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INTRODUC TION

The exploratory studies presented in this report are addressed to
analysts in various professions, including economists, traffic and rail-
road engineers, management scientists, operations researchers, and
mathematicians who are interested in assessing the capabilities and
studying the efficient operalion of transportation systems. Studies re-
lating to two systems, highway traffic and railroad transportation, are
offered,

The tasks indicated — assessing capabilities and appraising effi-
ciency of operation — are as vast and complicated as the transportation
systems themselves., The purpose of the present studies is to develop
and illustrate certain concepts, methods, and models that may have use-
fulness as points of departure for the execution of these tasks, While
the aim of these studies is thus both modest and provisional, they are
offered in the hope of stimulating further factual, conceptual, mathe-
matical, and computational research into the efficient utilization of
transportation systems.

The method employed is to construct and study simple models, The
word “model,” frequently used in engineering studies to mean a physical
model — that is, an accurate copy of the system studied (often with the
scale altered) — is here used in the more general meaning attached to it
by physicists as well as social scientists: a simplified conceptual
counterpart of the system studied. In such a model the most important
variables of the system studied are enumerated and defined and the
relevant relationships between them specified. Variables and relation~
ships thus express the most essential aspects of the system in question
but leave out many other aspects, so that an opening wedge for analysis
may be provided.

This analysis is often mathematical. However, the mathematical
underpinning of the studies here presented has been set off in separate
sections, marked by an asterisk. These sections can be passed over by
the reader interested mainly in results, which are fully described in
sections without that symbol.

The application of the method of model construction to operating or
business problems has increased substantially in recent years. To
name first a few examples unrelated to transportation, we refer to two
studies on inventory policy by Arrow, Harris, and Marschak (1951) and
Dvoretzky, Kiefer, and Wolfowitz (1952), in which models are designed
to help balance inventory costs against losses from stock depletion,
Another family of models constitute the general field of “linear pro-
gramming,” a technique to compute programs for the interdependent
activities of a large organization. Besides the original piesentations
by Wood and Dantzig (1951a) and by Dantzig (1951b, c, d) we mention an

xi



xii STUDIES IN THE ECONOMICS OF TRANSPORTATION

expository discussion by Dorfman {1953) in terms of a problem of auto-
mobile production and an application to gasoline blending by Charnes,
Cooper, and Mellon (1952).

Similar studies in terms of a very simple linear model of transpor-
tation have also been made., Two mathematicians, F. L. Hitchecock
(1941) in the United States and L. Kantorovitch (1942)' in Russia, and
one economist (the author of this introduction) independently of one an-
other formulated the problem of the most economical execution of a
given transportation program between a number of locations if the per
unit cost of transportation between each pair of locations is independent
of the amount transported. This model belongs to the class of “linear
programming” models and has served as one of the stock examples of
this class. Dantzig (1951d) explored the computational aspects of the
above (linear) transportation problem, which were carried further and
applied to a military tanker fleet problem by Flood (1953, 1954).
Economists studied various implications of this model, such as the
relative costs of alternative possible changes in the transportation pro-
gram and the relationship of these cost ratios to freight rates formed
in competitive markets (Koopmans, 1947; Koopmans and Reiter, 1951)
as well as the relation of freight rates to interregional price differ-
ences and movements of goods (Enke, 1951; Samuelson, 1952; Fox,
1953). An extension of the model to a situation where places of origin
and destination are continuously distributed in a plane was given by
Beckmann (1952). An important general result of the studies mentioned
is that under the circumstances of the simple model described, a com-
petitive market solves the most economical routing problem as effi-
ciently as a cenirally directed transportation organization couid,

From the point of view of the efficient utilization of the transport
systems of road and rail, the applicability of the simple linear (*con-
stant cost”) model is rather limited. It ignores all phenomena of con-
gestion, either at terminals, or en route. Perhaps the most important
case where this assumption is approximately satisfied is that of ocean
or lake shipping between uncongested ports. The linear model further
ignores indivisibilities, such as those which arise from the bunching of
a number of railroad cars into a train for which one indivisible engine
provides traction. To extend the analysis of transportation systems by
model construction, it will therefore be desirable to set aside the linear
model, and take a fresh look at the technological and organizational cir-
cumstances of various transportation systems. Before leaving the lin-
ear model, however, let us point out one practical application of im-
portance for the individual business firm that has plants in several
locations. This application arises irrespective of whether unit cost of
transportation on each route actually depends on the amount trans-
ported, whenever a public carrier makes the service in question avail-
able at a constant freight rate. The linear model then suffices to show
this firm how to minimize its bill for transportation from plants to

1. This reference was brought to our notice by M. M. Flood (1954).
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.eustomers, even though the minimum-billed-cost flows of goods so
:pomputed have no necessary relation to the best utilization of the trans-
“portation system.

In our study of highway traffic the main emphasis is on the effects
of traffic congestion. Congestion phenomena have been subjected to
mathematical analysis in the theory of telephone systems by Erlang (in
Brockmeyer, et al., 1948) and Palm {1943) and more recently in a more
general analysis by Kendall (1951) of queues that arise in many situ-
ations: people waiting for service in a bank, ships waiting for access to
port or repair facilities, airplanes circling to land, pedestrians waiting
for an opportunity to cross a street, etc.

The main purpose of these studies has been to determine, by
means of the calculus of probability, how the average waiting time and
the extent of fluctuation in individual waiting times depend on the oppor-
tunities for servicing (number of servers, average of and fluctuations in
service time) and on the amount and irregularity of the inflow of claim-
ants for service. In Chapter 1 of this report queue theory is applied to
such traffic situations as the flow of cars through an intersection and
the passing of slower cars by faster cars by using gaps which occur in
the opposing traffic stream. In addition, in Chapters 3 and 4 the main
results of such studies are incorporated into the assumptions of a (non-
linear) model of highway traffic on a road network.

It was said at the beginning of this introduction that one important
objective to which our studies are ultimately directed is the determi-
nation of the capabilities of transportation systems — in the present
case, of a road network. It will now be clear that this cannot be ex-
pressed in a single number, such as so many vehicle-miles per day. It
is an essential aspect of congestion phenomena that — up to a limit be-
yond which overloading starts — more “service” can always be obtained
at higher unit cost. Hence, the capability concept to be analyzed has
more dimensions than a single number. Even for one individual one-
way road, it is represented by a curve, which gives the relationship be-
tween the flow of traffic through the road and the cost encountered on it,
and possibly risk or other sacrifices measurable in money equivalents,
The higher the flow, the greater the cost encountered. The time ele-
ment alone, probably the most important cost factor, is represented in
the “capacity curve” of the traffic engineer. In this curve, flow is set
off against average speed, the reciprocal of travel time. This curve
and the concepts associated with it are presented and discussed in
Chapter 1, which is based on study of the relevant traffic engineering
literature. For a road network, the capabilities are expressed by the
relationship between traffic flows on all routes and the costs encoun-
tered on each as a result of these flows.

A theory of highway traific should of course go beyond a descrip-
tion of the capabilities of a network to a study of how these capabilities
are utilized, This introduces the concept of demand for transportation.
The flows of highway traffic are the result of a great many individual
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on each road, demand would also return to its former level on each
route. Thus the more gradual responses of demand to changes in cost
that arise from relocation of residences, stores, or plants are not taken
into account. It is believed, however, that the present analysis can be
useful as a starting point in developing a theory of balanced extension of
the highway network, concurrently with industrial expansion or reloca-
tion. The increased vulnerability of metropolitan areas under modern
warfare adds a note of urgency to the development of such a theory, al-
ready highly desirable before this complication arose.

Differences between our studies of railroad transportation and those
of highway traffic reflect the different characteristics of the two trans-
portation systems. The fact that highway traffic results from the inter-
dependent choices of many decision makers, each with an objective of
his own, gives to traffic theory a strong social science flavor. In a rail-
road system, operations are at least in principle centrally directed. On
the other hand, the technical aspects of railroad operation are a great
deal more complicated than those of highway use. Hence, our explora-
tory study of models of certain railroad operations is somewhat closer
to physics or engineering. In order to assess and describe the capa-
bilities of a railroad network, it is again necessary to construct simple
conceptual models of various parts of railroad operation. Our study,
which makes a start with this task, confines itself almost entirely to the
supply side of railroad services. One exception to this is the discussion
in Chapter 6, Section 6.1 of the value to the shipper of speedy transpor-
tation. Another exception is the discussion in Chapter 12 of best routing
patterns for empty cars, to which we return below.

It is probable that congestion phenomenz, which hold the center of
attention in our analysis of highway traffic, are important also in rail-
road operations. However, it has appeared to the authors that other as-
pects of railroad operation require prior attention. One of these arises
from the fact that in most circumstances it is economical to haui cars
in trains rather than individually. This introduces the problem of “ac-
cumulation delay,” the car time spent waiting for enough traffic to ac-
cumulate so that a train can economically be formed. Another is the
problem of classification — that is, the problem of sorting cars that ar-
rive in incoming trains or are delivered from loading tracks, so as to
make up new trains that will take these cars to the next sorting point,
closer to or at their destination. The problem is how to distribute thig
sorting work over classification yards in a way that minimizes cost of
classification plus the money equivalent of accumulation delay.

Basic concepts to make possible an accurate formulation and treat-
ment of problems of this kind are introduced in Chapter 7. In Chapter 8
the operations of classification yards are described, and simple approxi-
mative formulae are proposed for the dependence of classification cost
on the classification task performed. These formulae are used in
Chapter 9 in a general discussion of the distribution of classification
work over yards,
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decisions about destinations, routes, and preferred speeds. There is a
certain degree of analogy between highway traffic equilibrium and the
models used by the economist to explain quantity sold in a market by the
interaction of demanders and suppliers. The behavior of demanders is
summed up in a “demand curve,” which states the amounts taken off the
market at various alternative prices. Similarly, the supply curve states
amounts offered for the various possible prices. The point of inter-
section of the curves then indicates the price at which demand equals
supply.

On the supply side the analogy is not a close one. Except for toll
roads, there is no party in the market selling access to roads for a
price. Each piece of road not occupied or endangered by another vehi-
cle is free for use by whoever is near. However, there is a cost of
transportation, incurred individually in terms already discussed. If we
regard this cost as the “price” in the transportation “market,” the
economist’s notion of a demand curve does become applicable., For a
single one-way road it would state what flow of traffic is demanded at
any given cost encountered on that road. The higher the cost, the
smaller the flow demanded, other things being equal. For a road net-
work the demand function would state what flows are forthcoming on
each route in response to given transportation costs along these routes.
Equilibrium is established if the flows on all roads arising in response
to given costs have precisely the magnitudes that produce these same
costs.

The demand concept is developed in Chapter 2. 1t is applied in
Chapter 3 to a study of traffic equilibrium on a highway network. The
stability of this equilibrium is also discussed, and some observations
are made about the use of the analysis in the prediction of traffic flows.

Mathematical tools used in this analysis (in particular Sections
3.1.2, 3.1.3, and 3.2.1) may also have an interest to the mathematical
economist apart from their present application to highway traific.

The analysis of demand and of equilibrium recognizes that freedom
of choice of destination, time of departure, route, and speed, within the
traffic laws and general safety considerations, are part of the services
rendered by the road network. Completely regulated traffic, such as in
the truck convoys of an advancing army, can wrench higher rates of flow
out of a given network than can a traffic system that secures these
choices to the individual because they have value to him. There is,
however, one particular aspect of this freedom of choice which does the
totality of road users more harm than good: the choice of route — once
a trip is decided on— is quite naturally made so as to minimize cost
(in terms of delay, risk, nuisance of congestion, etc.} to the individual
driver who makes the choice, without reference to delays caused to
other users of the roads in question as a result of his choice. We can
illustrate the effect of this circumstance by imagining a completely
selfless driver, who (a) is fully aware of all delays and other costs he
causes others and {b) gives the same weight to everyone else’s cost of
transportation that he gives to his own. Let such an ideal driver be
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faced with a choice between two routes, one congested, the other un-
congested but with somewhat higher travel time. Then our Mr. Milque-
toast will choose the more time-consuming route if the exira time and
uther cost of that choice to him amounts to less than the extra delays
and other costs he would cause to others by choosing the congested
route,

It is argued in Chapter 4 that if all drivers were of this highly in-
formed and selfless type, more valuable service could be obtained in the
aggregate from the road network. Perhaps not much can be done about
this particular inefficiency of the traffic system. However, it should be
emphasized that the difficulty arises not from free choice as such but
from the fact that the chooser does not bear the full cost (to others as
well as to himself) of his choice, If there were a way to collect tolls
from the users of congested roads at rates that would measure the cost
o others caused by the average road user, a better use of the highway
system would be obtained (the collected revenue could he used to lower
gasoline taxes or in some other way henefit all road users). Chapter 4
analyzes as a theoretical proposition how the amounts of such “effi-
ciency toll rates” could be determined. It also contains some observa-
tions on how closely maximum efficiency can be approached by proper
choice of the toll rates on roads that are at present toll roads, and by
nther ways of penalizing additions to traffic congestion.

In this discussion tolls are looked upon as a means not of financing
road construction but of bringing about the best utilization of the high-
way network. This is in keeping with the growing acceptance among
modern economists of the proposition that best use of facilities requires
methods of pricing the services of these facilities that reflect the incre-
mental cost attributable to each service demanded by an individual user.
Because of the nonlinearity in the relation between amount of use and
cost, such pricing does not necessarily produce revenues equal to the
total cost of operating and financing the facility. This same principle
has been applied by William S. Vickrey (1952) in formulating proposals
for fares in the New York subway which would diminish congestion by
providing incentives for traffic to shift from peak to off-peak hours and
to encourage fuller use of off-peak service by lower fares at these
times when incremental costs are low. It is also basic to contemporary
theory of electricity rates; see, e.g., H. 8. Houthakker (1951),

It will be clear that these considerations leave unanswered the
question of criteria for extensions or improvements of the network to
relieve congestion. Some observations on the latter question that flow
from the present analysis are given in Chapter 4, Section 4.4.6, and
also in Chapter 5, which makes brief mention of many unsolved prob-
lems of traffic theory and analysis. The main part of the present study,
however, concentrates on what the economist calls “short run” prob-
lems. The road network, represented by a configuration of roads and a
capacity curve for each road, is taken as given. Demand for traffic on
each route is represented by a fixed function of current cost - that is,
if after considerable fluctuation, cost were to return to its former level
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on each road, demand would alsc return to its former level on each
route. Thus the more gradual responses of demand to changes in cost
that arise from relocation of residences, stores, or plants are not taken
into account. It is believed, however, that the present analysis can be
useful as a starting point in developing a theory of balanced extension of
the highway network, concurrently with industrial expansion or reloca-
tion. The increased vulnerability of metropolitan areas under modern
warfare adds a note of urgency to the development of such a theory, al-
ready highly desirable before this complication arose.

Differences between our studies of railroad transportation and those
of highway traffic reflect the different characteristics of the two trans-
portation systems. The fact that highway traffic results from the inter-
dependent choices of many decision makers, each with an objective of
his own, gives to traffic theory a strong social science flavor. In a rail-
road system, operations are at least in principle centrally directed. On
the other hand, the technical aspects of railroad operation are a great
deal more complicated than those of highway use. Hence, our explora-
tory study of models of certain railroad operations is somewhat closer
to physics or engineering. In order to assess and describe the capa-
bilities of a raiiroad network, it is again necessary to construct simple
conceptual models of various parts of railroad operation. Our study,
which makes a start with this task, confines itself almost entirely to the
supply side of railroad services. One exception to this is the discussion
in Chapter 6, Section 6.1 of the value to the shipper of speedy transpor-
tation. Another exception is the discussion in Chapter 12 of best routing
patterns for empty cars, to which we return below.

It is probable that congestion phenomena, which hold the center of
attention in our analysis of highway traffic, are important also in rail-
road operations. However, it has appeared to the authors that other as-
pects of railroad operation require prior attention. One of these arises
from the fact that in most circumstances it is economical to haul cars
in trains rather than individually. This introduces the problem of “ac-
cumulation delay,” the car time spent waiting for enough traffic to ac-
cumulate so that a train can economically be formed, Another is the
problem of classification — that is, the problem of sorting cars that ar-
rive in incoming trains or are delivered from loading tracks, so as to
make up new trains that will take these cars to the next sorting point,
closer to or at their destination. The problem is how to distribute this
sorting work over classification yards in a way that minimizes cost of
classification plus the money equivalent of accumulation delay.

Basic concepts to make possible an accurate formulation and treat-
ment of problems of this kind are introduced in Chapter 7. In Chapter 8
the operations of classification yards are described, and simple approxi-
mative formulae are proposed for the dependence of classification cost
on the classification task performed. These formulae are used in
Chapter 9 in a general discussion of the distribution of classification
work over yards,
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An earlier version of the material in this chapter and the one pre-
ceding it was presented to a meeting of the Railway Systems and Pro-
cedures Association, held in Chicago on November 5, 1953, and pub-
lished as an appendix to the proceedings of that organization (Beckmann,
et al., 1953). The material is here reused and extended with the per-
mission of the R.S.P.A. Chapters 10 and 11 are more detailed studies
of specific problems. Each of these chapters ignores what the other
concentrates on. Chapter 10 is devoted to the problem of distributing
classification work between a hump yard and a flat yard located down
the line from the hump yard, when problems of scheduling are ignored.
In Chapter 11 classification cost is ignored, and instead the problem of
scheduling trains between yards to minimize accumulation delay is dis-
cussed in detail for a single-line railroad, and in more general terms
for more complicated railroad networks.

From this summary the reader will see that time and resources
available for the study did not permit us to construct a model that
simultaneously incorporates all the main aspects of railroad operations,
on the basis of which one could, for instance, discuss the best dovetail-
ing of classification, scheduling, and line-hauling operations. For that
purpose further “partial” models would be needed first, such as a model
for the study of track capacity. In addition, mathematical problems be-
longing to underdeveloped areas of mathematics would arise in the at-
tempt to put the partial models together into cne model that would fuily
express the interdependence of the main elements of railroad operation.
It is felt, however, that the first steps on the road to a more integrated
model have been made, and that this in itself justifies the publication of
these studies.

A more integrated model would have several uses. It would help in
computing the capabilities of a given railroad network, and the rolling
stock requirements of any transportation program that is within the
capabilities of the network. It would also facilitate estimating the “in-
cremental” or “marginal” cost (i.e. the cost increase) occasioned by
the rendering of an extra unit of service.

The importance of the latter consideration lies in the fact that
freight rates are an important element in business decisions about in-
dustrial locations and about modes of transportation used. Only if the
rate on each unit of service reflects its incremental cost can we expect
that such decisions, taken by profit-seeking entrepreneurs in response
to freight rates and geographical price differences, will lead to the
most efficient utilization of the nation’s resources. It is true that this
view, held by most economists (e.g. Dupuit, 1844; Hotelling, 1938}, has
not been accepted by regulatory bodies as relevant to rate making. How-
ever, the economist’s case is likely to remain just a nice point of theory
unless the operations of railroads are analyzed to the extent necessary
to provide a method of estimating the incremental costs of transporta-
tion services rendered.

It may be useful here to recall the main properties of incremental
cost in the very simplest linear model of transportation mentioned at
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the beginning of this introduction, where both congestion and the fact
that cars are lumped into trains are ignored. In this model “efficiency
freight rates” — that is, rates reflecting incremental cost — are rela-
tively low per mile in directions in which empty cars proceed regu-
larly, and relatively high in opposite directions. On routes not traveled
by empty cars the efficiency freight rates have intermediate values,
which can be determined in the same calculation by which the best rout-
ing plan for empty cars is determined (see Koopmans and Reiter, 1951;
Dantzig, 1951e). In any more refined model incremental cost freight
rates are likely to exhibit these main features, with the effects of con-
gestion and lumpiness superimposed as modifications. It is therefore
worth while to examine the pattern of empty car originations and termi-
nations associated with the movement of goods on U,S, railroads, the
pattern of best routing of empty cars between origination and destination
points, and the stability or variability of this pattern between years. The
examination of this question in Chapter 12 reveals a substantial stability
of best routing patterns of empty boxcars — and hence of incremental
costs of trangportation of goods shipped in these cars — during peace-
time years in contrast to remarkable changes connected with war-time
movements of supplies to Pacific coast ports.

This report has resulted from a research project carried out by
the Cowles Commission for Research in Economics under contract with
the RAND Corporation. Tjalling C, Koopmans was the research leader
of the project. The several authors came to this study with different
skills and backgrounds, and accordingly contributed in different and
complementary ways to their common task. Martin Beckmann, a mathe-
matical economist especially interested in linear programming and
economic activity analysis, contributed most of the chapters of the high-
way traffic analysis, with the exception of Chapter 1 on capacity.
Christopher Winsten, mathematician and economist with a special inter-
est in applications of probability calculus to industrial phenomena, con-
tributed the analysis of queues reported in Chapter 1 and the analysis
of the division of sorting work between yards given in Chapter 10. C. B.
McGuire, economist, was assigned primary responsibility for the de-
gree of “realism” of the models developed by the group. For this pur-
pose he gave most of his time in earlier phases of the project to study
of the literature on {raffic analysis and railroad operation, to inter-
views with traffic specialists and railroad officials, to visits to classi-
fication yards, and, assisted first by Marc Nerlove and later by Thomas
Goldman, to the analysis of operating records. Most of the chapters on
railroad problems are the result of joint work by McGuire and Winsten.
Chapter 11 was contributed by Koopmans. Chapter 12 was prepared by
McGuire on the basis of earlier work by Kirk Fox, Marc Nerlove,
Harlan Suits, and Thomas A. Healy. The computations for a simple
example of a highway network were prepared, and the report therecn
in Section 3.3.2 written, by Goldman.

This dry enumeration of contributions does not indicate the extent
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to which practically every chapter has been affected by the thinking of
all members of the group. A good deal of group discussion has been
devoted in particular to choice of concepts and models of railroad oper-
ations. During the later stage of preparation of manuscript the group
met in weekly sessions for criticism and evaluation of successive
drafts. Final editing of the manuscript was done by McGuire with the
aggistance of James M. Terrell,

Proper acknowledgment cannot be given in this space to all those
who helped the authors in their project. Especially deserving of men-
tion for the patient way they dealt with the authors’ questions are the
following men in the railroad industry: C. H. Bremhorst, L. H. Dyer,
and E. P. Stine of the Chicago, Burlington, and Quincy; Arthur H. Gass
of the Car Service Division, Association of American Railroads; C. E.
McCarty and R. M. Zimmermann of Potomac Yard; T. J. O’Connell and
C. E. Bertrand of the Baltimore and Ohio; W. A, McClintic of the Pere
Marquette Division of the Chesapeake and Ohio; E. E, Foulkes of the
Rock Island; and Val Rice of Modeyn Railvoads. For the frontispiece,
an aerial photograph of Bensenville Yard on the outskirts of Chicago,
we are indebted to the Milwaukee Road.

Discussions with other member of the Cowles Commission re-
search staff and with visiting scholars have also been stimulating and
helpful. Among these we wish to mention in particular W. Feller of
Princeton University, H. S. Houthakker, formerly of the Commission
and now of Stanford University; D. G. Kendall of Oxford University;
Harry Markowitz, George Dantzig, and T. E, Harris of the RAND Cor-
poration; and William S. Vickrey of Columbia University. Professor
Vickrey has read the entire manuscript and given the authors the bene-
fit of many detailed comments. Of course, responsibility for what is
offered rests with the respective authors alone who will feel their en-
deavor has been fully rewarded if these studies stimulate others to im-
prove on them,
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A STUDY OF

HIGHWAY TRANSPORTATION



Chapter 1

ROAD AND INTERSECTION CAPACITY

1.1, Introduction

In most cases where an attempt has been made to measure the ca-
pacity of a road or intersection this capacity has been taken to be a
number representing the highest possible flow of traffic through the fa-
cility being studied. Accepting this view for a moment, let us examine
a particular case in some detail and see into what complications we are
led. Suppose a certain unsignaled intersection is used by eastbound and
northbound traffic only. What is its capacity? Obviously no one number
will suffice to describe the capacity of the intersection for northbound
flows alone, for it is quite clear that the more eastbound traffic there
is, the less will be the amount of northbound traffic that can get through

N
L

unless this latter flow in some way dominates the intersection, and we
rule this out for the present. Perhaps, however, it is possible to ex-
press the capacity in terms of a number, say 1600 vehicles per hour,
which is not to be exceeded by the sum of the two flows. If this is so,
then this capacity can be expressed in the following lengthier but more
instructive way. The capacity is

0 vehicles per hour northbound and 1600 vehicles per hour eastbound

or 100 vehicles per hour northbound and 1500 vehicles per hour eastbound
or 200 vehicles per hour northbound and 1400 vehicles per hour eastbound

or 1600 vehicles per hour northbound and 0 vehicles per hour eastbound.
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This set of combinations written out in full says precisely the same
thing as the shorter defining sentence preceding it; we can if we wish
therefore always describe such capacities in terms of the various high-
est possible combinations of flows. Since the set of such combinations
is rather tedious to write down, it is convenient to describe it graphi-
cally in the following way:

_.0

1

1

i
Y

Figure 1.2

The set of capacity flow combinations can be represented graphically in
Figure 1.2 as all those points with non-negative coordinates x., x,
which lie on the downward sloping line whose equation is x, + x,, = 1600.
The whole get of combinations is therefore completely described by that
line. The capacity expression has thus changed from a simple number
to a set— the set of points on the 45° line.

At this point there arises the very natural question of whether the
line must always have a 45° slope, or whether in fact it need always be
a straight line. Without further information there are no reasons to re-
ject the possibility of capacity curves like those in Figures 1.3 and 1.4.
Where the capacity curves are of this nature we begin to see some of
the advantages of capacity formulations in terms of sets of alternatives
rather than single numbers. The capacities described in the last two
curves can be represented by sets of combinations just as before, but
they cannot readily be represented in a straightforward way by a single
number. If we look at the points A and B in Figure 1.3, we notice that
while both represent capacity flow combinations, the total flow repre-
sented by A is less than the total flow represented by B. Total flow in
these examples is no longer an important element in capacity consider-
ations,

Before leaving this simple intersection example it is worth pointing
out that the curve, or set, we have been talking about represents ca-
pacity in the sense that it forms a part of the boundary of all those
points representing possible flow combinations, Thus in Figure 1.2, the
point C with coordinates ¢ and ¢’ is a possible flow combination, since
the sum of c and ¢’ is less than 1600, while the point D with coordinates
d and d’ is an impossible flow combination, since the sum of d and d’ is
greater than 1600, The possible combinations are those represented by
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Figure 1.3 Figure 1.4

points on or below the capacity curve; the impossible ones by points
above the curve.

The reader may object at this point that all of this elaboration has
been unnecessary, because for most of the important cases the capacity
curve does in fact just happen to be a straight line sloped at 450, s0 that
capacity expressed as a limitation on total flow is really all that is
needed. I every interesting case were like the ones in Figure 1.2, the
objection would indeed be well taken, We intend to show, however, that
as soon as the capacity notion is complicated in order to make it more
useful from an economic point of view, the interpretation as a set of
possibilities becomes imperative, To make this clear another simple
and rather artificial example will be described. So far we have not
considered the driving conditions which the traffic will meet, even when
the flows are possible ones. One way of introducing these conditions
into a definition of capacity is given in the Highway Capacilty Manual
(Normann and Walker, 1949; pp. 6-7), where, very briefly:

basic capacily is the maximum flow under “most nearly ideal
roadway and traffic conditions”;

possible capacily is the maximum flow under “prevailing roadway
and traffic conditions”;

practical capacity is the maximum flow short of causing
“unreasonable delay, hazard, or restriction to
the drivers’ freedom to maneuver.”

Thus for each traffic condition specified there is a corresponding maxi-
mum flow.

Alternatively, capacity may be defined as a relation showing how
traffic conditions depend on flow, a definition that is to be preferred if
the ambiguity of terms like “unreasonable” is to be avoided. This pro-
cedure means that no two or three arbitrarily selected traffic condi-
tions are concentrated on, but rather the whole range of traffic condi-
tions is examined, just as the whole range of flows is.

The word “delay” in the description of the traffic conditions that
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define practical capacity covers what is probably the most important
element in traffic conditions. Conditions are good if delay is small;
they are bad if delay is large. In the following example, in fact in
nearly all of the subsequent discussion in this chapter, we shall suppose
that “traffic conditions” are fully described by an assessment of the de-
lays that occur,

Let us imagine a certain vehicle inspection station at which all
vehicles traveling a particular road must stop. Suppose that the in-
spection takes exactly two minutes for each vehicle, that only one vehi-
cle can be inspected at a time, and that the arrival of vehicles at the
station is known to be random. What is the capacity of the station?

The example would be completely uninteresting were it not for the
fact that as flows become larger, “traffic conditions” — that is, delays —
get progressively worse. Any particular car has to wait not only the
two minutes until its own inspection is completed, but until the inspec-
tions of all cars waiting when it arrived are finished as well. The
heavier the traffic, the more cars it is likely to find waiting ahead of it.
If the average delay that cars suffer is plotted as a function of flow, a
curve like ABCD in Figure 1.5 results. For very small flows the sta-
tion will seldom be occupied, and the average delay will be close to two
minutes. As flow approaches 30 vehicles per hour, the station will usu-
ally have several vehicles waiting in line and the average delay is likely
to be large,

Proceeding just as in the intersection example we can express the
capacity as the set of combinations

0 vehicles per hour and 2 minutes average delay
or b’ vehicles per hour and b minutes average delay
or ¢’ vehicles per hour and ¢ minutes average delay
or d’ vehicles per hour and d minutes average delay

etc.

Now imagine another station at which two vehicles can be inspected
simultaneously, but where such inspection takes exactly three minutes.
The capacity curve for this station is EF in Figure 1.5. With flows
close to zero the average delay is three minutes, a little greater than
for the other station. At C, where the two curves cross, the advantage
of the first station in terms of a shorter service time is exactly com-
pensated for by the second station’s ability to deal with congestion.
Thus, in a sense, for small flows the first station has the greater ca-
pacity; for high flows the second station has the greater capacity. Such
a capacity comparison would be arbitrary indeed if it were made on the
basis of knowledge of delays at the two stations corresponding to one
particular flow, or on the basis of knowledge of the flows at the two sta-
tions corresponding to one particular value of average delay.

Note that if we were to plot a similar function for the intersection
example given above, then for each combination of flows which the
intersection could handle, we would have an average delay. The ca-
pacity curve shown in the figure might now be supposed to separate the
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combinations of flows which had acceptable delays from those where
the average delays were too large to be acceptable. When we are con-
sidering two flows in this way, we could break this average delay down
into two parts, those experienced by each of the two streams. What
kind of functions of the traffic densities these delays are depends es-
pecially on the traffic rules governing the intersection. This question
will be discussed in Section 1.2 below.

With this introduction it is time to enter into a more detailed dis-
cussion of the capacities of various types of intersections and roads.

1.2. The Capacity of Intersections

We have sketched above the notion of capacity we intend to use.
Before we can develop quantitative expressions for this capacity notion,
we must consider in more detail the rules governing traffic at inter-
sections, and we must specify the simplifications inevitably involved in
constructing a model of traffic behavior. Some of the previous work on
intersection capacity will be discussed, and a new model will be given
which, it is hoped, will be useful for quantitative prediction in some
situations.

1.2.1. The Slop-Sign Intersection

In a simple type of such an intersection a minor road crosses a
major road, It is assumed that traffic in the minor road must not inter-
fere with major-road traffic. Hence a car ready to cross the major
road must wait until there is a sufficient gap in the major-road traffic.
The burden of judging when a gap is sufficient lies on the minor-road
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driver. It is possible for these judgments to vary congiderably, both
between one driver and the next, and between different interse ctions,
Drivers may vary because of different degrees of cautiousness, ability
to pick up speed, and so on. Intersections vary in visibility, width, and
many other factors. It is necessary to consider which of these factors
to bring into a quantitative model, and just how they should be brought
in.

1.2.2. Intevsections Controlled by Traffic Lights

Traffic lights may have various rules of operation, and the delay
will depend on which of these is being used. The most common is the
fixed repeated cycle. With this rule a green interval of fixed length is
followed by a red interval of fixed length (though the length of the red
interval may differ from the length of the green one). The whole cycle
is repeated indefinitely. There may be additional warning intervals be-
tween the green and the red intervals or between the red and the green.
There are some possible variations — for example, lights can be made
to change their cycle according to the densities of the traffic in the two
roads, and some types of lights give priority to one of the roads — but
we do not discuss them here,

In both the stop~sign case and the traffic-light case, cars turning
left or right are an additional cause of variation. Suppose, for example,
that at a stop sign the driver of a car in the minor road wishes to make
a left turn into the major road. He will have to wait for a gap in the
major-road traffic, and also for a gap in the minor-road traffic in the
opposing stream. Thus on the average he will have to wait longer than
a car going straight ahead and is likely to delay traffic behind him
longer. Hence the delay at the intersection may well depend on the
number of cars making left turns and on the density of traffic in the op-~
posing stream in this situation, Similar considerations apply to the
traffic-light case. These complications are mentioned to show that
quantifative statements about delays at intersections and their relations
to traific flows will not be of completely general application, whether
they are derived from theory or from experimental observation of ac-
tual road conditions. Many intersections may present special features
which call for modification of the results.

1.2.3. Related Wovk in the Litervalure

Before we present our contribution to the theory of intersection ca-
pacity, we will give some very brief references to related work de-
scribed in the literature. The discussion has no intention of being ex-~
haustive; it is meant only to call attention to some attempts to develop
a quantitative theory of congestion at intersections,

In order to develop a theory of delay we have to have some way of
describing traffic flow. Because of the various unrelated factors which
determine whether there will be a car at a particular point at a
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particular time, it was suggested by Adams (1936) that a special type of
probability model called the Poisson process might yield a description
of the times at which cars pass a particular point. His experimental
work confirms that this process gives an adequate description for some
roads, and for some purposes. It has since been used in work on traffic
congestion by other writers, for example Garwood, Greenshields, Raff,
and Tanner.

A theoretical treatment of stop-sign intersection delays is given in
papers by Raff (1951) and Tanner (1951), Both use the same assump-
tions and simplifications. It is supposed that cars in the minor road do
not interfere with each other, for instance. This assumption will be a
valid one if traffic in the minor road is sparse. Tanner frames his dis-
cussion in terms of pedestrians crossing a road; since pedestrians can
usually cross in groups if necessary, all those waiting can cross almost
as soon as there is a sufficient gap in the traffic, Thus it seems a good
approximation to suppose that the length of time a pedestrian will have
to wait to cross does not depend materially on how many other pedes-
trians are using the crossing, In other words, the assumption of non-
tnterference seems a valid one in this case too.

It is also necessary to have some more precise definition of “suf-
ficient gap.” In the theories developed so far the notion of a fixed criti-
cal time gap is used. It is supposed that the driver in the minor road
will cross only if there is no car in the major road due at the intersec-
tion in the next w seconds, say. Under these circumstances w is called
the critical gap.

We can represent the arrivals at the intersection of cars in the ma-
ior road as points of a time axis, as in Figure 1.6.

x
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Figure 1.6

By using the notion of a fixed critical gap we can, if we are given a plot
of the traffic of this sort, say whether a car in the minor road can or
cannot cross at any given time. It i8 natural to call the time interval
during which a car in the minor road is not able to cross a red inlerval
and the time interval in which it can cross a green interval. Thus if we
have a plot of arrivals in the major road, with our assumption of a
fixed critical gap we can divide the time into a sequence of intervals,
alternating red and green. This procedure is illustrated in Figure 1.7,
where the cars on the left end of the time axis are later arrivals than
those on the right. A car arriving in the green interval will not have to
wait, but a car arriving in the red interval will have to wait just until
the end of that interval. As we are supposing there is no other car in
the minor road in front of it to delay it, it will be able to leave at the
start of the green interval.
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To find the average wait in the minor road, we have to study the
distribution of the lengths of red and green intervals. The papers by
Raff and Tanner do this for the case in which the arrivals in the major
road can be described as a sequence formed by a Poisson process. The
assumption that sufficiently large spaces occur between vehicles is the
only one necessary for the minor road,

Notice that the reasoning in this case can easily be extended to the
case where the critical gap accepted varies from car to car. If we
know the relative frequencies of the different critical gaps, we can find
the mean delay for each one and then average the results, using these
relative frequencies as weights. In fact, Raff presents empirical evi-
dence which shows very clearly that there is considerable variation in
the gaps drivers consider long enough to allow them to cross, so that a
refinement of this sort may be useful. In the case of dense traffic in the
minor road, which we treat later, there is no such easy generalization
to the case of a variable critical gap, and we must for the time being be
content with the approximation that supposes it to be constant.

Some methods of calculation for the repeated-cycle traffic-light
case are presented by Garwood (1940-41) and Raff (1950). In these
papers an attempt is made to deal with the phenomenon of “sluggish-
ness,” If a line of cars is waiting when the light turns green, it will
take some time to clear., Below we suggest a new method of dealing
with this case, which gives us a useful approximate formula when traf-
fic is sparse, and can be used to give results when traffic is heavy,

1.2.4. A Model of ntersection Delays

The results we have mentioned above for the stop-sign intersection
were restricted to the case for which traffic in the minor road was
sparse. In this section we give a method of extending this type of model
to the case where the traffic in the minor road is dense, and cars are
delayed not only by the traffic in the major road, but by cars in front of
them in the minor road too. The type of model we develop turns out to
be useful for the repeated cycle traffic light case also.

The basic fact we have tried to express in the model is that a queue
of cars waiting to eross a road cannot clear all at once, and the longer
the queue the longer it will take to clear (the phenomenon already de-
scribed as sluggishness). The reason for this effect is that the cars as
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they leave maintain a certain spacing between each other. In our model
we also take account of the fact that cars arrive spaced out too.

In constructing the model, a device has been used which may at
first sight seem to have a slightly artificial look about it but which, in
fact, expresses the spacing between traffic in a very convenient way.
We suppose that events such as the arrival or departure of a car can
only happen at discrete points in time, rather as if they were being
shown by a motion picture film which moved in jerks. Each of the dis-
crete time-points can be considered a frame of the film. At each time-
point, at most one car can arrive, and at most one car can cross the
road. These conditions make sure that traffic is spaced out as it should
be. They also imply the restriction that the minimum time spacing be-
tween cars arriving at the intersection and cars leaving it is the same.

In addition we suppose that each time-point is either a red time-
point or a green time-point. A red time-point is a point at which a car
cannot cross the stop sign or traffic light. At a green time-point a car
will cross, provided that a car has just arrived or that one or more
cars have been held over from the last time-point,

With these conditions we can represent a sequence of events at the
intersection in a very simple way symbolically. Suppose we represent
the arrival of a car at the intersection by the symbel 1, and that the
symbol 0 means that no car arrives. Then, for example, a sequence of

the type
110 0 1 0 0010

shows that cars arrived at the first two time-points but not at the next
two, a car arrived at the fifth time-point but not at the next three, and
S0 on,

If we represent red time-points by the symbol r, and green time-
points by the symbol g, then a sequence of the form

r rrgegegegrrg

shows the first three time-points were red and were followed by four
green ones, and so on.

We are primarily interested in the delay which cars suffer. To
find this delay we must calculate another sequence: the queue sequence,
For our purposes the queue at any particular time-point is defined as
the number of cars held over from that time-point to the next. With the
simple rules of traffic behavior given above, once we know the arrival
sequence, the red/green sequence, and the number of cars waiting at
the intersection at some initial time-point, we can calculate the queues
for all later time-points successively, We illustrate such a calculation
below,

There is one more sequence of interest: that of departures. How
does the process of crossing the intersection alter the spacing of cars?
The departure sequence too can be calculated from the others.

We can now illustrate these sequences. The time-points are num-
beredt =1, 2, 3.,.... and we will suppose that at the beginning of the
period no ears were waiting to cross.
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Time 12345678910 11 12 13 14 15 16 17 18
Arrivals ol11p001000 1 1 1 01 0 ¢ 0 1
Red/greensequence ggrrrrggeg r r r g g r rr g

Queue held over to

next period ¢o01112100 1 2 3 2 2 2 2 2 2
Cars waiting to

cross g11112210 1 2 3 3 3 2 2 2 3
Departures 010000110 0 0 0 1 1 0 0 0 1

The cars waiting to cross at any time-point are those held over
from the previous time-point, together with any car that arrives at the
time-point considered.

In previous analysis of traffic delays the assumption was made that
the arrivals of cars could be considered as generated by a Poisson
process. This assumption, when it was checked against observation,
was found quite adequate in many circumstances. Now that, for our
present model, we have distorted nature slightly by making time move
in jumps, we have to find an appropriate modification of this way of de-
scribing the structure of traffic. The modification we use, a very close
analogue of the Poisson process for discrete time measurement, can be
called the binomial process. The nature of the process can perhaps be
seen most easily by the following way of deriving a sequence from it.
Suppose that the flow of traffic is such that on the average 37 cars ar-
rive per 100 time-points. Suppose we draw numbers at random from
the set of numbers 1 to 100, replacing each one before drawing the next,
When a number from 1 to 37 is drawn we write down 1; when a number
greater than 37 is drawn we write down 0. If, as above, we consider 1
to represent the arrival of a car and 0 the nonarrival, then the sequence
of 0’s and 1’s we obtain in this way can be taken to represent a possi-
ble flow of traffic having the specified average density. To obtain a dif-
ferent average density of traffic, a correspondingly different classifica-
tion of the numbers 1 to 100 would be used. This average density in the
minor road we have represented by . It is defined as the ratio of the
number of cars which arrive in a long period of time to the maximum
number which could arrive provided the proper time spacing between
cars is maintained. The corresponding quantity for the major road we
have called p.

We have calculated the average delay for the case when “statistical
stability” has been reached. This average is the same as the average
over a period of time sufficiently long for the particular state of the in-
tersection at the beginning of our observation to become unimportant.
However, the calculations involve the assumption that congestion will
not tend to increase indefinitely. The probability model we have used
has the property that this event will in fact almost certainly not happen
provided the averagé number of green points exceeds the average num-
ber of cars arriving at the intersection in the minor road. If this
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tondition is satisfied, the queue of cars will certainly vanish again and
sgain, even though at times it may build up to a considerable length.

The critical gap also needs redefining for the purposes of our dis-
crete model. We have called it w and defined it as the number of time-
points before the arrival of a car in the major road which are blocked
by the closeness of that car. For example, if w = 2, the two time points
before the arrival of the car in the major road will be blocked, and also
the time-point at which it actually arrives.

The curves in Figures 1.8, 1.9, and 1.10 present the results of the
calculations for this model. Based on the mathematical analysis given
In Section 1.5, they show the mean delay in the minor road as a function
of the traffic densities « and p in the minor road and major road, and
the critical gap w. For a given value of p and w, as a increases, the
mean delay increases, until at a certain value of o the congestion in-
creases indefinitely. The intersection is not able to accommodate 3z
density of traffic corresponding to that value of & or greater for an in-
definite length of time.

It is important to note for purposes of analysis in other chapters
that these average delay functions possess a curvature property called
convexity (see Section 3.1.3).

