again draw attention to the possibility that the restric-
tions on A and T taken together imply a factorization of the like-
lihood functions as a result of the partitioning (3.63) of these
matrices. In this case it is permissible to treat the two corre-
sponding subsystems of the structural equations separately, and a
considerable saving in computation work results.

The two factors of the likelihood function indicated by (3.65)
and connected with the two subsystems are of the same general form
as the likelihood function for the total system of structural equa-
tions. For this reason no loss of generality is involved if we as-
sume that the equation systems considered in the remainder of this
section cannot be further reduced to subsystems in this manner.

4,1,10. Two cases regarding the a priori restrictions on I,
In two subsections we shall consider successively the case (4.3)
where the disturbances are uncorrelated, and hence % is diagonal,
and the case (4.4) where no restrictions at all are imposed on I.
The latter case has simpler mathematical properties, although some
of the formulae contain more terms and for that and other reasons
the computations are mare laborious. The former case, which was
treated in the second place in the discussion of identification
problems, is now taken up first. This is done mainly because the
application of the heuristic principle indicated above is more
straightforward in the case where I is restricted to be diagonal,
while the experience so gained will be helpful in extending the
methods to the case of an unrestricted I.

4.1.11. Dummy restrictions to insure identifiability. We
shall assume throughout that each equation of the system is unique-
ly identifiable within a region ¥ of the parameter space of which
the highest restricted maximum of the likelihood function is an
internal point. If this conditien is not met initially, it must
be met by adding dummy restrictions on the parameters as described
in section 2,3, It was proved there that this can always be
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done without further restricting the distribution function of the
variables, in the case where I is unrestricted. No such proof was
given for the case where I is required to be diagonal, because
conditions of identifiability in that case were not fully analyzed.
It may nevertheless be possible to apply the present computation
methods in individual cases, either because identifiability can
already be established without using the diagonality of I, or be-
cause a moderate size of the system permits the analysis of identi-
fication by ad hoc methods.

Before proceeding to the two specializations of the restrictions
on 3 here considered, we shall in section 4.2 introduce a new for-
malism for the treatment of the restrictions on A which will facil-
itate the discussion of computaticn problems.

4.2, A Complete Set of Unrestricted Parameters

4.2.1. The basic matrices @€, In previous sections, linear
homogeneous & priori restrictions on the rows of A were used in the
explicit form (2.24), which we rewrite!

(4.16) a(g)@é =0, p(@g) =r(¢g)=Rg, g=1, ..., G.

It will now be preferable to give implicit effect to the a priori
restrictions on A by expressing all elements of A as linear func-
tions of a basic set of unrestricted parameters. The most conven-
ient choice of basic parameters is made separately for each row
a(g) of A, by the use of an orthogonal complement &€ of %, The

matrix ®f is defined, except for premultiplication by a nonsingular
square matrix, through ’

£ o = £) = £y = = —_
(4.17) 3¢ ) = 0, p(28) = r(26) = Q, = K, - R,.
We shall call the &, g=1, ..., G, the restriction matrices,

and the 8¢ the basic matrices. 1t follows from (4.16) and (4.17)
that

(4.18) 3(g)

M
"

x(e) wig).

lp(X) indicates the rank, r(X} and ¢(X) the number of rows and columns,
respectively, of a matrix X.
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where X(g) has K5 and ¥(g} has Ké colums, is square and nonsingu-
lar and that the transformation

(4.19) o(g) = o(*g) o(g) = o o + 0, 8,

establishes a one-to-one correspondence between the space of the
vector 8(g) and that of the vector

(4.20) o(xg) = [of eg]

of an equal number X of elements. - If a vector alg) satisfying

the restriction (4.16) is substituted for 6(g) in (4.19), we find
through postmultiplication with @é, using (4,17}, that

I =
(4.21) o @g @g 0

and hence, from the rank condition in (4.16), that &, = 0. Thus
ofg) is expressible as

(4.22) alg) = of 08,

Conversely, any vector so expressible satisfies the restrictions
(4.16). The components of the G vectors

(4.23) of, g=1, ..., G

represent an unrestricted set of parameters! except for such rules
of normalization as it may be convenient to impose in certain cases.
The freedom of premultiplication by a nonsingular matrix in
choosing each &€ should be used to make its form as simple as pos-
sible for computational purpcses. Often the restrictions on A
arise from the elimination of variables connected by identities to
the variables retained in the system. Such elimination leads di-
rectly to the matrices 3¢, without need for prior evaluation of the

matrices Qg'

lThe notation af employed in section 4.1 represents a special case of the

present notation. If matrices o€ were constructed for that_special case,
they would contain elements 1 and 0 only, with at most one 1 to each row
or colum. An example is contained in formula (4.128) below.
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For certain purposes, especially in presenting theory, it is
convenient to choose the rows of &f orthogonal to each other, so
that, after suitable normalization,

(4.24) 38 3 = T,

Froem a computational point of view, such orthogonalization is often
not necessary, and if carried out may increase the computational
labor,

4,2.2,  Normalization. If, as in subsection 4.3, we assume
that ¥ 1s diagonal, it is convenient for most purposes to normalize
by equating the diagonal elements g of % to unity,

(4.25) T = T,

For some purposes, however, it may be convenient not to restrict
the Tyg but to normalize on one element of each of, by

(4.26) efui(1) = 1, =1, ..., G,

say, if as before 1(1) indicates a vector of the appropriate order,
of which the first element is 1 and all other elements are 0.
These purposes include the calculation of sampling variances and
covariances of the estimates af of the «f, The normalization
(4.26) will at any rate be applied in subsection 4,4 where I is
unrestricted.

4,2.3. The matrix A treated as a vector. A set of parameters
ng; g=1 ..., 55 =6), k=1, ..., K., can be considered
either as a matrix

6(1)

(4.27) @ :
o(K,,)

of K& rows and K colums, or as a vector © defined by

(4.28) 0= vec® = [0(1) o{(2) -+ - - G(K&) 1.
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For certain operations, notably forming the determinant and the in-
verse of B, the matrix representation is convenient. Other opera-
tions, in particular those connected with the a priori restrictions,
are simpler in the vector representation {4.28), because the re-
strictions are different for different rows of A. Finally, if we
define ¥ byl

xx 0
M, o ... 0
(4.29) ¥ = - I[G]®Hrf'

and, if H, w are connected in a manner analogous to (4.28), the re-
lations

(4,30) tr ®H =067, vec(®@¥ _)=06K treM o =eNo,

connect expressions of a simple type in both representations. The

formal framework of the following analysis of computatiocn problems

will be an alternating use of the matrix and vector representations
of the parameter space, taking advantage of the special properties

of each.

4.2.4, Projection of a matrix on the restricted parameter
space., We define the matrix

0 .. 0
0 3 .
o 0 0 .. af
(4.31) a(e) = = ,
o g O ) 0
* 0
0 e
0 0 ... @
| G

IThe symbol ® denotes the “direct product” or “Kronecker product”
of twa matrices; see |MacDuffee, p., 81].
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which, owing to (4.16) and (4.17), is nonsingular and satisfies
(4.32) 8 3 = 0,
8" is called the basic matrix, @, the restriction matrix. The

transformation (4.19) for the individual vectors 0(g), g =1, ...,
G, can now be summarized in

(4.33) 8 = o) &(+) = o* 3" + 0,3,
where

o* = [el et - - QG],
(4.34) o(*) - [6* 8,1,

o, = [8, 6 - g].

In particular, if o = vec 4 arises from a matrix A satisfying the
a priori restrictions {4.16), which in the new notaticn take the
form

(4.35) adf =0,

we must have

(4.36) o = [al o - o], a, = 0.

Thus, under the normalization rule (4.25), the elements of the
vector &' constitute a complete set of unrestricted parameters
through which the original restricted parameters are expressed by

(4.37) a = o 8,

Under the normalization (4.26), the complete set of unrestricted
parameters consists of those elements of a* not prescribed by
{4.26), plus the other diagonal elements Oggr OF all elements Cyps
h > g, of the symmetric matrix 2, according to the case considered.
Through (4.33) the arbitrary vector © is expressed uniquely
as the sum of two vectors, the first 8" & lying within the re-
stricted parameter space, the second orthogonal to that space.
This decomposition plays an essential role in what follows., Since
it will also be applied to cases where ® is given as a matrix
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product, it is convenient to introduce, in addition to the nota-
tions used in (4.33), the operator notations

(4.38) B(*) = vecx®, 8" = vec’®, 9

vee, ®
In these terms (4.33) runs
(4.39) 8 = vec ® = (vec* @) &* + (vec*@)) 3, ,

from which we can solve for vec* @ through postmultiplication by
8 (3" 3")"! using (4.32), thus obtaining

(4.40) vec*® = (vec @) &'*(g* @'*)—1 .
Conversely, we define

{4.41) @ = mat B = mat*0(*} = mabtxvec:®,

and

*

(4.42) mat* 6" ‘= matx [0* 0,], matsg, = matx[0 8,].

The decompositicn (4.39) can thus be written in matrix coordinates
as

(4.43) ®= 26 + Re,
where
(4.44) 26 = mat* vec*® , Re = mats vec, @ .

The operation 2@ can be regarded as a projection of the matrix ©
on the restricted parameter space. In particular, the a priori
restrictions (4.35) on the matrix A are equivalent to

(4.45) A=2A, or Ra=0,

We shall operate mostly in the vector space of 8%, but occasionally
return to the restricted matrix space of 2@ through the transforma-
tion mat *,

If the matrix H satisfies the restrictions m, = 0, we have the
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important property that
(4.46) tr @0 = on' = (6" 3" + 6,8,) 't = 0" 2* & "

because of (4.32) does not depend on 9,. In particular we have:

LEMMA 4.2.4. A necessary and sufficient condition that
tr @ H' = 0 for all values of H satisfying the a priori restric-
tions 1M, = vec, H=0 1is that 0" = vec® ® = 0.

The proof follows from (4.46) and the nonsingularity of 3* &'"
due to the rank condition in (4,17},

4.3. The Case of Uncorrelated Disturbances

4,3.1. The nature of the problem.

4.3.1.1. The maximum-likelihood equations. In the present.
subsection, the matrix I of variances and covariances of the dis-
turbances is assumed to be diagonal. Unless otherwise stated,

normalization will be based throughout on (4.25) where I is equated
to the unit matrix.

We shall now write down the first-order conditions for a maxi-
mum of the logarithmic likelihood function (4.2} which we rewrite:

(4.47) L{A) = const t+ log det B — —%tr(A K. 4.

Let 4; be a trial value of A satisfying the restrictions o, = 0,
and write (84, here denoting a finite change in 4,)

(4.48) A=A+ 84,, vec, 84, = 0,

which insures that A again satisfies the restrictions. The Taylor
expansion of L{A) in the neighborhood of SAo = 0 then contains

the following constant and linear terms, derived with the use of
(3.16) and (3.17),

L(a) = L(4y) + ox(B) (8B))) — tr{dy K_ (84,)} + ---

(4.49)

ll

L(AO) + tr{ (B‘;-l I{Ky Kz] - AO Hﬁ’r)(aAO)'} -
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{Here I[ij;] is a submatrix, of K& rows and K, colums, of the

unit matrix of order X , as follows: Itf}ﬂ;] = [Itxy] 0], the
first matrix in the right-hand member being the unit matrix of
order K&). According to Lemma 4.2.4, the necessary first-order

condition for 4; to coincide with a restricted maximum A4 of the
likelihood function is therefore

1

P —— _ -
(4.50) { (4.59q) vec® (B I@}X;] A M;x) 0,

(4.50r) a, = vec, 4 = 0.

1l

These are the maximum-likelihood equations that are to be
solved by an iterative process. If desired, the operators vec™
and vec, can be replaced by 2 and R, thus reverting to a matrix
form.

It will be noted that the number of conditions equals the num-
ber of unknowns. If identification is incomplete, the equations
become interdependent.

4.3.1.2. Solutions without restrictions on 4. Further light
is thrown on the mathematical nature of this problem if we first
consider the case where no restrictions at all are imposed on the
matrix 4. Then a, has no elements and the symbol vec™ can be
omitted in (4.50g), so that

(4.51y) Bl - A¥.. =0,
(4.51) { ¥

{4.51z) A sz = (.

Of these equations (4.512) is solved by expressing 4 linearly in
terms of an orthogonal complement of ¥ =¥, as follows:

yz ;é] '

— _ 1
(4.52) 4 = B[I[Xy] M H

with B an arbitrary nonsingular matrix of order K&i Substituting
this result in (4.51) we obtain as the condition on B

(4.53) B~ BN, - M HILK,) =0,

yz “zz T2y
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or

- -l -
(4.54) B'B = My, ~ H, M H )7,

which is solved, but for an arbitrary orthogonal matrix 0, by

— -1 -%
(4.55) B = O, -, N2K )*

¥z Czz Tzy

provided the inverse square root is taken to be symmetric. The

right-hand member in (4.54) can also be denoted by (¥;),.. The
solutions (4.52) and (4.55) can also be obtained from the condi-
tions (3.58) for the absolute maximum of the likelihood function
by choosing a value B of B which will make 3 equal to the unit
matrix as at present required.

It thus appears that in the absence of all restrictions on A,
our problem is of the nature indicated by (4.54), leaving an arbi-
trary orthogonal matrix 0 in the solution. If identifying restric-
tions are now added gradually, more and more restrictions are im-
posed on 0, The existence of a solution A of (4.51) within the
restrictions is the necessary and sufficient condition for the
likelihood function to be able to attain its absolute meximum.
Since we assume here that the total set of restrictions (a priori
and dummy combined) identifies each structural equation, there is
Just one special case in which a solution of (4.51) is still pos-
sible. This is the case in which the total set of restrictions is
Jjust adequate in number and variety, in accordance with Definition
3.6, to identify all structural equations. In that case a possible
computation procedure would be to find one particular solution of
(4.54) and then to determine ¢ in such a way that 4 satisfies the
restrictions. However, even in this case, computational economy
may still favor the iterative methods developed below.

As soon as the restrictions are more than adequate in number
and variety with respect to at least one structural equation, equa-
tion (4.54) cannot in general be satisfied any longer. We then
have a more general problem where (4.54) must, in some sense, be
satisfied as nearly as possible within the linear restrictions on
B arising from those on A.

4.3.2. The methods B, B, and B .

4.3.2.1. Choice of the linear path toward the next approxima-
tion, Suppose now that in 4; a restricted stationary value of the
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likelihood function is not reached, but in point 4 in the neighbor-
hood of 4; a restricted maximum is reached. If we write as the next
approximation

(4.56) A, = A + hodg,

the matrix A4, indicates the direction on the linear path on which
the next approximation is sought and the scalar £ determines the
distance traveled along that path. In sections 4.3.2 to 4.3.4 in-
clusive, we shall be concerned with methods based on the following
choice of A4;:

X

(4.57*)  vec” (BAgH_ ) = vec* (B ~ 4, ¥,)

T K K *

(4.57){ - el
(4.57,) Aay, = vec A4, = 0,

We shall first show that a sufficiently small value of & will always

lead to an increase in the likelihood function, If 2A4, is substi-
tuted for 54 in (4.49), we have, on account of {4.49), (4.57), and (4.46),

t

L) - LA) = he{B Iy 1 — 4K )B4} + -
i £

h{vec™ (Bi™ Iy g~ 4 My} &78™sa + o
y x

il

(4.58)

H

h { vec” (AAOMJCX')} Q*.QF*.AEE 4 -

ke (AAQ-MW-AA{!) +

Because of the positive definiteness of X, the coefficient of 4
in this expansion is positive unless A4, vanishes identically, in
which case a restricted stationary value of the likelihood functien
would already have been reached in 4,. If & is sufficiently small
but positive, therefore, the linear term in (4.58) will exceed in
absolute value the sum of all subsequent terms, and L{4,) > L(4,).

4,3,2.2, Choices of the next approximation on the linear path
selected. The process pl . We shall postpone until section

4,3.2.5 the proof that (4.57) always admits of one and only one
solution A4y, and now discuss possible choices of h. We shall

first show that the process obtained through the choice

(4.59) ho= 1,
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now to be called the process Tal, is equivalent to the process dem-

onstrated in a special case in section 4.1. For that choice of k,
A, is defined by

{4.60*) vec® (4 M )
(4.60) { P

(4.60,) a

I

vec™ [Ba_l 0],

10 = vee, d4; = 0.

Furthermore, in the case referred to, all restrictions are of the

single-parameter type which require certain elements of A to van-

ish. In this case, a suitable choice for each @f in (4.22) is ob-

tained by deleting fram the unit matrix I[K ] all rows correspond-
4

ing to elements in o(g) that are required to vanish. We shall re-
turn (4,60) to matrix form by applying mat » to all members:

(4.612) 204, ¥_) 20p1 0],
(4.61) { Lo ¢
(4.61R) R4, = 0.

i

because in the present case the operation . consists simply in
replacing by zero all elements of the matrix on which 2 operates
corresponding to elements of A that are required to vanish by
(4.61R). In this case, therefore, if the partitioning of & cor-
responding to A = [B T] is denoted momentarily by ®= [H 7l,
the definition of 2 can be extended to submatrices of @ through

(4.62) e = [2n 2z),

and (4.6102 ) partitions into

(4.632y) 204, ¥ )
(4.63:2){ P
(4.6321) 24, ¥)

2871,

]

0.

Of these conditions, (4.6322z) is equivalent to (4.5), and (4.632y)
to (4.15). This result establishes a presumption that F, will have
satisfactory convergence properties, except perhaps with respect to
a common scale factor for each row of 4 .

4.3.2.3. The process pl/z. In & special borderline case the
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choice & = % leading to the process p}4 has superior convergence

properties. This is the case where there are no predetermined var-
iables and no restrictions on the matrix B. (This, of course, im-
plies dropping, for the present example, the previous assumption
that each equatien is completely identified.} In this case all
matrices involved are square matrices of order G, and 4 = B, M. =

M&y. The process p}é now runs
N I
(4.64) 4, = S@ATH + 4.

Simple calculations will show that this process possesses the prop-
erty

4L K Al - 1=
(4.65) 1 -
:L(Ao o Al - I)(4, HxxAé) A, ¥ __ A5 - I).

¢ “xx

Since under the present assumptions the maximum-likelihood equa-
tions {4.51) to be solved iteratively are equivalent to

(4.66) AN, 4 = 1,

(4.65) implies a high rate of convergence of P5§. once convergence
is obtained initially. The extent to which 4, fails to satisfy
(4.66), as measured by A; # A - I, is of second order com-
pared with the corresponding quantity 4, ¥, A — I in terms of
4,. It follows that the number of decimal places which is correct
in the nth iteration increases geometrically with =,

It will be clear that in cases where p}g possesses this very
desirable property, a process F% based on any other constant value
of A will produce a lower-order speed of convergence,

Of course, the solution of (4.66) is determined but for an
orthogonal transformation, and it depends on the initial value 4,
which particular solution of (4.66) is approached by successive
iterations. If the order G of the matrix 4 is reduced to one, the
indetérminacy disappears, and (4.64) is specialized to a well-known
iterative procedure,

-1
(4.67) a, = %(%—a_ + a,),
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to obtain the square root of a scalar m™!.

4,3,2.4... The process ph . Von Neumann has suggested deter-~

mining & afresh with each iteration from the requirement that the
sum of the linear and quadratic terms in the Taylor expamsion of
the likelihood function with respect to & shall have a vanishing
first derivative. Extending the expansion (4,58), with the aid of
(3.18), to

LA - LUy = b e T, A, 0 )(a4,)7)

£, £] -

132 e (Bt (aB,) BS Y (aB,)

(4.68) + 5

= (a4 H (ad)'}y + - - -,

and using, as in (4.58), the definition of AA, given by (4.57),
we find that the value,

tr AAU.MM.(AAD) !

(4.69) hy = _
tr ({B;‘l (aBy)"}° + AAO'Mxx°(AA0)’)

3

of h satsifies the criterion mentioned. This procedure, which we
denote by P, , may be expected to have an asymptotic speed of
n

convergence superior to that obtained by any constant value of .
In particular, in cases like the preceding example where one par-
ticular constant value of % leads to a higher-order speed of con-
vergence than all other constant values, the value k, according to

(4.69) may be expected to converge to that constant for n » .,

4.3.3, Asymptotic convergence properties of

B, B, B

4,3.3.1. Orthogonalizing the basic matrix #*. The foregoing
tentative discussion of various processes can be made more defi-
nite by studying their properties in the neighborhood of a re-
stricted maximum 4 of the likelihood function. For this purpose,
it is useful to assume that the basic matrix &* defined by (4.31)
is orthogonal according to (4.24). If the restriction matrix 3,
is similarly orthogonalized, we have
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(4.70) B(x) ®'(x) = I, so  BH*) = o(x).

The relationships (4.30) can then be extended in a simple way to
the 9-space. We register for future use:

tr(@B) = 0(s)n(s) .,  vecx (@K _) = o(x) H(s),

(4.71)
tr(@N @) = o(x) H(x)o'(+),
where
M** M**.
(4.72)  M(s) = 8(s) ¥ 3'(%) = H'(+) =
M** M**

In particular we have, if H satisfies the restrictions n, = 0, the
important identities

tr @H = ¢f /"
'f]* H**,
U

(4.73) vec *(H H%x)
er(d X, H')

Incidentally, it follows from the second equality in (4.73)
and the nonsingularity of ¥** that (4.57) always admits of cne and
only one solution A4, a statement previously made without proof.
This conclusion remains true even when identification is incomplete,
since the nonsingularity of " is not affected thereby.

4.2.3.2. Analysis of asymptotic convergence properties, let
successive iterations be

{4.74) 4 A4+ 4 g =vec, 4 =0, n=201, ... .

n n' Nx

We shall only consider linear and sometimes guadratic terms in
Taylor expansions with respect to 4;, 4;. In terms of 4 the iter-
ative process (4.56) runs

(4.75) A = A + h(ady),
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where Aﬁo is identical with A4, as defined by (4.57). The Taylor
expansion of (4.57%) now becomes, because of (4.50q),

(4.76}  vec® (Aﬂ-ov*{cx) = vec* (-B'""L 5} B'hlf[gygx] —4 M)+

We shall study this relation in the space of the unrestricted
vectors 3, £ vec Ao and AZj = vec AA The term shown in the
right-hand member of (4.76) is most eas:lly understood in relation
to the quadratic term in *‘Tu in the Taylor expansion of the likeli-

hood function L(Ao) based on the point 4. We now write for the
latter term

1
5 L(z)(Ao)

> te(-B' 1By BV By - A M, X))

¢ T 0
(4.17)

*

L* at*,

m

N = pal—

ag
thereby uniquely defining a symmetric matrix L*. The explicit
evaluation of [* is immaterial at this stage, and will be demon-
strated below in formulae (4.183) and (4.188) dealing with an anal-
ogous matrix L

leferentlatmg the middle member of (4.77) with respect to a,

we have on the one hand, using the first relation (4.73), a row
vector

dlL
{274
ldLm dA4

0

- ~
da, dao

da,
(4.78)
-1 - 1
* (871 B} B II[K L]~ 4, Jl! ) da;

da

= vec* .(-B'} B; g I[KerJ - 4 Mxx)'
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Comparing this with the result of differentiating the last member
of (4.77), we find that (4.76) is equivalent to

(4.79) AGY M = EE I+

in which the first member is obtained through the second relation
{4.73). Through one further transformation

n

N** = B* Rr¥, FANENN( o R AN S Tat

(4.80)

n

| -t —¥ D%
Az, = Ady R, a, a, k°,

this goes over into

(4.81) agd =ab it + -,
so that
(4.82) | gl =&+ ath +

In the absence of higher-order terms, this iterative process
has been studied for constant h by Hotelling [1933, 1936]. Its
properties depend on the characteristic values k , =1, ..., @
of the matrix

(4.83) =1+t

The choice of R* in (4.80) is determined except for postmultipli-
cation by an orthogonal matrix, and this freedom can be used to
make L and hence I! , diagonal. The diagonal elements of these
matrlces then equal the characteristic values l and k respec-
t1ve1y, which are connected by

(4.84) kq =1+ ktq.

We are free to arrange the values {4.84) in descending order of
algebraic magnitude! through suitable choice of R*. The elemen-
tary vectors

(4.85)  W@=100, -+ 041 O 0 g=1...,0

YSince we restrict ourselves to positive values of k%, the descending order
- applies simultaneocusly to lq and
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form an orthogonal set of corresponding characteristic vecters,
1.e.,

W)kt = kg v(q), W)Lt = t, g,
(4.86) 0 if ¢, # g,
['(ql) "’(‘?2) =
1 if q, = g,.
If
¢
(4.87) al = 20! V(@) o),

the iterative process (4.82) consists - to the first order of mag-
nitude — of a multiplicaticn

(4.88) al () = k,(E} v(e))

of the gth component 53 v(¢) underlying E; by the factor k_.
Apart from the effect of higher-order terms {which is smaller, the
nearer the initial value 4; is to the solution 4), convergence is
assured 1f all characterlstlc values k are smaller than unity in
absolute value.

4,.3.3.3. Identtflabtltty of structural equations and nonsin-
gularity of L'. We have assumed that in 4 a maximum of the like-
lihood function is reached under completely identifying restric-
tions. In connection with the definition (4.77) of L*, the fact
that 4 is & maximum precludes the possibility that any character-
istic value lq of L' be positive. It does not necessarily preclude
singularity of A , since a maximum might be reached in a point
where second derivatives vanish in a certain direction {e.g., the.
function — x%*in the point x = 0). However, unless all third deriv-
atives of the likelihood function vanish in 4, complete identifia-
bility of structural equations implies that L* will be negative

definite. If that is the case, all characteristic values l re
negative, and a sufficiently small value of A will insure that
| kql <1 forall ¢=1, ..., 0 and will thus insure convergence

from initial values Ao sufficiently near to 4. It is also clear
from (4.84) that too small a value of £ will make convergence quite
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slow.

4,3.3.4, Importance of the cese in which the maximum of the
likelihood function is not depressed by the restrictions. In one
important special case it is not difficult to make further state-
ments about the characteristic values of L', and therefore about
those of the matrix (4.83). This is the case, discussed in section
3.2.2, in which the a priori restrictions do not depress the likeli-
hood function (4.47) below its absolute maximum, Ft was shown
above that this will be the case if and only if (4.51) permits a
solhition within the restrictionms.

It was also noted that, since we are assuming complete identi-
fication of each structural equation, this case can occur identi-
cally in the sample space only if the restrictions are just adequate
in number and variety for complete identification. This will rarely
be so in systems of appreciable size, unless the investigator
chooses to ignore the excess of a priori information over the minimum
essential for identification. If excess information is available
and is used, the case of a nondepressed likelihood function can
still occur with probability zero in the sample space if a sample
is drawn with “exceptional” values of X, that permit a restricted

solution 4 of (4.51). Again this remark would be of little practi-
cal value, were it not that, in a large majority of sufficiently

large samples, values of ¥ are obtained that are not far removed

from a value M, that permits the likelihood functien to reach its
absolute maximum, provided the a priori information embodied in the
restrictions is actually valid in the population. For in that case,
Theorems 3.3.5 and 3.3.4 apply. In the first plece, if the expec-
tation,

(4.89) M = €M,

of the moment matrix is inserted in the likelihood function, the
absolute maximum can be reached by inserting the true values of the
parameters A, %, values which obviously tally with any valid a pri-
ori information about these parameters. Secondly, we have

{4.90) plim(ﬂ(xx - Mxx) = 0.

Thus any statement about the characteristic values of L' that is
based on the assumption that (4.51) possesses a solution under valid
restrictions is approximately true with high probability in suffi-
ciently large samples.
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4.3.3.5. Characteristic values of L* if the maximum of the
likelihood function is not depressed. It is well known that the
characteristic values lq of L' are the stationary values of the
quadratic forms in @

(4.91) L(z): E* L* E’f - tr{—(B"l E;)z - AN
under the restrictions on Ei,
(4.92) 1=atat = win_ I

Since a one-to-one correspondence has been established between the
vectors @ and the matrices 4 satisfying the a priori restrictions,
the values I are also the statlonary values of the last member of
(4.91) subject to the a priori restrictions on 4 plus the restric-
tions (4.92).

Let us now make use of the assumption that 4 satisfies (4.51)
to supplement it to a nonsingular matrix,

A B C

(4.93) i = = , where F'F =4},
D ¢ F

which is such that

(4.94) IY, H =1, or K, = g,

If we now transform 4 uniquely by

(4.95) A=A8=B4+Cp o A=ZF'=[§ (],

the linear a priori restrictions on 4 entail similar restrictions

on 4. We shall refer to the latter restrictions as the 4-restric-
tions, it being implied in the use of this expression that the a
priori restrictions on 4 permit the likelihood function to reach
its absolute meximum. Upon inserting (4.95) in (4.91) and (4.92)
and using (4.93) and (4.94), we find that the l, are the stationary
values of the quadratic form
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x

K
J'
(4.96) L2 = tr(—B'z - Z hahg Z Z gk:

GhR=1

subject to the A-restrictions and the additional restriction
Ky Kx
o .y
{4.97) tr 4 A7 = ggl §1agk =1,

where ag denotes the element of A in the gth row and kth column.

Let us first revert to the case where no a prieori restrictions
are imposed on 4 and hence nane on A. Then the values I, g =1,
, P, are those values of [ that permit a solution 4 of

4.98) 5y~ bk A) =-B Iy g - A+ DE= 0.
¥ x

24a]
The following table, whose entrigs are easily verified by substi-
tution, contains all possible solutions, since the sum of the mul-
tiplicities of the characteristic values (determined es the corre-
sponding number of linearly independent characteristic “vectors”

4) equals P = K, K,

(a) (b) {c) (&)
Value Value of Multiplicity Characteristic “vectors”
of 1 R=1+ ki - 1 satisfy
(4.99) 0 1 RE(K, - 1) B=-3, &=0
-1 1-*® Xy .4 7= 0, T arbitrary
-2 1-2n RE( + D) B=8, €=0
Since the values I = 0 and [ =—2 are the extrema of the form
(4.96) under the sole restriction (4.97), we have
(4.100) ~2 Sy, 0 if whd =1,

Consequently, if a priori restrictions are now introduced that do
not restrict the maximum of the likelihood functien, the new values
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lq and kq must satisfy

(4.01) -2<1, <0, 1-2%<pg <1, g=1, .., 0.

Any particular characteristic value in (4.98) will remain a
characteristic value under the a priori restrictions if the ensuing
A-restrictions permit the corresponding condition in (4.99), column
(d), to be satisfied. Its multiplicity then equals the number of
indep?ndent “vectors” A satisfying that condition and the restric-
tions,

4,3.3.6, Exclusion of the characteristic value | = Q0 through
complete identification. Under the present restrictions (4.25) on
%, but in the absence of any restrictions on A, the transformations

(4.102) 4% = ra

preserving the form of the likelihood function are orthogonal: -
(4.103) ry = 1.

let 4 + 4 be obtained from 4 by such a transformation. Then
(4.104) =0  E=7r1-1,

end, up to the first-order terms in 5,

(4.105) YY = C+BIT+B8) =I+B+B+--- = 1I,

so that in first approximation B =—B’ Thus the characteristic
vectors (4.99) associated with | = 0 represent only directions of
change from 4 corresponding to orthogonal transformations of A.

In the case of complete {unique or multiple) identification of all
structural equations, all such transformations leading from a point
A satisfying the restrictions to a point 4 + 4 in a sufficiently
small neighborhood of A are excluded by the restrictions on 4 + A.
In that case, therefore, the characterictic value [ = 0 is no longer
present, and

1 . . .

Except that, with probability zero in the sample space, a ‘hew” character-
istic value I = =1 may be added, with a “vector” that is a linear combina-
tion of “vectors” corresponding to I =-2 and I = 0, respectively, in

(4.99).
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(4.206) -25 8, <0, 1-2%<k <1, g¢=1 .., 0¢.

4,3.3.7. Complete identification through restrictions on A per-
mits only trivial solutions with [ = — 2. Let us now assume that
identification is now complete on the basis of the restrictions on
A alone, i.e., without recourse to (4.25). Then all points

(4.107) A+ X=(T+ B4, € =0,

permitted by the restrictions on 4 + A are such that

~

(4.108) B is diagonal.

Since one can select only K'y linearly independent diagonal matrices
of order I(y, the valve I = —2 now has its multiplicity reduced to
Ky,

(4.109) Lq:—Z, g = Q—K’y+1, e, 0

The accompanying characteristic “vectors” (4.108) correspond to the
panying P

application of arbitrary scale factors 1+ Cgg tO the rows alg) of A.

It follows that the remaining characteristic values now satisfy
(4.110) -2 < lq <0, 1—-2kh< kg <1, q=1, ..., Q—Xy,

and that the corresponding characteristic “vectors” satisfy C # 0,
P & Y

4.3.3.8. Asymptotic properties of pl‘ The foregoing analysis
suggests that, among processes ph employing a constant value of A,
191 is suitable if we. have a large sample from a distribution satis-
fying known restricticns on the matrix A that are sufficient for its
identification. For all relevant characteristic values are smaller
in absolute value than unity, and convérgence can be expected if
the initial value 4, is sufficiently close to the solution 4. The
only characteristic of 4 that does not participate in the conver-
gence is a set of scale factors for the respective rows an(g’), g =

1, ..., G. It is useful to define the scales of any approximation
A by
n
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%
(4.111) mla (el = (a,(e) K, a)(e))
because the corresponding expressions for A satisfy
1
(4.112) mia(g)} = {alg) Mxxa’(g)}A =1,

as is easily proved by proportional variations of all elements of
a{g) in the likelihood function (4.47). Now if m{a, (¢)} is suffi-
ciently different from unity, successive approximations of Fi will,
under the present assumptions, exhibit scales m{an(g)} differing
from unity by am amount asymptotically constant in absclute value
but alternating in signs since the corresponding characteristic
value satisfies 2= 1+ 1 =~1. If desired for aesthetic or prac-
tical reasons, this oscillation of scales can be reduced by occa-
sional modification of the scales so as to make m{an(g)} =1, or
by occasional application of pyéinstead of Fi, whereby the char-
acteristic values concerned become 1 + %[ = 0.

It has already been shown in sectien 4,1,8 that the alternmating
behavior of scales does not affect the speed of convergence of the
ratios between the elements of any row a,(g). The asymptotic value

of that speed is determined by the largest of the quantities qu |,
g=1, ..., @- K&. If knowledge of these values were available
beforehand, it would be possible to choose anothér constant value
of & that minimizes the largest of the |kq l,g=1, ..., 0~ E&.
In the absence of such knowledge, the following considerations
favor the use of P, in the circumstances at present assumed:

(a) The cost of computation per iteration for P, is
below that for any other constant value of 4, and considerably
below that for the process ph with the variable value (4.69) of & .

n

(b} The interval to which I_ is confined according to
(4.110) is such that values of 4 larger than unity may lead to di-
vergent processes. Of the admissible values 0.< 2 <1, only the
value # = 1 leads to an interval (4.110) for kq of which 0 is the
midpoint.
The second consideration is based on complete ignorance of the
range of relevant values [ inside the interval (~2, 0}, and may

lose its weight if more experience about these values is accumu-
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lated from economic data, or if the interplay of the restrictions
with the conditions in the last column of (4.99) is analyzed theo-
retically more completely than is done here. In any case, the

risk that some values ], might be close to —2 presents an additiomal
reason for 1ntersper51ng the iterations of F% with an occa31ona1
application of P%, which cuts down those components a@'-17(g) of 4

corresponding to characteristic values lq nearest to —2.

4,3.3.9. Case where identification depends on the diagonality
restriction on B. If the restrictions on A alone are insufficient
for identification of all structural equations, there exist nondi-
agonal matrices B such that 4 + T in (4.107) again satisfies the
restrictions. The possibility exists that among those matrices B

at least one symmetric matrix can be found. In that case, at least
one of the characteristic values L, g=1, ..., @~ K , not asso-

ciated with trivial scale factors, equals —~2 and if P is applied
iteratively, the corresponding component aB v(g) in the initial

value is not reduced to zero in successive iterations. It may be
possible, by criteria similar to those developed in section 2, to
determine whether or not the restrictions on A permit at least one
of the nondiagonal matrices B in (4.107) to be symmetric! Alter-
natively, one may apply ph with 2 constant value of & < 1, say

k = 3/4, or one may insert P% at regular intervals. Cne initial
application of Pl/ would 1ndeed cut out, up to the first order of
magnitude, those components a v(g) of A that cannot be reduced by
P, but the presence of higher order terms in {4.88) may reintro-

duce those components to some extent, thus requiring that F‘J% now
be inserted with regularity.

4.3.3.10. Asymptotic properties of P, . Alternatively,

whether nontrivial characteristic values 1'= -2 are present or not,
one may pay the higher cost per iteration of the process Tah al-
ready described in order to obtain at each stage a value £ nof h
that is already optimal (in a first-order sense) in relat1on to
the relative sizes of the various components a (g) present in A
By transformation of A4, in (4.69) to the space of Aag we obtam

Such an inquiry might also throw further light on questions left unan-
swered in section 2.4,
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ag}-aat al @')? &t
ho:_—"‘_?—__:”_f I
Aao L'-aa} g, (L')° &}

4,113
( ) al v(q))?

12 (@) g

g
pIL
g
=

It is easily seen that the lowest-order term shown in the last mem-
ber of (4.113) represents that value of h, which minimizes the low-
est-order term shown in the last member of

@
at a/t = X ta! w))?

f

(4.114)

4
T M )

in keeping with the principle from which the process FJ is derived.
Another interesting property of F') may be ment:.oned If we
postmultiply (4.81) by (L )7 and msert the resulting expression
for EJ in (4.82)] we obtain as the equivalent of the iterative pro-
cedure (4.82) in terms of Ac‘z;, using the value (4.113) of 4 ,

N ' Aa' Aa '
(4.115) Aal = Aao - —-———T-—--; Aao L+ -
ag-Lhag]
Postmultiplication with AE.'(;* shows that successive adjustments AE?:
of c‘z:‘ are, to a first approximation, orthogonal to each other. Fig-
ure 4.3.3.10 demonstrates the first-order properties of (4.115).
1t is seen from (4.115) that first-order terms in ph are homogene -

n
ous of degree zero in the characteristic values Lq of Li. It fol-

lTaking 7 =0 and 1, respectively,



I1-4.3.1.12 MEASURING EQUATION SYSTEMS 185

aa}

Al = AG) - hyaa) L

Figure 4.3.3.10

lows that only the ratios of the values lq affect the asymptotic
speed of convergence of P. . This circumstance appears in the fig-
n

ure, in that only the direction, not the length, of the vector
AE;Lf determines the vector AE:. This shows that characteristic
values ! near to zero, indicating proximity to a situation of incom-
plete identification using all restrictions, are a more fundamental
difficulty in computing maximum-likelihood estimates than charac-
teristic values ! _hear to or equal ~2, indicating “almest” or
“altogether” lack of identification using restrictions on A alone,

Components corresponding to the latter characteristic values can
always be reduced by a suitable value of A.

4.3.3.11. Convergence properties of 1, and P, under incomplete
3 h,

tdentification. It shpuld be added that if any of the processes so
far discussed is applied in cases where identification is incomplete
{using all restrictions), and where therefore at least one charac-
teristic value Lq vanishes, this circimstance is not revealed by

the convergence properties of the process, Corresponding components
AE; in the initial displacement ﬂ; are preserved through iterative
multiplication by a factor unity. In other words, while reasonably
fast convergence may be obtained if no other characteristic values
near to zero exist, the limiting value Aa:== A+ E;: now depends

on the initial components AE; concerned.

4.3.3.12. Comparisons between F% and B, . Experience with
n
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actual data is needed to determine whether the greater speed of
convergence that might be expected of P, as compared with B, for
n
any constant  justifies the greater cost of computation per itera-
tion. One would expect Tah to be particularly economical if the
n

ratios of the characteristic values I, are close to upity. In any
case, fah would seem to be less subject to as yet unknown risks

n
connected with the distribution of the characteristic values lq,
with the selection of the initial approximation A,, and with the
sampling variations of ¥__ around its expected value (4.89), which

leads in general to depression of the restricted maximum of the
. likelihood function.

*4.3.3.13. Effect of the A-restrictions on the characteristic
values lq. On the basis of (4.99) we decompose A uniquely in terms
of characteristic “vectors” of four types:

A= 0
= (B, o+@,, oa+@E, o+ 7
- Edin I{Ky Xx] + Bsyln I[K X] + ant. ] +¢ I[ £

(4.116)

H

;. 15 diagonal,

s — Tt . . . B . . X

Ewln Bsw is symmetric with vanishing dizgonal elements,
B — _R¥ . . X -

B . Ba“ is antisymmetric.

In the absence of any restrictions, (4.116) gives the components of
A according to the subspaces corresponding to the three different
characteristic values of L', We have further decomposed the sym-
rgetric component of B into a diagonal component éia and a component
B”m with vanishingﬁiagonal elements, because of the trivial nature
of the components By,

With a priori restnctlons of the type here considered, whenever
4 satisfies the A-restr1ct1ons, the component B I[K K] satisfies

the same restrictions. In any study of the effect of these restric-
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tions on the characteristic values lq, g=1, ..., 0, therefore,

dia
values l K;ﬁ-l .vey @, play no rele.

If A-restrlctlons are imposed on 4, the decomposition (4.116)
1s st1ll unique but it does not in general represent 4 as a linear
combination of characteristic “vectors.” It will do so if and only
if each of the last three components in (4.116) .also satisfies the
A-restrictions. Whenever an A:restricted 4 exists for which at
least one of those three components fails to satisfy the A-restric-
tions, at least one new “intermediate’ characteristic value [_has

the component B IIK £,] and the corresponding characteristic

been introduced of which the {(each) characteristic “vector” A ‘is

a linear combination B( lt + B I + E(i)ifé E‘] W1th

KX] [XK]
at least two nonvanishing components. This is seen as follows: If,
after imposing the A-testrictions, a complete set of new character-
istic “vectors” could be chosen in such a manner that each of them
consisted of one component (4.116) only, the unique expréssion of

A as a linear combination of those new characteristic “vectors”
[derived from (4.87) by transformation to the A—space] would coin-
cide with the unique decomposition (4.116). This would contradict
the assumption that at least one component (4.116) of 4 fails to
satisfy the A-restrictions.

*4.3.3.14, Case where all relevant characteristic values coin-
cide at . = —2. We have met already with one example where the
a priori restrictions imply A-restrictions that are preserved in
the decomposition (4.116). This is the case, discussed in section

4.3.2.3 in connection with p)g, where the only a priori restric-
tions are

(4.117) € =90, andhence C = 0.

From (4.93) and (4.95) the corresponding A-restrictions are seen
to be

(4.118) C = 0.
This wipes out all characteristic values [ = —1, while leaving
unaffected the values ¢ = 0 and {| = —2 and the corresponding

vectors. It follows that one application of F)% will reduce all
components corresponding to | = —2 to second-order magnitude.
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This accounts for the high speed of convergence of P% found in
this special case. It is seen as follows, however, that a single
additional restriction on B would introduce a characteristic value
-2 < 1 <0 with probability ene in the sample space. Let the ad-
ditional restriction be denoted trd @' = 0. The A-restriction
tr 548 = 0 will only then be identically satisfied by

gﬂ,m I[Xny] if it also implies tr B'4¢ = troA’B = trBoA
= 0, which requires 4 & = & 4’, an occurrence of probability
zero.

*4.3.3.15. Case vhere all cheracteristic velues coincide at
! = —1. It is of interest to inquire whether there exists a
counterpart to the foregoing case, in which the nontrivial compo-

nent B __ I[ny] with the characteristic value I = -2 is wiped

out by restrictions without introducing any intermediate character-
istic values. Such a case can be found easily if we also require
complete identification, i.e., wiping out of the component

B_M IK £] with characteristic value [ = 0, For in that case the
y 'z .

restrictions must imply that
B—l
Gy = 3e) B ) = ale) 0

(4.119)

1

¥ !Bl V() =0 for g#h, g h<G,
whatever 3¢, or that

(4.120) XEE V() = 0 for g # k.

Here X€ is a submatrix of ®f as defined in (4.18). This again re-
quires the existence of column vectors A'f such that

(4.121) xf = W€ (),
so that the matrix B is restricted by

(4.122) Ble) = «f X8 = of A€ b(g)

1!

A blg),
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where X is the scalar quantity of A'¢, Thus, the ratios of all el-
ements of any row of Bhust be prescribed by the restrictions, and
B is the product Ayy B® of an unknown nonsingular diagonal matrix

. B . D .
Ayy with a known nonsingular matrix B". Hence a known nonsingular

transformation,

(4.123) y' = B®yr®

of the dependent variables alone will then bring the system of
structural equations into the form

(4.124) Ayyy'® + T2 = ul,
which differs from the reduced form only by the principle of nor-
malization. In this form, therefore, maximum=likelihood estima-
tion is equivalent to the least-squares principle applied to each
equation separately.
Thus, the exclusion of both components E’BW I[ K K] and

x

-

B.. Itﬂ}ﬁ;] leads to a trivial case which can be treated by more

elementary methods. In fact, one single application of ¥, which
is the optimal procedure in the present case, is the equivalent to
the least-squares procedure and leads to the exact solution of the
maximum-likelihood equatien in one iteration. Hewever, if only a
single restriction on B is relaxed, nondiagcnal values of B are
made possible that are in general neither symmetric nor antisym-
metric, so that new intermediate characteristic values are intro-
duced. A simple example is obtained if in (4,124} we assume only
K5 = 2 dependent variables y® and leave Ay, unrestricted while A,
is still required to vanish.

4.3.3.16. Asymptotic speed of convergence of Fk = F% in the

foregoing case. This discussion shows that cases where all rele-
vant characteristic values coincide are rare and, frem the point

of view of the problem of measuring economic relationships, either
trivial or accidental. In general, different characteristic values
are present, and the discrepancy j;+1 = A,,; = 4 between the
result of the (n + l)th iteration and the solution of the maximum-
likelihood equaticns is even asymptotically a nonvanishing fraction
of the corresponding difference 4, computed from the result of the

nth iteration with any of the methods so far discussed.
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As to speed of convergence per iteration, therefore, the pres-
ent methods fall short of the well-known Newton method, in which

by definition ﬁ%+1 is of second-order magnitude compared with j;.

4.3.4. Arrangement of computations for P, P, P,
R

4.3.4,1. A constructed example for numerical illustration of
B, p involving only single-parameter restrictions. Before ex-

plor1ng the application of the Newton method to our present problem,
we shall give a few numerical illustrations of the procedures so
far discussed, and give further comments of a practical character
with regard to computational procedure.