The same type of analysis has been made in Section 1.5 for the
repeated-cycle traffic-light case. The traffic lights are supposed to be
red for r time-points and green for g time-points, The density of ar-
rivals is represented by @ as in the stop-sign case. As in that case the
average wait over a long time period is calculated, Again congestion
will certainly build up indefinitely unless the number of green points
exceeds the number of arrivals over a long period. Thus the average
delay is calculated on the supposition that this condition igs satisfied.

A most striking by-product of our calculations is the adequacy of
an approximation which has been used in the past for sparse traffic.
The approximation is based on the supposition that the queue of cars has
vanished at the beginning of each red period. Though this would seem a
drastic assumption, the results calculated by using it turn out to be
valid for nearly all the values of &, r and g for which we have carried
through the calculations. The stability condition for queues not to grow

indefinitely is a < _I'E_g , and the approximation is valid even when ¢ is

quite close to this limiting value,

1.3. The Uniform-Speed Capacity of a Road

In discussing road capacity we shall first examine a particular type
of capacity curve which will be called the uniform-speed capacity curve.
Among our reasons for giving some attention to this curve are

1) Its possible usefulness in the planning of large divected traffic
movements such as army convoys, urban evacuations, etc.

2) Its very distinct difference from, and relation to, the more
complicated notion of a capacity curve which is to follow. This
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difference is of some interest in itself, for it demonstrates the
fact that the “capacity” of a facility must be defined with an eye
toward the use to which the facility is put.

Consider a single-lane road over which traffic moves in one direc-
tion. A wuniform speed will be said to exist when every vehicle moves at
the same speed. At a given point on the road, the uniform-speed ca-
pacity at a given uniform speed is defined as the maximum traffic flow
(measured in vehicles per hour) which can pass that point at that speed
under certain assumed conditions. Obviously flow will depend on the
distance-spacing between vehicles and will be at a maximum for any
given speed when spacing is at a minimum, since flow equals speed di-
vided by spacing,

The assumed conditions are those that affect the minimum spacing
between vehicles at each uniform speed. These include not only such
things as the physical characteristics of the road being examined but
also some characteristics of the vehicle population being studied, and in
addition a statement of whether the spaces between vehicles shall be de-
termined by reference to some standard of safety or by observing the
spacing actually maintained by drivers or perhaps in some other man-
ner. The main problem involved in determining these capacities comes
from the fact that by any realistic criterion the spacing between vehicles
must increase with speed. The form this spacing function takes will
seriously affect the shape of the curve relating uniform-speed capacity
and uniform speed.

Four ways of determining these capacities suggest themselves:

1) Hypothetical spacing functions can be constructed and sub-
stituted in the relation

flow = Speed

spacing
to give the maximum flow at each uniform speed.

2) Empirical spacing functions can be determined by observa-
tion of existing traffic flows, and they can be substituted in
the relation of method (1).

3) Empirical estimates of uniform-speed capacities can be at-
tempted by direct observation of flows, bypassing a deter--
mination of spacing.

4) Experiments can be performed.

To our knowledge the experimental method, interesting as it is, has
never been carried out. Each of the others will be described below.

1.3.1. Hypothetlical Spacing Functions

A minimum “safe” spacing function may be postulated on the basis
of information about the distances required to decelerate vehicles from
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various speeds, and also on the basis of one’s beliefs as to what consti-
tutes safety. This has been the most common approach (Herrey and
Herrey, 1945; Hess, 1950; extensive bibliography in Normann, Febru-
ary, 1942, p, 122). Without much justification it has usually been as-
sumed that safety requires a distance between vehicles at least equal to
that necessary to bring a vehicle to a full stop.! The mathematical forn
typically given this spacing function has been

(1.1) a + bu + cu®
where

a = average length of vehicle
b = perception plus reaction time

(1.2) c = % , where r is the maximum rate of deceleration

u = speed

All three values are affected by the composition of traffic (number of
trucks, age of drivers, etc.). Time of day and location affect b; and
road surface, weather, and grade and curvature of the road affect c.
Some of the most careful studies of b have been made by De Sylva
(1937), and of ¢ by Moyer (1947), Various values used in constructing
these spacing functions are interestingly compared by Normann and
Walker (1949, p. 120). While much disagreement is evident, the values

= 2.84 x 10™° miles (15 feet)
= 2,78 x 10~ hours (1 second)
(1.3) ¢ = 9.47 x 10~ hours®/mile (i.e. deceleration

= 21.6 ft./sec.?)

are fairly typical and give an idea of the magnitudes involved. It will be
seen that the “safe” trailing distance grows more and more rapidly as
speed increases. The resulting uniform-speed capacity function which
can be written

u

(1.4) a + bu + cu’

reaches a maximum at some intermediate speed and declines there-
after. This means that at high levels of speed, the added spacing that is
necessary for a further speed increase more than offsets the direct
effects of speed itself in bringing about an increase in flow. The curve
OA'A in Figure 1.11 is a uniform-speed capacity curve of this type.

1. The most notable exception to this statement is the work of Greenshields and
Weida (1952), pp. 152-154, where it is argued that full-stop spacing is too conservative
an interpretation of safety.
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Figure 1.11, Uniform=-speed Capacity Curves

In most of these studies the uniform speed corresponding to the point
(A’ in Figure 1.11) of maximum flow has been found to be surprisingly
low, in the 11-25 mph range;”® the maximum flow itself is usually around
1800 vehicles per lane per hour {Normann and Walker, p. 120).

A criticism which might be leveled against this kind of uniform-
speed capacity curve concerns the concept of safety it uses. Minimum
safe spacing is a difficult quantity to define to start with, and further-
more, there is ample reason to believe that drivers do not space them-
selves at distances which are perfectly safe anyway (Normann, 1939, pp.
226-227). While some attempts have been made to refine this concept
of safety in order to secure a better correspondence between theory and
observation, these attempts are more properly classified under the
method to be described next.

1.3.2, Empirical Spacing Functions

An empirical spacing function can be found, and used in the same
way as above to determine the uniform-speed capacity curve. One such
procedure, reported by Normann (ibid.), was as follows. Of 8,500 vehi-
cles recorded at one location, about 2,000 were traveling at the same
speed as the vehicles just ahead of them. These were classified into
speed groups. The next step was to find for each speed group the mean
spacing between vehicles. To ensure, however, that the mean spacing
thus derived was an accurate estimate of the mean minimum spacing
for that speed group, it was necessary to exclude from the sample as
many as possible of those vehicles which just happened to be moving at
the same speed as preceding vehicles, without in any way being impeded
by these preceding vehicles. In order to perform this elimination the

2. Perhaps the feeling that the speed at which flow is maximized must be greater
than 11 or 12 mph accounts for the rather high value of deceleration cited as typical in
formula 1.3 above.
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time spacing, that is, the space in front of a vehicle divided by its
speed, was calculated for all members of the sample,

Number of vehicles

Tirme spacing behween
i _l__]—=f—| vehicles {seconds)
I 2 3 4 5

Figure 1.12. A Frequency Distribution of Time Spacings
for a Single Speed Group

The histogram of Figure 1.12 gives a general indication of the relative
frequencies of various time spacings in a single speed group. Since, in
the case pictured, most of the time spacings are concentrated at the low
values, and a very few are to be found at levels greater than four sec-
onds, the investigators were probably justified in throwing out of the
sample those vehicles with time spacings greater than four seconds.
These, they assumed, were not traveling at minimum spacing. The
same procedure was followed for all the speed groups, and the mean
distance spacing of the reduced sample for each speed group was deter-
mined,

Spacing in feet

150 1
100 4

50 A

! ] i i L

4 Speed in miles
o] 20 30 40 50 60 per hour

Figure 1.13. Observed Minimum Spacings
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Figure 1.13 shows, for each speed group, this mean minimum spac-
ing in the feet of all vehicles spaced at less than four seconds. Using
the data in Figure 1.13, a uniform-speed capacity curve was con-
structed which indicates for each speed the maximum flow possible if
all traffic moved at just that speed. The resulting curve, OB in Figure
1.11, differs from a typical theoretical curve, OA’A in Figure 1.11,
mainly in indicating greater flows at the higher speeds. Notice also
that the uniform speed at which this curve attains its maximum flow is
higher than before.

1.3.3. Divect Obsevvations of Flows

The uniform-speed capacity curve might be estimated directly by
fitting a curve to a set of maximums of observed flows for several dif-
ferent uniform speeds, The main difficulty encountered here is that very
seldom are the higher uniform speeds observed. When speeds are high,
some passing nearly always takes place. This difficulty points up one
of the rather artificial features of a uniform-speed capacity function.

No roads of importance are one-lane roads, yet the function is defined
with the latter as a basis. A multiple-lane road is quite a different
thing from a sum of single lanes. The complications introduced by
passing will be dealt with in Section 1.4.

One of the reasons for the variety of methods used to determine
uniform- gpeed capacity functions is that congestion often appeared to be
present when flows were far short of the maximal levels indicated by
the particular curve being used,. It was then thought that a more careful
procedure would lead to a function without this defect. But the trouble
in many cases probably was that an average rather than a uniform speed
was being used as the independent variable in the capacity function, The
difference between the two cannot be neglected, as we shall see.

Difficulties such as these make it impossible to use a uniform-
speed capacity curve alone to explain speed and flow limitations. There
are, however, some reasons for finding realistic uniform-speed ca-
pacity curves for typical roads or points. Such information would be
useful to an authority {such as the army) which had complete control of
a traffic movement, so that all speeds could be specified, These func-
tions also represent useful points of reference in the sense that they
show the loss in terms of flow when drivers select a variety of speeds.
In addition, they will be found usefulbelow in the discussion of capacity
concepts which take into account the fact that uniform speeds are not
ordinarily found in practice.

1.4, The Free-Speed Capacity of a Road

For the reasons indicated the uniform-speed capacity curve was
never found to be very useful. People do not all drive at the same speed
ordinarily, and in those cases where they do some of them at least wish
to go faster and will pass the cars ahead of them as soon as the
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opportunity arises, This leads to a bunching of traffic which the
uniform-speed capacity curve does not take into account,

The capacity notion to be described here is the very different one
developed by O. K, Normann and his associates in the Bureau of Public
Roads and described in the Highway Capacity Manual (Normann and
Walker, 1949). For a particular road a capacity curve is derived em-
pirically which relates average speed and flow. The curves which have
been published show that flow increases only at the expense of a marked
reduction of average speed. Further work is necessary before this
mechanism can be fully understood, but it seems plausible that at higher
flows more passing per car is required to maintain a given distribution
of speeds, that limited opportunities for passing prevent the mainte-
nance of the higher speeds, and that flow reaches a maximum when all
cars are traveling at very close to the same speed, which then is neces-
sarily a relatively slow one.

1.4.1. Free-Speed Distribution

Before discussing this matter further, a word should be said about
the way drivers’ preferences affect the capacity relations we are about
to discuss. Nearly every kind of capacity curve imaginable depends in
some way on the characteristics of the vehicle and driver population it
pretends to describe.

When this population changes, the capacity curve also changes and
the problem is to relate the capacity curve to the underlying vehicle
population in some simple way. The uniform-speed capacity curve de-
pended on the minimum between-vehicle spacing required at different
speeds by drivers, and it probably sufficed in this case to define “dif-
ferent vehicle populations” to mean “different spacing functions.” While
the populations may have differed in other respects as well, these were
not important so far as uniform-speed capacity curves were concerned.

For the free-speed capacity curve the characteristic we have
chosen to describe the vehicle population is (as the name of the curve
indicates) its free-speed distribution. A driver’s desired or free speed
on a given road is that speed at which he chooses to travel when “alone”
on the road, that is, when the preceding car is so far ahead as to have
no influence whatsoever on the speed of the car in question. Since the
matter is discussed again in Section 2.2.2 we shall only say here that
the free speeds drivers select probably depend on the physical charac-
teristics of the road and on their estimates of the risks and costs in-
volved and the value they place on time. The “distribution” of free
speeds over a given road for a specified group of drivers is simply a
summary description of the free speeds of the group; it te lis us what
fraction of the drivers have free speeds between any two given limits.
A graphic representation of a free-speed distribution is given in Fig-
ure 1.14 where the total area under the curve is equal to one and the
fraction of drivers with free speeds between 30 mph and 40 mph is rep-
resented by the area ABDC, the fraction with free speeds between
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40 mph and 50 mph by the area CDFE, etc. The reader who is inter-
ested in the actual free-speed distributions found to prevail in certain
instances is referred to the Highway Capacity Manual (Normann and
Walker, p. 32, Fig. 6).

2 g M|le5 pel"
20 30 40 50 60 70 hour

Figure 1.14. Graphic Representation of a Speed Distribution

To describe, as we are doing, a vehicle population by its free-speed
distribution is very obviously an oversimplification; for certainly there
are many other real differences which may be quite important, such as
the proportion of trucks in the population being considered, or the
lengths of opposing-lane gaps demanded for passing by the drivers.
However, the simple description will probably do for our purposes.
Whether or not more of the characteristics that distinguish different
groups of drivers should be used is a question that can only be decided
in practice. Once the reader is convinced of the usefulness of descrip-
tion by means of free-speed distributions, it should not be difficult for
him to imagine how other more complicated descriptions might be
handled.

1.4.2. Realized Speed Distribution

We shall now attempt both to summarize and to enlarge somewhat
upon the work of Normann and Walker in examining highway capacity in
terms of speed reductions. It should be made clear that while much of
what follows is based directly on material in the Highway Capacity
Manual and related publications (Normann, 1939, 1941; June, 1942), the
authors of that report are not to be held responsible for possible mis-
interpretations on our part, nor for additions we have made with which
they may not agree. The description will refer to a two-lane road which
carries traffic in both directions. The free-speed distributions of the
two streams of traffic will be assumed known, and we shall suppose that
a vehicle will move at its free speed whenever traffic conditions permit.

The distribution of desired speeds will ordinarily not be the same
as the distribution of actual speeds. For a fast car to pass a slow car
some empty space in the opposing lane is necessary. H the density of
vehicles (i.e. the number of vehicles per mile of road at any instant) in
this opposing lane is high, such spaces will seldom be available and the
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passing maneuver will be delayed or prevented. As a result, the actual
speed distribution will differ from the free-speed distribution, the lower
speeds being relatively more frequent in the former.

Another way of looking at this effect that heavy traffic has on actual
speeds is to concentrate our attention for a moment on a one-mile
stretch of road with unrestricted visibility, Suppose that the southbound
traffic flow is very low, so low in fact that for northbound traffic the
free-speed distribution is the same as the actual speed distribution.
Now let us ask ourselves how the total number of passing maneuvers
per hour carried out by northbound vehicles on this one-mile stretch
varies with the level of northbound flow. Suppose northbound flow
doubles. A 50 mph driver will now find it necessary to complete twice
as many passing maneuvers over the one-mile stretch as before, due to
the doubling of the flow of vehicles moving at less than 50 mph. But
since the flow of 50 mph vehicles has also doubled, this means the
hourly number of passing maneuvers by 50 mph vehicles has increased
by a factor of four. The same holds for all speeds, and it is only a step
further to the conclusion that the total number of passers per mile of
road per hour increases with the square of flow if the free-speed distri-
bution remains unchanged.

I now the assumption of negligible southbound flow is dropped, it
becomes clear that at some level of northbound flow, the number of
northbound passing maneuvers required to maintain the free-speed dis-
tribution will be more than the gaps in the opposing traffic stream per-
mit. As a result, some vehicles will be impeded and the realized speed
distribution will no longer be the same as the free-speed distribution.
Investigations have revealed roughly the way speed distributions change
with increases in flow for some cases and have shown that the actual
total number of passings per mile of road per hour increases with flow
up to a certain point and then decreases gradually down to zero as flow
becomes so great that all vehicles are forced to move at the same
speed (Normann, June, 1942, p. 70).

The realized speed distribution for northbound traffic is clearly in-
fluenced by the flows of traffic in botk directions on the road. I north-
bound flow increases, maintaining the same speed distribution requires
more passing opportunities than before; if southbound flow increases,
fewer passing opportunities present themselves than before, Both phe-
nomena cause a change in the realized speed distribution, An elegant
theory of road capacity would be one which described just this relation-
ship. Given the two flows and the two free-speed distributions we could
determine the two corresponding realized speed distributions. With this
information we would be able to assess the effect of congestion on vehi-
cles of each speed-class in the two traffic streams. However, this is
obviously asking too much, at least in our present stage of developing a
body of information on the behavior of traffic. A speed distribution is a
rather large assembly of information. We shall settle for a simpler,
substitute measure of the degree to which speeds have been affected by
flows. The measure we use is the mean realized speed. Normann’s
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group has in fact attempted more than this by making use to some ex-
tent of the standard deviation of realized speed, in addition to mean
speed (Normann, 1939, p. 228), In subsequent discussion we shall for
the most part ignore these more sophisticated descriptions of the speed-
flow mechanism. It should of course be borne in mind that here is a
possible weakness in our theory. Practical work may well indicate that
mean speed is too gross a measure of the consequences of increased
flow, in which case it will be necessary to incorporate additional meas-
ures such as standard deviation of mean speed, or one of the others sug-
gested by Normann.

!.4.3. Mean Speeds and the Free-Speed Capacity Funclion

The question now becomes, how do northbound and southbound mean
speeds depend on the two flows? When we move in the direction of fur-
ther simplification we are faced with a situation much like adding to-
gether the two intersection flows in the example in Section 1.1. North-
bound mean speed depends on southbound as well as northbound flow; is
it going too far to suppose that northbound mean speed depends only on
the sum of the two flows? Or, indeed, can we drop the final complica-
tion and say that speed averaged over both northbound and southbound
traffic depends only on the sum of the two flows?

Of course these progressively simpler representations are at most
approximations, and a final answer as to which of them is best for the
purpose cannot be given here, In practice the choice will be dictated by
the cost of obtaining data, the reliability of the resulting {low-speed re-
lationships in making predictions, and the consequences of errors when
the estimated relationships are applied to specific problems.

In any case, such questions as these, important as they are, need
not be decided here. The analysis that follows may be applied to any of
the various representations of the flow-speed relation. It is to make
this last point clear that we emphasize these differences.

In one of the earliest articles (Normann, 1939, p. 229, Fig. 11) on
the subject Normann chose one of the more complicated relationships
for one particular road and by the method of least squares he fitted a
plane to a set of observations on northbound mean speed, northbound
flow, and southbound flow. Since the coefficients he estimated are of in-
terest, we reproduce his result:

(1.5) G = 44.92 - .01044x - .00719x_

where u,, s in miles per hour and x, and X¢ in vehicles per hour. This
plane, shown graphically in Figure 1.15, is an example of what we shall
call a free-speed capacily function or where no confusion is likely to re-
sult simply a capacity function (or plane or curve, depending on the num-
ber of dimensions invoived). The term free speed in this use does not
mean (as in the case of the uniform-speed capacity function) that the
function applies only to vehicles traveling at free speeds; we retain the
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*n

Figure 1.15

term here only to emphasize the fact that the function is based on a free-
speed distribution.

More generally, a free-speed capacity function is the function relat-
ing flows and mean realized speeds on a particular road for a particular
population of vehicles, Other and simpler examples are presented in the
Highway Capacity Manual’ where mean speed of all traffic on the road
is made to depend on the {ofal flow on the road. Graphs of these curves
(which in fact have usually been assumed to be straight lines) are quite
a bit easier to draw and to visualize, the number of dimensions being
less. Figure 1.16 is one example. For reasons to be discussed below,
the curve has not been extended all the way to the flow axis. Notice also

Flow

Mean speed

Figure 1.16. An Example of a Free-Speed Capacity Function

that in this example the curve is not a straight line; we have drawn it
the way it is merely to emphasize the fact that from a theoretical point
of view there is no reason to believe it to be so. We shall, nevertheless,
often draw it as though it were, if only for conventence. Most investi-
gators have found that a straight line provides a fairly good fit to obser-
vations.

3. Op. cit.,p. 31 Fig. 6, Curve Z on p. 33 Fig. 7. Other similar examples are to be
found in: Normann, June, 1942, p. 61 Fig. 6, p. 63 Fig. 8; Normann, 1939, p. 228 Fig. 12;
Wardrop, Feb. and Mar., 1952, p. 2 Fig. 1; Glanville, 1949, p. 41 Flg. 9; Forbes, 1952,
pp. 8, 7 Figs. 5, 6, respectively,
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The important characteristic of all these curves, no matter what
their degree of complication, is that they are negatively sloped — that is,
mean speed decreases as flow increases. It should be emphasized that
apart from sampling errors and errors of observation, only points orn
the curve are possible flow-speed combinations for the vehicle popula-
tion with the assumed free-speed distribution. Points below the curve,
such as A in Figure 1.16, would imply that some drivers are not going
as fast as they both can and wish to, and the width and condition of the
road and the presence of traffic prevent points such as B from occurr-
ing.

1.4.4. Relation Belween the Free-Speed Capacily Curve and the Free-
Speed Distvibution

The position of a capacity curve at levels of flow approaching zero
will vary with the vehicle population that the curve describes. When
very little congestion is present nearly every vehicle will be able to
travel at its free speed. At zero flow, therefore, mean realized speed
is equal to mean free speed. I for a certain road it is known that Sun-
day drivers have a lower mean free speed than weekday drivers, we
should expect the capacity curves for the two days to differ in a fashion
like that indicated in Figure 1.17 (assuming the curves to be of the same
simple functional form as the one in Figure 1.16}. Here the points A
and B, the mean speeds corresponding to zero flows for the Sunday and
weekday traffic respectively, are also equal to the respective mean free
speeds of those two days. The capacity curves both slope upward and to
the left from these points.

Flow

Weekday

Sunday

Mean speed
A B

Figure 1,17, Capacity Curves Corresponding to Different
Free-Speed Distributions

The difference in capacities between wide roads and narrow roads
should show up in these curves more as a difference in slope than inter-
cept, Suppose an improvement program is coniemplated for a certain
road whose capacity is represented by the curve AB in Figure 1.18. H
the proposed improvements are effective in reducing congestion, a new
capacity curve CB will result which will indicate for each level of flow a
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¢

: Mean speed
B B

Figure 1.18. The Effect of Road Improvement on a Capacity Curve

higher mean speed than before. As we should expect, the difference is
greatest where congestion is high— that is, at high levels of flow. When
flows approach zero, mean free speed prevails for both curves by the
preceding arguments, and if we have reason to believe that people’s free
speeds will not be altered by the road improvement, these two points
will be the same. The type of shift described seems to agree very well
with some of the results of highway studies carried out by England’s
Road Research Laboratory (Wardrop, February and March, 1952, p. 2,
Fig. 1).

1t is quite conceivable of course that free speeds will change with
the improvement, Wider roads are very likely to cause an upward shift
in the whole free-speed distribution, with a consequent shift in the mean
free speed from B to B’ in Figure 1,18. The capacity curve in this case
might look something like C’B’, where the road improvement has
changed (1) the slope of the curve through its direct effect on, say, pass-
ing opportunities; and (2) the speed intercept of the curve through its
indirect effect on drivers’ choices as to speeds.

Before further discussion of the influence of free speeds on the
slope of capacity curves, we must cover a point we have so far glossed
over. In Figures 1.16, 1.17, and 1.18 the curves have not heen extended
all the way to the flow axis. H in Figure 1.18 the dotted section AA’
were added to the capacity curve AB, the whole curve would seem to tell
us that for the appropriate road and vehicle population mean speed will
be zero if flow rises to the level A’. But if mean speed is zero, all
speeds are zero and flow cannot be positive. Clearly, the upward ex-
tension of the curve must end at some point such as A.

Generally speaking, as flow increases {rom very low levels, mean
speed declines and the spread of the realized speed distribution grows
smaller and smaller. Figure 1.19 portrays, in a very rough way, this
change in the realized speed distribution. H flow continues to increase
until the point is just reached where every vehicle is traveling at the
same speed, the end point, referred to above, of the free-speed capacity
curve will have been attained. The mean speed at this point will, under
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our assumptions, be the free speed of the slowest vehicle present. It
will not be less, for the free-speed capacity curve as we have defined it
only describes speed reductions brought about by the absence of passing
opportunities. Any reduction in the speed of this slowest vehicle, which
has no need to pass, cannot therefore be explained by the capacity curve
we have been discussing. It is true that flow-speed combinations above
and to the left of the free-speed capacity curve’s end point are possible,
but 2 mechanism other than that of free speed and passing opportunity
must be called upon to account for them. About this matter we shall
have a word to say in a moment when we come to examine the relation
between the free-speed and the uniform-speed capacity curves,

In Figure 1.19 the flow which corresponds to the end point of the
curve drawn there is attained just above x;. The mean speed at this
point is meant to be equal to the lowest speed in each of the spe~d dis-
tributions pictured. The speed distribution at the end point cannot be
drawn in the picture; the whole distribution would be lumped at one
point,

It is clear that the complete specification of a particular free-speed
capacity curve must include the location of this end point representing
the flow and mean speed at which passing becomes impossible.”> With
Figure 1.19 before us it becomes a little easier to get a rough idea of
how the shape of a capacity curve depends on the free-speed distribution
behind it. A free-speed distribution with the same mean but less spread
will be indicated by a more sharply rising capacity curve. Figure 1.20
gives such a comparison, A distribution with a higher mean but with the
same spread will shift the capacity curve to the right. This effect is
portrayed in Figure 1.21.

1.4.5. Some Shorlcomings of the Free-Speed Capacity Concept

The importance of the effects described above comes from the fact
that changes in flow may give rise to changes in the vehicle population
and the underlying free-speed distribution. The reasons for such
changes and the difficulties they occasion will become clearer in later
chapters, but one rather extreme example here may serve to illustrate
the point. Suppose on a certain road the usual traffic consists of pas-
senger automobiles with fairly high free speeds. The capacity curve for
this vehicle population on this road we shall suppose is well enough
known to enable accurate predictions of the consequences of increases in

4. If we remember that the capacily curve of Fig. 1.19 is the simplified type which
relates the average of the speeds of both north and southbound traffic to the sum of the
two flows, the statement above is not strictly correct. Speeds will be reduced in both
lanes by the increase of flow, but not necessarily to the same lower limits. In Fig. 1.19
the mean speed at the end point of the curve should really be regarded as the average
(weighted by the flows) of these two lower limits, which in turn are the speeds at the low
ends of the two free-speed distributions.

5, Normann and Walker (1949, pp. 31-33) indicate how these points may be located in
practice by considering mean differences of speeds of successive vehicles.
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flow from this population. Bat if the increment of flow is from another
population, one, say, of trucks with low free speeds, then the capacity
curve we started with is no longer the relevant one. A new capacity
curve must be determined on the basis of the new free-speed distribu-
tion, which now describes the free speeds of the mixed population of
passenger automobiles and trucks., In principle this procedure could be
followed with each new increment of flow, but it is clear that much of
the simplicity and convenience of the notion of a free-speed capacity
curve is gone, In addition, the procedure introduces the practical diffi-
culties of determining just how the free-speed distribution changes at
each point. The analogue of this problem in economic theory is the
simultaneous shifting of demand and supply curves,

A quite similar sort of difficulty comes about if the speeds at which
drivers choose to travel when not immediately behind other vehicles de-
pend on the level of traffic flow. The way we have made use of the free-
speed distribution in defining capacity curves rules this type of phenome-
non out of our theory, but it may well be too important to ignore. If
increases in flow tend to slow down unimpeded drivers, the effect is the
same as in the preceding example; it is just as though an influx of vehi-
cles from a *“slower” population had been let into the road.

The difference between these two sources of shifts in the capacity
curve with changes in flow is that the second refers to a single popula-
tion and the first to a change in the population itself. The second diffi-
culty could be eliminated by a more or less complicated redefinition of
the capacity curve. We have not attempted to resolve this second diffi-
culty and unless a statement to the contrary is made it will be assumed
throughout the rest of this study that changes of this kind in the free-
speed distribution are negligible, While for many cases this assumption
is quite realistic, enough exceptions exist for it to merit serious con-
sideration,®

1.4.6. Relation belween a Uniform-Speed Capacily Curve and a Free-
Speed Capacity Curve

A moment ago we stated that speed-flow combinations above and to
the left of the end point of the free-speed capacity curve are sometimes
possible., For this to be the case the end point must fall below rather
than on the corresponding uniform-speed capacity curve; it cannot be
above the curve of course, for the spacing of cars prohibits such speed-
flow combinations. At the rather extreme state of congestion repre-
sented by this end point all cars on the road are moving at very nearly
the same speed. However, while a uniform speed can therefore be said
to prevail, the flow corresponding to this speed need not be the
{uniform-speed) capacity flow indicated by the uniform-speed capacity
curve, This can be seen most easily if this congested situation is pic-
tured as a series of queues of cars moving along in both directions. At

6. Cf. Section 2.1, where the concept of the ancrage roud uscr is introduced.
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the head of each queue is a car with a relatively low free speed; the
cars in each queue wish to pass this slow one but passing opportunities
occur only rarely. Thus even though the gaps in the opposing traffic are
so few as to cut down passing nearly to zero, they can still be sufficient
for the flow to be below the level of the uniform-speed capacity curve,

Traffic from side roads could of course enter these gaps, thus
raising flow above that level given by the end point of the free-speed ca-
pacity curve. In addition, as flows approached uniform-speed capacity,
further reductions in mean speed might occur through more complicated
mechanisms than the one we have described.’

1,5, Delay af an Intersection

In this section we find an analytic expression for the delay at a stop-
sign intersection and also at a repeated fixed-cycle traific light. In both
cases the model is formulated in terms of discrete time points, as ex-
plained in Section 1.2,

1.5.1*. The Stop-Sign Case

1.5.1.1*. With a General Major - Road Arvival Distribution, For the
arrival distribution in the minor road the assumptions are as follows,
At most one car can arrive at any time-point. The arrivals at succes-
sive time-points form a binomial sequence with parameter «. By this
statement we mean than the chance of a car arriving at any particular
time-point is «, and is independent of what has happened at any previ-
ous time-point, The discrete formulation ensures that cars are spaced
out. This probability model is very close to one that has been found to
give a quite adequate description of traffic.

We suppose at first that the green intervals and red intervals
generated by the traffic in the major road are formed as follows:

(i) The distribution of the lengths of green intervals is geometric —

that is, the relative frequency of an interval of length x is et (1-m),
(x =1,2,...), where 7 is the parameter of the geometric distribution.

(ii) The relative frequency of red intervals of length b is f(b), (b = 1,
2,....). This distribution is completely unrestricted for the present
(except that it will be supposed to have both first and second moments},

(iii} The sequence of red and green intervals is such as would be ob-
tained from a probability model in which red and green intervals were
drawn alternately from their respective distributions, each drawing
being quite independent of other drawings.

The red/green interval sequence generated by a binomial sequence
of traffic in the major road, when there is a constant minimum safe in-
terval in front of each car, is a special case of such a sequence. After
finding the mean waiting time for cars in the minor road for the general
sequence specified above, we will give the results for that case.

7. The work of Reuschel (1951) and Pipes {1950) appears to have some relevance to
these states of severe congestion.
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As was shown above, to find the mean wait per car in the minor
road it is necessary to find the mean queue length E(q,}). We will find
this for the case for which the probability mechanism which is supposed
to be generating the queue has settled down to equilibrium. Either the
system will do this after a sufficient time or else the queues will tend
to build up indefinitely, so that the mean waiting time will become
longer and longer, the later a car arrives. The theory below shows that
a necessary and sufficient condition for the attzinment of equilibrium is
that the average number of green time- points exceeds the average num-
ber of cars arriving. By q, we will denote the queue which has to wait
from time x to time x + 1,

We will find E(qy) in two stages, first taking averages over green
points, and then over red points,

Let the green time-points be numbered consecutively, t,, t,,...,
tg, ..., regardless of whether there is a red interval between them or
not. Because green intervals have a geometric distribution with param-
eter 7, the probability of a red interval occurring between any two con-
secutive time-points tg and tgy) in the green sequence is (1 - 7) and is
independent of where other red intervals are interspersed in the se-
quence. This is the same as saying that the probability of one green
point being followed by another is .

Define the variables

bg = the number of consecutive red points immediately follow-
ing ty, that is, the number of red points between tz and t, )

Bg = the number of arrivals at red points between t; and t;,
(Bgé bg);

@g = number of arrivals at tg (so ag is either 0 or 1).

If by = 0, then necessarily Bg = 0. Generally, q44) = max f(qg + ag+t
+ By -1), 0], which we may also write

(1.6) Ugr1l = Qg + @yyy + g - 1 + 4,

where

6, =0if q + oL, v B,>0
(1.7) 8 8 g8 g

og=lifqg+ag+l+3g:0.

Thus 4y is generated by a Markoff process of a type discussed in
the literature. The necessary and sufficient condition for such a
process to settle down to statistical equilibrium is that

E{ag, + By < 1.
That is, on the average, less than one car arrives per green point. The

necessity is obvious; the sufficiency was shown in Kendall’s paper
(1951).
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The mean queue at green points, E(qg), can now be found by a de-
vice used for a similar problem by Kendall.

When the process has settled down to statistical equilibrium
E(qgs)) = E(qg). Therefore, taking expectations in (1.6),

(1.8) E(6g) = 1 - Elags) - E(8y)

and also

(L.9) E(6}) = E(dg) since dg = O or 1,
By (1.7)

(1.10) Ebg (qg + ag + Bg) = 0,

Squaring (1.6) we have
(1.11) q,f+1=q§+(ag+1 + By - 1)2+6; + 20, (g + 04y
+ Bg) - 285 + 2qg (ags1 + Bg -1}.

Taking expectations in (1.11) and using (1.8), (1.9), {1.10), and the fur-
ther equilibrium condition E (q5+1) = E (qp we obtain:

(1.12) E [(2Qg + (1 - Qgy] - Bg)] = E [(ag+l + Bg '1)2]-

To find E(Bg) notice that the probability that there is a red interval
between tg and tgy) (i.e. that the point t; + 1 is red) is (1 - #), and the
mean number of arrivals,  there is a red interval, is o E(bg), E(bg)
being the mean of the distribution f(bg) from which the red intervals are
considered to be drawn. Accordingly,

(1.13) E(Bg = (1 - 1) a Ebg) .

Similarly, by just taking expectations over red intervals of length b, and
then over red intervals of all lengths, we get

{(1.14) E(#) =(1-m o Eb]) + a (1 - a) E (b) .
Also
(1.15) E(ag) = E(azg) =a .,

Using the independence of ay. |, By, and qq, (1.12) can be written
(1.16) [2 E (Qg) + 1] [1 - E(agi-l) - E(Bg)]

- E(osr) + E(8) + 1 - 2E(age1) - 2E(y)
+ 2E(ag+l) E(Bg) .
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Substituting the values given in (1.13), (1.14), and (1.15) and solving for
E(qg) we get

o(1 - ) [E(b?) + E(by)]

2[1 - @ - ofl-m) E(bg)]

(1.17) E(gy) =

Now we must consider the queue length at red points. Suppose® a
red interval of length b comes between tg and tg+). We can number the
points of the interval tgs g eens, tgb. The queue length just before the

start of the interval will be dg, and these cars will remain throughout
the interval, Since bg and qg are independent, (1.17) gives the expected
size of this “initial queue” over red as well as over green time-points.
We require therefore only the expected length of that part of the queue
made up of cars that arrive during red intervals.

If there is an arrival at tg,, it will be in the queue at tg s by e,
tgb' It will thus add b to the sum of the queues over the red interval.
Similarly, an arrival at tgz adds b-1 to the sum. Thus the mean addition

to queues per red interval of length b caused by arrivals during such
intervals is b(t;;l) «, and the mean addition per point in red intervals of
length b caused by arrivals in those intervals is E%-l» o.

A proportion %fg%) of red points lies in red intervals of length b.
Therefore the mean addition per red point caused by arrivals during

red intervals is

bb+l) f(b) o
(1.18) l}): 3 Eb) @ - 2ED) [E(b®) + E(b)] .
Thus the proportion of red points in the total is
(1.20) {L-m) E(b)

1 + {1-7} E(b)
and the mean addition to the queue per time-point is

(1-ma  E(b®) + E(b)
2 1 + (1-7) E(b)

Adding this to (1.17) we get

a(1-n) [E(b) + E(b)]
2[1 + (1-m) E(®)] [1 - o - ofl-n) E(b)]

(1.21)

as the mean queue size over all time-points.

8. For simplicity, we shall drop the subscript g in the rest of this section.
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4.,5.1.2%, Binomial Arrivals on the Major Road. In this section we con-
. #ider the case for which the traffic in the major road is also described
by a binomial sequence, of parameter p. In front of each car in the ma-
“Jor road there is a minimum safe interval of time -points. By this
statement we mean that if a car arrives in the major road at time t,
then no car in the minor road can cross at ime t-w+ 1, t- w + 2,
«+.«,t, that is, an interval of w points up to and including t red points.
Under these conditions we can examine the structure of the se-
quence of red and green intervals generated by the traffic in the major
road. The length of the green intervals has a geometric distribution,
with parameter 1 - p. X we put 1 - p = 7 in the preceding analysis, this
case turns out to be a special case of the more general one treated
above, The result for the mean waiting time given by (1.21) shows that
for our present purposes we only require the first two moments of the
distribution of the lengths of red intervals., We find these below and
are thus enabled to exhibit the mean waiting time per car as a function
of the densgities in the minor and major roads respectively, and of w,
the minimum safe interval. This function is shown in Figures 1.8, 1.9,
and 1.10,

1.5.1.3%. Distribution of the Lengths of Green tervals. We will
suppose from now on that the time-points are numbered in sequence
t=....,-1,0,1,.... For the sake of brevity, if a car in the major
road arrives at the intersection at thetime-pointt = t/, we will say that
there is a car at t = t'. The safe interval w is supposed an integer and
is defined as follows. Suppose the point t = 1 is the first point of a
green interval; then there must be a car att= 0, and no cars at t = 1,
2,...,w. The point t = 2 is also a green point if and only if there is no
car at t =(w + 1). Thus, given thatt = 1is a green point, the probability
that t = 2 is a green point is 7 = (1 - p). Similarly, the probability that
the green interval will continue from t =2 tot =3 is 7. By induction,
the probabtlities of green interval lengths of 1, 2, 3,... are proportional
to 1, 7, 7% .... and so must be

(1.22) (1 -, M1 -m, 771 - m),...

and these probabilities define a geometric distribution.

Now to derive E(b) and E{b®), suppose t = 1 is the first point of a
red interval. This means that there is a car at t = w, but none at t = 0,
1,2,...,w-1. The red interval will end at t = w if there is no car at
t=w+ 1, w+2, ,..,2w. However, if the red interval does go on, Sup-
pose the next car after the one at t =wis att = w + x,, where 1 X< w.
We can say that the second car contributes a length x, to the length of the
interval. We can also say that the first car always contributes a length
X, = w to the interval. If the red interval continues to a third car, we
can consider the contribution, x,, of the third car to the length of the
red interval, and so on.
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We will now find the probability that the red interval is formed by
just r cars. If there are already r - 1 cars in the interval, the proba-
bility that there will be no more is 7% =P, say. Thus the probability
that the interval will continue is 1 - P. Hence the probability that the
interval will contain just r cars is (1 - P)r-1 p,

If the red interval is formed by just r cars, the number of points it
coversisx; +....+X ,wherex =wand 1< x;<w,i1=2, ..., r-1,

The distribution function of each x; is the same for i > 1. There-
fore if the moment generating function (m.g.f.) of x; is ¢{u), say, (i = 2,
3,...), then, since the m.g.f. of X, = w is e¥", the m.gf. of x, + x, + ...
+ X, is

(1.23) pr-1 ewu

and the m.g.f. of red-interval length if the red interval can contain any
number of cars is

g 1 r-1 e*" p
= r- wu - -1 _
(1.24) X(u) = ¢ eVt P(1 - P) TP e
It is also necessary to find ¢(u). Since
_ _ ax-1 1 -7 -1 -~
(1.25) Prob(x; = x) = - 1 i n* (i =22)
-
xél T
we have
¥ 1
¥  eux gx- w
=1 1-7 -1
= —— = & eux |,
(1.26) P(u) - 1 =1 [I-P T ]
2 mE=
_1-Pe¥ 1 .1q ol
T 1-P 0 I-geu
Hence
—u
(1.27) X{u) = € i

P~ [e(wtlu _ gmwu} 41 o g
We have to find E(b) = X’(0) and E(b’) = X”(0). By straightforward
but somewhat tedious evaluation we obtain

(1.28) E(b) = X(0) = 111%’{)-3
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and
(1.29) B(b) = X"(0) = 1. - [-7?1.}" ¥ (12-:)] 7 ( -ﬂ?)”P2

Putting these values in (1.21), we find the mean queue size per time-
point to be

1-P(1 + wp)]
1.30 By = &l
Dividing this waiting time by the a cars per time-point we get
1-P(1+ wp)
p (P-a)

as the mean waiting time per car, where P = #% = (1 - p)¥. The neces-
sary and sufficient condition for the system to settle down to statistical
equilibrium is :

(1.31)

(1.32) a<(l- p)¥

The function (1.14) is the one plotted in Figures 1.8, 1.9, and 1,10 for
various values of p, o and w.

1.5.1.4% Two-Way Traffic in the Main Road. ¥ there is a two-way
stream in the main road, the resulis still apply with suitable reinterpre-
tation of the parameters, provided both streams are binomial, We as-
sume the safe distance for crossing, w, is the same for both streams.

K p,, p, are the densities in the two streams, the probability that a time-
point will be occupied by a car in either of the streams is p, + o -p D
and we can set p equal to this value in the formulae above.

We have not yet fitted these formulae to actual data, as we have not
yet found any data in a suitable form. It is therefore difficult to tell just
what the effects of the simplifications we have made will be, However,
from the data in the papers by Raff and Greenshields it can be seen that
w may not be constant but may sometimes vary fairly widely from car
to car. The formula may still be fairly accurate if we use, in place of
w, some parameter of the distribution of w. Previous suggestions as to
what parameter to use include the mean of the w distribution {Green-
shields) and the median (Raff), but neither of these need necessarily be
the best, as the following argument will show.

Consider the mean waiting time when « is small. In this case

1
pP

approximately. Expressing P in terms of p we have

(1.33) z (1-P-w P

n

(1.34) E=%(1-p)-W:%[{1 +wp)+ﬂ-¥—+—1)p2+...]-—g-w.



40 STUDIES IN THE ECONOMICS OF TRANSPORTATION
approximately. If p is also small then

(1.35) z = ’—; wiw + 1)

approximately, When ¢ is small, there is a negligible chance that a
queue will form. Thus if w has a distribution, the mean waiting time
can be obtained by averaging (1.35) over the distribution of w. Then

(1.36) -z=—gE[W(w+1)] ,

suggesting that the constant W which gives the best fit is the solution of
the equation w (w+ 1) = E [w(w + 1) ].

1.5.2% Repeated-Cycle Traffic-Lights Case

In this case a red interval of length r is followed by a green inter-
val of length g time-points, and then the whole cycle is repeated. To
find the mean waiting time it is necessary to find the average queue
length over all time-points. First we find the queue length at the start
of the x'! red interval, q, say.

Let u, be the number of cars arriving in the x'P cycle consisting of
a red interval and the succeeding green interval. If q,,,; is the queue at
the start of the next red interval, then

(1.37) Qxs1 = max (qy + ux - g 0) ,

where u, is distributed over 0, 1, 2,..... , I' + g in a binomial distri-
bution with parameter «, that is,

(1.38) Prob (u, = n) = (r ; g) a™1 - af "38°0

Thus the q, are generated by a Markoff chain. The condition that this
process should settle down to statistical equilibrium is

(1.39) U, < g.

It is simple to find a complete analytic solution for the distribution
of qy when the system has attained statistical equilibrium as the solu-
tion of a finite difference equation. However, we will confine this dis-
cussion to the calculation of mean queue length over all time-points.

We will do this calculation in two parts, first considering the mean car-
points of waiting during red intervals, and then during green intervals.

For the red interval the calculation is similar to that in (1.21)
above. The queue which is waiting over until the first point of the inter-
val stays throughout the interval, and thus contributes r E(q,) to the
average car-points of waiting during each red interval. A car arriving
at the first point of the interval contributes r, and as the probability of
a car arriving at that point is a, the mean contribution to the wait is ar.
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The mean contribution per interval from the second point is a{r-1),
etc., the contribution from arrivals at the last red time-point being o.
So the total red-interval waiting of cars arriving in the red interval
averages g_ré_;_ﬂ)_ per red interval and the mean amount of waiting

during each red interval by all cars is
(1.40) r[EGeo+§ @+ 1]

Now we must find the mean amount of waiting during green inter-
vals. Suppose the queue at the beginning of the green interval is Qg
Consider the mean wait of cars in the queue if all subsequent time-
points were green. The time taken for the queue to diminish by one {if
it is not zero in the first place} is the number of green points to and in-
cluding the first one in which a car does not arrive; this time is thus
distributed geometrically, with parameter o and meanl—_la . The queue
during all but the last of these time-points is Qg; during the last time-
point it is q; - 1. The mean car-points of waiting during this time is

1
thus s 98- 1.

The time taken for the queue to diminish by one more is distributed
in the same way, and the queue during all but the last of these time-
points is qg - 1. I all subsequent time-points were green, the process
would continue until the queue had vanished altogether. The total wait
for that time would have the mean

3 [ 1= 1)
(1.41) #1[Ta® " 1 " oice |9 } "
so that, averaging over the q, distribution, the mean wait would be

{1.42) 3 ll-a) E [qé + (20 - 1) qg]

However, the green interval is not in fact infinite, and we must subtract
the wait that would reach over into the next red interval. To do this we
subtract the wait attributable to the queue at the beginning of the next
red interval., This will average

1

(1.43) aicay E [qzﬂ (20 - 1) qx]

Thus the mean wait over the finite green interval is

(1.44) ‘2(11—45 E [q; - ax + (2a - Vg - qx)]
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Suppose v, is the number of cars arriving in the xth red interval; v,

=0,1,2,...,r. Thenq, = q,+ v, and E(qy) = E(q,) + E(v,). Since v,
is independent of q, it follows that

(1.45) E (qp) = E(ax) + 2 E(v,) Elay) + E(v2) .

Cars arrive with frequency ¢ in both red and green intervals, so E(v,)
=r a. And since vy is binomially distributed, we have

(1.46) E(v) =r a(l - a) + r?a?

Thus the mean car-points of waiting during each green interval be-
comes, by substituting these values,

(1.47) .z [E (@) + 5 (r+1)] :

Adding the amounts of waiting given by (1.40) and (1.47) for the red and
green intervals, the mean amount of waiting per cycle is

(1.48) —-E»&- [E(qx) + % (r + 1)]

and the mean wait per car will be

r E(gx) + 1
(1.49) (1-a)g+r) [ a - 2 J

Thus we only need to find E(qy). It seems, however, that the sim-
plest way to find E(q,) is not from the analytic solution. The q, distri-
bution can be found numerically from the generating equation by a sim-
ple iteration. (The matrix is infinite, so it has to be truncated. It
can be proved that this type of truncation can still give approximations
to the ergodic probabilities of the infinite matrix however.) The mean
wait can then be calculated by the formula given.

1.6. An Application of the Intersection Model to Road Capacily

When fast cars pass a slow car on a two-lane highway, the situation
shows some rather close similarities to the case of a car in a minor
road crossing a major road at a stop sign. A fast car coming up behind
a slow car must wait until there is a sufficient gap in the opposing traf-
fic. When such a gap appears it may be able to pull over into the other
lane and pass. H, ahead of it, there are other cars also waiting for an
opportunity to pass the slow car, then our car will usually be able to
pass only after these other cars have done so. The relation with the
wait at a stop sign is clear. Passing the slow car corresponds to cross-
ing the intersection. The opposing traffic, which has the right of way in
its own lane, corresponds to the major-road traffic., The fast cars
coming up behind the slow car correspond to the minor-road traffic.



ROAD AND INTERSECTION CAPACITY 43

And we can suppose, as a simplified description of drivers’ behavior,
that fast cars will only pass when there is no car due to come in the
opposing lane for at least some fixed time interval, which we can call
the critical gap.

The analogy is close encugh to give some hope that the quantitative
theory developed for the stop-sign case may also be useful in giving a
theoretical basis for the free-speed capacity curve on a two-lane high-
way. As a first and perhaps rather drastic simplification, we might
suppose that in one of the lanes there are just two types of cars, slow
and fast, and that the slow cars are distributed sparsely on the road. In
the opposing stream the traffic all goes at roughly the same speed. If
we could know the average delay to fast cars in passing each of the slow
cars as a function of the densities of fast cars and the density of the
opposing stream, we could then derive a free-speed capacity curve for
this simple case. We show how this can be done in the next section.

1.6.1% Free-Speed Capacity Derived from lhe Average Delay

Suppose that the speed of the slow cars is v,, and that they are, on
the average, a distance d apart. The speed of the fast cars is v,.

We will for simplicity make an extra assumption, that the average
delay of a fast car in passing a slow car is the same for each slow car,
W say. Such an assumption is probably adequate if, for example, the
fast traffic and slow traffic are both sparse, so that the fast cars do not
interfere with each other in passing a slow car. We have tried to test
the validity for denser fast traffic by means of “Monte Carlo” experi-
ments (that is, numerical experiments designed to simulate traffic be-
havior). The results of these experiments are discussed later in this
section, W is a function of the opposing traffic density and of the criti-
cal gap. However, we will not show this dependence in our notation,

We want to find the average speed of the fast cars, taking into ac-
count their delay. The speed of the other traffic is unchanged by the
congestion on the road. To do this we will find the distance covered by
a fast car in a period of time of length T. T can be divided into T,, the
time during which the car is going at its free speed,v. and T, the time
during which it is delayed behind a slow car traveling at v,, The aver-
age speed v of a fast car can then be written

Vi T]_ + Vsz

{1.50) VETRT T

I by N we denote the average number of slow cars overtaken by
one fast car in time T, then we have

_ T,
d/(Vz -w)
since on the average a fast car takes a time d/{v, - v,) to travel be-

tween one slow car and another at its free speed, and it spends a time
T, traveling at its free speed. We can now write T, = NW and

(1.51) N
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T: = Nd/(v, - v;). Substituting for T, and T, in the expression for v, ‘
canceling the N’s, and multiplying numerator and denominator by (vz - v|
we find ‘

v = Wvi(ve-v,) + dv,
W(Vz - Vl) +d

A similar formula can be derived if we suppose that there is sparse
traffic traveling at more than two speeds on the road,

The average speed of both kinds of traffic, fast and slow, taken to-
gether, is given by

(1.52)

W(Vz - Vl) vy + d.Vz

(1.53) M, vi + M; Wivs = vi) = d ,

where M, and M, are the relative numbers of the fast and slow cars.
This formula gives a theoretical form to the free-speed capacity curve
in the case which we consider.

1.6.2%. A Monte Carlo Experiment

We have assumed above that the mean delay of traffic in passing
each slow car is the same. This assumption needs examination if the
fast traffic is dense. Our theory of passing behavior leads us to ques-
tion it for the following reason. The mean delay of cars crossing an in-
tersection (or passing a slow car} depends on the distribution in time of
the arrivals of such cars. In our derivation of a theoretical formula we
have assumed a particular form for this distribution: that the arrivals
form a binomial sequence. However, if cars arrive in a binomial se-
quence, they do not leave the cause of congestion (the intersection or
slow car) in a binomial sequence, Thus their average wait behind this
next slow car may be different from the previous one. In the same way
the spacing distribution may change again in passing this obstacle; so
the average wait behind the next slow car may be still different.

Thus far we are expressing theoretical possibilities. We have not
yet succeeded in treating analytically this type of guestion about passing
through successive queues, We therefore decided to resort to “Monte
Carlo” experiments, that is, experiments with simulated traffic streams
generated by random devices, to get a feel for the problem and to judge
the importance of these effects. These experiments did not have very
positive results, However, we will report them very briefly here, as
they may give some useful information to others faced with the same
sort of problems. When we started the experiments we had two alterna-
tive hypotheses, either of which would be useful in deriving a free-speed
capacity curve,

The first was that despite the modification of the spacing sequence
in passing through each queue, the formulae derived from the binomial
assumption were satisfactory in any case,

The second was that, failing the first assumption, the mean delay
changes for the first few queues through which the fast car passes, but
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fairly quickly settles down to be more or less constant for later cars,
though this constant might be different from the result derived for the
hinomial sequence.

To explore these possibilities the experiments we performed were
a5 follows, Initially, a sequence of minor-road (or “fast-car”) arrivals
was generated over 500 time-points by drawings from a binomial dis-
tribution. The output from this distribution was passed through a
red/green sequence also derived from a binomial sequence, with the
assumption of a constant critical gap.

The departure sequence, derived by using the method described in
Section 1.2.4, was used as the arrival sequence of an exactly similar
type of queueing process. Since all the fast cars would take the same
time to cover the distance between slow cars, we could neglect this time
in our calculations. The whole process was repeated fifteen times,
representing the traffic successively passing fifteen slow cars on the
road, ) .
In computing the average waiting time, that is, the average queue
length over the period, it was decided to neglect the first time-points,
while the process was starting up, An arbitrary rule was used that for
vach process the waiting time would be computed from a time-point 40
time units after the queue first became non-zero. The mean waiting
time was calculated by taking the average queue length over time-points
from that point to the last (the 500th),

The sequences fluctuated rather heavily from one process to the
next, Part of these fluctuations may be due to the relative shortness of
the series. The queue series are necessarily highly autocorrelated and
this means that, as a statistical sample, the series are equivalent to a
much smaller number of “effective” or “independent” observations than
the original 500 time-points. In any case, the experiments we per-
formed give no evidence of stability of mean waiting time.

The work was done on a punched-card machine. The results show
that if Monte Carlo methods are to be used in this type of work, the ex-
periments would have to be on a still larger scale, so that an electronic
romputer would probably be appropriate. But it does not seem that such
evxperiments will give very useful results without more theoretical
knowledge of repeated queue processes.



Chapter 2

DEMAND

One of the striking features of traffic is its resemblance to physi-
cal flows. The relations between speed and volume and such phenomena
as the propagation of waves of stopping and acceleration are under-
standable in large part from the mechanics of motion {see, e.g., Herrey
and Herrey, 1945; Pipes, 1952). However, appealing as this physical
view of the matter is, it neglects the purposive aspect of traffic, which
becomes particularly important when attention is shifted from the single
road to an entire network, that is to say, when we are interested in
understanding the generation and distribution of traffic within a system
of interconnected roads.

The point of view to be adopted from here on is that vehicles are
operated by people who (1) have a range of choices available to them
and (2) are motivated by economic considerations in their decisions,
This element of choice prevails even though, once committed to the
road, the movement of vehicles is strongly circumscribed by the traffic
conditions around them. For there is always the question why people,
anticipating these constraints, and particularly the irritations of con-
gestion, still choose to go when, where, and in the manner they go.

The study of rational behavior in the presence of choice leads into
the domain of economics. In this and the following three chapters some
applications of economic theory to highway transportation will be ex-
plored. The purpose is not to exhaust all economic aspects that seem
relevant or important. Rather the argument is constructed with refer-
ence to two points which may be regarded as but two aspects of the
same matter: that it is possible to give some economic explanation of
the distribution of traffic in a network; and that this distribution, as it
forms itself spontaneously, falls short of efficiently utilizing the avail-
able capacity. For a fairly systematic development of this topic, a
number of concepts must be introduced and some principles postulated,
which may seem rather trivial if looked at in isolation, But emphasis
here is on the fitting together of all relevant concepts into a theory.
The discussion of fundamental concepts falls for the most part into the
present chapter, It has been labeled Demand, because this seems to be
the most characteristic notion that an economic viewpoint can con-
tribute.

The fundamental question in capacity theory, discussed in the pre-
ceding chapter, is how flow on a road determines the traffic conditions,
mainly average speed. This puts flow into the role of a cause. We can,
however, raise the reverse question: how do traffic conditions affect
the public’s decisions of which the flow is the actual result? This is the
problem of the current chapter on demand. The actual determination of
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+Ahe flows through the interaction of demand for transportation and ca-
pacity for accommodating it is deferred to the following chapter on
‘#quilibrium. Unless otherwise noted we shall deal with the problem of
“passenger traffic only.

2.1, Decisions of Road Users

A first step toward economic analysis is to disaggregate flow and

take notice of the various rvoad users. These fall into classes that are
-distinguished by origin, by destination, and by behavior characteristics
such as free speed. Whenever we speak of the demand for road trans-
portation we mean the demand, on the part of road users (or sometimes
only the road users in a particular free-speed class), for transportation
from a particular origin to a particular destination, Whenever we dis-
regard the different free speeds of road users we shall employ the con-
venient fiction of an average road user. It presumes that the composi-
tlon of traffic by free speeds follows some constant pattern on each
road.

With most other means of transportation, once a traveler has
chosen his destination his remaining freedom of choice is usually lim-
ited to a relatively small number of routes and departure times. If he
chooses to go by road, however, he faces decisions about his route, the
speed under various roadway and traffic conditions, and more decisions
cach time he wants to pass a vehicle or an intersection or desires to
weave into another lane. The temporal order of the actual decisions is
that in which they were mentioned. But in exercising a rational choice,
a road user normally anticipates his speed and passing behavior under
various conditions when choosing a route, and he also has some notion
about the route when deciding whether or not to travel by road. A situ-
ation where the logical order of decisions may run counter to their se-
quence in time is not unusual in economics. The location and size of a
power dam, for instance, can be determined optimally only after the de-
sirable policy of water storage for any given reservoir location has
been specified, which in turn is influenced by the demand for power as
affected by the chosen rate structure. Here again the “natural” se-
quence of events is the reverse of the logical dependence of decisions.

In this chapter we shall follow the logical order of decisions; that
is, we shall discuss the choice of individual free speeds first, the selec-
tion of routes (the demand for the use of roads) next, and finally the de-
mand for road transportation between locations, Before this, however,
another concept which is central to economic thinking has yet to be in-
troduced, namely the notion of cost, This will be done in the following
section.

2.2, Costs

To state that economic considerations influence drivers’ decisions
is another way of saying that road users are conscious of costs, Cost



48 STUDIES IN THE ECONOMICS OF TRANSPORTATION

must be understood here, in the wide sense of economics, to include
everything of value that is foregone to attain a certain end.

In this study we are interested in the transportation cost to road
users only; that is, we exclude from consideration all cost to public
bodies incurred through the maintenance or construction of road capaci-
ties. For demand depends on cost to road users only. And we shall not
go so far as to analyze the tax component in gasoline costs, say, which
would reflect to some extent the cost of maintenance and expansion of
the road system. For doing this means going into the “long run.”

The term transportation cost needs to be delimited also in spatial
respects. Thus a distinction will become necessary between cost of
transportation on specific roads and trip cost. In this section we con-
sider the first cost only,

2.2.1. Composition of Transporiation Cost

For purposes of the analysis of demand, the cost of transportation
on a road includes not only the operating cost of a vehicle over the
length of the road, but also such things as the travel time and the risks
incurred.

Operating cost consists of all outlays directly attributable to vehi-
cle use on a mileage basis. This includes fuel, oil, tire wear, deterio-
ration and maintenance as far as these are dependent on mileage; it ex-
cludes vehicle taxes and license fees, depreciation due to time, and
obsolescence. Certain money costs will be considered separately from
operating cost, namely as visk cosi.

Time costs will include the times-in-transit of vehicle and driver,
and perhaps of passengers and loads. The value of a vehicle-hour is de-
termined by the alternative uses of the vehicle that are possible. In
private use the availability of a vehicle at times other than those of its
ordinary use may have some value, but typically a low one. In com-
mercial transportation the value of driver time is set by the wage rate
of the driver, and the value of vehicle time is the earning power, after
all operating cost, of the vehicle per unit of time, But this earning
power is not an independent variable, A brief excursion into the long
run is necessary here. In the long run the value of the vehicle hour
tends to be equal to depreciation plus interest on the investment in a
vehicle. Except insofar as average speed affects the rate of depreci-
ation — an effect which may well be disregarded here — the value of the
vehicle hour is thus independent of the prevailing speed of traffic.

For commercial transportation it is obvious that there exist defi-
nite money equivalents of vehicle, driver, and cargo times. That
drivers in private cars tend to mind their time also and at least im-
plicitly assign some money value to it can be seen in their choice of a
free speed, For an example, let us accept an estimate in Toll Roads
and Free Roads (1939, p. 39), according to which “Tests on several
makes of modern passenger cars show that with steady driving on con-
crete pavements at a speed of 40 miles per hour the consumption is
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0.0575 gallon per mile, At 60 miles per hour the consumption becomes
0.082 gallon per mile.” It follows that a driver preferring to go at 60
rather than at 40 miles per hour values a saving of one hour by at least
the price of 2.9 gallons of gasoline, which is in the neighborhood of 85
cents. Unawareness on the driver’s part may blur and possibly di-
minish this figure somewhat. On the other hand, the fact that we have
interpolated linearly a curve which is bent upward, and that risk and
other operating costs are increasing with speed also, is likely ito raise
the figure again. The estimate conveys, however, an idea of the order
of magnitude of the value of time, as applied to driving,

Under Risk Cost we shall include the losses from accidents in
terms of life, health, and property, as well as the irritation from the
threat of such accidents, which is particularly manifest under conditions
of road congestion,

2.2.2. Transporitation Cost as a Function of Flow

It is for the elementary reason that the transportation cost on a
road varies with the flow of traffic that economic considerations of a
short-run character are relevant at all to transportation in highway net-
works. This dependence may be described very simply by saying that
an individual road user is the worse off, the more traffic there is on the
road he is traveling. This is 50 because the presence of other traffic
causes delays, added risks, and extra operating cost as expended in
passing maneuvers. The road user incurs a higher transportation cost
the larger the flow, even though a lower average speed may actually re-
duce his operating cost and although risks, as measured in accidents
per vehicle mile, may start falling off at a flow level where passing be-
comes increasingly rare,

The explanation is of course that these latter cost reductions, if
any, from congestion are more than offset by the accompanying losses
of time. By congestion we mean here traffic conditions which occur at
flows that “substantially” reduce average speed on the road. I it is
assumed, for instance, that below a certain flow level average speed is
“practically” independent of flow, so that a vertical section of the ca-
pacity curve is appropriate, then congestion would begin at the flow
level where the vertical section of the capacity curve terminates.

On this apparently obvious point that costs increase because delays
do, a few remarks are in order. One might ask why road users do not
seek compensation for congestion in higher free speeds. Although the
uniform-speed capacity curve shows that this is physically possible
only within certain narrow limits, economic considerations also suggest
that it is not feasible for the individual road user to try to stretch his
possibilities to this limit. An increase in the free speed is either out of
the question because the road user recognizes an absolute speed limit
imposed on him by risk considerations or by the law, or else an in-
crease of speed is possible but increasingly costly in terms of both risk
and operating cost {Beakey, 1937), The conclusion is that both travel



50 STUDIES IN THE ECONOMICS OF TRANSPORTATION

time and transportation cost increase or at best remain constant for
each road user with increasing flow,

That the average travel time should be increasing (or constant) with
respect to flow is just a restatement of the facts described by the free-
speed capacity curve. The other relationship, that average cost is also
increasing or constant with flow, will prove important enough for our
analysis to warrant the introduction here of a corresponding average-
cost capacity function. By this we mean the average transportation cost
on a road for all road users entering during a unit period of time re- .
garded as a function of the traffic flow, It differs from the previously
considered capacity functions only by the inclusion of operating and risk
cost,

2.3. Demand fov Road Use

2.3.1. Choice of Routes

So far we have been concerned with the behavior of road users on a
single road. We did not have to consider in detail the economic moti-
vations that underlie the main decision, that about free speed. Princi-
ples of choice must be considered, however, when it comes to the be-
havior of a road user in a network. The outstanding problem is the
determination of choices of routes. Let us introduce some concepts
pertaining to networks first.

We start with a set of locations which we shall call poinis. All ori-
gins and destinations will be at these points, and every voad will be a
direct link between a pair of points. In general of course not every pair
of points will be connected by a road, and some points will neither origi-
nate nor terminate traffic. By including all intersections in the set of
points, we ensure that each road is a distinct segment of our network.

The rate at which traffic originates at a location, i.e. the net out-
flow to all destinations per unit of time, will be referred to as {net)
origination. Similarly (nef) termination denotes the rate at which traffic
terminates, or the net absorption of traffic at a location per unit of
time.

A trip denotes the path of a vehicle starting at one point, the origin,
and terminating at another one, the destination. The roads traversed in
Succession on a trip are said to constitute its route. The traffic flow in
both directions on a road is the sum of all traffic flows to the various
destinations which enter this road from either direction.

Vehicles are now distinguished not only with regard to their free
speed, but more importantly with respect to their destination. Flow and
transportation cost remain variables defined with reference to a road.
The notion of the cost of a trip between locations is introduced later and
set in relation to transportation cost on roads.

The simplest possible assumption about choices of route would be
that drivers select the geographically shortest one. But this would dis-
regard roadway and traffic conditions entirely. If traffic conditions are
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to bear at all on the choice, an obvious next assumption is that the route
should be chosen so as to minimize total travel time.! A completely
rational route in the economic sense would be one that minimizes cost
to the road user {in the broad sense defined above). We shall assume
that actual choices of route approach this ideal to the extent that routes
chosen are those of smallest average cost of transportation (averaged
over users of each road). This amounts to considering a fictitious
average road user, who incurs on every road the transportation cost
that is indicated by the capacity function at the prevailing flow, While
the errors committed in this way do not exactly cancel out, it seems a
plausible and simple approximation to the actual routing of traffic flow.

Henceforth, for brevity, we shall call a route that is optimal in
terms of average cost a shories? route. It need not be unique, of
course. A shortest route defined with reference to an origin and a
destination contains within it the shortest route that leads {rom any in-
termediate point io the destination. The notion of a shortest route now
permits us to define transportation cost from any origin to any desti-
nation, simply called the {rip cost, as the average cost along a shortest
route. Then, along a shortest route, this trip cost to a given destination
decreases as the origin is moved from one road end point to the next by
exactly the average transportation cost on the road cut out. Along roads
not on a shortest route, trip cost to a given destination decreases by
less or even increases. The converse is also true. I there exist num-
bers, associated with all conceivable trips, which decrease by the full
amount of transportation cost along roads that belong to certain routes,
and which decrease by no more along all other roads, then the routes so
distinguished are shortest routes and the numbers are the trip costs,
provided that they have value zero where origin and destination coin-
cide.

This is best seen graphically, In Figure 2.1, let 1-2-3-4-5-6 de-
note the shortest route between 1 and 6. Now the fact that this route
continues from 2 via 3 rather than via 7 means that the trip cost from
7 to 6 plus the transportation cost on road 2-7 is more than the trip cost

Q’ |

7

Figure 2,1

1. See Trueblood (1952), where this hypothesis is tested.
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from 2 to 6. In other words the trip cost to 6 decreases along road 2-7
by less than the transportation cost on that road, whereas it decreases
by exactly the transportation cost incurred on any road that is part of
the shortest route 1-2-3-4-5-6,

Let us assume that the route 1-2-8-5-6 is a shortest route also.
Then the cost from 2 to 5 is the same for both of the alternatives, 2-3-
4-5 and 2-8-5. Counting transportation cost on roads positive in the di-
rection toward the destination and negative in a direction away from the
destination, the sum of costs on roads along the closed circuit 2-3-4-5-
8-2 is zero. A closed cycle of this kind has been called a neutral civ-
cuit (Koopmans and Reiter, 1951, pp. 247-248). Neutral circuits indi-
cate the existence of more than one shortest route.

In the following section we shall formulate mathematically the re-
lationship between shortest routes and trip costs, and demonstrate our
assertion that shortest routes are completely characterized by this re-
lationship,

2.3.2%. Shortest Routes and Trip Cosis

Let locations be indicated by single letters i, j, k, where i usually
stands for an origin and k for a destination. Roads are designated by
the pair of adjacent locations they connect, ij for instance (Figure 2.2),

Figure 2.2

Transportation costs y on roads ij are written Yij- Since we do not dis-
tinguish between costs in the two directions, Yij = ¥ji- For points i and
j that are not contiguous, ¥ij is left undefined. Trip costs from origin i
to destination k are denoted by y; . (Notice that the subscripts are
separated by a comma.) Now

(2.1) Vik = Min {yjj + yi1 + Yim * oo+ Yni)

that is, the minimum of all chain sums of y_ . starting at i and termi-
nating at k in which consecutive elements have one subscript in common.
In particular yk k =.0. (Since all y.s > 0, it follows incidentally that
these minimum chain sums do not contain any closed subchains.)
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Consider yy, yx for two locations m =i and m = j connected by a road ij.

Extending the minimum chain that leads from j to k by adding Yijy we
have a chain from i to k, but not necessarily a minimum chain, Thus

(2.2} Vixk =VYij + ¥k

To summarize: for every pair of points i,k there exists a uniquely
determined number y; ) such that

(2.3) Yik = ¥k = Yij and “=" for some j; yyxx = 0
We next show the converse. I for every pair of points i,k there is

a unique number y; i satisfying (2.3), then the y; y represent shortest
distances:

(2.4) yi,k = min (yij + yj1 +... + ¥nk) -

Let i-j’~-1’-....-n’-k denote a shortest route. Then

Vik - ¥i'k = Vij’
- r =
yj ',k Yl g Yj e
(2.5) ’
- < .
Y k yk,k = Yo

Since Vi k- 0, one obtains by addition of these inequalities

(2-6) yik gy-f

+ ...t .
it Y Y

On the other hand, since the y, , satisfying (2.3) are assumed to be
unique, there must, between every pair of points i and k, exist a se-
quence of pairs of points starting at i and ending at k for each of which
the “=" sign holds in the inequalities (2.3}). Let one such sequence be
denotedi-j” - 1" -....-n" - k. Then

(2.7) .

i,k

= + + ...+ .
Yi,J L yj Ml " yn"k
By definition of a shortest route,

2.8 Y, e Y LSy LAY, Lt .
(2.8) Yijr yjl, Y o Yij ler Yo

Combining inequalities (2.6), (2.7), and (2.8) we obtain that

(2.9) Vi = Yipr ¥ Yy ¥ T Yo
Min (yij + le +...F ynk)
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so that the numbers y, , indeed denote the shortest distances (in terms
of transportation costs).

In the economic theory of industrial location the points i of com-
mon yj i for a given k are referred to as isodistanis if cost is meas-
ured in terms of distance, isochvones if measured in terms of time, and
isovectures if measured in terms of transportation cost {Palander, 1935,
pp. 337-360),

2.3.3. Induced Demand fov Use of a Road

Once the shortest routes for traffic between each pair of locations
are found at prevailing traffic conditions, flow on each road can be de-
termined. It is the sum of the numbers of trips per unit of time for all
those origin-destination pairs whose shortest route goes through the
road. As explained more fully in Section 2.4.1 below, we assume that
the amount of flow demanded between any pair of locations depends only
on the transportation cost between them. But whether or not a shortest
route goes through any given road depends on the transportation cost on
all roads that might be part of alternative routes. It is useful as an ap-
proximation sometimes to consider the flow on a given road {resulting
from the demands for all trips) as a function of the transportation cost
on that road only. In that case it is implicitly assumed that transpor-
tation costs on all other roads are unchanged, and in particular, that
they remain unaffected by any shifts of flow from the road in question to
alternative routes. This is a plausible assumption only if the flows on
the road considered are relatively smail.

The fact that there may be several shortest routes, and that a small
change in transportation cost on the road may alter its flow by the whole
amount of flow on a route, shows that the demand function for road use
is discontinuous under our assumption that route selection depends only
on relative transportation costs.

2.4. Dewmand for Transportation

A certain amount of driving on a particular road may of course be
for pleasure’s sake, in which case it represents ultimate consumption.
Typically, however, the demand by drivers for the use of a particular
road is not immediate but arises out of the demand for transportation
from one location to another.

This need for transportation arises from the divergent locations of
economic activities. In personnel transportation, the obvious cause is
locational separation of residence, places of work, commodity markets,
and cultural facilities. Commodity transportation is promoted ulti-
mately by the geographical division of labor. This in turn is based on
differences in the resource endowments of regions and on the greater
economies of production on a large scale. Descriptive details on the
locational distribution of economic activities fall into the domain of eco-
nomic geography, and theoretical discussion of these phenomena is the
subject matter of location theory.
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However, our understanding of locational phenomena is far from
sufficient for an accurate prediction of the demand pattern for transpor-
tation, given the general economic structure of a city or region. A for-
mula has been advanced by some authors, e.g. Stewart (1950), for the
intensity of intercity and interregional relations which is modeled after
Newton’s law of gravitation. Economic relations according to this for-
mula are directly proportional to the algebraic product of population
figures and inversely proportional to distance, suitably measured. By
implication this formula should also describe the demand for intercity
and interregional transportation. This, however, seems unlikely, for no
account is taken of the specific economic structure of cities or regions.

Some interesting theoretical suggestions concerning the demand for
transportation in cities are also advanced in the recent monograph by
Mitchell and Rapkin (1954). Total origination or termination in an area
is related to the character of the residential and commercial establish-
ments in the area. An important observation is, for instance, that origi-
nation tends to be proportional to the total floor space devoted to com-
mercial enterprises in a given district. Empbasis is given to the
“linkage” in originations of people and of commodities between estab-
lishments located in one area.

2.4.1. Demand for Trips

In a model which attempts to set forth the interdependence of flows
in a network, recognition must be given to the fact that the amount of
traffic that originates at a given point for a particular destination per
unit of time is in general not independent of the traffic conditions on the
relevant route or routes.

This obvious principle needs careful limitation. It does not imply
that the pattern of originations and destinations could not show consider-
able rigidity in the short run. In particular it does not dispense with the
necessity of studying actual typical patterns. It implies caution, how-
ever, in the causal interpretation of such origin-destination patterns.
Although such and such a ratio of floor space to truck trips prevails in a
certain area (Mitchell and Rapkin, 1954, p. 172), this ratio may not be
invariant under changes affecting traffic conditions. If the output levels
of a plant closely determine its origination and termination intensity for
a given technology, traffic conditions may force a change of technology
or of location to maintain profits, A point often emphasized is that the
central business districts of cities may experience a reduction of their
levels of activity to the point where the demand for traffic can be ac-
commodated by their available road capacity {and parking facilities).

In line with our approach to traffic in terms of its economic moti-
vation, we shall consider the demand for transportation between a given
origin and destination to be a function of average trip cost between
these locations.

Demand must be defined with reference to a time period. Now on
each road traffic shows a characteristic variation over time. This is a
reflection of the fact that the demand for transportation between
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locations fluctuates in various ways. For instance, intercity traffic has
a pronounced weekly pattern of fluctuation, while commuter traffic
shows extreme daily fluctuations as well. Depending on which types of
roads and of road use one is primarily interested in, a different period
is thus appropriate for the definition of demand. In any case it is a
simplification to regard demand in terms of an average flow per period
of given type, as the case may be. It is an even cruder approximation
to have this demand depend on the average traffic conditions during that
period only. However, simplification is the price of analysis.

Let the curve representing the number of trips per period between
two locations which are undertaken at various average cost levels be
called the demand curve for travel between these locations. The curve
in Figure 2.3 is one example.? We assume here that the general price
level and the income distribution are fixed. By its nature the demand
curve has an upward slope nowhere, In certain circumstances, when the
number of trips is independent of traffic conditions, the curve is verti-
cal, and demand can then be described compietely by fixed origin-
destination figures.

- 5 Average
trip cost

A
Prevailing B
average
cost D
Numbe; OE pﬂps
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Figure 2.3

The notion of average trip cost requires some attention here be-
cause the population of road users changes along the demand curve. To
be consistent, the average should always be taken over the population of
actual road users at any point of the demand curve.

The demand curve may also be interpreted as a ranking of trips,
where each trip is labeled by its urgency, that is, by the “critical” cost
level at which it would still have been undertaken.

The excess of this critical average cost for only one trip over the
prevailing average cost represents a clear gain to the road user in
question, It appears in the form of a saving in money cost and corre-
sponds to what is known in the economic theory of market demand as a
consumer’s surplus. Geometrically it is represented (approximately)
by a strip extending from a horizontal line denoting the prevailing aver-
age cost to the demand curve with a width corresponding to one trip

2, In economics, price or cost is conventionally placed on the vertical axis, even
though in many cases, as in this one, cost is the independent variable,
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{crosshatched in Figure 2.3). While the actual cost for a trip need not
be the prevailing average cost— so that the area of the strip may he
different from the gain of the particular road user in question — never-
theless the total area between the demand curve and the horizontal line
of prevailing average cost indicates exactly the cost saving to all road
users at that level of average transportation cost. Here the benefits in
money terms enjoyed by various road users have been added up tacitly
as homogeneous and commensurable. In particular it is implied that
there are no effects of income differences which would render a dollar
saved at a high level of cost worth more, or less, than a dollar saved at
a low cost level. However, the equilibrium analysis which follows will
do without this or any other value judgment. We will refer again to the
road user’s benefit in Section 4.1.2.

The form of the demand function is dependent, among other things,
on the alternative means of transportation available and their rate
structure, In general the demand for transportation between a given
pair of locations would depend also on the costs or travel times to and
from other locations. It has been shown, for instance (Mitchell and
Rapkin, 1954, pp. 39-53), that most automobile trips within cities are
round trips with more than one destination. However, this applies to
the movement of the persons rather than to those of the vehicle, which
appears often to partake in only the initial and final phase of the journey.
If intercity traffic is taken into consideration, a merger of the possibly
plural destinations into one would not seem to be a bad approximation.

Similarly in the long run when locational changes are admitted, a
case can be made for the dependence of demand on transportation cost
from or to various alternative locations. But since our interest is in
the short-run phenomena, this complication may be disregarded here,

2.4,2% Demand Functions and Capacity Functions

Let us now introduce a mathematical notation for demand. The
number of trips per unit of time from origin i to destination k will be
called x; y for i not equal to k. We shall define the sy mbol - x y to be
the termmatmn at destination k. Since terminations at k must match
the sum of originations for k, we have Z X; x = 0. The number of trips

as a function of trip cost will be wrltten Xi k = § k(y; k). We shall make
frequent use of the inverse relationship y; . = g; k('x1 1) This inverse
function g; i exists because the demand function f1 k is monotomc, as
the trip cost goes up, the number of trips decreases if anything.® Sta-
tionarity of g; ) over some interval would mean that demand is perfectly
elastic there; a small rise in the prevailing transportation cost would
induce a substantlal decrease in demand. This is not to be expected
even in the presence of alternative means of transportation. Without

3. While the demand for certain commodities may increase with price in particular
circumstances involving income effeects, this is not likely to be the case with the demand
for road transportation.
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resiricting ourselves we may therefore assume g; , to be strictly de-
creasing, that is
dg.
(2.10) X <0,
ik

wherever g; y is differentiable. The case of fixed origin-destination fig-
ures (perfect inelasticity) means that the graph of g; k 1s a vertical line
and that the derivative is minus infinity.

We shall now give the notation and summarize the relevant proper-
ties of road capacity functions. Let x;; denote flow on road ij. The
order of subscripts is immaterial here and in what follows: Xij = Xjiy
Yij = Yji» and h = h.; (notice the ahsence of a separating comma in the
de51gnat1on of road J) The capacity function y;. = i= hlJ (x; J) is never de-
creasing;

(2.11) Y >

The “=" sign can hold when flow levels are small enough to make inter-
ference between elements of traffic negligible. From the considerations
in Section 1.4 it appears that delays and hence costs increase indefinitely
as a certain flow level Ci;, the absolute capacity limit, is approached:

xij > cij

The most obvious differences between these two types of elementary
data functions, the demand function, and the capacity function, are
(1) that in the capacity function, flow is the cause and transportation cost
the effect, while in the demand function, trip cost is the cause and trips
(constituting the flows) are the effect; (2) that demand is defined with
reference to any pair of locations while capacity refers only to roads;
and (3) that demand decreases as cost increases, whereas in the capacity
curve, cost increases or remains constant as flow increases.

From the economic point of view, capacity and demand appear to be
pairs of opposites similar to supply and demand. Capacity is the
“supply of trip opportunities at various costs.” The analogy, however,
is a loose one. In particular, while under perfectly competitive condi-
tions the supply function in a market for ordinary commodities tends to
be the same as the incremental cost function, here the capacity function
corresponds more nearly to an average cost function.



Chapter 3

EQUILIBRIUM

The discussion of capacity and demand in the two preceding chap-
ters has supplied us with some fundamental notions on traffic flow. In
this chapter we propose to explain the pattern of traffic in a network
from the interaction of the demand for transportation between many
pairs of locations and the capacities of roads in the network. This de-
mand is distributed over various routes and, on each road, over various
free speeds. It thereby affects the traffic conditions on the roads, and
these react again on the demand for traffic. In an attempt to unravel
these relationships of mutual determination, it is useful to have refer-
ence to a situation of equilibrium.

With regard to a road in isolation, equilibrium means the following,
At every level of traffic conditions, as measured by the average cost of
transportation, a certain demand for the use of this road is forthcoming.
If this demand is larger than the prevailing flow, the traffic conditions
get worse and the average cost of transportation increases. This tends
to curb the demand, perhaps to the extent that flows fall below the in-
itially prevailing level. Then traffic conditions improve again and at the
reduced level of transportation cost an increased demand is forthcom-
ing. There is however one level of flow at which traffic conditions give
rise to a demand just equal to the prevailing flow. This is what we shall
call the equilibrium flow,

One might think of equilibrium in a network as simply a state in
which flows on every road are in equilibrium. But as we have pointed
out, the notion of the demand for use of any particular road as a function
of transportation cost on that road only involves a simplification that
seems inadmissible in the analysis of flows in a network. Such a de-
mand function could be defined only on the assumption of ceteris pari-
bus, namely, of unchanged transportation costs on all other roads. But
a change of flow on one road is bound to affect flows and hence costs on
some other roads. Therefore a somewhat broader approach is called
for.

Demand refers to trips and capacity refers to flows on roads. The
connecting link is found in the distribution of trips over the network ac-
cording to the principle that traffic follows shortest routes in terms of
average cost. The idea of equilibrium in a network can then be de-
scribed as follows. The prevailing demand for transportation, that is,
the existing pattern of originations and terminations, gives rise to traf-
fic conditions that will maintain that same demand, Or, starting at the
other end, the existing traffic conditions are such as to call forth the
demand that will sustain the flows that create these conditions.

States of equilibrium may be defined for a short period such as the

59
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peak hour in daily traffic, or, if finer fluctuations of demand are dis-
regarded, for a longer period such as a day or a week. In the last case
road users presumably go through their routines repeatedly and at regu-
lar intervals. The maintenance of the patiern of road use under given
demand conditions therefore implies that drivers have not been dissatis-
fied with their choices. Put another way, this says that the anticipated
cost of the various alternative routes or modes of travel on which de-
mand for transportation, choice of route, and choice of free speed are
based corresponds to the realized cost.

3.1. Equilibrium in a Nelwork

Suppose that between two points there are two highways, one of
which is broad enough to accommodate without crowding all the traf-
fic which may care to use it, but is poorly graded and surfaced,
while the other is a much better road, but narrow and quite limited
in capacity. If a large number of trucks operate between the two
termini and are free to choose either of the two routes, they will
tend to distribute themselves between the roads in such proportions
that the cost per unit of transportation, or effective return per unit
of investment, will be the same for every truck on both routes. As
more trucks use the narrower and better road, congestion develops,
until at a certain point it becomes equally profitable to use the
broader but poorer highway [ Knight, 1924, p. 162 ].

This example demonstrates the principle of traffic distribution
among alternative routes in equilibrium. (1) I between a given origin
and a given destination more than one route is actually traveled, the cost
of transportation to the average road user, as indicated by the average-
cost capacity curves, must be equal on all these routes. (2) Since the
routes used are the “shortest” ones under prevailing traffic conditions,
average cost on all other possible routes cannot be less than that on the
route or routes traveled, (3) The amount of traffic originated per unit
of time must equal the demand for transportation at the trip cost which
prevails.

It is useful to reformulate these conditions in terms of traffic on
roads rather than on routes. Making use of the relationship between
shortest routes and trip costs we may restate the three principles as
follows. At each location there is a well defined trip cost to any desti-
nation for the average road user. (1) It decreases toward the destina-
tion by the full (average) amount of transportation cost along all roads
on which some traffic flows to that destination; (2} along any other road
it decreases by less than or at most the same as (average) transporta-
tion cost; (3) the amount of traffic originating at any point for any desti-
nation is determined by the demand for transportation arising in re-
sponse to the (average) trip cost to that destination, This origination
then equals the excess of outgoing traffic over incoming traffic (to this
destination). The amount terminated at a location is, of course, the sum
over all origins of traffic flows with this destination,
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Total traffic on the various roads fixes the transportation cost on
each road and this again determines the trip cost from each origin to
the various destinations. Through the demand function this cost regu-
lates the traffic flow between pairs of locations. The distribution of
these flows over the various roads follows by means of the relationship
between costs on roads and trip costs. Thus the circle of the equi-
librium conditions is closed.

But can we be sure that this circular definition is meaningful? Will
there always be a well determined equilibrium if demand and capacity
curves have the usual properties, that demand decreases as trip costs
increase and that transportation costs increase as flows increase on any
given road? Is it possible to compute and predict the equilibrium distri-
bution of flows once the demand and capacity data are given? And
finally, is the equilibrium stable or will it be thrown off balance by the
slightest deviation?

These are all questions that we shall gradually seek answers to in
the following sections, not all of them mathematical ones. In these sec-
tions we show that the relations described determine an equilibrium,
that an equilibrium always exists if demand is a decreasing function of
trip cost and transportation cost is a constant or increasing function of
traffic flow, and that the equilibrium is unique whenever the shortest
routes between all pairs of locations are unique and cost is strictly in-
creasing with increasing flow. These statements are also true in the
less obvious case of commodity transportation.

3.1.1*%. Formulation of the Equilibrium Conditions

The number of vehicles entering road ij from either end per unit of
time, briefly called the flow on that road, was denoted by x;;. However,
our elementary variable will be the flow on a road in a given direction
to a particular destination, written X0 ko where the ordered pair of sub-
scripts ij denotes the direction from 1 to j on road ij, and k denotes the
destination. This flow is distinct from that in the opposite direction
and it does not admit of negative values:

(3.1) X5 k =20 for all ij,k .