We have constructed an example of a three-equation system char-
acterized by the matrices

[ 0 1 4 1 0 0
a=l1 0 -3 0 1 o,
-2 1 0 0 o0 1
(4.125) [ 0.2 0.1 0.0
z =101 0.2 0.1 |,
0.0 0.1 0.3

22

in which the variables z are regarded as fixed in repeated samples
The matrix M then fluctuates from sample to sample, but, in order

to abstract from the effect of sampl1ng fluctuations, we have as-
sumed that the observed moment matrix in the sample imagined to be

drawn is equal to its expected value, which is easily computed from
(4.125);

r
(4.126) ¥ Z_: y/(t) x(t)

e
]
hilhd
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-1 -1 —1 -1
B! = B I[K,K,} - 37 TN, [-T B I

0.417 0.484 -0.021  -0.300 -0.400 0.300
0.484 1,568 -0.192 -0.600 -0.800 -0.400
-0.021 -0.192 0.073 -0.100 0.200. 0.100

In the present section 4,3 the diagonality restriction is im-
posed on I, although the example has been constructed with a non-
diagonal Z. Comparison of the “maximum-likelihood estimates™ of A
so cbtained with the true values will 1llustrate the effect of the
diagonality assumption regarding I in a case where it is incorrect.

The restrictions on A are that those elements that are zero in
(4.125) are known and required to be zero. In that case it is
profitable to state the definition (4.57) of A4, in matrix form’

2(ady K, ) = (BT I

(r,x] T Ao o)

¢ Txx

(4.127)

2 a4y = a4y,
because the operator .2 now consists in replacing by zero the ele-
ments numbered (1,1), (1,5), (1,6}, (2,2), (2,4), (2,6), (3,3),
(3,4), (3,5), and can according to (4.62) also be applied to sub-

matrices. Alternatively, the restrictions can be expressed through
the set of basic matrices

0 1 0 0 0 0
® =|0 o 1 o ¢ 0|,
0 0 0 1 0 0
1 0 0 0 0 90
(4.128)
=0 o 1 0o 0 o |,
0 0 0 0 1 0
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1 0 0 0 o 0
=10 1 o0 6 ¢ o/{.
0 0 0 0 0 1

4.3.4.2. Elimination of the unknowns C, under single-parameter
restrictions, If pl is applied,

(4.129) 24, ¥.,) = 0, (a4, H,,) =0

n Xz

will automatically be satisfied for n > 1. ‘The condition (4,12%9)
will be recognized as the condition (4.5) for maximization of the
likelihood function with respect to the parameters I' only. For
other choices of & it is possible and desirable to insure the va-
lidity of (4.129) for all # by imposing it as a condition on the
initial value 4,. Any initial value 4, derived from any set of
single-equation least-squares estimates in which one of the vari-
ables y,, 1 =1, ..., Iy, is selected as “dependent” variable for
each value of g, satisfies that condition. Since (4.129) also
holds for 4, a similar condition is satisfied by ‘4_7; = En H. Let
the submatrices of H'™} partitioned similarly to (4.93) be denoted
by subscript combinations yy, yz, etc. Then, since (#-1) z=0
and (£'71), is nonsingular, substitution of (4.94) in (4.129)
shows that the latter condition secures the identical vanishing of
22',‘” rather than its general reduction in successive iterations.
It was already recognized in section 4.1.5 in connection with P
that this cuts down the number of unknowns that need to be deter-
mined in each iteration. The unknowns participating in the itera-
tions are the unrestricted elements of Q,Bn corresponding, through
En = ﬁn B, to the first three components of jﬂ in the decomposi-
tion (4.116).

4.3.4.3. Arrangement of computations under single-parameter
restrictions. Because the restrictions imposed are of the single-

parameter type, the notation of simply indicates that the elements
in a(g) prescribed to be zero are deleted. Solving for 24 C, and
QCﬂ from (4.129) and substituting in (4.127), we have as the defi-
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nition of QABG in that notation,

z — -1
(4.130) a0f-FUg, = u(g)-Byt -0 — bE-AWE

from which we solve for Abg for computational purposes,

— -1 8 ¢ Eyf -l g
(4.131) abf = o(g) BT @' (M, )T~ b

Lf ph is applied, the value (4.69) of # is obtained most conven-

iently from

£,2y8 g
; abg-“HE -0bj

it

(4.132) hy
frgp- -13,2
er{ (B a80™)" + ?Abg'z"fy‘ﬂb:{g}

in which the first term in the denominater is not transformed to
vector coordinates.

First the Ky matrices zyfy and their inverses are prepared
from A end the restrictions. Then an initial value 4; (a set of
vectors' bg) is selected. Fach row of (zﬂﬁy)"l represents a least-

squares regression as a possible choice of initial vector bé’.
The initial vectors are then normalized by

(4.133) bEHE,0iF = 1,

and 36'_1 is computed by any suitable method of inversion. Then
either Abg or bg + Abg is determined from (4.131), from which
blg is obtained, in the case of ph with the help of {4.132), and
the next iteration can proceed. "

If the process is terminated after the nth iteration, Q,Cn is
obtained from 2B, by (4.5) or

(4.134) cf = —pb .48 '(szg)-l-

7 n Cyz

4,3.6.4. Application of pl, I‘)% ’ ph

example. Table 4.3.4.4 gives the results of applying P, p‘%,

to the constructed

1



Ratios of elements of bn(g)

Scales:

m{a ()} = {ae) ¥ aile)}”

Method Tter-
R b, 6, ‘
n= |- = - = |- = (m{a (@)} {mlayg)) |mfayle))

bﬁ %3 %l

(1) (2) (3) (4) (5) (6) (7) (8)
0 0.25000 | 0.22960 | 0.42887 .| 1.00000 | 0.99805 | 1.00000
1 0.23673 | 0.32274 | 0.46075 | 1.00787 | 1.05568 | 1.01041
2 0.23277 | 0.33141 | 0.47046 | 0.99301 | 0.94762 | 0:99060
12X 3 0.23230 | 0.33408 | 0.47160 | 1.00709 | 1.05530 | 1.00858
4 0.23219 | 0.33440 | 0.47187 | 0.99292 | 0.94757 | 0.99087
5 0.23217 | 0.33448 | 0.47191 | 1.00716 | 1.05368 | 1.00947
6 0.23217 | 0.33448 | 0.47192 | 0.99286 | 0.94758 | 0.99091
0 0.25000 | 0.22960 | 0.42887 | 1.00000 | 0.99805 | 1.00000
1 0.23991 | 0.29946 | 0.45275 | 1.00443 | 1.03172 | 1.00592
P 2 0.23524 | 0.32130 | 0.46427 | 0.99884 | 0.98748 | 0.99837
% 3 0.23336 | 0.32965 | 0.46895 | 1.00073 | 1.00677 | 1.00105
4 0.23263 | 0.33265 | 0.47078 | 0.99639 | 0.99669 | 0.99950
5 0.23235 | 0.33379 .| 0.47148 | 1.00021 | 1.00025 | 1.00025

‘Id JO UOTQRIRSH[[T [EOTIaUNYN ‘H*F g F FTAVY

61
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AL Nl § |



Fh

h, = 1.06540 0 0.25000 0.22961 0.42887 1.00000 0.99805 1.00000
0.57158 1 0.23591 0.32884 0.46283 1. 00902 1.06286 1.01181
.0.87201 2 0.23399 0.33053 0.46747 0.99893 0.99330 0. 99860
0.59751 3 0.23259 | 0,33291 0.47089 1.00088 1.00521 1.00118
0.85300 4 0.23238 0.33368 0.47140 0.99983 0.99898 0.99971
0.60588 5 0.23223 0.33434 0.47176 1.00011 1.00075 1.00016
6 0,23220 0.33436 0.47184 0.99995 0.99986 0.99997
0 0.25000 0.22960 0.42887 1.00000 0.99805 1.00000
1 0.23197 0.33566 0.47251 | '1.00283 1.00458 1.00542
Newton 2 0.23224 0.33463 0.47192 0.99924 0.99989 1.00044
3 0.23218 0.33432 0.47185 0.99988 1.00022 1.00032

Soluti b12 b21 532 bl4 bZS b36

utions - - m— -— —_ - - —

b13_ b23 b3l bl3 b23 b31

% diagonal
0.23217 0.33448 0.47192 0.23931 0.3379% 0.48876
(from Fﬁ above)
% nondiagenal

0, 25000 0.33333 0. 50000 0.25000 0.33333 0.50000

(true values)

¥,

TeucdeIp 9q o3 pearnbaa ST ¥ udYm qd pue ¢ EG[

et 11
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and F% respectively in the examples given. It also gives the ap-
n

plication, to the same data, of the Newton method, to be discussed
below. Initial values were the same in all cases and were based on
the rows of (zM§ )7 numbered 3, 1, and 2 for g = 1, 2, 3, respec-
tively. ?
Comparison of the three methods shows that in the present case
Fﬁ is superior to F%a , and even slightly better than Fk , with re-
n

spect to the most essential property: the speed of convergence of

the ratios of elements of each cg&g). Fﬂ shows the characteristic

alternation in successive values m{e%&g)}, n=20,1, .... These

values converge gradually in 383 /i and slightly faster in ph . The
n

wide variation in successive values of A is remarkable. The appar-
ent alternation of these values is peculiar to the present example.
Results substantially similar to those shown here were obtained in
another constructed example of only two equations, but the sequence
of values 2, was found to be more irregular in that casel

*4,3.4,5. Arrangement of computations under more general re-
strictions. Under the simple type of restrictions imposed in the
foregoing example the vectors a(g) differ from the corresponding
vectors as only in that they contain in addition certain vanishing
elements. With more general basic matrices #f it is necessary to
decide whether the quantities ai are actually to be computed as a
separate step in each iteration. We shall show that this can be
avoided, with a resulting saving of computational labor.

Using successively (4.40), the second relation of (4.30), (4.37},
and (4.72), we can rewrite the definition {4.57)} of A4, in the form

(4.135) Aoy H** = vec[8i™ 0]t — af H**.

Even with orthogonalization of @°, which we do not now require, the
nonsingular matrix (& & )~ appearing in {4.40) can be and has
been omitted from (4.135) because it appears originally as postmul-
tiplicand to all terms.

Lrhis example was discussed as "case I” in another article by one of the
present authors [Koopmans, 1945)|. Initial values were the least-squares
regression with x| as dependent variable in both structural equations.

Buccessive values of hh were 0.394, 0.839, 1.133, 0.582, 0.795, ....
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From (4.135) we derive

(4-.136) Aﬂ; = vec[B(‘)"l 0] é;* (Mllui)-l . a;

I

to which we again apply (4.37) to obtain

(4.137) Aa’ﬂ = vec{Bé‘l 0] 't (M*n:)-] & - g -
Defining 0 @
(4.138) PO = wE(efyot)l gf = p® = |
) B = fxx T @ @ ’
PB_'y P
we have
- .
P(I) ) L 0
o p@ 0
(4.139) P = * (M**‘)"l @* =
0 0 P(G)

Therefore, (4.137) is equivalent to
- )
(4.140)  sayfg) = W) B A - w). g=1, ..., 6.

The preparations for any of the iterative procedures based on
(4.140) now consist in the evaluation of the G matrices ¥¢ =
o° ¥ o'¢ from (4.72), their inversion, and the transformation of
the inverses (Mg)_l back to the x-coordinates by (4.138), to obtain
the P€),

yx

*4.3.4.6. Canonical form of the basic matrices ®f. In many
cases a further saving, similar to that obtained under simpler re-
strictions, can be secured by choosing an initial value satisfying
(4.129). It will be noted that P(g does not occur in (4.140},
and that P(g) is not needed to obtam B by en iterative process
based on (4 140). 'This suggests that the inversion of ¥** can
profitably be replaced by successive inversions of lower-order ma-
trices.



198 KOOPMANS, RUBIN, AND LEIPNIK 11-*4,3.4.6

Tn order to obtain the full benefit of this consideration, we

must analyze the basic matrices &f w1t]1 the help of the following
lemna;

LEMMA 4.3.4.6. If 3° is such that its number of rows equals
its rank,

(4.141) (@) = (3% = ¢,

and if Q Q QI“ are defined by

(4.142) 0, = o(F) + 0= o@) £ 0 = 0+ 0 4 2

then there exists a nonsingular transformation matriz! Q such that

¥ 0
(4.143) 0% =of = [x¢ wf) = | x5 ¥ |,
U
vith
o(x = r&@P) = 0,
(4.144) owl) = r(¥f) = ;“,

p(2f) = r(2%) = Q

and there exists no nonsingular transformation matrix Q such that
in (4.143) Xg or qu or both have higher ranks than given by
(4.144).

Proof: Owing to (4.142) there exist matrices Q;, @, such
that

(4-.145) P(QI) - f(QI) = QI: P(QHI) = r(QIH) = Q;II'

'For brevity no subscript £ is appended to 2.
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and
(4.146) 2 X¥ = 0, Q ¥ = 0.
We must have
QI
(4.147) & = P(-QI) + P(QIH)
.'Q'III
because, if the right-hand member in (4.147) exceeded the left-hand

member, there would, according to Lemma 2,3.2, exist nonvanishing
vectors A, —hp; such that

(4.148) b= AR S A @ # O
In that case (4.146) would imply
(4.149) w[X¥ W8 = L3 =0, w#E 0,

contrary to the assumption (4.141) about the rank of F¥.
Owing to (4.147) we can find a matrix Q with

_ — I
(4.150) plag) = riRy) = ¢ 20
such that the matrix Q defined by

S

(4.151) Q= | o

Sy

is nonsingular (rank (,). This matrix @ produces the partitioning

required in (4.143) with submatrices having the number of rows re-
quired in (4,144). Since ®f has the same rank (4.141) as ®§, the
ranks in (4.144) cannot fall below the corresponding number of rows.

Finally, if a nonsingular matrix § existed such that the rank
and hence the number of rows of Xf; say, exceeded QI, we should
have, using successively (4.141), (4.143), and (4.142),
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(4.152) 0, - 0F > p(ef) = p(x§) = p(¥%) = 0, ~ @,

an obvious contradiction. This completes the proof of Lemma

4.3.4.6. The form (4.143) of ®¢ will be called its canonical form.
It is worth stressing that this form neither requires nor precludes
orthogonalization of &f according to (4.24).

*4,3.4.7. Elimtnation of the unknowns aﬁ,lll' Let us now as-
sume that the basic matrices &% are already in the canonical form,
Then the expression (4.22) for al{g) in terms of a set of unrestrict-
ed parameters partitions as follows:

H

£ ¢€ g xE
Blg) = of X3 + o X§,

I
(4.153)

_ £
1) = ofy v& + ofy Y -

Thus the parameters uﬁ] do not enter into the Jacobian B. [Itera-
tive processes invelving B, only can therefore be constructed on
the basis of the parameters

(4.154) IIIot.g

[of  af]

alone. With each approximation HIGE to Ilﬁxg, there are associ-
ated “silent” values af,ﬂl which are those linear functions of
Hlai that maximize the likelihood function with Hlai inserted
for HI“g' Only at the termination of iterations do these values
need to be determined explicitly or implicitly. In the computa-
tional arrangement of the Newton method discussed below, an explic-
it determination from equation (4.185) involves no extra cost.
Since we have for the present decided against explicit evaluation
of any part of aﬁ, we shall operate equivalently from (4.140) and
(4.138) on the basis of properties of inverses of partitioned ma-
trices.

We define
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[ ¢ g g ]
Nry ¥y My 1
-1 _ _ g g 4
(4.155) @™ = 8¢ = L Min ¥y m
g g g
Voo ¥oun Yinm

As before, the postsubscripts I, TI can be subsumed in the presub-
script III, the postsubscripts II, II{ in the presubscript I. For
the iterations in (4.140) we need only

(4.156) Pygy = x'é e xf - we.

£ g
wr® " o X
where o HINg is obtained from NF by deleting the rows and columns
intersecting in }'III mar- 1f the ultimate evaluation of € is based

on (4.140), we need in addition

€ _ iyl gl 4 £y
(4.157) Py, = X°N° ¥ = X N e

g . 1
mr o is computed from

Thus Nﬁl 1S not needed.
=1

(4.158) mud T om 111 (”rn III) min

III 111

and the submatmx IIINIg]I needed in addition for {4.157) is obtain-
able from'

(4.159) ¥e =

_ g, g . iwk -1
111 111 111 III‘V IIIHIII (HIII III) ’

using once more a matrix Ig;l (M;’;I HI)_l already computed for (4.158).

IIIM

These formulae show that the most important saving from the use
of the cancnical form (4.143) - avoiding the calculation of NIEH -
is due to the separation of *I)Ign from |, 8%, The further separatlon
of Q from @Igl leads to a minor additional saving by reducing the

![Hotelling, 1943-A, p.4].
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number of elements involved in the second matrix multiplication in
(4.157),

In general the ranks of Py%,

compatible with the number of rows and columns. This expresses
the fact that the elements of the vectors a.n(g) depend linearly on
g

n

and Pyi, are lower than the maxirmum

a smaller number of parameters a

4.3.4.8. The final evaluation of the aign. The return from
B, to C, on the basis of (4.140) requires in addition the inversion

of Bn, which then serves for all values of g,
(4.160) ce) = ug) B} PE.

Depending on the circumstances, an alternative formula for cn(g)

may be more economical. This is based on the expression for the
“silent” values,

g _ g £ .(wé -1
(4.161) e = = o Wy o)

which is the equivalent of (4.134) under the present form of the
%€, From (4.22) and (4.143) we have

- g g _ B g 8 g
(4.162)  bg) = Oy X" calg) = Gpar ¥ ¥ G Y -

The first of these relations is solved for ma,i by

(4.163) mes = bie) 8,
where the relation

£ o
(4.164) mXE = opmd

defines all that needs to be defined concerning E. ‘The condition
(4.164) may in simple cases offer more ready ways of finding a
suitable value of B than the explicit calculation of the particular
solution

- £( & 2y-1
(4.165) B = X (XX .
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Combining the second relation (4.162) with (4.161) and (4.163),

we have

c,(g)

I

g g
b (g) {III B £ 4 ¢ III (Mm m) m}

b (e) Jig),

(4.166)

il

say. The application of this formula requires the evaluation of G
matrices J(g), involving in principle G mverslcms (4.165) of
orders equal to the respective values of (Q + Q )

4.3.4.9, A formula for the computation of h,. In the applica-
tion of P, , the formula (4.166) is preferable to {4.160) because

n
it also holds if an(g) is replaced by the scalar mltiple Aq (g)

of the difference between two successive approximations. It can
therefore be used to derive from (4.69) the formula

G
2 Aby(e) Ky, (2)- abi(e)
(4.167) ke

11

4 i
er(Bi7aB)) + Y abyle)- Ky, (e)- abi(g)
£=1

for the evaluation of Ahj, in which

(4.168) K (g) = Ny, + J@) K, + X, 0@ + J@)H,,J) .

4,3.5. The Newton method

4,3,5.1. The principle of the Newton method. Unlike the
methods discussed so far, the principle of the Newton method has
no connection with the particular form of the likelihood function.
Its application to our problem proceeds as follows. If we write

(4.169) 4 = A, + a4

the Taylor expansion (4.68) of the likelihood function L(Al) in
terms of A4, can be written
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L) - 1(4) = {8 I,
(4.170)

Ky}}.'z] — 4 Hxx) AAé}

1 - 2
+ 5ee{— (g™ aB))” — a4y M aAl} + -

This expansion, transformed to the unrestricted parameters Aag de-
fined as in (4.37), may be denoted

(4170 L(e}) - Llag) = Iy aal"+ 5 day Ly da” + -
The vector l; and symmetric matrix L; so defined depend, of course,
on the initial value 4, as distinct from the vector 1* = 0 and the
matrix L* defined by (4.77) on the basis of the solution 4.

The Newton method determines Aa; from the regquirement that the
first two terms in the expansion

dL(a;)
(4.172) —_— = L;‘ + Aa; L;‘ + .-
d Aag

shall cancel out. This leads to

*

(4.173) ay Ly = (a3 + Aag) Ly = aj Ly—

*

Lo

as the formula defining aj.

4,3.5.2. Comparisons between the Newton method and Fﬁ, ph'
n

The following differences between this method and the procedures
based on the earlier choice (4.57) of 1&40 deserve discussion.

The Newton method seeks any stationary point of the likelihood
function to which the initial value 4, is sufficiently near. The
earlier methods converge only to maxima. This establishes a pre-
sumption that the Newton method requires for convergence a closer
proximity of the initial value to the maximum sought. It also
means that after a stationary point has been obtained, second-order
conditions must now be investigated to determine whether the point
found is actually a maximum. Saddle points, maxima, and minima can
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be distinguished through indefiniteness, negative definiteness, and
positive definiteness, respectively, of I*.

The Newton methed breaks down in the case of incomplete identi-
fication because then L* is singular, and hence cannot be inverted.

1f 4, is sufficiently close to the desired maximum 4, the speed
of convergence per iteration in the Newton method is superior.
Writing again a; =q" +-E:, it is seen as follows that E; is
guadratic in E; — a property which was found to be present in the
earlier methods only in the rare case that all relevant character-
istic values of L' coincide.

From the expansion of the likelihood function L(a*) with respect
tod = a* —a*

(4.174) Lo*) - L(a*) = —;a"‘ L* & + ,
we have '
d L
(4.175) = (o) =@ L'+
da* 5 =7
0

From (4.173) and (4.175) we have the relation

= a; — Ly (L)t

(4.176)  a] Go{I — LUy + -},

from which it is easily seen, by expanding L; in terms of @, that
the first-order term in @; in this expression vanishes, and that
the quadratic term in 5: depends on the third derivatives of the
likelihood function in the point a*,

Against the superior speed of convergence per iteration in the
Newton method must be set the greatly increased computational labor
per iteratioen. Disregarding for a moment the saving arising in
both methods from the cancnical form of the basic matrices, the
Newton method requires for each iteration afresh the calculation
of the matrix L} and the solution of the linear equations (4.173)

in Q unknowns a}. In contrast, the matrix ¥"* occurring in the

left-hand member AagH** of (4.57) remains the same for all iter-
ations, so that its inversion paves the way for evaluation of suc-
cessive values Aa; by matrix multiplication only. Finally, under
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the type of restrictions here considered, ¥** partitions into diag-
onal blocks ¥, and its inversion therefore requires only the in-
version of G matrices of orders Ql, ceuy Qé.. The matrix L* is not

similarly partitionable, although it has other regularities of
which a smaller advantage could probably be taken.

*4.3.5.3. Computational procedure in the Newton method. Since
the matrix L; depends on n, there is no incentive in the Newton
method to avoid the explicit appearance of the vectors a; in the

computations. We shall therefore develop the formulae largely in
terms of *-coordinates.

As in the other methods, there is a possibility of saving com-
putational work whenever certain elements of o' do not enter the
Jacobian B. Assume, therefore, that @ is in canonical form.
There will be a further cang)utational advantage in assuming that
at least the submatrices &, @ng . @Ign are made mutually orthog-

onal by suitable choice of the Q in (4.143), To simplify the for-
mulae, we shall assume row-by-row orthogonality

(4.177) * et =T

of %, although in actual computations it need not be economical
to go that far.

We shall now relate l; and L; in (4.173) to the initial vector
a,;. Using (4.177), we evaluate l; from (4.46) and (4.49) as

d Lo
(4.178) 1y = (—Cﬂ) = vee” (BT Iy x4y M)
a*=ai oy s

xx
do*

On the other hand we have, for any A = mat* ", from the definition
(4.171) of Ly,

* 1 d »* * *
« Ly = E—da*(a Ly o'")
(4.179)

= veot (BB B Iy ) - ANy,

and, hence, in particular,
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. -1
(4.180) “.; Ly = vec™ (-8} I[xyxz] ~ A H).

When (4.178) and (4.179) are inserted in {4.173), the terms con-
taining 4, ¥, cancel. Using (4.179) again with a; substituted

for o*, we see that (4.173) is equivalent to

* Lk * -1 -1
—-a, Lo vec (Bé Bl’ B} I[KyK‘] + Al Mxx)

(4.181)

2 vec"’(li";h—l I[Xy K] ).

Computation can conveniently be based on this formulation of the
Newton method or on an equivalent formulation in terms of A4,
instead of 4,.

We shall use postsubscripts and presubscripts I, II, III to
denote submatrices of &%, L:u and subvectors of o, etc., corre-
sponding to the canonical form of 8", For instance

- -
mXx 0 0
0 X ce 0
€
(4.182) mX; =
G
0 0 X

It is seen from (4,181) [or from the definition (4.171) of L;]
that

* %
I IIILD - IIIMIII
(4.183) Ly =
r
_ ’*t _ %k
ITF IIX HIII 111

because the first term in the second member of (4.181) does not
give rise to any III-components of L;. Similarly, the last mem-
ber in (4.181) has vanishing TII-components. It follows that
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* 3k
- 111”111

* _ * *% * bl —
(4.184)  a; T m%m¥fm C Yym ¥ mm < O

%
— X II1 101

fram which a’l m can be solved according to {4.161) and inserted
in {4,181) to give

w ITT .=
(4.185) mé Ly = qpvee® [BT 0],
with
(4.186) A LY + e )TN e
* ¢ = I III " 111 III 111 III i -

The following steps arise in the application of (4.185). Ini-
tial “overhead” work consists in orthogonalization of &%, determi-
nation of ¥** from (4.72), and calculation of the last term in
{4.186), which remains the same in all iterations. The mversmn

of HIII mi <an be carried out for each of its diagonal blocks MHI —
separately. Then one chooses B, calculates its inverse and uses
it in calculating both

u.l —
(4.187) [ vec* [B} 0] = vec[BI™ 0] p,8""
and

* * * * %
(4.188) mmbe = “mwT Ko mX — mm¥ -

The matrix K, is defined by

- 2
(4.189) ee(B;7 BY)° = 111“*‘ IIIX*'XO.IIIX,*'IIIG’*’

and has as elements

(4.190) Bpi,nj =

v(i)-B - v(h) -u(5)-B - g)

arranged (with G = Ky) according to
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Biigar e Ruae o0 Rigr eee Ry e
k1611 kigie -+ Riger o+ Rigueg
(4.191) . e . - . - . .
Eooonr o0 Roie o R -e- Rgy e
kg1 .-+ kRggag -+ kgg,o1 o+ Rgg,gs

Finally, IHL; is put together from (4,186), and HI“I solved from
(4.185), leading to

(4.192) B, = mat (III af- — ).
At the termination of iterations, C is obtained from

¢

n

* E *
mat (e ¥+ e) e Yy
(4.193)

* * *X g KA -1 =%
mat [yra (@ — ¥y gy ) )]

It appears from (4.188) that the matrix HIIIIL; has considerable
regularity in its make-up. The problem of how to best utilize those
regularities for the inversion of ;j;;;Ly or for the solution of
(4.185) has not been investigated by us.

4,3.5.4, Numerical illustration of the Newton method. This
method has likewise been applied to the constructed example already
discussed in which the basic matrices have the simple form (4.128).
The superior speed of convergence of the Newton method comes out
clearly in the results shown in Table 4.3.4.4. More experience
with actual data is required to determine whether and in what cir-
cumstances the greater speed of convergence is adequate compensation
for the greatly increased labor per iteration.

4.3,5,5, Estimated sampling vartances and covaeriances of the
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estimated coefficients LA Even if another method is used to ob-
tain a satisfactory approximation 4, to 4, it is still advisable to

make one final iteration with the Newton method in order to obtain
the matrix of estimated sampling variances and covariances

.

azL * =1
est&{(a™ — «'*)(a" -~ &)} = _%‘ _—9")_
(4.194) Go'* Dot | ox _gx
_ ‘1 *—]
= T L

of the estimated parameters a* as a by-product. It was shown in
Theorem 3.3.10 that the estimates (4.194) are consistent. A suit-

able method of obtaining L*™' in the present circumstances is the
partitioning method whereby HIIII(L*-l) is obtained as the inverse

(4.195) mE ) = @)

of II1* as a step in solving HIa: from (4.185), and (L*—I)HIIII
and g (L*)pp; are found from similar formulae [Hotelling, 1943
A, p. 4], quoted and used before.

Because of the normalization rule (4.25) here employed, the
sampling variances (4.194) are not in the form in which they are

normally expressed. One will usually regard as final parameters
the ratios
af! :
(4.196) —(i)- q9=2, ..., Qg, e=1 ..., G,
of. /(1)

of the elements of each af. Since the estimates (4.194) themselves
are first-order approximations that become only asymptotically exact
as the sample size T tends to infinity, sampling variarces and co-
variances of the estimates agob«q) / ag-L(l) of the parameters
(4.196), of an equal order of epproximation, can be found by Taylor
expansions in which only terms linear in the estimates {4.194) are
retained,

Alternatively, one may normalize on the of.t/(1) by (4.26) and
treat the diagonal elements o ¢ of T as unknown parameters. This

procedure may lead to a further saving in computational labor be-

cause the parameters Ogg SO introduced fall in the same category as
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the parameters aij : for any Hlai the corresponding maximizing val-
ues of ail and o g are easily found. The orader of the inversion
(4.195) can therefore be further reduced by the number G of param-
eters Tgge It is not necessary to go into the details of this pro-
cedure since the application of the normalization (4.26) will be
demonstrated in section 4.4 in the case where I is entirely unre-
stricted.

From the estimated sampling variances and covariances of the
ag-LKq) / ag-u(l) we may revert to the singular matrix of estimated
sampling variances and covariances of the estimates B of the

structural coefficients a,, through the transformations (4.22),

gk

4.4. The Case of Unrestricted Correlations
between the Disturbances

4.4.1. No restrictions on Z. We shall now study the case in
which no a priori restrictions are imposed on the matrix Z of vari-
ances and covariances of the disturbances in the structural equa-
tions (1.1) except the symmetry and positive-definiteness conditions
arising from its definition. The discussion can be brief in those
aspects of the problem that are also found in the case of uncorre-
lated disturbances just discussed. The main emphasis will be on
points of difference between the two cases.

4.4,2. Normalization. With the nondiagonal elements of I un-
restricted in any case, it is not convenient to impose normalization
through the diagonal elements Ogg of Z. We shall either impose no
normalization at all or normalize through one element of each vector
of . for which we may conveniently take the first element mg-ﬁ(l) = 1.
In the latter case we shall employ the notation

t

[ u}-u’(l) (1) ... ug-u’(l) ]

[1 1 ... 1]

u’*
(4.197) ]

to express the normalization rule, and introduce similar notations

2[1]

1%

of =
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- .
@[1] 02 0
0 i 0
]~ " '
G
L0 0 4"[1]-
{4.198) - W
1
[1]@ 02 0
0 & 0
m® & ’
¢4
L [\ 0 [1]@ |

for the corresponding partitioning of the basic matrices,

4.4.3. Elimination of the parameters Z. We shall first maxi-
mize the likelihood function

L{A, £) = const + log det B — % log det %
(4.199)

| S R
5 tr(z™ & LY

with respect to the unrestricted parameters I while the parameters

A are kept constant. From (3.17) and (3.18) it is easily seen that
the first derivatives 8L/8 Ognr & A=1, ..., G, vanish if

(4.200) Z= 5= AN A =T

The derivation of (4.200) must take account of the required sym-
metry of E but the result is not affected thereby. It follows from
(3.35) that (4.200) indicates the unique and absolute maximum of
the function (4.199) with respect to I. Upon inserting (4.200) in
{4.199), we obtain
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{4.201) L(a) = const + log detB — —; log det(4 L - A')

as the likelihood function after maximization with respect to Z.
This function is homogeneous of degree 0 in each row of 4, i.e.,
it is invariant for changes in normalization of A through premul-
tiplication with a nonsingular diagonal matrix Y. This is easily
verified directly or can be seen as a consequence of the invari-
ance of (4.201) under the wider group of nonsingular transforma-
tions implied in Theorem 2.1.3.5.

The maximum of (4.201) in the absence of restrictions on A has
already been studied in the analysis leading to Theorem 3.1.10.

4.4 4. The maximum-likelihood equations. We shall continue

to use the symbol £ as an abbreviation for the expression (4.200)
in terms of A, Similarly, we shall use the abbreviations

(4.202) Sy = A, M, Al S =AM A",

noxx n’

Again writing A = 4 + 'AA,, where 4, is a trial value, we
have, using (3.16) and (3.17),

L(a) — L(4)) = cr(B}™1aB})
1 -
(4.203) — 5 welS (4 N A4+ A4y M AD) +
= er{B]™ Tex] ~ St Ay M Al + -
The restrictions are
(4.204) o = o B, a, = a_: &, vec A, = (vec*AAu)'I’*.

In the absence of normalizing restrictions on A, 4, can coincide
with a restricted maximum A of the likelihood function enly if the
linear term in (4.203) venishes for all values of vec* A4,. The

first-order maximum-likelihood conditions in this case are there-
fore, owing to Lemma 4.2.4,
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(4.205) vec* (B'71 Ty x) = STAK,) =

with S again depending on A according to (4.202). As before, these
conditions permit premultiplication of 4 by a diagonal matrix,
through which we may satisfy the normalization (4.197) if desired.

4.4.5. The processes P, and ]9 For the generalization of

these processes to the present case, we shall for the time being
not impose a normalization rule on A, Given an initial value 4,,

the following extension of the definition (4.57) of the d1rect10n
matrix A4, seems natural as well as the simplest possible:

(4.206)  vec"(Sy! A4y N ) = vec*(B!™ Iy x - St Ay K. .

0 Txx

Comparison with (4.203) shows that a property similar to (4.58) in
the previons case again holds: If 4, = 4, + hady, a suffi-

ciently small value of & will always lead to L(A ) > L(A ) ifa
stationary value of L(A) is not already reached in A

One can again choose a suitable constant value of %, or a value
h, determined from the principle underlying ph . To cbtain the
n

latter we write as an extension of (4.203), using also (3.19),
L{4,)) - L4,) =
= hur{ (8! I[K,f,] - S;LA N, ) AAL)
(4.207)  + -; B e (= (B aB)Y + S;(4, K, a4l
t Adj M, A ST A K aA] ~ ST ad, K aAl)

+

Using (4.206) we find that the sum of the two terms shown in (4.207)
is maximized.if % is given the value
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tr(S," Ady K A4))

eef{ (B, ™H AB) ~ S;V(4, K, DA
-1 -
+ ady M ADSTIA K AL+ ST AAG N AALY

We define matrices ¥ ; and L‘; such that the numerator and denominator
in (4,208) are identical with those in

Aa; Hg‘ aap*

(4.209) hy = ,
* * ’.I
—-Aa, Lo saf

postponing their explicit evaluation until the discussion of compu-
tational arrangements below.

4.4,6. Asymptotic properties of phand Ph . If we write as
n

before 4, = A + In, the expansion of (4.206) in terms of Io is,
by use of (4.205), '

(4.210) vec” (S7' a4, K,,) +
= vec"‘{—li"'_'1 Eé B! I[Ky ¥,

+ STYAM A+ B N A)ST AN, - STA K, ).
Omitting bars from Ag, and A4, (see p.174}, this can be written as

(4.211) bag ¥* + - - - = FHLT + - ,
with suitable definitions of the matrices #¥* and L~ which are now
the same functions of 4 and X, as the matrices H; and LJ, respec-
tively, are of 4, and ¥, .

The study of (4.211) is exactly similar to that of (4.79) in
the previous case of uncorrelated disturbances. Formmlae (4.80)
through (4.88) and the discussion connected therewith remain valid
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with the new definitions of ¥* and L*, Limits on the characteris-
tic values L, ¢ =1, ..., 0, of L™ can again be determined in the

case that the maximum of the likelihood function is not depressed
by the restrictions, as follows: Retaining for that case the def-
inition (4.93) of #, we have instead of (4.94)

S 0
(4.212) AN, H' = L=
[£,]

say. Writing for the moment, instead of (4.95),
(4.213) 1= 4%,

we have from (4.212) and (4.202)
(4.214)
Lgy = te{~ (B B')® + SYANA" + AK_A')S™ AK A" — S7VAH A"}

tr{— (Br®)?* + (B'® + S1E®S) §'® — sL(B®SH® + 0°(1®))

- tx(STLCOC®)
and

(4.215) ¥, = tr(s‘ljgxx A= w{S(E®s B® + Fo8),
Through a further transformation

N 0
(4.216) s=ur0, rl4® . s =
[£,]

e 2

it is seen that, in the absence of restrictions on A, the charac-
teristic values lq are the stationary values of the quadratic form

K X
¥ x
~ oA ~2
(4.217) Ly= —tx@E) = -3 i
g=1 h=K +1
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under the restrictions

Ky .4

(4.218) Mgy = @ i) = 25
g=1 h=1

L]

o2
gy, = 1.

We record in one formula combining (4.213) and {4.216) the trans-
formation

vtoo
.21 =04 = ygByu 7 ¢
(4.219) o o |E=U0ButarulrI,
[£,]
through which the forms (4.217) and (4.218) have been derived.

These forms lead to the following complete table of characteristic
values and vectors.

(a) {b) (c) (d)
Value Value of Multi- Characteristic
of I E=1+nl plicity ‘~vectors” 4 satisfy
(4.220) ~
0 1 K, £, g =0
-1 1 -k (x,)? E=0

Therefore, under any a priori restrictions that permit the likeli-
hood function to attain its absolute maximmum,

(4.221) -1 < lq = 0, 1 -4k < kq = 1, g=1, ..., €.

Furthermore, under any such restrictions that in addition ensure
(as here supposed) complete identification of each structural equa-
tion,

(4.222) -1 =21, <0, 1-h<k, <1 q=1, .., 0-F,
from which we exclude the K, characteristic values [ = 0, connected
with the freedom of normalization of 4 (choice of diagonal elements
of B®= U B U™) and unaffected by homogenecus restrictions (4.204).

4,4.7. Considerations in choosing a constant value of h. It
follows that, among processes Fﬁ‘with a constant value of 4, Fﬁ does
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not have the excellence it possesses in one important case with un-
correlated disturbances. In large samples under valid restrictions,
pl confines the characteristic values & = 1 + hlq approximatle-
ly to the interval 0 < kq < 1, so that, unless all kq vanish,
max | kq | can be decreased by taking h > 1.

As a guide in determining how far above 1 Lo choose /i, it is of
interest to ask what type of restrictions will exclude the charac-
teristic value [ = —1. This value will remain present as long as
the restrictions permit an addition to A of the type

~

(4.223) A=UGCFI, , CI, 4

(£, £.] (£, £]
containing only the second term of (4.219). It follows that, for
the exclusion of the characteristic value I = —1, it is necessary

and sufficient that in the canonical form of the basic matrix ©
the submatrix @EI be absent. If this is the case, the same reason-

ing from ignorance that previously favored Tal, now leads to the
recommendation of Taz: the relevant values 2_ are then confined to
the interval ~1 < k2 < 1. However, if @;‘n is present, any con-

stant value of A should be chosen below 2, and the nearer to 2, the
nearer the highest of the values I , g =1, ..., 0~ K, is sus-

! q ¥
pected of being to zero.

*4.4.8. Problems in the arrangement of computations for ph'
T‘)h . We shall now write (4.206), using (4.40) and the orthogonal-

ization (4.177) of @, in the form

Aa; H: = vec(B?‘;"l I[nyz])@’* - a;: H:,

{4.224)
n=20,1, ...,
where M; is defined by
L * *
(4.225) M, = ¢ Hn 8,
[ 11 12 16 ]
Sp Hew Sp Mo oo s, M
21 22 2q
- 4 K e SIOH
(4.226) KM = StoM = |°m Twx On lax n e |
L G2 g¢
Sp My sy Moy oo s, Mo ]
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with sﬁh denoting the elements of
(4.227) st= (8],

which are again functions of 4 . Combining (4.225) and (4.226}, we
can alternatively write for M;, using (4.31),

11 G
A 2.
(4.228) M =

Gl GG
My e ¥,
with the further definition
gh - _gh g B _ _gh pgh
(4.229) N =5 oK 3 =5V,

say. The symbol Vet is merely an abbreviation for the matrix prod-
uct it represents. There is no6 meaning, in the present context, in

- . gh . *
putting the matrices V&" together to form a larger matrix V. In
the special case that S, = IIK}]' M: goes over into M™* as defined
in (4.72), in which ¥f"= 0 for g #h.

Since H: changes from one iteration to the next, there is no
advantage in avoiding explicit use of ¢-coordinates. Likewise, in
solving for Aa} from (4.224), there is no greater advantage from
the use of the canonical form of the basic matrix &* than there is
in general from the use of any partitioning method for the inver-
sion of a matrix or the sclution of linear equations. The new el-
ement in the present situation, as compared with the application
of Fk'in the case of uncorrelated disturbances, is that now H:
does not partition into diagonal blocks. In principle, therefore,
we now have one high-order inversion job instead of X, lower-order
inversions — a situation such as was already encountered in the
Newton method in the case of uncorrelated disturbaneces (because L:
likewise does not partition). The main problem of computational
economy now is to find an efficient method of solving for Aaj
from {4.224) which takes advantage- of the special form of H:.

This problem again has not been systematically investigated by us.
The following considerations seem relevant.
Of the matrices entering into the definition of H;, those re-
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maining the same through all iterations are K, and &*. This sug-

gests that it will be advantageous to go as far as possible toward
the solution of Aay on the basis of these matrices alone before

the matrix S, specific to the nth iteration is brought into play.

One possible procedure would be to start from the matrices VE" as

basic material, developing functions of these matrices that facil-
itate the solution of Aay from (4.224) for all n. This method

would be similar to the partitioning method of matrix inversion,
N . *
although a complete inversion of ¥ may not be needed.

A perhaps more powerful method would be to utilize the common
origin of all V€ in N__on the basis of one initial inversion of

.} ox used in

(4.230) H11=35, 0K}

xx% '

followed by

(4.231) K1(s) = o/71(w) B 271(s),

[The evaluation of (4.231) may be facilitated by orthogonalization
of &(+).] This approach requires an economical method of finding
lf:_l if both K; and H;l(*) are available,

*4.4.9. Processes ph and ph modified by normalization. In
N
the derivation of the first-order maximum-likelihood conditions
(4.205)} from (4.203) we have not imposed any normalization on Aa
and A. If, alternatively, we had required that both 4, and A sat-
isfy the normalization rule {(4.197), A4, would have been restrict-
ed by

(4.232) vecrl] Ady, = 0,
and the first-order condition for a maximum would be éxpressed by

. - *ptr—-1 _ -1 4 X =9,
(4.233) (4.238,-1) [ qrectB T Iy gy - STAN)
(4.233,+1) a*{l] =[11 --- 1].

It follows from the homogeneity properties of the likelihood
function that (4.233) is equivalent to (4.205). However, the anal-
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ogous iterative procedures using A4, defined by

.
(4.234,-1) ) yvec*(Sy" a4y H,)

(4.234) 4 = e g ) < ST A Ky,

4.234,+1 x =0
L ( , ) Aﬂ-ol {1] y or

H

Aa, (A [1]a;)[1]¢* ,

are essentially different from those based on (4.206). For, even
if 4, satisfies the normalization rule (4.197), the solution A4,
of (4.206) cannot satisfy {4.234,+1) for all possible choices of
that row of each &% on which normalization is based. For if that
were so, Aaj and therewith AAj would vanish identically. In
general, therefore, the substitution of (4.234,+1) for an equal
number K, of the equations (4.206) leads to nonproportional changes
in the elements of the solution A4,.

It follows that the convergence properties of the modified
processes ph' ph based on (4.234) differ from those derived from

(4.206) and depend on what rows of & have been selected for nor-
malization purposes. We have not investigated the effect of this
application of the normalization rule {4.197) on the asymptotic
convergence properties. There is reason to believe that the effect
is not a radical modification. For, whatever value of k& is chosen,
the characteristic value [ = ( corresponding to the diagonal ele-

ments of B® = U B U in (4.220) connected with the scales of
the rows of A leads to £ = 1. There is therefore no alternation
or other unsteadiness in scales in the application of (4.206).
Thus, in the first approximation, the elements of Aaj determined
from (4.206) differ from zero only to an extent required for im-
proving the ratios of the elements of o in the next approximation

a}. Hence the fixing of certain elements of Aacj at the value

zero while relaxing an equal number of the conditions (4.206)
might somewhat retard, but need not destroy, convergence.
This point is important because the modification of P, through

normalization reduces by Ky the number of unknowns in Aa> to be
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determined in each iteration. The resulting saving of labor per
iteration may be considerable except possibly in methods based on
the initial inversion of ¥, for use in (4.230).

The computational arrangement for the modified processes ph'

¥, differs from that described earlier only in easily perceived
k, Y P

details,

4.4.10, Numerical tllustrations of Ial, P%, We have applied
]al and p_,,/‘ without normalization, and pl modified by normalization,

to the constructed example discussed before. As initial values we
have taken the result of the 6th iteration with pl in the case
where 3 was assumed to be diagonal. The lower cost per iteration
under that assumption is a good reason to apply it initially, albeit
only to get closer to the maximizing value 4 without restrictions
on Z. The results are shown in Table 4.4.10.

*4.4,41, The Newton method, All properties previously derived
from the general formulation (4,173) of the Newton method carry
over, of course, to the present case. All that is here required is
to derive new expressions for the first and second derivatives of
the likelihood function in the initial point 4,4, generalizing for-
mulae (4.178) and (4.179) of the previous case.