By our previous definition total flow on a road equals
(3.2) xiJ = in = i (xij’k + le'k) ’

and, of course, (3.1) implies

We have already encountered a third flow variable, namely the num-
ber of vehicles originating at location 1 with destination k per unit of
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time, x; . Since this rate of origination is indicated at i by the excess
of flow to k on outgoing roads over that on incoming roads we have

(3.4) Xig ~ ? (Xij,k - xji,k) .

In Section 2.3.2* the relationship between transportation cost on
roads and trip costs was formulated. We can now express the fact that
traffic uses shortest routes by saying that on roads not in a shortest
route to a location k flow to that destination is zero:

(3.5) Xjj k=0 My - ¥y <V

The second relationship between flows and costs is that expressed by
the capacity function

(3.6) vij = hij{x;;)

Qur third flow variable is related to trip cost through the (inverse) de-
mand function for transportation:

(3.7 ¥ik = 8idxi0
Finally we restate the definition of y; j given in Section 2.3.2:*
{3.8) Yik - Yjk = yij and “=” for some }, yy , = 0

We now have for each of the variables yij, ¥i ks Xij Xij k» Xj k at
least one relation in which it is “explained” in terms of some other
variable(s). Is this a complete system of conditions which under suit-
able assumptions about the functions involved -~ g; i{y; k) and h;j{(x;;} --
has a unique solution?

To answer this question our system must be brought into a more
concise form. As a direct consequence of (3.5) and (3.8) we have

= >
(3.9) Yik - Yj,k{<}Yij if xij,k{ }0 » Yek =0

In all cases where the flow between a pair of points is zero, the second
alternative of (3,9), which then holds, does not fully determine the values
yi k of trip costs. It merely imposes an upper bound on them. At the
same time equation (3.7) affords a lower bound, for it restricts the y; i
to levels above which demand is zero. The slack which is thus intro-
duced whenever flow between two points is zero does no harm, for then
the exact value of trip cost is irrelevant, economically. Since the no-
tation in the first line of (3.9) will be used frequently in what follows we
shall at this first occurrence write out in full the statements involved:
Vik - ¥j,k =¥ij» Xij,k =0, and yi x - ¥j,k = ¥ij if X5k > 0. In par-
ticular, (3.9) implies the aksence of “cross hauling”: if x;; x > O then
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Xjik~ 0. As a next step we can substitute for the cost variables the
corresponding functions of the flow variables. Our system then reduces
to the inequalities

(3.10) gi 1% - gj,k(xj,k){<}hij(xij) if xlj,k{ } 0

plus the defining equations (3.2) and (3.4).

Incidentally, (3.10) may be used to find two expressions for the pre-
vailing total cost of transportation, Multiplication on both sides by Xij k
and addition yields

(3.11) T (eadxi - g% Xijx = T hij Xk
ij,k ik

» bl

Rearranging terms and using (3.4) and (3.2) we obtain

1
(3.12) iﬁ( g k(X)) « Xk = 3 ;22 hii(x;) - x4 -

The left-hand side represents the sum of all trip costs, the right-hand.
side the sum of all transportation costs on roads.

3.1.2*%. Existence of Solutions to the Equilibrium Conditions

A well known characteristic of the equilibria encountered in theo-
retical mechanics is that they may be regarded as solutions to certain
extremum problems, a fact which has occasionally given rise to some
speculation about nature’s grand design. Whatever the merits of teleo-
logical interpretations, the possibility of formulating an equilibrium in
terms of maximization is a useful piece of mathematical information.
For instance, the fact that there is a maximum problem associated with
the present equilibrium system (as there are extremum problems for
many other economic equilibria cf. Samuelson, 1948, pp. 21-23), will
give us a proof that there exist solutions to our system. Consider the
function

e L,

(3.13) H(----:xij,k;---) = Z ogi,k(x) dx - 3 z hij(x) dx .
i,k ij o
(Economists are warned that this is not to be interpreted as consumers’
surplus! The term on the right has as its kernel the average, rather
than the incremental cost to users collectively.) Here the factor %

comes in because we wish to sum over every road but once, while each
road is denoted by two pairs of indices, ij and ji. Differentiate with re-
spect to xj; k after substituting for x; x and x;; from (3.4) and (3.2).
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The result is

8H
O0%ij

(3.14) = gi,k(xi.k) ~ £ ,k(xj,k) - hij(xij)

The necessary first order conditions for a maximum are that the de-
rivatives of H be nonpositive in all directions in which x;; ) can change
without becoming negative, In the interior of the positive orthant
(x3j,x > 0 for all ij,k) we therefore have the usual conditions that the
derivatives shall vanish, while at a point of the boundary where some
X;jk = 0 the derivative with respect to any vanishing x;; j must be non-
positive:

0 . 1
(3.15) 5;;25;2 0 if xlj_k>0and"a—xa—1;:‘;§0 ifxij,kz o .
We now recall the existence of absolute capacity limits c;; as expressed
in relation {2.12). In the closed set defined by the two conditions,

0 = xij,x and x;; Sd;; <c;; for some suitable d;; the function H...,
Xij,ky o .} is continuous since it is a sum of indefinite integrals of
Riemann integrable {because sectionally continuous) functions. We con-
clude that H assumes its maximum at some point. While this point may
siill depend on the dj;, it will not do so if djj is sufficiently close to ¢y,
because of (2.12)., At that point of maximum the necessary conditions
(3.13) must be satisfied. But these conditions are identical with {3.10).
Therefore there must exist a solution to inequalities (3.10) and the sup-
plementary defining equations (3.2) and (3.4). Of course, H was just so
constructed that the first order conditions for a maximum (3.15) become
identical with the equilibrium condition (3.10).

3.1.3*%. Unigqueness of the Solutions

In preparation for the question of when a solution to our equilibrium
conditions is unique, we shall first show that the function H is concave,
as defined below,

Consider the quadratic form of its second derivatives (sometimes
known as the Hessiarn) at a point Xxij x, With zjj i denoting the arguments
in place of the former x;; ,. We shall use the obvious abbreviations

245 = 2 (2 * Ziiwdy Zix S , (2356 = Zjid o

(3.16)
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We have
E PR 62H Z
ik ij,k axij,k axlm,n Im,n
Im,n
(3.17) = iJ?:,k zi; 8%,k - Zik = 8k * ZjK

- B (zyik + 2 W - 2
ij,k 1J,k _]l,k) 1] zl]
i<j

After rearranging of terms in the first sum, this becomes the left-hand
member of
(3.18) 5 @ik fik-g I Wiy S0

ik ij
The inequality holds identically in the 2;; ) and Xxj; x because inverse de-
mand g; k is a decreasing function and capacity hjj an increasing func-
tion. This shows that the Hessian is negative semidefinite for all
A differentiable function whose Hessian is negative semidefinite is
known to be a concave function (Bonnesen and Fenchel, 1934, pp. 18-19).
By this, one means the following: for every a, 0 < a <1, and every two
sets of variables (xi;3) = X, (Xij 1) = X,

(3.19) H [ax + (1 - a) x] >aHx +(1-a)H (x)

Incidentally, a function is called convex if its negative is concave.
Next we prove the following useful lemma.

Lemma: Let F(u) be a concave function of a set of variables u = (u,
oyllpy ... ,Uy). Sufficient for F(u°) = ma;:o F(u) is that F be differenti-

u
able at u = u° and that

oF R I
(3.20) (aur)uzuo {5}0 if u,.{ i } 0

Proof: Borrowing directly from Kuhn and Tucker [185 1] we first prove
“that for every concave function F(u), differentiable at u’,

(3.21) Flu) < F(u’) + z F% « {uy - u)

V]
where Fy denotes QE}E—)—
duy

. For any a, 0< a <1, we have

(3.22) Flu) - Fu) < Flu’ + a{u - u%)] - F(u%
- a
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by the definition of a concave function. Hence in the limit, as a >0,
(3.23) F{u) - F(\) <« Z F% . (u, - u%)

r

We proceed to the proof of the lemma proper. By (3.23) and (3.20),
in that order, we have for allu, = 0

(3.24) F(u’) 2 F(u) - T F? - (u; - u}) 2 Flu).
r
It follows that F{u®) = M;XO F(u), which proves the lemma.
u
T

It is easily verified that (3.20) with F and u, corresponding to H and
Xij k. respectively, is nothing but our old equilibrium condition (3.10).
We conclude that every solution of the equilibrium conditions yields a
maximum of H. The converse fact, that every maximum (in fact every
extremum) of H yields a solution to the equiltbrium condition (3.10) is
already known to us. From this and the concavity of H it is now seen
that for every two solutions xi; x and :T(ij k of (3.10) the linear combi-
nations

axijk + (1 - a) Xijk for 0 <a <1

are likewise solutions of the equilibrium condition (3.10), a {act which
is not immediately obvious.

The possibility of a plurality of solutions is inherent in certain
properties of the equilibrium. Suppose that two routes are equally at-
tractive between two locations that are transit points for flows from
several origins or to several destinations (a so-called neutral circuit —
cf. end of Section 2.3.1), Then it is of course arbitrary in what propor-
tions these flows are allocated to each route as long as the total flows on
each route have the proper magnitudes (so as to maintain equality of
average cost over the two routes).

On the other hand, one expects equilibrium flows Xjj on all roads to
be unique when demand functions are strictly decreasing with trip cost
and all transportation cost functions are strictly increasing with flow,
We are now in a position to prove this assertion. Suppose that there ex-
ist two solutions x and x. By what was sa.id before there must then ex-
ist, on the line segment connecting x and X, a maximum which is located
arbltrarily close to x. Call it x + §x. Expanding H at x

(3.25) H(x + 6x) = H(x) + z _om .
k OXij k
_®H .
¥ i.]z:k axij.kaxlm,n 6x1],k dxlm,n + .

lm,n

Because x is a point of maximum the second term at the right vanishes.
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Since x + §x is also a maximizer, H(x + §x) = H(x), so that the last term
of (3.25) must vanish, But this term was shown to be equal to

(3.26) Z gk - (6% - iZJQ hifdxgF o .
1’

Our assumptions were
(3.27) g'i,k <0and h';; >0 forall ik, ij .

Therefore &x; , = 0 and dxij = 0 for all i,k,ij. That is, the originations
and flows on roads are uniquely determined.*

Under what conditions does the uniqueness of these variables imply
that flows x;; i distinguished by destinations are also uniquely deter-
mined? This is the case when no neutral circuits are present — that is,
when the network layout and flow conditions are such that no two routes
between any single pair of locations are equally attractive (cf. Section
2.3.1).

3.2. Effects of Changes in Capacity and in Demand

How do the equilibrium flows change in response to shifts in ca-
pacity functions or in demand functions? An increase of capacity,
brought about by construction or improvement of roads, is understood
here to be reflected in a lowering of the capacity curve: to every flow
there corresponds a smaller average cost than before. An increase in
demand means that the demand curve has shifted upward, so that a given
flow comes forth at a higher transportation cost. To be specific, let us
assume that all capacity functions are strictly increasing and all de-
mand functions strictly decreasing. Then the following assertions can
be made, which are plausible in themselves.

An increase in the capacity on only one road either has no effect on
flows at all, or leads to a positive increase of traffic at least on this
road. Simultaneous changes in the capacities of several roads either
leave all traffic unchanged, or cause a growth of traffic on at least one
road of increased capacity, or a decline of traffic on at least one road
of decreased capacity, More generally, one can say that traffic growth
tends to accompany capacity increases in the sense that a certain
weighted sum of the algebraic products of capacity change and traffic
change is positive whenever any change in traffic takes place at all,

With respect to demand, similar statements, obtained by appropri-
ate substitutions, are valid, Although these remarks on changes in
equilibrium flows appear quite obvious, they have been mentioned here
because they hold equally in the less trivial case of commeodity trans-
portation, and also because they illustrate a mathematical principle
which will be useful later on.

1. This proof can easily be extended to show that the two components i X % and
']f,( x}; x of each flow are uniquely determined.
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The next section presents the mathematical theorem whose eco-
nomic conient has bheen given in this section.

3.2.1*%. An Inegquality on the Effect of Data Changes

In order that capacity and demand be characterized by definite par-
ameters, let us assume both to be given in terms of linear functions,
For simplicity it will also be assumed that the absolute capacity limits
are nowhere attained. Denote the capacity functions by

and the inverse demand functions by
(3.29) i X k) = e Xy + £k
The maximand H of Section 3.1.2* thereby becomes
1 2
i’Ek [ 7 Gk Xk +fx X }
1 2 1

(3.30)

In order to evaluate the effect of finite changes da;j, 8b;;, 8e; ). and
&1 x in the corresponding parameters of capacity and demand, recourse
is had to the following general theorem, which in economic theory falls
under the heading of the Le Chatelier Principle (Samuelson, 1946-47;
1948, pp. 36-39).

Theorem: Let qur be the coefficients of a negative semidefinite quad-
ratic form, qnr = qrn. Consider the problem

Max I:nzrxn(lnrxr+ zarer
xrgo ] iy

(3.31) subject to T bgr X, < g

r

The solution equations are

= >
{3.32) 2 E Jnr Xp + ar - % | P bsr{f} 0 if xr{_} 0
= <
where 1 0 if % by, x, (8
z r =

Let finite changes in the parameters and variables be denoted dq
..,081s 8x., respectively. We shall show that

nrt**
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lz_;{rzl: [xn (6qnr +8q_)+ 8x, q, + 8a,

(3.33) . 1Sab5r] 8x.} - = 81, (dc,
] 8

-Z48b,.x.) 20

If q,, represents a negative definite form, then dx, ¢+ 0 for some r im-
plies “> " in (3.33).

Abstract of Proof: The Kuhn- Tucker Theorem for concave maximands
and linear inequalities as constraints (derived below, Section 4.3.1*) as-
serts that the solution x} and the Lagrangean multipliers 1% can be ob-
tained in terms of unconstrained extremum problems. For shortness,
write

Z
X X, + Z a, X
n’r j 0% an r T r r

(3.34) + T 1. (cq - T bop %) = Mx,1)
[} r

According to the theorem gquoted,

{3.35) M(x*1%) = Max M (x,19 = Min M(x% 1)
Xx. 20 1, 20

Denote the same function in terms of the modified parameters by
M(x,1}). Then

(3.36) ME,L+80) - M +6 120

because, by (3.3 53,‘the first term is greater than and the second term
less than M (x°, I’). The “>” sign applies if some 4x) >0 and q,,,. is
negative definite, because M is then strictly concave in x,. In a similar
way we find that

(3.37 M{x*+ 6x1) - M(E,1°+8P) >0

because, (x_ + §x, 1°+ 8') being the solution to the problem when the
parameters are modified, the first term is greater than and the second
term less than M (x° + 8x° 1°+ 8I'). The sum (3.36) and (3.37) yields
the desired inequality (3.33).

In the present case constraints (other than the restriction to posi-
tive values) do not occur, so the 1, in (3.33) are zero. Therefore the in-
equality (3.33) when applied to the function H of (3.30) becomes simply

1
3 i,}i (2x; ) + 0x; 3) de; x 0% x
1 .
(3.38) ol ifj' (2xij + éxij) Gaij 6xij

i
b, . P .. ..
+ ik 8f; « 0% x 5 123: b j; 6x1J 20
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where corresponds to % , and we can omit Z and put n = r, since now
n

b
i,k
Onr i8S zero whenever n £ r. The “> ” alternative holds if some 6xij 0
or some éxi,k $0, provided that all e; x < 0.

If only one capacity is changed and demand remains unchanged, then
all the Jei,k, 0fj k are zero and all the da;; and dbj;j are zero except
those for some particular ij. In this case (3.38) becomes

(3.39) [ﬂ 3 (2xij + 8xi)) bayj - 5 abij] bx;; 20

Suppose we have a single capacity increase; a capacity change will be
unequivocally an increase only if

(3.40) $aij £0, dbij £0, faj;+ db;; <0

Otherwise the traffic required to bring about some particular level of
cost would be less than before. Since xj;and x;; + éxi]- are non-negative,
the bracketed expression in (3.39) is non-negative, and positive when
éxij ¥+ 0. We conclude that Gxij =0. (Equality occurs when x;; = 0, that
is, when the road was useless to begin with.) Thus the reactions of flows
to changes in capacity follow in all cases the pattern that one would ex-

pect.

3.3. Stability

An equilibrium would be just an extreme state of rare occurrence if
it were not stable - that is, if there were no forces which tended to re-
store equilibrium as soon as small deviations from it occurred,

Besides this stability “in the small” one may consider stability “in
the large” -- that is, the ability of the system to reach an equilibrium
from any initial position. This latter type of stability is interesting not
only because it concerns the capacity of the system to reach a new equi-
librium position after some big change, but also because one may want
to use an analogue of the adjustment process as a method of computing
an equilibrium solution by successive approximations.

3.3.1. Adjustments of Road Users

The study of stability hinges ultimately on the question of how road
users adjust themselves to changes — that is, how they adapt the extent
of their travel by road and their choice of routes to varying traffic con-
ditions. This, however, is one of the big unknowns of road-user be-
havior, so that at the present stage only conjectures are possible.
Through a simple and plausible model one can get a rough picture of the
minimum of conditions that must be met in order that the adjustment
process should converge,

In our model we shall assume simply that those road users who do
not just continue in their previous choices will choose their routes and
the number of trips by road on the basis of the traffic conditions that
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prevailed in the preceding period. (Nothing need be assumed about the
length of these periods, but this type of behavior is most plausible when
the periods are fairly long.) These road users who have or can obtain
adequate knowledge of the traffic conditions, even if not by first-hand
experience, choose a route which is optimal at the transportation cost
of the last period and set their demand for transportation at levels cor-
responding to the average costs of trips during the last period.

The responsive fraction of road users in each period will be re-
garded as an independent random sample drawn from the total popula-
tion of road users. Its size is assumed to decrease as time proceeds,
until a new occasion for adjustment arises with another change in the
network, Traffic which is actually experimenting to find optimal routes
will be disregarded as just a random disturbance, whose size also de-
creases in the course of time.

As an extreme case, consider first a single road on which all road
users decide about travel on the basis of the traffic conditions in the
preceding period. This is but an instance of the well known cobweb phe-
nomenon which occurs in terms of price fluctuation in certain markets
{hogs, shipbuilding) where the production decisions are made consider-
ably in advance of the marketing period (Tinbergen, 1951, pp. 143-148),
When prices are high, production is expanded, After the increased out-
put becomes available, prices drop and as a result production is cur-
tailed, When as a consequence prices go up again, the whole cycle is
repeated. Whether these fluctuations continue at a steady level, grow
increasingly violent, or ultimately die down depends altogether on the
relative slopes of the supply and the demand curves in question. In the
present example Figures 3.1 and 3,2 show that a damping of the oscil-
lations takes place whenever the slope of the demand curve is greater

Transportation Capacit Transportation Capacity
cost curvy cost curAve
Demadynd
curve
T
T~Pemand
curve
Flow Flow
Figure 3.1. Unstable Case Figure 3.2. Stable Case

in absolute terms than the slope of the capacity curve. This condition
is likely to be met in reality, since the demand for road transportation
presumably does not respond in a highly elastic way to transportation
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cost. At any rate the effective demand curve will have a rather steep
slope whenever the responsive fraction of road users is small.

By way of contrast consider next a network of two roads between
two locations and a fixed demand. To be definite let us assume that just
one-fifth of the road users adjust their routes to the last prevailing
traffic conditions. Figure 3.3 gives a graphical description of what
happens. Let the entire line segment represent total flow and the num-
bered points the distribution of flow among the two roads during suc-
cessive periods. Let 0 be the equilibrium distribution. Consider an
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Figure 3.3

arbitrary initial distribution, say point 1. Since the equilibrium point is
to its right, the cost on the road whose flow is measured by the interval
from 1 to the right end point is larger. Therefore one-fifth of its flow
will shift to the other road. The next distribution point is therefore the
point which marks one-fifth of the interval to the right of 1 as measured
from 1 on. This is point 2, It still is to the left of 0. And so we obtain
3 from 2 in the same way as 2 was obtained from I, Point 4 will now
fall to the left of 0. Continuing in this way the following becomes ap-
parent. Points keep oscillating around 0 for a while with odd-numbered
points to the right of 0, even-numbered points to the left. At the same
time there is a steady drift of even and odd points among themselves to
the right. (This is due to the fact that 0 is situated to the right of the
center.) Finally an even numbered point will fall to the right of and
rather close to 0. Say, that this is point 8, But then the next step will
carry an odd point (9) rather far to the left, but obviously not more than
one-fifth of the distance between the left end point and 0. It emerges
that oscillations will continue to range over one-fifth of the entire flow.
Only by an extremely slight chance can a distribution point ever coincide
with 0 and thereby arrest any further oscillation.

It may seem paradoxical that equilibrium is approached to within
the same proportion of total flow as that which designates the responsive
fraction of road users. The smaller the fraction of drivers who take
notice of changes in traffic conditions, the better is the approximation
in the end. Emphasis here is on the phrase “in the end.” For each step
by itself in the movement toward equilibrium carries one so much less
far.

The adjustment processes in a network may be understood as a
superposition of these two basic types of movement. We have computed
two examples which will demonsirate the approach to equilibrium and
the extent and persistence of fluctuations that our model describes for a
network with flexible demand.
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3.3.2. Numerical Examples of Approach to Equilibrium

In the following pages two hypothetical examples are presented,
solely for purposes of illustration. They are intended to show a possi-
ble method of computation and to exhibit the process -of convergence to-
ward a stable equilibrium discussed in the preceding section. The
parameters were chosen arbitrarily and any resemblance to an actual
road network is accidental. An attempt was made to select parameters
which would result in relatively inelastic demand functions and signifi-
cantly different costs on alternative routes.

Both examples are based on the same road network, which is repre-
sented in Figure 3.4. All traffic is assumed to move in an eastbound
direction (i.e. from lower-numbered points to higher-numbered points);

5
2

3
Figure 3.4

or, at any rate, westbound traffic is ignored. Functional relationships

between flow and cost and between cost and demand are taken as linear.
In the first example (see below) no flows Xx;j i were assumed between

adjacent points. This example was worked first with the fraction a of

Example 1
1
Viz = 2 + 3 X Yia = Yz + ¥
_ 2
Yia = 2 + 3 ¥ Yiys T ¥in t Yas
Vs = 2+ % X Yo,6 = MIN(Y544Y46,¥21 * Vs05¥21+Yae)
_ 1
Vau = 2 + F X Vi = Min(y,s + Y%, Yiz *+ Vo)
1
Yos = 3 + 3 Xes g4 =5~ .4y,
1
Yis = 3+ 5 Xas 81,5 =6 - 'SYL,S
=2+1x =8-.3
Yas 5 Xae Big = O = Y, 4
1
Yss=3+§xsa &s=7'-6yz,e
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responsive road users equal to one, and zero flows initially on all roads.
With the parameters used, there was no sign of convergence. The ex-

ample was worked a second time with a = 1 » again starting with zero
flows on all roads, but there was still little or no indication of conver-

gence. The third attempt was made with a = 1—(1} , and beginning flows

equal to estimates of the equilibrium flows based on the range of the
oscillations observed in the second trial. This approach resulted in ap-
parent convergence.

In the second example some of the parameters were altered, and
flows between adjacent points were included. In this case there was al-

ready a tendency to converge with a =% , starting from zero flow on all
roads, but some oscillations persisted. The value of ¢ was then de-
creased by stages first to 1 and then to 2 . The amplitude of the re-

5 10
maining oscillations was thereby decreased.

Example 2
yiz = 5+ .5 X%, €= 16 - 3y,
yis = 15 + .2 x4 g3 = 14 - .2 y,
V= 9 + .6 X, €23 = 24 - .2 ¥y
Va = 10 + .2 %, Bz2,a = 30 = .1 ¥aq
ves = 11 + .4 x5 g2,5 = 28 - .3 yas
Vas = B + .3 Xy Bas = 20 - .6 vy
Vas = 6 + .4 X4 Bae = 18 - .2 yue
Ve = T + .5 Xgq Bse = 12 = |1 yg
Yia= Yiz + Vo 81,6 =90 - 4y, ,
Y1, Y12 + ¥as Bi,5 = 60 - .5 yi s
¥2,5= Min (Y2« + Y45, Yos + Voo, Y23 + Yas) 8o = 10 - .6 yup
yi,6= Min (yis + e, Yiz + Yo,8) Bi1,6 =80 - .3 yi6

In both examples it was found that flows from 1 to 6 settled down
rapidly to a single route, over which the flows converged asymptotically
(if at all), Flow from 2 to 6 oscillated between two routes, namely
2-4-6and2-5-6. The oscillations were of fairly constant ampli-
tude and period, although the oscillation was asymmetric, as can be
seen from the graphs (Figures 3.5-3.8). In the first example there was
some indication of longer “waves” superimposed on the oscillations,
but these were not apparent in the second example.
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It can be assumed that oscillations would die out faster if the frac-
tion a of responsive road users were a decreasing function of the cost
difference between the alternatives being compared, with a tending to
zero as the cost difference tends to zero. Another factor leading to the
same result is the fact that some weight may be given to experience of
the more remote past, especially where oscillations have already been
experienced.
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Chapter 4

EFFICIENCY

4.1. The Problem

An economic approach to traffic analysis should not only explain the
interaction of many individual decisions in some state of equilibrium,
but also provide criteria by which to judge the performance of the sys-
tem. Since roads are scarce means, their best utilization is an im-
portant concern to the community, In the present chapter we attempt to
clarify the economic meaning of “best utilization” and to evaluate traffic
equilibrium in the light of this interpretation.

4.1.1. Allocation of Road Capacily

The rules of the road, by determining which traffic is to have pri-
ority in crossing an intersection or passing an obstacle, achieve an allo-
cation of the available road capacity to those competing for its use, A
similar function is exercised by speed limits and passing restrictions,
even if the lawmakers’ concern may have been primarily that of safety.
Thus a slow vehicle proceeding on a road where traffic conditions afford
little opportunity to pass in effect exercises a power to exclude faster
vehicles for extended periods from the road space available in front of it.
This allocation of capacity necessarily involves a distribution of time
losses and hence of cost.

An allocation of road space also takes place in a more subtle way
through the adjustment of route selection {o traffic conditions. In the
case of two roads between a pair of locations traffic distributes itself so
that average transportation cost becomes the same on either road. If one
road is shorter but of small capacity, the delays at equilibrium due to
the more crowded conditions on the shorter road would just compensate
for the greater operating cost on the longer road. Congestion on the
short road, by discouraging further traffic there, has led to a diversion
of some traffic to the long road. This too may be called an allocation of
road space,

There is nothing inevitable about this particular allocation; a differ-
ent distribution could have been achieved by arbitrarily assigning all
vehicles with odd-numbered license plates to the longer route, say. In
the case of the equilibrium distribution, as Pigou has pointed out, it
would be possible, by shifting a few cars from one road to the other,
greatly to lessen the trouble of driving for those left on the congested
road, while only slightly increasing the trouble of driving along the less
congested road, “In these circumstances a rightly chosen measure of
differential taxation against [the congested road] would create an ‘arti-
ficial' situation superior to the ‘natural’ one. But the measure of

80
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differentiation must be rightly chosen” (Pigou, 1920, p. 194). What is
the basis of this economic value judgment?

4.1.2. Meaning of Efficiency

As long as the demand for transportation between given points or
the demand for net transportation of commodities from each location is
fixed independently of flow conditions, the choice of a criterion of effi-
ciency seems obvious: the minimization of the aggregate cost to all
road users. But the very notion of aggregate cost involves an evaluation
of the time losses and dollars spent by various classes of road users,
The way in which we have defined our demand and capacity functions
implies, however,that we shall treat everyone like the average road
user. There is no scope in this model for a differential evaluation of the
costs and benefits to classes of road users. A single exception is to be
found at the end of this chapter, in Section 4.5, which explains some of
the consequences of differential time valuation.

For our analysis it makes no difference, however, what the relative
weights are that we attach to the money cost, time, and risk of the aver-
age road user. For, as we shall see, these weights do not affect the
relevant properties of the cost function we use, 8o that the principle of
our conclusion holds quite independently of the valuations involved.

At this point it may be remarked that an economic valuation of risk
is implied in many decisions that a road user must make and is equally
indispensable in an efficiency analysis from the point of view of society
as a whole, Now any valuation of risk implies in effect the setting of
money values upon human life and health. This is indeed unavoidable
whenever economic activities involve danger to human life and health.
Since a strict adherence to the principle of safety first would mean the
standstill of many economic activities without which modern industrial
societies could not exist, everybody makes a compromise, consciously
or unconsciously, which implies certain high but finite valuations of
human life and health. Highway transportation is no exception to this,

In each selection of a free speed, a choice of the probability of fatal
accidents is implied. Since operating cost and time cost also vary with
free speed, and since presumably the individual seeks his optimum, the
increase of the probability of fatal accidents with an increase in free
speed must be at least compensated by the simultaneous decrease of _
other cost, Knowing how this probability depends on free speed permits
us, in principle, to estimate an upper bound to the value of life as im-
plied in the individual’s driving behavior. There can be no guestion that
individuals are only vaguely aware of the value implications of their be-
havior regarding risk, and that the values revealed by some types of
driving appear socially unacceptable,

Let us consider first the case where transportation cost is identi-
fied with travel time. We have mentioned in Section 2,2.2 the fact that
for every road user, except possibly the slowest vehicle, travel time in-
creases with flow. This statement can be sharpened with regard to the
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rate of increase, and we shall need the property we are about to cbserve
as a prerequisite for the applicability of our mathematical analysis. It
is clear that the time (per vehicle) spent waiting in queues behind slower
cars increases at an increasing rate with flow, at least if the compo-
sition of flow by free-speed classes remains reasonably constant. It
follows that the weighted sum of all travel times, the aggregate travel
time, must increase with flow at a rate which is itself increasing. A
function whose rate of increase is itself increasing or constant is called
convex.' So we may state that aggregate time cost is an increasing and
convex function of flow, regardless of the weights used in the aggre-
gation.

Now whatever the form of the operating cost and risk function, this
result remains valid so long as time is valued highly relative to money
and risk, But in fact both operating cost and risk cost tend to be in-
creasing and convex functions themselves. For small flows both money
cost and risk per vehicle increase approximately in proportion to the in-
crease in the number of passings per vehicle per mile., Risk is, except
for a fixed component, mainly associated with proximity to other cars,
and passing maneuvers involve the closest and most frequent physical
approximation of vehicles to each other. For a straight road with very
light traffic passing may take place without any substantial variation in
speed. However, where passing maneuvers are more numerous, oper-
ating cost often goes up because of the fluctuations in speed usually re-
quired in their execution, and the consequent increase in fuel consump-
tion over the level required at an equivalent steady speed. At small
flows this rate of passing is a convex functicn of flow. At large flows on
the other hand, the money equivalent of the increase of travel time with
respect to flow is of a much higher order of magnitude than any vari-
ation of money cost and risk. Therefore, even If in an intermediate
range of flows the rate of net increase of cost with flow may drop
slightly, we should not commit any serious error in assuming that the
aggregate transportation cost on a road {per mile or for its entire
length) is an increasing and convex function of flow throughout the whole
range of flows.

If demand is flexible, that is, if traffic generation depends on traffic
conditions, then cost minimization is not the whole story of efficiency,
for it leaves undetermined the level of demand at which cost is mini-
mized. What is needed therefore is some measure of the benefits that
arise from the satisfaction of a demand for road use.

In our first discussion of demand, attention was drawn to the mean-
ing of the area under a demand curve and bounded by the horizontal at
the prevailing level of trip cost (Figure 2.3). This area measures the
excess of the maximal cost that road users would have been willing to
spend on the current transportation activities over the amount of cost
that is actually incurred. This expression seems to be an adequate rep-
resentation of the advantages (often different for different trips between

1. Convexity so defined is the same thing as the convexity concept defined in Section
3.1,3* if the latter is applied to a function of one variable.
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the same points) that accrue to road users expressed in comparable
terms, money. It is further recommended by the fact that it is of long
standing in economic theory as a measure of consumers’ benefit or
“surplus” and has been put forward repeatedly in the context of dis-
cussions on the utility of transportation facilities.”

All of this is not to say that the consumers’ surplus would be easy
to measure in practice, but rather that it is adequate from a conceptual
point of view. However, mention should be made again of an implicit as-
sumption on which its applicability rests, namely thaf there should be no
effects on income which would render the costs saved at various levels
of spending of unequal (per unit) value to the road users,

4.2. Cost Minimization on Two Roads

4.2.1. Pigou’s Problem

The principles of cost minimization in a network may be illustrated
by a reconsideration, in terms of a graphical analysis, of the two-road
case with fixed total flow. In Figure 4.1 let AB represent the total flow
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from a certain origin to a certain destination, and let the way this flow
is apportioned to the two roads connecting origin and destination be indi-
cated by some point on the line AB such as X, or X’. Now let the func-
tions relating average cost and flow be represented by the two curves
CD and EF. I X represents the particular division of traffic under

2. E.g. Hotelling {1938). We shall not recite here the various distinctions possible
between consumers’ surpluses depending on the assumptions about the income situation
before and aiter. The fact that we have an “average” curve renders such subtleties
irrelevant here.
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consideration, then AX is the flow on one road and BX the flow on the
other; AL (<XJ) and BM (=XK) are the respective average costs. The
total cost of transportation corresponding to the division X is therefore
represented by the sum of the areas of the two rectangles AXJL and
BXKM. As we have seen earlier, the equilibrium division of traffic will
be that which results in equal average costs on the two roads. In this
case therefore the point X’ with average costs AG and BH (both equal to
X'N) represents the equilibrium division; total cost is represented by
the sum of the areas AX'NG and BX'NH, which in this case is simply the
area ABHG.

Can anything general be said about the division of traffic which re-
sults in minimal total cost? This division can be characterized geo-
metrically as that pair of adjacent rectangles with corners on the two
cost curves which possesses the smallest joint area. In order to see
that in general this will not be the pair of rectangles that have the same
height, we may look at a particularly simple-pair of average-cost
curves, namely a pair of straight lines (CD and EF in Figure 4.2). The
problem of minimizing the area of adjacent rectangles with corners slid-
ing along two straight lines boils down to finding the rates of change of
their areas with respect to small shifts of the common edge.

Consider for instance the left-hand rectangle, designated AXJL in
Figure 4.2. Its area equals that of the trapezoid ACGX which is obtained
by drawing a straight line CG which bisects LJ and every other similar
horizontal from the vertical axis to the average-cost curve CD. The two
triangles, I and II, above and below the bisector CG are congruent, As
the rectangle is expanded along the given line CJ, this bisector CG re-
tains its position and the area change is given by a vertical strip ex-
tending between the bisector and the horizontal axis (the cross-hatched
area in Figure 4.3). For a narrow strip the area is approximately equal
to its width times the ordinate XG. At X the rate of increase of the
rectangular area AXJL with respect to displacements of the point X
therefore equals the length of the vertical XG.

Let the two bisectors CP and EQ be drawn for both cost curves in
Figure 4,2. At a point such as X” or X' (the equilibrium point) where
one bisector lies above the other, a reduction of the area representing
total cost can be achieved by diminishing the base of the rectangle for
which the corresponding bisector reaches higher. The minimum is
therefore realized by letting the common edge of the two rectangles be
that verticle line XG which passes through the intersection of the two
bisectors in Figure 4.3,

It may happen that there is no such intersection but that one bi-
sector reaches the outer edge below the origin of the other bisectors.

In that case all the area is allotted to this one rectangle,

In the linear case just described XG will not pass through the inter-
section of the average-cost curves unless their intercepts with the verti-
cal axes are equal. This means that, in general, the equilibrium distri-
bution of flows is not the one that minimizes total costs.
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The bisector we have constructed for an average-cost curve repre-
sents the rate of increase of total cost with flow. The economic name is
an “incremental”- or “marginal”-cost curve. These curves can also be
constructed for the case of curvilinear average-cost functions as
follows. In order to obtain the point of the incremental curve above the
point X in Figure 4.4, draw the tangent to the average-cost curve ABC
at the point B, where XB represents the average cost when flow is equal
to OX. Extend this tangent DBE to a point E selected so as to make DB
and BE the same length. Now if in fact DBE were the average-cost
curve, the rate of increase of total cost when flow was OX would be
given us by the bisector DG, which by definition bisects FE at a point H
directly above X (note that FH = HE because DB = BE), But since the
true average-cost curve and this hypothetical one are tangent at B, the
rates of growth of total cost at X must be equal. Therefore the true
incremental-cost curve must alsc pass through the point H. XH then is
the incremental cost when the flow is OX. The curve generated inthis way
will not generally be a straight line. Nevertheless, with incremental-
cost curves our assertions in the previous paragraphs remain valid.

4.2.2. Private Cos! and Social Cost

Let us turn back from the geometrical argument to the economic
phenomena, What accounts for the failure of an equilibrium brought
about by free individual decisions to achieve minimization of total cost?
Since every individual minimizes his own cost, the failure must lie with
the allocation of total cost to the individual road users. To pinpoint the
question: does a road user’s share of the cost match his contribution to
the total cost incurred by traffic in the road system?

The answer very simply is no, if we look at the average cost of
transportation on a road before and after addition of a vehicle. From a
certain flow on, each additional vehicle causes some delay and risk to
the others present for which it does not bear the cost. To be sure, in
his own turn this road user will suffer delays and costs from any further
vehicles that might be added. But to the marginal road user, who does
not care whether he uses this road or an alternative one, his own cost is
not a sufficient deterrent, because it does not contain the costs he in-
flicts on the other road users if he should choose the more congested
road. As Professor Frank Knight has put it for the case of two alterna-
tive highways,

The congestion and interference resulting from the addition of any
particular truck to the stream of traffic on the narrow but good
road affects in the same way the cost and output of all the trucks
using that road. It is evident that if, after equilibrium is estab-
lished, a few trucks should be arbitrarily transferred to the broad
road, the reduction in cost or increase in output to those remaining
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on the narrow road would be a clear gain® to the traffic as a whole.
The trucks so transferred would incur no loss, for any one of them
on the narrow road is a marginal truck, subject to the same rela-
tion between cost and output as any truck using the broad road. Yet
whenever there is a difference in the cost, to an additional truck, of
using the two roads, the driver of any truck has an incentive to use
the narrow road, until the advantage is reduced to zero for all the
trucks {Knight, 1952, p. 162].

This situation may also be described in terms of a distinction be-
tween “private” and “social” incremental cost. At a given level of traf-
fic the private incremental cost of road use is the operating cost, time,
risk, and possibly the toll charges incurred by an additional road user
per vehicle mile. Against this one may set the total cost of an extra
vehicle mile regardless of who is bearing it, and this will be called the
social incremental cost of a vehicle mile. K traffic flaw is so small that
the interference of vehicles with each other is negligible and if traffic
does not cause any annoyance to the public at large — a possibility which
we are disregarding on the whole — the social and the private incre-
mental costs of a vehicle mile are identical. In general, however, the
presence of an extra vehicle causes delays and risks to other road
users, so that the social incremental cost of a vehicle mile exceeds its
private incremental cost.

In terms of the capacity function this fact appears as follows. Since
average cost increases with flow, the cost of a vehicle mile, as averaged
over all road users, is raised by an extra vehicle. This increase of the
average cost level times the traffic flow equals the excess of social in-
cremental cost over private incremenital cost. If the road user were to
bear his full share of cost, he would pay a tax or toll equal to this ex-
cess. This would make him realize the cost he causes to others and
thus provide an incentive to keep social cost down by making the proper
choices. This is indeed Pigou’s “rightly chosen measure of differential
taxation,”

4.3. Efficient Transportation in Nelworks

In the two-road model there was no serious problem of determining
which roads would be used under efficient utilization. Traffic on one or
the other road was zero whenever the incremental cost of transportation
on that road was greater than that on the other road even with all the
traffic on it. In a more involved network the answer is less obvious.
Which routes must be considered as possible alternatives to a congested
route is part of the problem. Also, a single origin-to-destination flow
cannot be looked at in isolation, since it competes with other traffic over
some or all of its route. (This is clear when it i8 remembered that a
given road can be a part of several routes.) H the analysis were to be

3. The gain is a clear gain in this case because Professor Knight has assumed that
on the broad road an increase of flow will not reduce average speeds. Capacity, that is
to say, is very high.
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in terms of routes, it would thus appear vastly complicated. Fortunately
an approach in terms of flows on roads rather than routes is possible.
The problem of this chapter thus becomes one of determining for each
road the levels of flow in each direction which are compatible with the
fixed net originations and which result in the smallest aggregate trans-
portation cost. Since graphical analysis is unpromising in a problem of
such complexity, it becomes necessary to apply the formal mathemati-
cal apparatus for minimization of a function of many variables that are
subject to constraints. Economic intuition may, however, be called upon
in terms of an analogous problem in the theory of the firm.

Let us consider a chemical or metallurgical material which is
capable of various stages or modifications, and a firm which undertakes
to transform it from certain stages to certain other stages. Not all con-
ceivable transformations may be possible, of course, and it may be that
various stages can be reached from a given one only via certain other
intermediate stages. Let this firm be given some fixed amounts of this
material in various stages and be asked to produce certain fixed
amounts of the material in other stages. How should the firm choose
the transformation processes which will achieve the production goal at
minimal cost if the further assumption is made that each transforma-
tion is subject to per unit costs which increase with volume ?

Here the stages of the material correspond to locations, the tran-
sitions correspond to roads, and sequences of transformation processes
which lead from a given stage to a desired stage of the material — that
is, the production methods — correspond to routes.

With reference to the production problem economic intuition has
been crystallized in the so-called principle of incrementat cost, Ac-
cording to this principle, the last unit of the material at any particular
stage should cost the same in any production method that is used. Also,
an additional unit would cost more if it were produced by one of the
production methods that is not used. To spell out the principle in the
present case we may have recourse to an internal price system for the
firm. Even though the production task did not specify any prices of the
original or desired stages of the material, the principle of incremental
cost asserts that it should be possible to associate a suitable price with
each of the various stages. A cost-minimizing selection of production
methods is then one where the incremental cost of every transformation
process — that is, the cost occasioned by the last unit so transformed --
is just covered by the price difference between the two stages. In par-
ticular, when nothing is transformed by a particular process, the cost of
the first unit transformed by that process would already exceed the
price difference. These internal prices, also called opportunity costs,
have a distinct intuitive appeal. But is their existence really so obvious,
and can one be sure in all cases that the incremental cost conditions, in
terms of opportunity costs, ensure the minimization of total cost?

A substitution of one production method for another changes the
costs of all the transformation processes involved in the two methods.
But these same processes may also be part of other sequences of
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processes, In that case their cost structure would be upset, too. Is it
always possible to satisfy the incremental cost conditions with respect
to all methods simultaneously? Moreover, might not the far-reaching
cost changes involved in any substitution of methods permit the possi-
bility that the incremental cost conditions will be satisfied before and
after a change, while the total costs will be different? In such a case
the incremental cost conditions might still be necessary but would cer-
tainly not be sufficient for cost minimization,

What these questions amount to is really this: can the choice of the
best production methods and of the extent of their application always be
reduced to comparisons “in the small,” that is, to considerations of the
effect that the shift of one unit produced in this or that way will have on
cost? Or in ascertaining the optimality of a certain combination of
processes, are comparisons with combinations very different from the
one under consideration indispensable ?