It will be remembered that the Newton method requires the ma-
trix of second derivatives of the likelihood function to be nonsin-
gular. As before, complete identification, and, as a new require-
ment, use of the normalization rule (4.197), are therefore now in-
dispensable. Instead of the previous formulation 4.172) we thus
obtain as the definition of the Newton method

% = o5 + agy,
(4.235)
(pp®) b = ~ppler 2% p) = O

Assuming again complete orthogonality (4.177) of &* (which is
compatible with any choice of one row of each ®f for normalization
purposes), we have from (4.203)

(4.236) [0, = (M)a*

—_ * =1 = ol
d[ }a“ = []vee {Bé I[Ky £] So~ 4, Hxx} .
1

- %
_ao



Method Tter-'| Row Matrices Bn Matrices S% Scale ,
ation Factors
n=| g= k=1 2 3 h=1 2 3 nig,g+s
{1) (2) (3) (4) (5) {6) (7 (8) (9 (10)
0 1 b.OOOOO 0.97020 4.17885 0.19385 0.08535 -0.02277
2 1.00207  0.00000 -2,99581 0,08535 0.20000 0.08700
3 -2.04599 0.96553 0,00000 | —-0.02277 0.08700 0.29509
pl 1 1 0.00000 0.99521 4.04308 0.19834  0.09630 - 0,00515 1.00140
. 2 0.99144  0.00000 —2.97534 | 0.09630 0.19674 0,09717 | 1.05436
vithout 3 ]-2.01349 0.99600 0.00000 |-0.00515 0.09717 0.29990 | 0.99498
normalizaticn
2 1 0.00000 0.9985%2 4,00812 0,19958 0.09919 -0,00103 0.99753
2 0.99789 0,00000 - 2,99534 0.09919 0.19929 0.09948 1.00128
3 -2.00275 0.99930 0,00000 |—-0,00103 0.09948 0.30000 0.99882
3 1 0.00000 0.99976 4.00157 | 0.19990  0.09982 —0.00021 | 0.99937
2 | 0.99951 0.00000 -2,99918 | 0.09982 0.19986 0.09991 | 1.00012
3 |-2.00058 0.99989 0.00000 {—0.00021 0.09991 0.30001 | 0.99970
Teue 1 0, 00000 100000  4,00000 0.20000 0,10000 ©.00000
Values 2 1,00000 0,00000 - 3,00000 0,10000 0.20000 0.10000
3 —2,00000 1,00600 0,00000 |-0.00000 0.10000 0.30000

'As deseribed in section 4.4.8, no normalization has been imposed as part of the computation of each

iteration regult from the preceding iteration resalt.

See, however, note 2.

2 : . . . . s
For the purpose of comparison of successive iteration results, each iteration result has been re-

normelized by @,, = 8, = Oog =

1 before being entered in this table.

Column {10) gives values

of an’14, an,25' an,36 obtained, before such re-normalizatien, by one application of F& (without

normalization) to the matrices B‘n-l . Sn--l as stated in the table.
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Method Iter- | Bow Matrices Bn Matrices Sn Scale 4
ation Factors
n= = k=1 2 3 h=1 2 3 Cr;p, g3
(1) (2) (3} (4} {5) {6) (7 (8) (9) {10)
0 1 0.00000 0.97020 4.17885 0.19385 0.08535 ~0,02277 1.00000
2 1.00207  0.00000 - 2.99581 0.08535 0.20000 0.,08700 1.000C0
3 —2.04569 0,96553 0.00000 |~0.02277 0.08700 0.25509 1.00000
pS/ 1 1 0,00000 1.00146 4,00914 0,20059 (.09890 0.00002 1.00140
4 2 0.98878  0.00000 -—2.97022 0.09890 0.19595 0.09957 1,05436
without X 3 -2,00537 1.00362 0.00000 6.00002  0.09957  0,30200 0.99498
normalization” | o 1 0.00000 0.99944 3.99793 | 0.19978 0,10020 0.00000 | 1.00215
2 1.00258 0.00000 —3.00778 0.10020 0.20104 0.10020 0.99025
3 -1.99864 0.99936 0.00000 0.00000 0.10020 0.29961 1.00302
3 1 0.00000 1.00013 4,00054 0.20005 0,09995  0.00000 0,99947
2 0.99935 0.00000 —2.99806 0.09995 0.19974 0.09995 1.00263
3 —-2.00034 1.00017 0.00000 0.00000 0.09995 0.30010 | 0.99934
True 1 0.00000 1.00000 4.,00000 6.20000 0.10000 0,00000
Values 2 1.00000 0.00000 —3,00000 0.10000 0,20000 0.10000
3 =2.00000 1.00000 0.00000 0.00000 0.10000 0.30000

1ss described in section 4.4.8, no normalization has been imposed as part of the computation of cach
iteration result from the preceding iteration result, See, however, note 2,

2For the purpose of comparison of successive iteration results, each iteration result has been re-
normalized by a,, = @,; = @,, = 1 before being entered in this table. Column (10) gives values

of Ty, 140 O 250 P36 obtained, before such re-normalization, by one application of ]95/4 (without

normalization) to the matrices Bn 10 S

n-1 @8 stated in the table.
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Method Iteration | Row Matrices Bn Matrices Sn
n = g= =1 2 3 h=1 2 3
(1) (2) (3) {4) (5) (6) N (8) (%
0 1 0.00000 - 0.97020 4,17885 | 0.19385 0,08535 —0.02277
2 1.00207 0.00000 -2.99581 | 0.08535 0.20000 0,08700
3 —2,04599 0.96553 0.00000 ;—0,02277 0,08700 0.29509
Fﬁ 1 1 "0.00000°  0.99331  4.03780 | 0.19760 0.09666 — 0.00542
o 2 0.99910 0.00000 —3.00006 | 0.09666 0.19986 0,09740
modified by 3 | —2.00830 0.99236 0.00000 {—0.00542 0,09740 0.29796
normalization
2 1 0.00000 0.99772 4.00567 | 0.19911 0.09911 —0.00126
2 0.99923  0.00000 —2,99997 | 0.09911 0.19987 0.09938
3 —-2.00071 0.99768 0.00000 |-0.00126 0.09938 0.29915
3 1 0.00000 0.99931 4,00083 | 0.19973 0.09976 —0,00031
2 0.99973  0.00000 —3.00002 | 0.09976 0,19996 -0,09984
3 | —1.99991 0.99931 0.00000 |—0.00031 ©0.09984 0,29972
1 0.00000 1.00000 4.00000 | 0.20000 0.10060  0.00000
True 2 1,00000 0.00000 -3.00000 | 0,10000 ©,20000 0.10000
Values 3 —2,00000 1,00000 0,00000 0.00000 0.10000 0.30000

as described in section 4.4.9.
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Method Iteration Row Matrices Bn Matrices Sﬁ
n= g= k=1 2 3 k=1 2 3
(1) (2) (3) (4) (5) (6} 0 (7) (8) (9)
0 1 0.00000 0.97020 4.17885 | 0.19385 (.08535 —0.02277
2 1.00207 0.00000 ~2.99581 | 0.08535 0.20000 ©.08700
3 |-2.04599 0.96553 0.00000 |-0.02277 0.0G8700 0.29509
Pi/ 1 1 0.00000 0,99909 4.00254 | 0.19964 0.09950 — 0.00038
4 2 0.99835  0.00000 —3.00112 | ©0.09950 0.19983 0.09999
modified by 3 |~1,99888 0.99907 0.00000 |-0.00038 0.09999 0,29952
. .1
normalization™ 2 1 0.00000 0.99972 4,00037 | 0.19995 ©.09997 - 0.00003
2 0.99963  0.00000 —3.00031 | 0.09997 0.20000 0.09999
3 | =1.99973 0.99975 0.00000 |-0.00003 0.09999 0.29996
3 1 0.00000 0.99997 .3.99998 | 0,20001 0,10002  0.00002
2 0.99999  0.00000 —3.00002 | 0.10002 0,2000L 0.10000
3 [ -1.99998 0.99998 0.00000 | 0.00002 0.10000 ©.30002
1 0.00000 1,00000 4.00000 | 0.20000 0.10000  0.00000
True 2 1,00000  0,00000 —3,00000 | 0.10000 0.20000 0.10000
Values 3 |-2.00000 1.00000 9.00000 0.00000  0.10000  0.30000

1As described in section 4.4.9.
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Furthermore, because Aﬂg’[l] = 0, we obtain
(apqap) b = 4—2
A[I]ao [l] [ E d(A ) {(A[I]ao) [I]LU (ﬁ[ ]aﬁ )}
{4.237) L ]
— E d -® * a’*
ok :;E;E:;EES_ (Aag Ly Aal’).

Combining (4.235), (4.236), (4.237), and the definition (4.208) —
(4.209) of L;, we obtain

(A[l]a;) [l]L; = [11vec‘{— (87! aB! B;™} 0]

+ Syl(4, K a4y + DA K, ADSTT ALK,

xx 0
(4.238)

- St a4, M}

. vec*(—Bé_lIK 71 Tt SJIAO }!xx)-
(1] (£, £,]

as a formulation of the Newton method adapted to computational use.
The middle member of (4.238) serves to define [I]L: through

(4.239) a4y = mat” {(A 8*}).

[1] % (1]
The repeated evaluation of EI]L; from (4.238) and (4.239) and
its inversion (or other method of solving for A[l]a; ) are labori-

ous. The problem of how to take advantage of the regularities in
[11L; for its inversion also appears more formidable than in the

case of ph where only H; as defined in (4.225) needs to be inverted.
*4,.4,12. Numerical experiment with the Newion method. A numer-

ical experiment in which (4.238) was applied to the constructed ex-
ample discussed earlier with the (least-squares) initial value 4,
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used in Teble 4.3.4.4 did not produce convergent results, in con-
trast with the modified Fi, as defined by (4.234,- 1), which led to
convergent iterations from the same initial value. We have not re-

peated the experiment with the (closer) initial value used in Table
4,410,

*4.4.13. Estimated sampling variances and covariances of the
estimated coefficients By pe It follows from Theorem 3.3.10 that

(62800 excl{(gert = et = ) == g ()

defines consistent estimates of the sampling variances and covari-
ances of the estimates [1]a* of the parameters [1]af. Their eval-

uation requires inversion of the matrix [I]L; computed from the

final value 4 with which iterations are terminated, If this is
done from a value 4 obtained by a method other than the Newton
method, a check on 4, is obtained at small extra cost by employing
([l]L;)_l for one more iteration by the Newton method.

If estimated sampling variances and covariances of the esti-
mates [l]a*’ S of all parameters [l]af, 2 are desired, it is nec-

essary to operate with the second-derivative matrix of the origi-
nal likelihood function L(4, B) defined by (4.199). Denoting by

o = [%1 Gyjg +++ Oig Tpp --- Oyg -+ %G]
(4.241)

= vec I

a row vector containing all independent elements of £, we have for
any direction 63 = 8E' of variation of Z

dL(a, B) 5o’
da

_ 1 - -
(4.242) =-3 (2168 (7 - & AN AN},

We introduce the notaticnal definition
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8* 8?
* * ]
a[l}ﬂ-’ 3[1](1 3[1]01.’ 80'
L{a, ©)
82 Gk
8o’ Bu* 8c' 8o A=4
- - n=3
(4.243)
Wit e |
= = L.
[1] (’}'* L(;' g

Then, if SaEI] = 0, we have from (4.242) and (4.202), after using
(3.16) and (3.19),
6[1]0,*'[11]5*‘5[1]02'* = tr{- (B'—l 5..4')2 - 871 54 Hxx BA'} ,
* € aol — -1 -1 r
5,0%" [uyle 857 = er{ST e ST AN 84),

o

(4.244) bs B3, 80t = - 5 ex(S7 o3)?,

where s is defined analogously to ¢ in (4.241). These formulae
serve to evaluate L. The desired sampling covariances are now ob-
tained from

([l]a.r* _ . a’*)

est € [([l]a* “E) G- a)]

(4.245)

possibly by the partitioning method of inversicn already quoted
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[Hotelling, 1943 -A, p. 4]. Of course, the matrix [1]L*h1 inverse

to the matrix [1]L* defined by (4.238) is a principal submatrix of

L7 located in the upper left corner.

4.5. Concluding Remarks

4.5.1. Naoture of the concluding remarks. In this concluding
section 4.5 we shall first make rough comparisons between the costs
of computation in the various methods discussed. These compariscns
will give occasion to recall certain problems of matrix computation
which have not been investigated by us and to make some remarks on
suitable methods for the various matrix inversions required. Sec-
ondly, we shall indicate a possible generalization of the restric-
tions on A. Finally, we shall draw attention to important problems
connected with the number and nature of different maxima of the
likelihood function which require sclution before full reliance can
be placed in the methods developed.

4.5.2, Uncertainty in computation costs. A good measurement
of computation cost regquires counts of the number of operatiens in-
volved (initially and per iteration), distinguishing additions,
multiplications, and divisions, and indicating the number of deci-
mals required in intermediate steps for a. given decimal accuracy in
the result, If such measurements were available, cost comparisons
would still depend on insufficiently known relative speeds of con-
vergence per iteration. However, even initial cost and cost per
iteration cannot be measured by the counts indicated because in ap-
plications to economic equation systems so much depends on the pre-
cise form of the basic matrix &*. In addition, there is still con-
siderable uncertainty about the most economical method of inversion

. . - . * . -
or solution of linear equations in cases where & is already speci-
fied.

4.5.3. Cost comparisons between various methods. For these
reasons we shall confine ourselves to setting out in Table 4.5.3 in
a comparative fashicn the main features of each method affecting
cost of computatien. In reading this table, which requires refer-
ence to earlier forrmlae for detailed comparisons, it must be re-
membered that the inversion of a matrix of order ¥ involves a num-
ber of operations proportional to ¥° and that the multiplication of
an ¥, X N, -matrix into an ¥, X ¥, -matrix requires ¥ ¥, N, muleipli-
cations and an almost equal number of additions.
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constant in iterations, Hence {(a}
a.;n can be eliminated, and (b) the
required extent of the inversion of
H¥*" and the transformations B =
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The relative cheapness of Fﬁ and Fﬁ in the case of uncorrelated

n

disturbances stands out clearly from this table. Not only can ¥**
be inverted (to the extent required) once for all iterations, but
its partitioning into diagonal blocks greatly reduces the amount of
work involved in that inversion. Precise comparisons between the
remaining three methods (entries BI, AT, BI of the table) are
made difficult by the uncertainties already menticned. The general
inference can be made that each transition, either from method A to
method B within the same case; or from case I to case II within the
same method, leads to a considerable increase in cost of computa-
tion.

4,5.4. Methods of inversion, If we include the computation of
sampling variances and covariances of estimated parameters a”, the

. - g Tlp = * *
inverse of each of the matrices B,, S,, [py pp¥°. Ly, M7, {l]L"-’

is required in at least one of the methods or cases. The problems
encountered in taking advantage of the regularities in the defini-
tions (4.186), (4.225) and (4,208) - (4.209) of the last three of
these matrices have already been mentioned. Here we only point to
the importance of these problems for the methods discussed, and to
their inherent mathematical interest. Our further remarks are di-
rected to those inversions where such "“advantages” are not present
or are not real advantages in the sense that their exploitation is
not worth the cost. This will often be the case in computing the
relevant submatrices of OVE)_l, which could all be derived from
one larger-order inverse H;i with the help of orthogonalized basic
matrices &°.

Five of the seven inversion jobs listed have to be repeated in
successive iterations. This places a premium on iterative methods
of inversion since, for instance, S;il can serve as initial value
for the iterative inversion of S . Iterative methods for inverting
matrices have been discussed by Hotelling [1943 -A, especially par-
agraphs 5,7, 9, 10]. When such a method is applied, the approxima-
tion to S;? must not be pushed beyond a certain level corresponding
to the degree of approximation to 4 expected to be reached by 4, ,,.
A certain balance between the frequency of iterations in the vari-
ous parts of the whole calculation should thus be preserved.

The inversion of B, may offer special opportunities for econom-

ies because usually many of its elements are prescribed to vanish.
In such cases it is advisable to permute the rows and the first K5
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columns of A (i.e., structural equations and dependent variables,
respectively) so as to bring B as nearly as possible into triangu-
lar form. Partitioning of B according to (2.82) will be noticed
as a by-product of such analysis. If the corresponding partition-
ing {2.82) of T is not assumed, the partitioning (2.82} of B still
facilitates the inversion of B . In cases where permutation of
rows and columns can only produce a compact block of zeros in the
southwest cormer of B that does not extend to the main diagonal,
considerable savings will still be encountered in any of the vari-
ants of the Doolittle method applied to the inversion of Bn.

4,5.5. Generalization of the restrictions on A. The formulae
for all methods discussed admit, without serious complications, of
a generalization of the restrictions on A which has already been
mentioned in earlier sections. This is the restriction (2.73x)
requiring two pairs of coefficients occurring in different struc-
tural equations to have the same unknown ratio. In combination
with suitably chosen normalization rules, such a restriction can
be given the linear form

(4. 246k) o, =a , =1,
(4.246) &% &5
(4.2461) 1 " %y =0

which differs from restrictions considered earlier only in that
elements of different rows of A enter into the same restriction
(4.2461). The treatment of restrictions of the type (4.246k) has
already been demonstrated above. A restriction of the type
(4.2461) can be introduced into the various iterative procedures
by incorporating in 8", as defined by (4.31), the row

[0(1) s Og - 1) olg) Olg +1)
(4.247)

Mg -1) olg) O+ ... o) |
with
we,) = [01 0%—1 1 011+1 0& ]v
(4,248)
olg,) = [0, - Opr 104 Oy .
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where the zeros in (4.247) represent vectors of order K, whereas
the zeros in (4.248) represent scalar components. This new row
makes @ different from all the " previously considered. Previ-
ously 3" was a matrix w1th van:.shmg elements except in the diag-
onal blocks occupied by (I> ) e G, where &° expressed restric-
tions on the parameters of the tth equation only. It will be clear
that the number of restrictions (4.246) that can be expressed in
this manner is limited by the fact that only one normalization rule
can be imposed on each structural equation. The only computational
complication arising from the presence of rows like (4.247) in &
is that ¥* partitions into fewer and larger diagonal blocks.

4.5,6., Unsolved problems in distinguishing the highest maximum
of the likelihood function, An important class of unsolved prob-
lems, presumably requiring methods quite different from those here
employed, is connected with the question of how to make sure that
any maximum of the likelihood function found is the highest maxi-
mum or, if possible, of how to ensure by choice of initial values
that iterations will converge to the highest maximum. Of course,
the theory of the asymptotic properties of the maximum-likelihood
estimates @*, S has approximative value only if the highest maximum
is well above the next highest. But how will proximity of the two
highest maxime be recognized? Will it necessarily be revealed by
high sampling variances of the estimates?

The condition

{4.249) det B = 0

divides the space of the elements gy g, h=1, ..., Ky, into two
connected regions. The logarithmic likelihood function

(4.250) L(A) = const + log det B — % tr AN A

in the case of uncorrelated disturbances approaches — = whenever
B approaches the boundary (4.249) of the two regions. It follows
that, whatever the linear restrictions on A, there are at least two
maxima of the likelihood function (4.250). Under linear restric-
tions that are more than adequate in number and variety for com-
plete identification of the structural equations, many more maxima
can be expected to arise: there will be at least one maximum for
each connected part of the restricted-parameter space cut cut by
the condition (4,249}).
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In the case where I is unrestricted, no difficulties arise in
the subspace of the parameters I because the positive definiteness
of I precludes the passing of a border analogous to (4.249), and
for a given A only one maximum (4.200) with respect to T exists.
Further discussion can therefore be based on the function (4.201)
which we rewrite as

L(A) = const + log det B — -% log det AN __ &'
{4.251) = const — % log det Bl a Mxx A’ il
-I
- 1 (£,]
= const — 5 log det [—I[Ky] H[nyz]] Hxx Y .
Uy g
(5 £]

This function will still approach — « if B approaches a point B,

on the boundary (4.249), provided I' does not simultaneously approach
a point [y such that II[X r) has a finite limit. It is easily
y 2

seen that, if the point A approached by A is finite, H{H r] °an
¥z

remain finite only if A4 is of rank X - 1. Points 4 of this
character form a ‘bridge” across the bamdary (4.249) which may com-
plicate the analysis of the number of maxima under linear restric-
tions on A.

These remarks may suffice to indicate a class of difficult
problems, the solution of which is vital to the computation meth-
ods here developed. Pending a systematic attack on these problems,
the best one cen do is to accumlate “practical” experience by
trying out various alternative initial values in order to learn
from what range of plausible initial values the same maximum is
approached.

4.5.7. Choice of initial values 4;. The single-equation
least-squares estimates for various choices of “dependent vari-
ables” in each equation, obtained anyhow as a by-product of the
preparations for the simpler ones of the iterative processes dis-
cussed, would seem to be suitable material for such experimenting,
1f divergence of iterations or convergence to a different maximum
for different least-squares initial values occurs frequently, or
even occasionally, it will be an important problem to find initial
values as near as possible to the highest maximum of the likelihood
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function. In the case of unrestricted %, probably the best possi-
ble initial values for that purpose are obtained by the reduced-
form method developed by Anderson and Bubin! While more costly
than the least-squares estimates, the reduced-form estimates are
superior in that they are consistent estimates. They are, moreover,
maximum-likelihood estimates under sacrifice of an amount of a pri-
ori information that is perhaps in some sense the minimum sacrifice
consistent in general with direct (i.e., noniterative) methods of
computation. If so, these estimates are in a sense the nearest one
can get to the highest maximum of the likelihood function by direct
methods. They may, however, be less economical than least-squares
estimates in cases where no doubt exists as to the identity of the
highest maximum of the likelihood function. An intermediate choice
is given by the maximum-likelihood estimates with diagonally re-
stricted I, using all a priori information relating to A, and de-
termined iteratively., These estimates are, of course, not consist-
ent if T is actually nondiagonal.

1gee [1x].
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T. C. Koopmans and H. Rubin have discussed the problem of iden-
tification of economic relations in [II - 2], and have obtained a
number of very interesting results. In this note the problem
treated by Koopmens and Rubin is somewhat generalized and a differ-
ent approach to its solution is briefly discussed.

1. Definitions and Formulation of the Problem

Let x,, ..., ¥y be a set of ¥ variables' and let 4 = [o'gk]
g=1, ..., 6, k= l'i“' K) be a given matrix of rank G. De-

note the linear form ’e@l LT by I’g (g=1, ..., G) and let
=1 O ] (g, k=1, ..., G) be a given symmetric and positive
definite matrix. Furthermore, let

(1.1) ‘Pr(“.ll’ Gygr +=vs gy Opps Olgs ves O'GG) =0

(f'= 1! LR R)

be a given system of equations, called a priori restrictions, that
are satisfied by the quentities g and Ogh For any nonsingular

matrix Y= [ Vg, ] (. Ah=1, ..., G} we shall denote the matrix
YA by A(Y) and the elements of A(I‘G) by otgk(l') =1, ..., G;

E=1, ..., £). Thus, or.gk(l') = hgl Vgh %k Furthermore, we shall

he integer I corresponds to what was denoted £ in [II] .

238
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denote the matrix T 2 Y’ (Y’ is the transpose of Y) by Z(Y) and
the elements of Z(Y) by crgh(l') (¢, k=1, ..., G). Finally,

G
the linear form hgl Ughlh will be dencted by LE(T )5

DEFINITION 1.1. A nonsingular matriz Y = [ Veh 1 (g k=1,

.v., G) is said to be an admissible transformatior if and only if
the equations

g lay (X)), a,(T), ..., e (Y},

(1.2)
0'11(1‘): 0-12(T)' reey O-GG{T)} =0

are fulfilled,

DEFINITION 1.2. An element g of the matrix A is said to be
identifiable' if o LX) takes only a finite number of different
values over the domain of all edmissible transformations Y. Sim-
tlarly, an element G,y 0f B is said to be identifiable if Ggh(l')

takes only a finite number of different velues over the domain of
all admissible transformations Y,

DEFINITION 1.3. The linear form I’g is said to be identifiable

if the coefficients o rrer gy are identifiable.

gL’
The matrix A has GK elements and the matrix @ has (G* +G)/2
elements. Thus, the total number of elements in the two matrices
Aand ¥ is equal to GK + (G} 4+ G)/2 = P (say). Consider the
elements of 4 and I arranged in an ordered sequence and denote
them by ., ..., BLD, respectively. The set @ = (81, DN GP)
can be represented by a point in the P-dimensional space, called

parameter space. For any nonsingular transformation Y we shall
denote the point (91(1'), . OP(T)) by e(Y).

DEFINITION 1.4, A coordinate 8, of a point 0 will be said to be
locally identifiable if there exists an open set & containing 6
such that for any admissible transformation Y either ef,(r) = 9y
or 8(Y) lies outside w.

Iihis concept corresponds to what was called multiple identifiability in
[11-2.4.4].
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The problem considered in this note is to formulate conditions
under which a coordinate % of a point © of the parameter space is
identifiable or is locally identifiable.

2, Two Lemmas

In this section we shall prove two lemmas which will then be
used for deriving necessary and sufficient conditions for the iden-
tification of Gﬁ‘

Consider the quadratic form

G ¢
— gh
(2.1) r=3 Xof iy,
k=1 pg=1
vhere [cgh] is the inverse of {Ugh]. Let £,, (k, L =1,..., 0

denote the coefficient of x,x; in X, For any nonsingular trans-
formation T we shall put

¢ G
(2.2) Xx) = 20 2ZofM(r)ilr)elr),
A=Y g=1 4

where [ PR L0 1 denotes the inverse of [ Ugh(T) ]. We shall denote
by £,,(Y) the coefficient of x,x; in X(Y).

LEMMA 2.1. For any nonsingular transformation Y we have Ej (Y)
=g, G L=1 ..., K.

Proof: Denote by I the row vector [ll - lG]. Using matrix
notation we can write

(2.3) =131y
and
(2.4) XY = 1(0) 37N (Y,

where L/ is the transpose of ! and £ is the inverse of Z. We
have

(2.5) r(xy = x 17,
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(2.6) | Yy = 1y,
and
(2.7) 2 Hy) = vyl g7l oyl

Hence, from (2.4} — (2.7) we obtain
(2.8) Yy =1y yltytylyp =13l =1,

and Lemma 2.1 is proved.

let @% = I(GI, . 6;) be a parameter point different from 8
and denote by l;, X*, and g;l the expressions we obtain from lg-' X,
and &,,, respectively, by substituting 6 for 6. Now we shall
prove the following lemma.

Lemma 2.2. If 0" is o point such that £}, = &,; (k, L =1,
k), then there exists a nonsingular transformation Y such that

sy

(2.9) gr; = E,(0) (, 1=1, ..., ).

Proof: From E:,l, = E,; it follows that X" = X identically in %y,

Xy Thus we have

2100 17 = XM =3 FoL 1, =X,

Since L,, ..., L are independent linear forms and since [Ugh]
is nonsingular, the rank of the quadratic form X is equal to G.
Hence, the rank of X* is also equal to G and, therefore, LI, cens lz

are independent linear forms. From this and (2.10) it follows that
ecach linear form l; is a linear combination of the forms I,, ..., I,

Hence there exists exactly one nonsingular transformation T such
that

(2.11) Lg(r) = L; (e=1, ..., G).

From Lerma 2.1 it follows that

(2.12) 2 = X,
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From (2.10}), (2.11), and (2.12) we obtain

(2.13) PIDILUCORIENETD I I LMy I

Hence

(2.14) oftr) = o*EF @, k=1, ..., 6),

and, therefore,

{2.15) O'gh(Y) = c;h (g, n=1, ..., G). 1

Since (2.11) implies that aglér) = aZh' Lemma 2.2 is proved.

The coefficients &, (e, 1 =1, ..., k) depend, of course, on,
the parameter point 6. To make this evident, we shall occasionally
replace E,; by £,;(8), and E,,(Y} by £,,{6(X)}. Since g,,{6(Y)} =
gkl(e), we shall say that the functions gkl(e)areinvariant under
nonsingular transformations T,

Let F(8) be a function of 6. We shall say that F(8) i1s invara
iant under nonsingular transformations if for any nonsingular
transformation T we have F{8(Y}} = F(8). Clearly, if F(8) is a
function of E,,(8), 512(8), e, EKK(G)’ then F(8) is invariant
under nbnsingular transformations, We shall show that the converse
is also true. Let F{0) be a function such that F{e{Y)} = F(8) for
all nonsingular transformations Y. Suppose that F(8) is not a
function of g,,(8), E12(0)) «ou, gEK(e). Then there exist two
points 8'' and 8’’’ such’ that

(2.16) £y, (671) = £, (0777) (b, 1=1, ..., )
and
(2.17) F(ert) # F(e''").

From Lemma 2,2 and (2.16} it follows that there exists a non-
singular transformation Y such that

(2.18) 8t (r) = o',
But then
(2.19) Fe'") # Fle''(x)},

which contradicts our assumption about F{6). Hence F(8) must be a
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function of gll(e), Eyp (8}, ..., EKK(G). Thus, the functions
£,,(8), E;(8), ..., Ezp(8) form a fundamental set of invariants.

3. Necessary and Sufficient Conditions for the
Identification of a Coordinate A of a Parameter Point 8

Let 0 be a parameter point satisfying the a priori conditions
(1.1). And further, let 8" = (9;, . e;) be an unknown parameter
point and consider the equations in ©*:

(3.1) £,,{8") = E,,(8) k, L=1, ..., 0
and
(3.2) q%(e*) =0 (r=1, ..., ) (a priori conditions).

The following two theorems are immediate consequences of Lemmas

2.1 and 2,2,

THEOREM 3.1. A necessary and sufficient condition that 6, be
identifiable is that the equations (3.1) and (3.2) in the unknowns
68, ..., Op should adnit of only a finite number of solutions for

*
Bp-

THEOREM 3.2. A necessary and sufficient condition that 8, be
locally identiftiable is thet there exists a finite neighborhood w
of 6 such that for any solution 8" in w of the equations (3.1} and
(3.2) we have 9; = 0.

In what follows in this section we shall assume that the R equa-
tions (3.2) have unique solutions in ¥ unknowns, i.e., in K coordi-
nates of 6*. We may assume without loss of generality that these
R coo?dinates are the las? ones, i.e., Op_p4q, --., 0p. Thus,
equations (3.2) can be written as

(3.3) e;; = \pp(e;, ceey Opp) p=P-R+1, ..., P).

We shall assume that the functions y, admit of continuous first-
order partial derivatives. For any parameter point @ = (91, ceey
0p) in the P-dimensional parameter space we shall denote by & the
parameter point in the (P — Kj-dimensional space obtained from 6
by omitting the last K coordinates, 1.e., 6 = (81, ey OPFR)'
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Denote by Ekl(-e-) the function we obtain from gkl(e) by substituting

qu,(é) for 8, () = P=-R+1, ..., P). Then the system of equations
(3.1) and {3.2) is equivalent to the system

(3.4) E,; (8") = E,,(® (b, L=1, ..., K)
and
(3.5) e; = %(é*) (p=P-R+1, ..., P

Denote the (P — R)-dimensional parameter space by §. For any
point 8 of © we shall denote by A(8) the Jacobian of the functions
£,,8), E;4(8), ..., Eg4(B) taken at the point 6. A point 8 of Q
will be called regular if the following condition is satisfied:
Any minor of the Jacobian of the k% + P— £ functions Ell (8),
B1p(®), ..., Byy(®), 48) =0, (p=1, ..., P~ R) is either un-
equal to zero at © or 1is identically zero in some finite neighbor-
hood of 8.

THEOREM 3.3. Let 8° be a regular point and denote by &,(8)
the Jacobian of the % 4+ 1 functions Eu(é), Em(é), cen, EXX@)'
dﬁ(g) = 6, for any value of p satisfying p < P— K. A necessary
and sufficient condition that Gp be locally identifiable for any

point 8 in a finite neighborhood 8% is that the rank of A(8%) be
equal to the rank of Sﬂ(éo).

Proof: Since 8 is a regular point, a necessary and suffi-
cient condition that 515 be a single valued function of E,,(8),
512(6), . EH(E) in a finite neighborhood of 8% is that the
rank of A(8%) be equal to that of Bp(ﬁo). Thecrem 3.3 follows
from this and the fact that the functions £,,(8), £,,(6), ...,
EH(E)') form a fundamental set of invariants.
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B 1. Introduction

1.0. A model® may or may not possess the property of being
structure-identifying (or, for briefness, identifying). When the
model is not structure-identifying, no amount of empirical infor-
mation will make it possible to determine the structure® of the
system under investigation. Thus 1t is desirable to deal with
identifying models when the knowledge of the structure is needed;
this need frequently arises when forecasts for policy purposes are
to be made.

There are several kinds and “degrees” of identification power
Totally unique identification power {“totally” is usually omitted)
jmplies that if an infinite sample of observations were available
at most one structure consistent with the model can be made to

part of the work on this paper was done in 1945 -46 during the author’s
tenure of the Guggenheim Memorial Fellowship.

Thanks are due to Tjalling Koopmans and Herman Rubin for valuable sugges-
tions,

2Say a particular theory of the “business cycle.”

3I.e., the set of numerical values of the parameters characterizing the
model; e.g., the numerical values of the marginal propensity to consume
or of the effects that profits may have on investment, etc.

4An identifying model is said to possess identification power.

245
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“fit” a given set of observational data; in a finite sample only
one “best (in some given sense) fit" (estimate) consistent with the
model is possible. When more than one structure is compatible with
the observed data, it will, in general, so happen that all struc-
tures compatible with a given set of data will have a certain prop-
erty in common! Then the model is said to be uniquely identifying
with regard to that property. In such a case we speak of partially
unique identification power of the model, unless the model is
uniquely identified with regard to all its properties so that total-
ly unique identification power, as already defined, is present,

A model lacking unique identifying power with regard to a given
property may nevertheless possess complete identifying power with
regard to that property if the set of structures compatible with
any given data is finite or, at worst, denumerably infinite,

In what follows these concepts are defined in a more rigorous
manner; a partial summary is given in section 7. ‘The definitions
given differ from those found elsewhere? in that they are independ-
ent of the nature of the models and the structures involved., In
particular, linearity of the “structural relations” and the normal-
ity of the disturbance distribution are not assumed in the present
paper? It is not necessary that either the structural relations or
the disturbance distributions should have a parametric form. In
fact, the definitions given would apply to situations where struc-
tures are defined in terms other than those of “structural rela-
tions” and disturbance distributions.

One may hope that these generalizations will be of some help in
clarifying the logic of the identification problems; they are not
a substitute for the study of conditions under which specified mod-
els of practical importance possess one of the various types of
identification power.

2. Structures and Models

2.1.1. The cumulative probability distribution G of the ob-

1E.g., just the consumption functions may be uniquely determined, but not
the investment function; it might even conceivably happen that the effect
of income on consumption should be identified, but not the effect on con-
sumption of the assets held.

2g.g., [11-2].

Mllustrative examples have, however, been provided which are based on
normal linear, hence parametric, systems. This may facilitate the task

of relating theory and results already in existence to the generalizations
of this note.
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served variate {vector) x may be regarded as produced by an opera-
tion (usually a transformation) & performed on the distribution F
of the (nonobservable) disturbance (vector) u, i.e,.

(1) ' G=9 s F.

2.1.2. As an illustration, consider the usually treated para-
metric case where o is a linear transformation and F (hence also G)
is normal, Adopting two simplifying assumptionsf viz., that the
mean of % 1s zero and that the predetermined variables are absent,
one may in this case represent ¥ and G by their respective covari-
ance matrices 1% and T* while & is represented by the inverse A
of the structural coefficient matrix® A. We then have, as a counter-
part of (1), the equation

(1") 2% = a7l p¥ (g71)r,

where ©* is produced by performing the operation AL KAy
on 2%, [The operation consists in premultiplying by A™' and post-
multiplying by (471)'.]

2,2, It will be noted that (1) does not require a parametric
representation for F, G, or O. It is sufficient that F and G
should be functions of ¥ and x, respectively, and that these func-
tions should belong to the class of distribution functions.

S may be any well-defined operation carrying one distribution
function inte another.

u and x need not be of the same dimensionality?

2.3. We shall refer to
(2) S = (F3)

as a structure. An a priori postulated class & of structures § that is

1The theory developed in this note is not subject to these restrictions,

In particular, it is valid for systems containing fixed variates as well
lagged endogencus variables.

2In terms of operations on variables (rather than on distributions) we
have Ax = u, or, if the transformation need not be linear, &(x) = ». In
the latter case O is represented by @-1. This is the symbol used in {1].

SWhen the dimensionality of # exceeds that of x we are, except for trivial
cases, dealing with nopadditive disturbances. Cf. [XVIII].
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a proper subset of the class & of all structures is called a model!

When (1) holds, the structure S, as defined in (2}, is said to
generate the distribution G (written § :. G); G is then said to be
generated by S (written G .: S).

3. Structural Estimation and Identification

3.1. 'The process of structural estimation consists in estimat-
ihg G and then obtaining S generating that particular G. (The two
stages may be combined into one computational process.)

In general, more than one structure generating a given G can
be found. Hence structural estimation would lead to a class of

structures, say B, containing all structures S that could have
generated the given G. However, when certain additional assump-
tions are made with regard to S - these are the “identifying re-
strictions” — the class G, may be narrowed down to a proper subset
©go of ©. (If the identifying restrictions exclude a priori all
structures not in &, say, we have Gy = §,6.) When Gy is de-
numerably infinite or contains a finite number ¥ of elements, we
speak of complete identification power of the model: unique iden-
tification power if ¥ = 1, multiple if ¥ > 1; when &, is nonde-
numerable, we speak of incomplete identification power.

3.2.1. The nature of the additional (identifying) assumptions
mentioned in section 3.1 will now be stated and a more explicit
definition of identification power provided.

3.2.2. The identifying assumptions postulate that the struc-
ture S which has generated a given G belongs to a certain class
of structures?

The elements of G, may be distinguished from those of comp©,
= G- 6, {(where © is, as before, the class of all structures)
through restrictions on F, S, both F and &, or, more generally,
through a relation to be satisfied by F and 9. In the parametric

1Thus a structure is defined by one completely specified distribution F
and one completely specified cperation 3. In the parametric case treat-
ed above, section 2.1.2, the structure is given if both matrices E¥ and

A are numerically given. On the other hand, postulating, say, zeros in
certain parts of either matrix without restricting other elements of
these matrices defines a whole class of structures, i.e., a model.

2Thus, by a previous definition, 61 is a model,
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case used for illustrative purposes (cf. section 2.1,9) restric-
tions are imposed on 4, L% or both,

4. Fundamental Definition of Identification Power of a Model

We shall now define the class @, of all G's generated by the
elements of &, (the class of all structures not excluded by the

identifying restrictions as defined in the preceding section), so
that symbolically

3.1 G, €@ :2: IS, €6 »8 . G

(for every element G, of @, there exists a structure §; in &, such
that S, generates G,) and

(3.2) S, €6 D Al G, €8 >S5 : G

(for every element S, of &, there exists one and only one G, in 8,
such that G, is generated by S;). It may so happen that &, has the
property that for any element G; in @, there exists one and only
one .S'1 in &, such that S, pgenerates G,, i.e.,

(4) G, € @ :D: Bl S, €6, >S5, :.6,.

When (4) holds we say that the model &, is uniquely identifying.
If for any G, in &, the set 61,61 of all S, in &, which generate G;

is finite or denumerably infinite, the model ©; is said to be com-
pletely identifying. When G, ¢. has a finite number of elements
by

for all G, in @}, &, is said to be multiply or uniquely identifying
depending on whether or not ¥ > 1 for some G, . (This definition of

unique identification power is, of course, equivalent to that given
earlier.)

5. Models Identifying over Certain Submodels

5.1. The above definition will now be generalized so as to
take care of a situation frequently arising in applications. Sup-

17t will be noted that this definition of identification could have been
stated in identical terms for definitions of § and of the relation § :. @
entirely different from those given in section 2,3,
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pose one is willing to postulate that the unknown structure is an
element of the model &;. We write ’

(5) G =6, + 6,

where ), is defined as the set of all! elements of ©, that possess
the following property: if Sl1 is an element of &, and if S,  gen-
erates the distribution G,; in @, (where @, is defined as before),
then there exists no other element S; of &, that also generates G, .
It follows that if §;, is an element of &, and if §,, generates
Gy :
generates i,; however, G, cannot be gemerated by any elements of
©,,.- In such d case we shall say that the (sub-)model G, is
untquely identifying in the model ©,. Alternatively, it will be
said that ©; is uniquely identifying over ©;;. The definition of
identification power given in section 4 is consistent with the one
just given. In section 4, &, was identifying over (or in) itself,
so that in the present notation &, = 6;, and G, is empty.

there exists at least one other element 312 of 612 that also

5.2. One may find it helpful to use a graph depicting the sit-
uation described in the previous paragraph. In Figure 1 the lower
axis corresponds to the set @ of all G's, while the upper one cor-
responds to the set G of all §'s. A point on the lower axis corre-
sponds to a given (, a point on the upper axis to a given S. A

€,
&n ' S
g s Svon s” 8™ gm gm Swn
Y > S
\
\
’\\
P
Y\\
v\
-,
s
-
.
P
a
@, e
Figure 1.

re is important to note the word “all” in this definition.
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solid line (with an arrow pointing downward) connects a structure
S with the distribution G which that particular structure generates,
Broken lines (with arrows) indicate “prohibited” generating rela-
tionships in the case where G, is uniquely identifying over S
Thus it can be seen that, when ©, is uniquely identifying over
©,;, &' which is assumed to be generated by S’ cannot be generated
by S/ or Sivid) although it can be generated by S™%), On the
other hand, G'' can be generated by both SU*! and S(*? as well as
S™) although it cannot be generated by S/,

Similar diagrams could be constructed for other types of iden-
tification.

5.3. As an illustration of the preceding concepts, consider
the parametric case Ax = wu, where x = (x, X, %y X,), u =

(uy u, U, ud_), and A = [“f.j]* 1,7=1,2, 3, 4. Now let &,
be defined by the following zeros in Z%:

X X 0 0
X X 0 0
0 0 X X
0 0 X X
and by the following zeros in A:
1 X X 0
X 1 0 X
o 0 1 o0’
0 0 0 1

where X indicates an unrestricted element and 1 indicates a nonvan-
ishing element which has been equated to unity by the normaliza-
tion rule chosen. Then €, is defined by zeros for a,y or a,, or

both, so that, for S in €;,, A is ene of the following:

1 X 0 0 1 X x ¢ 1 X 0 ¢
X 1 0 X X 1 0 0 X 1 0 0
0 0 1 o}’ 0 0o 1 0}’ 0 0 1 o
0 0 0 1 0 0 0 1 0 0 0 1
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The requirement that the structure should belong to ©,; is in this
case the “rank condition” treated in [II-2.2.2 and 2.2.3].

5.4,1, ©,; in section 5.1 is said to be the maximal set of 6,
of meltiplicity 1l

©, will be said to be multiply identifying (of multiplicity ¥)
over G, if 1) for every G;; in @,, the subset GI.GH of all

structures S, in &, which generate G,; contains a finite mumber ¥
of elements (possibly less than ¥ for some, but not all, G, )}, and
2) 6,, contains all structures generating G's with property 1),
G,; is then called the maximal set of &, of multiplicity N.

Similarly, ©, is said to be denumerably identifying when the
above definition holds with denumerable infinity substituted for ¥.
Thus the maximal set whose multiplicity is denumerable infinity is
defined as in the case of finite multiplicity?2

Now let {ngﬂ) }, N=2, 3, ..., be the {finite or denumerably
infinite) sequence of the maximal sets of &, of multiplicities ¥,
and write (55” ) 6{]'” for the maximal sets of &, of multiplicities
1 and denumerable infinity, respectively. Then ©; is said to be
multiply identifying over GP‘“ = E G{NN), finitely identifying

leN<ex

over GJ(LF) = Gx(” + G{m, completely identifying over Gim =
Gim + G{D’, and incompletely identifying over G{I) =6, - 6(10).

(Nondenumerable infinity is defined as the multiplicity in the
case of iricomplete identification power.)

5.4.2. It is convenient to have a term for the property of
being a subset of a given maximal set.

Let & be any subset of (‘3{1) . We then say that G/ is uniquely
identifying over and possibly beyond &/. (If it is known that &
is a proper subset of (51(1) , we omit *possibly.” If it is known
that 6/ = G{1, we omit “and possibly beyond.”) Clearly, if &, is

Ihere exist smaller sets of structures with no two elements of the set

generating the same &, , but 611 contains all such sets; hence the term
raximal,

21t is important to note that the choice of ('51 determines all the maxi-
mal sets. Some of the waximal sets may, of course, happen to be empty.
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uniquely identifying over and possibly beyond G/, it is so identi-
fying over any subset of G. Similar language may be used for mul-
tiple identification power and identification power of other multi-
plicities,

This terminology helps formulate the correspondence between the
language of this note and that of [II]. When [II] says that a giv-
en set of equations is uniquely identified over some subset £y, of
the parameter space £, this can be expressed in the language of the
present note as saying that the model is uniquely identifying over
and possibly beyond the set &,; corresponding to R11.

The language of [II] does not specify whether Q,; is a maximal
set.

6. Identification Power with Regard to a Criterion

6.1, Since often only some of the properties of the structure
are of interest, it is desirable to broaden the concept of identi-
fication so as to cover situations where some properties of S can
be determined uniquely from the knowledge of G while other proper-
ties of S perhaps cannot.

6.2, Consider a criterion C which establishes a partition of
the class © of all structures into a system of nonoverlapping sub-

classes G¢*) (EG“) = €); this partition, in general, need not
i

be finite or denumerable. By definition, if both §; and S, beleng
to G{*) they are indistinguisheble with regard to (L

Let there be given a model G, and its not necessarily proper
subset &) C ©,. Let @, be the class of all G’s generated by
the elements of ©) and let G; in @, be generated by §;, in G,,.
Consider the set 61 2 of all structures that generate G,. Then

if, for every G, in §,, all the elements of &, ¢ belong to the

same subclass, say &), it is said that &,, is un;quely identi-
fying in &, with regard to C.

6.3. It may again be helpful to present the matter diagram-
matically. In Figure 2 solid generating lines are the permissible
ones while the broken ones are prohibited in the case of unique
{partial)} identification with regard to the criterion on which the
partition is based.
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s (ig)

Figure 2.

6.4, As an illustrative example we use the one given in sec-
tion 5.3 except that for S in 6, we now have A with the following
zeros:

|-1 X 0 0
X 1 0 X
0 0 1 0
0 0 0 1

©,, is here given by a matrix A with a,, = 0, i.e.,

Loe B B R o}

0
0
Rk
1

o o KXo
[= T 4

here as criterion C we have the values of the elements of the
first row of A, This i1s the familiar case of only one of the equa-
tions of the system being identified, to use the language of [II].

With other identifying restrictions, the value of a single el-
ement of A could have been chosen as C, cf. [III].
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6.5. Multiplicities other than 1 of identification power with
regard to a given criterion are defined by analogy with earlier
sections of this note,

Now let ©, possess identification power of a given multiplicity
over G, with regard to all criteria C. Then ©, is said to pos-
sess total identification power over ©,, of the appropriate multi-
plicity. (“Total” may be omitted where no danger of confusion
exists.)

On the other hand, let ©, possess identification power over G,
of varying multiplicities with regard to different criteria, Then
we say that ©, has total identification power over &, of the high-
est multiplicity and partiel of all other multiplicities.

Thus, for instance, if we say that G, is partially denumerably
identifying over ©,;, the following is implied: over G,, G, is de-
numerably identifying with regard to some criteria and incompletely
with regard to some others! (There may or may not be some criteri-
on with regard to which ©, is uniquely or multiply identi fying over
G-

As in section 5.4.1, ©; can be divided into the maximal sets
651), G{M),..., with regard to a given criterion C. This process
1s too obvious to require detailed description.

7. Summary

At this stage it may be desirable to provide a verbal summary
of the more important concepts introduced.

A model is said to be uniquely identifying with respect to a
given criterion if all structures compatible with the probability
distribution of the observations are indistinguishable on the basis
of that criterion.

A model is said to be multiply identifying with respect to a
given criterion if all structures compatible with the probability
distribution of the observations can be grouped into a finite num-
ber of classes such that within each class structures are indis-
tinguishable on the basis of that criterion. The number ¥ of such
groups is the multiplicity of identification power of the medel.

A model is said to be denumerably identifying with respect to
a given criterion if all structures can be grouped into a denumer-

£ it were completely identifying with regard to all criteria, and denu-
merably with regard to some, it would be (totally) denumerably idencifying.
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ably infinite number of such classes,

A model uniquely or multiply identifying with respect to a giv-
en criterion is said to be finitely identifying with respect to
that criterion. '

A model finitely or denumerably identifying with respect to a
given criterion is said to be completely identifying with respect
to that criterion.

A model not completely identifying with regard to a given cri-
terion is said to be incompletely identifying with regard to that
criterion.

The multiplicity of identification power of a model with regard
to a given criterion is, in general, defined as 1, ¥, denumerable
infinity, or nondenumerable infinity when the identification power
is unique, multiple (of multiplicity ¥ as defined above)}, denumer-
able, or incomplete, respectively. Multiplicity ¥ is higher than
1, etct

If a model possesses identification power of a given multiplic-
ity with respect to ell criteria, it is said to possess total iden-
tification power of that multiplicity. Thus, if a model is unique-
ly identifying with respect to all criteria, it is said to be to-
tally-uniquely identifying, or - more simply - uniquely identifying.

When a model is uniquely identifying, there exists only one
structure compatible with the probability distribution of the ob-
servations,

If a model possesses identification power of different multi-
plicities with respect to different criteria, it is said to possess
total identification power of the highest multiplicity and partial
identification power of all other multiplicities.

Thus, if a model is uniquely identifying with respect to one
set of properties, mmltiply with respect to another, and denumer-
ably with respect to a third set of properties, then the model is
said to be totally denumerably identifying as well as partially
multiply and partially uniquely identifying?

MThus the higher the multiplicity, the more difficult it is to determine
the structure from the probability distribution of the observations.

2When the model is said te be partially uniquely identifying with regard
te a given criterion, "partially” serves as = warning that there exist
other criteria with regard to which the model possesses identification
power of a higher multiplicity, i.e., multiple, denumerable, or even in-
complete, identification power.
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8. General Remarks

8.1, In practice we are not often certain of the proper choice
of identifying assumptions. In fact, if the choice of &; is made
before G 1s known, it may happen that the structures S that gener-
ate G are not among the elements of ©,. In this case we obtain no
S whatever,

Also, a given G will, in general, yield different structures,
say 5], 8|', ..., corresponding to different models &/, e, ...,

even if each of them is uniquely identifying. If no a priori infor-
mation permits us to choose one of these models, or, equivalently,
when the model is not completely identifying, general principles

of making decisions (e.g., minimization of maximum risk) may be
applied. However, a solution will not always exist!

8.2. Identification power, as here defined, is a property of
a mode]l (with reference to specified criteria). This in itself
makes it clear why the problem of identificavion does not arise
in prediction under unchanged structure? Such prediction involves
only certain properties of G, and the structure does not even en-
ter the picture. On the other hand, for prediction under changed
structure it is, in general, desirable to know S; te do this re-

quires, in general, an identifying model.

8.3. Since the concept of identification refers to structure
and to the distributions thus generated,’ it should be clear that
the problem of identification is entirely independent of any sam-
pling aspects of structural estimation. The latter can only refer
to the relationship of the estimate of G obtained from the sample
to the true value of G. The former refers to the possibility of
ascribing a unique S to a given G.

lce, [HBurwicz, 1946].
2, [vi).
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Confluence Analysis [Frisch, 1934] was written in part as a
protest against a mechanical and uncritical use of the classical
least-squares method to estimate demand functions and other econom-
ic relations, Frisch pointed out that economic data, in general,
do not satisfy the conditions required to justify the use of the
classical method of least-squares. It is of course true that the
strict conditions of a theoretical model perhaps never are exactly
fulfilled in any observaticnal material. And good theoretical mod-
els should be able to absorb moderate discrepancies between model
and facts without the inference drawn becoming valueless or nonsen-
sical. In many respects the classical model of the least-squares
method fulfills this requirement. One important exception, however,
is the case where the “independent variables” are themselves highly
intercorrelated while, at the same time, they are subject to “er-
rors” which tend to hide such intercorrelation. Then the applica-
tion of the classical method of least-squares might give unreliable
or even nonsensical results. I shall try to explain this a little
more explicitly. ‘

1. Confluence Analysis and the Markoff Theorem on Least-Squares

Let x{t, 1i=1, 2,...,n, t =1, 2, ..., T, denote a system of
values of #nT variables, fixed in repeated samples, and interconnect-
ed by the linear relation
(1.1) xlp = apxgy foagxl, + oL+ o x),,

t=1,2, ..., T.

(The case of a separate constant term is covered by setting, e.g.,
x,; equal to 1, identically, for all values of £.) We make the

258
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following assumptions [David and Neyman, 1938] :

ASSUMPTION 1. The (n — 1)T quantities xJ,, x}., ..., x/,, t =
1, 2, ..., T, are known observations while, instead of the values

of %y, we con only observe the values of x,, defined by
(1.2) xy, = x{, + %}, t=1,2, ..., T,
where x{; for each value of t is a random variable that cannot be l

observed separately..

ASSUMPTION II. The T random variables g 0=1,2, ..., T,

are independent random variables with € (xl'é) =0 and & (xl’;':2 =0
for all values of t.

2

ASSUMPTION I11, The (n — 1)-rowed and T-columned matrix [x;:t],
i=2,3 ...,n t=1,2, ..., T, is of rank (n — 1).

If these assumptions are fulfilled, and if x,;, x),, ..., %X|p,
is a sample of the I variables x,,, t =1, 2, ..., T, Markoff’s

theorem on least-squares states that of all the unbiased estimates
of a; that are linear in the variables x, the one that has the

smallest variance is given by the value of a, which minimizes the

t=r
2
sum E(x” - ayxl, —a,x), - ++* - a,x/,)". Further,
=1
the variance of this estimate.is given by

#is
(1.3) variance of a;, = ol 2, i=2,3, ..., n,
H.f

where ¥’ is the (n—1)th order determinant of the matrix

t=1
[ Exétx;.t] , Rk, 7=2,3, ..., n, while ¥}, is the (n—2)th
t=1

order principel minor obtained frem this determinant by omitting
the ith row and column.

If the conditions of the Markoff theorem are met by the data
to which the theorem is applied, the accuracy of the estimation of
the a’s is shown by their variances (1.3). For example, even if
Assumption IIT is very near to being violated, the least-squares
method will still give unbiased estimates of the a’s, but their
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variances might then become very large. The estimate, s2, say, of
02, and hence that of the variance of @,, is not impaired by the
fact that the independent variables are highly intercorrelated.
Therefore, if the fact that Assumption III is near to being vio-
lated leads to very uncertain estimates of the o’s, this will be
shown by large values of the estimated variances of the a’s. It

is only when ¥’ is exactly equal to zero that the method breaks
down.

Frisch pointed out, however, that in practice, and in particu-
lar when dealing with economic statistics, it is hardly ever cor-
rect to assume that the expected values of one variable are linear-
ly related to the observable values of the other variables. It is
more Tealistic to assume that every one of the variables contains
some random elements having no functicnal or stochastic connection
with the other variables. Instead of (1.2) above, Frisch therefore
assumed that al]l we can observe are variables x;, defined by

T::ll 2:-'-: n, t':l: 2; ey Tr

where all the variables x'; are assumed to be uncorrelated and te

have stochastic properties similar to those of the variables %{}

in (1.2). As Frisch did not use a probabilistic approach, his
“language’ in describing the model differs considerably from that
employed here, The stochastic interpretation of Frisch’s model
as outlined above is due to Koopmans [1937].

Suppose now that, by analogy, we attempt to estimate o, in
(1.1) by the value of a] that satisfies

2 ..
(1.5) 1:5--:1 (21, — a3xy, — a3xyy — **° = arx,.)" = minimum,

Clearly, the Markoff theorem cannot be called upon as a justifica-
tion for this procedure as the conditions of the theorem are no
longer met. And the resulting “estimates” of the o’s obtained from
(1.5) will have the following properties:

1. No matter whether Assumption III is fulfilled or not, and
no matter how many observations we have, the statistics a will no

longer be unbiased estimates of the a;/s. The bias will depend on
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the variances of the disturbances x%%, 1 =2,3, ..., n. Even if
Assumption III is not fulfilled and, therefore, the a's could not
possibly be determined uniquely, the procedure (1.5) will yield
some apparently unique values of the quantities az, depending main-
ly on the variances of the disturbances x?/,

it
2. If, by analogy, the variance of aI is taken as
9 Mii
(1.6) variance of a} = ¢ , 1=2,3, ..., n,
4

where the determinants ¥ are obtained from the determinants ¥’ in

(1.3) by replacing x’ by x, this “variance” will no longer control
the accuracy with which the a’s are being estimated by (1.5), be-

cause (1.6) is simply not the variance of an unbiased estimate of

o,

t Frisch was mainly interested in deriving a method of control
which would reveal the particularly nonsensical results that this
procedure might lead to if Assumption ITI of the Markoff theorem
is not fulfilled. The result was his now well-known “bunch-map”
method, which is a graphical method of exposing the manner in which
the T sample points (xlt, Kops oeny xnt), t=1, 2, ..., T, are
clustered in the n-dimensional scatter diagram of the n observable
variables. The most important objective of the “bunch analysis,”
therefore, is to reveal a possible lack of fulfillment of Assump-
tion IIT of the Markoff theorem when this fact -~ contrary to the
assumptions of the theorem ~ is hidden by errors in all the vari-
ables,

The method of “bunch analysis”has been much discussed, and,
because of its partly subjective nature, it is no doubt open to
criticism. We shall not add to this discussion here as we shall
be interested in another and perhaps more fundamental question,
namely the question of whether or not the statistical model dis-
cussed above actually represents a workable model for the type of
relationships we may expect between economic variables.

2. Confluence Analysis and Econometrics

If the set of “systematic parts” x/, defined above satisfies

one or more independent linear relations, in addition to (1.1},
the set (x{t,,xét, cee, x;t), in Frisch’s terminology, is said to
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be milticollinear. The occurrence of multicollinearity might some-
times be due to pure accident. An alternative is that the data un-
der observation are ruled, simmltaneously, by two or more linear
relations that are permanent and inherent in the economic structure
that produces the data observed.

1f, however, Frisch’s statistical model (or, as a special case,
that of Markoff) is accepted, I think it will be very difficult to
construct any realistic economic theory that would imply such mml-
ticollinearity in the strict sense. In fact, I believe that the
model and the method based upon it are tenable only in connection
with a single-equation approach where other relations, if any, be-
tween the variables are accidental, or “given from outside.” I
shall try to make this clear.

let x ,, .., .., X, be n observable series of econemic vari-
1t 2t nt

ables. Usually, no exact functional relationship holds between
such observable variables. It is much more likely that they would
be interconnected through some sort of stochastic relationship.

And the stochastic elements involved would usually be not only “er-
rors of measurements™ but random variables of a more fundamental
nature that are characteristic elements of economic actions and
decisions. If, therefore, the disturbances x[ in (1.4) are

thought of only as errors of measurement, the “true” variables x[,

would hardly ever satisfy an exact relation such as (1.1}; nor
could there be any case of multicollinearity in the strict sense,
except by accident. In other words, if the “true” variables are
thought of as economic variables which we might be able to observe
if we had better statistics, then any assumption of exact linear
relations between these variables is unrealistic!

1f, nevertheless, we would require such relations to be exact,
one or more of the variables x!, would have to be considered as
theoretical constructions for the purpose of building a model.
The remainder, x{%, would then no longer consist only of errors of
measurements, Moreover, the behavior and, indeed, the economic
meaning of these theoretical variables would then depend radically
on the whole network of stochastic economic relations between the
variables studied rather than on the particular relation (1.1)
under investigation. Now, the real reason for splitting the var-
iables into “systematic parts” and “disturbances” would seem to be,
first, the idea that the systematic parts of the variables observed
are the would-be * true economic variables” which according to eco-

1 . - - - . .
For a more extensive discussion of this subject reference is made to

[Haavelmo, 1943, 1944].
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nomic theory would fit exactly the theoretical relation considered,
second, that this relation would be autoncmous in the sense that it
would hold regardless of whether or not other economic relaticns
were fulfilled, and, third, that there might be some hope of even-
tually being able to experience and observe the “true” variables so
that the exact relation between them would have value for prediction
purposes, But a set of “systematic parts” derived from a simultane-
ous system of stochastic equations will in general not meet these
conditions.

It might be useful to illustrate these points by a simple example.
Let x,,, Xopr X4y t =1, 2, ..., T, be three observable economic
series, each observation x;, containing some error of measurement
%%, the true parts x[, = x,, — x/% being the observations we
should actually make if there were no errors of measurement. Then
any relationship assumed to exist between the systematic parts LY
%34, and x3, {except in the case of a bookkeeping identity or a

similar, “uninteresting,” relation) would have to be of a stochastic

type rather than an exact functional relation. Suppose now that
economic theory has led us to a relation

(2.1) x{p = ayxgy toogxl, +uy,, t=1,2, ..., 7T,

and that we want to estimate the parameters o, and «,, the variables
u,; being nonobservable random elements. Suppose further that, per-

haps without the knowledge of the investigator, another, similar
relation

(2.2) xip = Byxy, + Byxiy + uy,, t=1,2, ..., T,

is also fulfilled. Let us further assume that the series xét

“exogencus variables” having a fixed value for each value of ¢.
Both x{t and xJ; will then have to be stochastic variables, their

are

stochastic properties being determined by those of thetu’s and the
transformations (2.1) and (2.2). Let us for simplicity assume that
all the 2T u#'s are normally and independently distributed and that
e(ult) = e(uzt) =0 and S(uit) = Uf, S(ugt) = ¢, for all val-
ues of ¢, We assume that the o's are unknown parameters.

On the basis of the definitions above it is possible to split
the variables x;;, X3;, X34, artificially, into systematic parts
and disturbances as follows:
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oy By — o3 By , agty — By Y
(2.3) xlt = Wx” + ——;2—_? + xlt »

By — o5 A Uy =t boan
r———— — x .
Py 3t —_— 2

(x5y) + (xg).

(2.4) Xyy

H

(2.5) Xy

If the first term of the right-hand side in each of these equations
is taken as the systematic part of x,,, x,,, X;;, Tespectively, any
two among these three systematic parts are linearly related. But
the artificially constructed “disturbances” in the second term of
(2.3) and (2.4) would here, in general, be stochastically dependent,
which is another expression for the fact that the “true” systematic
parts x{;, x5, xj; are not multicollinear sccording to Frisch’s
definition.

It is well known that in the example discussed above no unique
estimate exists for any of the parameters o,, &y, f§,, B;, unless
some additional a priori knowledge is available. In Koopmans’ and
Rubin’s terminology [II-1,11] neither (2.1) nor (2.2) can be iden-
tified. But there exist two well-defined and identifiable rela-

tionships among the three variables x{,, xj,, xj,, namely the ex-

pected value of x{,, given x], and xJ,, and the expected value of
xﬁ't’ given x{, and x3,. These relaticns are

r I I
Ef, | %5y x5,
2 2 2 2
. o¢202+;3201 “3°z+53°1 )
(2.6) =y, t ———— g,
2 2 2 2
h +02 a; +0'2
! ! i
€ (x;, | X1t *at
2 2 2 2
o0y t B4 0y 0y Oy Oy + By By 0y
(2.7) = ——x, - x!
2 2 2 32 2 32 2 2
a0y + By o) a0y t By 0]
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Apart from bias caused by the presence of the disturbances Z{ts
x;;, end x3%, these two prediction equations could be estimated
from the observations x,, x,,, X;,. Now it is easy to see that

for certain values of the unknown parameters the two planes (2,6)
and (2.7) might not differ very much, in which case the method of
“bunch analysis,” by its very nature, would not show any sign of
multicollinearity. This, however, does not mean that the o’'s in
the original equation (2.1) could be estimated. Thus, the apparent
absence of multicollinearity would be no guarantee that the equa-
tion which we are seeking could actually be identified.

The purely geometric properties of a set of points in the sam-
ple space are insufficient as a basis for statistical inference.
In fact, a sample of observations is just a set of cold, uninter-
esting numbers unless we have a theory concerning the stochastic
mechanism that has produced them. To know the meaning of the re-
sults that a certain statistical method will yield we shall have
to adopt a well-defined stochastic model. Then we can usually
also find more efficient statistical tools than those that are not
based on a probabilistic approach.
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0. INTRODUCTION

0.1. Prediction and Structural Changes

0.1.1. Predictive estimation. Among the problems confronting
the statistician is that of making predictions. As an example,
cne may be asked to forecast next year’s national income on the
basis of this year’s income and government spending planned for
the next year. Next year’s irncome is the predictand, this year’s

'part of the work on this paper was dotie in 1945 - 46 during the author’s
tenure of the Guggenheim Memorial Fellowship.
Some of the problems considered arose in connection with the author’s

research at the Institute of Meteorology at the University of Chicago in
1944.

266
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income and next year's planned government spending are the predic-
tors. The prediction is a statement concerning, say, the most
likely value of the predictand given the predictors; or the predic-
tion may be formulated as an interval within which the predictand
is likely to fall given the predictor values. Thus, in general,
prediction is a statement about the {conditional) probability dis-
tribution of the predictand given the predictors.)

In order to make the prediction, the statistician must obtain
this conditional distribution on the basis of past observations.
Thus, one may estimate, on the basis of past observations, the con-
ditional distribution of a given year’s income, with income in the
preceding year and government spending planned for the given year
specified.

However, the past observations can only tell what relationship
between the values of the predictors and probability distribution
of the predictand existed during the (past) observation period.
Will the same relationship hold in the future period for which the
prediction is to be made?

An affirmative answer implies that no structural changes have
occurred, or are expected to occur, between the observation period
and the period for which prediction is made. A structural change®
is a change in any of the not directly observable (*“structural’)
properties of the system. Thus structural changes occur if people’s
tastes shift or industria) preductivity increases, provided neither
tastes nor productivity are observed directly; should they have
been observed, they could simply have been included among the var-
iables of the system,

Hence, if no structural chenges are expected to occur between

lActually, there are three steps in the prediction process: first, a rule
is derived which enables us to construct the probability distribution of
the predictand for any given values of the predictors (the regression
equation is an example of such a rule); second, the relevant predictor
values are found; third, with the help of the above-mentioned rule, the
given predictor values are used to construct the relevant predictand dis-
tribution. '

A structural change transforms one structure into another, An example
may be given as follows: Let an equation system consist of 2 supply equa-
tion and a demand equation for some commodity. Then the structure is
given by the parameters of these two equations {‘the structural param-
eters”) and the parameters of the distribution of the disturbances. (More
rigorous definitions are given below in section f; they are also dis-
cussed in connection with the identification concept in [IV].) For
briefness we often refer to the structure before and after the change as
the “old” and “new” structures, respectively,
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the observation period and the period for which prediction is to
be made, all the statistician is required to do for prediction pur- .
poses is to provide a “best"” (in some well-defined sense) estimate
of the relationship that existed during the observation period be-
tween the probability distribution of the predictand and the values
of the predictors. Once the relationship has been estimated, the
forecast is made by specifying the predictor values to be substi-
tuted in that relationship and the latter will yield the appropri-
ate (best estimate of the) probability distribution of the predic-
tand.

The situation is fundamentally different when structural
changes are expected to occur (or are already known to have taken
place} between the observation period and the period for which
prediction is to be made. Here it is not legitimate to apply to
the future the past relationship between (the probability distri-
bution of) the predictand and (the values of) the predictors: the
structural changes, in general, will modify that relationship and
it is this modified relationship that has to be determined. Once
the modified relationship has been determined, a forecast can
again be made by substituting into it the values of predictors;
the relationship will then again yield (the best estimate of the
probability distribution of) the predictand.

The problem is thus reduced to the determination of the modi-
fied predictor-predictand relationship after structural changes
have taken place. How can this be accomplished? To begin with,
it should be .evident that if nothing is known about the nature of
the expected structural changes, the new predictor-predictand re-
lationship cannot be determined. Thus the nature of these changes
must first be stated.

A structural change, by definition, transforms the *old”
structure into the “new” (modified) structure. The nature of the
structural change mst be completely specified in the following
sense: enough must be known about the change to make possible the
derivation of the “new” structure if the *old” one were known.

One example of such specification is that of the structural
change consisting in, say, a productivity coefficient increasing
by 10 per cent; this statement in itself does not tell us either
the old or the new value of the coefficient, but it would enable
us to find the new value if the old one were known.

Assuming that the structural change is cowpletely specified,
the “new” predictor-predictand relationship that is being sought
may be determined in the following manner. From the available
observations we estimate the {“0ld”) joint probability of the ob-
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served variates. Then, provided the medel is structure-identifying}
we can determine the “old” structure, i.e., the structure during
the observation period. Next, we derive the “new” structure from
the “old” one. (This can be done since the structural change is
completely specified.)

Then from this “new” structure we derive the “new” distribution
that the observed variates will have after the structural change
has occurred? 'The predictor-predictand relationship is embedded”
in the distribution of observed variates, so that from the distri-
bution the relationship can always be obtained. (The converse is
not true.) This procedure - obtaining an estimate of the modified
predictor-predictand relationship given past observations, a com-
pletely specified structural change, and, possibly, an identifying
(i.e., structure-identifying) model® — is called predictive estima-~
tion under changed structure.

It may be found helpful to have a diagrammatic presentation of
this procedure as given in Figure 1. As indicated on the diagram,
the link B (from 2'' to 3) requires that the model be identifying.
Hence, in general, prediction under changed structure requires
that the identification power’ of the model be established so as
to make structural estimation possible. (Structural estimation
consists of links A’ and B, but computationally one can go directly
from 1 to 3; this, of course, does not eliminate the need for iden-
tificatien powerf)

The point to be emphasized is that, in general, one cannot get
to 6 directly from 2’: it is necessary to go through 2/ 3, 4, and
5. However, if no structural change occurs, the “new” predictor-
predictand relationship 6 is identical with the “o0ld” one 27/,

Hence there is no need for going all around from 1 through the
stages 2’} 3, 4, and 5, to 6. Instead one may go directly fram 1
to 27, using the link A’ Here the link B is not used and hence
there is no need for identification power in the case of prediction
under unchanged structure,

II.e., provided enough a priori knowledge is available to make the struc-
ture determinable from the distribution of observed variates; cf. [IV].

“The distribution of the observed variates can always be found when the
structure is known; the converse is true only in structure-identifying
models,

’A model that is structure-identifying is said to possess identification
power.

Cf. footnote on page 271.

SOne could also ge from 1 to 2/7and from there to 2/. This would be anal-
ogous to using the link E,
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0.1.2. Prediction for structural policies, Structural changes
may be due either to causes censciously controlled by man (‘poli-
cies'} or to other factors. (However, not all policies are of this
structural type. Some policies are carried out through certain ob-
servable variables, say the quantity of money, and need not imply
any structural changes.)  If several courses of action are avail-
able, the policy decision will be made on the basis of the predic-
tion of the likely effects of the different policies. If the poli-
cy is of the type that implies a structural change, the decision
requires that prediction be made of behavior of certain economic
variables under the different possible structural changes. Thus
one is forced to go through the procedure of predictive estimation
under changed structure, a phase of which is structural estimation,
and one must have an identifying modell

0.1.3. Prediction concept generalized. The term prediction
may be given a somewhat broader meaning than that of making proba-
bility statements about the future on the basis of the past. Some-
times it is desired to estimate the values of a variable given a
contemporary of later value of another variable. The need for
such a procedure may be due to the fact that the variable to be
“predicted” from subsequent values of another is not directly
available or, perhaps, is available only with a considerable delay.

Thus, the esserice of the prediction concept lies not in the
temporal sequence of the predictor and the predictand, but rather
in the conditional nature of the (probability) statement about
some set of variables given another such set.

Also, prediction need not apply te one variable only. One nmay,
for instance, wish to know the future correlation of some two var-
iables given the past values of a third one, etc.

0.2. BRegression: A Speciel Case of Predictive Estimation

0.2.1. Prediction of a single variable under unchanged struc-
ture, When the structure is unchanged, there is, as we have seen,
no need for estimation of the structure of the system; our objec-

lThere are exceptional situations where some short-cuts can be made: it
might even happen that pertial identification power (see [IvD is suffi-
cient, but in general this will not be the case. In certain case where
prediction of policy effects does require totel identification power
(ibid.), it is nevertheless possible to decide on a preferable course
of action when such identification power (ibid,, 8.1) does not exist.
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tive is 2/ in Figure 1 and this can be reached directly from 1
through the link A’. This link consists in obtaining the condition-
al distribution of the (univariate) predictand. The distribution
may be regarded as given by its moments. If the distribution is
normal, the first two wmoments (say the mean and the variance) suf-
fice to determine the distribution; in general, the higher moments
are also needed, but they will not be considered here.

The relationship between the mean of the predictand and (the
values of) the predictors is the regression function; the relation-
ship between the variance of the predictand and the predictors is
the scedastic function.

0.2.2. Methods of estimating the regression functions. The
problem of statistical inference is now reduced to finding optimal
methods of estimating these functions. We shall see that, under
rather general conditions, in models with normally distributed dis-
turbances, the maximum-likelihood estimates of the (true) regression
coefficients will be given by the application of the least-squares
procedure. Under even more general conditions, the least-squares
method will yield consistent, but probably somewhat inefficient, es-
timates of the regression coefficients.

Hence, if prediction under unchanged structure is intended, and
the sample is sufficiently large, the method of least squares is a
safe one (in the sense of consistency) to use, although not neces-
sarily the best one (in the sense of efficiency).

But for small and medium samples, the asymptotic properties of
consistency and efficiency are not adequate safeguards against seri-
ous sampling errors, It is therefore of interest to investigate
the small-sample properties of the least-squares estimates both for
the case where the least-squares estimates satisfy the maximum-like-
lihood eriterion and the case where the maximum-likelihood estimates
differ from the least-squares estimates.

It is found that in both cases the least-squares estimates are
strangly biased! when the series is of the autoregressive type, i.e.,
where the variables satisfy a system of stochastic difference equa-
tions with lagged endogenous variables present? On the other hand,

laon estimate is biased if its expectation, for any given size sample, is
not identically equal to the true value of the parameter,

2 . : . . -

The example given in section 0.1.! was of the autoregressive type since
national income, which is an endogenous variable, appeared both as a pre-
dictand and, with a lag of one year, as a predictor.
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in lagless (nonautoregressive) systems, the least-squares estimates
of the regression coefficients do possess an important optimal
property: they are the best' unbiased linear estimates of those
coefficients. It is important to note that this groperty is not
asymptotic, but holds for any finite-sized sample!

0.2.3. HRegression coefficients and structural coefficients.
The question of the extent to which the least-squares estimates are
"good” estimates of the regression coefficients, treated in the
preceding paragraph, should not be confused with the following one:
under what conditions do the structural coefficients of an equation
in a similtaneous stochastic system coincide with a set of regres-
sion coefficients in some predictor-predictand relationship?

When such a coincidence does occur, it is clear that the prob-
lem of structural estimation (for that particular equation) is ex-
actly identical with the problem of predictive estimation under
unchanged structure, when the predictors and the predictand are
suitably chosen. Hence in such a case the least-squares estimates
are ‘‘good” or “best” estimates, not only of the regression coeffi-
cients, but also of the structural coefficients. Just when this
does happen is discussed elsewhere in the volume®

0.3. Outline of the Remainder of This Paper

The remainder of this paper is divided into three sections.
Section 1 provides definitions of the concepts used as well as the
principles of notation. The very brief section 2 is devoted to

ll.e., with smallest sampling variance among all the unbiased linear es-
timates.

It is conceivable that for certain populations there exist better unbi-
ased linear estimates than the least-squares estimates, but there are no

linear estimates unbiased for ¢il populations and better than the least-
squares estimates.

3[1], {II]. One case where structural and regression coefficients ecoin-
cide is when in a given equation all variables but one are either lagged
or exogencus, In general, when a least-squares regression has a high
multiple-correlation coefficient and the standard errors of the regres-
sion coefficients are swall, this only proves that we have a good (and
probably accurately estimated) predictive relationship, but not necessar-
ily that this relationship coincides with one of the structural equations
(even if the variables entering the predictive formula are exactly the
same as those entering a given structural equation). See [I] and [IT-~
3.3.7] in the special case where the set I contains only one structural
equation, See also 1.2.1 below.
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policy aspects of the prediction problem. In section 3 the field
of inquiry is narrowed down to that of regression estimation {see
section 3,0}: the optimal properties of the maximum-likelihood,
Markoff (see 3.1.1.2), and least-squares regression estimates and
the domain of their equivalence are investigated. A more detailed
outline of section 3 is given in 3.0.3.

1. NOTATION AND DEFINITIONS:
DISTRIBUTIONS OF OBSERVED VARIATES; STRUCTURE
AND STRUCTURAL CHANGES; PREDICTIVE ESTIMATION

1.1. let the system involve a set {denoted by capitals)
(1) Y= (s ¥o veen ¥g)
of the E& + 1 observed stochastic variatesyyg and a set
(2) Z= (2, 2y, 0o, 3y )
z

of the X, observed fixedl variates 2 let the cumulative distri-

bution function of ¥ be

(3) F=F, =Ffy2),

J'-

where y and 2z are vectors whose components are the elements of the
sets Y and Z, For any nonempty® proper® subset Y* of ¥ (i.e., 4 #
Y* C Y} we have the marginal cumlative distribution function

= K = LI
(4) F, = Fx = Fy{y 1 z).

*

lA variable 2z is said to be a *fixed” variate if its ith observation has
the cumulative distribution function given by

0 for 2, < 2q,.,

(21 Plz,) =[

1 for =z _>_Zo,!r

t
where the zot's form an arbitrarily chosen sequence of constants,
2The empty set will be denoted by A,

3f' B! means that E'' is a subset of E’ bur £ # E'. B RN
means that F// is a subset of !, but their equality is not excluded.
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Given two sets of y* and y** such that!

(5) AEYCY
and
(6) Y™ =y~ v,

we define the conditional marginal cumulative distribution function
= = 3 * ¥,
7 F:l: { £ F_’)’* Iy** - Fy* ’y**(y ' you Z) )

We shall refer to F in (3) as the complete distribution, while the
marginal and conditional distributions in (4) and (7) will be
called derivates of F, or derived distributions,

1.2. Let the structure’ of the system be denoted by S. Then
S determines F, which may be written as

(8) F = cp(S).

Now ﬁ;’** is a derivate of F, hence
(9) F* }** = Cp*)**(S) .

Suppose a structural change takes place, so that the “old”
structure S0 is replaced by the “new” one S'1). We have

(10) S(l) = 5(3(0))’

where O must be so specified that when S$(?) is given, SU1) can be
uniquely determined. Then

(11) F(l) - (P(S(l}) = (P{S(S(U))} - CP'{S(O),' 5)

and

. L.
11t will be noted that r** is not required to precede I in time. The
opposite may well be true.

2For general definitions of structure, model, and identification, see

{IV]. In the usually treated parametric normal linear case desecribed by
the matrix equation Ax = 4 (where A is the structural coefficient ma-
trix, ¥ the nonobservable disturbance, and X the observed wvariate), the

structure is defined by A and the disturbance covariance matrix % so0
that 3 = (4,2%).
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(1) — Iy —
(12) F*I** - cP=l=|=t==|=(s ) - ¢*l*¢
while

(13) F(U) — (S(O)) .

LR L ] cp*lt*
~

(36} = o, (5. 3)

In general, there does not exist a relationship

(14) FB) = (FQO .0y,

*|=Hx w#'** *l**’

That is, apart from special cases, the ‘knowledge of S is neces-

sary in order that F:'l|)“‘ should be obtaihed.

1.2.1. The situation discussed in the preceding section may
be illustrated by the following example. Let our model consist of
equations

Yo = Byt toug, 1 T BYe t vz touy,
where the 2's are exogenous with a mament matrix [r;ij] and the u's

i
If we are to predict ¥, given ¥, and 2,, we must have the regres-

sion fumnction

are the disturbances with zero means and a covariance matrix [G'-J-] .

€y {y,2) = Xylyl + %=

The ¥ 's can be expressed in terms of the structural parameters of
the system. Thus, for instance,

X7~ 8 = (1= By + pyoy) .
. o522 512
X9 o2 ¥ Byog t 280 T Yoo T

Unless oy, + B,0,; = 0, in which case the single-equation approach
is applicable, we find that the difference AB, between a “new”
value p{” and an “old” value (31(0) is not sufficient to determine
the corresponding increment Axf . Hence, in general, we need addi-
tional knowledge of the structural parameters in the right-hand mem-
ber of the above expression.
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It may be added that the expression for le’ B, gives the mag-
nitude of the blas involved in using the single-equation least-
squares value )(_ 1 @s a measure of §,. 'Ih1s bias may be high even
if the multiple correlation coefficient p (y, on y, and 2,) is

high and the (conventionally computed) standard errors oy low.

Thus, for instance, an example has been constructed by the author
with 61 = 0 while )(_1 .99 despite the fact that p? = .9901 and

o2y
X1 005,

1.3. Now let the observations (prior to the structural change
S) be given by the matrix X = [X;,1; (1 =0, 1, ..., K +K,;
t=1, 2, ..., . ! We obtain an estimate, denoted by estF(O)(X)
of F(OJ . Then, if we are dealing with an identifying model? we can

obtain an estimate of S® from, say’ estS® = \p(estFm); 60).
By virtue of (10), we have

(15) est S = J(est§®)
and, consequently, we obtain

(16) est F I) = tp*!“(estsu)) CP*I**[S{qJ[estF(O’(X) & ]}]

The process of obtaining est Fil)“ from X is called predictive es=-
timation, Y* is the predictand, Y** and Z the predictors. In gen-
eral, prediction involves the use of X, U, and ©,. However,
when & = &, where d is the identity transformat,mn, we clearly
have

(17) estF(:ll) = est FY) .
¥ | kx * kokk

This is a special case where a relationship of the type (14) does
exist, hence it is not necessary here to obtain $!®, ete. In par-
ticular, therefore, it is not necessary that the model be identify-
ing.

It is with regard to this special case of predictive estimation

IIn laglesa systems, % may, but need not necessarily, mean time,
5ee [IV].

60 is the set of all structures permitted by the identifying restrictions.
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under unchanged structure (O = &) that we examine the optimal
properties of the least-squares method in section 3.

2. PREDICTION FOR POLICY PURPOSES

One of the most important cases of need for prediction under
changed structure is that of certain types of economic policies.
There are cases where structural changes are not due to policy de-
cisions (e.g., spontaneous changes of tastes); nor do all policies
imply structural change; some only involve manipulation of Z (non-
structural policies). But when a change is to be made between two
policies implying the respective structural changes d7and 37,
one cannot decide between them (no matter what the policy objectiv
tive) without knowing just how they will affect certain variables.
Here, since S5# & for one or both of &’ and &'/, we deal with pre-
dictive estimation under structural change; hence in general we
must resort to structural estimation, and it is necessary that the
model possess a certain degree of identification power.

On the other hand, suppose that the policy contemplated in-
volves no structural change, so that it is either one of inaction
or manipulation of Z, Then, regardless of whether or not Z is to
be manipulated, we have J = d, and the effects of such a policy
(nonstructural policy or complete inaction) can be predicted with-
out resort to structural estimation; hence it is not necessary to
have an identifying model.

3. OPTIMAL PROPERTIES AND MUTUALRRELATIONSHIPS OF
ALTERNATIVE METHODS (MAXIMUM-LIKELIHOOD, MARKCFF,
LEAST-SQUARES) OF ESTIMATING THE REGRESSION FUNCTIONS

3.0. Regression and its Estimation:
A Special Case of Predictive Estimation

3.0.1. The remainder of this paper is devoted to prediction
under unchanged structure {see section 1,3 above).

The case considered is not the most general one even under un-
changed structure. Three important specializing assumptions are
made;

(a) The choice of the sets Y* and Y'*,
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(18) Y™ = (3.

so that Y* is a one-element set.

(19) Y™ =Y = ¥ = (3, ¥y, ees vp ),
Y

i.e., Y*" is the complement of Y* in 7. !

(b} Admissible distributions, It will be assumed that the re-

gression of y, on the elements of ¥** is lincar and homoscedastic}?
so that?

* _ y Z
@) 86y 11 2) = Xy, 4 f‘:‘?‘i"’i * xg
and
(21) 02(y0 | ¥**; Z) = const.

(¢) Properties to be estimated, While the general definition
of prediction calls for estimation of F*i**' our study will be con-

fined to the estimation of the first moment of F; .’ i.e., to the

estimation of the y's (regression coefficents) in (21).

3.0.2. Estimation principles. Three important principles have
been applied in the past in estimating the regression coefficients.
They are: (a) maximum-likelihoed, (b) best unbiased linear (Mar-

1(18) does narrow down the scope of the study, but (15) only seems to. For
suppose that, contrary to (19), we have

(197) F- 1" - " FE A

then we form the marginal distribution of F*** = ¥* + ¥**  asay F,_,,
and consider it as the parent distribution; obviously (19) now holds, pro-
vided ¥ is replaced by F***, and the nature of the problem is unchanged.
2The restriction of homoscedasticity is not difficult to relax, provided

ratios of conditional variances are assumed known or even under more gen-
eral conditions.

3 Yo in (21} may, without loss of generality, be assumed to vanish since it
is always permissible to have one of the &'s identically equal to uwnity.
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koff), and (c) least-squares. It is well known that the three
methods are related and that there are cases where all three, or
at least two, are equivalent. But examples of divergence also ex-
ist. Therefore, it becomes important to investigate the domain of
their equivalence in relation to the nature of the model.

3.0.3. Outline of the remainder of this section. Section 3.1
of this paper will be devoted to the study of the domain of equiv-
alence of the best unbiased linear and least-squares estimates;
section 3.2 to equivalence of maximum-likelihood and least-squares
estimates, Each section is divided into two subsections; the
first subsection of each section (i.e., 3.1.1 and 3,2.1) treats of
lagless models.

The problem of addltxonal restrictions on the parameters is
treated in section 3.3 for both best unbiased linear and maximum-
likelihood estimates, with or without lags.

3.1. Equivaelence of Best Unbiased Linear and Least-Squares
Estimates of the Regression Coefficients

3.1.1. Lags absent,

3.1.1.1. Consider a sample of size T where the fth observation
isa (1+ K& + Ké)-dimensional vector (y,, Zt) with

Ye & (yﬂt' Yigr »oe0 ¥y t)’
(22) y

I

2, = {214 29y, v0er 2y t)'
F4

It will be assumed that the observations for successive values of ¢
are independent in the probability sense, but they need not come
from the same universe. (This will be qualified later.)}

Given the cumulative distribution functien Ft(yt’ zt) of the
universe from which the fth observation is drawn, the joint cumula-
tive distribution function of the sample is

F
(23) tI‘:[l Ft(yt; zt)'

Now from each of the F, it is possible to derive the conditicnal
cumulative distribution function of y, given the remaining y’'s and
2's, These conditional distributions, to be written as
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4 @ .
(24) Gy, 1y 1 2,),

where yw) = (y”, P t)’ will be assumed identical for all ¢

so that the subscript ¢ oi! Ff may be dropped. Moreover, the first

two moments of this conditional distribution FC are assumed to sat-
isfy equations (20) and (21), so that the regression of y, on the
other y's and 2's is linear and homoscedastic.

We now seek to form {(cut of observations of the sample described
above) an estimate g for any one of the regression coefficients x
in (20). (For the moment the affixes of ¥ and g may be omitted.)

These estimates are to be linear in the ¥y and can thus be written
as

r
(25) q = tE PrYor s
=1
where
- i} 0
(26) Py — c?t(yiﬁ)' yé ), cres y%,), 2y, Bgs aee, ZI')'

The expectation of ¢ is given by the Stieltjes integral

+ @ g T

I
(27) g (q) = f - 'f tE P+ Yot tn dFt(th; zt)
-« =1 =1

and it may or may mnot eq‘ualx Whether this is the case depends a)
?1213t;he choice of the ¢,’s, and b} on the nature of the function in
For a given choice of ¢;’s, it may happen that ¢ would equal x

only provided the function in (23) belongs to a specified family %,
of such functions. In such a case we say that the estimate g cor-

responding to that particular choice of the ¢,'s is (conditicnally)
unbiased with regord to §,. If the family §, is the family & of
all distribution functions, the estimate g will be said to be abso-
lutely unbiased.

We shall now derive a necessary and sufficient condition to he
satisfied by the ‘Pt s if ¢ is to be an absolutely unbiased estimate
of . The regression is assumed to be linear, that is, (20) holds.

Using (20) and the well-known properties of conditional distri-
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butions, we obtain! from (27)
2@ = S Toun, [ty 150 s =) [larto s <)
@ =f-f Doe €0pe 159 =) Harfol®: 2)

I f E(Pt( Ext yig t EXJ Jt) I-[der(y“”

or, rearranging,

e - D S f (S T
+ ;xj' f"'f(z:cptzjt)I:IdF”.

where FC is a conditional, and Ff a marginal, cumulative distribu-
tion function.

(29)

So far neither ¢ nor the cpt's have had any affixes referring to
the y which is being estimated. Now, for definiteness, we shall
assume that it is xj; that is being estimated; its estimate will be
written g7; the corresponding ¢,'s will be denoted by ¢f1, but the
superscripts may be omitted where no danger of confusion exists.

Now € (q ) will be given by (29) with proper affixes attached
to ¢ and the ¢,'s, thus yielding

€(@q}) = ;x{ ff%:q:gl Yit I;[de
4 ?X?} ff PITLEM ItIngf.

If ql is to be an absolutely unhlased estimate of Xl he right-
hand member of (30) must equal X for any choice of H This

(30)

1‘I‘he integrals are between — ¢ and + = unless otherwise 1ndlcated.
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will be the case if and only if

Foof S oTleteo
(31) ;q%'l yitl;IdeE 0, foralli#l,

f.‘of th;?tl ZJtI;IdFt = 0, fOT allj.

It is easily seen that a set of sufficient conditions for (31) to
hold is:

Et:‘f’gl Yig. — 1L =0,

(32) Et:cp::l Vit
y

P Zit

2

[1i}

0, foralli#1l,

0, for all j.

But it can be shown that the identities {32) are also necessary
for qf to be absolutely unbiased. To carry out the proof it is
enough if a family %M of (FX; (t =1, 2, ..., )} is found for
which the vanishing of the integrals in (31) implies the vanishing
of their integrands, as given in (32). One such family is given
by making the y,,’s normally independently distributed with a com-
mon variance but different means! Many more could, no doubt, be
found. Therefore, the identities (32) are the necessary and suf-
ficient conditions for qf to be absolutely unbiased. But if q?

were to be only conditionally unbiased, depending on the family
with regard to which lack of bias is postulated, either (31) or
(32) would have to be used.

3.1.1.2. We shall now procede to define the best absolutely
unbiased linear estimate of, say, Xf' This estimate will be de-
noted by E{ and will have the following properties:

!(Wald, 1944].
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(a) linearity [i.e., (25) with (26)],
{(b) absolute unbiasedness [i.e., (32)],

(c) minimum sampling variance (to be defined below).
The property (c) implies that the sampling variance 0';, of ?q'f will

not exceed the sampling variance of any other linear absolutely un-
biased estimate of x:r.

Mathematically, the problem of finding an estimate possessing
the properties {a), (b}, (c) (a “Markoff estimate™) requires mini-
mizaticn of the integral giving O';y [where qi’ Has properties (a)
and (b)] subject to the side relatlion (32).

Now

2
(33) 0'q2y = f"'f(;q’tyut - X::) I—tIdFt(Yt: Zt)

ar

2
(34) c:l,-, f ---f(?:;:ty(,t) I_tIdFt - (xR

£ (qf)z is given by the integral in the right-hand member of
(34).

Now, using the properties of homoscedasticity and applying
transformations analogous to those in (28), we have

2
(35) & (qf) = f T f tE CPtlcPtHyg tlyntn Hde I-IngI
1L + t

which, after simplification gives

2 - 2 ‘ve 2 M
(36} o-qu = ¢ f f Zt:cpt ItIdFt.

Hence the problem is reduced to that of minimizing the integral
(36) subject to the restrictions (32). Formally, this is a Calcu-
lus of Variations problem, but actually, since no derivatives en-

ter the integrand, we may simply minimize the integrand 2({)?
t
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subject to (32).

At this stage the mathematical problem is exactly the same as
that treated in the older version of the Markoff Theorem! There-
fore, the estimate af, obtained by minimizing the sampling variance
o;; with regard to the ¢'s subject to conditions (a)} and (b) listed

above, is identically equal to the least-squares estimate al, ob-
tained by minimizing the expression

(37) S = z(yot - 2aly, - quzjt)z
¥ i i

with regard to the ¢’s. Thus “best” (in the Markoff sense) abso-
lutely unbiased linear estimates are identical with the least-
squares estimates.

3.1.1.3. In the preceding section we considered Markoff esti-
mates that were absolutely unbiased. They turned cut to be iden-
tical with the least-squares estimates.

In general, this is not the case for Markoff estimates condi-
tionally unbiased with regard to a family of distributions for
which (31) does not imply (32)2

Since this is a proposition of a negative nature, it can be
proved by demonstration of a special case. We shall assume that
only X% (to be written simply as x) is different from zero, while
all the other y’s vanish.

Here we again proceed to minimize cﬁ subject to

(38) f-'-f(ztcpty” - 1)ftIdFtHz 0

which is all that remains of (31).
Now in this case (35) gives

(39) E&() = f“'f{cz;tpi + xX( ;cpty”)z} I;IdF{’

or .

! [David and Neyman].