To meet these and similar objections that might be raised, a mathe-
matical analysis is called for. Such an analysis will be presented in the
next section. In Section 4.4 we shall return to the economic interpre-
tation of the incremental cost conditions for the road allocation prob-
lem, which in that context are called the efficiency conditions.

4.3.1*%. Maximizalion Subject to Linear Inequali'tz'es as Constraints

The fact that the constraints of our maximum problem include in-
equalities makes it different from the standard extremization problems
in the calculus, Fortunately, the theory of linear inequalities has been
well developed, and in recent years several theorems for convenient
use in so-called lineay and nonlinear programming have been advanced.
For our purposes the following theorem from Kuhn and Tucker (1951) is
adequate.

Theovem: Let f(u) be differentiable and concave. Necessary and suffi-
cient that @ be a solution of

{4.1) Mg.x f(u) subjectto u, = 0 and % be, u. £ ¢

is the existence of multipliers v; such that

0

(4.2) Vo= 0 and “=" if E ber up < cg ,
and such that
‘a?—‘ [f(u) + E v (cg - bsr ur)] ) 0
ur u=u’ é

(4.3)

o {Tpe

4, Concavity is defined in (3.17), Section 3.1.3*,
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Proof: Necessity. Letu®be a point where a constrained maximum of
f(u) is reached. At this point some of the constraints are effective (i.e,
the limits are reached) and some are not. Wlthout loss of generality we
can suppose that u = Ofor r=1,...,R andu’ >0forr= R’+1 .., R
and similarly that E bgr ur=cg for s =1,...,8" and Z bg, ul<c, for

r

s=8+1...,8 Let u be any other point such that

% ber ur < co fors = 1,...,8
Ir
(4.9) 1,... R

ur =90 for r

Then (1 -a)u’+au, 0L ax=<1, satisfies the same constraints and for
sufficiently sma.ll a leaves all those constraints ineffective that are in-
effective for u°. Define %, =1Uu,- u} and

bjr for i= 1,...,S'
(4.5) Bir = 0 for =8 +1,...,8
-1 for j =8 +r and r =1

0 otherwise,
Then u’+ az satisfies the original constraints, provided that
(4.6) Z By 2, =0 for j=1,...,8 + R
r

and ¢ < a < 1, a sufficiently small. Because f(u) is maximized at u°
subject to the constraints in (4.1) we have therefore that

(4.7 flu’ + a(u - u9] - f(u")é 0

a

for all z satisfying (4.6) and for sufficiently small a. But the limit of
this expression as a—0 is

of 0
(4.8) ? (5'1"11) u=u; {uy - uy)

Writing I for (%%) and z, for u; - ul we obtain that Z iz, S0
7 u=ug

for all z, such that E Bjr zr S0,j=1,...,8+R. We now have
recourse to the fundamental Farkas lemma (Farkas, 1901): In order
that Z ar Ur =0 for all u, such that Z Zbjrur S =0 it is necessary and

sufflcxent that
(4.9) ar = ;3 bjr vj with some v; =0
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The Farkas lemma now tells us that there exist v; =0,j=1,...,8 +R,
such that
(4.10) f, =2 v B,

j
Since Bjr =0forj=5+1,...,Sand8+R’' +1,...,8 + R the corre-
sponding v. can take on arbitrary non-negative values. Let us set these
v; equal to zero, Then, translating back into the b, we have

(4.11) f, = % Vebgyr - Vgy, for r = 1,..,R
By the definition of vg, .. it follows that

= >
(4.12) f, - % veb, 0 if ul 0

HA
'

In other words

d o . S 0
(6111) [f(u) + Sél Vs (cs - ZI:' bgr ur)} 0

H

LA

(4.13)

Sufficiency. Suppose that there exist v, for which (4.2) and (4.3) are
satisfied. Then, since f(u) is concave, we have by the lemma of Section
3.1.3%

(4.14) f(u®) = flu) + Zé vy lcg - 213. ber up)

for all u with u, 0. By (4.2), for all u with % b.r ur e,
% v (cp - % b, u.) 20, so that

(4.15) f(u%) z f(u) for all u with % by U, <cg .

4.3.2*%. Minimization of Transporitation Cost
Subject to a Fixed Program

We now apply the theorem of the last section to the problem of
minimizing transportation cost, In the case of fixed originations f;
and terminations ~fy x the maximand is the negative of total cost:

1
(4.16) -3 iEj hyj(xij) xi;

The factor—; is needed because every road appears twice in the sum,

once as ij and once as ji, while x;j already denotes the total flow in both
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directions. Applying the sufficient criterion for concavity, used in Sec-~
tion 3.1.3%, that the Hessian be negative semidefinite, we see that every
term - El hij(xij) Xij is concave in x;; provided

&
(4.17) dx;; P
The left hand side equals

[hij(=i;) x35] 20

d'hs:; dhy;
. L N
{4.18) ——lé—l i Xjj + 2 l i

and each of the two terms is non-negative as already argued in Section
4.1.2. It follows that the maximand (4.16) is concave in x.

As constraints of the minimum problem we have the “program con-
ditions”

{4.19) ? (Xijk - Xji,0) = fik
and
(420) xij,k 20 .

Since consistency of the program implies Z f; , = 0, we can replace the
i i

“=" gign in (4.19) by “>” for the “ >” sign cannot be attained. Label-
ing the multipliers 1; ) we obtain the solution equation (4.3) in the form

1 "
"Q“[ -3 ?? hij(xij)xij + i‘,ﬁk hj k (.;.4 [Xij,g

O xij k 2 i
(4.21) >
- Xjik] - fi'k)] 0 if xjk 0
In explicit form,
>
(4.22) Lix- Lk hi; + hixg; i x4 0

with suitable numbers I; . We notice that (4.22) leaves the 1i x un-
determined up to additive constants cy. We may fix these such that
I,k = 0. The relations (4.22) are then reminiscent of the equilibrium
conditions (3.10). They suggest that the 1; i be interpreted as trip
costs, based however on transportation charges different from simple
transportation costs on roads.

4.3.3*%, Maximization of Consumers’® Surplus

Before discussing this result it is convenient to derive the corre-
sponding conditions for the case of flexible demand. In Section 2.4.1 the
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consumers’ surplus was defined geometrically as the area between the
demand curve and a horizontal line representing the prevailing average
cost (Figure 2.3). It is now necessary to find an analytic expression for
this. Let x; ) be the prevailing flow between locations. Then the area
OABC in Figure 2.3 is given by

Xik
[ g1 dx) dx .
[a]
The area OCBD representing the prevailing trip cost equals

gi X410 Xi )k -

The sum of all consumers’ surpluses would seem to be therefore

Xik
(4.23) i):k { I gi,k(x) dx - gi,k(xi,k).xi,k ]

However the sum of all trip costs to road users need not be identical
with the total transportation costs. An equality of the two, as it was de-
rived in equation {3.12) at the end of Section 3.1,1*, depends on the par-
ticular incidence of cost that we have under conditions of ordinary traf-
fic equilibrium. K, for instance, tolls are charged, then these are part
of trip costs, but they should not be included in total transportation
costs, since they become available again and can be used for such pur-
poses as tax reduction. On the other hand public expenditures for high-
way control and maintenance may depend on traffic, but as this is a
further variable it will be excluded by making the analysis a “short-run”
one in which such public expenditures are held constant. Under these
assumptions we arrive at the proper expression for the consumers’ sur-
plus if we replace the sum of trip costs to individuals,

1
L g s ) e X = (X)X,
i,k gl'k(xl'k) xlik ! by 2 ].Z-% hlj(xl.]) xl.’ !

the sum of operating cost, risk costs, and time costs on roads.

Xi k
Consumers’ Surplus = i}fk § gi k(x) dx
(4.24) 1 o
-3 i};f h;j{%;) * Xi;

It differs from the function H of (3.11) in the second term only.

In Section 3.1.3* we have shown that the first term represents a
concave function of the xj; x. In Section 4.3.2* the same was proved for
the second term. Therefore the expression (4.24) is a concave function.
Its maximum over the positive orthant x;; x 20 is therefore character-
ized, according to the theorem proved in Section 4.3.1*, by the
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necessary and sufficient condition

81 k(% k) = ) wklXj 1) = hyjlxs5) - hi(x;5) x;; 10

(4.25) - =

if xij,k 0 .

This may be written out in terms of two relations

) >
. - . h:ax.: + hi:.x.. - if . 0 .
(4.26) ik = ¥k = 1-]( 1J) IJ( 1J) Xij Xij ) ;
Xk = fi klyi k) -

We thus obtain an efficiency condition of the same form as that in
(4.22) which related to a fixed program.

4.4. Efficiency Tolls

4.4.1. Interprelation of the Efficiency Conditions

The efficiency conditions suggest that efficient utilization can, at
least in theory, be achieved through a state of equilibrium in which suit-
able taxes or tolls are levied on the use of all congested roads. These
tolls are to express the excess of social over private cost caused by an
additional road user. The “toll” term added in {4.22) to the private cost
of transportation equals the increase in the private cost to the average
road user caused by a unit increase in traffic, multiplied by the total
flow of traffic., If this term is added to the private cost of transporta-
tion, one obtains what was called in Section 4.2.2 the social cost of
transportation at the prevailing flow on a road. In the absence of con-
gestion, as indicated by constant average cost independent of the amount
of traffic, no toll would arise.

If such “efficiency tolls” could be levied, they would restore the
power of competitive equilibrium to achieve an efficient utilization of
resources. By charging everyone a toll equal to his contribution to the
total cost of others, road users can be induced to make an efficient use
of the available capacity. It is clear that this toll or tax does not dis-
criminate between destinations or commodities. On the other hand, for
accurate effects it would have to vary with the traffic conditions and
hence be different at different times. In a more detailed analysis based
on a model which {unlike the one given above) takes more aspects of
traffic into account, it would also turn out that the best charges are dif-
ferent for vehicles of different free speeds and of different congestion
characteristics, e.g. trucks as compared with passenger vehicles. We
will not pursue this possibility here.

Under present conditions congestion is the main obstacle to more
traffic. While traffic is not an end in itself, cheap transportation is a
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contributing factor to the economic division of labor, Ready accessi-
bility of centrally located markets is of particular importance, because
it determines the size of markets and the extent to which economies of
large scale production and distribution can be reaped. Congestion, by
setting a limit and a premium upon the movement of persons and com-
modities, restricts the effectiveness with which the functions of cen-
trally located markets can be performed. It seems a paradoxical con-
clusion then that the answer to congestion should be less traffic — even
less, that is, than the existence of congestion at present permits.

The point to be made is that traffic becomes uneconomical if its
social cost exceeds the value of the advantages. And if a full charge
were made for the social cost caused by each road user, traffic would
keep by itself within the economically warranted limits. There is no
avoiding the conclusion that, in the short run at least, free access to
congested roads just permits too much traffic. Congestion is not selec-
tive in any proper way, because it spreads the cost of the least im-
portant or marginal traffic over all other traffic. It may still seem odd
that every individual should pay more for transportation, as must be the
case when demand is reduced on the whole. The clue is of course that
since transportation costs other than tolls tend to go down with a de-
crease in flow, they decrease as a result of the imposition of tolls, The
remaining part of the expense becomes available again as toll revenue;
50 that the community can gain where every individual seems to lose.

The preceding analysis of efficiency in the case of elastic demand
has heen based on an equal weighting of everyone’s money cost and on
uniform money equivalents for time and risk, This is of course only a
special way of evaluating the costs and benefits to various classes of
road users, but one which has the distinction of simplicity and of prima
facie egalitarianism.

One can convince himself that the charging of suitable, discrimi-
natory tolls, depending either on the free speed or the destination or
any other characteristic of road users, if feasible would result in an
efficient utilization of roads in terms of certain nonuniform weights as-
signed to the benefits to various road-user classes. But the proper
choice of such tolls is a formidable problem.’®

By discriminating against the use of congested roads the imposition
of efficiency tolls gives rise to additional shortest routes between given
origins and destinations. For through the added costs, part of the traf-
fic on these congested routes is diverted. In this way the availability of
these uncongested alternative routes has the effect of placing a ceiling
on the efficiency tolls,

When demand is elastic, tolls have the obvious additional effect of

5. It may be mentioned, incidentally, that almost every distribution of traffic over
roads represents a {Pareto) optimum in the sense that it is impossible to make any road
user better off without making someone else worse ofi, as long as no compensation is
payable, either directly or via tolls or taxes. For as a result of the change, traffic is
almost bound to increase somewhere, It is for this reason that a weighting of benefits
becomes indispensable.
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reducing not only the demand for the use of roads with heavy tolls but
also the total demand for transportation on all roads. This implies that
the level of tolls, which rises with increasing flows, must be less than
the level that a calculation of social costs at the ordinary equilibrium
levels of traffic would suggest. One of the reasons for this is, of
course, the utilization of uncongested alternative routes noted above,
From the fact that flows are decreased, on the whole, we must conclude
that the cost of transportation to road users has risen on the average.

For any particular road, of course, the diversionary effect of tolls
on parallel routes may overshadow the decline in the demand for trans-
portation to locations, so that traffic may actually increase there as a
result of tolls. This is quite obvious for a two-road network. What can
be shown, however, is that flows tend to decrease on roads relatively
congested. We shall do this in the next section for the case in which de-
mand and capacity functions are linear and the absolute capacity limits
are unattained.

4.4.2%. Equilibvium and Efficiency Flows

With linear demand and capacity functions the expression (4.24) for
the consumers’ surplus is, using the notation of (3.28) and (3.29),

1 2
i?k 5 ein X * £ X |
{(4.27) Lo .
- ij [ﬁaij x?j*'i bij xij] .

This is less than the function H of (3.30) by an amount 121 —i aj; x‘{j .

Viewing this difference as one brought about by parameter changes
8q,,= -—; a;; We can apply the inequality (3.33) of Section 3.2.1* in
order to learn something about the differences between the ordinary
equilibrium flows and the efficient flows. In this case the inequality as-
sumes the simple form

1
(4.28) - z iZ]; aij (2xij + dxij) dxij go

Since a;; >0, x;; 20, and x;; + 8x;; 20, we conclude that x;; tends to
be negative for dxose ij with relatively high values of ajjorxj;. In
other words on congested roads, efficient flows tend to be srna_fler than
flows at ordinary equilibrium. Changing the sign of (4.28) and adding
izj ajj Xjj to both sides we have

{4.29) IE] ajfxy; + dxij)z =< iZ]; aj; Xlzj .

Since the a;{x;; + 0X;;) are the toll rates when flows are efficient, and
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the a;; x;; the efficiency toll rates indicated by conditions at ordinary
equilibrium, we see that equilibrium flows and the corresponding cost
and demand conditions tend, if used naively, to produce an overestimate
of the revenues that would be collected from efficient flows at efficiency-
toll rates.

4.4.3. A Limiled Toll System

At the present state of technology it is impractical to charge tolls
on every congested road. However, ways other than the present ones of
collecting tolls may be found which at the same time are cheap and do
not add to congestion. Or it may be found possible to levy the corre-
sponding toll charges in indirect ways. While there are psychological
resistances against out-of-pocket charges even where the price paid is
less than the cost incurred for alternative means to the same end, the
case for toll charges to relieve congestion is economically unassailable,
The problem of how to make the road user sensitive to the social cost he
causes is a real one and the means to achieve it are worth further at-
tention on the technological level.

But even when there are only a limited number of toll roads or
bridges, the question arises how the tolls on these should be set so as to
achieve, with the obtainable means, a maximum of economic benefit to
all road users. In discussing this problem we shall assume that pay-
ment of the construction cost from the toll revenue is no consideration.
A situation like this may be found in practice after the debt on a toll
road has been paid off.

This limited efficiency problem can be approached in terms of the
maximization of our consumers’ surplus function subject to the ad-
ditional constraints that on each free road the difference of trip costs
between the two end points of the road should not exceed the average
transportation cost on the road. Solution of this modified problem shows
that best tolls on the toll roads are different from what they would be
for the same roads in a general toll-road system in which efficiency
tolls are charged on eack congested road. They are higher where con-
gested free roads are predominant as feeder roads, and are less where
free roads compete with a toll road as alternatives.

4.4.4. Value of a Road

The fact shown in Section 3.2 that an upward shift of the cost sched-
ule for one road decreases traffic on that road implies that road use de-
creases or at most remains constant with added fixed costs (independent
of flow) such as tolls. The demand for use of a road as a function of
tolls on that road alone has thus a normal (downward or level) slope,
whatever the capacities of or f{lows on other roads. This demand func-
tion is really a description of the path followed by the equilibrium as
one particular constant (the toll on the road under consideration) is
varied. Its steepness is of course dependent primarily on the number



98 STUDIES IN THE ECONOMICS OF TRANSPORTATION

and capacities of alternative roads and on the demand for transportation
to locations reached via this road.

This demand function also defines the amount of toll revenue forth-
coming at different toll levels. Obviously the maximum amount of tolls
collectable is not above the value of the road to its users, Therefore
any road which can be paid for by tolls (at the market rate of interest) is
worth its construction cost under given road and traffic conditions on all
other roads. We also obtain a lower-bound estimate of the value of a
road in the amount of toll that is actually collected or that should be col-
lected in order to achieve efficient utilization.

However there may still be a wide margin between what the road
user pays in tolls and what the trip is actually worth to him over and
above other transportation costs. Therefore a road will have a higher
value in general than what its possible toll income amounts to. It fol-
lows that the “pay for itself” criterion of the usefulness of a toll road is
too conservative for determination of the proper extent of a highway net-
work,

4.5. Toll Roads Reconsidered

The analysis of an efficient allocation of flows to routes has led in
its own course to the notion of a road toll as an instrument of controlling
access to roads., The common meaning of a toll road is, however, that
of a special route (an expressway) which offers superior roadway and traf-
fic conditions at an extra charge, Inherent here is an element of eco-
nomic discrimination in making extra service available at a price. To
bring out this significant feature of toll roads, as understood in con-
temporary discussion, let us resort again to our two-road example. Sup-
pose that the alternative roads are of equal capacity and are equivalent
also as far as all other roadway conditions are concerned. Deviating
now from our previous notion of aggregate transportation cost (Section
4.1.2) let the per-unit value of time vary between the various road
users. If the total amount of flow is again taken to be fixed, the ordinary
equilibrium distribution of equal flows on the two roads is also the effi-
cient distribution, and there is no place for any compensating tolls in
our previous sense. It may be asked, however, whether total welfare
could not be improved by the creation of an artificial difference between
the two roads through the levying of a toll on one of them. To the extent
that this discourages traffic, it improves the traffic conditions on that
road, and in particular it reduces delays to faster vehicles. Is it possi-
ble that the time saving to road users who value time highly more than
compensates for the toll paid, and that conversely the money collected
is worth more than the added inconvenience to drivers unwilling to pay
the toll? Other things equal, a high money value of time goes with a
high free speed. But of course, other things are never equal; road
users differ in their operating cost at given speeds and in their valu-
ation of risk, Differences in the free speed on a long-distance highway
tend to be relatively small. Therefore in a first formulation of the
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problem we may disregard any correlation between money value of time
and free speed and use the same average-speed capacity curve for both
roads regardless of whether or not the traffic with a high valuation of
time has been separated out.

In the following mathematical note it is shown that the total benefits
to road users can in fact be improved by giving them, through a suitable
toll, a choice between faster travel at higher money cost and slower
travel at smaller money cost. This is still on the assumption that
everybody’s dollar is valued the same by the community. I the roadway
conditions differ also between the two roads the case for a separation of
high and low speed traffic by a toll on one road is even stronger.® For
simplicity we shall disregard the dependence of operating cost and risk
on speed and consider time and toll costs only.

4.5.1% Analysis

Let there be N road users entering the two roads per unit of time.
We shall consider them arranged in decreasing order of the money value
which they assign to time., Thus let

min) be the money value of time to the n'® road user;

X the index of the road user with the smallest
money value of time who still uses the toll
road (at the same time x is a measure of flow);

t,(x) the average travel time on the toll road;
t,(N-x) the average travel time on the free road;
p the toll rate.

For the user x of the toll road who does not care which of the two
alternatives he chooses (the marginal road user)

(4.30) m(x) t(x) + p = m(x) t,(N-x)

This may be considered a definition of toll as a function of the flow
called forth by it on the toll road (the inverse of the demand function for
use of the toll road);

(4.31) p(x) = m(x) [L(N-x) - t(x)] .

Total cost of transportation to road users is now (using the integral
notation for convenience)

(4.32) t,(x) 2 m(n) dn + xp(x) + t,(N-x) I}Ix m{n} dn

6. If the effect on demand for transportation is taken into consideration, the case for
toll roads emerges even batter, but the determination of the optimal toll becomes more
involved. An integrated neiwork raises problems of still greater complexity. The two-
road example presented here gives, however, a rough idea of the considerations involved.
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From the point of view of the community the tolis do not constitute costs
but are available again for redistribution or use in road construction
and maintenance, The object of minimization is therefore

(4.33) t,{x) }; min) dn + t,{N-x) I}; m{n) dn

In our example of two roads of equal length and capacity this minimand
is

{4.34) G = t{x) ,:(; m(n) dn + t(N-x) 1;{ mi{n) dn

All we shall show is that the minimizing flow x must lie in the open

interval 0 << x<—§ . Let x=—];+z with z=> 0. Now

R

(4.35) Sz N

- [ _r m dn - jm dll:] > 0,
0 N

§+z

since by assumption t is an increasing and m is a decreasing function,
Multiplying out and substituting for z,

¥ Y
t{x) J(; m dn + {N-x) J m dn

{4.36) x N
>t(N-x)£mdn+t(x).§(mdn

This means that G(N-x) < G{x) for x>-1121 . Therefore the minimizing x
-

must be contained in the interval 0 € x —l; . That it does not fall into
an interval end point is seen from
N
SNy _ N (g2 N
(4.37) G(_?.)_t(z)(o mdn-gxmdn > 0
2
and
N
(4.38) G’(0) = [t(0) - t{N)] m(0) - t'(N) (I) mdn < 0

The first-order minimum conditions are

£(x) 2 m(n) dn + t(x)} m(x)
(4.39)

1l
[

- t'(N-x) ?{ m(n) dn -~ t{N-x) m{x)
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But for x =

ol 2,

m(n) dn > t{

)

N
2
g m(n) dn

(4.40) () 3

ol 2z

As this shows, the derivative of the minimand at x = I—; is positive. We

conclude that the minimum is obtained for a flow x < —1\21 on the toll

road.

If different weights are attached to the economic benefits for vari-
ous road user classes, say w(n) to the value of money benefits of the nth
class and wy to the availability of public funds, the minimand is

.)f; [tx) m(n) + p(x) | w(n) dn
(4.41) N
+ J;: tz(N—x) m(n) w(n) dn - w, p{x) x ,

which after substitution for p(x) becomes
X N
t,(x) .(f) m{n) w(n) dn + t, (N-x) é m{n) w(n) dn
{4.42)

+ m(x) [tl(x) - t, (N-x) (w, - };w(n) dn) ]

Except for rather special weight functions w our conclusion remains
valid.



Chapter 5

SOME UNSOLVED PROBLEMS

The preceding models had to employ many simplifications. Some of
the more obvious shortcomings will be pointed out in this chapter on un-
solved problems.

5.1, Theoretical Capacity Funclions

Although one has come to rely more on empirical capacity meas-
urement, the study of theoretical capacity functions can still be useful.
For the design, the interpretation, and the use of measurements always
presuppose some theoretical model, however simple.

The regression line of average speed on flow — that is, the empiri-
cal capacity function — cannot be held to give a universal relationship
valid for all roads with the same roadway conditions, because the in-
fluence of the driver population is disregarded.

The effect of the driver population and in particular the free-speed
distribution on capacity raises many problems for both theory and
measurement. The outstanding mathematical problem is perhaps that
of deriving the mean delays on a road to vehicles of a given free Speed
from the free-speed distribution, from the arrival sequences of cars at
entrances to the road, and from other features (such as the timing of
traffic lights) which may have a bearing on it. Such a model, if it were
not to run into unmanageable complications, weuld have to use some
average concepts again, although it should allow for a distinction be-
tween classes of road users. The possibility and fruitfulness of such
an analysis is intimately tied up with the question of whether an equi-
librium in the particular sense of queuing theory can be realized on a
road or even in a network. Equilibrium of this kind on a road implies
that the flow remains constant and that the free-speed distribution is
preserved. The question arises whether these two traffic characteris-
tics together will always maintain the same traffic conditions, i.e. the
same mean delays to vehicles of given free speeds.

Delays to traffic may be understood in terms of queuing as shown
in Section 1.2. Now a queue of vehicles behind a slower vehicle may
show two kinds of behavior. After an initial phase of building up, it may
either fluctuate arcund a fixed mean value or continue to grow indefi-
nitely, according as the mean time between passing opportunities for
successive cars in a queue is or is not less than the mean time between
arrivals at the queue. It is the first case that is labeled the stationary
case in queue theory. However, on a road of finite length the second
process may take place to some extent, even without ultimately causing
a tie-up at the entrance of the road. The effect would merely be to slow

102
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down traffic more and more as it proceeds along the road. As this is
compensated by a higher density of traffic, the same flow can be main-
tained throughout, In this case a stationary flow does not imply a con-
stant free-speed distribution along the length of the road; the queues
that grow as they move on absorb an increasing share of high-speed
traffic. Therefore, the number of road users with high free speeds rep-
resents a larger and larger fraction of the total number of road users
per mile as one moves down the road.

Considering both types of queuing process at the same time, a more
interesting question is the behavior of queue lengths over time. IS there
any tendency for queue lengths in a particular road section to approach
a fixed distribution after a sufficient lapse of time? An affirmative an-
swer would imply that the travel times for each speed class also would
approach a definite probability distribution. Such a situation could rep-
resent a maximum of predictability. For it would mean that the past
history of delays is irrelevant for the mean delay which prevails after a
sufficiently long period, when the system has settled down to equilibrium.

The attainment! of such an equilibrium does not exclude altogether
the occurrence of fluctuations around the equilibrium points. These per-
sist in all queuing processes. All that equilibrium means is that there
is some constant time average of delays, and that this mean value is all
one can predict about traffic conditions in the future.

For instance, there may under some conditions arise prolonged de-
viations in the average queue lengths of the two lanes of a two-lane road
even when a steady and balanced total flow prevails. The reason for
this is as follows. To the extent that queues are built up from a given
flow, passing opportunities for traffic in the opposite direction increase.
This in turn leads to a more dispersed distribution of cars over that
lane, thus reducing again the passing opportunities for traffic in the first
lane. In this way traffic in the second lane can gain the advantage of the
bunched-up condition in the first lane and maintain or even aggravate
this condition, Thus an even distribution of queuing between the two di-
rections may be an unstable situation tending to break away in one di-
rection or the other. After a given time has elapsed from a given initial
state, the average queue length may therefore have a bimodal distribu-
tion. Once the situation has shifted to the neighborhood of one mode,
the probability of it shifting to the other may in some cases be large
enough to produce frequent shifting back and forth, or in other cases so
small as to lock the situation almost completely at one mode or the
other.

The Highway Capacily Manual refers to a related but slightly differ-
ent cause of fluctuations in the following illuminating passage: “At this
traffic volume [1,000 passenger cars per hour] spaces occur ahead of
the slow-moving vehicles which cannot be filled by other vehicles per-
forming passing maneuvers. In effect, traffic in both directions tends to
form in queues which continue to increase in length until the spaces be-
tween the queues become sufficiently long to permit the performance of
passing maneuvers, As soon as a few passing maneuvers are performed
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the spaces between the queues become partially occupied and are no
longer of sufficient length for the performance of passing maneuvers,
and the queues immediately start forming again. This accordion effect,
with all but a very limited number of vehicles traveling at the same
speed as the vehicle immediately ahead, occurs at the same total traffic
volume regardless of the distribution by directions” (Normann and
Walker, 1949, p. 37).

While it is clear that on a road of finite length the possible fluctu-
ations are definitely limited in magnitude, they may be significant
enough to constitute a qualification to an analysis that ignores them. In
some cases these fluctuations may warrant a study of the desirability
and means of controlling them.

Any treatment in terms of probability of the delays caused by pass-
ing runs up against the problem of repeated queues discussed in Section
1.6. Since this problem requires (except for the trivial case of service
times with exponential distributions) some new theoretical ideas, it may
provide a challenge to statisticians and mathematicians.

§.2. Alternative Notions of Capacity for Economic Analysis

The average-cost capacity function as used in Chapters 3 and 4
gives only an approximate expression of the impact of traffic conditions
on transportation cost. Under any given conditions a vehicle causes a
different amount of delay and affects various classes of road users dif-
ferently depending on its free speed and the direction in which it uses
the road. A more detailed model would specify a set of capacity func-
tions, one for each class of users of the given road, which gives the
average cost to this class as a function of the traffic that falls into
every single class. We notice that in this way some account would be
taken of the effect of the driver population on capacity.

Disaggregation of the capacity concept in this way would also per-
mit a refinement of the analysis of traffic distribution over alternative
routes — the problem of “shortest routes.” Two routes that appear to
be of equal transportation cost in terms of averages may in fact have
different attractions to high- and low-speed traffic. I one route unce
has a certain advantage over an alternative for high-speed traffic, this
will in itself lead to a relative concentration of high-speed traffic on
this route and in this way further encourage the differentiation of traffic
by speeds. Segregation of high- from low-speed traffic seems to have
some advantages for both, and an efficiency analysis should determine
whether this segregation goes far enough under conditions of ordinary
spontaneous equilibrium.

Whether the demand function should also be disaggregated by free-
speed classes is less obvious, for it may turn out that there is no es-
sential difference in the flexibility of the demand of high-speed or low-
speed road users. Some other differences in user characteristics, such
as risk preferences, are perhaps more relevant here,
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5.3%. Commodity Transportation Models

The principal difference between passenger transportation as dis-
cussed in this study and commodity transportation lies in the substitut-
ability of commodity shipments from different origins to a given desti-
nation. This makes the demand for trips between two given points a
function not only of the cost of this particular trip but also of all the
costs of other trips that might compete with the one considered. These
other trips would include those from the given supply point to other
markets, and those from other supply points to the given market. A
convenient framework for dealing with this type of demand for transpor-
tation is provided by the introduction at each point of a function relating
price and net or excess supply of the commodity in question. For any
given price the excess supply of a commodity at a certain location is
the amount locally supplied at that price minus the amount Iocally de-
manded at that price. Excess supply, which of course can be negative,
may therefore be regarded as a function of the local price of the com-
modity.

For a proper explanation of the demand for commodity transpor-
tation it is fundamental that these local prices should not themselves be
treated as predetermined data but should be regarded as interdependent
and are $0 balanced against each other that all markets of a commodity
taken together are in equilibrium., This means that no profits should be
possible through arbitraging commodity movements between any pair of
locations. Prices of the same commodity in different locations cannot
differ by more than the transportation cost. The price differences are
exactly equal to transportation cost for all pairs of markets between
which shipments of the commodity take place.

The mathematical formulation of equilibrium in a model of com-
modity transportation is now obvious. Let a subscript m in lieu of the
previocus k denote a commodity.

Let Xij,m be the flow of commodity m from point i to
point j on road ij;
Pi,m the price of m at point i; and
Qi,m(Pi,m) the excess supply of m at point i.
Then q; , is a non-decreasing function,
(5.1) d%im > 6 wherever it is differentiable.
dpi,m

We assume for the moment that all traffic flows are of commodities:
(5.2) Xij = 2 (Xjjm + Xjim)

m
Also we shall again use the notation

(5.3) ? (xij,m - in,m) = xi,m .
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The equilibrivum conditions, in addition to the identities (5.2) and
(5.3), are

= >

(5.4) Djm = Pim [ hislxgs), M xg5 0 0 3
g —_

and

(5.5) Xim = 9,m{Pim)

Notice that the prices increase along routes of transportation by the
amount of transportation cost, while trip costs decrease by the same
amount,

Passenger transportation may in fact be included as a special case
of commodity transportation. This is the case of a “commodity” whose
subscript is really a substitute for two indices, the origin and the desti-
nation, and for which the excess supply and demand are localized, re-
spectively, in these two points., Here the prices are determined only up
to an additive constant and may be set equal to zero at the destination,
thus making trip cost appear to be simply a negative commodity price.

The system (5.2) - {5.5) may be regarded as a more general formu-
lation of the equilibrium conditions (3.2}, (3.4), and (3.10). It turns out
that our analysis of equilibrium in terms of an associated maximand
carries over to this more general model. It follows that the inequality
{3.33) on changes in the data applies and that the assertion about the ad-
justments of flows to changes in capacity remains valid.

We also obtain the efficiency conditions in a form corresponding to
{4.11):

Pim = Pim hi{x;5) + hifxg;) x;;

. >
if xij,m 0 H

Xim = Qi k(Pi

A

(5.8) and

Nothing is changed in the role of efficiency tolls, the relation between
equilibrium and efficient flows, and the relationship between tolls and
the value of a road. In short, our analysis can be repeated with appro-
priate changes and some increase in analytical complexity for a model
of commodity transportation.

The unsolved problems concern the application of this model to
particular cases. A one-commodity network would be of special inter-
est, In particular, the problem of the generation and distribution of
electric energy in a network comes to mind. The task of verifying the



SOME UNSOLVED PROBLEMS 107

assumptions or modifying the model might be rewarding, but would call
for considerable technical knowledge of electrical engineering,

5.4. Dynamic Equilibriuwm Models

The notion of a static equilibrium of flow in a network may be
thought somewhat limited because of the noted periodicity of traffic dur-
ing the day, week, year, and perhaps the business cycle. While the
equilibrium mechanism is operative during the relatively short periods
of a constant load, one would like to see a more comprehensive model
which contributes to our understanding of the time pattern itself. For
instance, there are certain forces which tend to smooth the fluctuations.
Since the off-peak hours offer better traffic conditions, some of the de-
mand which is flexible with regard to time is diverted to these periods.
On the other hand, the availability of parking space depends on the ac-
cumulation and dispersal of stocks of cars at various locations, This
puis a premium on early arrival during rush hour periods and might
either aggravate, merely advance, or even spread the peaks of traffic.
The generation and the economics of traffic peaks are subjects for
further inquiry.

While it is not difficult, by attaching time subscripts to the flow
variables, to write down formally the equilibrium conditions of Chapter
4 for a dynamic model, this merely makes the analysis more compli-
cated without explaining much that is new. An understanding of the dy-
namic aspects of traffic really depends on an understanding of demand
substitution over time. To what extent are traffic conditions and park-
ing opportunities the effective considerations? Is differential pricing of
parking in response to the daily fluctuations of traffic an equilibrating
factor? Are there any economic forces at work or could any such
forces be made operative which would induce a staggering of working
hours while preserving the essential economies of the simultaneous
availability of personnel in business activities depending on mutual con-
tacts? This last problem has also arisen with respect to the proper
pricing of transportation services of the New York subway system
{Vickrey, 1952).

5.5. Problems of the Long Run

In assuming the capacities of roads as given, this study has taken
the short-run point of view. Interesting and important problems of a
long-run character are met if one recognizes that demand functions will
shift and that road capacity will be adjusted to demand to some extent.
One of the objectives of a short-run analysis is precisely to supply some
of the prerequisites for the study of long-run problems. Still the utili-
zation of capacity by traffic is in large part a short-run phenomenon, for
the economic advantages of road construction can be appraised only in
the light of the uses to which this capacity is put at various times of the
day, week, and year, and of the rates of growth of these uses.
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Some of the difficulties of a long-run analysis lie in the long-run
responses of demand through locational decisions. The problem here is
to determine and explain how the location of economic activities is in-
fluenced by traffic conditions. Location theory tells us in general terms
how transportation costs affect the locational pattern. But further in-
sights could be gained from an analysis of the differential impact of time
losses through congestion on various industries. Most important per-
haps is the question of how the location of people (their residential dis-
tribution) depends on traffic conditions. Without a clearer insight into
the factors determining residential choices, the prediction of long-run
traffic trends on urban expressways, for instance, must be hazardous.

In the long run the network layout does not remain fixed, and this
calls for consideration of construction and maintenance costs as func-
tions of capacity created and maintained, It would be important to de-
rive capacity-cost schedules of broad applicability from the technologi-
cal information available. This would help answer questions as to how
the (publicly incurred) cost of construction and maintenance can best be
balanced against the (privately sustained) costs of congestion.

Here we encounter what is perhaps the most fundamental problem
in traffic economics: determining the proper extent and layout of a road
network, The difficulty of this problem springs from the fact that
choices between a great number of all-or-nothing alternatives are in-
volved, Adding a particular road to a network may not be remotely
worth while unless it is built to at least some reasonably good standard,
which would involve a considerable fixed cost. But the flows needed to
justify this investment depend on what other roads may also have been
added to the network. Thus to get the most out of an integrated program
of road construction one would have to compare a huge number of possi-
ble combinations of road capacities that might be added. The principles
of economics have not been developed far enough to permit shortcutting
such a vast analytical problem. In the economics of indivisible re-
sources we touch one of the problem areas in economic theory where re-
sults of a general character are urgently needed but seem very hard to
come by.

Still other problems arise in situations where the predominant
part of transportation cost is delay at intersections. To give an indica-
tion of this kind of problem, let us consider an example of two alterna-
tive roads intersecting with two other alternative roads. The efficiency
problem reduces to the question of which is more efficient, to cross the
entire cross traffic at once, or to cross one-half of it at each of two con-
secutive intersections? Suppose that the cross traffic has priority in
each case. Since delays increase more than proportionally with cross
flows, crossing one-half of the traffic on two occasions involves less
total waiting. In the case that the one road to be crossed has twice the
width of each of the two alternative roads, the result is plausible on
physical grounds, for crossing one-half of the traffic twice amounts to
finding a safety island in the middle of the road. The economics and
technology of the synchronization of traffic lights is still another prob-
lem area in its own right, which we can only just mention here.
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5.6. Tolls and Finance

Finally, the problem of benefit evaluation is important for the as-
segsment of the financial burden to be borne by various classes of road
users. This is again illustrated by the case of toll roads. The necessity
of financing the construction and maintenance of a toll road largely or
entirely from toll revenue imposes a lower bound on the toll charges,
which we have not taken into account here.

From the point of view of the best over-all expansion and utilization
of a network the constraint that each toll road should pay for itself must
be dropped. Instead, the problem becomes one of finding the most “equi-
table” allocation of road costs to sources of tax revenue, To what extent
should finance be sought in the form of taxes on vehicle ownership at
particular locations, on gasoline consumption {and hence total mileage,
approximately), and on the use of particular roads (tolls)? Although
congestion is incident on particular roads at particular times, of course,
charges which tend to alleviate traffic need not always be levied in the
form of tolls. For instance, a general tax on gasoline consumption
renders traffic in general more expensive and thus tends to reduce the
total amount of traffic. On the other hand it puts a premium on the use
of the geographically shortest routes and therefore induces congestion
there, The net effect may therefore be an increase in congestion losses.,

It may also be possible to relieve congestion by taxes on business
activities, or on car ownership at residences, of which the locations are
such as to be mainly responsible for the congestion. However, a charge
in this form will discourage traffic along any roads from these locations,
congested or not, so that the welfare of road-user classes who are not
responsible for congestion on the routes in question is affected. Only a
road toll proper is specific enough to be free from this objection. On
the other hand, the mere collection of a road toll may itself add to con-
gestion. It is therefore an interesting problem to what extent efficiency
can be approximated by other forms of taxation,

Even a specific toll of one of the types currently in use is subject to
the drawback that it is usually thought necessary to keep the toll charge
constant for considerable periods of time. The best that can then be
done is to set the rate at some average level, even though congestion
may fluctuate widely. In many cases it would be markedly more effi-
cient to reduce the toll during certain periods of lower traffic or even
to suspend it entirely. (This problem has an obvious analogue in elec-
tricity tariffs.) In addition there are differences between various
classes of road users in their contribution to delays and to the deterio-
ration of the road. Thus slow or heavy vehicles tend to contribute more
heavily. To some extent this may be allowed for by differentiating be-
tween tolls on trucks and passenger cars, for example, and by requiring
vehicles to be at least capable of maintaining a certain minimum speed,
espectally in climbing long grades.

However, the difficulties of toll collection as well as a general de-
sire for “freedom of the roads” limit the amount of revenue that can be
collected in the form of tolls. Indeed, toll facilities are often such a
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bottleneck to the flow of traffic at peak periods that in some cases ef-
ficiency would be best served by suspending the collection of tolls at
such peak periods, thus eliminating excessive queues at toll booths.
Other taxes are likely to be needed to sustain the roads. While a case
can be made for some use of general funds for this purpose, since an
efficient road system contributes to the general welfare, the intensity of
communication, and the speed of emergency help, etc., it would seem to
be a point of justice that the bulk of the money should come from the
road users in a form connected with road use. This would leave a con-
siderable share to both general vehicle and gasoline taxes. The uptimal
apportionment — optimal, that is, with respect to the combined stand-
ards of equity and efficiency — poses an interesting problem which will
be the subject of discussion for a long time to come.
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Chapter 6

THE TIME ELEMENT IN RAILROAD TRANSPORTATION

In our study of highway transportation we emphasized the im-
portance of including time as a dimension of the output of a transpor-
tation system, In assessing the capacity of a system of highways, it did
not suffice to talk simply about the traffic flows that did, or could con-
ceivably, take place. It was also necessary to have some information
about the speeds at which these flows did, or could, take place. We
found that these time considerations were all the more important be-
cause there existed interactions between flows and speeds. Greater
flows could usually occur only with reductions in speed and, conversely,
speed increases had to be paid for in lesser flows unless the road sys-
tem was improved.

The factor of time is no less important a consideration in a study of
railway transportation. As far as passenger traffic goes, the parallel
with road traffic is clear. Despite the current advertising slogan, “Get-
ting there is half the fun!” it is probably safe to say that travelers on
the whole prefer fast transportation to slow, other things being equal.
Thus from this point of view a given distribution of passenger traffic
over a railway system represents a more valuable product when the
average time of travel is less,

For freight traffic the parallel with passenger traffic on roads is
not quite so clear. How important is the time consumed in carrying out
a freight shipment? In the chapters that follow we shall quite often have
occasion to refer to the delays a freight shipment encounters at various
stages in its journey. We shall attempt to determine some of the fac-
tors influencing these delays, and also show how delays and other kinds
of costs are related. In this chapter we shall try to justify our concern
with time costs in ireight transportation, First, we shall discuss the
transit time of a shipment from the point of view of the consumer of
railway services. The later discussion will be concerned with the re-
lation between transit time and the stock of freight cars. While the
stock of cars has, through this relationship, an important influence on
the capacity of a railway system, we shall not, except in this chapter,
deal with it explicitly but rather focus our attention on factors affecting
transit time itself. In addition, it is hoped that in the process of this
brief discussion the reader will get some idea of the magnitudes of the
various kinds of delays involved.

6.1. Transil Time and mventory Cosis

One obvious advantage of faster freight transportation is the result-
ing reduction of in-transit inventories that it makes possible. That this
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phenomenon is a familiar one is evidenced in the popular use of a trans-
portation term in discussion of inventories of another sort. “Filling the
pipelines” has come to mean the building up of inventories of many kinds
to some required level. The implication is that the inventories made
necessary by the time lag involved in transportation are more easily ex-
plained in an intuitive way than other kinds of inventories.