21 the estimates are to be conditionally unbiased with regard to a family
of distributions for which (31) does imply (32), then auch conditionally
unbiased Markoff estimates would, of course, still be identical with the
least-squares estimates.
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%2
W £6) = ot [ [ (R + 5 (Topn ) Ilarf.

It is evident that we may minimize the integral in (40) instead of

aqﬂ. Writing

2

2
{41) v o= X
0'2

we may therefore reformulate the problem as that of minimizing the
integral

@ H= [ f1Zd A Ten )y Lt

subject to (38).

Now
(43) ¥ = f "'f cht'cPt"st't"nde’
L1, t
where
(44) Sppn = Bppn t szltryltn '

and where 8., 1is the Kronecker symbol.
Now the integrand in (43) may be written in matrix form as

(45) @' S o
where!

CP - {(‘Plr L] CPT}:

S = [Strt."] s

(46)

and ¢’ is the transpose of q.

1The notation used here is the customary one (¢ is a column vector, cp' a
row vector) rather than that used in other parts of this volume.
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Similarly, the integrand of (38) is

(47) CP’yl - 1.
We now minimize (45) with respect to ¢’ subject to the vanishing

of (47) and denote the Lagrange multiplier by u {a scalar).
Differentiating the expression

(48) 'S - ue'y

with respect to ¢, we obtain

8
(49) W(cp’Scww’yl} =S¢ - uy =0,

and, hence,
(50} @ = uwst Y -

To evaluate
(51) Sly

we observe that

1

(52) S=1I4+ vy y.

Hence

Sy, = T+ Viyyyly = Iy + VY0inn

(53)

=Ifl + YG/y )y,
and
(54) SESy =1+ V0{yNsty

so that the desired expression is

. 1
(55) Sty = ¥y -

1+ VG/y)

Thug, substituting (55} into (56), we have
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1
(56) o= p———y

1+ V(yiy)

Only the multiplier w remains to be evaluated.
Premultiplying (56) with y/ and integrating, we find that

(57) ffylf‘PI;IdF‘f: P‘ff W 'Hde,

1+ v2(yl’y1) i

where the left-hand member equals unity by (42). Therefore,

Y
(58) pto= ff I}dﬁ’g’,

1+ V)

and, finally,

N
(59 @ =

{1+ vz(y;yl)}f---f

Thus,if matrix notation is abandoned, §, the Markoff "estimate”!
of the regression coefficient ¥ is

; Yit Yor
{60) g = 2 ’
, - Nt
1+ ¥ Ety”)f---f I;[dFt”

1+ ¥ Zt:yft

N

[Tar}

1+ V(y'y) ¢

1q depends not only on the observations, but also on vt which is a popula-
tion parameter and, in general, is not known; an analogous “estimate” was
obtained in [Johnson], where the knowledge of the coefficient of variation
is needed in order to obtain a least variance (about true value, not nec-
essarily unbiased) estimate of the mean in a normal population.

In order to avoid this type of solution one should subject the above Cal-

culus of Variations procedure to the additional restrictions acpt/ 8y =
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while the least-squares estimate G of y would have been

YitYoe
(61) a = “.;__._._

3.1.1.4. Three observations should be made concerning the fore-
going result.

(a) § is actually a better “estimate” than g, i.e.,

(62) ot < oF
q q

To see this we shall calculate both variances. WI"it.ing
Yyl 7<=t
1+ v2p =k,

(63)

we may, using (56), write the integrand ( = ¢'S ¢ of ¥ in (43) as

(64) 0= p/k)

where 1, given by (58}, may be written as

(65) e = (f - f 6/w Tarty?,
’ t
Hence the integral ¥ in (43) is

f...f QI;IdFtH: f...f“Z_:_rtIdFtH
u2f---f%l—;ldﬁ‘f= Wl =,

.4

(66)

g, atpt/ao‘ = 0. This has not yet been done, but it would be oi:-int.er-
est to see whether these additionanl restrictions would imply § = g. (As-
ymptetically, at least, this would seem to be the case because of the ef-
ficiency property of Eas a maximum-likelihood estimate of % ; see below,
section 3.2. Exceptions might conceivably arise if lihear unbiased esti-
mates of 7 exist whose asymptotic distributions are not normal).
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and, using (65} and (66},

_ 2 2 (2 Myl
(67) caz—o'zf{—x—c{f ka;IdFt] x2 .

Having obtained the variance of the Markoff “estimate” § of y, we
shall now evaluate the variance of the least-squares estimate § of

X .
Since
. 1 Yo
(68) qg =
¥
is also unbiased]! we have
(69) o= BE) - K,

with

&@F» =

1
—
S—

> |

ol
=
s
L
4
S—
S—
&
=
=
<+

X I;‘[ch(yot'l Y¢) l;Idth‘{(ylt)
1
(70) = czf---f;-zy;s)’l I;Ide
czf---f-;i (® + ¥ p?) Hdﬁf
t

UZ_JF ....Iﬂ,é? I;[CUT”;

il

Il

and, hence,
k
(71) cr,fzcrzf"' = Tlar¥ - 2.
g f;b P

1In fact it was shown (cf, section 3.1,1.2) to be the best absolutely un-
biased estimate.
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Comparing this with (67) we see that in order to prove (62) we must
show that

a  foof et > o f o f 2 Thappy

But (72) follows from a multivariate analogue of a well-known in-
equality! Thus g is actually better than §.

(b) From a practical viewpoint, (62) offers little comsolation
since ¢ cennot be computed unless the iﬁ?'s and v? are known, and v?
iz not likely to be known.

Unless an unbiased linear estimate not requiring the knowledge

of v* can be found with a variance between cg and 5 the least-
squares estimate q is still the best practical solution, although

it does not utilize whatever knowledge we may possess about the Ffus.

(c) However, it is of considerable value to have the expression

for o2 since a lower bopnd is obtained for the variance of all the

linear unbiased estimates of x. If the use of a priori information

2

concerning v* is permitted, 0; is obviously the greatest lower bound.

If the use of v¢ is not permitted, 0; may or may not be the greatest

lower bound, but we can say at least that the greatest lower bound

does not exceed? oé and is not less than og. It would, of course,

be of interest to find such a greatest lower bound for the class of
all {linear and nonlinear) unbiased estimates.

3.1,2, (Best unbiased linear and least-squares estimates.)
Lags present. In (1) some of the y's may be lagged values of other
y's, Then the right-hand member of (20) might contain lagged values
of yg.

We shall consider the simplest case of this type, where

(73) Yit = Yo, t-1

lﬁﬁardy, Littlewood, Péolya; pp. 150-151, Theorem 204]. (72) would become
an equality only if (1l + 92 P)/ $= const,
21t would seem that asymptotically 0§ is the greatest lower bound because

of the maximum-likelihood properties of 5 {see section 3.2), and their
thereby implied efficiency. FExceptions might be due to the existence of
estimates whose asymptotic distribution is nornormal.
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and there are no other ¥'s or 2's present. In this case (20) and
(21) are reduced to

e(yt I yt_..l) = S(Yt l Yt-l :yf-l) = th"l'
(74)

02(yt I yt-l) = const,

where y, 1s written for y,, and the affixes of y are dropped.

The sample available is that of T observations on ¥, say
(75) (yli s vy yT).

When x is being estimated by the least-squares method under
the assumption (74}, it is considered that T — 1 pairs of observa-
tions of the type (yt' yt-l) are given, with the first element in

the pair as the “dependent” variable. The estimate § of % obtained
from the least-squares principle is

(76) g =

The question to be answered is whether ¢ is a best (conditionally
or absolutely) unbiased estimate. The complete solution of this
problem is not known. So far there is no known class of cumulative
distribution functions of (yl, cees yf) satisfying (74) with regard
to which § is {conditionally) unbiased. On the other hand, an im-
portant class of cumulative distribution functions for which (74)
holds but where § is biased has been found! Thus it is certain the
g is not in any case an absolutely unbiased estimate of x, and a
fortiori not a best mbsclutely unbiased estimate.

Several questions of interest remain unanswered. Are there
cumulative distribution functions satisfying (74) with regard to
which § is (conditionally) unbiased? What is the best (linear or
nonlinear) unbiased® estimate of ¥? (Asymptotically, § probably

is a best unbiased estimate due to its maximum-likelihood proper-
ties.)

IHowever. this bias tends to zero, though not very rapidly, as the sample
size increases, Cf. [XV].

21t is shown in [XV] that an unbiased estimate of Y does exist.
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3.2. Equivalence of Maximum-Likelihood end Least-Squares
Estimates of the Regression Coefficients

3.2.1. Lags absent.

3.2.1.14. The results given in this section are not in any way
new, but there does hot seem to be an easily accessible source
treating the general case and giving the necessary proofs.

As is well-known, the maximum-likelihood method leads to least-
squares estimates only when a normal universe is assumed and this
assumption will be implicit in all that follows,

Thus, consider a set ¥ of jointly normally distributed variates
LY given in (1)] with the following properties:

KZ
E0ge) = Ximgyas €=0,1, ..., £
(17) 7=1

co"(}fgtr. yhtn) = U)gh Strtn (E. h=20, 1, esey Ky).

where the z's are (observed) fixed variates, the n's and w’s are
unknown parameters: and B;14nthe Kronecker symbol. Then, clearly,

4 1.4
¥ z
*ok _ Y z
(78) EWu 11" D) = Fxive + 2% %5
i=1 j=1
(which is identical with (20) where x, = 0} and the regression, as
is well-known, is homoscedastic,

The regression coefficients y are related to the parameters in
(77} by

04
®
79 T - —
(79) X3 "
w
Z _ ¥
(80) Xj = ?ﬂgjxg .

Lhe problem of possible restrictions on the m's and w's is discussed be-
low in section 3.3.



294 L, HURWICZ VI-3.2

3.2.1.2. It is now to be shown that the least-squares estimates
§ and the maximum-likelihood estimates { of the x’s are identicall
The proof will be divided into two parts: first it will be shown

that §” =Y, and then that §% = £%. 1In each case we first derive
the least-squares estimates and the the maximum-likelihood estimates.

I. To show that ¢¥ = ¥, we first obtain the least-squares es-
timates by minimizing with respect to the ¢'s the expression S given

in (37).
Setting

(81) g = ~1,
we may rewrite S as

f,

by 1
(82) = X gy + B 25)

t=1g=0

or, for short

(83) S = E(Eyqyy +23q23)2
t
X K
y z z
where E EE , and 2 = 2
0 1

Differentiating S with respect to the ¢'s we obtain

188 ¥ Z

(84) ;-a—y=2[(2h3 Gt X q;zj)y,;]
93 t J
G=1,2, ..., %)

and

1388 o
(85) - =2 [(EJquh + 2 qf)zl] =0

£ 3y B j

(t=1,2, ..., K).

The proof given in the text is a reproduction of the one originally pre-
sented at the Cowles Commission Conference in February, 1945. Following
this presentation Koopmans suggested an alternative proof [VII], which is
much simpler, more elegant, and more easily generalized.
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Using notation similar to that of [II] for sample moments, we
write

3
|

1
Y% 7 Et:ygtyht ’

1
(86) m = = VYorZ:0 o
Y, % e ; gtojt
B B N
mzjzl -7 ztfzjtzlt ,

where T is the size of the sample. We may then rewrite equations
(84) and (85), thus obtaining

3 2
' ¥ . F .
(87) :: my‘-yf. a3 +2j myizj q9; = 0 (i=1,2, ..., k),

Y z
(88) 2 L + Zj: M 2 9; 0 (t=1,2, ..., k).

Now write

Y 2
b ¥ » z _
(89) < LA +Zj, myozj 9 = 9

where the value of ¢ is immaterial, and consider (89) as the first
equation of a system consisting of (87) and (89). Then (87) with
(89) may be written in matrix form as

: y s _

(90) Myy g7 + Myz q pe.,

where e = [1 0 ... 0]. Similarly, (88) may be written
z _

(91) My @ + Hypq® =0,

where sz =H;z is the transpose of Hyz' and 0= [0 G ... 0].
It follows from (91) that
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(92) ¢ = - K] o
and substituting this value into (90) we obtain

-1 -
(93) o, g - M, MM, g% = ge,

or, finally,

¥ H-IM e

_ o~y
(94) g7 = g¥ = (yy vz Moz Xy

Now, in obtaining the maximum-likelihood estimates, we see from
the elementary properties of determinants that

¥
(95) % wgh th = Sogl Wl (gz 0! 1! ceey Ky)
where Won is the maximum-likelihood estimate of Wgp Dividing by
w'®, we have
y | W |

96} we = 8
( Eh‘: gh 98 o0
Thus, by virtue of (80)! and setting qu= — 1, we have

| W
(97) 2 Wgh Xh = - 603 00 .

w

which may be written in matrix form as

(98) FgY=vye,
Wi _
where y =— —— and e = {1 0 ... 0] as before.
wﬂﬂ
It will be noted that the value of y does not affect 7. Now,
as has been shown in [II],

lThis operation is justified since (79} and (60) hold for the maximum-
likelihood estimates as well as for true values of the parameters.
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= =1
(99) W=N, - MIH

so that (98) becomes

(100) My = My Moz M, )87 = e
or

AY — -1 -1
(101) 2= (Hyy - Hya ¥, f{zy) ye,

which implies

(102) : 53’ = ﬁy

since the expressions in {101) and (94) are identical (except pos-
sibly for ¢ and y which are without effect on §7 and %7%).

1. To show that §% = ¥%, we first note, as stated in (92),
that

(103) gf=-M_HN, g7.
Since, as is shown in [II], the maximm-likelihood estimate P of =
is given by

— ~1
(104) P - Myz sz ¥
the maximum-likelihood estimate ¥Z of ¥ is obtained by substitut-

ing P from {104) and %% from (101) into the sample counterpart of
(80), thus obtaining

=

AZ o _ -1 A
(105) RE=-M__ X y 27,

with the symwetry of ¥ taken into account.
Hence, by virtue of (102),

(106) =M NG,

where the right-hand member is identical with that in (103). Thus

(107) 3¢ = 3%,
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and the second part of the proof is completed.

3.2.2, Lags present. No distinction is made in the derivation
of the maximum-likelihood (or least-squares) estimates between
“fixed variates” and lagged values of the endogenous variables 7.
Hence we may regard the z’s in section 3.2 as being “predetermined™
{(i.e., including lagged y's). The stochastic difference equations
are covered by the above proof.

The only word of warning concerns the nature of the initial
observation or observations. An example will clarify this point.
Let there be only one variable y and a sample

(108) Gps vees ¥p)e

We assume that y, satisfies a stochastic difference equation of,
say, first order:

(109) Yp T X Ypoqp T oug

where the 1's are normally independently distributed with a zero
mean and a constant variance.

To specify the problem completely, we must still provide infor-
mation concerning the (marginal) distribution of y, (i.e., the ini-
tial observation). Now if ¥, is assumed to be a fixed variate,
the maximum-likelihood estimate of x is identical with the least-
squares estimate. But if the (marginal) distribution of y, equals
the (marginal) distribution of any other Yy (1.e., ¥, has a zero

mean and a variance ci
1

lihood estimate of x is different from that obtained from least-
squares? This discrepancy will, in general, occur whenever the
distribution of y, depends on x.

= ci/'(l-— x2), the resulting maximum-Like-

In most economic problems it is the writer’s opinion that it
is not realistic to consider y, as a fixed variate; the only merit

this assumption seems to have is that of expediency in that it
leads to least-squares estimates.’

lSee section 1.1,
2 [Ko opmans, 1942] .

JAs the sample size increases, the maximum-likelihood estimate obtained
for the case where ¥, is not a fixed variate will tend stochastically to

the least-squares estimate.
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3.3. Regression Estimates under A Priori Restrictions

The proofs of the cptimal properties of the least-squares es-
timates § of the regression coefficients y were implicitly based
on the following assumption: the a priori restrictions (if any) on
the nature of the structure’ S do not imply any restriction on the
nature of the distribution F of the observed variates’

Now cousider the case where thé a2 priori restrictions on the
nature of the structure 5 are such that F itself is subject to re-
strictions.

(110) F=F% %]y 2 x,0%) F¥ (3 z; ).

(The regression in F is assumed linear in y** and =z, with re-

* | k%
gression coefficients , and homoscedastic with variance o?.)

We may then distinguish three cases of restrictions’ on F (im-
plied by the a priori restrictions on §):
The restrictions on ¥ do not involve ¥y :

(111) \p(x)(oz; ) = 0.

The optimal properties of J are not affected.
The restrictions on F invelve y only:

(112) ¥ ) = 0.

Then it is easily shown that the least-squares method, where mini-
mization is carried out subject to (112}, gives results equivalent
to both best unbiased linear and maximum-likelihood estimates when
the latter also take {112) into account {(whenever the equivalence

lIn the linear normal case S = {4, 21*) where A is the structural coeffi-
cient matrix and "% the covariance matrix of the disturbances. As an
example of restrictions on S one may mention the specification of zeros

in A or 2%,

2In the linear normal case, normality of F is postulated, but the first
two mements remain unrestricted.

The discussion in the remainder of this section treats restrictions in
the form of equalities only; the extension to inequalities is straightfor-
ward.



300 L. HURWICZ VI-3.3

would exist in the absence of restrictionms).
Restrictions involve both the regression coefficients, and some

other parameters of F (o2 or 6¥ or both); they may then be written
as

(113) y(x, o®; o¥) = 0,

In this case the equivalence of least-sguares with best unbiased
linear and maximum-likelihood estimates, in general, no longer
holds.

It may be remarked that in the latter two cases, if the exist-
ing restrictions are ignored, the unbiasedness or consistency 1s
not removed, but the variance of the estimates is no longer minimal.



VII. THE EQUIVALENCE OF MAXIMUM-LIKELIHOOD
AND LEAST-SQUARES ESTIMATES OF
REGRESSION COEFFICIENTS

BY T. C. KOOPMANS

The equivalence of maximum-likelihood and least-squares esti-
mates, under the conditions assumed by Hurwicz [VI-3.2], can also
be established on the basis of concepts and propositions developed
in other contributions to this volume. The equation' {(78)} of
which we desire to estimate the coefficients may be combined with
the equations {(77)}} with g = 1, ..., Iy (i.e., omitting the first
equation with ¢ = 0} to give a system

(1)

¥ Y Z z _
(LO) yy—xinme™ "~ XK, J’Kyt' X1B1g~ T Xg B T Yot
(1.1) Y1t Ty By T T ﬁleszt T
(1.x")

y a1 zZ - = F-4 =-v N
gt Tr11e “_Xyﬁ; Kt Tt

in which the Zy, «.., 2y are fixed variables, and the "at' V) g
z
s Vg g have the same joint normal distribution for each value

of t. In particular, since the first equation (1.0) in (1) repre-
sents the regression {(78)} of one variable (yo) in a normal sys-
tem on the others (y,, ..., yy ), the quantity

Y

(2) vE =y, - E(yo[yl, vaes yry; zl’,""sz)
is distributed independently of y,, ..., ¥y , and therefore also
Yy

lEquation numbers in braces { } refer to formulae in article [VI] by
Hurwiez.

301
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independently of Vs sevy Yp o
(3) Sv;fukzo, k=1, ..., K. .

In fact, this condition alone uniquely identifies! the equation
(1.0) within the system (1), given the fact that each of the remain-
ing equatlons (1.1), ..., (Lk') is uniquely identified by the (‘re-
duced”?) form prescribed for it.

Because of the independence of vy fromv, ..., Vg and because

. .. ¥
of the special form of the matrix of coefficients of Yo Y1r o

ygy in (1), the system (1) meets the conditions, stated elsewhere,’

¥ . .
for a factorization

Y Z
F = FR(X5 X3 0y*s Yigr 245)
(4) . 1MAer A Pug it jt

of the likelihood function! Here each factor depends, besides on

the observed variables, on a different set of parameters (as indi-
cated), relating to the equation (1,0) and to the set of equations
(1.1), ..., (1.X,}, respectively. The two factors can therefore be

maximized separately. In particular, the variables Yir enes yAr

can in equation (1.0) be regarded as predeterm1ned"5 by the equa-
tions (1.1}, ..., (1. K). That is, for purposes of maximizing the
first factor

(5) F, = constant X c;(,} exp-

E(UQ t)

20*
Y%

of the likelihood function, where 'u;t is given by (1.0), these var-
iables can be treated in (1.0) as if they were fixed variables. In

See [II, Definition 2.4.4.2].
25ee {11-3.1.6].
3ee [XVII-3 & 6],

4F here denotes the probability density in the sample space, not the cumu-
lative distribution function,

SSee [XVII-6].
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view of the form of (5), this establishes the equivalence of maxi-
mum-likelihood and least-squares procedures with regard to the es-
timation of the parameters of (1.0),

To complete the link with other articles in this volume, the
question should be raised as to what extent the equivalence just
established remains valid if the system (1) is obtained by linear
transformation from a system of structural equations as discussed
in [II], the parameters of which are subject to a number of a pri-
ori restrictions, and if the likelihood function is maximized sub-
ject to those restrictions.

It i$ seen from formula (3.13) in {II] that the parameters of
the secorid factor F; in the likelihood function (4) depend on the
structural parameters through

(6) n=-38lr, Q= (teap )T,
It should be noted that the elements in the zero row of II and those

in the zero row (and column) of Q do not enter in Fy. On the other
hand, the parameters in F,, according to {{77)} and (1), satisfy

K
a1 Y
y - _“ AR Y
Xs 7 77— X; =~ Xg Tgq o

(7} 4

2 _ y .y

oy g,%—-ox.é’ Cgh Xh
where xz =~1. It follows that the parameters in F, can be given

any arbitrarily chosen values by suitable choice of the elements in
the zero rows in Il and Q. The parameters in F, and those in F, are,
therefore, truly independent of each other.

This remains true under such restrictions on the structural pa-
rameters A, ¥ as do not entail any restrictions on the possible val-
ues of M and Q. In the terminology of [I1-3.2], the equivalence of
maximum-likelihood and least-squares procedures remains valid under
a priori restrictions that do not depress the likelihood function
below its absolute maximum, because both the likelihood function®
and the parameters of (1.0) depend on A, T only through the param-
eters II and @ which in that case are unrestricted.

1See either {4) and (7) above or formula {3.15) of [II].
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On the other hand, maximization of the likelihood function un-
der restrictions on A, ¥ that do not permit the likelihood func-
tion to attain its absolute maximum, can only “by accident” be
equivalent to the least-squares method, depending on how the vec-
tors Xy , Xz of regression coefficients are affected by those re-
strictions (as explained in [VI-3.3]).
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1. Formulation of the Problem
Let xy, ..., xy be N variables and denote by x,, the value of

x, at the time point ¢ where ¢ can take any integral value. It is

assumed that these variables satisfy a system of H (H < ¥) stochas-
tic equations

ey &, goqe vees Xy i@ e

1 Xyggr Ty gt coor B gD Ops wees 0p) T
h=1, ..., )
%ﬂe%,“”apﬂemhmnmmmmm,%isagwnﬁmdmof
the variables x, ;, .. @ =1, ..., ¥; ==0,1, ..., 78} and of the
, t=

parameters G, (=1, ..., P), anduyy, ..., uy, are random vari-
ables. It is assumed that the distribution of the random vector
u, = (ult' ceey uﬁt) is independent of ¢ and that the vectors u,
u,, ..., are independently distributed. It is also assumed that
the unknown distribution function of #; is known to be an element
of a given finite-parameter family Q of cumulative distribution
functions. Denote by 6, ..., 8, the unknown parameters involved
in the distribution function of u,.

305
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The problem considered here is to estimate all or some of the
unknown parameters O3, .., ®pj 6, ..., 8, on the basis of the ob-
served values x_, n=1, ..., N t=1, ..., D,

Since # < ¥, the distribution of the random vectors u, = (ult’

. QEt)’ t=1, ..., T, does not determine the distribution of
the variables X,
" on the latter distribution. For this reason, the title of this
note refers to incomplete systems of equations. It will appear
from what follows that the estimation problems in incomplete sys-
tems are essentially different from those in complete systems dis-
cussed in other contributions to this volume.

m=1, ..., ¥, but only imposes a restriction

2. Existence of Consistent Estimates

A basic problem is, of course, the question of the existence
of consistent estimates of the unknown parameters, We shall say
that a parameter point o« = (al, vees “P) satisfies condition C if
the following conditions are simulteneously fulfilled: (1) the
distribution of the vector

u,(a) = [fl(xlt,...,aa't_qp; e T ey Xy poaf Gpy eees @p),

ey fH(xlt, ey xl't_TD; “any xj,t, ey x}f,t—’tﬂ)]

is independent of ¢; (2) the vectors u,(a), #,{w), ..., are inde-
pendently distributed; (3) the distribution of ut(m) is an element
of Q. Tt is clear that if there exist two parameter points o’ and
o'’ such that both satisfy condition (', no consistent estimate of
the parameter point aexists. On the other hand, if there exists
one and only one parameter point o that satisfies condition C, then,

~under some further mild restrictions that we do not propose to dis-
cuss here, a consistent estimate of o will exist.

Whether or not there exist several parameter points ¢ satisfy-
ing condition C depends on the joint probability distribution of
the observable variables Xy n=1, ...; ¥, t=1, ..., ). Thus,
the existence of consistent estimates depends on the joint proba-
bility distribution of the observable variables. Since this dis-
tribution is usually unknown a priori, we cannot be sure that a con-
sistent estimate exists. This difficulty, however, is not as se-
rious as it would appear at first sight. 1In fact, instead of
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point estimates, we are usually more interested in constructing a
confidence region for the unknown parameters corresponding to a
given confidence coefficient. We shall see in the next section
that a confidence region can be obtained irrespective of the exist-
ence of consistent estimates. The only effect of the nonexistence
of consistent estimates on the confidence region is that the diam-
eter of the confidence region {(maximum distance between two points
of the confidence region) will not approach zero as the number of
observations approaches infinity,

3. Construction of Confidence Regions for the Parameter Point o

To construct a confidence region for the parameter point o we
may proceed as follows: Suppose that the prescribed confidence
coefficient is 5. For any given parameter point o = (uﬁ, “iey ag)

we construct a critical region W(a?) of size 1 - & for testing the

hypothesis that a = 4®. The critical region W(o®) is a subset in
the ¥T-dimensional space of the variables u,, (h =1, ..., H; T =
1, ..., T) and we reject the hypothesis that a = o! if and only if

the observed point u”(mo). um(ag), cens u“(aﬁ) falls in W(a®).
Of course, W(ao) is to be constructed in such a way that the prob-
ability measure of W(c') is equal to 1 — & under any distribution
of u, that is an element of Q. Usually such a region W(«®) can be
constructed without any difficulty. Now consider all possible pa-
rameter points o’ and the corresponding family of critical regions
W(cxo). The set of all parameter points ¢ that are not rejected
on the basis of this test procedure will form a confidence set
with confidence coefficient 8.

Thus, we see that there is no serious difficulty in obtaining
a confidence region for «. There will be, in general, infinitely
many possible confidence regions, since W(ap) can usually be
chosen in infinitely many different ways. The problem of proper
choice of W(&') is not yet solved. The theory of confidence in-
tervals as developed by J. Neyman [1937] does not apply, since
Neyman deals with the parametric case, while in our problem the
class of all possible distribution functions of the observable
varisbles x,,, (n =1, ..., ¥, t =1, ..., T) compatible.with the
relations (1) cannot be described by a finite number of parameters
owing to the fact that f < ¥.



308 A. WALD VIii4

4. Some Ezamples

In this section we shall give a few examples to illustrate the
procedure for the construction of confidence regions. It should
be emphasized, however, that the confidence regions described later
in this section are by no means “best.”” As a matter of fact they
may be very inefficient under certain conditions and it is not our
intention to recommend them for practical use.

Consider the following problem: Let x;, %,, and x, be three

observable variables and denote by x,, (=1, 2, 3; t =1, 2, ...)
the value of x, at the time point . Suppose that X1 4) Xq4, and
x,; satisfy the relation

(2) : e *oagxy, + Ay Xgy T ooy = Uy,

where o,, o,, o, are unknown constants and u,, ¥y, ... are independ-

ently and normai)ly distributed random variables with zero means and
a common variance o, We shall construct a confidence region for
the parameters oy, Oy, and oy on the basis of the observed values
x,, (n=1,2,3;t=1, ..., T). For simplicity we shall assume
that T'= 37, where ¥ is a positive integer. Denote by " the
arithmetic mean of the observations on x, in the mth group of V ob-
servations, i.e.,

14
- 1
3 A= 7 =1, 2 3.
@) *n V t=s(m-137+1 nt n
Furthermore, let
1 il

2 = - 28y _ =

n "~ V-1 t=(m§:-1)V+1 [(xlf "1) tooy(x, "2)
(4) )

+°‘-3(x3t_5r)] , m=1,12,3.

It is clear that (V- l)si/o-z, v- l)sg/cz, and (V- 1)8;/0'2

are independently distributed, each having the x’-distribution with
V = 1 degrees of freedom. Thus, each of the expressions
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%

EP+ apyZF + 0, 22 + 0l ¥V

Sm

has the t-distribution with ¥ — 1 degrees of freedom, and t,, ¢,,
and ¢, are independently distributed.

A confidence region for (a,, o, ag) with confidence coefficient
& can be constructed as follows: Let Mg be the value for which the
probability that — Ag <t < Ay is equal to 53 Here £ denotes a
random variable that has the f-distribution with ¥ — 1 degrees of
freedom. The set of all parameter points (o, o, g) that satisfy
simultaneously the following three inequalities,

(6) ltmlslﬁl m:1’2’3’

forms a confidence region with confidence coefficient &,
The confidence region given by (6) is certainly far from being
the best possible one. There is a loss of efficiency in taking

three different estimates sf, sg, Sg for o2. A better procedure

would be to combine these three estimates into a single one given
by s?= % (Sf + 53 + 53)- This, however, would make the variables

i, tz,'and t, dependent and would complicate the derivation of a

confidence region.
If the determinant

=1 =1
Xy X3 1
=2 =2

(7) % x5 1
=3 -3
£ x3 1

is bounded away from zero as ' 5 «, and 1f sf, sg, and sg are

bounded functions of I, the diameter of the confidence region given
by (6) will approach zerc as T 5 «. If the distribution of the
vector v; = (xlt, Xyt x3t) is independent of £, if v, Yy, ... are
independently distributed, and if the first two moments of Xpt

exist, then the determinant (7} will converge stochastically to
zero and the probability is one that the diameter of the confidence
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set given by (6) will not approach zero as T 5 w.
Another possible procedure for cbtaining a confidence region is
the follewing: Consider the expression

3
Vmgl(;c;“ t oy I} + ay IR+ ag) r 3
(8) F = .
V- (st + s + s2) 3

This has the F-distribution with 3 and T~ 3 degrees of freedom.
Let Fy be a positive value for which the probability that F < Fy is

8. Then the set of all parameter points a,, &3 o, that satisfy
the inequality
(9) F < Fy
will form a confidence set with confidence coefficent &,

A confidence region for a,, o, o, can slso be obtained as fol-
lows: Consider the serial correlation

-1
t21 [(xlt + o, Xy + agxy, + °"0) !

X (xy g1+ ap %y 44y T @3 %y t “n)]
(10) r = 7

2
El (g toogxy, +oagxgy + )

and let s be a value such that the probability that lr] < s is
equal to 5. 'Then the set of all parameter points (a,, o, «,) for

which | r| < ry will form a confidence set with confidence coeffi-
cient 8.
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1. The Purpose of the Method

In many economic studies the investigator wishes to study only
a single equation out of a complete system. For example, an econo-
mist may be interested in the demand function for a given product,
This interest would involve only one structural relation out of a
set of such relations, among which might be a supply equation, an
income equation, etc. If a particular equation is to be studied,

a complete model must exist that explains the formation of all the
variables in this equation that are considered as endogenous. It
is possible to set up the complete model explicitly and, if all the
equations are linear, estimate all of the coefficients by the meth-
ods described elsewhere in this volume.

To obviate this often complicated process a method has been de-
veloped which gives consistent estimates of the coefficients of a
single equation without requiring estimates of the complete system.
This method is known under two names, the *limited-information max-
imum-likelihood method” or the “reduced form method,” each of which
refers to an important aspect of the methed.

311
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The only information about the system that is required for this
method is the knowledge of all the predetermined variables. 'The
restrictions on the system that are imposed in the estimation pro-
cedure are that the coefficients of certain variables be zero in
the equation estimated. The estimates are then derived on the ba-
sis of maximum likelihood. Since there is in general a larger num-
ber of effective a priori restrictions (i.e., depressing the like-
lihood function!) on the system than the restrictions on a single
equation, this method of estimation is not as efficient as the max-
imum-likelihood method using all a priori restrictions on the com-
plete system.

- This article describes the estimates and gives some of their

statistical properties. A full mathematical treatment is given in
[T. W. Anderson and Rubin].

2. Derivation of the Coefficients from
the Population Reduced Form

Let the equation in which we are interested be
(1) Byl + vyz{ = u,,

where y, is a row vector of # (< G) jointly dependent variables?
z, 18 a row vector of all the predetermined variables in the com-
plete system (X in number)}, and 4, is the random disturbance asso-

ciated with this equation. Suppose that there are K** coordinates
of y that are known and prescribed to be zero. Then (1) can be
written as

(2) ﬁy;-i-'y*z;“—‘ut,

where z} has K* (= E—K*") of the coordinates of z,. Here y*is
the vector of the X* coefficients of the coordinates of zt. We

shall assume that (2) is identified by the zero coefficients pre-
scribed through the omission of 2}* and possibly certain jointly

dependent variables which are not coordinates of y, (Gf H <G).

1see [11-3.2.1].

2For the definition of jointly dependent and predetermined variables see
[11-1.8].
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This condition implies that! X** > ¥ - 1.

The reduced form of the complete system is the system written
in the form of a regression on the predetermined variables. The
part of the reduced form? of the complete system that involves the
H coordinates of y, in (2) is

(3) y{ = 0%z} + 02" + uf,

where v; is a row vector of disturbances. If we premultiply (3)
by B we obtain

4 Byf = gM'zy/ + BU™z3*" + puf.
Since (4) must be identical with (2), we have

(5) y* = -pn*,

(6) 0 = pm**.

If B is unknown, but II** is known, B can be found from (6) except
for a factor of progortionality. In turn Y* can be deduced from
(5). The condition® that (2) be identified by zeros is that (6)
can be solved for 8. In terms of II** the condition is that its
rank be ¥ — 1,

If @, the matrix of variances and covariances of the v/ of (3),
is known, the formula

(7) o2 =pap

gives the variance of u,. The normalization of B can be written
as

(8) pEp =1,

where ¥ may be Q or may be some known constant matrix.
The basic idea of the “reduced-form method” is that if the rel-

ISee the corollary to Theorem 2.2.1 in [II].

2See equation {3.11) in [II]. If #< @, the present equations (3) form a
subset of equations (3.11) in [11].

3See: Theorem 2.2.1 in [II] .
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evant part of the reduced form (3) is known together with the ma-
trix Q, the coefficients g and y*'and the variance o? can be de-
duced from (5), (6), (7), and (8).

If £** = #— 1, then we can solve for g from the sample equiv-
alent of (6). However, when £** > F — 1, the (unrestricted) esti-
mate of I"'* will be of rank #, and then the sample form of (6) can-
not be solved for a nontrivial g. In the next section this diffi-
culty is met by obtaining a maximum-likelihood estimate of § (under
disregard of a part of the a priori information) which also esti-
mates II"* with rank # — 1.

3. The Maximum-Likelihood Estimates

To derive estimates of the vectors p and y* on the basis of
maximum likelihood we assume that all the disturbances in the sys-
tem are normally distributed with mean zero and covariance matrix
independent of t and of the exogehous variables and that the dis-
turbances are serially independent. Knowledge of all the predeter-
mined variables in the system is assumed. The only restriction on
the system that is taken into account is that the coefficients of
2** and possibly of some jointly dependent variables (if # < @) in
the specified structural equation shall be zero. The likelihood
function is

L= @ A (ger gy 4T
(9)

X el - “2 (O P T TRy

The restrictions on the parameters are
(10) go** =0,
(11) g ER = 1.

To define the estimates of B, y*, and o’ we need the following
statistics;

T
:E: ={¥ M ],

1
(12) '} yz yz* yz
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the matrix of mean cross-moments of ¥ and 2, partitioned according
to whether or not the coordinates of 2 are in the equation (2);

. SR . S
1 B B z*z z*z
(13) }Elzt{ z, = M, = ,
Hz**z* Hz**z**

the matrix of mean second-order moments of 2;
(14) P=X N

the matrix of sample regression coefficients which is partitioned
as

(15) p=1{pr* pP™].:

(16) B = Mk,

* ok

the matrix of sample regressions of ¥ on 2%

(17) MZOZO = Mza;tz*t - Mz** z*M;"J“z*Hz*z*"‘ f

the mean moments of the residuals (2°) calculated from the regres-
sion of 2** on z%;

— -1
(18) W=, — W, WK,

which is 7*/T times the least-squares estimate of Q (where T* =

T-'K). Any of these quantities will be underlined to denote mul-
tiplication by T (for example ¥,0,0 = T ¥, o).

. The second step in obtaining the estimates is to find the.
smallest root of the determinantal egquation
* % * ¥ —
(19) | P Mo, 0P"" ~ vWH | =0

and the corresponding characteristic vector & defined by

(20) (P™ Mo 0P - vI}b = 0,
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(21) bWbH = 1.

The population quantities corresponding to v and b are 0 and
el(ezp’)/ (g 2p)l

The estimates of 8, y*, and o2 are

~ b

{22} = —
P (b = b’)l/2

(23) vr=—gP,
N (1+v)
2

(24) = 2

For normalization B Q B’ = 1, the above equation can be simplified.
In this case o is unity and (22) is

~_ b

(25) —_— .
1+ v)%

4. Asymptotic Properties of the Estimates

4.1. Consistency. Although the usual theorems concerning max-
imum-likelihood estimates cannot be applied in general to the esti-
mates of section 3 because successive observations may not be inde-
pendent, most of the usual asymptotic properties hold. In particu-
lar when the assumptions of sections 2 and 3 are true (i.e., assup-
tions for deriving maximum-likelihood estimates), the estimates are
consistent and are asymptotically normally distributed. However,
stronger results can be given. For certain weaker conditions on
the system, asymptotic normality of the estimates holds, and under
still weaker conditions, the estimates are consistent. We shall
consider consistency under three sets of conditions where neither
normality nor a constant covariance matrix is requ1red

(i) The estimates are consistent if (a) the stochastic process
is stable, (b) the limit in probability of the matrix N;z is non-

singular, (¢} the ratio of the largest characteristic root of W;y
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to the samllest is bounded in probability, and (d)
by

1 _
(26) phm—fg:lu; z, = 0,

P X-

where u; is the row vector of disturbances.

(ii) The estimates of § and y* may be consistent even though
not all of 2** in the system is used. Of course, at least F— 1
coordinates must be used.

(iii) In certain nonlinear systems, a linear equation (1) can
be consistently estimated by this methed. The important condition
is that the part of the reduced form that is not a linear function
of 2* has a population regression on some 2** that is of rank #— 1.
There are, of course, certain identified nonlinear systems for
which this does not hold,

4.2, Asymptotic normality, The requirements for asymptotic
normality are stronger. Here, we require of a linear, stable sys-
tem that the (4 + ¢)th moments (for any ¢ > 0) of the disturbances
be uniformly bounded in . In addition there are certain require-
ments on 2.

It should be pointed out that in most cases for the kind of
linear systems that an economist is likely to postulate for his
problems, these theorems are adequate for the desired asymptotic
properties.

5. Spall-Semple Confidence Regions

If all of the predetermined variables in the system are exog-
enous {that is, for purposes of obtaining distributions they can
be treated as fixed in repeated samples), then confidence regions
for the structural coefficients can be found from small-semple
theory based on the normality of the disturbance in the specified
equation. The regions are based on the idea that given a seguence
of observations y,, 2}, z}* (¢t =1, 2, ..., T) from a complete

system containing (1), the numbers
(27} byl +czi'= w,

will behave like observations from a normal distribution if
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{28) b= g,
(29) c = ¥*.

Roughly speaking, if b differs from p and ¢ from y* by small amounts,
then the sequence {wt} will not be much different from {ut}' The
regressions of w, on 2,

(30) M, ML+ cM.)H ]

yz "2z zz

are normally distributed if (28) and (29) hold true. Then
b cex i Mo oMt i b =

(31) gyz** Mok pxn _2030_{!2*#2*:: .‘i"z“y — Apxx

has the x’-distribution with ¥** degrees of freedom if

(32) pap = 1.
Similarly,

—.1 —-—
(33) (b _}fyz + C.{{z*z)gzz (b gyz + ¢ .ffz*z)’ - XX

has the Xz-distribution with X degrees of freedom and

- -1 —
(34) bM, b - bM MLKE b= K

Zyz lzz Z2y

has the y?-distribution with 7™ degrees of freedom and is independ-
ent of either (31) or (33). If the normalization of B is

(35} pEE =1

for fixed E, the three quantities given above must be multiplied
by the reciprocal of 8 & B’ in order to obtain statistics with y*-
distributions.

For normalization (32), a confidence region for 8 of confidence
e, & is given by the vectors & for which

(36) XX‘* _S X;#*(el) ’
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(37) ')_(iv*(%) g ¢ i;.(ez) .

where the limits are chosen so that the probability of (36) is ¢,
and that of (37) is &, and

2 =
(38) xr(ey) £ T7 < Xpaley)
To derive a region for § and y* we substitute

(39) I, < xi(el)

for (36).

If the normalization is (35) a region of size & for g is (35)
and

(40) T* Ko < F (&)
= &/ ,
K** le* K** T

where FK*"‘ Ta(e) is chosen from Snedecor’s F-table [Snedecor, pp.

88 - 91] so that the probability of (40} is e. A region for § and
y* simulteneously is (35) and

™ i

I Ip

(41)

.<_. Fxf*(e) -

ﬂg 82

a5
Y,

Figure 1. Figure 2.
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The first-mentioned region for B of two coordinates is illustrated
in Figure 1. The region for B of two coordinates when the normali-
zation is

{42) ﬁlz =1

is given in Figure 2 as the two segments A’B’ and 4B.

The regions suggested converge in probability to the parameter
points as T 5 « in very general systems. One type of condition is
that the covariance matrix of successive disturbance vectors be
such that the average of the matrices convérges.

6. Statistical Tests of the Assumption of Zero Coefficients

6.1, The likelihood-ratio test., The hypothesis that the coef-
ficient vector of z** is zero is fundamental for the proposed meth-
od. Tf there are more than # — 1 zero coefficients prescribed, we
can test the hypothesis that all of these coefficients actually
are zero. In a sense we are testing information beyond that which
is necessary for identification.

If the coefficient vector of z** is zero in the specified equa-
tion, the rank of II** cannot be greater than # — 1. Hence, we
shall test the hypothesis that the rank of '™ is # — 1 against
the set of alternative hypotheses that the rank is #. Of course,
this test is unnecessary if ¥** < 7.

The likelihood-ratio criterion for this hypothesis is

(43) 1+ ) A2,

where v is the smallest root of (19). The asymptotic distribution
of

(44) T log (1 + v)

is the y?-distribution with £** — # + 1 degrees of freedom if the
conditions for asymptotic normality of the estimates ﬁ, Y* are met.

6.2. A test based on small-sample theory. If p I** is not
zero, the quantities given in section 5 do not have the x*- and F-
distributions as stated. For example, the inequality (40) is sat-
isfied with probability less than ¢ if B O** is different from
zero. It can be shown that if the number of observations is made

large enough the probability of (40) can be made as small as we
please.
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The minimum of the ratio (XK**/X**)/ (Xr*/T*) for variations
of b is given when b is set equal to a solution of (20)., Then the
value of the ratio is the smallest root of

45) P** K.o0.0 pr** . W ~
K** T -

If the inequality (40) is not satisfied by the minimum value of the
ratio, it is not satisfied by the ratio for any choice of b. The
probability, say 8, that

(4‘6) )- > FK**.T*(E)

is greater than 1 — & for B I** equal to zero. The inequality (46)
constitutes a test for the hypothesis that I** is of rank ¥ — 1.
However, the significance level, 5, 1s not exactly known. The in-
equality 8 > 1 — € shows that if the test is used as if it were at
significance level 1 — & it will be conservative,

If one attempts to compute a confidence region when there is
disagreement with (46), one will find the confidence region given
by (46} imaginary.

7. Advantages and Disadvantages of the
Limited-Information Maximum-Likelihood Method

The significant advantage of the limited-information or reduced
form method is the saving in computation when the coefficients in
only one equation (or several, but not all, equations) ocut of a sys-
tem are to be estimated. In this case there would be a greater
computational expense to estimate the many more coefficients in the
entire system. Moreover, simltaneous consideration of all restric-
tions in the system leads to more complicated formulas. It is pos-
sible to estimate the complete system, equation by equation, with
the limited-information method. Then the laborious methods of
[1T1-4] are not used.

In systems in which there are restrictions depressing the like-
lihood function in addition to the condition that I** be of rank
H— 1, the limited-information method does not take into account
all of the restrictions on the system while estimating the coeffi-
cients of one equation. This fact leads us to believe that the
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limited-information method is not as efficient as the maximum-like-
lihood method, which utilizes restrictions on the entire system.
Some systems are restricted by bilinear restrictions (i.e., re-
strictions connecting two equations), If bilinear restrictions
are imposed on an equation, then it may not be possible to estimate
it by the limited-information method. On the other hand, all lin-
ear restrictions can-easily be put into the form of prescribed zero
coefficients.



X. SOME COMPUTATIONAL DEVICES

BY HAROLD HOTELLING

In solving normal equations it should be understood that it is
highly desirable first to obtain the inverse matrix. This fact is
often overlooked, but the necessity of computing standard errors
and the frequent desirability of other uses of the inverse matrix -
for example, adding to or taking from the set of predictors — are
cogent arguments for adopting a standing rule that no large system
of linear equations should ever be solved excepting by first find-
ing the inverse of the metrix of their coefficients.

Direct calculation by methods such as those of Doolittle and
Dwyer requires labor of the order of $°, wherep is the number of
rows or of unknowns. Thus inverting a matrix of 50 rows requires
only about one-eighth as much work as inverting a matrix of 100
rows. This consideration contributes interest to methods of in-
verting a matrix by partitioning it and inverting submatrices. A
method of doing this has been set forth! involving four inversions
of matrices of half the order of the given che. An improvement
given by Waugh involves enly two inversions of submatrices. In
each case there are alse multiplications and additions of submatri-
ces, but these are more straightforward operations than inversion,
even though the labor of multiplying two matrices of order # is
also of the order of $°. In partitioning a matrix for this purpose
there is an advantage in dividing the rows into equally numerous
groups, since when the sum of two positive numbers is fixed, the
sun of their cubes is a minimum when they are equal.

In special! cases there are further advantages in partitioning.
Thus there may be whole blocks of zeros, or there may be triangles
of zeros that make it easy to invert particular submatrices.

Another important method in matrix inversion is iteration.
Several iterative methods are discussed in the paper cited {Hotel-
ling, 1943-1]. The method recommended when a fairly good approx-
imation C, to A7 has been reached is to use

... = C2 —4C,)

m+l

I[Hotelling, 1943 - A}. Further results on matrix calculation are given
in [Hotelling, 1943- B and 1949] and {Ullman, 1944].

323
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repeatedly to compute successively Cy, C,, ..., while considering
at each state the matrix of errors
b, =1- AC,.
The norm of a real matrix is the square root of the sum of the
squares of the elements. It is an extremely useful means of set-
ting an upper bound for the errors. Let the norm of Dy, denoted

by N(Do), be k. Then if 2 < 1, we have the following upper bound
for the errors in the approximations: '

mn
kz

-1
¥, - 47) < ¥cy) T

This formula shows two advantages of this particular method of it-
eration. One is that the limit of error is expressed only in terms
of known numbers, without involving things calculated with a degree
of accuracy not previously determined. The other advantage is that
this limit of error decreases with great speed as m increases, be-
cause of the exponential of the exponential appearing in it. If %
happens to be greater than unity, the method will sometimes con-
verge nevertheless, and a new £ < 1 will emerge at a later stage.
I1f the method diverges, a better first approximation must be found
in some other way.

Both iteration and partitioning are useful in least-squares
problems with constraints. These problems are of two main kinds.
The first is typified in surveying, where the Euclidean value for
the sum of the angles of a triangle provides a set of side condi-
tions that modify the solutiom.

The second kind is represented by the regression treatment of
the analysis of variance with disproportionate class frequencies.
Here the side conditions are introduced solely for convenience, to
make definite the selection of a particular solution among an ine
finity of possible solutions. When this fact is realized, the ar-
bitrary character of the side conditions becomes evident, and it
will be recognized that essentially the same final results will be
reached even if the usual simple conditions are considerably al-
tered,

It is customary to take side conditicns asserting that the
simple sums of certain of the regression coefficients are zero.
The labor of calculation is cut down if these are altered by intro-
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ducing the marginal total frequencies as coefficients.

The whole system of normal equations and side conditions in
such cases is treated in & new paper by the author with the help
of partitioned matrices, which clarify many of the relationships,
The matrix of the whole system has an inverse, of which a particu-
lar submatrix plays a part in this theory closely analogous to
that of the inverse of the matrix of the normal equations in the
ordinary nonsingular case. This analogy includes both the compu-
tational and the probability aspects. Furthermore, the matrix of
the whole system can be inverted with the help of the iterative
method set forth above. This will be advantageous whenever a good
first approximation is available. A suitable source to which we
may look for such a first approximation is the familiar treatment
of proportionate frequencies,
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XI. VARIABLE PARAMETERS IN STOCHASTIC
PROCESSES: TREND AND SEASONALITY

BY LEONID Humwicz!

1. When an economic time series is of any considerable length,
the existence of trend is often suspected. The customary fashion
of dealing with such a situation is either to eliminate the trend
component by one of the several well-known methods or to treat
time as a fixed variace entering the stochastic equations (or the
regression equations) in the form of some given function, usually
a polynomial.

On the other hand, when the data cover periods shorter than a
year (days, months, quarters, etc.), seasonal behavior is often
suspected.

In meteorological series there alsc exists, in addition to
trends and seasonals, the diurnal component when, e.g., heurly
data are available. The methods used in this case are analogous
to those in treating trend — elimination (by subtraction or divi-
sion) and fixed-variate regression.

These methods, presupposing as theg do an additive or multipli-
cative effect of trend and seasonality? are bound to fail in all
but the simplest cases.

The experience in dealing with many time series, especially
those in meteorology, indicates the need for a more flexible and
general approach, In the present note the essentials of such an
approach are sketched. The note is incomplete in many respects:
among its deficiencies is the lack of proof of the consistency of
the maximum-likelihood estimates used. For the sake of simplicity
the discussion is restricted to time series in one variable only.

Part of the work on this paper was done in 1945 - 46 during the author’s
tenure of the Guggenheim Memorial Fellowship. Some of the problems con-
sidered arose in connection with the author’s research at the Institute
of Meteorology at the University of Chicago.

IDiurnal effects are fully snalogous to seasonals and will not be dis-
cussed separately.
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The generalization to several variables is straightforward.

2. Let there be an infinite time series

(2.1) x = (..., xto_l, Ty Fpars )

such that every finite segment x of x_ has the probability density

function f{x). The function f is at this stage assumed to be fac-
torable! (this assumption will later be relaxed); thus there
exists p such that

$)
2.2) ) = TTAGE),  w= .t 1 b, o+ 1, ...,
g ‘
where

(2.3) 2P =, x

T TRy e x'r:+f:)' =9 <w.

3. We shall now indicate the possibility of imposing restric-
tions on the nature of

(3-1) ‘ f = (---» fto-l’ ftu’ fto+1' "")'

In the very simplest case we might have
(3.2) fe = £ for all .

But the case of interest is when f. changes with t. If the change
is strictly periodic, so that

(3.3) fr = f'r+k for all T,

where %2 is some integer, we shall speak of seasonal fluctuations
of f..2 Clearly, (3.2) is a special case of (3.3) with & = 1.

On the other hand, there may be nonperiodic variations in S
these may be referred to as trend, although, in the narrow sense

Lthis implies nonautocorrelated disturbances.

More generally, f& might satisfy some given functional equation, say a
difference equation of finite order.
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of the word, *trend” usually implies some uniform change in the

value of & (xt) .

4., In what follows we shall be concerned with the parametric
case and assume that

— {$) (s)
(4.1) 5, = G 16l

( . . .
where S,CS) = (9,“, weny e'ts) 1s a parameter vector variable in
time, It is assumed that the form of f does not change with time.
ﬁniﬁ) was defined in (2.3).]

5. lLet the sample 0 = (x xI.) inrcl). where T > 9,

be drawn from the universe given by (2. 2) and (4.1) after the ini-
tial » — 1 values of x have heen fixed?}
Then the likelihood function 2, of the sample is

(5.1) Pr(0,) = rff< NN IDAPNA

m2) pixed,

{s) .
Before we proceed with estimation of the €. , we shall intro-

with %,

duce assumptions concerning the behavior of 9;3) in time. (The

superscript § will be omitted where no danger of confusion exists.}
In the seasonal (periodic) case, corresponding to (3.3) we
would have

(5.2) 0, = O,y
which implies that all ©'s can be expressed in terms of the first
k e’sl i'e-’(e : 104.1! (KRN 9T0+k_1)a or, say, &4 = (OL1| veey mq):

where there is a one-to-one correspondence between the components of
of o and of the first 2 6's, Thus the problem is reduced to that
of estimating the components of a.
Similarly in the case of trend (in the broad sense given to
this term earlier) it is assumed that the components of @ are

lAlternatiVely, the initial value vecter x{P'Z) might be considered sto-

chastic and assigned some given probability density function. This course,
while mere realistic, is less expedient since it does not lead to least-
squares estimates when the maximum-likelihood criterion is uwsed. Cf. Vil
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given functions of time (e.g., polynomials), say,

(5.3) o = o(v; ),
and the problem is again reduced to that of estimating o.

Thus both in the case of seasonals (5.2) and trend (5.3), the
likelihood function &, given in (5.1) may be expressed in terms of
o and T and written

I-¢
. (4) {($=2)
(5.4) Pr(0,) = I-Iof(x,tﬁ” T; &3 xlﬁ ),
‘t:

and, if the maximm-likelihood criterion is used, Pr(0;) is to be
meximized with respect to .’

6. As an example, consider the stochastic difference equation

P
(6.1) xy = jzlejt iy b Oy T 6y, g ¥y,

where the 4's are independently and normally distributed [in view
of the presence of 8), and 84,1, t» %4 may, without any loss of gen-

erality, be assumed to have the normal distribution N(O,l) with
zero mean and unit variance]; the behavior of the &'s is given by

(6.2) 0p = 8 4,4 i=0,1, ..., pt1,

where & may be either a year or a day (24 hours).

This type of equation is strongly suggested by metecrological
data which exhibit seasonal (and diurnal) fluctuations not enly in
their *normal {i.e., mean) values,” but also in their variances
and lag-correlation coefficients.

Thus, for instance, in a series consisting of many years of
monthly data it is found that the lag correlation of, say, January
with February may differ fram that of February with March, etc.
Moreover, even for the 12.month lag the correlation of, say, the
Januaries of two successive years differs from the corresponding
12-month lag correlation for February. This suggests an equation
of the type (6.1) with p > 1. (For # = 1 the 12-month lag corre-

‘The alternative procedure would be to apply Lagrange's method and to
maximize Pr(0;) subjeet to restrictive side relations.
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lations do not vary from month to month.)

7. The maximum-likelihood equations can be set up easily, pro-
vided the variable coefficients @_ are linear in the a’'s, We shall
show this in two examples: one of trend and cne of seasonal fluctu-
ations.

7.1. Trend. let the behavior of the time series be described
by a first-order stochastic difference equation

(7.1) x, = (mo + otlt)::ct_‘1 +oa, +ou,,

where the u’s are independently normally distributed with a zero
mean and a common variance. (It will be observed that in this case
the trend affects lag regression and not the expected value of x;.)
This may be considered as a special case of a one-equation stochas-
tic system with one dependent variable Xy, and x4 _y, £Xy_, and 1
as “predetermined” variables!

Thus let
Zyp = Xy % = Yy
(7.2) 2y = txy_), % T Yo
2y = 1, %y = Y3

Then the likelihood function of the sample is
r
(7.3)  Prc(0,) = tI:IZ Flag = (h21p + v 290 T Y3 230))

where f is normal with a variance o2 and a zero mean. Hence

1 Y 1 .
7.4)  Pr(0,) :(1/270) exp { - = ;(xt - {; vi 20 )

and the maximum-likelihood estimates ¥ of y are obtained by minimiz-
ing the sum of squares

ler. [11-1.8].
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(7.5) S= X, - Ty, 2,07
t i

This is an example of equivalence of the maximum-likelihood and
least-squares method. (The equivalence would have been absent if
x, had not been assumed fixed!)

7.2, Seasonal. A strictly analogous seasonal situation is
given by

(7.6) xy = (ao + a.lsint)xt__l + oy, +ou,

where the period is 2m.

Here let
1 = X %p = M+
(7.7) Zys = (sint)x, |, %) = Y
2., = 1, %y = Y3.

and the procedure is exactly the same as in the preceding example:
the maximum-likelihood criterion again leads to the least-squares
procedure.

Clearly no obstacles will be encountered as long as the equa-
tions remain linear in the unknown coefficients.

One problem which may arise is that of extending the available
proofs of consistency of the maximum-likelihood estimates of the
a’s so as to cover the “explosive” (or, in general, undamped} sit-
uations., For a very special case this has been accomplished in

fxiv].

8. In this section we consider a stochastic difference equa-
tion of order p whose coefficients are periodic with period £, and
the same is true of the variance of the normally distributed “dis-
turbance.” This is the case described by (6.1).

Assuming for simplicity that T = nk, where 7 is an integer, we
obtain the likelihood function

ol & k
(8.1) Pr(0,) = (m)’“‘j}}l G exp{ - —;jgl %),
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where
—z 4 2
(8.2) 9; = 2( Xiver = ‘;1 %t xj+rk-1'.)

In the case of monthly observations £ = 12, Let j =1 correspond
to January, j = 2 to February, etc. ‘Then the estimates of the «’s
in {8.2) would be the least-squares estimates of the regression
coefficients in the regression with, say, the ith month as the *de-
pendent” variable and seme or all of the remaining eleven months
as the ' independent”™ variables.

Thus denoting the January observation in the pth year of the
smﬂehym,thtbr&hmwhybumw”wemmwdufd-

lows: Minimizing with regard to the «’'s the jth sum of squares

p
2 _ 2 -
(8-3) SJ' - P‘gl(ylp' - 3;1 Qﬁjsyj_s,“') ’ yj_s’u":yj_s+12,p,:

we obtain the maximum-likelihood estimates &;  for the given j and

s=1,2, ..., . When the ajs are substituted in (8.3) we obtain
né?,

This procedure is then simply that of estimating the regression
of each month on its predecesscrs, and the 12 such regressions can
be computed quite independently. This has been done in the past,

although it is not easy to find justification for the methods used.

9. In practice it frequently occurs that the economist (or
the meteorologist) has at his disposal data extending over a period
of, say, 15 or 20 years and the number of parameters to be esti-
mated is 3 or more. The significance of the results cbtained from
the use of annual figures cannot then be too reassuring. Therefore
it becomes natural to attempt to utilize monthly (or quarterly) ob-
servations. Clearly, this means that seasonal phenomena (absent
from annmal figures) must now be taken into account. The simplest
way to do this is to take the stochastic equations of the model
used for annual figures and endow their parameters with seasonal
variations.

Let, for instance, the “annual model” be

(9.1) Xy Toayxy_, ooy toa, u
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where x, is the annual average of x for the fth year, the time unit
is one year, and the properties of #, are given in section 6 [fol-
lowing equation (6.1)].

Then the simplest way of setting up a *seasonal model” would
be to assume periodic behavior of the o’s; thus

(9.2} P e PR ITL T

where ¢ is, say, one-twelfth of the time unit, i.e., a month, X, is
the monthly average, and %, has the same properties as before.

If this were the case, it would be possible to apply the theory
developed in earlier sections and no serious difficulties would
arise, Unfortunately, however, such a passage from the annual to
the seasonal model would not, in general, be justified. The cru-
cial assumption, which might held in (9.1}! but not in (9.2), is
that of independence (or nonautocorrelation)® of the successive
disturbances u;.

To see why this should be the case it will suffice to remember
that the disturbance itself is a stochastic process and it is not

unreasonable to assume that its properties can be described by a
stochastic difference equation (for simplicity, of first-order)

(9.3) u, = Bu,  + v,

where the time unit r is small compared with g - say, a day. Vi
might be called the secondary disturbance (while u, is primary),

is a stochastic variable with a constant mean and standard devia-
tion and is nonautocorrelated.

It can easily be seen that the autocorrelation p(ut, ut_e) of
u, tends to zero as the lag © increases. It might still be appre-
ciable for lags of one month but negligible for one-year lags.

Hence it may be quite legitimate to consider %, as nonautocor-
related in the annual model (9.1), but the same assumption might
be highly unrealistic for the (monthly) seasonal model (9.2).

It then becomes necessary to generalize the theory of seasonal
models as developed in the earlier sections of this note by consid-

ering disturbances of the type (9.3) instead of the nonautocorre-
lated ones.

lAlthough even here it would not be very realistie. Cf. [Hurwicz, 1944].

2As long as we deal with normaily distributed disturbances, the two terms
are synonymous.
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10.1. Before investigating the properties of models of the
type (9.2) with u, satisfying (9.3), we shall first consider the
nonseasonal case, viz.,

4
(10.1) x, = 2 O %y o o,
T=1

where x, is now the instanteneous (“daily”) value of x at the time
t, and u, the instantaneous value of u at time £,

18,2. It is important to see that autocorrelation of the dis-
turbance does not necessarily imply the loss of identificationm,
provided the nature of the autocorrelation is properly specified.
(If the autocorrelation function of the disturbance is unrestrict-
ed, no identification is, in general, possible.) We distinguish
two cases, depending on whether the autocorrelation of the dis-
turbance is of the autoregressive or moving-average type [Wold].

10.2.1. Autoregressive disturbance. Let

(10.2) Xy foaxg g = Uy,
and
(10.3) uy Fopugy T vy,

where v, 1is random (i.e., nonauntocorrelated) and has a constant
variance. Then we have

(10.4) x, + (atp)x,y + apxy, = vy

This may also be written as

(10.5) Xy + B X1 + By Xpag = Yy
where

B, = o t p.
(10.6)

By = wp.

Now since the f’s are functionally independent, it is possible
to obtain & and p from them! But (10.5) is an ordinary difference

1This is a case of multiple identification; cf. [IV—5.4.1] and [II-2.4.4].
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equation with a random disturbance; hence there is no difficulty
in obtaining the g’s as well as the variance of v,. Thus (10.2)

is identifiable!in spite of the autocorrelation in Ug.
More generally, we have

J
(10.7) J;() 0 Xyg = Uy, ay = 1,
and
I
(10.8) 20 ot = v, gy = 1,
t:

where v, has the same properties as before.
Then we obtain

(10.9) z.;;i Zaj Kpgoi = Vg
b ]
or

b
(1010 ¥ p x4 e = vy, By =1, S=1T1+J,
s=0
where |

lldentification would not have been lost even if in addition to the “dis-
turbance in the equation” u we also had had to deal with a “disturbance in
the variable” (e.g., error of observation) w. Thus, let %, in the equation
above denote the " true” value while x’: is the observed value, so that

(a) x:=xt+ w,

where the wt's are nonautocorrelated, Then

o -
{b) Xp=we Tty vyt oy,
alse from (10.5) we have

0 o _—
(e) IR RS T R PR A T TP R
By mmltiplying (b) end (c) and taking the expectations of both sides,
enough independent equations are aveilable to determine all the unknown pa-

rameters in terms of the lag moments of xt". Cf. [T. W. Anderson and Hurwicz].
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(10.11) By = @5lpys vovv ppi @)y ey gl s=1,2, ..., S.

Explicitly,

(10.12)

-+

Bz = Po % T Py & T py oy,

-

Since there are as many B’s as there are p's and o's together,
a necessary and sufficient condition for the identification of
(10.7) is that the Jacobian of (10,12} should not vanish identi-
cally. This was seen to be the case for I =J = 1, where the g's
were obviously independent, but it can also be proved more gener-
ally.

10.2.2. Moving-average disturbance. In the previous two sec-
tions of this note the disturbance u was assumed to possess auto-
correlation of the autoregressive type, expressed in (10.8). An-
other case of considerable interest is autocorrelation of the mov-
ing-average type where

R
(10.13) u, = g:om, Ve Yo = 1,

with random v’s. In this case we have
(10.14) cov(ut, ut—}?—k) =9, k>1,

where cov(x,y) denotes the covariance of x and y.
Using the fact that

(10.15) Xy = uy + Bju, oo

’

where the 8's are easily obtainable functions of the o's, and writ-
ing
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(10.16) cov(xy, xt-p) = g s

we easily find [with the help of (10.14)] that

Iv

(10.17) % up =0, P2 b,
for p, sufficiently large in relation to R.

Since the p's are given if the distribution of the x’ s 1s known,
the o’s can always be determined. Similarly the lower u's serve
to evaluate the weights y in (10.13), although a proof of function-
al independence should again be supplied to make this statement
rigorous. Hence the moving-average type of autocorrelated disturb-
ance does not destroy identifiability.

So far we have confined ourselves to single equations in one
unknown. However, the situation does not seem to be fundamentally
different in simultaneous systems. As an example we use the system
given by Koopmans and Rubin {I1-2,5.6].

Simplifying the notation, we have

Ly = x§ T xp,y Fog = uf,
(10.18)
Ly = pxj + xf = ulf

which is undoubtedly identifiable when the u's are random,
Now let

(1) (1) (9 _ (4)

(10,19} u, . top o ouy Ty, =17

(v's random) and

(10.20) Li”)* = Lii) + (z) L(t] _ U(t“'

In terms of the original parameters we have

x] + (a14-p’)x£_l + ployx] +.p’a2xéL2 = v,
{(10.21)
Bxi + xi! +  p'Bxi_, = v]’,
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or

I it [ I a— !
Xt Toepxpg toegxll 4+ oegx) , 8y Xi-g Vi

|

(10.22)
mxi v oxft ngxl + omyxfl

1

I
Ut .

Clearly, the system (10.22) is identified, even without taking inte
account the additional restriction on the ¢’s and n's which follow
from (10.21).

It should be emphasized that both (10.18) and (10.19) are very
special cases, but it is not unreasonable to conjecture that in a

large class of cases identification is not destroyed by intreducing
autocorrelated disturbances,

10.3. Now define the “monthly” average of X

%
1
(10.23) == 2 «x
PUOE o T
and of uy "
(10.24) U=+ 0 u,
4 T=t-H+1

where 4 is the number of “days” in the “month.”

We assume, as is usually the case in practice, that only the i,
but not the x, are known from observation. These are given for non-
overlapping time invervals of F “days” each:

(10.25) S AP AT A

which may be denoted by

(10.26) ey Yto' Yt0+1' Y%”,
respectively,

Now in order to estimate the unknown parameters (the mean and
variance of v,, B, and the a’'s) by the maximum-likelihood method,

we must obtain the likelihood function for the Y’'s! Since in the

n general, of course, the system may be unidentified. This can be rem-
edied by assuming a priori restrictions on the unknown parameters or by
introducing, say, a fixed variate in the right-hand member of (10.1). In
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case of normal v, all the other variables are also normal, the

likelihood function is specified if the means and the lag covari-
ance matrix of ¥, are obtained. Making the means of v, zero, we

are left only with the problem of finding the lag covariance ma-
trix of ¥,. (The case of a nonzero mean may be treated in an anal-

ogous manner. )

11. We first observe that

b
(11.1) Y= Yokt 0
=1
so that
o
(11.2) o= .0y
T=0

where the y’s are functions of the o’s and may be obtained from
the identity

o p [+a}
(11.3) EYT Uyr = Eoc.,r EYT’ Up ot
=0 T=1 ~T'=¢
Thus
=0} o3
€, Xt-—k) = € [(TleT Ut-'r) (TEOYT, Ut )]
oG
{11.4) = € LEE,Y': Yot U Ut-k-—*t']
o

= ,CZT,YT Yo/t - 1, t-k-1' »
where
(11.5) Bgar, bt/ = € (0, Ut—k-'r’)'

The p's depend on o of v and g (as well as #) and may easily be
evaluated with the help of (9.3) and (10.24).

the latter case the procedure would be essentially of the same type as,
though more complex algebraically than, that given in the text,
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It remains to obtain the lag moments of the Y's, that is, of
every Ath X;. One will note that the ¥'s satisfy a stochastic
difference equation

b
(11.6) Y, = 2 alVe .t 01,
T=1

where U’ is a linear combination of lagged values of the U,. The

coefficients of this linear combination are functions of the o

and so are the o’ in (11.6). N

These facts make it possible to obtain the lag moments of ¥,
and, because of normality and the zero-means assumptions, the like-
lihood function of the observed variates is obtained,

12. The procedure carried out in sections 10 and 11 was based
on the assumption that the parameters were constant. Now, in order
to take account of seasonal fluctuations, we may make o?, B, or the
o's vary with time ¢ but subject to the restriction of periodicity.
This will change the likelihood function, but its derivation fol-
lows the same pattern. Once the likelihood function has been ob-
tained the unknown parameters may be estimated provided the system
is identified.

43, The models of stochastic processes used so far have all
been of the discrete type. It is not difficult to construct con-
tinuous models with properties analogous to those presented above.
However, even for the nonseasonal case the study of estimation in
continuous systems presents serlous difficulties. A treatment of
this problem is not yet available?

Nevertheless, for the sake of completeness, an example will be
given which is the continuous counterpart of (10.1) and its season-
al version.

This model may be written as an integral eguation

t
(13.1) x(t) :I ot — Dxlc)dr + ul(z),

where u(t) has an autocorrelation function tending to zero as the

‘Hence (11.6) is a difference equation with an autocorrelated disturbance
of the moving-average type. See above, section 10.2.

2o, [xvil.
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lag increases,

To introduce seasonality we use a modified kernel, thus cbtain-
ing

.t
(13.2) x(t) =J y(t, t - Dxlr)dr + ult),
where
(13.3) ' y(t, s) = y(t +2&, s).

To make the mathematics of (13.3) more manageable one might assume

(13.4) y(t, 5) = ¢, (&) wls).



XII. NONPARAMETRIC TESTS AGAINST TREND'

By HENRY B. MANN

In testing against trend we are testing the hypothesis that
the members of a certain sequence of random variables Xy ey X,

. are distributed independently of each other, each with the
same distribution, which we shall throughout this paper assume to
be continucus. Although the null hypothesis is thus well defined,
we are not in the same happy position with respect to the alterna-
tives that we wish to admit.' We have some rather vague ideas of
a sequence where the variables tend to decrease, but no clear no-
tion of how this decrease should be expressed in terms of distri-
bution functions has as yet been advanced. It seems advantageous
to eliminate from such a definition any tendency to decrease which
has its roots in the dependence between successive observatioms.
We, therefore, propose the following definition for a downward
trend; '

A sequence of random variables %y, %4, ... will be said to

have a downward trend if the variables are independently distrib-~
uted so that x; has the cumlative distribution function f; and
fi(x) < fj(x) for every i < j and every x.

An upward trend is similarly defined with j}Cx) >-j}Cr) for
i< i,

If we are justified in restricting the null hypothesis to the
form

(y -w?
1 x T 2
(1) f@r) = - e ‘o dy
VinoY-w
and in restricting the alternatives to expressions of the type
(y - pa)”
1 TSt
(2) filx) = “—__—:—f e dy ,
Vinog -

1This is en abstract of a paper published in Economeirica under the same
title [Mann].

345
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where 1, = P(ik) and P is a fixed polynomial of known degree with
monotonically decreasing values P(ih) for i > 0, A > 0, then the
test against trend may be carried out in the usual fashion. That
is to say, we can test the significance of the regression coeffi-
cients and this test is known to possess certain desirable proper-
ties. It is, for instance, in the case where P is a linear func-
tion, a uniformly most powerful test with respect to the alterna-
tives considered. However, if we are not justified in assuming
the null hypothesis to be of the form (1), then the customary pro-
cedure will not give the correct size of the critical region. Even
if we are justified in assuming the null hypothesis to be of the
form (1), but wish to admit as alternatives all downward trends as
defined before, then we can not state that the usual procedure of
testing the significance of the regression coefficients is in any
respect superior to other procedures. In fact, we shall describe
a test, based on ranks, which has maximum power with respect to a
class of alternatives just as likely to occur in practical work as
the alternatives (2). Since we very rarely have a knowledge of
the actual distribution, it is of importance to discuss tests for
which the size of the critical region does not depend on a priori
assumptions about the distributions concerned.

A fairly simple test against trend is the T-test first intro-
duced by Kendall [1938] for the testing of independence in a bivar-
iate distribution. The statistic T counts, in a sample X;, ...,

%, the number of inequalities x; < x; for i+ < j.  One such inequal-
ity will be termed a reverse arrangement. The distribution of T
is readily computed from the recursion

3) M =P _ O+ P (T-1)+ - + B_(T-n+1),

where f;(T) is the number of pernutations of 7 different values x,
+e-s %,, which possess exactly T reverse arrangements. The recur-

sion {3) was derived by M. G. Kendall. He also derived the vari-
ance of T' and proved ultimate normality. The approach to normality
is remarkebly rapid.

The odd moments of 7 around its mean value n{n — 1)/ 4 are O.
From the recursion (2) it is possible to derive the following dif-
ference equation for the even moments of T:

(4) €. (x2%) = &, (x*) + (22‘)3‘2’ g, (%) + ... + g

% n
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where Sﬂ(xz") is the 2¢th moment of T around its mean in permuta-
tions of # variables and

, -1 ;
B = L% ("_ L r)”.
n

From {4) we find

and
§ (v4) = 100" + 2287’ — 455! — B70° + 6250 + 2
n

43.200

(4) can also be utilized to give a simple proof for the ultimate
normality of T. This can be done in showing by mathematical induc-
tion that Sn(x';)/ {crn(T)}i converges to the moments of a normal
distribution.

To give lower bounds for the power of the T-test, we introduce
a parameter A, defined by the equation

Sﬂ(Tlf{) _ n(n; 1) _ 7\ﬂw nz— 1) ’

where En(T|H) is the expectation of 7' under the alternative H.
Denote by o, (T | #) the variance under the alternative ¥, by Con
the variance under the null hypothesis, by P(T<T| #) the probabil-
ity that < T if § is the true situation. If ¥ is a trend, then
the following inequalities can be derived:

n-1) + nln - ){n - 2) ~ ?\2,;112(71-* 1)

5)  orlm < ”
4 6 4

2

oo(T | B)
n(n - 1) +

(6) MT<T|H)>1 -

2
(‘)‘n by Gon)

for ln{n(n -~ 1/2) < - t, o, . where T={n(n-1)/4) - ty Con
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defines t,. From the ultimate normality of T it follows that t,
converges to a constant.? if the size of the critical region is
fixed.

For small values of n another inequality gives a better lower
bound for the power. It can be shown that

_ - 2‘4\nn(n— 1) - 4t, oy,
(7) PTr<T| B > :

n(n— 1) — 4t, o,

From (6) it follows that the T'-test is consistent with respect to
alternatives for which A is negative and of order larger than
1/vn. (6) and (7) can also be utilized to derive sufficient con-
ditions for the unbiasedness of the T-test.

An example of a class of alternatives with respect to which
the T-test is a most powerful test based on ranks is the following
class C of alternatives H.

Let bij be the probability that x; is the jth largest of the
variables x;, %; ., +++, X,. If under an alternative H, Pij =

a; #771  (p < 1), independent of the ranks of x,, ..., LT
the T-test will be most powerful with respect to . It is not
known, however, whether there are such alternatives among the
trends as defined in the introduction.

Another test that the author comsiders worth serious considera-
tion is the K-test. This test is carried out as follows. We deter-
mine the smallest ¥ for which

then

(8) x for 7>1, i=1, ..., n—- K.

i Z Xy j+i
We then fix X so that PR < K | Ho) equals the size of the critical
region. If then K < X we proceed on the hypothesis of a trend. If
K > K we proceed as if the null hypothesis were true.

P(X < X | H,) may be found for ¥ < 3 from the following rela-
tions:

2,(1) = 1, 2,(2) = 0,,(2) + 0,.,(2),
(9)
0,(3) =0, (3) +Q,.,(3) +3¢0,,38 +¢,,03),

where 0, () is the number of permutations x;;, -.., ¥;

n satisfying
(8).
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It is also easy to prove the relations

(10) P, (n— K = PZK(I?) for n > 2K,

where Pn(f) = P(KF < X¥) under the null hypothesis in samples of
size n. It may further be shown that

(11) Faln = H) =

2{ + 1] max(tl, 12)+2] °[max(i1, Bgs eees 1']()4'5—’]}"1,

where & denotes summation over all permutations #;, ..., iX of 1,
2, ..., L
Also
R(4) =
(12) 5

S {ax(iy) + 1) [ax(i i) + 2] [FaxGy, -oes i) + 5137,

where ﬁax(il, eees ie) = min[max(il, cars ie), 4] and 2’ denotes
. of 1, 2, ..., 5 for

summation over all permutations 1,, 1
which 1 precedes 5.

The relations (9), (10), (11), and (12) permit tabulation of
Pn(r) for n < 9. TFor higher values of n the following critical

regions -are available:

e ay

Bn— 5) = P,(5) = 0.0098,  forn > 10,
B(n—4) = p(4) = 0.0284 forn >8
(13) B(n~3) = P(3) = 0.0792 for n > 6,
Bf(n—2) = 0.2083 for n > 4,
Bin—~1) = B(1) = 0.5 for n > 2.

These are all the critical regions between 0.0098 and 0.5 pos-
sible for the F-test for n > 10. The X-test has the disadvantage



TaBLE 1* _
PROBABILITY OF OBTAINING A PERMUTATION wITH T'< T 1N PERMUTATIONS OF n VARIABLES.
N 0 1 2 3 4 5 | 6 7 8 9 10 | 11 12 113 |14 | 15116 |17 {1819} 20| 21
3| 167 | 500 | 833 .
4| 042 | 167 | 375 | 625 | 833 | 958
51008 | 042 1171 242 | 408 | 592 | 758 | 883 | 958 | 992
6001008 ) 028 | DBR | 136 | 235°| 360 | 500 | 500 j 640 } 765 | 864 | 932 | 972 902 909
7000100t | 005|015 |035{ 068 119 (191 | 281 | 386 | 500 | 500 | 614 | 719] 809| 881} 932| 965 985 995 999
g8l 000 | 000001 (003 007 {016 ] 031 | 054 | 089 | 138 | 199 | 274 | 360 | 452
9/ 000| 000000 000|001 003 006|012 022 038 | 060 | 090 | 130 1 179 238] 306{ 381 460
101000 000 00O | 000 | OGO | 000 | 001 | 002 | 005 | 008 | 014 | 023 | 036 | 054 O78| 108| 146] 190 242 300; 364| 431
P(c)| 000 | 000 | 000 | 006 | 001 | 001 ; 002 | 004 | 006 | 010 | 016 | 025 | 037 | 054} 076 105| 142| 186 237| 296| 360; 429
* Tabular values should be divided by 1000.
1 - nin — 1) 1 I /2nt 4 30t — Gn
= — -l’[ = | —m—m8m— — [—— — s+ 4 ki =
P(e) = .f_- e~s iz, ¢ ( y T 2)/ ™2 , n = 10.
TABLE 2
ProBABILITY oF OBTAINING A PERMUTATION WiTH K5 K 13 PERMUTATIONS OF n VARIABLES,
K
,N 1 2 3 4 5 6 7
3 0.1667 0.5000
4 0.0417 0.2083 0.5000
5 0.0083 0.0667 0.2083 0. 5000
6 0.0014 0.0181 0.0792 0.2083 0.5000
7 0.0002 0.0042 0.0246 0.0792 0.2083 0.5000
8 0.0000 0.0008 0.0066 0.0284 0.0792 0.2083 0.5000
9 0.0000 0.0002 0.0016 0.0086 0.0284 0.0792 0.2083
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that the choice of critical regions is rather limited.

It is easy to see that there are tcend alternatives for which
Plx, :’x£+j+f) =1lfor j>0 (=1, ..., n— f). The K-test has
the power 1 with respect to such alternatives, while other tests,
for instance the T-test or the significance tests ordinarily used,
may have a considerably lower power. This seems remarkeble in view
of the fact that the K-test is a test based on ranks and in fact
often uses only a fraction of the sample.



XI1X. TESTS OF SIGNIFICANCE IN
TIME-SERIES ANALYSIS

By R. L. ANDERSON

1, Suppose we have data on the monthly prices of some product
in a given locality over a period of 7 years. We assume that the
prices Pij in the ith month and jth year (: =1, 2, ..., 12; j =
1, 2, ..., n) are independently distributed normal variables with
a common variance o’ and means By where

(1) P:ij:l-’a“'“,','i'ﬁj

and

(2) 2%‘ 28 =0,
b

so that the likelihood function for the sample is

(3) (/ﬂa)‘lm Z( - p.” 2.
20' i, i

2. We test the hypothesis # given by
(4) a, = 0, t=1, 2, ..., 12,

Thus #, specifies that there is no monthly (seasonal”) pattern in
the variations of the P{ i The likelihood-ratio criterion leads
to the use of the statistic

[(12- -] 8%-8 §'* ~ §?

(5) F = ={m-1)—,
(12 - 1) 52 52

which has Snedecor’s distribution with 11 and {n — 1) degrees of
freedom when K, is true! The symbols 8'2 and 6% have the following

Ipor proof, c¢f., for instance, [Wi.lka, p.178 ff.].

352
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meaning: 6% is the maximum-likelihood estimate of o obtained by

maximizing [subject to (2)] the expression in (3) with regard to
the o, ﬁ] and to o2 and is given by

1

(6) e e, - m.Y,
12n ;J v ‘J)
where
mij:ﬁij=m+a1'.+bj’
m={= 1 EP
12" ‘i'jioJ:
(7) ) ’
at:&\t - Z.P‘l':‘] m,
J
S §
bj Bj 12 .Pf'J m.
i
A2

8'? is the maximum likelihood estimate of o on the assumption
that A, is true, and can thus be obtained by maximizing [subject

to (2)] the expression in (3) with regard to the ﬁj and to u and
o2 after all the o; have been set equal to zero.
We then ob_tam

(8)

2 _ 1 — - 2

with the values of m and b, given by (7)
It can then be shown that

(9) 52 ~ 8% =

2.2_ 112 LA

i

12n

Thus (5) becomes?

F
(10) F=(-1) — )

2Py - m
t,]

lThe form of the denominator can be simplified for computational purposes.
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The analysis of variance table is then as follows:

1
Source of . Degrees of Sums of Estimate of
variation freedom squares variation
Months 11 n 205 11(c? + no?)
i
Years n—1 12 Ebj. (n = D(o® + 120})
i
Residual  1l{n — 1) 12n 62 11 - 1)o?
1 A2

C” is & biased estimate of the true error variance 0'2. The un~

biased estimate is 12782/ 11 - 1). o2 and o2

- y are the true

variances between months and years.

3. The usefulriess of the above analysis of variance depends on
the extent to which the data fulfill the assumptions mede. Some of
the problems that merit consideration are:

{a). The simplicity of the analysis of variance depends upon the
assumption of no missing prices. Simple methods have been devised
for handling a two-way-classification analysis with missing observa-
tions, but these methods become more complicated for more than two
classifications, especially if there are several missing observa-
tions, If many of the observations are missing, or if there is a
different number of observations for each category under considera-
tion, the analysis of variance may become quite complicated.

]

(b). A system of stochastic (difference) equations has been sug
gested as a proper model for econamic phenomena [Haavelmo, 1943,
p.1 f£.]. Our problem should be reconsidered from this viewpoint
to find whether the likelihood function in (3) is a realistic de-
scription of observed phencmena. In particular, equation (1) might
include other (econamic) variables besides the year and the month;
and the presence of lagged values in the equations would invalidate
the assumption of independence of successive observations inherent
in (3). If it is desired to test for such independence from the
residuals, a way should be found to allow for the serial correla-
tion introduced into the residuals by the fact that, as a result of
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(7), they add up to zero in all directioms.

(c). The assumption of normality usually can be severely vio-
lated without seriocusly affecting the general conclusions; however,
the assumption of the same variance o for every cbservation cannot
be violated to any great extent. A somewhat arbitrary rule often
applied in biological experiments is to permit the assumption of
constant variance only if no two means differ by more than 50 per
cent.

(d). Finally, we should state that more thought should be de-
voted to the problem of designing social experiments, especially in
setting up sampling methods. The analysis of variance set-up has
been made much more useful for bhiological and agricultural research
by connecting it with many designs of experiments other than the
51mple randomized block design, of which our month X year analysis
is an example.



XIV. CONSISTENCY OF MAXIMUM-LIKELIHOOD
ESTIMATES IN THE EXPLOSIVE CASE

BY HERMAN RUBIN
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1. Introduction

It was shown by Mann and Wald [1943] that if a temporal stochas-
tic process described by linear difference equations is damped with-
out disturbances, it is stable {(the expectations of the squares of
all variables are uniformly bounded) with disturbances and the “max-
imum-likelihood” estimates of the parameters involved are consistent.
However, a system which is stable or explosive (the expectations of
the squares of some variables being unbounded) without disturbamces

is explosive with them. Here we prove consistency in a simple exam-
ple of the explosive case.
Let us consider the equation

(1) x, = px,; +tu,, el 21 (t=1,2, ...),

where p is a real number, the u, are real stochastic variables inde-
pendently distributed with mean 0 and variance o2, and X, is a given
real number. (The results derived here hold equally well if p, u,,
and x, are complex numbers, quaternions, or Cayley numbers,) The

-~

maximum-likelihood estimate g of the parameter p is defined as

Extxt—l
(2) p= —m4m,

E"i—l

r

where
(3) :E: =

356

t=1
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[In the case of complex numbers, quaternions, or Cayley numbers,
replace (2) by
_ PIER I

2z Xy %y

where % denotes the conjugate of x.] We shall show that

(2" 5

(4) plimp = p .

To®

2. Transformation of the Problem

We can write (2) in the form

. X loxyy +udx, P _Pxi-l N POV
p - =
) xi-—l > %ot 2 %1

(53 2 u, %,y
+ ———

- P
Ex:,l

By the Cauchy-Schwarz inequality,

) e

Hence

< (Tt (Xt

\ 2k
PILTE I 3 (3 u)
2 x:-; (2 x:_l)%

But. the u; are real variables independently distributed with
identical distribution functions and means o?. Hence [Cramér, The-

orem 15]
(8) plimlT Eu: = o .

()
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Let us consider the quantities Xy By (1), we have
(9) S 1 + -1 -
X, = pUx, p’ Tu + topupy toug.

Dividing (9) by pt, we obtain

t
(10) p'txt = x, + E ™t
T=1

3. System Stable Without Disturbances
In this section let us assume | p| = 1. Then
(11) Lo urd = lu.l.

We cbserve that for any 8 > 0 there exists a number 4(8) such
that if B > A(8) then

- 2 — 2
(12) fl%mlp wlPapw) = luPara) < o,

T

since 8(|u_ci2) = E(u?c) = g% < @, Therefore, if t > 4%(8) / €2,

we have

1
13 — _ <— 5§ = 6.
(13) - flul>m/]puldﬁ'(u) 2

Hence, for every e > 0,

2 -
(14) = 1f1u > ‘/...lp u. |” dF(u.) = 0,

t-Hnt T=

By the central limit theorem [Cramér, Theorem 2la],
Ly
= ~T
xX = ——= P u,r
vi T=1
2

is asymptotically normally distributed with mean 0 and variance o®.
Therefore, its cumulative distribution function Gt(x) converges
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uniformly! to the normal distribution ¥(x, 0, ¢?). Let us now
prove the following lemma:

LEMMA 3. There exists a number M\ such that for every e > 0
there is a t, such that if t > %, then for every b, }%( |x—~bd] < g)
< AE.

Since Gt(x) converges uniformly to ¥{x, 0, o?), we see that for
8¢ > 0 there 1s a ¢ty such that if ¢ > t, then

(15) th(x) - N(x, 0, o?)| < 8s.
Then
(16) Glbte) - Glo—e) < W(ote, 0, c?)—N(b—¢, 0, &%) + 28e .

But N{b+e, 0, 02) — N(b-e, 0, ¢?) < 26 /V2m0, siﬁce 1/'/:‘2_7;0*
is the maximum of d¥ /dx. Therefore

(17)  P(lx=b] <) = Glote) ~ Glo-e) < ¢ +28)

( 2
Vong
for t > t,. Take b in the foregoing lemma to be ~ x, //t_ Then we
obtain from {10)

/o=t
P X
{18) P(I ‘/E_l<e)<7ks,
or, since lp] =1,
(19) P(lx,| < evt) < 2e.

From (1) we see that

20 [l | - Irgl| = eyl = Toxgd] < by, = ol = Jugy, .
In the Tchebycheff inequality,

(21) P(ul > 80) < —l? .
=]

et Fn be a sequence of distribution functions converging to a continuous
distribution function F. Then K, converges uniformly to F.
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let us take

evi
(22} 6 = .

2uo
Then

vt 442 o2

23) P{lu_| > <
( (lugl 2w ) P
Therefore

evt 4p.362
(24)  P({lugpyl F lugpi + o0 + Iutﬂnl} > = ) < P

’

since if iut-rll +ooe 4 ]qu‘I > el/t-/2, at least one |ut+il is
greater than evf/ 2y, and

evt L eVt
25 Plat least u, . > P >
(25) (at least one t4i 2 ) < 1};1 (!utﬂ'l " )
On the other hand i1t follows that if & < p,
k [
(26) ]xt-l»kl 2z lxtl - 2|Ut+Tl z Ixtl - ElutJrTl .
T=1 T=1
Therefore
@D Plainllx, |, Iyl oo, b, ) < 225) < ne 4 459
min{ix, |, 12,00, oo 12y, 5 £ P
Hence we see that
t4 o 3 2
elpt 1)t 4
(28) (A2 < WDty 440
T=1 4 ezt
But
t+p t+p
(29) %2 > P
T=0 T T=t T

Take w = [44v/e* ], v > 1, where [x] denotes the greatest inte-
ger less than or equal to x. Tthen
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t+ [adv/ e*]

256 2 4° +*
(30) P( EO %, < Avt) < ne + —2TA YV
T=

et

And for any t > ([44v/€?] + 1)/ (v~ 1) we have

44v
(31) t+[ ]<vt—1.
&2

Let vt =71. Since

t+ [a4v/e?]

Fy
(32) 2 A< 2

t=0 t=1 1’

it follows that

256 o 4° v*
(33) P < A1) < e+ -—58?—"—
€

for T > max[to, ({44v /€% + 1)/ (v-1)}, with t, defined as in
the preceding lemma. Therefore

1
(34) plim-2—1' Ex:_l >4

I
for every 4 > 0. Hence

Sup

(35) plim = plim 1
T 2 T - 2
A E"t—1 e T E"t-—1

1 2
?E“t ot
[ S
- A

Therefore

( o)

(36) plim ———— — = 0,
Fre 2"12&—1)%
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and, from (5),

(37) plim § = p.

fom

4. System Explosive Without Disturbances

Let us assume now that | p| > 1. Denote by FxG the convolu-
tion
+

(38) FxG(x) = f Flx—t) d6(¢)

-

of the distrilutions F and G. If the distribution function of Uy

is F(x), then the distribution function of - u, is F(pTx).

Since the mean of p™" #_ is 0 and the variance of pTu_ is ¢*7 o?,

T
it follows [Wintner, Theorem 7.1] that if

ks

(39) Flx) xF(px) x - - xF(g"x) = Gx),

then lim Gn(x) exists and is a distribution function G(x).
R
Let us now prove the following lemma:

LEMMA 4. G(x) is continuous.

We shall consider three cases, for although the proof for the
third case applies also to the other two, it is the most complicated.

Case 1. F(x} is continuous. Then [Cremér, p. 37, equation (40)]
it follows that G is continuous.

For any distribution function ¥(x) denote by the functicnal
J{H{x)} the sum of all jumps of H(x). We observe that JA(Ax)} =
J{H(x)}, and that J{#{x)} = 0 if and only if #(x) is continuous. If
J{A(x)} <1, we shall say H(x) is partly continuous, and if J{H(x))}
=1, we shall say that F(x) is discrete.

Case 2. H(x) is partly continuous. Let J{H(x)} =8 < 1. From
(37) we have

(40) Gn(x) = Flx) % G, (px) .
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But

(41) JEHEXK) = J@#H) J(E).
Therefore
(42) J{G,(x)} = ",

We may derive from (37)

(43) Gx) = Gfx) xG(p™x) .
Using (39) and (40) we obtain

(44) J{6(x)} = 8" J(G(x)) < 8" .