The pipeline analogy is worth carrying another step to make clear
the relation between speed and inventory requirements. A pipeline half
as big in cross-section area as another could carry the same flow of,
say, gasoline only if its pumps were capable of sending the liquid through
the pipe at twice the speed. The gasoline inventory required to fill the
smaller pipeline is just half that required to fill the larger, and this re-
duction of inventory is permitted by the higher speed of transport. Ap-
proximately the same phenomenon takes place in any other form of
transportation.

So far we have only discussed the effect of gpeed on the levels of in-
ventories of goods in transit. There is still another effect of speed on
inventory requirements in general. First we must ask why inventories,
aside from the in-transit type just described, are desired at all, One
reason is that commeodity price fluctuations cause buyers to stock up be-
yond their immediate needs when they believe the price to be a favorable
one. Another reason is that commodity traffic flcws in practice seldom
occur smoothly, but rather in lumps. It is more practicable to send a
carload of wheat once a day, say, than to send a ton of wheat every
hour. This lumpiness occurs even in the one case where one might not
expect it, that of pipeline transportation, where one pipe often serves
for the transmission of several different liquids, Since these cannot be
pumped through simultaneously and still preserve their identity, the
pipe is given over to each liquid alone for a certain period of time.

Still another reason for inventories, and perhaps one of the most
important from our point of view, lies in the uncertainty involved in
predicting just how much of a commodity will be needed in a particular
place at some future date. This uncertainty on the part of a consumer
of a commodity (or a producer who uses this commodity as an input),
together with the time invelved in transportation oblige this consumer
or his merchant to keep on hand stocks sufficient to cover errors in
predicting his needs.' I transportation took no time at all, no prediction
would be necessary; he could order more of the commodity as the need
arose. The slower the transportation is, however, the greater the range
of time that the prediction must cover; consequently, the greater the
errors are likely to be and the greater the inventories that are required
to ensure against these errors,

It is clear, therefore, that the time involved in transportation af-
fects the levels both of inventories of goods in transit and of other in-
ventories. To the extent that inventory holding is costly, the people

1. Where costs of storage are high relative to costs of short supply, this rule must
be modified.
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concerned, sometimes shippers, sometimes consignees, are better off
with faster and more dependable {reight transportation.

For a few special commodities the advantages of fast transportation
are especially clear. Livestock requires special handling (watering,
etc.) every few hours by federal law. This treatment is expensive and
especially so if performed at locations without the proper facilities. The
faster this livestock movement can be made, the less of this costly un-
loading and reloading procedure will there be.

Perishable commodities, such as fresh fruit and vegetables, must
be shipped in refrigerator cars. These perishable shipments are com-
monly made over long distances, and call for re-icing along the way.
Fast shipment reduces the number of such treatments that are neces-
sary, and, as in the livestock case, reduces the investment in special
facilities required to provide this service.

The data we might examine to see how far the foregoing consider-
ations go in explaining the relative transit times for various commodi-
ties are very sparse indeed. For 1933, however, we do have the results
of one very small sample of traffic. In the Freight Traffic Reportof the
Federal Coordinator of Transportation an extensive tabulation of infor-
mation on all traffic terminating in the U.S. on December 13, 1933, is
given. Figure 6.1 is derived from this report (Federal Coordinator of
Transportation, 1933, Appendix I, pp. 120-173). On the vertical axis is
measured the average transit time. This includes all the time from the
moment a car is given to a shipper for loading until it is returned empty
from the consignee. On the horizontal axis is measured the average
length of haul. Points are plotted for several of the commodity groups
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Figure 6.1. Average Transit Times
for Several Commodities
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in the Report, While we see from the figure that perishables take the
longest time for shipment and 1.c.1. (“less-than-carload lots”) the
shortest time, we also see that their relative hauls bear the same rela-
tionship. I for each commodity we divide haul by time we get an esti-
mate of the miles traveled per loaded-car day on the average. Since
“time” here includes loading and unloading time, these figures should
not be though of as measuring the distances traveled per day when actu-
ally moving in trains,

Live Animals 188
Perishables 159
Appliances i19
L.c.l. 113
Iron and Steel 104
Petroleum 61
Forest Products 57
Bulk Grain 38
Coal and Coke 33
Sand and Gravel 27

This ranking does seem to give some support to the hypothesis that
the effect of speed on inventories in turn influences the speed of railway
services provided., The more valuable a commodity is (per ton) the
higher the cost of keeping idle stocks of it; in the list we find, as we
should expect, the higher priced commodities near the top. There are
of course many qualifications to such a conclusion. The relative values
of carloads of different commodities are quite different from their rela-
tive prices per ton, because cars are loaded heavily with some com-
modities and lightly with others. Unfortunately for our argument the
last two on the list, coal and coke, and sand and gravel, are among the
heavy loaders. Nevertheless, it is difficult to believe that this differ-
ence would alter our conclusion, The ranking by “miles per day” rather
than simply “days,” although obvious enough, requires some explanation
in order to show more clearly the shortcomings of such a procedure. In
a railroad system ideally organized from the economic point of view we
should expect the transit time of a particular service to be cut down
whenever the consequent reduction of inventory costs exceeds the costs
of providing this faster service. One of the reasons that on the average
a carload of appliances requires almost two more days (see Figure 6.1)
in shipment than a carload of sand and gravel, even though we believe
the first carload to represent a greater investment than the second, is
that it costs very much more to provide four-day service for appliances
than it does to provide four-day service for sand and gravel. The
difference in lengths of haul is of course the obvious reason for these
cost discrepancies, and it is the one we have taken account of in our
ranking of the various commodities by “miles per day.” However, there
are other and perhaps just as important reasons for these differences
in the costs of providing fast service for particular goods, Our ranking,



THE TIME ELEMENT IN RAILROAD TRANSPORTATION 117

accordingly, must be viewed with some suspicion for this reason. We
shall say no more at this point about these other influences on cost,
since much of the rest of this study is devoted to them. QOur purpose
here has only been to demonstrate the fact that speed of shipment is a
valuable characteristic of freight transportation.

6.2. Transit Time and the Slock of Freight Cars

So far we have shown that just as in passenger travel on highways
the time used up in rail transportation of freight must be considered
part of the cost of a railway system because time is a costly commodity
to the consumers of railway services. It remains to be shown that speed
{understood in the general sense of being the inverse of transit time) is
costly to produce. There are obvious costs associated with speed in-
creases if we think of these increases as requiring more or better
equipment and physical facilities. Of more interest to us at present,
however, are the increases of speed brought about as a matter of choice
by different use of a given physical plant. In the case of highways both
these types of speed increase also exist. Roads can be straightened and
overpasses built to replace intersections, or, on the other hand, traffic
flows at certain points can be reduced, and traffic regulations and sig-
nals can be changed. Both procedures can lead to speed increases, the
one by a change of the physical facilities and the other by a change in
operating procedures alone.

Is this second method of reducing the time of freight shipments
costly? Without a careful investigation, it is by no means clear that it
is, In our highway investigations we found that the penalty paid for an
increase of speed on a given road was a reduction of flow on that road
and perhaps a decrease of speed on the competing road to which this ex-
cluded flow was forced to turn. The road capacity curves discussed
were the relationships which gave us quantitative estimates of these ef-
fects. Somewhat similar relationships between traffic flow and speed of
service will be discussed in the chapters to come.

There is, however, an important type of relationship between speed
and traffic flow in railroad transportation which was relatively uninter-
esting in the case of passenger traffic on highways. It arises from the
fact that the longer the average shipment takes to complete, the greater
is the supply of freight cars necessary to carry out a given program of
transportation. Putting this another way we can say that if the stock of
freight cars is fixed, the traffic flows that can take place are limited in
size by the transit times of shipments. Considerations such as these
help to explain why it is the case, as we shall see below, that a freight
car is idle so much of the time, and also why the stock of freight cars
is what it is. This relation between the stock of cars, the transit times
of shipments, and the number of carloadings in a year is sometimes
summed up in a railroad rule of thumb: “To find the number of cars
necessary to protect loading, multiply weekly carloadings by two”
(Parmelee, 1940, p. 635). The number two in this case represents an
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opinion that the average time of transit, including the time spent in
empty movement, is two weeks.

The most interesting aspect of this relationship presents itself when
peak traffic periods are examined, Rail carloadings are by no means
even over the year, a high peak usually occurring between May and Oc-
tober, with very sharp dips taking place on the Fourth of July and Labor
Day. To meet these midyear peaks without severe car shortages a much
greater number of freight cars is needed than would be if the same level
of annual carloadings were spread out evenly over the year. This means
that when the relationship connecting the freight car stock with carload-
ings and transit times is applied to a period of a year it appears to rep-
resent a constraint which is unimportant because it never seems to
pinch. In this context an increase of speed would seem to provide no
saving in the number of freight cars necessary. As we shall see below,
an examination of peak periods dispels this illusion.

Returning to the case of road transportation for a moment, it is in-
structive to ask how the same considerations apply there. To start with
let us suppose that we know how many automobile trips are to take place
in a certain year, and we also know the average distance of each trip and
the average time necessary to complete it. If these trips are spread out
evenly over the year a very simple calculation will tell us how many
serviceable vehicles are necessary to accomplish the job. If this mini-
mum number of vehicles were the number actually in usge, it would mean
that every serviceable vehicle was being used at every moment. The
nationwide system of car pools represented by this description has little
correspondence to the real situation in transportation by automobile, for
we know that most automobiles stand idle a great part of the time. The
fact that the actual stock of vehicles is so much greater than the mini-
mum number derived above can in part be explained by the great vari-
ations in the number of trips in process at different times. While it has
been suggested that a careful examination of peak traffic periods for
railroads is worth while, it is not as likely to be so in the case of auto
transportation for several reasons, First, since the average length of
trip by automobile is short, the periods we must examine to find a peak
period are also short. The information requirements are therefore
great, Second, the peak periods in different locations will surely occur
at different times. While this is also true of rail traffic the trouble can
be at least partly eliminated there by taking explicit account of the time
spent in empty travel. In the absence of this shortcut it would be neces-
sary to do a separate analysis of each location. Third, we already know
to a large degree what the result of such an analysis would be in the case
of passenger automobiles, The cost of automobiles appears to be such
that people are quite willing to pay to rid themselves of the inconven-
iences of part ownership in a car pool. Where this institution does exist
(taxicabs are one example) it is always surrounded by special conditions
such as the use of a chauffeur, the identity of trips, or the common resi-
dence of members of the pool (family cars). In any case it is clear that
many more considerations enter than in the case of rail transportation.
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Before we enter into a more detailed examination of the influence
of speed on the freight car supply required, it will be useful to discuss
first the available information on the time per shipment actually used
at various stages of the transportation operation.

For this purpose we refer again to the 1933 Freight Traffic Repori
of the Federal Coordinator of Transportation. This material covers the
65,769 cars that terminated on December 13, 1933, From it can be de-
rived, for several commodity groups and for the group as a whole, the
average times spent by a car at various stages in its journey from ship-
per to consignee, Table I presents these averages and Table II trans-
lates them into percentages of total time of shipment for each commodity
group. The labels along the left edges of both tables require some ex-
planation. Loading-unloading time represents the time a car spends in
the hands of its shipper plus the time in the hands of its consignee.
Carrier termini time measures the delay a car suffers at both ends of
its journey while still in the hands of the carrier. Carrier road time
tells us how long a car is in a train during its trip, This time is not
necessarily consecutive, for the car may leave one train, spend some
time in a classification yard, and then join another train for more road
time. It should also be pointed out that road time is not quite the same
as time spent rolling. Trains are subject to many kinds of delays; these
also count as road time for the cars of a delayed train. hiermediate
handling and interchange times cover the period a car spends waiting in
classification yards along the way. Interchange time represents that
part of this wait which occurs at points where the car is transferred
from one railroad to another, that is, “interchanged.” Total time there-
fore represents the time from the moment an empty car is supplied to
the shipper until the time the car is returned empty by the consignee
(perhaps, of course, to a different railroad).

One of the striking things about the entries in these two tables is the
relatively small amount of time a car spends in trains. Thus carrier
road time amounts to only about a sixth of the total time of shipment, or
about a third of the shipment time less the loading-unloading period.
Also, if these carrier road times for the different commodities are
plotted against lengths of haul, we notice that there is a fairly good
straight-line relationship between the two (Figure 6.2).

Of the 4.95 days average transit time, 1.92 days or 38.6 per cent are
used up at the three stages, interchange, intermediate handling, and car-
rier termini, This is 70 per cent of the total shipment time less loading-
unloading time. We throw these three types of delay together for reasons
that will be better understood in later chapters; it is the time used at
these three stages with which we shall be most concerned. In Figure 6.2
we saw that road time could be fairly well explained in terms of the
length of haul of a shipment. In Figure 6.3, where the vertical axis now
measures the sum of interchange, intermediate handling, and carrier
termini times, we find that no such simple explanation of the variation
suffices in this case. There seems to be little if any relationship be-
tween the two variables plotted.

Except in this chapter we shall not say any more about loading-
unloading time despite its very substantial magnitude. Part of the reason
for the size of this component of transit time undoubtedly lies in the fact
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that at current rates of demurrage consignees find it cheaper to use
freight cars instead of warehouses for storage purposes.

These time estimates from a single day in 1933 seem to be about
the only publicly available source of such information., Individual rail-
roads, it is true, have conducted investigations of the transit times of
various shipments over their own lines, but we do not know how exten-
sive these have been, nor quite how the results compare with those of -
the Freight Traffic Report. Since we have so few other data with which
to compare these figures, it is difficult to estimate the changes that have
taken place in them since 1933. The regular statistics of the ICC bear
on only one of these components of transit time — carrier road time. By
making some rather daring assumptions we shall attempt to use these
latter statistics, together with the results of the Freighl Traffic Repori,
to estimate the transit times for years other than 1933. We shall then
try to extend this attempt to cover the time consumed in the average
empty trip. Finally a comparison of the sum of these two times will be
made with the actual freight car time available in each of several years,
in order to see to what degree the stock of freight cars is utilized.”

If for each year we knew the average length of haul of freight cars
and their average speed when in trains, the average time in trains dur-
ing a trip could be found by dividing haul by speed. The result could be
compared with the estimate of carrier time derived from the 1933 data.
While we are not quite so fortunate as this, some very closely related
data are regularly reported by the ICC and the Association of American
car-miles train-miles
carloadings an¢ train-hours
as estimates,® respectively, of the average length of haul of a car and
the average speed of a train. If now we assume that the average speed
of a train is the same as the average speed of a car, we have the relation

Railroads. Using these we have the ratios

(6.1) car-miles x train-hours _ average carrier road time
) carloadings x train-miles of a car.

For the year 1933 this estimate of carrier road time is 23.4 hours as
compared with the estimate of (.83 x 24 =) 19.8 hours in the Freight
Traffic Report(Table I}). These new estimates of carrier road time will
err on the low side if, on the average, longer trains are slower than
shorter trains, and on the high side if longer trains are faster than
shorter trains.,

To obtain estimates of transit times for the different years we have
assumed that carrier road time comprises a constant proportion of
transit time from year to year, so that for 1940 for instance

transit time _ transit time x carrier road time for 1940
for 1940 ~  for 1933 carrier road time for 1933 °’

(6.2)

2. The discussion that follows has been greatly stimulated by a reading of Chapter 4
of Hultgren {1948),

3. For car-miles see ICC, Statistics of Railways in the U. S., Table 158, Item 457,
for train-miles see ibid., Item 429; for frain-hours, ibid., Ttem 488. F¥or carloadings
see Association of American Railroads, Revenue Freight Loaded and Received from
Connections, Statement CS-54A.
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where, on the right hand side, the 1933 figures are from Table I and the
1940 figure is derived from the relation (6.1). The resulting graph is
shown as the curve DD’ in Figures 6.4 and 6.5.

The curve CC’ in Figures 6.4 and 6.5 graphs for the different years
our estimates of the total transit time plus the average time spent by a
car in completing its empty trip to the next shipper. The distance be-
tween the two curves is simply

empty car-miles
loaded car-miles

(6.3) time of empty trip = transit time x

The curve CC’ therefore represents the number of days on the average
that a car uses to complete a whole cycle from one loading to another.

The average time that is available for this cycle depends on the
level of traffic and on the stock of freight cars in serviceable condition,
Curve AA’ in Figure 6.4 represents

365 days
annual carloadings
stock of freight cars

(6.4)

and tells us the length in days of the average turnaround period of a
freight car, Curve BB’ is derived in the same way except that stock of
serviceable cars is substituted for stock of cars. The difference be-
tween AA’ and BB’ tells us what part of each cycle is devoted to repair
work on the average. Notice that in the early thirties this difference is
markedly higher than in other years. This does not mean that more re-
pairs had to be made, but rather that, since business was slack, “bad-
order” cars were not repaired immediately.

The difference between curves BB’ and CC’ represents freight-car
time so far unaccounted for. The size of this unexplained part is sur-
prising until we recall the fact that peak traffic periods have not entered
the analysis. In Figure 6.5 the Curve BB’ has been changed to represent
only the two-week period of each year with the highest average number
of carloadings. If every year’s two-week peak persisted throughout the
whole twelve months Figure 6.5 would tell us what proportion of a freight
car’s time was utilized. As it is, it refers only to the utilization in
these peak periods (which do not always occur on the same, or even
nearly the same, date).

Another reason for the unexplained part of a car’s time is very
similar to the reason, discussed earlier, for holding idle stocks of any
commodity. Quite often at some location a number of empty cars larger
than that which subsequently turns out to be needed may be kept on hand
in order to cover errors in forecasting carloading requirements. To the
extent that the movement of empties from one location to another can be
speeded up, these empty-car stocks at various places can be reduced,
just as the speeding up of commodity movements enables a reduction of
ordinary commeodity inventories.



Chapter 7

FREIGHT OPERATIONS AND THE CLASSIFICATION POLICY

7.1. General Description of Freight Operations

In this section some aspects of railroad operations are sketched.
The object is not to give any detailed account of them but rather to focus
attention on those aspects of the operations with which we are concerned
in later chapters, and to introduce some phrases and definitions which
we will find useful. Attention will be concentrated on the workings of a
freight system.

It may be useful to follow a carload of freight on a highly simplified
railroad system. Figure 7.1 shows such a system. Suppose a load is
being dispatched from A to D. At A it will be loaded into an appropriate
car. However it may have to wait at A for some time either until a suf-
ficient number of other cars are ready to travel in the same general di-
rection to warrant running a train, or perhaps until a train is scheduled
to leave. Delays of this type arise fundamentally because it is not usu-
ally considered economical by the railroads to haul trains with only a
few cars. It is an example of what we call an accumulation delay.

A D

N /
TN

B

Figure 7.1

After a time enough cars will have collected to go in the direction of
J. Some of these may be going to B, C, or K or perhaps only as far as J
itself. In any case the order of the cars for all five destinations will
probably be well mixed up in the train. Thus at J the cars in the train
will have to be uncoupled and sorted. Cars going on to K and beyond will
be sorted together. Again they may then have to wait until more cars
destined for K or beyond (that is, to C or D) arrive from B; they may
therefore suffer more accumulation delay. Then the car we are follow-
ing will be hauled out in a train to K,

At K the same sequence may be followed. The train will be un-
coupled and sorted into cars going to C and to D, and cars remaining at
K. Again there may be a wait until the train for D leaves, and the car is
taken on the last lap of its journey.

At points such as J and K there must be facilities for sovting out the
cars, and storing them until they are taken out in a train. Such facilities
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are called classification yards. These yards may be large and compli-
cated, with a considerable amount of expensive equipment. They usually
involve a large investment for the railroads.

We have suggested already that there are two principal ways of ar-
ranging the times at which trains are dispatched from one yard to a sec-
ond. One possible method is to wait until enough cars have been col-
lected which are traveling as far as the destination yard or farther. How
many cars are considered “enough” to make up a train should presuma-
bly depend on a balancing of various economic factors; for example the
extra delay involved in waiting for sufficient cars for a long train as
against the increased costs in fuel, labor, efc., of running several short
trains instead of one long one, Such a method of operation can be flexi-
ble, since those responsible for dispatching trains can change their
plans to meet different types of flows, However this method is not well
adapted to synchronizing the various movements of trains to ensure that
they meet at junctions -- the classification yards -- in such a way as to
hold down accumulation delays. For this to be accomplished, the trains
must be dispatched according to timetable. This method of operation is
becoming increasingly common for freight trains on American rail-
roads. The disadvantage is that, on occasions when traffic fluctuates,
trains may have to run either very short, or so long that they must be
run in two sections in order to keep to the scheduled times, so that the
system may not be working most economically, With timetable opera-
tion, accumutation delays occur in slightly different ways. After a car
has been sorted it has to wait until the train on which it has to travel is
scheduled to leave. We still call this an accumulation delay, however, to
keep to a single term. For fairly steady flows of traffic, it may be pos-
sible to adjust the timetable to ensure that delays and the costs of run-
ning trains are properly balanced. This question is taken up in later
chapters.

Various modifications of the method of operation outlined above are
used. One of these is “maintracking.” If sufficient traffic from A is
going to K or beyond, it may be a sound policy to allow traffic to accumu-
late at A for a train to be dispatched from there consisting entirely of
this type of traffic, Such a train need not have any work done on it at J;
indeed it can pass by J on the main line, But such a policy may cause
traffic for J or B to be delayed longer at A, or trains from A to be run
shorter. It may also have the same effect on traffic leaving J. Thus the
question of whether or not to run a maintracker can be a difficult one. In
practice there may be a quite intricate pattern of maintrackers, some
trains, for example, running straight from A to C, others from J to C,
others from A to K, as well as trains running only between adjacent
stations. '

Preclassification is another frequently used device. It is primarily
a method of transferring the sorting work from one yard to another.
Such a transfer may be necessary if one yard gets overloaded, for ex-
ample, so that delays become too heavy. Or it may be useful if one yard
is better equipped than another, so that sorting work can more easily be
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carried out there. The idea of preclassification can again be explained
in terms of Figure 7.1. Suppose a train from A arriving at J contains
traffic for all the other stations. At J it will have to be broken up and
sorted. One train is to leave for B, and another, containing traffic for
C, K and D is to leave for K. It would be possible to leave the actual
sorting out of cars for C, K and D from each other until the train
reached K, However, the yard J may do this work for the yard at K, In
that case the train from J to K will have all the cars for J grouped to-
gether, all the cars for C grouped together, and all the cars for D
grouped together, It will then be completely preclassified. The only
sorting work left to the yard at K will be the separation of the three
groups associated with the three different destinations. It is also possi-
ble to preclassify the train less completely. It may, for example, be de-
cided to sort out only the traffic bound for K at J and leave traffic for C
and D mixed up, to be finally sorted out when the train gets to K. In
later chapters an attempt is made to develop a rational approach to the
problem of how much preclassification should be done in some situations.

7.2. Classification Policy of a Yard

In the last section the main functions of a classification yard were
described as the sorting of cars into different groups, the storage of
cars up to the time of departure, and the making up of trains. Clearly
there are many different ways in which these functions can be carried
out. Before entering into a discussion of the advantages and disadvan-
tages of these different methods, it is necessary to have some language
in which to discuss them, In the rest of this chapter we shall try to de-
velop this terminoclogy; having done this we shall devote some time to
describing instances of its use.

“In the early days of railroading,” according to E. W. Coughlin,
“freight trains generally were made up of any cars on hand for move-
ment to or beyond the next terminal, without regard to final destination
or class of freight. Thus each successive terminal or yard switched out
from their chance locations in each arriving train the cars belonging in
its environs as well as those ... cars for local stations short of the next
terminal.... The balance, plus such loads and empties as were ‘made’
at the terminal or from incoming local movements, were let go in the
same chance order into succeeding trains run to the next terminal”
(Coughlin, 1952, p. 44). I we add to this description some such rule as
“ A train will be dispatched when 85 cars are available,” we have one
instance of what we shall call a classification policy.

More generally, a classification policy is a set of rules, for each
yard, which completely specifies the manner in which incoming traffic is
to be reconstituted into outbound trains. This set of rules need not be
explicit, nor indeed even consciously in the minds of the men responsible
for the various operations involved, The formal itemizing of rules may
be more a theoretical than a practical necessity. In setting out to con-
struct a model of yard operations, we cannot rely as the president of a
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railroad does on the expert judgments of yardmasters, division superin-
tendents, dispatchers, etc.; these must be supplanted in our theory by
formal rules whose consequences can be studied by logical and mathe-
matical means. This is not to say of course that where in practice such
formal rules are found to be lacking, things would necessarily be im-
proved by the application of the same simple rules, Our theory, to be
useful, must be a great deal simpler than its real counterpart, and while
it may be possible to formulate theoretical rules that are in some sense
“good,” the same formalization in practice may prove to be difficult, In
such a case a combination both of “formal” rules and “informal” judg-
ment will always be used.

Our problem here is to determine what alternative sets of rules
adequately describe the range of policies available to a railroad in its
conduct of yard operations. We cannot of course say anything as yet
about what makes one set of rules better or worse than another; these
policy choices will be based on the cost considerations studied in later
chapters. At this point we only wish to indicate the different questions
relating to methods of operation to which any classification policy, good
or bad, must give definite answers.

7.3. Typical Yard Opevations

Some of these questions will be made clear by a brief examination
of the operations in a typical classification yard. Although yards differ
in many important respects, the ciassification operations carried on in
all of them are basically the same., Usually a yard is made up of sev-
eral sub-yards, each of which has a track pattern essentially like that in
Figure 7.2, where the arrows indicate the direction of traffic through the
yard. The picture abstracts from several important differences between
yards, but for the moment it will serve our purposes. Suppose now we
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Figure 7.2, The Basic Track Pattern of a Sub-Yard

consider a yard handling only one direction of traffic and consisting of
two sub-yards as in Figure 7.3. The first sub-yard the traffic enters is
usually called the receiving yard or receiving tracks; the second, the
classification yard' or classification tracks. Incoming trains, entering

1., We shall usually avoid this term, since it is the same as the term for the yard as
a whole. The word sub-yard is useful but, so far as we know, not popular.
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Figure 7.3 from the left, are run as a whole into one or anocther of the
receiving tracks to await sorting. Since only one string of cars can be
sorted at a time, these receiving tracks are sometimes necessary as
storage space for trains that arrive while another is being sorted.

When its turn comes for sorting or classification, this trainload of
cars is pushed out of the receiving track, through the peck of the yard
between the two sub-yards, and by various means each car of the train
is made to run into the classification track to which it is assigned. Usu-
ally these classification tracks will already have other cars standing on
them, to which the cars of the train we are examining will couple auto-
matically, When the classification process ig finished the cars which at
the start were all on cne track in the receiving yard will generally be
scattered over several of the classification tracks, The choice of the
classification track into which a particular car is moved will usually be
made on the basis of the car’s destination and perhaps its contents or
condition, the idea being to group similar traffic for departure in out-
bound trains and to separate out cars needing attention,

As this sorting procedure is being carried on in a fairly continuous
manner at one end (the left in Figure 7.3) of the classification tracks,
the process of making up outbound trains is also carried on at the other
end of the classification tracks. This make-up process consists in
drawing the strings of cars out of specified classification tracks and
assembling them into trains.

This description of the classification operation leaves out many
yard activities that will require our attention at a later point. However,
such things as the inspection of cars and the re-icing of refrigerator
cars are not essential parts of the classification process even though,
for reasons of convenience, they are usually carried out at the same
time and place. The description therefore brings out most of the im-
portant questions which a classification policy must answer.

7.4. The Requisiles of a Policy

7.4.1. Receiving

The first question is one of priority. H the sorting facilities are
prepared to receive another string of cars, and if there are several
trains waiting on the receiving tracks, which should be handled first?
In very small yards this problem may never arise, since only one train
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at a time will be available, In the usual case, however, the arrivals of
incoming traffic are not always spaced out evenly over the day and it is
quite likely that at some moment, after a period of bunched arrivals,
several trains will be standing on the receiving tracks while an earlier
train is being sorted. In some yards the problem is more complicated,
If the receiving tracks are not long enough to accommodate the full
length of an incoming train, this train will have to be broken up into two
or three (usually not more) pieces, and each put onto a separate receiv-
ing track. Often, too, it is desired to give high priority to one part of a
train and low priority to the other, in which case the question of just
how to break up the train for storage on the receiving tracks creates
another policy problem. The rule or set of rules dealing with these
problems we can designate as the yard’s receiving policy, which is part
of its general classification policy. The simplest possible receiving
policy is exemplified by a “first come, first served” rule. This is the
one we shall usually assume to exist, since this element of policy is not
the one we shall find most interesting.

7.4.2. Grouping

The second policy question has to do with the sorting of cars, Into
which of the classification tracks is any given car to be switched? Since
a given classification track is at some yards used for different kinds of
cars at different times, the question is perhaps better phrased as, to
which classificationdoes a car belong? The latter question is substan-
tially equivalent to the former since at any given time a single classifi-
cation track is devoted to the cars of only one classification. The
practice in larger yards, especially those with an ample number of
classification tracks, is to assign one or more tracks to each classifi-
cation on a permanent basis, Since the number of classifications is a
matter of policy, it becomes a maxim of yard operation that the number
of classifications should not exceed the number of classification tracks.
Departures from this rule are however not uncommon, and if it ever
happens that cars of all these classifications are present at the same
time, then extra switching is called for.

Destination, contents, type and condition of a car are the most com-
mon bases of its classification, Thus among the classifications used by
the Southern Pacific’s Taylor Yard at Los Angeles we find:

92 Fresno to and including Planehaven
3 Edison to but not including Fresno
4 San Pedro -- Los Angeles Harbor

Track

King City to but not including San Jose

San Luis Obispo to but not including King City
Colton to but not including Indio

All points Roseville and beyond including Ogden

[== R = R <R B
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Track

12 Weighers

20 Commeodity cars to clean
21 38th St. to and including Firestone Park
22 Empty gondolas, etc.

24 Dirty reefers
25 Santa Fe R.R.
26 TUnion Pacific R.R.

38 Icers
39 Bad order empties

Henceforth we refer to the list of classifications as the grouping
policy, to signify that cars in a given classification are to be grouped in
outbound trains.

7.4.3. Make-Up

The third policy question refers to the make-up of trains., Let us
identify each outbound train by some code name, such as “No, 97,” etc.,
and let us suppose that we know its time of departure. Then, calling the
string of cars standing on any one classification track a group, we ask
what groups are to go into any given train. If traffic conditions vary
from day to day, the exact number of cars in any one group at any par-
ticular moment will not be known in advance, The total of cars in the
groups designated to be made up into “No, 97” may therefore be some-
times more than the train can haul; at other times the number may be
so small as to render the movement of this train quite unprofitable, Al-
though these matters somewhat encroach upon the discussion of later
chapters, their mention is necessary here, because the make-up policy
described above does not, as it stands, facilitate consideration of train
length., One way of avoiding this difficulty is to define the make-up
policy to be a set of numbered lists, each one of which ranks the groups
that are to go into some outbound train. Each list is to be interpreted as
an assignment of priorities to the groups of cars on different classifi-
cation tracks. An outbound train will be filled by first taking the group
at the head of that train’s make-up list, next the group second in the
list, and so on until the length of train thought in the circumstances to be
best has been reached.
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7.4.4. Scheduling

Before saying any more about make-up, let us go on to the fourth
and last policy question we shall examine, This pertains to the sched-
uling of outbound trains. The scheduling policy for a yard may consist
simply of a list of trains with a departure time and destination for each,
or it may be somewhat more complicated. I the make-up policy is not
of the priority-list type, the scheduling must be of a somewhat different
form in order to avoid the train-length troubles mentioned earlier.
Suppose train “No. 97” is to be made up of groups A, B, and C; all of
the cars in these three groups are to go in “No. 97,” and no other cars
are to be allowed in the same train. I traffic in these groups is quite
variable from day to day, so that at 10 AM, say, on one day there are
200 cars for “No. 97” and on another day only 25, the schedule for “No.
97" must take one of the following forms:®

“ No. 977 will depart when (say) 100 cars are avaiabla.
or perhaps
“ No. 97" will depart at 10 AM if at least 100 cars are available at that time,
at 11 AM if at least 80 cars are available at that time,
at 12 AM if at least 60 cars are available at that time,
at 1 PM if at least 40 cars are available at that time,
at 2 PM if at least 20 cars are available at that time.

This last rule lends itself very conveniently to a graphical representa-
tion. The curve DIY in Figure 7.4 represents this rule, with the addition
that points of time intermediate between 10 AM and 11 AM, for example,
are also assigned numbers of cars between 100 and 80, etc. The curve
EE’, representing the availability experience of one particular day,
shows how many cars of groups A, B, and C, taken together, have ac-
cumulated on the classification tracks at any one time. On this day, ac-
cording to the scheduling rule, “No. 97” will depart at about 11:50 AM
with about 64 cars, these figures being the coordinates of the inter-
section of curves EE’ and DD’.

The important point in this discussion is not why the curve DD’
should have such a slope but only that it is possible to ensure against
absurdly long trains {by making the schedule of departure times depend-
ent on the numbers of cars of the proper kinds which have accumulated),
and at the same time not completely abandon the timetable type of sched-
uling. Notice in Figure 7.4 that if the curve DD’ were vertical, we
should have a pure timetable schedule; if DD’ were horizontal we should
have what might be called a “leave when filled” type of scheduling. The
curve as drawn represents a scheduling policy for “No. 97” which is in-
termediate between these two extremes, It must be emphasized of
course that a schedule can be represented sensibly by a curve only when
the make-up policy for the train specifies certain groups of cars all of

2. The corresponding rules in actual practice will not of course be capable of such
simple representation, It is felt, however, that the scheduling rules presented here do
take into account the important considerations upon which practical decisions on this
matter are made.
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Figure 7.4, Graph of a Departure Schedule

which must go on the train. The make-up policy that assigns priorities
to different groups is not of this kind. Make~up and scheduling policies
which represent mixtures of the two variants we have described are con-
ceivable and probably can be found in practice, but we shall not attempt
to discuss them.

Of the four components of classification policy discussed, we shall
be concerned mainly with the last three: grouping, make-up, and sched-
uling, Briefly, these tell us, respectively, what cars go into what
groups, what groups go into what trains, and when each train departs.

7.5. Some Examples

To return to Coughlin’s description of early railroading practices,
we can now restate in our new terminology the classification policy used
there. In Figure 7.5, let the points dencted by capital letters be what
Coughlin refers to as terminals; at each, we shall assume, there exists
a classification yard. Let the points denoted by lower case letters be
local stations. At Yard A the grouping will be

Cars for a, a’, a”
All other cars.

At Yard B the grouping will be
Cars for b, b’, b”
Cars for D and beyond
Cars for ¢, ¢’, ¢”
Cars for C and beyond
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Figure 7.5. Classifications in a Rail Network

The make-up in both cases is particularly simple. Each outbound train
will consist of one group only, local trains from A carrying only the
single group [a, a’, a”] and through trains carrying only the single group
[all other cars].

At B, one local train will be dispatched with the single group
[b, b’, b"], another local with the group [¢, ¢’, ¢”], a through train with
the group [D and beyond], and another through train with the group
[C and beyond]. Nothing explicit was said in the example about sched-
uling,

[} 1
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Figure 7.6, Showing Locations of Yards

Another example is provided by a scheme proposed by M. L. Byers
(1908, pp. 539-540). Interesting in itself, it fits in here as the plan next
in order of simplicity to the one described by Coughlin., Since we shall
have occasion to refer to Byers’ plan again in Chapter 9 we shall quote
it at length. The reader should be aware that Byers uses the word “cut”
where we have used “group”; we shall reserve the former term for a
somewhat different use. The plan is as follows:

1. Normally, each yard will classify through trains into two cuts
each, viz.:

(a) Cars for the first yard in advance, including cars for
points between the first and second advance yards and
which consequently are not handled in through trains
beyond the first advance yard

(b) All other cars
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Example, Yard A (Figure 7.6) will make up through train for yard
B with all cars for Yard B (including local cars for points between
B and C exclusive) in one cut, and all cars for Yard C and beyond in
a second cut.
Yard B will receive this train, remove the first cut and classify

the second cut into:

A,. Cars for Yard D and local bheyond D;

A,. Cars for Yard E and beyond.
It will add any cars held in the yard for these destinations to these
cuts, and the train is then ready to proceed to Yard D. In like
manner, it will classify other cars of the second cut into:

B,. Cars for Yard D’ and local beyond D’;

B,. Cars for Yard E’ and beyond.
It will add any cars held in the yard for these destinations and the
branch train is then ready to proceed. Then, at its leisure, it will
dispose of the cut set off and switch the cars into the locals, or to
points in the yard as the destinations of the cars may indicate.

2. H any yard, after performing the normal work above indicated,
has available yard-engine time before the departure time of the
through train, it will perform such of the work of the next succeed-
ing yard as may be done without delay or increased cost.

Example. Yard A, having completed its work in time to do further
switching on the through train for B, will separate the second cut
(for points beyond C) into:

A. Cars for yard D and beyond;

B. Cars for yard D and beyond.

If further time is available, it will separate cut A into cuts A,

and A;, and cut B into cuts B, and B,, before mentioned, thus re-
ducing the delay at Yard C.

In spite of the omissions with respect to the disposition of cars
bound for C and local points beyond C, the general principle of classifi-
cation is clear. X we list, one on a line, the groups formed at a yard,
and if we use brackets to indicate the groups that are made up together
into trains, Byers’ policies for the various yards can be written as
follows:

For A {local beyond A

}
B and local beyond B
C and beyond
}

For B’ {local beyond B

C and local beyond C
D and beyond

{ D'and beyond }

3, We have altered the grouping at B 50 as both to bring in the C traffic. which Byers
inadvertently omitted, and at the same time to make B’s policy conform to the principle
implied. The C traffic of course could equally well have been put on the third train.
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For C  {local between C and D }
{1ocal between C and D'}

D and local beyond D
E and bheyond

D’ and local beyond D’
E' and beyond
et cetera,.

If a yard has spare time at its disposal its policy, according to Byers,
is to be modified. The first such modification for Yard A is described
as follows:

{1ocal beyond A

}
B and local beyond B
C and local beyond C
D and beyond
D’ and beyond

The second modification, to be carried out if A still has time available,
is:
{1ocal beyond A }

B and local beyond B
C and local beyond C
D and local beyond D
E and beyond
D' and local beyond D’
E’ and beyond

et cetera.

Both of the above examples are of course extremely simple ones,
The classification policies in actual use today are much more compli-
cated. While each yard’s policy is still quite capable of being expressed
in our terminology, it is true that the policies of a system of yards can-
not be easily expressed in a general form as we have done with the plan
of Byers. Indeed, there is little reason to expect such a uniform pattern
of policies. For an example of a system of policies the reader is re-
ferred to the Baltimore and Ohio’s Working Book No. 19,* which devotes
a page to the grouping, make-up, and scheduling of each train.

4, Baltimore and Ohio Railroad Company (1951).



Chapter 8

A SINGLE CLASSIFICATION YARD

In this chapter we shall attempt to give some more precise meaning
to the concept of the “work” involved in classification operations. For
the moment we shall confine our discussion to the workings of a single
yard in isolation; we shall ask how costs at this yard depend on the
yard’s physical facilities, on the characteristics of the traffic handled,
and on the classification policy. Cost will be thought of as being made
up of two components, money cost and time cost, where the latter repre-
sents the delays suffered by cars and freight in undergoing the classifi-
cation process. Most of the description will be of a qualitative rather
than quantitative nature; that is to say, we shall usually have to be satis-
fied in knowing whether costs go up or go down with certain changes in
yard facilities, traffic, or policy. The exact extent of these changes, ex-
cept in a few cases, must remain a subject for further inquiry. It should
also be emphasized that the relationships we shall describe are tenta-
tive ones, open to criticism and perhaps refutation by subsequent studies
of a similar nature. While it is felt that most railroad men would be in
agreement with each one of the cost relationships taken singly, many
different opinions can undoubtedly be found on the relative importance of
each.

To begin with, it is convenient to break down yard costs into three
categories -- the cost of handling, the cost of accumulation, and the cost
of congestion, Under the title handling are included all those yard oper-
ations having to do with the movement and servicing of cars in the yard.
Handling costs will obviously contain both money costs, in the form of
switch-engine and labor costs, and time costs corresponding to the pe-
riods of time necessary to carry out the classification operations. Ac-
cumulation and congestion costs are composed entirely of time costs.
The first of these, which we shall usually refer to as accumulation delay,
pertains to the delay suffered by a car waiting either for its scheduled
departure or for a train length of the “right” kind of traffic fo accumu-
late in the yard. What kind of traffic is “right” and what the train length
shall be will of course be specified by the make-up and scheduling poli-
cies of the yard., The reason for the namne we have given to this element
of delay is clear in the case where the scheduling policy is of the “leave-
when-filled” type but not so clear when it is of the timetable type. As
soon, however, as we realize that one of the ruling considerations in the
selection of a particular timetable is the average train length to which it
leads, we see that the delay involved in waiting for a timetable departure
can also be considered a waiting for cars to accumulate.

Congestion delays refer to the periods during which a car must
stand idle as it waits to be serviced because the handling of cars
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serviced ahead of it is not yet finished. It should be pointed out that this
definition excludes some delays that are also caused by congestion, such
as those brought about by a possible slowing down of handling operations .
in times of heavy traffic. These latter delays (if they exist) would in our
terminology still be classed as handling costs.

We shall now enter into a more detailed discussion of each of these
costs,

8.1. Handling Cost

It is perhaps simplest first to discuss handling cost entirely in
terms of its time-cost component, We shall usually find in fact that both
the time- and the money-cost components respond in the same way to
changes in yard facilities, policy, and traffic. On the important question
of the degree to which, under different circumstances, the two types of
cost are substitutable, something will be said at a later point.

Following the discussion of yard operations in the preceding chapter
we shall consider separately the delays arising in each of the several
handling operations -~ receiving, sorting, and make-up.

8.1.1. In the Receiving Operation

If, in the receiving operation, an incoming train is broken up into
two or more pieces to be stored on the receiving tracks, the delays in-
volved are probably greater than when the whole train is treated in a
single section. More important at this point of the operation are the de-
lays brought about by the inspection process. It was stated earlier that
the condition of a car was one of the classification criteria. The inspec-
tion of cars to determine their condition must therefore precede this
sorting operation. X a car’s need of immediate repair is only dis-
covered after it has been sorted, extra switching will be necessary to
remove it from the group with which it has been placed. Such switching
will very likely have to be performed at a part of the yard designed for
other work. Unless this work can be done at a slack period, the result
is delay, not only to the car in question, but also to the cars coupled to
this bad-order car. The inspection therefore is usually carried out in
the receiving yard.