Therefore J{G(x)} = 0, and G(x) is continuous,

Gase 3. H(x) is discrete. Denote by L{F(x)} the maximum jump
of H(x). We see that L{F(Ax)} = {#(x)}. We have L{F(x)} = ¢ < 1.
For if L{F(x}} = 1, then

Ply < x)

i
="
8
A
®

(45)
Prsx)=1 x2zz°,

and the variance of u_ would be 0, which contradicts its being a®

> 0. Using the fact that [Wintner, Theorem 7.6] J{G{x)} > 0 if
and only if

,}1 LiF(eP)) > 0,

we see from
(46) HL{F(pkx)} = kr_Ilcp =0

that G(x) is continuous.
Since the Gﬂ(x) approach G(x), it follows that for any € > 0,

there are a 8 and a f; such that if n > & then

(47) Bllx +x,) <8) < e.
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We observe that p-txt-xo has the distribution G;. Therefore,
for t > t;, we have

(48) Plg7t x,l <8) < &

Ve further observe that for any 6 > 0, and for any X, there is a
t, such that, if ¢ > t,, then

t
8
(49) lel”8 &,
o't
From (46), we have for ¢ > £,
(50) Px, | <lpl®s) <.

Therefore, for t > max(tc. tl), we see that

(51) P(lx, | >Kovt) > 1— .
Then
2 1 2
uy — 3 u 2
(52) plin—— < plim—T——Z——— < lim __‘i_T_..i = _.1_2_
I 2"%-1 I3 ‘;-"‘;-1 Py 2 2 - I ¢
Therefore

(2 T

(53) plim-—~—-———-—l-- ={plim—— | =0
T (Exi-l)é oo Exi-l

and

(54) plim § = p .



-XV. LEAST-SQUARES BIAS IN TIME SERIES!

BY LEONID HURWICZ

1.1. In this papér it is shown that there exist cases where
the least-squares and the maximum-likelihood estimates of the re-
gression and structural coefficients are biased” for any finite-
sized sample’ drawn from a population defined by a noncircular
stochastic difference-equation system. This bias is evaluated for
certain special cases. It is found that for very small samples
the bias may amount to as much as 25 per cent of the true value of
the parameter?, while for medium sized samples (say of 20 observa-
tions) the bias is still almost 10 per cent (the numerical value
of the expecbatldn of the estimate always being below the true pa-
rameter value®). The relative bias seems to tend to zero, although
rather slowly, as the damping of the system becomes weaker.

1.2. The initial objective of this paper was to prove that the
least-squares method yields biased estimates of regression coeffi-

lpart of the work on this paper was done in 1945-46 during the author's
tenure of the Guggenheim Memorial Fellowship. Some of the problems con-
sidered arose in connection with the author’s research at the Institute
of Meteorology at the University of Chicago in 1944,

2I.e., the mathematical expectations of the estimates are not identically
equal to the true parameter values. Bias is defined aas the difference
between the expectation of the estimate and the true parameter value,
Relative bias is the ratio of this difference to the true parameter. The
quantity K. appearing in the formulae below is the relative bias plus 1

in samples of I observations; hence ¥; equals the ratio of the expectation
of the estimate to the true parameter, so that when ¥ tends te 1 the rel-
ative bias tends to zero.

3Containing more than twe observations.

4Highest relative bias, found in samples of four observations, is 26%/3
per cent,

5I.e., the bias, where known, is always negative for positive parameter
values and vice versa.

365
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cients in aut.oregressive1 noncircular time séries., It was general-
ly realized that the usual proofs of the Markoff Theorem [David and
Neyman] were not valid for this case? but the author does not know
of any proof of the actual existence of a bias®

It was possible to obtain explicit formulae for the bias in very
small samples (three or four observations). This was done for two
types of assumptions with regard to the initial value: (1) fixed
initial-value case — where the initial observation may be regarded
as a fixed variate (the initial value chosen being zero) see sec-
tion 3.1.2 below; (2) stochastic initial-value case — where the
initial value is a stochastic variable whose distribution is the
marginal distribution of the later observations, see section 2.4.2
below. The author regards the latter assumption as being more
realistic, but since the exact equivalence of least-squares and
maximum-likelihood criteria of estimation of the regression coef-
ficients applies only to the former {asymptotically to both), it
is the existence of bias in the fixed initial-value case that con-
stitutes a proof of bias of the maximum-likelihood criteriocn as
well. Moreover, the case treated is one where the regression co-
efficient is identically equal to the corresponding structural co-
efficient. Hence, the bias of least-squares and maximum-likelihood
methods exists in structural as well as predictive estimation.

Once the existence of the bias had been shown it was of inter-
est to investigate its magnitude for samples of various sizes, The
first three terms of a series expansion for the bias in a sample
of arbitrary size were obtained; see equations (4.6) to (4.10) be-
low.

Because of the equivalence of the structural and regression
coefficients in the cases treated, the results described may be
regarded as a first (and very modest) step in the small-sample
theory of the maximum-likelihood estimates of the structural coef-
ficients in (noncircular) stochastic difference-equation systems.

The results thus far obtained indicate the importance of the

1I.e., generated by a system of stochastic difference equations, some or
all of which contain lagged values of endogenous variables; autoregres-
sive time series are to be distinguished fromthose composed additively
of a given function of time (often a polynomial or a Fourier series) and
a stochastic (*error”) term.

2They are valid in the legless case, as shown in [VI].

3In this note we are only concerned with “*stable” systems, i.e., those
satisfying Assumption IV in [Mann and Wald, p. 192]; for the case here

treated this assumption is equivalent to postulating || <1 in (2.1)
below. )
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bias. There is urgent need for more intensive study of the small-
sample properties of estimates in autoregressive time series.

2.1. let a sample be given consisting of T observations on a
stochastic variable X,. It will be assumed that the joint cumula-

tive distribution function of (Xl, veey XI’)' to be written as
F(Xl, Coss Xf), has the following two properties:

(2.1) EW X, ) = ek, t=2,3, ..., T,
(2.2) 0‘2(Xt Ixt—l) = const,

Thus the regression of any observation on its predecessor is linear?
and homoscedastic.
The least-squeres estimate &, of « is in this case given by

r

o~ £ 4

N

(2.3) &, =

2.2. An estimate @, of « will be said to be (conditionally)

unbiased with regard to a family & of cumuletive distribution func-
tions F if all F in § satisfy (2.1} and (2.2} and if

(2.4) 8(0.1,) =« forall , forall Fe§, and forall .

An estimate conditionally unbiased with regard to all cumlative
distribution functions is said to be absolutely unbiased?

Clearly, if a family %, can be found with regard to which a, is
not unbiased, @, cannot be absolutely unbiased.

2.3. In this note we show that there exists a family® Fg s in

11he condition (2.1) is stronger than linearity, but for the purposes of
this paper no loss of generality is involved,

“These definitions are special cases of those given in (vil.

Mhis family, defined by {(2.1) and (2.2) with the additional assumption
of normality, is divided into two “branches” depending on whether the
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fact one of considerable practical importance, with regard to which
the least-squares estimate d, of o is not unbiased. This shows

that &T is not absolutely unbiased. It is not known whether there
‘exists a family, say §;, such that 51, is unbiased with regard to 8,

However, an unbiased estimate of o does exist. Thus in the
sample (Io; P ST XT) where X, is fixed and different from zero,

the ratio X, /X, is an unbiased, though in general very inefficient,
estimate of o. For, assuming that

(2.5) X, =alk, +u, t=1,2 ..,T,

where the u’s have zero means, we have

X ok, +u ;
(2.6) e(}i) = g(._u) = o+ }1_ €,) = a.

[} XO 0

It may be remarked that for T =2, the ratio X; /X is a least-

squares estimate. In fact, T'= 2 is the only known case among fi-
nite-sized samples where the least-squares estimate &, is unbiased.

On the other hand, in the sample (Xl, cees Iz,), where X, 1s
stochastic and the likelihood function is given by (2.9), the ex-
pectation & (X2 /Xl) exists only in the Cauchy principal-value
sense. In that sense, however, XZ/XI is an unbiased estimate of

e, since it has the Cauchy distribution with a mode at zero. In
fact, with the u's independent of each other, the mean

r
1 I
T—1t=2X_,

would also be unbiased in the Cauchy sense, although no more effi-
cient than X, /X,. One might conjecture that the median of the
ratios X, /X, |, t =2, ..., T, would be a more efficient estimate
of « and perhaps an unbiased one.

2.4.1. In the following sections of the paper the proof of ex-
istence of the bias will be given and its magnitude evaluated for
first-order stochastic difference equations with the initial value

initial value is assumed stochastic or fixed. The bias exists in both
cases. The respective likelihood functions are given by (2.9} and (3.15).
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stochastic and fixed.

For samples of three and four observations the size of relative
bias! is given for all | «| < 1 in Table 1 and Figure 1; these are
based on the fornmlae (3.12), (3.19}, and (3.37). The derivations
and comments are to be found in section 3 of this paper. The case
of fixed initial value (chosen as zero) is worked out for a sample
of three observations only,

For larger samples, as well as the small ones, the limiting val-
ue of bias® as | «| » 0 is given in Table 2 and Figure 2; these are
based on (4.4). The latter formula is valid for both the stochastic
and fixed (zero) initial-value case.

Equations (4.7) to (4.10) give a more general result, viz., the
first three terms of the Maclaurin expansion of the relative bias.
The derivations are given in section 4. Sections4.2 and #.3 contain
some conjectures with regard to the nature of the approximation pro-
vided by the expansion and with regard to the nature of relative
bids in stochastic difference eguations in general, as well as some
suggestions for further research.

2.4.2, Define a stochastic process by
{2.7) X, =k, | +u, t=2,3, ..., T,

where the u's are independently normally distributed with zero means
and unit variances, and where || < 1. Hence, if the process is
stationaryf

(2.8  E() =0, E@)=— t=1,2, ..., T.

1- o2

Given a sample of size T, its likelihood functien will be
-7 1 I
2.9) (1-a?jt@x) 7 expl- 5 [a-od)xf + 2, -k, PN
t=2

which is equivalent to equation (9) in [Koopmans, 1942]. It can be

1The formulae, tables, and figures give the values of N} = S(Ef)//d, i.e.,
the relative bias plus 1.

2This specifies the stochastic initial-value case. For fixed initial-value
case see below, section 3.1.2.,
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seen that

(2.10) EU X)) = «ky ., t=2,3, .., 7T,

so that (2.1) is satisfied. {2.2) is also satisfied with a wnit
variance.

J.1.1. To show the existence of bias it will suffice to find
a T for which (2.4) does not hold. 'The following proof demonstrates
that (2,4) does not hold for T = 3.

The proof consists in finding the expectation of &, for T = 3,
where

ni, + 1,1,

(3.1) By =
I+ i
Following the procedure used in [Williams] and in [Dixon], we write
4, 2 2
(3.2) 03 = _é_‘ AS = XIX,‘,_ + X2X3, B3 = Xl + X2 ,
3

then find the characteristic function <p3(t1, tz) of 4; and B,, and,
finally, obtain the expectation of &, from

0
: eylt,, t,)
(3.3) e@) = f [—m dt, .
e 9t t, =0
We have
y & 0 y f 0
(3.4) Q-®) g, t,) =6 2z b = z f,
¢ b 1 1
where
y =-2¢t, +1,
(3.5) f=0= (¢t +a)?,
2 =y +a2—‘—'—2t2 + 1 + o2,

Denoting the determinant in (3.4) by C®’, we have



pAY LEAST-SQUARES BIAS IN TIME SERIES

Vi1-— & ’ 1 a0ty

371

(3.6) €@, = -

2 -co Cﬂ(3} Cés) atl
where
(3.7) ¥ = =4 -ty 4+
.=

and

ac(3]
(3.8) = 4a(t, - 1).

8t |, _,

1

1—

The integral in (3.6} may now be evaluated [Pierce, formula

200] and we obtain

1—"1—&2)

2

(3.9) €@, = X1+
2 [+3

It can be seen that

€@, » o for lal >0,
(3.10)
8(53)—)¢x for ja] » 1.

Thus &, is a biased estimate of a.
Writing g = ol and

i € (@)
(3.11) A R
we may state the above results as

1 1-v1-
(3.12) N (g) = ——5(1 + "*—————9)

with Na(p) varying from ¥, (0) = 0.75 to ¥, (1) = 1.

PH(0) = plin; Hy(p); Hy(1) = ﬂlin; Ny(B).
3 >

The values of
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¥,(p) are shown below in Table 1 and plotted in Figure 1,
The convergence of ¥, to 1 as | o] tends to 1 is very slow.
The relative bias is still 12% per cent (i.e., N, = 0.875) for

lo | = 0. 94, so that it takes 94 per cent of the range of |a} to
remove one-half of the relative bias!

3.1.2} By a similar procedure we can evaluate the bias for the
case 'where the initial value is a fixed variate, here chosen as
zero. Let

(3.13) Xy = fixed,

1

(3.14) X, = ok tu, t=1,2 ...,7,

where o and the u’s have the same properties as before. T now de-
notes the number of stochastic observations. The likelihood func-
tion becomes

r
- 1
(3.15) (277 exp{ - 5 ;}at ~ k).

Then the Ieast-squareszestimate E; of «, which in this case [unlike
that specified by {2.9)] is also a maximum-likelihood estimate, is

given by
Sy

—lt t-1

2 £,
t=1

=]

(3.16) iy =

Now consider the special case where

(3.17) X, = 0.

Here we find that @7 as defined in {3.16) eqials dy as defined in
(2.3).

I, W. Anderson has made helpful suggestions in connection with the prob-
lem treated in this section.

*The asterisk in E; indicates that E; is the least-squares estimate of o
for the sample (Xb, 1}, RN 1}) while a} is the leagt-squares estimate

for the sample (I, ..., I;),
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Denote by 8*(&'1,) the expectation of @, evaluated on the basis
of (3.15) with £, = 0; also, write

s . €8E,)
(3.18) Nfl' = Nf(p) =
Then we find that
sg) = ST P
(3.19) M) = it

Thus #3(0) = 0.75 = ¥,(0);! but while M(1) = 1, we have here
N.:(l) = 4/5: there is a bias even at |a] = 1!
The case where X # 0 has not been treated, but cne might con-

jecture that, for given T and g, N;(p) * 1 as X, becomes numeri-
cally large.

3.2.1. When T = 4, 5 the integrals to be evaluated are of the
elliptic type. For T > 6 they are hyperelliptic. Only for the
case of T = 4 has the bias been evaluated in closed form.

To perform the integration in the elliptic case it is necessary
to factor the T-rowed determinant Co(f) where? [cf. (3.4) above)

f0 ... 0 0 0

y
(3.20) 1 z f ... 0 0 ¢
0

1 =z ... 0 0 0
C® = (1-p) ¢t t,) =

o
=]
o .
—
[

¢ 0o ... 0 1 1{.n,
in a sample of T observations and
(3.21) cif) = ¢t :
=0
We may write

 This is an example of a more general phenomenon: H;(O) = ¥,(0)
for all T, cf. (4.4).

2For the definitions of ¥, 2, f, see (3.5),
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z—p B 0 0 0 0
1 =z B 0 0 0
0 1 =z 0 0 0
{3.22) i =
0 0 0 1 =z B
9 0 0 0 1 1}.p

For =2, 3, ... we have

Cé2|1.+1) = R2 - BRfL—l = (R - U‘R}L-l)(‘RM- + OLR},L-I)'

i M
(3.23) 2w
CU P = R;.L-I(ZR[J.-I —25}?“_2) .
where
z 0 0
g 0 0
R = 0 1 = 0 0 ©
e )
11 =z B
0 0 1 1 (k+1)
(3,24)
z—B B 0 0
z 0 0
B 1 0 0
0 1 = @
0 0 1 (W)

with
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(3.25) R, =1, R, =

Equations (3.23) make it possible to find by radicals the roots of
the determinant CJT) for T < 9. For example,

W = (z—p)lalz—p) — 2 9],

"

(3.26) €% = {{a(e—p) ~ 8~ ale—p)1}{{=(z- §) - 6] + a(z-8)},

It

s = [a(z—p) — pl{z[z(z-p) - 8] - 2p(z—p)},

etc.

3.2.2. Now in order to obtain N;(ﬁ) we follow a procedure sim-
ilar to that for T = 3. We have

2 1

~y 1 Y —— ° (437 % ac®
(3.27) 8(04) = —E 1-—8 J-‘m {CO ] """a'—'t;— dt

t1=0
where®
y f 0 0
(3.28) cw = |12 S0 )
0 1 =z f
0 0 1 1
so that
(3.29) C = yO* + gy - 28),
80(4)
(3.30) 5 =-2a[(® +8y-28) + (2y +p)].
0

Hence, substituting these values into (3.27) and dividing both

Yhe symbols used here are defined in (3.5).
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sides by o we have

(3.31) K(p) =VI—F f GPtpy-28)+Qyte)
bO? + py - 29}

Splitting into partial fractions and making the substitutions

(3.32) y = '—2t2 + 1:
Y-y 1 R
(3.33) w? = yl, 1:‘5( +85‘§)
and, finally,
(3.34) u = snlw,
we obtain
4 p? + 88 1 9 1 2
____N4(p) = chs udy + ——fcn udu
1- 8 ¥s 2y,
(3.35)
1 2
+ - cd“udu ,
yg(yl “)'3) f
1 4/
(3.36) vy = (&Y 88 -0,

where Glaisher’s notation is used (cs# = enu/snu, cdu =
co# /dnu ); the upper limit of integration is sn"'(1) and the
lower limit snl [(1 - )A

With the help of formulae given by [Whittaker and Watsem, 22.72,

Ex. 3], we perform the integration, thus obtaining, after simplifi-
cation,

1 Vi-3
(3.37) ¥ (g) = —2—[(1+ g) ~ ————— AF],
e 4 Vet 8p

where
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(3.38) AF = Fye(8) - F(e).

F_(8) is the incomplete elliptic integral of the first kind with
modular angle © and amplitude ¢; ﬁ;oo(e) is the corresponding com-
plete integral. The angles 8 and ¢ are given by

sin ¢ = Vl—yl ,
(3.39)
sin 8 = &, 24 =1+-_~—B——.
Vg? + 88

J.2.3. It is easily seen that

(3.40) ¥ (1) = lim N4(B) =1,
B~»1
From this and the behavior of N(1), one might conjecture that
Np(1) = 1 for all T.
It will be shown later in (4.4) that ¥ (0} = lim J\Z(ﬁ) = 11/15
B>0

< N,(0). As can be seen in Table 1 and Figure 1, J'Q(ﬁ) is a mono-
tonic function of B. Whether this is the property of Wy(g) for all
T is not known.

3.2.4. The numerical values! computed from (3.37) are given
in Table 1 and plotted in Figure 1. It is of interest to note that
N(p) > K(p) for all B. Tt will be seen later [from (4.4)] that

¥(0) has e minimm for' 7= 4 (if T is an integer)? The conver-
gence of H4(ﬁ) tol as 8= 1 is very slow, as was also the case for
Na(ﬁ). To reduce the relative bias to one-half of its maximal val-
ue {so that N,.= 0,866) we must have jo| = 0.95. Whether the sit-
uation is quite as seripus for larger samples is not known,

4.1, By expanding the integrand of (3.27), with T replacing
lobtained with the aid of Miss Estelle Mass. |

2kor ¥ 2 2 and real, but not necessarily an integer, the minimum is at
£=2+7V3; Fpuy3(0) =v3 - 1=0.7321.
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TABLE 1.

Ratic.of Estimate Expectation to True Parameter
Value for Samples of 3 and 4 Observations

o B= o N, = 8(&3)/a ¥ = 8*(53)/0:. N, = 8(54)/11
0 0 0.7500 0.7500 0.7333
0.1 0.01 0.7506 0.7506 0.7340
0.2 0.04 0.7526 0.7525 0.7359
0.3 0.09 0.7559 0.7555 0.7388
0.4 0,16 0.7609 0.7596 0.7434
g.5 0.25 0,7679 G. 7647 0.7501
0.6 0.36 0.7778 8.7706 0.17595
0.7 0. 49 0.7918 0.7773 0.7730
0.8 0.64 0.8125 0.7845 0.7938
0.9 0.81 0.8482 0.7921 0.8307
0.95 | 0.9025 0.8810 ¢.7960 0.8656
0.99 | 0.9801 0.9382 0.7992 0.9289
1.00 { 1.0000 1.0000 0.80600 1.0000

¥ and ¥* refer to stochastic and fixed (zero) initial-value cases, respec-

The subscript indicates the number of (stochastic) observations
in the sample.

tively.

TABLE 2.

The Limit (for Small Parameter Values) of the Ratio of Estimate
Expectation to True Parametér Value: Stochastic Initial-Value Case

le - _

Sle | o) = bim € /o] S Hg0) = Lim 8(F) /a
Size T ? o0 ' Size T| 1 faf> 0

22 1.0000 13 0.8690

3 0.7500 14 0.8769

4 0.7333 15 0.8839

5 0.7500 16 0.8902

6 0.7714 17 0.8958

7 0.7917 18 0.9009

8 0.8095 19 0.9056

9 0.8250 20 0.9098

10 0.8384 50 0.9616

11 0.8500 100 0. 9804

12 0.8601 500 0. 9960
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FIGURE 1. Ratio of Estimate Expectation to True Parameter Value

for Samples of 3 and 4 Observations. (For explanation of symbols
see Table 1.)
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FIGURE 2. The Limit (for Small Parameter Values) of the Ratio of
Estimate Expéctation to True Parameter Value: Stochastic Initial-
Value Case, (For explanation of symbols see Table 2.)
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the affix 4, in a Maclaurin series and integrating termwise, it is
possible to obtain an expansion’ for A@(ﬁ) in powers of B.

It will now be shown how the first term of the expansion is ob-
tained? We first find

(4.1) lim ¢ = yI,
g0
1 BC(M
(4.2) lim ~ % = -2y [y + (7- 2)], .
p—)ﬁ 1 t1=0

Hence

€(a,) 0 13 -
4.3) K0 = lin —0 = [ 2 b+ T-21,,

gso @ - (yf'1)3/2

2 L
and, upon evaluation, this yields®

T2- 27+ 3

(4.4) NT(U) = m .

Hence the bias exists for all finite-sized samples except T'= 2,

The values of N(0) for some I' are given in Table 2 and plotted in
Figure 2.

It will be noted that the relative bias is 9 per cent for a

sample of 20 observations and 2 per cent for a sample of 100 obser-
vations.

The second and third terms of the expansion of N{(B) in powers

of B are obtained by similar methods, although the procedure be-
comes quite laborious. Writing

4 r
As before, ¥, () = €@,)/a and 8y = tE_z nr., / ;_32 X:_l is

the least-squares estimate of a.

2Valuable suggestions in connection with this problem were made by Profes-
gor John von Neumann, Institute for Advanced Study.

$The same formula holds for N;(O), i.e., for the fixed initial-value case
with Xy = 0; see section 3.1,2 above,
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al [gict®
(4.5) Cg’ = [—-——( , ) ] ,
J k4
ap 85" /fapdg=o
we have
e =y,
Gy = ¥ T- 3y - (T~ 2)],

Coa) = (T- DT~ &)y5 (2 - 2y + 1),

(4.6) ;
ey ==y + (7- 2)],
¢ = @y + (T-5)y - (7- 4],
C == -y [(T- Dy + T~ (T =Ty

- (T-35{2T- 1)y + (T- 5}{T- é)],

. . . .
where the expression for (|,  is valid only for 7> 3. With the

help of (4.6) we find that, for T > 3, the first three coefficients
of the expansion '

1
(4.7) FB) = N0) + N0)p + - Vplo gt + -
are given by

7% -
(4.8) N 0) = arr3

(r- 1)(T+1) '

2(T% - 87 + 21)

4.9 B0 = e DT+ TS

4(T% + 247% + 9872 — 2647 — 99)

(4.10)  Ny(0) = T-1D)T+DT+3)ET+5)T+DT+9)°
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Equations (4.8) and (4.9) are valid for 7> 2 and T > 3, respec-
tively, equation (4.10) for T > 3 only.

4,2, It is quite evident that the first three terms of the
expansion for A&(ﬁ) do not give a very good approximation for val-
ues of B near 1. For example, ¥,(1) =1, while the first three
terms of the expansion give only 0.823. For || = 0.5, hdwe%er,
while ! ﬂa(0.25) = 0.7501, the first three terms of the expansion
give (.7497 which is correct to the third decimal digit. If the
same phenomenon should exist for T > 4, which remains to be proved,
the first three terms of the expansion could not only be used suc-
cessfully for values of | o | below 0.5 but also for values of | o}
somewhat {though not too much) above 0.3.

Moreover, it would seem that these three expansion terms will
always give values lower than the true ﬂ@(ﬁ). It would be desir-
able to examine the correctness of this conjecture and also to ob-
tain an upper bound for A}(ﬁ) in terms of the expansion, It seems
possible that such a bound is given by the expression

S 1
(4.11) 1- (- p¥L0) - (1~ gz)—zﬂ’;(o) ,

However, even if proved correct, this would only be useful for val-
ues of B in the neighborhood of 1, For example, for T'= 4 and

|« | = 0.9, the upper bound would be given by 0.978, while the cor-
rect value is only 0.831. It may be observed that the first three
terms of the expansion give a much better approximation, namely
0.801, despite the high value of | e ].

4.3. The following more general propositions concerning first-
order stochastic linear difference equations still await proof:

(4,12) A}(ﬁ) <1 for g<1 and all T,
BN,(p)
(4.13} >0 for <1 and all T,
ap
and hence
(4.14) lim Ng(g) = 1 for all 7.
g1

}1t will be remembered that the argument of HT( ) is B, not Ial.
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It would alsc be desirable to investigate analogous problems
first for higher-order difference equations and then for equation
systems.! It woifld be of interest to see whether the following two
propositions are generally true: (1) that a system becomes more
strongly damped when estimate expectations are substituted for the
structural parameters, and (2) that the relative bias is lower in
systems with stronger damping and tends to zero as the character-
istic roots of the system approach 1 in absclute value.

These investigations should be carried out for both the sto-
chastic and fixed-variate initial-value case, without the fixed
initial value being necessarily zero.

Finally, higher moments of the sampling distributions of the
estimates should be investigated. It is probable that these prob-
lems will have to be studied with the help of more powerful tools,
especially that of the approximate sampling distributions? pro-
vided the upper bound of the approximation error can be determined.

1

At this point one would have to distinguish between the bias of the (mhx-
imum-likelihood) estimates of the structural coefficients and the biss of
the (least-squares equivalent to maximum-likelihood for the fixed-variate
initial-value case) estimates of the regression ‘coefficients. The distri-
butions of the conditional variances and of the disturbance covariance ma-
trix also deserve attention in small samples.

2See [Koopmans. 1942}, [Dixon], and [Leipnik].



XVI. MODELS INVOLVING A CONTINUCGUS
TIME VARIABLE

BY TJALLING C. KOOPMANS

1. In the opinion of this author, the similtaneous-equations
method to which the first part of this volume is devoted consti-
tutes an important advance over single-equation methods in the
measurement of economic relations. Reasons for this opinion have
been stated elsewhere [Koopmans, 1945}, 1In this note it is my
intention to point out certain shortcomings of the new methods in
their present stage.

Limitations to the usefulness of the néw methods arise from
the combination of the following two aspects in the specification
of the distribution of the variables:

(a) the treatment of time as a discrete variable,

(b) the assumption that disturbances at different points in
time are independent.

These aspects are also found in the single-equation methods that
have been generally used, and some of the limitations to be men-
tioned below therefore apply equally to simultaneous-equations and
single-equation methods. However, the development of the simulta-
neous-equations method has brought to light further disadvantages
of the specifications (a) and (b) above, and thus has made their
revision even more desirable than before.

9. It was found in another article! that in the simultaneous-
equations method the procedure for estimating the coefficient a,,
of the endogenous variable x, in the first structural equation,
say, is different according to whether that variable is ‘predeter-
mined” or is one of the “jointly dependent variables.” A given
variable may be in one category or the other depending solely on
the timing of that variable in the equation concerned. If an en-
dogenous varisble x, appears in the first equation only with a lag
of one unit behind the most recent timing of that variable in the

1 [11—3.1.3] . For the definition of “endogenous,” “ predetermined,” *'de-
pendent,” variables, see also [XVII].

384
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equation system as a whole, then in the first equation it will be
classified as predetermined. If the time lag is reduced to zero,
the variable is in general to be treated as one of the jointly de-
pendent variables. This situation can be reduced ad absurdum by
making the time unit of measurement smaller and smaller and at the
same time reducing the time lag to zero, Then suddenly at the mo-
ment the time lag reaches zero the status of the variable x, in the
first equation is changed, and with it the “unbiased” estimate of
the coefficient in question is changed. The solution of this paradex
is, of course, that such a procedure is illegitimate. The assump-
tion of independent disturbances in successive observations can be
maintained only if the size of the time unit to which these obser-
vations refer is not made too small. Therefore, the independence
assumption makes the distinction between predetermined and depend-
ent variables appear as absclute instead of a matter of degree,
which it would be in a more refined model.

The main source of disturbances is the erratic element in eco-
nomic behavior. Some causes of erratic behavior (not already rep-
resented by measurable variables), like the weather affecting the
amount and direction of consumers’ expenditure, may be so variable
as to reverse themselves in a few days. Other causes like fads
and fashions affecting consumption, confidence or lack of confi-
dence affecting investment, may lead to deviations in the same di-
rection for a whole year or even longer. Therefore, as the time
unit of observation is reduced in size, a situation in which serial
correlation of the disturbances in a given equation can no longer
be neglected is bound to arise at some stage.

Fethods based on the independence assumption thus involve a
lower bound on the permissible size of the time unit of observation.
This precludes adequate treatment of a number of important statis-
tical problems in the measurement of economic relations. The time
lags occurring in economic behavior are not always integral multi-
ples of one time unit of a size compatible with the independence
assumption. They are almost always distributed lags, with the
lower limit to the range of lags sametimes practically equal to
zero. There is therefore a need for methods of estimating the pa-
rameters that characterize lag distributions.

Another problem that cennot be studied adequately under the
independence assumption is that of the most economic time unit of
observation. Whether it is best to use annual, quarterly, or
monthly, data depends on' a comparison of the cost of collection
of such data (if not already available), the cost of calculating
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the necessary estimates, and the information gained (in the sense
of smaller sampling errors of estimated parameters) by a given re-
duction in the size of the unit period of cbservation. The latter
gain in information is likely to be reduced by serial correlation
in the disturbances. For time units below a certain size, this
gain in information can therefore not be analyzed theoretically on
the basis of the independence assumption.

3. An adequate model for the study of the foregoing problem
is obtained by considering the disturbances (and therefore the eco-
nomic variables) as generated by a stochastic process with a con-
tinuous time variable. Let us for simplicity assume that this pro-
cess 1s normal and stationary, ji.e., the values of the variables
ug(t) at any set of time points ¢, %,, ..., t; have a joint normal
distribution depending only on the differences By =ty veey Tg— g )
In that case the process is entirely characterized [Doob, Theorem
4.3] by the elements

(1) Eult) ylt) = o,,(0)

of the covariance matrix 2{0), and by a matrix B, determining the
lagged covariance matrix

(2) Eug(t)uh(t +r) = crgh('r)
through the formula

(3) 2ty = 20) 6FB , 1 >0.

if economic variables agﬂt) are considered as determined by
equations in which quantities ug(t) of this nature are the only ran-
dom elements, it is necessary to define further the way in which
these variables are observed. In practice, the method of observa-
tion is again a discrete procedure. One method of observation is
to make readings

x(ty)s &t ooes xfts),
(4)

at equidistant points in time. Price variables are sometimes ob-
served in this way. Quantities of goods and flows of money are
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usually observed through averages

4

(5) x(t) = ft hxn(r)dfr

5
over a period of observation of length 4. For any specified method
of obtaining a finite number of observations for each variable in
the system, the set of all observations on all variables becomes
subject to a joint probability distribution derivable from (3) (or
from whatever other process of a continuous time variable # is
specified).

Although the mathematical difficulties involved may be consid-
erable, a model of this kind would provide a means of studying the
estimation of lag distributions and the choice of the most economic
time unit of obiservation,

4. Perhaps the most important advantage of a continuocus treat-
ment of time has not yet been mentioned. It is explained in another
article [I1-2.5,6] that, in the discrete case, as soon as the in-
dependence assumption for successive disturbances is dropped, the
problem of identification of the structural equations is greatly
complicated. For the removal of that assumption may open up a new
group of transformations of the equations (involving shifts along
the time axis} that preserve the probability distribution of the
variables.

The introduction of a continuous time variable is perhaps the
best way to study fully all aspects of the identification problem
of relations between economic time series. Consider for instance
a system of one linear equation containing only one variable x, In
the discrete formulation this equation would be of the type

(6)  Lx(t) = x(t) toyx(t— 1)+ - + o x(t — ©) = u(t).
Under the independence assumption for u(t),
(7 Cu(t)u(t +6) = 0 if 6 # 0,

there is no identification problem. For any linear combination of
the type

X
(8) ay Lx(®) +a Lx(t—1) + -+~ + 2, Lx(t-K) =3(2) :kzzoxku(t—k)
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introduces serial correlation into v{f) unless all but one of the
quantities Aj vamish.

In the continucus formulation the equation is of the type

t

9) *x(t) = x(t) —_Lm o(t - ©)x(x)dr = u(t)

where the disturbance process, if normal and stationary, is described

by
(10) ful(t) u(t + ) = f(] 8}).

Now there are infinitely many transformations in the space of the
functions ¢ and f which preserve the form of (9). The simplest of
these is obtained by substituting

t
(1 f_ ot — ) x(v) dv + u(t)

for x(t) under the integral sign in (9). Another possibility is
first to write

(12) ot — ©) = gt - v) + qft- ),

and to substitute (11) only in one of the two integrals so obtained,
etc. The only invariants of all these transformations are the auto-
covariance function

(13) g(e) = Ex(t) x(¢t + )

of the variable x(t) and all its functions and functionals. These
are therefore the only identifiable characteristics of the process
{9), and only these are subject to estimation,
The identification difficulties just described are absent from
the process
t
(14) x(t) = f ot~ Dx(dv + ay(t) + ul®)

-

containing an observable exogenous variable y(t). They reappear
if y{t) occurs in the form
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t t
15) x(t) = [ ot~ Dx@dr + [ ot - DyDdr + u(2)

-~ -

with unknown lag-distribution functions ¢ and y.

The process {9) becomes a system of equations if x(¢) and u(t)
are interpreted as column vectors, ¢{t — T) as a matrix. In this
cage, the identification of individual equations is aided if eco-
nomic considerations require or permit the specification that all
diagonal elements of @(t — 1) shall vanish for all values of t — .
In two dimensions this leads to the system

t
xl(f;) = f ¢y, (E ~ r}xz('t) dt + uy(t),
(16) ”

i
xz(t) = ! cp21(t - T)Il('l.') dt + 112(t).

The equations (16) are completely identified, i.e., there is no
transformation other than the identity, in the space of the func-
tions 9.,, @, and f,, f, [defined as in (10)] which preserves the
form of (16}.
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1. Endogencus and Exogenous Variables

In static or dynamic economic theory, the criteria emploved in
determining whether or not a system of equations is complete are
derived from the purpose for which such systems are constructed:
the explanation of economic phenomena. In each case a distinction
is drawn between the endogenous variables that the economist sets
out to explain and the exogenous variables that he takes as given.
The number of equations required for the explanation of the values
or, in the dynamic case, of the movements of the endogenous vari-
ables, then equals the number of such variables.

2. Exogenous Variables in Economic Theory

In determining which variables are set aside as exogenous, two
main principles are implicitly or explicitly applied in economic
literature. They might be described as the departmental principle
and the causal principle. The departmental principle treats as ex-
ogenous those variables which are wholly or partly outside the
scope of economics, like weather and climate, earthquakes, popula-

393
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tion, technological change, political events. The causal principle,
which does not always lead to the same result, regards as exogenous
those variables which influence the remaining (endogenous) variables
but are not influenced thereby.

The causal principle is often used also if it applies only ap-
proximately, that is, if the influence of the endogenous variables
on those treated as exogenous is presumed to be small. For instance,
in explaining the level of employment in a country which has only a
small share in world trade, the shifts in the schedules of foreign
demand for its exports and of foreign supply of its imports are
sometimes treated as exogenous in first approximation. Another ex-
ample is found in the formation of quantity and price of a consumers’
good that attracts only a small fraction of consumers’ expenditure,
In such cases, consumers’ income is often taken as an exogenous var-
iable, operating at the demand side, although of course consumers’
income 1itself depends on the demand for all commodities. In order
to distinguish between cases where the causal principle of classifi-
cation of variables is strictly or only approximately applicable,
we shall in what follows speak of the strict causal principle and
the approximate causal principle.

There is no sharp line of demarcation between the application
of the approximate causal principle and what deserves mention as a
third principle or consideration: the purpose of exposition. At a
certain stage of the analysis, variables are often treated as exog-
enous to facilitate understanding of the model studied, reserving
for later elaboration their inclusion among the endogencus variables.

3. Statistical Definition of Exogenous Variables

One of the main purposes of the present volume is to study the
statistical implications of the fact that economic data are governed
by a system of simultaneous equations. It is therefore necessary
to review the foregoing principles, and such other considerations
as may present themselves, in relation to the purpose of statistical
estimation of the equations of dynamic economics. The question
which, if any, are exogenous variables must be raised afresh from
the statistical point of view,

It will be clear that the departmental principle is of no value
in this connection. Suppose that rainfall and temperature enter
as determining factors in one or more equations of the system. Is
it possible that a certain method of estimation, applied to the eco-
nomic relations with disregard of purely physical relations between
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these and other meteorological variables, for that very reason
leads to inconsistent and asymptotically biased estimates! of the
parameters of the economic relations? ‘The answer to this question
obviously does not depend on which particular department is in
charge of studying such relations.

The causal definition of exogenous variables does permit an
answer to this question, with specific reference to the maximum-
likelihood methed of estimation. The answer is based on a mathe-
matical observation which we shall now fermulate. Suppose that

(1) qh(“n' eer, aan Xy e, xy) zu,, n=1, ..., ¥,

represents the complete system of all structural equations (linear
or otherwise} between ¢ll variables, economic or noneconomic, that
enter directly or indirectly into the explanation of economic var-
iables. Suppose, for the present, that all these variables enter
without time lags, and let the random terms u, have for each time
t a joint continuous distribution

@) Fay, ..., uy)duy o duy,

these distributions being independent for successive values t = I,
2, ... of t. Suppose finally that both the equations (1) and the
variables Xy, ++ey %y, can be separated into two sets, with number-
mgn=1, ..., Gand n=6G+1, ..., ¥ for the first and second
sets, respectively, such that the following three assumptions are
satisfied.

ASSUMPTION 3.1. The first set of “endogenous variables” does
not oceur in the second set of equations:

(3a) q%(“nr cees angj Kyy wees Xpi Xy eees g”) =u,,
(3) ﬂ=l, feey G,
(3b) 3 TR Ung i Fgars ceo xy) = u,
n=G+1, ..., ¥

Ian estimate of a parameter ¢., derived from a sample of size ¥, is called

consistent if, for any £ > 0, lim P(!a-uJ >g) =0 if P(F) denotes the
Ts
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ASSUMPTION 3.2. The distribution function in (2) can be factor-
ized as follows:

(4) Fly, o) = Aluy, oo, ug) Hlug,, oo, uy) .

ASSUMPTION 3.3. In any point x,, ..., Xy permitted by the dis-

tribution function (2), the Jacobian B(ul, - uﬂ)/{a(xl, . xﬁ)
of the “transformation” (3) differs from zero everywhere in the space
of the parameters Cpgr 9= 1, ...,0; n=1, ..., ¥

The economic meaning of these assumptions is that (Assumption
3.1) we isolate in (3b) the equations that connect only exogenous
variables, that (Assumption 3.2} we assume that the random elements
entering those equations — and hence the (exogenous) variables of
the second set themselves -~ are distributed independently from the
random disturbances in the equations (3a) explaining the endogenous
variables, and that (Assumption 3.3) no situation can arise in
which small changes in the disturbances #;, ..., u, lead to very

large changes in the variables x,, ..., Xye

Since the equation system (3} together with (4) completely spec-
ifies the joint distribution of the variables Xy oeeey Xy, maximum-
likelihood estimation based on (3) and (4) may be expected to lead
to consistent and asymptotically unbiased estimates of all identifi-
able! parameters.’ Assuming this to be the case, we shall now prove
that in consequence the identifiable parameters of the eguation
(3a) can be estimated, by the method of maximum likelihood, i.e.,
consistently and without bias in large samples, from those eguations
only, treating the “exogenous” variables xg4,, -..., xy as if they
were fixed in repeated samples. To prove this point, let us regard
(3a) and (3b) as one system of equations (3) and write down the
Jjoint distribution function 2 of a complete set of observations for
cne value of . ‘This function is given by

probability of an event £. The estimete ¢ is called asymptotically unbiased

if lim Ea =, where & denotes the mathematical expectation.
T

'For the concept of identifiability, see [II—?], also [IV].

2This has been proved rigorously for linear aystems; see [11—3.3].
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Y P GNQN; X, oaee, xy)dxy e dxy

(5)
a(ul, uy)
= fluy, ... ouy) - dmy et odxg
3(x, cee,y xﬂ-)

in which the quantities wu,, ..., 1, are regarded as functions (1)
of x;, ..., 5. Because of the assumed form of (3b), the Jacobian
in (5) factorizes as follows:

aul auG
— —_— ] 0
Bxl axl
Bul BuG
—_ ... = 0 . 0
a(ul, ey Uy) Bxy Bxg
8 (xl, e, x,) B 8u, 8u, Bug,, Buy
Bxc_.ﬂ 6xa+1 Bxaﬂ .‘c’ch+1
(6)
Sul BuG Bugﬂ Buy
Bx” o axj, ax, o a—x;,

8y, ooy tg) Bug,y, ..., ug)

RN 6(xG+l, cees Xy) ’

Combining corresponding factors in (6) and {4), we obtain the fol-
lowing factorization for h:
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(7) h(ail: vy QRQN; le LN x}])

= oy - %agg 1 vers ¥y hologay,ye oo *Hg T v %),

in which the parameters o
been determined from (3).
What happens if the likelihood function

g occurring in each factor of (6) have

r
® F= e, .. aag i Bt o %))

following from (7) is maximized with respect to the parameters oy
To answer this question, it is necessary to remember that the fac-
tors f; and f, in (4) are nonnegative, and are positive somewhere
within their range, in view of their nature as probability densi-
ties. Since the nonvanishing Jacobians in (6) enter in (5) and
hence in (7) only with their absolute values, the factors h, and &,
in (4) are likewise nomnegative and somewhere positive. Further-

more, the two factors Fll = I;Ihl and F, = I;[h2 of {8) depend

on entirely different sets of parameters, Olgr wees O and
Foar,1r oo ajgv’ respectively. It follows that, for the product

F=F F, to be as large as possible, it is necessary and suffi-

cient that each of the factors F, and F, separately be as large as
possible.

The problem of (asymptotically unbiased) estimation of the pa-
rameters by the method of maximum likelihood has thereby been split
into two separate estimation problems for the two sets of param-
eters occurring in (3a) and (3b), respectively. In particular, it
is possible to disregard entirely the estimation of the equations
(3b) and to estimate only the parameters of (3a) by maximizing F; .
The latter problem is identical with the estimation problem met
with if the exogenous variables %;,,, ..., %, in the equations (3a)
are regarded not as determined by (3b), but as given in advance
and fixed in repeated samples.

It might be observed that although under the present assump-
tions the maxinum-likelihood estimates of the parameters occurring
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in (3a) are the same functions of the observations whether the ex-
ogenous variables are regarded as subject to a probability distri-
bution or as fixed in repeated samples, a difference arises again
between these twe cases in the distribution of the maximum-likeli-
hood estimates at least in small samples. However, a procedure is
available whereby this difference can be removed. In the case
where the exogenous variables are subject to a probability distri-
bution, it is both permissible and useful to consider, for the con-
struction of confidence intervals, only that subclass of all pos-
sible samples in which the exogenous variables have values equal
to those observed.

The foregoing proposition provides a justification for using
the concept of exogenous variables defined according to the causal
principle. In equation systems in which all variables enter simul-
taneously (the only case covered so far), a clear separation has
now been obtained between the endogenous variables that must be ex-
plained by an equal number of relations (all of which are in prin-
ciple relevant to the estimation of any one of them) and the exog-
enous variables that may be accepted without explanation. It is
worth stressing again that for purposes of statistical estimation
the concept of exogenous variables must be defined more strietly
and narrowly than for some purposes of economic theory. Whereas
the theorist may at a certain stage choose, for reasons of approx-
imation or exposition, to disregard possible influences exerted by
variables “inside” his system on variables regarded by him as “out-
side,” the statistician must be convinced (on a priori grounds or
as a result of statistical test) of the absence of such influence
before he can declare the “outside” variable teo be exogenous in
the foregoing sense.

4. Endogenous and Exogenous Variables
in Systems Containing Time Lags

We must now take into consideration the fact that the action
of one variable on another is often subject to a time lag. Suppose
therefore that the variables ¥, ..., x; occur in the equations (1)

not only with timing %, but also with various time lags vt which are
integral nonnegative multiples of the chosen wmit of time:.

YFor a discussion of this device, see [Hotelling, 1940].
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R ...,angn; %(t), ..., xﬂ(t); xl(t—l), ey x”(t— 1); ...}

(%)
= un(t), n=1, ..., ¥ t=1, ..., T.

The joint distribution of all observations x(t), n =1, ..., F;
t=1, ..., T, again follows from that of the disturbances u(t),
n=1, ..., ¥, ¢t=1, ..., T, provided we specify how any values
ﬁ;ﬂt—-r) with t— = < 0, occurring in the equations (1) for t > 1,
are distributed. We shall assume such values to be constant in
repeated samples and equal to the values observed in the sample at
hand,

The first question requiring an answer under the present as-
sumption is whether maxiwum-likelihood estimation based on the
joint distribution function of all observations Jg&t), n=1, ...,
¥, t=1, ..., T, still leads to consistent and asymptotically
unbiased estimates. This does not follow from the general theory
of maximum-~likelihood estimation because the observations Jﬁﬂt)
for successive values of { are no longer stochastically independ-
ent. However, Mann and Wald [1943] have proved that for linear
systems of the form (9), maximum-likelihood estimates are consist-
ent and asymptotically unbiased. Presuming that this result can
be extended to nenlinear systems, we shall therefore continue the
analysis on the basis of the maximum-likelihood method of estima-
tion.

It is easily seen that the Jacobian

a{ufl), ooy w1); oo (D), L., w (D)
8{x (D), ..., 51); ..; x(D), ..., x{]))

(10) J,

i

of the transformation from all disturbances to all observations
(that are not constants) factorizes as follows
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8y (1), ..., D)} B{uy(2), ..., uf2)}
Bz, (D), .., 5L} Blx(D), ..., D)
B{u(2), ..., uy2))
’ 8z, (2), ..., % 2))
Jp=
, . B{ul(T),...,:uN(T)}
8(x,(D), ..., D)
(11)

I 5{u b e, U I
- 10 {u,(t) 42)) - T |

=15(x(t), ..., ) ol

say, all entries to the right of the main diagonal in Jp being im-
material. Consequently, the joint distribution function of the ob-
servations is again given by the expressions (8) and (5), the only’
difference bejng that the arguments Uy, ..., 4y of fin (5) are now
given by (9) instead of (1).

By going through the previous reasoning after this change in
the structural equations, it will be seen that the previous result
remains true: If (9) has the form (3), where u, now stands for
un(t), and each of the symbols x,, stands for a sequence of values
xﬂ(t), xn(t— 1), .... maximum-likelihood estimation of the param-
eters oy, ..., &g, can be performed by maximizing only the func-
tion *

3{u1(t), uo.(t')}
, ug(t)} ,
a{xl(t), vt xG(t)}

r
(12) F = tI:IIfl{ul(t),

with ug(t) given by (3a).

Thus the distinction between endogenous and exogenous variables
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is maintained equally well in systems containing time lags. Fur-
ther analysis needs to be concerned only with the function (12)
which represents the conditional probability density in the space
of all values of the endogenous variables x,, ..., %y within the
period t = 1, ..., T, for given values of the exogenous variables
Xggpr =+ Xy within tha® period, and of all variables Xy aees Xy
previous to that period (£ < 0). Distribution theory of the esti-
mates of the parameterso,,, £= 1, ..., G, can also be based en-
tirely on the conditional distribution function (12). It is there-
fore unnecessary from now on to carry the “given” values of the
exogenous variables x,, ., ..., %, aleng in all formulae, and we
shall rewrite (3a) as

Pelogrs werogg 3 ((E) e, (8D (E-1), o, xp(e-1); L} = ufe),
[
(13)

5. The Nature of Exogenous Variables

Before continuing the analysis on the basis of (12) and (13),
the question is in order as to the nature of the variables so set
aside as “exogenous.” Which factors in man’s physical and histor-
ical environment are not influenced by his economic activity? I{
the question is put in this way one can think of little else be-
sides changes in weather, climate, geology, and geography that are
brought about by natural causes. There remainis a host of sociolog-
ical, political, and psychalogical factors that are in continuous
interaction with economic activity, and therefore cannot, on any
grounds sc far adduced, be accepted as they come without incorpo-
rating the explanation of their fluctuations in the system of equa-
tions.

6. Predetermined Variables and Jointly Dependent Variables

A further delimitation of the area that needs to be covered by
an equation system, for purposes of unbiased estimation of param-
eters in large samples, can sometimes be obtained through closer
study of the manner in which time lags occur in the structural
equations (13},
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The assumption that the variables x,, ..., x, are endogenous
implies that each variable occurs without time lag in at least one
equation, because otherwise the equation system (13) would not de-
scribe the determination of each variable. The earlier values
x{t—1), x{t-2), ..., 1 =1, ..., G, of the endogenous variables
may accordingly be called predetermined variables. At time ¢ their
values are already given by the equations (13) for earlier values
of t. Any possibility of again splitting off from the system (13)
a subset of equations for separate treatment depends, as before, '
on further factorizing properties of the Jacobian J(f) referring
to one single time point ¢ as defined in the last line of (11).
This leads immediately to the following extension of the observa-
tions made above. Suppose that both the equations (13) and the
(endogenous) variables x,;(t), 1 =13, ..., G, can again be separated
into two sets, {13a) and {13b), such that instead of the previous
Assumptions 3.1, 3.2, 3.3 the following assumptions are satisfied:

ASSUMPTION 6.1. The first set of variables aq(t), i =1, ...,
Gl’ does not occur in the second set (g = G1 +1, ..., 6) of equa-
tions (13) except with a time log T > It

Pglogyr - - 0, x(t), ..., xft);

(13a) xl(t-l), e xG(t— 1); ...} = ug(-t),
g=1, ..., Gl; t=1, ..., T,
(13)
q?{uyl, cees ggk; xc1+1(t), vees “b(t);
(13b) x x(t-1), .., xft-1); . ) = ult),

£=6G+1, ..., G t=1, ..., 7T

ASSUMPTIONS 6.2 and 6.3. The previous Assumptions 3.2 (factor-
izing of the distribution function of disiurbances) and 3.3 (non-
vanishing Jacobian), respectively, are again satisfied for the new
subdivisions of variables and equations.
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Then it follows that the parameters of the two sets of equations
can again be estimated by the maximum-likelihood method in two sep-
arate steps. In particular, the first set of equations can be esti-
mated without any knowledge of the second set beyond that expressed
by the Assumptions 6.1, 6.2, 6.3. :

If the conditions of this proposition are satisfied, the endog-
enous variables of the second set xG-&l(t)' aiay 1%(#) will be

called the predetermined variables even where they occur without
time lags. For even their values x,(¢) without lags are determined
by earlier values of the variables of both sets and by disturbances
independent of the simultaneous values of the variables of the first
set. These characteristics permit the predetermined variables to
be treated in the first set of equations as if they were exogenous
variables for the purpose of the separate détermination of maximum-
likelihood estimates of the parameters Gpgr 9= 1, ..., Qg’ Fg=1,
.., G, of the first set of equations.

With regard to the distribution of these estimates the position
is slightly more complicated than in the case where only the exoge-
nous variables and the equations explaining these variables are
split off. In the present case the small-sample distribution of
the maximum-likelihood estimates o of the parameters «, , g =1,
«++» G;. of the first set of equations cannot be made independent
of the parameters Gggr &= G, +1, ..., G, of the second set of
equations by any such construction or restriction as was applied
in the case of exogenous variables, The asymptotic theory of max-
imum-1likelihood estimation for stochastic difference equations, re-
viewed in [I1-3,3], implies, however, that at least for linear sys-
tems with normally distributed disturbances, the limiting distribu-
tion of the B54- €= 1, ..., Gy, for infinitely large semples is
independent of the parameters Ugqr € = G, t1, ..., 6, and is such
as to make the estimates involved both consistent and asymptotically
unbiased.

The distinction of predetermined variables thus makes possible
a great further reduction in the size and scope of the equation
systems needed for statistical purposes in cases where large-sample
approximations are adequate! In order to be “complete” in this
* large-sample” statistical sense, the equation system then only
needs to cover with reasonable completeness the formation of those

1See, however,[XV] where L. Hurwicz discusses in a simple case the bias

involved in the application of large~sample approximations to samples of
moderate size.
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economic (and possibly some noneconomic) variables that are connect-
ed through a process of instantaneous interactions., The variables
between which these instantaneous interactions occur will be called
the jointly dependent variables, or, briefly, the dependent vari-
ables., Any further determining variables affecting this process of
interaction, which variables themselves depend énly on earlier val-
ues of the endogenous variables and on chance variation independent
of that process, need not be “explained” through additional equa-
tions, but can be treated as predetermined variables. In particu-
lar, slow changes in environment affecting consumers’ preferences,
technological changes, and other factors usually described as
“trends’ can probably be treated as predetermined variables in this
sense with a reasonable degree of accuracy, Likewise, the interac-
tions between economic variables and political developments is often
subject to sizable time lags, and in such cases need not be taken
into account for the purposes here considered.

7. Summary of the Classification of Variables

The foregoing distinctions are summarized in the following table’
which also provides a comparison of the notation of the present
article with that introduced in two different places in [II].

8. Insufficiency of the “Approximate ” Causal Principle

Further comment is needed on some of the principles underlying
this classification. Both the distinctien between exogenous and
endogenous variables and that between predetermined and dependent
variables are based on a subdivision of the complete set of equa-
tions “explaining” the formation of all variasbles into two subsets
of equations. In both cases it is necessary to stipulate (see As-
sumption 3.3) that the disturbances affecting equations thereby
placed into different subsets should be independently distributed.
The necessity of this assumption definitely limits the extent to
which equation systems can be reduced in size without sacrificing
“ecompleteness” in the statistical sense. In particular, this as-
sumption frequently prohibits the application of the *‘approximate”
causal principle in cutting down the size of the system. This
point is of great importance, for instance, to the statistical
measurement of demand and supply curves for individual commedities.
For this reason, and because of the need for further mathematical
demonstration of the insufficiency of the “approximate” causal

LSee p. 406.
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principle, a separate discussion of this problem will be given
elsewhere in due course.

9, Time Lags as a Criterion of Classification

The question must be raised whether the concept of a time lag
is sharp enough to serve as the basis for a classification of var-
iables that determines their treatment in the estimation procedure.
After all, time lags may occur in all sizes, varying continuously
down to zero.

It is possible to give a provisional answer to this objection
which safeguards the statistical procedures developed in this vol-
ume as logically defensible and consistent. It has been assumed
in those procedures that disturbances in successive observations
(that is, in successive time points or time intervals) are inde-
pendent. That assumption cannot continue to be valid if the unit
of observation is made smaller and smaller. Therefore, the term
“time lag” in the previous discussion means a time lag not smaller
than the smallest time unit of observation for which the independ-
ence assumption is still tenable as a fair approximation to reality.

Nevertheless, such a discrete treatment of what is a continuous
time variable should not be accepted as the final word of statis-
tical theory applied to economic time series. In this writer’s
opinion, an extension of the “discrete” methods of this volume to
permit continuously distributed lags, ranging down to zero wherever
appropriate, is the next important refinement needed in the devel-
opment of statistical methods adapted to the analysis of relations
between economic time series. In [XVI] the need for and the nature
of such a generalization are discussed further.

10. Identification Problems in Systems Containing
Exogenous or Other Predetermined Variables

In the foregoing discussion we have considered two successive
reductions of the size of the original equation system (3), where
x, now, as in section 4, stands for a sequence of values A;lt),
1M£t—-1), +... In the first reduction the equations (3b) connect-
ing only exogenous variables are omitted, and the equations (3a)
or (13) are retained. In the seconed reduction the subsystem (13b)
“explaining” the predetermined variables is omitted, and the remain-
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ing equations {13a) are retained. In order to provide a link with
the discussion of identification problems in II-2, the following
question should be raised: Could any equation of (13a), or any
parameter of such an eguation, which appears to be identifiable on
the basis of a study of transformations in the space of the param-
eters occurring in (13a) only, be found nonidentifiable if possible
transformations in the space of all parameters entering in the com-
plete system (3), or in its first subsystem (13), were taken into
consideration? The answer is that, under the various independence
assumptions stated above, this cannot occur as long as the distri-
bution of the disturbances u (f) is nonsingular, in the sense that
no exact relationship of the type

(14) \p{ugl(t), ugz(t), e ) =0

is satisfied by the disturbances of either of the subsystems (3b)
or (13b). For, if the distribution of the disturbances is nonsin-
gular, any attempt to combine equations from (3b) or (13b) with
those of (13a) to produce new equations of the form (13a) will vio-
late the 1ndependence assumptions as between the disturbances in
{3a) and (3b) or in (13a) and (13b), respectively. Under the pres-
ent assumptions, therefore, nonsingularity of the distribution of
disturbances is the only condition that needs to be met by the com-
plete system (3) in order that questions of identifiability can be
settled by study of the appropriate subsystem (3a) or (13a). In
order to visualize the meaning of this condition, let us assume
that a relation (14) holds for the disturbances of the equations
(3b) “explaining” the exogenous variables. By inserting the left
hand members of (3b) for u (t) in (14), we find that then an exact
relation

(15) xixgay (8), oo, x)ft)} =

connects the exogenous variables. This case was excluded from the
discussion of identification problems in II-2 by the wording of
Definition 2.1.2. Whether the presence of a relation {15) does in
fact destroy identifiability of otherwise identifiable parameters

of (3a) depends on the functional form of (15) in connection with
any a priori information about the functional form of the equations
(3a). For instance, if (15) is linear, the identifiability of any
linear equation in (3a), containing the same variables as {15) with-
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out restrictions on their coefficients, is destroyed. The occur-
rence of such a case in applications should reveal itself, theoret-
ically through infinite, practically through very high caleulated,

standard errors of the estimates of parameters whose identification
is destroyed.



XVIII. SYSTEMS WITH NONADDITIVE DISTURBANCES'

BY LEONID HURWICZ

0.1. 1In this note the need is shown for generalization of the
marmner in which disturbances are introduced in stochastic equation
systems. While at present in the systems treated each equation
contains only one disturbance, in more realistic, systems there
might be equations each containing several disturbances. Moreover,
some of these disturbances might enter in a nonadditive fashicn as
coefficients of the observed variables.

A model with nonadditive disturbances, while often appropriate
on grounds of a priori (economic) knowledge, is much more diffiecult
to handle mathematically. In fact the difficulties arise at an
extremely early stage: it has not yet been possible, in general,
to derive formulae on which the computation of estimates could be
based. The maximum-likelihood estimates have been obtained for a
lagless single-equation system, i.e., where all variables but one
are fixed> Even in this simplest case the equation for the unknown
estimates is, in general, nonlinear,

But when a simultanecus system is considered, even the likeli-
hood function cannot, in general, be obtained except in the form
of an integral. Hence, unless more powerful analytical methods
can be found, the only practical solution (if the maximum-likeli-
hood principle is to be used) would seem to be to resort to numer-
ical methods® in evaluating the likelihood function and locating
its maximum.

The same would appear to hold for the method of moments, al-
though it may be that this problem deserves a more careful inves-
tigation. One may hope that other criteria for-estimation can be
found, but if not, the numerical methods applied to the maximum-
likelihood criterion of estimation would seem to be the best way
out,

Part of the work done on this peper was done in 1945-46 during the au-
thor’s tenure of the Guggenheim Memorial Fellowship.

2gee [x1x].

3Perhaps with the aid of the recently designed electronic computing ma-
chines, '

410
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The next stage would be that of investigating the sampling prop-
erties of the estimates used. This would also be a work of consid-
erable complexity.

0.2. This note is divided into three sections, Section f 1s
devoted to the specification of the nonadditive disturbance model.
Sectioen 2 provides some examples, mostly from the field of economics,
of nonadditive disturbance models. In section 3 the likelihood func-
tion is derived for a special and relatively simple case of a two-
equation model where one of the equations contains a nonadditive
disturbance,

1.1. The simmltaneous linear systems treated by methods of sta-
tistical analysis as a rule belong to the c:ateg,ory1

(1-1) ‘Pg()": 3”) = CPg(xr) = ug: g: 1: 2r vty G:

where y = Ql’ ceny yXy), z2={z), ..., zxz), G=Ky; y is stochas-
tic and z a fixed variate. We observe x = (y, 2) but not the dis-
turbances - The function {vector) & = (cpl, cee, (PG) and the co-
variance matrix B% of the disturbances are partly specified by a
priori knowledge (the identifying restrictions) and are partly to

be estimated from the observations on x. In the linear case (1.1}
becomes

. . 3
{1.2) agx’ = uy, g=1 2, ..., G,

where o, is the gth row of the structural coefficient matrix 4.
Now (1.1) is but a special case of

(1.3) \pg(x’,-u’) =0, g=1 2 ...,6=K

where u = (¥, ..., % ). (1.1) can be obtained from (1.3) by as-
suming *

(1.4) K, =K,
Oy
4
1. > =35, ,
(1.5) 5, = 0

ly’ is the transpose of the row vector ¥, etec.



412 L. HURWICZ XVIII

where 5., is the Kronecker symbol.

3
If 51.5) were abandoned but (1.4) retained, it would still be
possible to solve for the u’s and rewrite (1.3) as

{1.6) w;(r') = g, e=12 ...,G,

although equations (1.6} would no longer be the original behavior
equations. This type of situation, because of its nonlinear nature,
would be of considerable mathematical complexity. The Jacobian of
the transformation (fromu to y) becomes a function of y, rather
than a constant as in (1.2). Thus, while it is not difficult to
obtain the likelihood function, it will, in general, be quite dif-
ficult to find the maximizing values of the unknown parameters,

But when K, is permitted to exceed K, (=G} an additional dif-
ficulty arises since the distribution of y is then esseatially a
marginal one; an integration must be performed in order to obtain
the likelihood function. The difficulty of this integration is
due to the fact that the integrand contains the absolute value of
a Jacobian and the latter is a function of the variables of inte-
gration {see below, section 3,2).

1.2. Let (1.3) hold with £, > E& s0 that the equations {1,4)

and (1.5) are not satisfied. Nevertheless, the disturbances might
still enter (1.3) in a purely additive manner. For instance, we
might have the system

Y + a1 ¥y + %, + eu, = 0,

(1.7)
@y ¥ t Yot uy = 0.

This, however, is a trivial case and it will henceforth be assumed
that any mumber of additive disturbances is treated as one single
disturbance; thus in the above case we would define u; Suy, teu,
and say that X& =K, =2

1.3. The simplest general case of nonadditive disturbances is
given by the equation system

(1.8) (ag-kug)x’ = (agi-ug)yﬂ + (a?-%ug)z’ =0,

g=1, 2, ..., G“—"!Iy,
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%ﬂe%is&eﬂhmwdthdmwwmmmuﬁxUE[%J,gZL
2, ..., G, 152K ; it is assumed, without loss of generality,
that £(U)=0; & is, as before, the gth row of the structural coeffi-
cient matrix A.

The linear additive disturbance case {1.2) can be obtained from
(1.8) by making all the elements of I/ except one column in ¥ corre-
sponding to, say, g =1, vanish.

z

2.1. Vhy a nonadditive disturbance model should be the appro-
priate one cannot be seen without examining the manner of introduc-
ing the stochastic element into those models.

Suppose the undisturbed model is given by

I, —— =
{(2.1) q?(x : eg) 0, g=1,2 ...,6G.

To transform this into a stochastic (disturbed) model we must con-

ot

sider some component of 6, as stochastic. Just which component

of 6, should become stochastic cannot be decided arbitrarily: it de-
pends on the composition of the universe of objects from which the
observation is assumed to be drawn. Thus suppose the theory, as
enbodied in (2.1), refers to an individual firm, while the observa-
tions (say in a cross-section study) describe a group of firms (the
universe being some larger aggregate of existing and, possibly, non-
existent firms). Let 811) be the component of 6,6 which character-
izes an individual firm. Then o'! may depend 1) on x, or 2} on

nonobservable fixed variates, or 3} it may be regarded as stochas-
tic. 1) creates no new problem, 2) may imply loss of identification,

3) converts o'"? into a disturbance ug.

Suppose the third possibility holds so that GéL) may be regarded
as stochastic. Then, if 6!!) has more than one component, we are
dealing with the case of nonadditive disturbances except for the
trivial case mentioned in section 1,2, Such situations are extreme-
ly frequent in economic meodels, although, unfortunately, the second
of the above three possibilities is not uncommon.

Some economic models of this type are described in article [I],
others in section 2,2 below,

2.2. An example of (1.3) can be found in the estimation of a
firm's production function in a cross-section study, as discussed
on p. 415. Other examples inserted here in small print may help
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clarify the nature of the problem and show the great range of pos-
sibilities.

(A) 4 geme of chance (fixed variates). Letd;,, 1=1,2 ..., &,
be £ numbers arbitrarily chosen by the player at the time t and LA the

number given by throwing the ith set of dice. (The a’s are independently
distributed in time.) The player wins each time the amount

1) Z, = 50,1,

i it"it”

We observe the A's and the Z’s but not the ¢'s, and we wish to estimate
the distribution of the latter, say its first two moments.

(B) A4 game of chance (time series; discrete). Let O 1=20, 1,
be numbers given by throwing the ith set of dice at the time £. (The a’s
are again independently distributed in time.) X, iz an arbitrary initial

constant, and the player’s winnings at time £, denoted by Xt’ are deter-
mined by

(2) Xp= o Xy + oy s t=1,2, ....

Here again the problem would consist in estimating the unknown distribu-
tion of the o’s {which are not observable} given the observations on X}.

(C) An economic system (time series, discrete), Let there be a sys-
tem of eguations

@) Gypg Xyp T %ygp Xy gy T ooqgp T ¥pgs

Gpyp Xpg T Ogpp Xyp T oggy T Uy,

which may be interpreted as supply and demand equations, respectively,
the x's representing quantity and price, with a lag in the first equation
as in the case of the “hog cycle.” The a's have the subscript f since,
for instance, they may vary seasonally or exhibit a trend. But it seems
quite plausible to consider them as also having variations of a random
nature. In that case the problem of estimating the distribution of the
o's would again arise.

(D) Continuous systems, The above aystem may also be presented in
continuous form. However, in order to simplify exposition, the continu-
cus example given here will correspond to the one-variable discrete case,

say to Tﬁ
(4) Xy = 1;1 Oy Xy o Foogy T Uy

The corresponding (slightlf simplified) continuous situation would be
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o

(5) x(t) :fo glt) xt-t)dr + u(),

where u(t) is a continuous normal process with a specified autocorrelation
pattern.

The difficulties of mathematical manipulation are not to be underesti-
mated., But in principle it would seem possible to assign stochastic prop-
erties to ¢ as well as (or instead of) 9. This would require meking ¢ a
function of ¢ as well as of T; for instance,

(6) x(t) :j; cp(t, ) x{t-v)de + ult),

where ¢ (as a function of !), or ¥, or both, are specified continuous sto-
chastic processes.

When the production function is of the Cobh-Douglas type it may

be written as
'

. . " j
(2.2) = zlc.:-"]) oA

i =
Here X, is the logarithm of the product and the other X's are loga-
rithms of the factors. The superscript refers to the jth firm.

Now the a'?’ (the “productivities’) may differ from firm to
firm and the firm in existence may be considered as a sample from

the universe of all possible firms with o7 which are stochastic
variates, ;
The current practice does this, but only for uéj). It is dif-

ficult to see any reason, except that of expediency, for regarding
other o's as fixed.

On the other hand, if the o's are random variables, it is rea-
sonable to try to estimate their joint distribution. This, however,
seems to be a rather difficult task. In the following section we
show what problems are involved in such an estimation procedure.
The example treated is highly oversimplified and should be regarded
only as illustrating the mathematics involved.

3.1. Let the nonadditive disturbance model be

(3.1) x, tougx, = up, ax, tx, = u,,
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where the x’s are observed, the u's are the disturbances (with Uy
entering in a nonadditive fashion), and o is a (known or unknown)
constant,

The problem in general is that of estimating o« and the distri-
bution of the u's, This can be accemplished by the maximum-likeli-
hood method if the likelihood function is known. This function
will now be obtained for the case of jointly normally distributed
disturbances; the sample is assumed to be random so that equation
(3.4) holds. [In (3.4}, A{x,, x,) is the joint probability density
function of the observed variates.]

It should be noted that the problem thus deéfined would in gen-
eral be indeterminate; without additional a priori knowledge only
certain relations between the parameters can be estimated. It will
be assumed, however, that after the likelihood function is formed,
these restrictions will be formulated and taken into account in
the procedure of maximizing the likelihood function.

It should also be noted that it may not be very realistic to
endow the disturbances with a normal distribution. It might, for
instance, be more appropriate to make the marginal distribution of
#, one of x* type, etc.

3.2. Thus let the joint probability density function of the
disturbances be

-3 . 1
(3.2) Fluy, uy, uy) = (2w) % (det[cr'l'-j'])/é exp( - Y 7))
with 3
We shall now proceed to obtain the joint distribution

h(xl, x,, “3) and then integrate out u,. The result of the integra-
tion, say g(xl, xz) will yield the logarithm of the likelihood fuimction

: r
(3.4) 1?":’1108 g(xlt, x2t)’

The computation of k(xl, Xq, u3) is straightforward.
For convenience of notation we may add to (3.1} a third equation

(3.5) X, = u
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involving the auxiliary variable x; and consider (3.1) with (3.5)
as a transformation from (ul, u,, u3) to (xl, Xy, xa). In the re-
sult #; may again be written instead of x,.

The Jacobian of the transformation is

(3.6) |71 = |1~ axl,

where | | is the absolute-value symbol.
Making the appropriate substitutions we find

hx, x,, x3) = (2n) Y2 (det[gij])% 1~ o,

(3.7) X { . (“3 ‘|’\¥)2 . N
expl —— ——— -~ =1},
A E 2
where @, y, and A do not contain u3.1
The values of @, y, and A are as follows:
o= 1/vE, ,
(f.1) y = BI/B2 s
=B -B/3,,

where the B's are given by
— 112 13 33
B, = ¢ % + 207 %, + 0%,
B1 = gt w x, t+ ol? Xo Wy T 013(w1 - X, “3)
(£.2.1) + o%? wy — ¥l Cg
- 11,2 12 22,2 13
By=¢o w1+2o- ww, + o w, 207w oy
23 33 2
- 20w oyt o o3 .
The w's in (£.2.1) have the following meaning:

W, = x, — o B
(£.2.2) 1 ! 1

wztor.x1+x2—a2.
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Hence
glx,, x,)
(3.8) 3 L1, 1 (w, T)2
= @n)? @et[o¥])® 7" f f1-auyle? o au,.
o

Tt will be observed that for o = 0, this integral may be evaluated
in terms of elementary functions. In this case we have!

A

1.
el g.

ST

(3.9) go(xl, x2) = (2 'n)_1 {det [Ui‘j])

Yyhen the u's are independent with zerc means and unit variances, gb&xl,xé)
becomes

1 1 x x;
2

exp[—-z-(xf +x§ -

-1 -
(£.3 , = (2= 1+ x2 .
) glxy, ) = (27) (14D - +x§)}



XIX. NOTE ON RANDOM COEFFICIENTS

By HERMAN RUBIN

Let us consider an equation of the form
K
(1) i T ;laktxkt, t=1, ..., T,

which defines the dependent variable y, in terms of the fixed vari-
ables x,, and the coefficients ay, which are assumed to be normally
and independently distributed with mean o and variance o-% Pris

where the inverse weights ¢, are known functions of the fixed var-

iates.! We could estimate the parameters a, by least squares, 1i.e.,
by the formula

=1 7%
where P
My = 2ay, xy,
%, A *
and m*® is the element in the Ith row and kth colum of

7
(my)” = (tgjlxktxlt)_l .

Although this method can be shown, under certain conditions, to be
congsistent, it would not be efficient.

We shall derive equations defining maximum-likelihood estimates
of the oy and 0';. Let us consider the distribution of the ¥;. We
see that the quantities

'
(2) Z, T Y, — kglo'kxkt' t=1, ...
1See also [XVIII].

419
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are normally and independently distributed with mean (0 and variance
2 2 2
Then the likelihood function of the observation becomes
r
.'!’ 1
z s 32 -1
) 2 I;I (X % o Ppe) 2

(4)

Let us maximize log L with respect to a, and o , subject to the
restriction 0‘J2 > 0. We obtain

r
T xgy vy = Z‘*k Xp1)
E=1
(5) > - = o,
t=1 ,
,azﬂxkt T Pre
X
7 2 rox%, g, (v D, x )
Xiy Pig jt Yit Vit p=) kTRt
t=1 £=1
E"it Ok Pt (zxzkt T P y
3 k=1 t
2
(1) Ly o; = 0,
(8) 0';,2' 0.

It is necessary to introduce the Lagrange wmultipliers A because the

solutions of (5) and (6) with A; = 0 might give negative ch We take
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that solution of (5), (6), (7), and (8) which gives to (4) its high-

est value. It should be noted that it is unnecessary to consider

solutions having A;'s # 0 if there is a solution with Aj’s = 0, and,

in general, if there is a solution with only kj s My # 0, it
1

is not necessary to consider solutions with those kj’s # 0 and other
7\.']-,3 # 0.
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312, 338, 372
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Approximations, successive, in the
computation of maximum-likeli-
hood estimates, 153

Autocorrelation coefficient, 48

Autocorrelation of disturbances,
see Disturbances

Autonomous relation, 263

Autoregressive time series, See
Time series

Basic matrices, see Matrix
Behavior, 7, 13, 19, 21, 44
of buyers, 36, 37
of conaumers, 31
ecohomic, 4
erratic element in, 385
law of, 63
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Behavior equation, 54
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Best policy, see Policy
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mate
Bias, 265, 365, 370
magnitude of in small-sample es-
timation, 366

relative, 365, 380
single-equation, 277
s¢¢ also Estimate
Bilinear restriction, see Restric-
tions
Brookner, Relph F., 44
Bunch map analysis, 46, 261, 265

Calculus of variations, 284
Cauchy-Schwarz inequality, 357
Cayley numbers, 356
Central limit theorem, 358
Change of structure, see Structure
Characteristic function, 370
Chernoff, Herman, 47
Chi-square distribution, 308, 318,
320
Class frequencies, disproportionate,
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Cobb, C. W., 415
Cobb-Douglas production function,
415
Coefficient,
of regression, see Regression co~-
efficient
structural, 35, 36
biased estimate of, 365
vs, predictive estimation, 273
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Complementary equations, see Equa-

tions
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Confidence interval, 399
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Confluence analysis, 258
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Cyclical fluctuations, 34
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shift of, 36, 50
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Demand equation, 36, 41, 50
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see also Experiments
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predictive, 12, 16, 17, 25
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Difference equations, 56, 330
with autocorrelated disturbances,
343
linear, 41, 55
stochastic, 272, 298, 332, 354,
368, 382
noncircular, 365
Discrete model, 33, 49
Distribution,
complete, 275
derived, 275
of disturbances, se¢e Disturb-
ances
normal, 28, 57, 272, 301, 359
of observables, 20
past, 30
see also Probability distribu-
tion
Distribution function, cuimulative,
274, 280, 305
Disturbances, 4, 18, 56, 262, 276,
312, 338, 386

additive linear, 413
autocorrelation of, 337
autoregressive, 337
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correlated, 211, 231
covariance matrix of, 247, 275,
276, 313, 320, 411
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distribution of,
normal, 246, 314, 416
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servations, 314, 384, 385,

387, 407
nonadditive, 50, 247, 410, 412,
415
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serial correlation of, 385
uncorrelated, 159, 166, 231
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see also Errors
Diurnal fluctuations, 329, 332
Dixon, Wilfrid J., 48, 370, 383
Doob, J. L., 386
Doolittle method, 323
Douglas, P. H., 415
Dayer, Paul S., 323

Economic theory, 2, 9, 13, 47
Endogenous variable, see¢ Variables
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disturbances in, see Digturbances
ard Shocks
final (Tinbergen), 34
forecast, 21
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stochastic, 56, 305, 410
structural, 8, 27, 32, 63, 314,
384, 402
complete system of, 395
completed subset of, 98, 100
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subsidiary, 8, 22
system of,
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complete, 393, 395
in reduced form, see Beduced
form
similtaneous, 2, 4, 55, 394,
411
stable, 133
technical, 54
see also Difference equations and
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Equilibrium, multiple, 9
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matrix of, in computations, 324
of measurement or observation, 2,
18, 32, 50, 57, 262
additive, 20
nonadditive, 21
see also Disturbances in vari-
ables
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absgolutely unbiased, 281, 367
asymptotic normality of, 139, 317
asymptotically unbiased, 395, 396
best absolutely unbiased linear,
283
best unbiased linear, 273, 279
conditionally unbiased, 281, 347
consistent, 41, 306
efficient, 41
least-squares, se¢ Least-squares
estimate
limited-information, see Limited-
information method of estima-
tion
maximum-likelihood, see Maximum-
likelihood estimate
Markoff, see Markoff estimate
optimal properties of, 25
reduced~form maximum-likelihood,
s¢e Limited-information meth-
od of estimation
unbiased, 38, 259, 281, 367, 385
Estimation, 6, 70
in incomplete systems of equa-
tions, 305

for large samples, 4
nonparametric, 45, 46
of parameters, 62
predictive, 25, 34, 38, 266, 270,
277, 366
under changed structure, 269
under unchanged structure, 278
structural, 3, 25, 248, 269, 271,
366
partial or incomplete, 41, 42,
46
Exogenous variable, see Variables
Experiment, 2, 3, 6, 17, 32, 45,
155
Explosive system, 48, 356

F-distribution, 310, 319
Fluctuations,
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diurnal, 329, 332
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seasonal, 32, 47, 329, 332, 334,

343 ’
Forecast, 245, 268
Forecast equation, 21
Fourier series, 366
Frisch, Ragnar, 4, 20, 32, 69, 258,
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210, 230, 233, 323, 399
Hurwicz, L., 2, 4, 5, 26, 58, 336,
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Hypothesis, 2
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maintained, 49
null, 345
statistical, 4
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396
Identifiability, 159
almost everywhere in the param-
eter space, 82
in spite of autocorrelation, 338,
340
conditions for, 243
criteria for,
based on counting, 101, 102,
104
in linear dynamic systems, 46
incomplete, 15, 96, 205
of a linear form, 239
local, 239
condition for, 243
of structural equatioms, 77, 176
subset of, 96
urique, 15
Identification, 6, 10, 14, 20, 30,
62, 69, 78, 122, 238, 320,
387, 407
complete, 96, 180, 188
under linear restrictions, 78
under linear and bilinear re-
strictions, 93
multiple, 96
partial, 15, 31
unigue, 96, 154
Identification power, 245, 269,
278
definition of, 248
complete, 248
incomplete, 246, 248
multiple, 248, 255, 256
partially unique, 246
unique, 245, 248
various forms of (summary), 255
Identifying model, see Model
Income, 26
national, 14, 21, 29, 36
Incomplete system, 49
Incomplete {partial} model, 8, 16
Independence of disturbances, see
Disturbances
Index numbers, 7
Inference, 20
statistieal, 3, 3, 70
Information,

additional, 31
a priori, 7, 19, 22, 37, 41
disregard of, 111
limited, see Limited-infermation
method of estimation
Information-preserving maximum-
likelihood estimation, see Max-
imum-likelihood estimation
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Initial-value case, 369
Integral,
elliptic, 373, 377
hyperelliptic, 373
Stieltjes, 281
Intercorrelation of independent
variables, 258
Invariance of a function of the pa-
rameters, 242
Invarisnts, fundamental set of, 244
Iterative methods for maximizing
the likelihood function, 153,
155, 323, 324
Newton method, 190, 196, 200,
203, 210, 222, 227
computational procedure of, 206
numerical experiment with, 227
numerical illustration of, 209
speed of convergence in, 205,
209
pl ' ph' and p]’h methods {processes)

168, 169, 170, 172, 190, 218
asymptotic convergence proper-
ties of, 172, 183, 189, 215,
221
choice of A (in Fh), 182
computations for, 192, 196, 218,
222
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220
numerical illustration of, 222
speed of convergence in, 189
see alse Revision, iterative

Jacobian determinant, 72, 244, 339,
396, 398, 400, 412, 417
factorization of, 397, 400, 403
nonsingularity of, 60
partitioning of, 234
Johnson, Evan, Jr., 288
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Kronecker symbol, 163, 285, 412
Kendall, M. G., 346
Klein, L. R., 2, 5, 40, 43
Koopmans, T. C., 2, 4, 5, 20, 43,
48, 196, 245, 260, 280, 294,
298, 369, 383, 384

Lags, see Time lags and Variables
Lag-correlation coefficient, 332
Lag-covariance matrix, 342, 386
Lagrange multiplier, 287, 332, 420
least-squares estimate, 40, 42,
236, 258, 304, 315, 324, 372,
419
bias of, 365
consistency of, 272
efficiency of, 272
end maximum likelihoed, equiva-
lence of, 189, 293, 301, 334,
335, 366
optimal properties of, 39
of regression coefficients, 39,
46, 272, 335
single-equation, 117, 192
small-sample properties of, 272
variance of, 290
Leipnik, R, B., 2, 5, 383
Likelihood function, 110, 120, 154,
303, 312, 321, 331, 333, 352,
354, 369, 372, 398, 412, 416
factorization of, 159, 397
logarithmic, 235
maximization of, 155, 304
see also Iterative methods
maximum of,
absolute, 177
depres=ed by the restrictions,
177, 216
first-order conditions for, 47,
156, 166
highest, 235
restricted, 167, 169
restricted, 120
unrestricted, 110
see also Taylor expansion of the
likelihood function
Likelihood-ratio criterion, 352

Likelihood-ratio test, 320

Limited-information method of esti-
mation, 5, 111, 311, 313

advantages and disadvantages of,
321

Linear model, S

Linear trensformation in parameter
space, T6, 247, 303

Linearity, 39, 55

Littlewood, J. E., 201

Local identifiability, see Identi-
fiability

MacDuffee, Cyrus Colton, 163
Maclaurin expansion, 369, 380
Madow, W. G., 2, 5, 48
Mann, H. B., 2, 4, 32, 41, 42, 55,
26, 67, 115, 133, 135, 148,
345, 356, 360, 400
Markoff, 274, 279
Markoff estimate, 284, 288
absolutely unbhiased, 285
conditionally unbiased, 285
variance of, 290
Markoff theorem, 258, 259, 285,
366
Marschak, Jacolb, 2, §, 11, 32, 97,
105
Marshall, Alfred, 9
Matrix,
basic, 160, 164, 191
canonical form of, 197, 200
orthogonality of, 206, 222
orthogonalization of, 162,
172, 196, 200, 218
inverse, 323
norm of, 324
partitioning of, 323
rank of, 79
restriction, 160, 164
Maximal set of structures, 252
Maximm-likelihood estimate, 41,
191, 279, 296, 312, 314, 329,
333, 353, 356, 372, 410, 416
asymptotically unbiased, 400
bias of, 365
computation of, 153
see also Iterative methods for
maximizing the likelihood
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function
consistency of, 356, 400
in difference-equation systems,
366
first-order conditions for, 213
large-sample distribution of, 404
and least-squares, equivalence
of, 189, 293, 301, 334, 335,
366
of regression coefficients, 39
quasi-, 134
sampling variance and covariance
of, 42, 153, 209, 228
in small samples, 366, 404
Maximum-likelihood estimation, 110,
189, 395
information-preserving, 42
limited-imformation, or reduced-
form, see Limited-informa-
tion method of estimation
Measurement error, see Errors
Missing observations, 354
Model, 4, 5, 7, 14, 245, 248, 276
aggregative, 7
choice of, 44
complete, 7, 16, 23, 311
discrete, 33, 34, 49
dynamic, 32
identifying, 245, 278
partially, 256
totally, 256
uniquely, 249, 253
incomplete (partial), 8, 16
linear, 9
multiequational, unitemporal, 39
multitemporal, 32, 39, 40, 42
nonlinear, 9, 47
nonstochastic, 5, 19
partitionable, 35
sectional, 7, 22
self-contained, 7, 22
shock, 21
shock-and-error, 20
simultaneous-equations, 4
stochastic, 18, 19, 265, 413
continuous, 34
structure-identifying, 245, 269
subsidiary, 23
uniequational, 35

complete, 28, 32, 38
multitemporal, 40, 42
unitemporal, 32, 39

Moment, 112

Moment matrix, 112, 154, 276, 315

Moving-average disturbance, 337,
339

Mudgett, Bruce D., 20

Multicollinearity, 46, 262

Multiple regression, see Regression

Neumann, John von, 5, 47, 154, 172,
380
Newton method, see Iterative methods
for maximizing the likelihood
function
Neyman, J., 259, 285, 307
Nonlinear model, 9, 47
Nonstochastic model, 5, 19
Normal distribution, see Distribu-
tion
Normal equations, 47
Normality, asymptotic,
of moments, 136
of estimates, 139, 317
Normalization, 68, 154, 158, 162,
189
Notation, xiii, xiv, 70, 112, 405
conformity im, 5
of operators, 165
of vectors, 81
Null hypothesis, 345

Observable variable, see¢ Variables
Observations, 9, 14, 267, 317
errors of, see Erreors
missing, 354
number of, 10, 15
passive, 64, 70
successive, 345
dependence between, 343
independence of, 280
see also Disturbances
Observation method, 386
Observetional reduced form, see
Reduced form
Observational structure, see Struc-
ture
Orthogonal complement, 89
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Parameters, 6
basic, 160
estimation 6f, 62
identifiable, 85, 239, 356
structural, 8, 27, 276
unrestricted get of, 161
complete, 160
see also Coefficient
Parameter space, 76, 240, 244
observationally equivalent points
in, 77
restricted, 77
projection on, 163, 165
Path, 3
Pierce, B. 0., 371
Policy, 2, 3, 6, 41, 49, 27}
best, 12, 16, 27, 29, 31
national, 30
nonstructural, 11
optimal, 38
private, 30
structural, 11, 13, 14, 26, 271
Policy-maker, 11, 26
Pdlya, G., 291
Polynomial series, 366
Predetermined variable, see Vari-
ables
Predictand, 27, 38, 266, 277
conditional distribation of, 272
probability distribution of, 267
Prediction, 41, 263, 266, 267, 277
generalized, 271
under unchanged structure, 257
see also Determination and Esti-
mation
Predictor, 27, 29, 40, 267, 277,
323
Predictor-predictand relationship,
268
Predictor set, 39
Price, 14, 26, 36
prospective,’ 2}
Price control, 11
Probability distribution, 2, 3,
18, 19, 55, 56, 387
of income, 26
see also Likelihood function
Probability measure, 307
Process,

continuous, 49, 50
random {stochastie), 4.
cumulative, 48
explosive, 44
random (stochastic), 4, 47, 369,
386
discrete, 343
stationary, 41, 48
Production conditions (technology)},
7
Production function, Cobb-Douglas,
415
Profits, prospective, 21
Propensity to spend, marginal, 37
Property, structural, 22

Quaternions, 356

Randem elements, 260
Random series, 43
Random variable, see Variables
Randomized block design, 355
Becursion, 346
Reduced form, 9, 11, 14, 20, 24,
27, 31, 34, 40, 189
observational, 10
Beduced-form method of estimation,
see Limited-information method
of estimation
Regression, 117, 271
multiple, 47
Regression coefficient, 27, 32,
35, 38, 279, 293
biased estimate of, 365
normally distributed, 318
significance of, 346
¥s. structural coefficient, 273
see alse Least-squares estimate
and Maximum-likelihood esti-
mate
Regression equation, 29, 35
Regression function, 27, 272
estimation of, 272
linear, 28
homoscedastic, 279, 281
Begular point, 244
Reiersdl, Olav, 20
Belatien,
anonymous, 14
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autonomous, 263
confluent, 70
economic, §
functional, 263
nonlinear, 50
stochastic, 6, 263
single, estimation of, 3
structural, linearity of, 246
BRepresentation,
of the distribution of the vari-
ables, 62
obsgrvationally equivalent, 63
parametric, 247
structural, 63
Residuals, 43, 117
serial correlation of, 354
Resolved form, 34, 40
Restrictions, a priori, 7, 44, 58,
64, 110, 154, 164, 238
on 4, 178
generalization of, 230, 234
bilinear, 66, 93, 95
counting of, 97, 98
on the distribution of disturb-
ances, 66, 183, 191
dwmmy, 85, 159
identifying, 176, 248, 411
inequalities as, 67
just adequate in number and vari-
ety, 132
normalizing, 68
pumber and variety of, 98
single-parameter, 65, 154, 190,
192
statistical testing of, 66, 320
Restriction matrix, 160, 164
Reverse arrangement, 346
Revision, iterative,
principle of, 157
complete, of By, 157
simuitaneous, of the rows of By,
158
successive, of the rows of By,
157
see also Iterative methods for
maximizing the likelihood
function
Rubin, H., 2, 5, 111, 136, 245, 312

Sample, .
finite, 35, 246
infinite, 38, 245

large, 39
repeated, 24
small, 39, 42

bias of estimates in, 365
confidence region, 317
Semple space, 265
Sampling fluctuations, 190
Sampling variance and covariance
of maximum-likelihood esti-
mates, 42, 153, 209, 228
Scale factors, 158
oscillation of, 182
Scedastic function, 272
Science,
experimental, 2
nonexperimental, 17, 32
Seasonality, see Fluctuations
Sectional model, 7, 22
Separated form, 34, 40
Sequence of random variables, 345
Serial correlation, 310
Series,
circular, 48
Fourier, 366
polynomial, 366
random, 43
see also Time series
Shifts,
of demand, 36
in time, 109
Shocks, 2, 3, 19, 58
distribution of, 31, 32, 36
independence of, 34, 35, 36, 41
nonadditivity of, 21
noncorrelation of, 38
successive, 33, 39
see also Disturbances
Shock model, 21
Shock-and-error model, 20
Shock structure, 22
Significance level, 30
Significance tests in time series,
352
Simultaneous equations, see Equa-
tions
Single-equation approach, 262, 276
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standard error of estimated pa-
rameter in, 277
Single-parameter restrictions, see
Restrictions, a priori
Snedecor, G. W., 319, 352
Snedecor’s distribmtion, 352
Stable system, see System
Stationary process, 41, 48
Stieltjes integral, 281
Stochastic equations, see Equations
and Difference equations
Stochastic process, see Process
Stochastic variables, see Variables
Structural equation, see Equations
Structural estimation, see Estima-
tion
Structural parameter, see Param-
eters
‘Structural pelicy, see Policy
Structure, 2, 8, 14, 19, 73, 245,
247, 267
change of, 3, 11, 16, 25, 38,
267, 275
controlled, 11, 26
uncontralled, 11, 13, 26, 27
definition of, 8
economic, 2, 3
dynamic character of, 3
equivalence, chservational, of,
72, 13, 76
future, 17
identifiable, 15, 44
incomplete, 42
and models, 246
observational, 10, 13, 17, 27, 35
original, 17
overidentifiable, 44
shock-, 22
uniequational, 17, 18
linear, 16
nonlinear, 16
Structure-identifying model, see
Model
Supply, 14, 36
System,
explosive, without disturbances,
356
incomplete, 49
lagless, 273

nonlinear, 317
stable, without disturbances, 356,
358
Systematic part, 261, 262, 264

T-distribution, 309
difference equation for the mo-
ments of, 346
ultimate normality of, 346
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Time lags, 30, 33, 34, 49, 55, 59,
64, 399, 402, 407
distributed, 385, 387
see also Lag-correlation coeffi-
cients and Lag-covariance
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