A small crew of men goes through a routine checklist inspection of
each car in the train. The list includes such things as couplings, jour-
nals, and brakes, and is quite often very detailed. The time needed to
finish the inspection of a train depends partly on its length, of course,
but it also may depend on the number of men available for inspection at
any one moment. Large classification yards have as many as 100 men,
divided among three shifts, who devote full time to inspection. This
means that during slack periods the process can be considerably
speeded up. In order that the reader might have some idea of the length
of this inspection period, we have plotted in Figure 8.1 inspection times
(vertical axis) against train lengths (horizontal axis) for one particular
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day’s traffic through a large classification yard. The preponderance of
short “train” lengths is explained when it is recalled that quite often
sections of a train are treated separately. While the scatter of the
points in Figure 8.1 is large, perhaps reflecting variation in the size of
the inspection crew, there does seem to be some indication that, on the
average, the time required to inspect a train increases with train length.
If inspection time per car is, on the average, a constant independent of
train length, as seems most likely, it is still true that the inspection de-
lays incurred by cars will depend on the lengths of the trains {or sec-
tions of trains) in which they are stored in the receiving tracks. This is
s0 because no single car can be moved until the inspection of the whole
string of cars to which it is coupled has been completed. This is per-
haps a roundabout way of stating that the inspection delay attaches to the
train (or section of train) rather than to the car. However, since the
train loses its identity in the sorting process (its cars may end up in
several other trains), we prefer to use the car rather than the train as
our base.

Clearly, then, the average inspection delay suffered by cars will
vary with yard facilities and with receiving policy. The shorter the
sections into which incoming trains are broken up the less will be the
average inspection delay of a car. Such savings are offset, however, by
the fact, previously mentioned, that a train is more quickly moved in and
out of the receiving tracks when it is handled in fewer sections. While
the question of how receiving delays are affected by receiving policy is
an interesting one, we shall not pursue it further here.

8.1.2. In the Sorting Operation

The handling delays arising in the sorting operation are of special
interest to us because it is here that the possibility of shifting work
from one yard to another is most in evidence. According to the means
by which they carry out the sorting procedure we shall distinguish two
main types of classification yards -- the flat vard and the hump yard.

In order to explain the difference, the diagram of the classification track
pattern will be slightly elaborated for the two cases,

In Figure 8.2 we see a typical pattern of classification tracks for a
flat yard together with the leads to and from these tracks. To sort a
train of cars a switch engine pushes the train in along the entering “lead
track” from the receiving yard. From a previously prepared “switch
list” the members of the switching crew know into which classification
track each car is to go. Cuf is the name given to each of the parts into
which a train is cut up in the sorting operation; thus a cut is a group of
successive cars bound for the same classification track. The switch list
therefore defines the cuts to be made. Let us say that the first two cars

1. To describe the operation of switching cars into the classification tracks the term
“gorting” is used rather than the more commonly used “classification” in order to avoid
confusion with the whole yard operation, for which the latter term is reserved.
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Figure 8.2. A Typical Classification-Track Pattern
for a Flat Yard

of the train are to go into Track 4; cars 1 and 2, that is to say, consti-
tute the first cut. As the string of cars moves toward the switch leading
into Track 4 one man pulls the pin that locks the coupling between the
second and third car. A switchman throws the switch so as to direct the
pair of cars into Track 4, and the engineman brakes the train sharply,
thus “kicking” this cut into the proper track, These two cars roll down
Track 4 until they lose momentum, couple with other cars already
standing there, or in some cases are stopped by a brakeman on the cars.
Meanwhile the switchman restores the switch to Track 4 and sets the
switch for the track appropriate to the next car or cars. The pin-puller
separates this next “cut” of cars, and the engine brakes again, and so

it continues.

An experienced crew can perform this operation much more
smoothly than it can be described. One who has never watched it would
suppose that, after each kick, the engine would have to back up with its
string of remaining cars to repeat the process. However this is by no
means always the case. Quite often several cuts can be kicked into
their appropriate classification tracks without ever completely halting
the forward progress of the engine. The only requirement is that there
be sufficient space between the cuts to enable the switchman to reach
and operate the proper switches. Suppose three successive cuts are
destined for Tracks 6, 7, and 4 respectively (Figure 8.2). The second
cut must be far enough behind the first to give the switchman time to re-
store the switch to Track 6 after the first cut has passed over it and
then set the Track 7 switch if he has not already done so. He must then
be able to reach the Track 4 switch before the third cut does. Unless
the train is very short, backing up will often be necessary, for the string
of cars will eventually have passed beyond the turnouts for classification
tracks still to be used.

In Figure 8.3 a typical classification-track pattern of a hump {or
gravity) yard is shown. It will be noticed that the right-hand half of the
diagram is no different from that for a flat yard. The essential differ-
ence between the two types of yard is to be found in the “hump,” the
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Figure 8,3, Typical Classification-Track Pattern for a Hump Yard

crest of which is indicated in Figure 8.3 by the dotted line. The track
from the receiving yard slopes gradually up the left side of this hump,
and drops off rather sharply on the right side. The downslope continues
through the switches A, B, C, etc., and, almost imperceptibly, well into
the body of classification tracks. The crest of the hump is usually 12 to
20 feet above the level. The grade of the tracks varies from as much
as 4 per cent just beyond the hump to about 0.2 per cent in the classifi-
cation tracks (American Railway Engineering Association, 1852, p. 301),

In sorting, or in this case “humping,” a train, the switch engine
pushes it up the left-hand side of the hump at about walking speed. Just
before a cut of cars passes the hump, a pin-puller unlocks the coupling
between this cut and the following one, As soon, then, as the cut is
pushed over the hump, it breaks away from the rest of the train and
starts rolling down the sharp grade toward the switch A in Figure 8.3,
The switches A, B, and E are set so as to direct this first cut into, let
us say, Track 4. Meanwhile the engine continues pushing the train up
the hump, so that perhaps at the moment the first cut is moving through
switch E, the second cut is already passing over switch C, and the third
over switch A, It is not at all unusual to see three or four cuts rolling
down from the hump simultaneously (each, of course, a little behind its
predecessor), for the whole operation is a very rapid and continuous one,
Except for unusual events, such as jammed couplings or cars requiring
special handling, the movement of the train over the hump takes place at
an almost constant speed.

In the earliest hump yards the switches were thrown manually, as
in a flat yard, and the cars were braked as they rolled off the hump and
into the classification tracks by men called “riders,” who rode the cars
and operated the hand brakes, Today most hump yards are equipped
with electrically controlled switches, operated from desks in control
towers that give their operators a good view of car movements, Brak-
ing is also automatically operated from control towers by means of
electrically or pneumatically powered “car retarders.” These retarders
consist of cast-iron shoes, one on each side of each track, which can be
made to pinch the wheels of cars as they pass over. In most yards a
skilled operator, having information on the weight of a cut of cars and
the classification track it is headed for, applies just enough pressure
with the retarders to slow the cut to a speed that will bring about a
gentle coupling with the cars already standing on that classification
track. There are usually several retarders; in Figure 8.3 there would
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probably be one between the hump and switch A, another between
switches A and B, another between B and D, and others between suc-
cessive points. In some modern yards, retarders can be set to apply
automatically according to the speed and acceleration of the approaching
cut,

In discussing the inspection process we assumed quite realistically
that the inspection period of a car was not finished until the whole train
or section of train to which it was coupled had also been inspected. We
shall make exactly the same assumption with respect to the sorting
process. That is to say, we shall suppose for simplicity that nothing
further can be done with any single car until the whole string of cars
containing it has been sorted. Our first concern therefore is with the
time necessary to sort a train. Once we have this information we can
return to the question of the average delay suffered by a single car.

In both flat yards and hump yards we should expect sorting time to
increase with the length of the train being sorted. This is borne out for
the case of a hump yard by the observations plotted in Figure 8.4, where
the vertical axis measures the time used to sort a train, and the hori-
zontal axis measures the train length. Each point represents a single
train or section of train. The scatter of the points cannot be ignored,
but it is clear that train length has an important effect.

From the description it is quite obvious that, at least for a flat
yard, the number of cuts in the train must also play an important part
in determining the sorting time. In flat switching, the number of times
the engine will have to back up will almost certainly be higher if the
number of cuts is high. In hump sorting the influence of the number of
cuts is less obvious and not nearly as great. Nevertheless the number
of cuts has a significant effect. In Figure 8.5 we have plotted sorting
time per car against cuts per car for the same set of observations as
were plotted in Figure 8.4. Because the relationship is not obvious in
this case, and because it seems quite reasonable that cuts might have no
appreciable effect on sorting time in a hump yard, we have computed the
regression of “minutes per car in sorting” on “cuts per car” and
<}ength of train,” The resulting equation is

= ,0042 + .201 S+ .00131n

(8.1) =
(,0666)  (.084) (.00028)

Sle

where t is the time used in sorting a train, n is the length of the train
in cars, ¢ is the number of cuts into which the train is separated in the
sorting process, and the figures in the parentheses are the standard
errors of the coefficients above them, Since there were 108 observa-
tions, it is seen that all coefficients but the constant term are signifi-
canily different from zero. The equation is plotied in Figure 8.5 for

n =0 and n = 100. Sorting time per car for train lengths intermediate
between zero and 100 can be found by linear interpolation if the cuts-
per-car variable is taken to be fixed.
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Multiplying through by n, the equation (8.1} can be put in the form

(8.2) t = [.0942 + .291 T‘i}n +.00131 n°%

which is plotted in Figure 8.4 for;—‘i =1 and% =.,5, It must be empha-

sized at this point that the figure, “sorting time per car,” used in Fig-
ure 8.5, is not the same thing as the sorting delay of a car, which, as
we have said before is equivalent to the sorting time of the whole train,

Unfortunately we do not have statistics on flat-yard operation that
would tell us how sorting time depends on cuts per car., It is clear how-
ever from more casual observation than that underlying Figure 8.5, and
from the statements of railroad men, that, for a flat yard, the lines cor-
responding to those in Figure 8.5 would have a much sharper slope up-
ward. This difference in the effect of the number of cuts per car is, in
fact, the essential difference between a flat yard and a hump yard. The
latter is much better equipped to handle sorting when the number of cuts
per car is high.

What makes this relationship interesting is the fact that the vari-
able, cuts per car, is almost completely a matter of policy. In order to
concentrate our attention on this effect of cuts alone, let us simplify the
discussion by supposing that the lengths of trains as they are sorted are
fixed. This need not mean that all trains are of the same length, but
only that from day to day, let us suppose, the same pattern of train
lengths keeps repeating itseM, so that, for instance, the twelfth train
through the yard each day is always sorted in two sections of about 50
cars each. We can now examine the effect of grouping policy on sorting
time through its influence on the number of cuts per car.

Other things equal, the number of cuts per car will be high if the
list of classifications which constitutes the yard’s grouping nolicy has
many entries. On the other hand, cuts per car will be low if the group-
ing policy lists only two or three classifications. Any yard therefore,
which wishes to minimize sorting delays incurred in it will maintain as
coarse a classification system as possible; local traffic will be sorted
into one group, and traffic for the next terminal and beyond will be
sorted into another -- nothing more. The minimization of sorting de-
lays at each yard does not at first glance appear to be a foolish aim, and
probably goes far toward explaining the early classification practices
described by Coughlin {quoted in Section 7.2). Even aside from the fact,
however, that sorting delay is only one part of total delay, the minimi-
zation of sorting delay at each yard individually is not a wise goal, For
it may be possible by way of a judicious choice of grouping policies at
the various yards of a system to decrease the delay considerably at one
yard by increasing the delay to a lesser degree at another; the aggre-
gate result is then better than that achieved by individual minimization.
The way this can take place is as follows.

We have described how the grouping policy influences the number of
cuts per car, and how the latter in turn affects the sorting time
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differently in a flat yard and a hump yard. The third influence on sort-
ing time operates, like grouping policy, through its effect on cuts per
car. This is the character of the incoming traffic with respect to the
ordering of cars in trains. To the extent to which cars in incoming
trains are already grouped, the number of cuts per car will be less and
the time consumed in the sorting operation will be diminished. If the
preceding yard has exactly the same grouping policy, then in any single
train not more than one cut will go into any classification track; cuts
per car will have been reduced as far as possible by this means. If no
grouping has been done by the previous yard (if, that is to say, it puts
all traffic into one group) then cuts per car will, on the average, be very
high. There will usually still remain some two- and three-car cuts, for
no matter how mixed up a train may be, a chance remains that simi-
larly destined cars will be found next to one another in a train. Many-
carload shipments will also prevent the number of cuts per car from
attaining the level 1.0. To this interesting problem of just how the
grouping policy at a preceding yard influences cuts per car we shall re-
turn in Chapter 10, where an attempt will be made to take these chance
variations into account by means of an explicit mathematical treatment.

At this point we only wish to emphasize that since cuts per car have
little effect on sorting delay in a hump yard it becomes, as far as the
sorting delays at this yard alone are concerned, almost a matter of in-
difference how fine the grouping policy is and how mixed up the trains
are as they enter the yard. On the other hand, in a flat yard each ad-
ditional classification in the grouping policy adds noticeably to sorting
delays, and whether or not a train has been already grouped to some ex-
tent at a previous yard is a matter of considerable importance.

8.1.3. In the Make-Up Operalion

The third type of handling delay we shall consider is that arising in
the make-up operation. The make-up policy as described in the previ-
ous chapter specifies which of the classification tracks are to be
“pulled” in order to assemble any particular outbound train. Suppose
that the cars on Tracks 1, 3, 7, and 14 are to be made up into a train,
While there are several different ways of doing this it is perhaps sim-
plest to imagine the switch engine entering Track 1 from the departure
end of the classification tracks, coupling on to the group of cars in
Track 1, and pulling these out onto the ladder track which connects the
classification tracks at this end of the yard. This string of cars is then
pushed into Track 3 and a coupling is made with the string of cars
standing there., This in-and-out movement is continued to pick up the
groups in Tracks 7 and 14, and finally the train as a whale is moved off
to a departure track. In large yards there may be several departure
tracks side by side forming another subyard much like the receiving
subyard,

In a well-designed yard it 1s quite possible that more than one train
can be made up at a time. For this to be the case there must be more
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than one lead track to the departure end of the classification tracks and
the groups to be made up into sSeparate trains must be so located on the
classification tracks as to permit carrying on the two operations with-

out interference,

The time consumed in making up a train depends for the most part
on the number of groups that go into the train, since each group calls
for a movement in and out of a classification track on the part of the
switch engine. If the number of cars in a group has an influence on the
time necessary to pull this group out of its classification track, perhaps
make-up time is best expressed as a function of number of groups and
length of train. Notice that this last relationship is formally identical
to the one we have proposed for delay in the sorting operation. This
should not, of course, surprise us, for make-up is very much like the
flat-yard sorting operation in reverse, with the difference that it cannot
be performed quite so smoothly. Cuts have been replaced by groups in
the relationship; there will usually be only a few groups, but the in-
fluence of this number on make-up delay will probably be relatively
greater than the influence of the number of cuts on sorting delay, be-
cause each group calls for a push-pull action which even in flat-yard
sorting was quite often avoidable.

Just as cufs per car was in great part determined by grouping
policy, so the number of groups in a train (or perhaps better groups per
car, if train length by itself proves to have an important effect) is in
great part determined by make-up policy.

8.2, Congestion Cos!

From the foregoing discussion and the data that have been pre-
sented, one might suppose that there is little reason for the average car
to spend more than about three hours in any one classification yard.
This would allow one hour for inspection {(Figure 8.1), one hour for
sorting (Figure 8.4), and one hour for make~-up. Not all yards, it is
true, are like the one for which we have presented data, but it is proba-
bly not unrepresentative of a large class of hump yards. In Table UI
are presented some daily averages of the time spent by some cars in
undergoing classification at this yard.

The table presents a rather worse picture than it might have, for
perishable traffic, which has highest priority in going through the yard,
has unfortunately been omitted in calculation of the averages. Granted,
however, that Table III describes only the delays to slow traffic, it is
still clear that a great part of the total delay suffered by a car in the
process of classification remains to be explained. At this point it would
be naive indeed to assume that the difference between the three or four
“explained” hours and the fifteen hours, say, of Table III, represented
waste or inefficiency on the part of railroad management. The re-
mainder of this delay falls into categories we have called congestion
delay and accumulation delay. We shall first say a few words about con-
gestion delay and its determinants.
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Table III

Some Daily Averages of Delays to Nonpriority Traffic
in a Classification Yard (Hours)

Northbound Traffic Southbound Traffic

Average Time Average Time Average Time Average Time
from Arrival to from Arrival from Arrival to from Arrival
End of Sorting to Departure End of Sorting to Departure

June 2 5.88 17.63 2.98 10.42
3 6.67 18.73 4.22 11.80
4 6.20 17.73 4,30 12.65
5 5.37 16.65 4.60 11.48
) 5.23 15.83 5.08 11.70
7 6,62 18.90 5.65 12.67
8 6.73 17.35 4,32 12.53
9 6.80 18.43 4,33 13.88

10 6.33 17.68 5.40 12.88
11 4.82 17.57 4,37 12.07
12 3.18 14.93 5,43 12,18
13 4.60 14.35 5.00 12.10
14 6.22 17.25 4.20 11.75
15 7.85 18.68 4.58 11.95

If every train took exactly one hour to inspect and one hour to sort,
the average time from arrival to the end of sorting would still be greater
than two hours, unless no train ever arrived until the inspection of the
train preceding it had been completed. Where a yard has only one main
track leading into it, there is some reason to expect incoming trains to
be spaced out in this manner, for the capacity of the main-line track is
limited, and the previous yard is not likely to make up and dispatch
trains in very close succession. In large yards however, incoming
trains will quite often enter from several directions, Bunched arrivals
will not be uncommon, with the result that cars will often be forced to
stand idle in the receiving yard while another train is being inspected.
We shall call the time spent in such “waiting lines” or “queues” a con-
gestion delay. Such delays are also caused by fluctuations in the lengths
of inspection and sorting times.

Table IV presents a record of the inspection and sorting operations
for part of one particular day. The arrival time of each train is given,
along with the beginning and end of the inspection period, and the begin-
ning and end of the sorting period. The numbers in the first column
simply denote first train, second train, section a, section b, etc., while
the third column shows the lengths in cars of the sections into which
each train is broken up for handling purposes., The fourth column,

« Paperwork” indicates the time at which the switch lists are com-
pleted. Sorting cannot begin until both the inspection and the paperwork
are finished.

Hunting through the table one finds that at 12:20 AM, while 6, 8a,
and 9a are being inspected, six train sections are standing in the receiv-
ing yard awaiting inspection. These are 7a with 28 cars, Tb with 112
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Table IV

A Record of the Trains Classified between Midnight and Noon
on March 15, 1953, in a Large Hump Yard

Paperwork
Train Arrival Cars Inspection Finished Classification
1 3:50 PM 22 6:40-7:10 PM 3:28-3:35 AM
2 5:00 PM 24 5:55-T:10 PM 6:30 PM 12:32-12:38 AM
3 5:55 PM 19 7:10-7:50 PM 7:05 PM 4:27-4:33 AM
4 7:20 PM 53 8:00-9:35 PM §:25 PM 3:40-.3:55 AM
b} 8:25 PM 21 10:00-11:10 PM 10:35 PM 3:10-3:22 AM
6 10:00 PM 112 10:35-3:50 AM 11:55 PM 4:42-5:35 AM
Ta 11:05 PM 28 1:45-2:50 AM 11:35 PM 6:17-6:25 AM
b 112 3:30-5:00 AM 2:40 AM 6:34-7:25 AM
8a 11:30 PM 80 11:30-12:20 AM  12:35 AM  12:48-1:12 AM
b 4 12:30-12:40 AM  12:57 AM 1:23-1:24 AM
c 46 3:40-5:00 AM  12:57 AM 8:22-8:40 AM
9a 12:10 AM 39 12:10-12:50 AM 1;:07 AM 1:25-1:42 AM
b 40 12:50-1:15 AM 1:35 AM 1:46-2:00 AM
c 29 12:40-1:45 AM 1:40 AM 2:08-2:17T AM
10a 1:00 AM 35 1:15-2:00 AM 2:00 AM 2:26-2:40 AM
b 38 2:00-2:30 AM 2:10 AM 2:50-3:03 AM
c 49 5:00-5:45 AM 2:55 AM 9:02-9:17 AM
1la 3:50 AM 10 7:00-7:20 AM 4:00 AM 9:55-9:58 AM
b 118 5:45-T:45 AM 4:50 AM 9:58-10:52 AM
12 5:41 AM 45 5:45-7:20 AM 6:10 AM 9:25-9:42 AM
13 5:50 AM T6 T7:15-8:00 AM 6:30 AM 11:17-11:42 AM

cars, 8b with 4 cars, 8c with 46 cars, 9b with 40 cars, and 9c with 29
cars -- a total of 259 cars in the inspection queue. At 1:10 AM six
train sections whose inspection has been completed are waiting to be
sorted: 1, 3, 4, 5, 8b, and 9a with a total of 158 cars. The yard is not
always this congested, but a short study of Table IV does indicate that
queues usually form ahead of the inspection and sorting operations, and
that the resulting congestion delays are fairly substantial, One writer
{Crane, 1953, p. 102) has reported the following average delays to
trains for a one-week period in a hump yard:

Waiting for inspection 65 minutes
Inspection 71 minutes
Waiting for sorting 160 minutes
Sorting 25 minutes

In interpreting both these delays and those in Table IV a word of
caution is in order. Strictly speaking, the time spent waiting in inspec-
tion queues and sorting queues can all be called congestion delay only
if traffic is pushed through these operations as fast as possible, given
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the working force of both labor and switch engines, I, however, the
yard manager knows that the cars in a certain inbound train are not
scheduled to leave the yard for say twelve hours, then he may very well
put off the inspection or the sorting of these cars for eight hours or so,
not simply because other traffic is waiting but only because it makes no
difference whether the work is done now or later. This difficulty of
separating congestiorf delay and accumulation delay makes the measure-
ment of congestion delay rather difficult and may account in part for the
surprisingly large estimates quoted above, as well as the congestion
delays in Table IV.

In most queuing situations® the average congestion delay increases
with the level of traffic. To test whether this is the case in a hump
yard, linear regressions of daily average time from arrival to end of
sorting on number of cars per day were computed for both northbound
and southbound nonperishable traffic through a large hump yard over a
period of four weeks. The results fail to tell us very much:

(8.3) Northbound: d = 135 + .31n
(.11}
(8.4) Southbound: d = 204 + .1lln
(.11)

where d = average time in minutes from arrival to end of sorting,
n = number of cars per day, and the numbers in parentheses are the
standard errors of the coefficients of the n’s. ¥or the northbound traf-
fic a significant increase of average delay with number of cars was
found; for the southbound traffic the increase was not significant. The
validity of these calculations is of course seriously impaired by the
omission of the perishable traffic, which, although exact figures are not
available, is known to constitute quite a large portion of the total traffic,
Policy choices will affect average congestion delay to the extient
that handling times both in inspection and sorting can by this means be
made more regular. Such opportunities are probably not very great.
Equal in interest to the effect of policy on average congestion delay is
the effect of receiving policy on the distribution of congestion delays to
different classes of traffic. By assigning high priority in handling to
one class of traffic the congestion delay of this class is reduced at the
expense of the congestion delays suffered by all other traffic. Notice in
Table IV that the first sections of trains 5, 8, 9, and 10 are sorted be-
fore trains that arrived earlier. The average delay is unchanged by
such priority assignments; only the distribution of the total is affected.

8.8. Accumulation Cosls

When the sorting of a train has been completed, the cars that were
in it are ready to be made up into new trains. In the case of the usual

2, Cf. Section 1.2, especially Figures 1.8, 1.9, 1,10 at the end of that section,
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car this make-up operation does not take place immediately, with the
result that the car suffers another loss of time which we shall call an
accumulation delay.

The name is derived from the reason for this delay. Enough simi-
larly bound cars to achieve long-train economies must accumulate be-
fore an outbound train can be assembled, The decision as to how long
the train is to be, and just how similar the destinations of the cars
must be, is implicitly expressed in the make-up and scheduling policies,
which state, respectively, what groups go into any particular outbound
train and when the train is to be made up. If a whole trainload of low-
density traffic is to be assembled, the average accumulation delay to
the cars involved will be high; it will be low, on the other hand, if a
train carries all traffic bound in its general direction. Considerations
as simple as these go far in explaining why traffic bound from New
York to Seattle is “yarded” at several intermediate points instead of
being hauled in one solid train from origin to destination without inter-
ruption.

Speaking more precisely, we define the accumulation delay of a car
to be the sum of the periods during which the car is waiting for the ar-
rival or handling {or both) of other cars with which it is to be dis-
patched.? H we assume that the inspection and sorting of cars proceeds
as fast as possible, given a certain working force, then the above defi-
nition is equivalent to the statement that the accumulation delay of a
car is the period of time between the completion of sorting of the train
(or section of train) in which it arrived and the beginning of the make-
up of the train in which it is to depart. With this assumption, the ac-
cumulation delay of a car becomes very nearly the same as the time
the car spends on a classification track,

The level of the average accumulation delay suffered by a particu-
lar component of traffic will, for the most part, be determined by the
make-up and scheduling policies together with the level of flow of that
traffic component. To make this clear let us suppose for a moment
that the make-up and scheduling policies are of the “leave-when-filled”
type (Figure 7.4) rather than the timetable type. Now let us look at the
traffic specified by the make-up policy to go out on one particular train,
“No. 97." If this traffic flow is high, then the intervals between de-
partures of No. 97 will be short and accumulation delay per car for this
traffic will be low. If some of this traffic departs on other trains as
well as on No. 97, the description becomes more complicated, but our
conclusion is unchanged. K the make-up policy is altered so as to ex-
clude some of this traffic from No. 97, and if no other new traffic
enters the make-up of No, 97, then the accumulation delay per car for
No. 97 is increased, for it will take a longer time to accumulate a train

3. Only in the extreme case of dispatching by timetable will this definition of accumu-
lation delay become somewhat ambiguous; for this one particular case we can define
accumulation delay as the waiting time to the beginning of the make-up of the train in
which the car is to depart.
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load from this smaller traffic flow. To find out what happens to the ac-
cumulation delay of the excluded traffic it is of course necessary to
look at more than one train at a time. If the scheduling policy is
altered so that trains (with the same make-up as before) are dispatched
more frequently, accumulation delay is decreased.

The effects on accumulation delay of simultaneous changes in
make-up and scheduling may sometimes cancel out. Thus if the make-
up of some trains is restricted but trains are scheduled more fre-
quently, accumulation delays may remain the same.

In the case of timetable scheduling, the average accumulation delay
per car of each component of traffic is only affected by make-up and
scheduling and not by changes in the level of flow of that component,
since a train’s departure does not depend on the time required to ac-
cumulate a train load. In this case, as we shall see in Chapter 11, the
influence of flow levels acts through their effect on the total of accumu-
lation delays for all cars.

8.4. Summary

We shall now attempt to sum up in tabular form our discussions of
the effect of yard facilities, traffic input, and policy on the various
costs at a single yard and on the traffic output from that yard.

Across the top of Table V are listed the various factors influencing
costs and output, and along the left margin are listed the various costs
and the output, For the sake of completeness we have also included
line-haul cost from this yard to whatever yards the departing traffic
goes to. The phrase in any one cell of the table is an attempt to de-
scribe very briefly the means by which the item at the head of the col-
umn influences the item named in the left margin of the row. Where
the influence is negligible or indirect, the cell has been blacked out.
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Chapter 9

THE ASSIGNMENT OF CLASSIFICATION WORK
IN A SYSTEM OF YARDS

9.1. Selection of a Set of Policies
That Minimizes System Costs

We have seen that various characteristics of the incoming traffic
play a large part in the determination of both money and time costs at
any single classification yard. Since many of these characteristics,
such as the bunching of trains, the lengths of trains, and the grouping
of similarly bound cars are importantly influenced by the classification
policies of earlier yards, it is clear that the cost at any one yard is a
function not only of its own policy, but also of the policies at all those
yards through which the traffic of the yard in question has passed at
earlier stages in its journey.

AsPolicy BsPolicy  Cs Policy Ds Policy

N

Al— B|—| C j—> D |

Traffic \ \

CostsatA Costsat B CostsatC Costsat D

Figure 9 1. Causal Relationships ina System of Yards

Diagrammatically, this causal relationship can berepresented as in
Figure 9.1, where the boxes represent classification yards, and the
arrows represent policies, costs, and the characteristics of various
traffic flows. The arrows leading into a yard determine the arrows
leading out. Thus C’s costs and traffic output are jointly determined by
C’s policy and traffic input, and the latter, being B’s output, is in turn
determined by B’s policy and the input to B, etc. The arrangement de-
picted, four yards in line, could easily be extended to more complicated
systems.

We see thereft re that costs at different yards are closely related
to each other. A yard which adjusts its policy so as to reduce costs at
a yard farther down the line will usually find that jts own costs have in-
creased in the process. I we assume the program of traffic (i.e. the
traffic flows between various points of origin and destination) handled
by a given system of yards to be fixed, any selection of a set of policies
for the different yards is equivalent to a particular assignment to the
yards of the classification work involved in handling this program.

The problem of policy selection, therefore, amounts to assigning
this work in such a way that, in some sense, the sum of costs over the
system is minimized. The system costs to be summed here must
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include not only the costs at yards but also line-haul costs, in order to
bring into the problem recognition of the fact that accumulation delays
are incurred to gain the hauling economies of long trains. The hauling
operation involves time as well as money costs, of course, but for pur-
poses of simplicity we shall ignore these time costs (by assuming them
to be constant) on the grounds that yard policy has little influence on
them.

Strictly speaking, it is not, of course, quite correct to refer to the
problem as one of simple minimization,' since our cost concept, involy-
ing both time and money cost, has more than one dimension, Indeed, if
delays to different components of traffic are valued differently — and
very often they are in practice — our cost concept becomes many dimen-
sional. In such a case the search for the “best” set of policies for the
yards of a system takes the following form. First those assignments
{substituting this shorter word for “sets of policies”) must be found
which have the characteristic that if another assignment results in less
of one kind of cost, it inevitably results in more of another. An assign-
ment which meets this specification will be called e¢fficient. Thus one
efficient assignment might result in fast service through the system of
yards to AB traffic, but slow service to CD traffic. Since both assign-
ments are efficient there can be no assignment which provides the same
fast service to AB traffic and the same fast service to CD traffic. In
searching for a best assignment we need not consider any inefficient
assignment because by definition there is always an efficient assignment
which is less costly in all respects.

The next step is to select from among the set of efficient assign-
ments the one (or ones) which most nearly reflects the valuations put on
the various time costs. The plural “valuations” is used because of
course equal time losses to different components of traffic will not in
general be valued equally, If we knew from the start how time was to
be valued in terms of money, we should not have had to break down
costs into time cost and money cost; instead, we could have treated
time just as we have treated labor and fuel, in terms of money cost.
With such advance knowledge, the problem of policy selection would
simply have consisted in minimizing total money costs, and we should
not have needed to trouble ourselves with the intermediate step of
searching for efficient assignments.

From the economic point of view, however, knowledge of the set of
efficient assignments and the various costs associated with each is of
fundamental importance. For the valuations of time eventually decided
upon (perhaps only implicitly) will be influenced not only by the diverse
demands for speed on the part of shippers, but also by the extent to
which a change from one efficient assignment to another enables a re-
duction of delay to one component of traffic at the expense of an in-
crease of delay to another, or perhaps an increase in money cost. This
latter information is precisely what we learn from the set of efficient

1. In the mathematician’s language the problem is one of vector minimization.
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assignments and the costs corresponding to each. The same consider-
ations apply, of course, to labor, fuel, and other inputs, but since mar-
kets and prices exist for these commodities we have felt justified in
summing them up in money terms,

In the rest of this chapter and in the next two chapters we shall
attempt to explore the differences in costs between various assignments.
In Chapter 10 we shall examine assignments which differ only in group-
ing policies, in Chapter 11 those which differ only in scheduling poli-
cies. Since it is not immediately apparent that the work assigned to
yards changes with changes in scheduling, it should be recalled that,
not only does scheduling influence yard costs, directly, but also that
some schedules enable grouping and make-up policies not consistent
with other schedules. Only the direct influence will be treated in Chap-
ter 11. In this chapter we shall be concerned with an exploratory, and
consequently rather general, discussion of these differences, In the
next two chapters, simplifying assumptions are made which enable more
rigorous discussions. ’

8.2. Two Exivemes in Assignmenls

One of the earliest writers to give some attention to the problem of
selecting the classification policies for a system of yards was M. L,
Byers, a Chief Engineer, Maintenance of Way, on the Missouri Pacific
Railway. As early as 1908, he pointed out, as other authors have since
done, that generally speaking there are two extremes among policies:

{1) Where no classification is made until the car has arrived
at the last yard which it enters, it being left to this yard to sepa-
rate such cars from those going to the yards beyond.

{2) Where each yard brings together all cars for the same
destination and then arranges the groups of cars in the train in the
order in which the yards follow,

For convenience we shall refer to these as the extrenmie deferment
and extreme anticipation methods. In evaluating the relative virtues of
these two policies, he went on to say that

The effect of [the anticipation] method as compared with the
[deferment method] is especially noticeable where the railroad
system contains one or more very large cities, toward which traf-
fic gravitates from the other poinis on the system. The work of the
outlying yards is increased over that required of them by the [de-
ferment] method, but the work in each succeeding yard approaching
the final terminal is reduced, owing to part of the work having been
already performed by the outlying yard; the total work performed
by all of the yards is, however, considerably increased by the [an-
ticipation} method, and the sole excuse for its adoption should be
that the {inal yards are incapable of and cannot be made capable of
doing economically all of the classification work which would be
thrown upon them under a modification of the [deferment] method of
classification {Byers, 1908, p. 538-539).
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Surprisingly enough, the method of anticipation, of which Byers is
so critical, comes closer to describing present-day classification sys-
tems than does his method of deferment. Indeed, one modern writer,
describing the classification policy of the Baltimore and Ohio, states,
“The railroad’s aim is to classify cars into destination blocks [i.e.
groups] as completely as possible near points of origin, so that blocks
{and sometimes whole trains) may be run without break-up through inter-
mediate terminals to destination” (Coughlin, 1952, p. 45; italics ours).

8.3, Comparison of Assignments
when the Scheduling Policies Are Fixed

As a compromise between his two extremes, Byers recommended a
method we have already described in Section 7.5 for the purpose of
demoenstrating our policy terminology. At this point the reader is in-
vited to turn back to the description of this compromise plan, which, in
addition to being of interest in its own right, is noteworthy for its
uniqueness in the literature, Except for the two extremes described
above, it is the only explicit and completely general proposal of a set of
policies for a system of yards.

This plan, and especially that part of it which deals with the work
a yard is to do after completing its “normal” work, serves as a good
introduction to our discussion. A yard, according to Byers, should do
sorting work on a through train above and beyond the normal amount
specified by the deferment policy whenever it has available yard-engine
time before the departure of the train. While nothing explicit is said
about the scheduling policy, it is clear from this statement that
“through” trains are dispatched by timetable, and that the particular
timetable to be used has already been selected. The proposal there-
fore deals only with part of the problem of policy selection, and the
assumption implicit in the discussion is that the best selection of sched-
uling policies has been accomplished. It is true that these policy sug-
gestions have an interesting dynamic element which we have so far
ignored. That the classification policy of a yard on a day of heavy traf-
fic should be different from the policy on a day of light traffic is a very
plausible consideration, but one we have felt justified in overlooking
until the easier case of a constant policy has been more fully explored.
We shall therefore assume that traffic flows are about the same from
day to day, and proceed to examine Byers’ suggestions under such con-
ditions. It might be objected that under these conditions no yard would
ever have any spare time in which to do extra work, for the schedule of
trains would be tightened up throughout the system so as to eliminate
the spare time. Such a tightening-up procedure would reduce the sys-
tem of policies to one very much like the first extreme method; no ac-
count would be taken of the superiority, due to facilities or traffic, of
one yard over another in the carrying out of classification work. We
prefer to interpret the plan literally for the case of traffic flows that
are fairly stable, We shall assume that for some unspecified reason the
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scheduling policies, i.e. the timetables, have been selected so as to
leave some spare time at various places in the system, Since the spare
time at any particular yard will under these conditions be constant, the
amount of extra work this yard can do will be constant, and as a result
its grouping and make-up policies will be fixed.

Let us suppose the schedules are arranged so as to allow yard A
(Figure 7.6) enough spare time to carry out the first modified policy and
the other yards no spare time at all. Then, if the plan is a good one, two
implications become clear. The first is that the additional costs? in-
curred at A in carrying out the extra work are more than offset by the
reduction in costs at B that result from A’s sharing B’s work load. The
second implication of the plan is that the grouping of the through train at
A, namely

B and local beyond B

C and local beyond C

D and beyond

D’ and beyond .

is better, in terms of system costs, than some other grouping that could
also be accomplished in the time allowed by the schedule, for instance,

B

local beyond B

E’ and local beyond E'

All others .

As we saw in the last chapter, one of the most important influences
of a policy change on yard costs operated through the variable “cuts per
car.” Clearly the modification of A’s grouping policy increases cuts per
car at that point, At the same time the number of cuts per car at B is
reduced, because with the change in A’s policy trains that previously ar-
rived at B in a rather scrambled fashion are now grouped to a greater
extent. Sorting costs therefore increase at A and decrease at B, Make-
up costs will also increase at A since only two groups were put into the
through train before the change, while now four are. Whether on balance
the costs to the system go up or down depends on the sorting facilities at
A and B, If A is a hump yard, and B a flat yard, then we should have
good grounds for believing that the policy modification is a good one, for
we know that an increase in cuis per car at a hump yard only slightly in-
creases costs, while a reduction® in the same variable for a {lat yard
lowers costs considerably.

2. We are purposely ignoring Byers’ stipulation that the extra work must not involve
“increased cost,” for additional work will always give rise to some cost at the yard that
does the work. H we interpret his “cost” as system cost, then of course his condition
begs the question of policy selection.

3. The increase in cuts per car at A will not in general be the same as the reduction
in cuts per car at B, This point will become clearer in the discussion of Chapter 10.
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But what if B is the hump yard and A the flat yard? In this case
Byers’ scheme seems to move us away from, rather than toward, an
optimal assignment of classification work. At this point it could be
argued that one of the functions of the scheduling policy is to timetable
trains in such a way that only the most efficient yards have spare time
remaining after the completion of their normal work. With respect to
the considerations introduced so far this seems to be a legitimate argu-
ment. As we shall see later, however, when we begin to take accumu-
lation delays into-more explicit account, this approach to an optimal as-
signment which involves selecting scheduling policies first and grouping
and make-up policies afterward is not satisfactory in general.

The second implication of Byers’ plan is more difficult to defend.
There seems to be no a priori reason why the grouping he suggests
should result in less cost to the system than the arbitrary grouping we
have suggested for purposes of comparison. While a more detailed ex-
amination of a problem similar to this one must be’deferred to the next
chapter, it is tempting to guess at Byers’ reasons for selecting the par-
ticular grouping policy for A that he did. If traffic is evenly distributed
throughout the network, and if long trips occur less frequently than short
ones, the grouping proposed by Byers will cause all of the groups in a
train to be of about the same length. Under the same circumstances our
arbitrary grouping will bring about groups of very unequal lengths, The
Group “E’ and local beyond E/,* for instance, will be small, and the
group “All others” will be large., Now, group length is probably not a
very important factor in yard costs, but the relative flow magnitudes of
the various traffic classifications specified by the grouping policy are,
and these are fairly well represented by group lengths, The relative
levels of these flows influence sorting cost through their effect on the
number of cuts per car, as we shall see at a later point. Thus whether
or not Byers’ grouping policy is to be preferred depends on the levels of
the various traffic flows, and on the effect of these levels on the cuts-
per-car variable.

For purposes of illusiration let us suppose that Yard A in Figure
7.6 is a very large and efficient hump yard, while all the other yards in
the system are small, ill-eguipped flat yards. In this case, it is conceiv-
able that there will be put into effect not only Byers’ third policy modi-
fication but perhaps even a fourth or fifth such modification. Yard A
will be doing some of the normal work of all the other yards in Figure
7.6. Group lengths on trains departing from A will become very much
smaller than under a policy of less preclassification, and the question
arises as to whether the relief afforded other yards does not begin to
diminish as preclassification is carried beyond a certain point. If A
puts cars bound for E’ and local points beyond E’ into a single group,
this will not provide much saving of work at the next yard that groups
this traffic, for the group from A (unless E’ is an important destination)
will be so small that the difference between the number of sorting oper-
ations when E' cars are grouped and when they are not is also small,



ASSIGNMENT OF CLASSIFICATION WORK 163

9.4. Extending Preclassification
atl the Cost of Additional Accumulation Delay

By changing its make-up or scheduling policy (or both) A has still
another means of saving sorting work for yards farther along the line in
the direction of traffic. If a train with the E’ group in it is scheduled to
depart from A somewhat later than before, at the time of departure
more E’ cars than before will have accumulated at A, and the E’ group
in the outbound train will be longer than previously. Longer groups
mean fewer cuts per car at an advance yard (say B) whose grouping
policy does not contain finer classifications than that of A.*

The length of the E’ group in an outbound train can also be in-
creased — and this is probably the more important method — by changing
the make-up policy at A so as to exclude E’ traffic from some of the
trains in which it was previously dispatched, and to exclude some of the
other traffic from the trains that still contain E’, Thus perhaps before
the change the make-up of several trains leaving A was®

P

If this is changed for some trains to

{...|E1...}

and for others to
{....|E|F|...} ,

then the group lengths of E, E’, and F will all be longer than before and
cuts per car at the advance yard will again be reduced. The cost at A
will of course be in terms of accumulation delay to each of these compo-
nents of traffic. Carried far enough this process leads to the “solid-
train” type of make-up described earlier, The “maintracker” type of
train, whose make-up is restricted to an extent that enables it to by-
pass some yards entirely, is another example.

{....|E|E'| F

4, The effect of longer groups on cuts per car is one of the “end effects” which for
simplicity 18 assumed away in Chapter 10.

5. The dots are to be interpreted as groups which are not affected by the change. To
save space, we have listed the groups horizontally rather than vertically as in Chapter 7,



Chapter 10

DIVISION OF SORTING WORK BETWEEN YARDS

10.1. Itroductior

In this chapter we are concerned with the sorling work of yards. We
shall show that because of the different characteristics of hump and flat
yards it is sometimes useful to do sorting work at one yard which could
possibly be done at another. Our object is to give a quantitative method
for deciding when sorting should be transferred in this way. To develop
such a method, we must know in more detail what determines the work
required to carry out the sorting at each of the two types of yards,

We have seen that flat yards and hump yards differ in the way the
cars are actually put onto the classification tracks. The assumption we
shall make in the case of a hump yard is that no more work is involved
in the humping operation whether there are few cuts in the train or
many, that is, whether the order of the cars is scrambled up or not.
There is some evidence (see Section 8.1.2) from actual yard data that if
there are many cuts the operation takes longer, but since this effect of
cuts in hump-yard operation is small relative to the same effect in flat-
yard operation we shall ignore it in the case of a hump yard.

In the case of a flat yard we shall assume that the more scrambled
up an incoming train is, that is, the more cuts there are in the train, the
more work the switch engine will have to do, and the more time it will
take to do it. To start with, it seems justifiable to take as a measure of
the work done on a train the number of cuts in the train.

A \
’I \\
rl b
'd
>0 > »
.
\\ 'f
3
Hump yard Flat yard
Figure 10.1

The situation we will consider is represented in Figure 10.1. Some
of the traffic through the flat yard has previously passed through the
hump yard. By recognizing more categories of traffic at the hump yard,
that is, by finer sorting, it would be possible to save some of the work at
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the flat yard. However, if cars are to depart in the same trains as be-
fore the change in grouping policy, this will involve additional make-up
work at the hump yard, for the outgoing trains will contain more groups
than before, We want to find some approach to the problem of balancing
these costs. We also want to find which of the categories at the flat
yard should be sorted out at the hump yard.

Preclassifying at the hump yard means that instead of all the traffic
for the flat yard going on a single classification track at the hump yard,
it goes onto two or more tracks. For example, if it goes on to two
tracks, on one of these tracks will be put traffic which goes on one group
of tracks in the flat yard, while traffic for the remaining group goes on
the other track. Thus the hump yard will do some preliminary sorting
for the flat yard. It may be that traffic for a single track at the flat yard
is sorted out with a classification track all to itself at the hump yard.
We will show, in fact, that under some circumstances this is the best
way for the hump yard to save work for the flat yard. -

10.2. A Probability Representation of Trains

The composition of trains varies from train to train, even with
trains coming from the same point. Also, for any given classification
policy, the number of cuts (in a sense, the degree of scrambledness) of
trains varies. We will suppose that for simplicity of operation the
grouping policy will remain the same from train to train — that is, the
same classifications will be recognized despite these variations. Thus
the amount of work to be done in sorting at the flat yard will vary from
train to train. The work we shall be considering will be the average
over many trains.

We still have to find some useful way of representing the composi-
tion and order of cars in trains coming into the hump yard. There is a
strong analogy between an unsorted train and an unsorted pack of playing
cards, A shuffled pack of cards can best be represented by probability
methods, and this suggests that the order of cars in a train can be sup-
posed to be represented by a similar type of probability model. How-
ever, the representation which we will use is rather different {rom that
used to represent the order of a pack of playing cards, Let us suppose
that the various suits in a pack represent the different categories of
cars. Then, in the train of 52 cars whose order the pack is supposed to
represent, there will always be exactly 13 of each of the four different
types of car. This would be a very unrealistic restriction in attempting
to describe the order and composition of a train. Consequently the {irst
and simplest probability description we use is the following one, In-
stead of supposing the trains to be represented by the shuffling of a pack,
we suppose they can be represented by drawing a sequence of cards in
order from a pack, replacing each card after it has been drawn and re-
shuffling after each drawing. Thus the proportion of cars of different
categories can change from train to train. Sequences obtained by this
method (they are called multinomial sequences) can easily be studied.
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We have found them to give adequate representations of the composition
of trains in several cases we have examined, provided the proportions of
cards of different types are made to correspond with the data. However,
the way in which trains are assembled suggests that such a representa-
tion will not always be adequate. Many shipments are in more than car-
load lots, so that, for example, three or four or perhaps more cars will
stay together throughout the trip, If there is much of this prior group-
ing, cut lengths may well tend to be longer than the previous hypothesis
(the multinomial hypothesis) admits, Even if cut lengths are changed,
there is still a simple way of describing the cuts themselves as well
mixed {as we expect them to be in an unsorted train). Our results ex-
tend to the case where the sequence of cufs is the same as the sequence
of cuts in a multinomial sequence, though the number of cars in the cuts
may be different from those in a multinomial sequence, so that the se-
quence of cars is not necessarily the same as that of 2 multinomial se-
quence.

70.3. The Best Sorting Policy

Suppose, for the moment, that it has been decided just how many
categories to recognize at the hump yard; that is, the grouping policy is
known. Suppose as an example we are to give over four of the tracks at
the hump yard to preclassifying for the flat yard, Then we shall see that
it would be best to sort out the three categories with the most cuts sepa-
rately onto three of the tracks, and put all the rest of the cars onto the
fourth track. If the number of cuts is roughly the same for all the cate-
gories, however, it does not matter what sort of preclassification policy
is used, provided four tracks are actually used.

It should be emphasized that these results hold only if all the cuts
come from the same type of sequence. If, as often will happen, the vari-
ous incoming trains from various origins differ very much in their com-
position, the work function given below will have to be averaged over the
different types of trains.

We should calculate this work function for each possible number of
tracks of the hump yard devoted to preclassification. With each increase
of this number, the extra work saved the flat yard diminishes, and the
work involved in assembling trains at the hump yard increases. Thus at
some point it becomes uneconomical to do further preclassification,

10.4*. Derivation of the Work Function for a Multinomial Sequence

The situation we will consider is represented in Figure 10,2,
Traffic for a flat yard F passes through a hump yard H. At the flat yard
n different categories are recognized, represented by i =1, 2,...n. The
hump yard H is to do some preclassifying for F, and will recognize m
different categories of traffic going beyond F. The problem is first to
choose the categories to be recognized at H in order to save as much
work as possible at F. We alsc have the problem of determining just how
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much work this saves at F, so that this work saved can be weighed
against increased costs at H. Finally, choice of the best value of m is
still another problem.

To

Figure 10.2

We take as a measure of work at F the average number of cuts per
car for traffic coming in to F. A cut consists of an uninterrupted se-
quence of cars of the same category. It is the same as a run in proba-
bility theory. For example: for the sequence of cars 2213111332
there are 6 cuts, so cuts per car equals 0,6,

Suppose at first that the sequence of cars coming over the hump at
H, and bound for F, is a multinomial sequence with probabilities p;. The
sequence is assumed to be long, so that we can neglect the end effects
both of the original sequence and the sequences into which it is divided
by the preclassification. (As already indicated, we shall later suggest a
more general hypothesis, which allows for the fact that shipments are

often made in more than carload lots.)
For a multinomial sequence, the probability that any designated car

is the first car of a cut of i’s is py{(1 - p;). Therefore the probability
n
that a car is the first car of any cut is igl p;i(1 - p;). It follows that the

n
mean number of cuts per car equals 1 - i§1 pzi, and this is an index of

work at F if H does no preclassifying.

E H preclassifies the traffic bound for F into m classes, these
classes are formed by a partition of the categories 1,2,..,n into m
mutually exclusive subsets ,, M, ...,dm. This partition defines F’s
grouping policy for traffic bound to H and beyond, The cars now arrive
at F in a series of runs, each run consisting of cars belonging to a H;
(] = 1: LR :m)-

If we ignore end effects of such runs, the mean number of cuts per
car for cars of y; is

. 2
(10.1) 1- % (E.pi?z) :
iep; \iey; t

But a proportion ieE- p; of all the cars belong to Hje Therefore the mean
]

number of cuts per car for all cars is
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m , m .2 Pi
(10.2) 2l Zpil|1- B B\ oyl o
j=1 1f,r.tj iep ( x pi) i=1 X p;
e 161

n
The difference between this and 1 - 15-:1 Pzi is

z p?
i i€t i n
(10.3) P )i I R -

=1 T p, i=1
IEJJ._]

and represents an index of the amount of work the given grouping policy
saves for F.

We wish to find what partition p, ..., 4, will leave the minimum
work to F. Let us renumber the classification so'that 0 < p, < B S..
.o § Pn. Then for any partition 4, ..., ,km of the numbers 1, 2, ..., n,
we can show that

2 n-m+12
m iE_pi 2P
(10.4) M < Pn+ Pn-1+.vet Pnomes + A=l
=1 X py T R n “m#t n-m+1 °
il Z pi
i=1

That is, the partition which maximizes the left-hand sum and thus maxi-
mizes the savingto Fis {1, 2,.,.,n-m+1},[n-m+ 2], ....,

[n - 1], [n]. First we will prove the result for m = 2; that is, the n
classifications are divided into two groups, u, and ,. . Let g, be the
group that contains n, the most frequent classification, and let 4 be the
remainder of u,. Furthermore, let

10.5 % Pi=a and Z,P; =
(10.5) 1, B 1, M B
and
PR ks ot
.6 S = d —*—-=b ,
(10.6) % op 2Ty
161, 181,
Note that
z s p < (2 pt )
(o0 R R R
so that a € a. Also,
L p; € I .= Z p;
(10.8) i Pi iéplpnpl mZ P,
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so that a £ py, and, similarly, b £ p,. Substituting these values in (10.4),
we are to show that
(10.9) Pn + bB ac + b

+ 207 B L
a Pnt+ B = Pnt a + g

Multiplying by %3 (pn + B) (@ + B), which is positive, (10.9) becomes
(10.10) apn + a8 + ob T bp, + apn + Pnf

Adding ab to both sides, this can be written

(10.11) -(Pn-bla~a)-(py-2a)b+p <0

All four of the quantities in parentheses are positive. Hence the ine-
quality must hold, proving (10.4) for the case m = 2.

Now consider any partition p,, gs,. ..., and let pl be the group
containing the most frequent classification n. Applying the theorem of
(10.4), just proved for m = 2, to the universe consisting of u, + ,, the
expression on the left-hand side of (10.4) will not be diminished if we
replace pi, iz« o« ylbm bY pf, B3 ... B, where p) =(n), pa=p + 1
~(n), pd = Payeuss,lin = Bme Agam let p} be the group contammg
classification n - 1. Replace p} and pf (i $13,it1,j1)by(n-1)and
po+ u - (n - 1) respectively. The inequality (10, 4) follows after m such
steps

From this theorem we see that it is best under these conditions to
select the m - 1 classes with highest probabilities and preclassify them

separately. Note though thatif p, =p, =... =pn =Tl; = p, then both sides

of (10.4) reduce to mp, and it becomes quite immaterial what preclassi-
fication policy we use.

10.5%. Exlension to a Move General Type of Sequence

Although the multinomial sequence can often give quite a good rep-
resentation of the incoming car sequence, it is rather restrictive. This
can be seen especially if loads are shipped in more than carload lots.
Then a run of cars is kept together throughout a trip, and in fact treated
as a single car for sorting purposes. Thus mean cut length will tend to
be longer than that expected from the multinomial distribution. How-
ever, the results of previous sections apply to a more general incoming
sequence which will include this case.

This generalization is achieved by thinking of the incoming se-
quence as a sequence of cuts rather than individual cars. We will call a
group of cars which form a cut before sorting a segment to distinguish
it from a group of cars forming a cut after sorting. The latter we will
still call a cut. Let A; be a segment of incoming cars of type i, By the
definition of a segment, no two segments of the same type can be
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together in the incoming sequence. Suppose the sequence of segments
is generated by a Markoff chain with constant transition probabilities

(10.12) Py = A (i)
I 1- p;

=0 (i =j)

{as in the case where the incoming cars are a multinomial sequence).
We shall allow the number of cars within segments to be distributed in
any manner whatever. Suppose now that the A; are classified, as in the
previous sections, by partitioning the i into m groups p,,....,Hkm.
After sorting, each cut will contain one or more segments, It is there-
fore possible to talk of cuts per segment, Let x be the mean number of
cars per segment, and let y be the mean number of cuts per segment

y

after sorting. ’I‘hen—;{ equals the mean number of cuts per car after

sorting.

We can find y as follows. If the original sequence is multinomial,
as in the previous less general case, then the segments before sorting
will be generated by a Markoff chain of type (10.12). In the case of the
multinomial sequence, the mean number of cars per segment equals

1
n H
. pi(1-p;)
i=1
and we saw from (10.2) that the mean number of cuts per car after sort-
ing equals

(10.13) X, =

2
Z p
m ]
Yo . L 18
10.14 A -
( ) X, ]=1 E p:L
el

We have used the subscript zero to indicate that the values refer to a
multinomial sequence:
For the multinomial sequence we now have

% pi
1 T ey
(10.15) R R L
% p{1-py
i1 ey,

But the insertion of additional cars in the various segments {or their
removal, provided at least one car is left in each segment) in no way
affects the relation of cuts to segments after classification, so that this
result must hold for the general sequence in which the lengths of the
segments may have any distribution. For the general sequence, there-
fore, the mean number of cuts per car after sorting equals
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m Z p
(10.16) y ¥ __ 1 1 - _Zil iepj
X X n =
x.Z, pi(1-p;) Y 2o
i=1 1ep

This new work function, considered as a function of the partitioning
of the classification, differs only by a constant factor from the function
for the simpler case and is therefore minimized for the same partition
as before,



Chapter 11

SCHEDULING OF TRAINS
TO MINIMIZE ACCUMULATION DELAY

11.1. Introduclovy Remavrks

In the preceding chapters we have discussed classification policy
without much explicit reference to the scheduling of trains between
yards. Inthe present chapter, we shall discuss scheduling policy with-
out much reference to the other aspects of classification policy. In ad-
dition, we disregard any restrictions on schedules that may result from
limited track capacity. The integration of the study of classification and
scheduling under conditions of limited track capacity is a task that sur-
passes the scope of the present studies.

Implicit in the analysis of this chapter are therefore the assumption
that track capacity is sufficient to accommodate without congestion any
schedule under consideration and the further assumption that none of the
schedules considered will raise classification costs by creating con-
gestion at yards.

In fact, even if the scheduling problem is thus artificially isolated
from the other operation problems, it still has great complexity, In
this chapter we shall consider in some detail only the case of a netwark
consisting of a single line on which each train is reclassified at each
terminal, and on which traffic flows in one direction only. After that,
we shall make some more general comments on maintrackers (trains
that by-pass intermediate terminals), on two-way traffic, on lines with
side branches, and on networks containing circuits.

11.2. A Simple Scheduling Problem Considered

Let us first consider a network consisting of four terminals only,
labeled i = 1, 2, 3, 4 and arranged along a single line as shown in Fig-
ure 11.1. We shall consider given amounts of traffic (denoted by xij),
expressed in numbers of cars per unit period (day, week), from any
terminal i to any terminal j east of it (that is, such that i« j}. Ignor-
ing westbound traffic in the discussion means assuming that there is no
interference of opposite flows on tracks or in classification operations,
It also means assuming that there are no “side branches” to our net-
work, The presence of a side branch out of a certain terminal would
place a premium on coordinating train departures from that terminal in
opposite directions among the main line with the arrival of a train to
that terminal from the side branch.

172
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< d G d c d.

I - - T T
i=1 i=2¢ i=3 =4
Figure 11.1.

Network Consisting of a Single Line

Of course continuing flows of eastbound traffic need to be offset by
equal flows of loaded or empty cars in the opposite direction in order to
keep the same pool of cars in operation. We shall not include the cost
of this return flow of cars in our considerations, but assume that any
saving of car-days by greater economy of scheduling eastbound flows,
resulting on the average in earlier arrival of cars at destinations, will
be a gain that is not offset by delays in the westbound return flow,

We shall assume further that trains run only from any one terminal
to the immediately following one. The time required for the trip from i
to i + 1 will be denoted d;, It is assumed to be constant and independent
of the length of the train. At any terminal, arriving trains are broken
up, cars destined for that terminal are removed, and cars originating in
that terminal for destinations east are added. The time needed for this
operation is again assumed independent of the number of cars involved
and is denoted by ¢, if i labels the terminal in question. I a train is
scheduled to leave from terminal i at time t;, cars can be incorporated
in it if and only if delivered for classification, whether from local ori-
gins or from incoming traffic, not later than t; - c;.

We shall discuss only periodic schedules. By this we mean a list of
departure times for trains eastbound from each terminal which repeats
itself with a constant period. While this might be thought of equally well
as a week, or as a two-day period, we shall speak of it for simplicity as
a “day.”

Let us assume that the given program specifies the following daily
flows of cars from i to j, where i< j:

x; | =2 3 4

i=1 | 45 15 20

(11.1) 2 110 25
3 50

It is useful also to register for each of the three stretches of line the
total daily flows arising from these figures,

on (1,2) X3 + X3 + Xy = 80
(11.2) on (2,3) X3 + Xju + Kpg + Xy = 170

on (3,4) X4 + Xpq + Xy = 95 .
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For simplicity, we shall assume further, against better knowledge, that
these cars become available at each originating terminal at an even rate
around the clock., This assumption will enable us to consider more ef-
fectively other aspects of the scheduling problem. Ultimately, of
course, it will have to be replaced by a more realistic specification.

The first question arising in making up a schedule is how many
trains per day to run on each of the three stretches. On the basis of the
figures in (11.3), let us somewhat arbitrarily decide that we shall sched-
ule one train daily on the stretches (1,2) and (3,4) and two trains daily
on (2,3). Then the trains on (1,2) and (3,4) will contain 80 and 95 cars,
respectively, while the two daily trains on (2,3) will average % = 85
cars. A possible daily schedule, which has the appeal of simplicity and
symmetry, is that represented by Figure 11.2. The slanted straight
lines represent actuzal travel of trains at constant “speed.” However,
the straightness of the lines and the interpretation of the vertical axis
as “distance” from terminal 1 are immaterial. All that matters is that
there is a constant travel time d; on each stretch, and a constant mini-
mum classification time c; for inclusion in each train,

i=4

N\
AN

¢ df 2 d g I3 cxdp c dj Time
Beqipl‘ling't . . End of day” =
of “day’, beginning of next day,

=0 T =
Figure 11.2. Tentative Schedule for the Program (11.2)

Before going into the question of the suitability of this schedule for
the program (11.2) at hand, it will be useful to introduce a simplification
in the treatment of time. For simplicity, let the point marked “begin-
ning of day” at terminal i = 1 correspond to midnight. Then we decide
to measure time at terminal 2, for the purposes of our analysis, on a
clock which shows midnight when it is actually (¢, + d,) beyond midnight,
that is, at the earliest possible time of arrival at the terminal 2 in
question of a train for which classification operations are started at
terminal 1 at midnight. Similarly, at terminal 3, we measure time on a
clock showing midnight at a still later time, later by the corresponding
interval {c, + d,) between starting classification at terminal 2 and earli-
est possible arrival at 3, etc. Let us call this artificial time scale
(which is different in different terminals) “referred time” and denote it
by the symbol s. This is a time measurement “referred” to actual time
at terminal 1, in the sense that at 11 AM actual time, say, the referred
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time at some terminal i is measured by the latest actual time at which
a car could conceivably enter classification at terminal 1 and by an un-
interrupted sequence of classification operations and travel in suitably
scheduled trains reach terminal i at 11 AM, I actual time is denoted

by t, actual and referred time are related as follows:

1

at terminal 1, s =,

at terminal 2, s = t-¢;-d,,
(11.,3) . -
at terminal 3, s = t-c,~d,-c,-d,,

at terminal 4, S = t-cl"dl-C2-d2-03-d3

In a single-line network with n terminals, referred time at the i-th yard
is similarly given by

(11.4) 8 = t=cp=d~Cpedym vy =Cju=dij-; .

The advantage of the use of referred time lies in the fact that the
referred times of the starting of classification of a train at a terminal i
and of its arrival at the next terminal i + 1 are the same. Hence, in
Figure 11.3 eastbound trains can now be represented by vertical arrows.
Each such train is fully defined by its referred “timing” s and by the
stretch (i, 1 + 1) on which it travels. The times required for classifi-
cation and travel {by assumption constant!} no longer clutter up our dia-
gram. For a car to make a connection between trains at a given termi-
nal, all that is necessary is that the arrow representing the incoming
train is not to the right of the arrow representing the outgoing train.
From here on, we shall often omit the word “referred” in the phrases
“referred time” and “referred timing,”

Let us now have a close look at the particular schedule of Figure
11.2, represented in referred time by Figure 11.3. We shall first ask
the question whether this schedule could be improved without adding or
taking out trains, merely by changes in the timing of trains, X we take

Terminals
20+25+50
. 20+25 |
[l : +
(52045525 ! 55
15+20 | i :
2 T |r '
]
45+5+20 | : b 45+5+20
N
' 1 L L
59=0 °I S2 53 End sfr'l Re‘Fe*rned
L “day” ime
Beginnin _pndor. ddy
Beainying beginning of

Figure 11.3, Schedule of Figure l1.2 . Expressed in Referred Time
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the day as the unit of time, we can write so = 0 and s4 = 1 for the timing
of the (1,2)-train at “beginning” and “end” of day. The quantities to be
chosen then are the timings s,, Sz, S3 of the first (2,3)-train, the (3,4)-
train, and the second (2,3)-train, to be repeated periodically on subse-
quent days. The choice is to be made in the light of the effect of
changes in these timings on various costs,

In the present simple example, the main effect is on accumulation
delay, here represented as the waiting of cars for classification oper-
ations to start for the next train, although in actual operation this wait-
ing may occur as well after classification. There are two categories of
such cars, which we shall call locally originated cars and cars in
transit. At any yard i the number of locally originated cars (i.e. origi-
nated at i) that are waiting increases with time, by assumption at a con«
stant rate, until classification starts, at which time the number falls to
zero and thereafter grows again., For schedules with equal time inter-
vals between trains on each stretch, as exhibited in Figure 11.3, the
average number of waiting cars in this category depends, for a given
rate of local origination, only on the frequency of trains (one, two, or
more per day), but is independent of the timing of the first train in each

1
day. Hence, as long as we keep s; = 8, +35 5 We can change s, and s,

without affecting the number of cars waiting in this category.

More interesting is the second category of cars, those waiting for
connections between trains. Figure 11,3 shows with each arrow the
number of cars assignable to the corresponding train, It also shows the
nurnber of cars waiting in transit (in the second category), written in
with the time interval during which they wait. (The figure does not re-
cord the variable numbers of waiting cars in the category of locally
originated cars,)

A moment’s reflection will show that in the present simple case
there is no need for any waiting between connections. If we make s; = 5,
= (0 {and keep s3 = 8; +%— =% ) as in Figure 11.4, we cut out all the ac-
cumulation delay between connections at terminals 2 and 3 without in-
curring any costs elsewhere. Obviously, then, the schedule of Figure
11.4 is superior to that of Figure 11.3. Of course, sz should not be
made less than s,, or s, less than zero, because in that case connec~
tions are missed, and accumulation delay greatly increases.

Terminals
4
A F 3
3
x A A
2
A y
| Referred
SO=SI=SZ=O 55 54:| time

Figure 11,4, Improved Schedule for Program (11.2)
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Hauling
cost

-

Length of train

Figure 11.5,
Hauling Cost and Length of Train

Let us finally ask whether-zl- is the best value for s;. Variation of s,

affects the accumulation delay of locally originated cars at terminal 2.
It may also affect hauling cost on the stretch (2,3). Making s; larger
shifts cars from the 115-car train timed at s, = 8, + 1 to the 55-car
train timed at 5;. This will save hauling cost if the cost of an extra car
to a long train exceeds that of an extra car to a short one. Beyond a
certain length of train this will undoubtedly be the case. For the pres-
ent, we shall assume that on each stretch, within the range of train
lengths considered, the hauling cost of an extra car is independent of the
length of the train. This is indicated by the constant slope of the hauling
cost curve in Figure 11.5, In that case, changes in s, have no conse-
quences for hauling cost.

Cars
waiting
at 2
[0
Re'Fer;r_'ed
il ' y me
s,=0 Sz Sy =l

Figure 11,6
Minimization of Accumulation Delay

It remains to trace the effect of a change in s; on accumulation de-
lay. In Figure 11.6 the total of this delay incurred each day is repre-
sented by the sum of the areas of two triangles bounded by the hori-
zontal axis and the straight-line segments representing number of cars
waiting at any time, This sum equals
% 85 « (110 s5) +-; (1 - ;) - 110 (1 = s,)
(11.5)

=55 [S§+(1‘Sa)2] ’
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where the figure 110 represents the daily flow of (2,3)-cars according
to the program (11.2). It is easily seen by means of calculus that this
expression is minimized by s, = % — that is, by making the intervals be-
tween successive trains equal.

The reader may wonder why the 25 cars originating daily at termi-
nal 2 for terminal 4 have not been included in this calculation. A
moment’s reflection will show that this would not have affected the out-
come. It is readily seen from Figure 11,4 that cars in this flow could
not arrive at terminal 4 any earlier by taking the train timed at s, as
far as 3. This would merely transfer the location at which (and the
“category” in which) a part of their waiting time is incurred, not the
total amount of waiting. For this reason, we have in Figure 11.3 arbi-
trarily assigned all such cars to the g,~-train to avoid ambiguity in the
definition of categories.

In order that the meaning of the “best” schedule in Figure 11.4 be
entirely clear, we translate it back to natural time in Figure 11.7.

Sl LT

il

i=| CW-V—’ e ——== Time
cp 4y < dpc3 d3 c2 & S
Figure 11.7.

The Schedule of Figure 11.4 in Natural Time

The simple case considered so far suggests that if on two suc-
cessive stretches we schedule trains with equal frequency, there is no
reason for introducing time intervals between arrival and departure of
“connecting” trains beyond the minimum necessary for the classifi-
cation operations that permit cars to make the connection, It also sug-
gests that if more than one train a day is scheduled for a flow or group
of flows in a program that permits us to look at this scheduling problem
in isolation, constant rates of origination during the day call for equal
time intervals between successive trains.

The latter inference does not extend to cases where traffic flows
extend over successive stretches, whenever trains run on these
stretches with different frequencies neither one of which is an integral
multiple of the other. For instance, while the schedule of Figure 11.8
would be optimal for a program with three terminals such that x,, = 0,
X2 = 180, X2 = 270, the introduction of a positive flow x,, straddling both
stretches of line would call for s; and s, to approach each other (see



SCHEDULING OF TRAINS 179

Figure 11.8. Terminals
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Figure 11.9), with s, remaining midway between s, and s,. Beyond a
certain critical amount of (1,3)-traffic density s; and s, would actually
coincide.

The broad outlines of the scheduling problem on a single line with
constant rates of origination begin to show up from the preceding dis-
cussion. Daily frequency of trains on a given stretch is to be related to
the total amount of traffic using that stretch. There is an advantage in
running trains on successive stretches as closely timed as possible
without causing cars to miss connections. This advantage is stronger,
the larger the amount of traffic using several successive stretches. On
the other hand, there is an advantage in equal spacing of successive
trains on the same stretch. This advantage is stronger, the less the
through-flows of traffic tying the scheduling on this stretch up with that
on other stretches where different frequencies of {rains are more eco-
nomical, Thus where local traffic is relatively high, trains will tend to
be spaced out evenly over the day; where through traific is high at least
some trains will be scheduled to meet connections more closely.

In the next section, we illustrate how, through the use of calculus
and of computation procedures based on trial and error, the best com-
promise between these considerations can be found when they pull in
different directions. This section can be passed over by the reader who
is not interested in mathematical aspects of the problem.

11.3*%, Schedules of Given Structure
that Minimize Accumulation Delay

In this section we shall maintain the assumptions of a one-way sin-
gle line network, with terminals i =1, 2,....,n; of constant rates of
origination x;; on all routes such that 1€i<]j < n; of constant classifi-
cation times ¢; and travel times d;; of a periodical schedule; and of a
hauling cost on each stretch which depends linearly on length of train.
The discussion in the preceding section has suggested that it will often



180 STUDIES IN THE ECONOMICS OF TRANSPORTATION

be economical to telescope trains on successive stretches of line. Let
us therefore call a run any {maximal) sequence of trains on successive
stretches timed so as to leave only the minimum interval needed for
classification between arrivals and departures at connecting terminals.
In terms of referred time, a run is a {(maximal) sequence of trains on
successive stretches with identical referred arrival times, to be called
also the (referred) timing of the run. A run will be denoted by (s; i, j)
where s is the (referred) time of arrival anywhere, i the terminal of
departure of the first train of the run, j the terminal of arrival of the
last one, 1<1i,i<j- 1, j€n. These terminals will be called beginning
and end of the run, The word “maximal” is inserted in the definition
because, in the schedule of Figure 11.4 for instance, we do not wish to
consider the sequence (s,; 1, 3) as a run, since it can be extended to a
larger sequence (s,; 1, 4) which also meets the other specification in
the definition. The latter sequence is regarded as a run because no
further such extension is possible. A single train can also be a run,
namely, if there is no connecting train with the same (referred) timing
at either its departure or arrival point,

A (periodic) schedule can now be regarded as a statement of all
runs {s,; ir, jr), r=0,...., R - 1 provided for in one day. The peri-
odicity can be expressed by the requirements

(11.6) Sr+R = Sr + 1, ir+R = ir, ir+r = iz,
and the time-scale can be made definite by requiring
(1.7 S =0

It appears natural to label runs in order of increasing s;. However,
this would still leave an ambiguity when two runs have identical timing,
and anyway it would be more restrictive than is desirable. For pur-
poses that will become clear below, we will permit any labeling of runs
such that within the set of all runs that “contain” any given terminal i,
that is, of all runs r such that

(11.8) i, €1, ,

the timing sr shall increase whenever r increases, Under this rule any
of the three schedules in Figure 11.10 are properly labeled, even though
in each of them the labels r = 2 and r = 3 could as well have been inter-
changed.

Another suggestion implied in previous discussions is that it may
be useful to separate the problem of determining the precise timing of
the runs in a schedule from the problem of how many runs to have,
which terminals to select as their end points, and in what order to place
these runs on the referred time scale. To express the latter choices
we shall introduce the notion of the s#ructure of a schedule, We shall
say that two schedules have the same structure if we can label the runs
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Figure 11.10. Three Schedules with Identical Structures

of each, consistently with the above rules of labeling, in such a way that
corresponding runs (i.e. runs with the same label) have identical begin-
ning and end points. Under this definition the three schedules of Figure
11.10, for instance, have identical structures. On the other hand, the
two schedules in Figure 11.11 have different structures. Thus any two
schedules of which one is obtainable from the other by horizontal dis-
placements of arrows without any two arrows either touching or over-
lapping during the displacement, have the same structure. Any two
schedules for which this is not possible have different structures.

=X 3

Figure 11,11, Two Schedules with Different Structures

We now recall our assumption that hauling cost on each stretch is a
linear function of train length, Total daily hauling cost therefore de-
pends only on the number of trains per day scheduled for each stretch,
and not on how the daily quota of cars on each stretch is distributed over
successive trains. In particular, then, hauling cost is the same for all
schedules with the same structure, and that irrespective of how cars are
assigned to trains with any given schedule.

With hauling cost constant, the problem of finding the most eco-
nomical schedule of given structure (the most economical timings for its
runs) is a problem of minimizing the accumulation delay incurred daily
in carrying out the given program. We shall show that this problem is
equivalent to solving a system of R-1 linear equations in an equal
number of unknowns: the timings of all runs in a day except the first.
We shall also indicate how the data of the problem — that is, the given
transportation program X;; and the given siructure of the schedule —
enter into the coefficients of the equation system. Algebralc expressions
will apply to a line with n terminals and an arbitrary schedule structure.
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The latter is represented by a set of R runs (s.; ir, j.) of which the end
points (ir, jr) are given for r=0,...., R = 1, and of which the timings
are restricted, apart from the periodicity requirements (11,6) and (11.7),
only by the stipulation that for any terminal i the timings s, of those
runs that contain i, as defined by (11.8), form a sequence increasing as
r increases.

Before studying the minimization of accumulation delay by proper
choice of a schedule from among those of given structure, we must con-
sider for a moment the assignment of cars to trains in a given schedule
(that is, with timings of runs given as well). Even here there is a prob-
lem, although a trivial one, of minimizing accumulation delay. Waste of
car-days would result if cars by being held over to later trains would
miss connections and thereby arrive at destinations later than they
could have. A simple rule that is sure to avoid this mistake would be to
let each car proceed with the first (eastbound) train that leaves. How-
ever, for purposes of analysis only we prefer to specify another assign-
ment rule which likewise avoids the kind of waste we are now consider-
ing. This rule has the advantage of giving us readily a simpler formula
for the minimum accumulation delay associated with a given schedule.
It specifies that a car originating in i at some time s for destination j
should be incorporated at i in the latest train that permits it, through
subsequent connections if necessary, to arrive at j at the earliest possi-
ble moment.

A situation where this rule differs from the earliest-possible-
departure rule was already encountered in Figure 11.4. A car originat-
ing at 2 just before s, with destination 4 has an earliest arrival time s
and can achieve this by leaving 2 either at time s, or at s,. In practice,
of course, such a choice would be determined by other considerations,
such as the lengths of the trains in question. Where under our simplify-
ing‘assumptions these considerations are inactive, we choose our as-
signment rule merely to help the analysis forward. The rule as given
does not always completely specify the assignment. At some connection
point k between i and j another situation may arise where the passing
up of a departing train does not delay earliest possible arrival at j.
While it would be easy to extend our assignment rule to create definite-
ness at all intermediate points, we will not need to do so for our present
purpose,

We shall now define, for each traffic flow x;; between given termi-
nals i and j, what we shall call critical departure times v{} from i and
critical arrival times wy at j, where q = 1, 2, ... Q;;. We shall illus-
trate the definition with the example of {i,j) = (1,5)-traffic in the sched-
ule of Figure 11.12. Let r; be the label r of the lowest-numbered run
{sr; ir, jr), in the schedule r = 0,...., R - 1, containing a train that
leaves i. In Figure 11.12, we find r, = 0, because the first train in the
run labeled r = 0 leaves terminal i = 1, We define wil as the earliest
possible arrival time at j for a car available at i at time s, . In Fig-
ure 11,12 we find wi® = s, because run {0; 1, 5) reaches as far as termi-
nal j = 5, We also define viJ as the latest departure time from i that
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permits a car to arrive at j at time w}j. In Figure 11.12 this is again
W, = S,

Next we define wii as the earliest arrival time at j of a car origi-
nating at i immediately following the critical time v{i for earlier ar-
rival, and vii as the latest departure time from i permitting arrival at
j at time wil. In Figure 11.12, we have w;" = §,, and v}* = s,. In this
manner we go on until we reach the end of the daily schedule. In Figure
11.12, w3’ = wi® + 1, and hence we define Q,;= 2 as the number of criti-
cal (departure and arrival} times found within one day’s schedule. That
is, we choose Q;; so that Wci)j--+1 = wii 41, It is clear that the number

1
Q;; and the location in time of critical points can vary with the pair of

terminals {i,j) considered. For instance, for (1,4)-traffic in Figure
11.12 we have Q,, = 3.

The accumulation delay sustained by (i,j)-cars under our assign-
ment rule can now be expressed as follows. During the first “critical
interval” at i, that is during the time period

(11.9) vilessvil,
the number of n of (i,j)-cars waiting at time s is a linear function of s,
(11.10) n= xij(s - ViJ)

Expressed in car-days, the total delay incurred by these cars in this in-
terval is (omitting temporarily the subscripts and superscript i,j)

v, 1
(11.11) {! Xs - v)) ds = 5 x (v - Wy

1
At time v, a block of x{v, - v,) cars is ready to leave. Before it reaches
j at the critical arrival time w,, each car sustains another delay of
length (w, - v,), where the place incurred (but not the length) of this de-
lay may depend on further assignment decisions that we have not
bothered to specify. Total delay of this kind, in car-days, therefore
equals

(11.12) x(v, - v) (w, - v;)
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The two types of delays represented by (11.11) and (11,12) have to be
added up for all critical intervals in one day’s schedule, to give us the
accumulation delay y for any one traffic flow

Q1
(11,13) y=x Z {E (qu - vq? + (vq.ﬂ - vq) (Wq+L- vqﬂ)] .

Finally, to obtain total accumulation delay ¥, indices i,j designating the
traffic flow have to be restored to this expression, whereupon these
amounts need to be summed over all traffic flows (i,j),

n-1 n
= & e A
(11.19) Y= 2 gHa Ay
where
U u e o i y
N L TER R AR Y - M)

The expression for Y we need to minimize is given by (11.14) and
{11.15). We note that it is a quadratic function of the unknown timings
$,, which occur in the guise of critical arrival or departure times as-
sociated with particular flows (i,j). None of the unknowns is missed,
because the timing s, of any run (s.; i.,j;) always coincides with a pair
of critical departure and arrival times for all flows {i,j) between termi-
nals contained in that run, and we would not include in a proposed sched-
ule any run on which there is no traffic between any two terminals of the
run (i.e. any run (s; i,j) for which Xm n = 0 for all m,n such that 1€ m
<ntj),

For any given schedule structure, the expression (11.14) can be set
up by a graphical procedure which we illustrate in Figure 11,13, based
on a schedule of the structure exhibited in Figure 11.12. Dotted lines
immediately to the left of the vertical lines that represent runs are
traced upward, those to the right downward. Dotted lines immediately

5 m

; ]

2 i
t

53

Figure 11,13, Determination of Critical Times for the
Schedule of Figure 11,12,
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above the horizontal lines that represent terminals start from the end
point of a run and are traced to the right up to the next run that reaches
further. Dotted lines immediately below horizontal lines start from the
starting point of a run and are traced to the left back to the nearest pre-
ceding run that starts at an earlier terminal. No dotted lines are traced
along the horizontals for the first and last terminals i = 1 or 5. For any
{low (i,j), the critical times vll wij are found as pairs of points, at the
levels i and j respectively, such ch\at from each point of a pair, the
other can be reached by following dotted lines in the direction indicated
by the arrows. As an additional example, in Figure 11.13 these pairs of
points have been encircled for (i,j) = {1,4), showing that

14 _ _.14 __ — 14 _ — 4 -
(11.16) wi=vi=5,=0, vi=5, w'=s, v'=g,

14 _ 04 o
Wy, =5, V4 —W4—

The system of dotted lines serves simultaneously for the determination
of critical points for all flows (i,j). It is interesting to note that although
we are considering traffic in only one (eastbound) direction, the con-
struction of critical times is entirely symmetrical as between departure
and arrival times.

Each of the expressions (11.15) is a quadratic function of the tim-
ings s, in the schedule, and can therefore be written as

R
(11.17) A= Z a;. $. 5

ij r,r'=1 “ii,rrs Srlre

in which we are free to make the matrix a; symmetric by specifying

ij,rr
(11.18) Aij,rs T Aij,sr

Because s, = 0, the value r = 0 does not occur in the summations over
runs, However, the summation has been extended to include r = R,
where sr = 1, in order to include in it terms linear in the unknowns

S15. 0. -8R -1 and a constant term a;; g, These terms arise as follows.
Because of the periodicity of the schedule (omitting affixes i,j), we have

(1119) Youp = Vi o+ 1

While both v, and v, 0ccur in the summation (11.13), they depend on at
most one unknown s,.. The use of (11.19) to express this fact will in gen-
eral introduce linear and constant terms in {11.17). Other such terms
arise if a certain w,, q € Q, coincides with a certain s_, r 2 R.

In the notation of (11.17), the expression for total accumulation de-
lay incurred daily, which is to be minimized, is

n=1 n R
5 8

(11.20) Y = i§1 j=iz-:f-1 Xij %:‘r:=1 A4j,rm S8
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It is apparent from the method of their derivation that the coefficients
aij rr, depend only on the structure of the schedule. The problem of
minimizing accumulation delay for a schedule of a given structure
therefore involves setting up the coefficient system a; Sorre evaluating
the sums

n-1 n

T T X .. =
(11.21) i1 j=i'—"1 xl] a1_],rrf

say, and solving the linear equation system

R
oY E]
= o E = E =
(11-22) asm asm I',I"':l bl'l'l Sl‘ sl‘f 2r=1bmrsr 0)
m=1,...,,R-1 ,
Before a solution 8., r = 1,...., R - 1, say, to this equation system

can be looked upon as a most economical schedule of the given structure,
it needs to pass two tests. In the first place, it should represent a mini-
mum of accumulation delay, not a maximum or a saddle-point. The out-
come of this test is controlled by the coefficients b, . If these make up
a so-called positive definite matrix, the solution represents a minimum
of the function being minimized. I the matrix [b.,, | were to be indefi-
nite, it would be an indication that there exists another structure contain-
ing fewer runs and no more trains, permitting a smaller accumulation
delay than the structure under examination.

Secondly, even if [b,, | is positive definite, the solution §, found
represents the minimum accumulation delay achievable with the given
structure only if § defines a schedule that actually has the structure
specified. If this fails to be true, the solution has no meaning, because
outside the domain of the given structure, the function minimized does
not represent accumulation delay. However, if such a meaningless solu-
tion is obtained, it again indicates that there is another structure con-
taining fewer runs and no more trains, permitting a smaller accumu-
lation delay.

1t is likely that the special way in which the coefficients b, ., are
obtained will make it possible to find short cuts in examining the posi-
tive definiteness of [b] and in solving the equations (11.22). In this ex-
ploratory study of the general nature of the problem, we have not at-
tempted to look for such short cuts.

As an illustration, we will tabulate the coefficients of the equation
(11.22) for the schedule structure of Figure 11,12, The first step is to
record the critical departure and arrival times for all traffic flows (i,)).
In Table VI, for each i and j, we tabulate the run labels of the suc-
cessive pairs of critical points. By this we mean the numbers r{q} and
¥{q), say, which when used as subscripts to s make

(11.23) Vaj = Sr(q)’ W‘? = S;(q), q = 1,...., Ql_] .
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Table VI

Run Labels of Critical Departure and Arrival Times
for the Schedule Structure of Figure 11,12

Terminal of Destination

Terminal _
of Origin =2 3 4 5
{=1 q =123 1 2 3 12 3 12
riq =02 4 0 2 4 02 4 (02
Tiq) =02 4 0 2 4 03 5 03
2 123456 1234 12
012345 0135 {03
012345 0135 o3
3 1234 12
0135 03
0135 03
12
4 03
03

To obtain the coefficients b . of (11.22), we derive from {11.14)

-1 n

oY n OAij
= X = LE S

(11.24) O s, i=1 j=i+l %ij 0s,, ’

where, omitting again the indices i,j,

oA _ gaaglsrg+a;\ dvey

d5m G139V,

11.25
( ) m OWq dsy,

From (11.15) we have

A JA
(11.26) 6Vq= Wq = Wgh o _—B‘Wq = Vg = Vg s
iys dv, dw, .
whereas the quantities —% , ——9-, each of which is 0 or 1, can be de-

ds,’ dsm

termined from Table VI for each (i,j). For instance, fori= 1, j= 4, we
have (11.27). No rows need to be provided for m = 0 in these tabulations
because, since s, = 0, no differentiation of Y with respect to s, is needed.



188 STUDIES IN THE ECONOMICS OF TRANSPORTATION

dvg _ dwg -
a5 =1 2 3 a.i_ g=1 2 3
m=1 0 0 0 m=1 0 0 O
(11.27) 2 0 1 0 2 0 0 0O
3 0 0 0 3 0 1 0
4 0 0 1 4 0 0 0
5 0 0 0 5 0 0 1

Using (11.27) in (11.25), and also using (11.26) with the Vg and Wy trans-
lated into s, with the help of Table I, we find

6A14 _ 6A14 _ aA14 —
55 % s, S % 3, - S
(11.28) OA _ . 9A

EE"S 8s = 4 355284_82

Similar calculations for other (i,j)-pairs lead to similar results,
which we put together in Table VII in a statement of the coefficients of

S8r in oY derived from the information in Table VI on the basis of

0sm’
(11.24), (11.25) and (11.26}, The reader is invited to examine how the
placement of the various entries in Table VII is determined from
Table VI.

11.4. Most Economical Schedules

If a schedule is found that minimizes accumulation delay in a given
structure, this does not necessarily mean that the most economical
gschedule has been found. There may be another structure containing a
more economical schedule. However, because different structures may
involve different hauling costs as soon as they differ in the number of
trains on each stretch, this question can only be considered if we intro-
duce further assumptions as to how hauling cost depends on the struc-
ture of the schedule, For instance, we may use the very simplest as-
sumption incorporated in Figure 11,5 that hauling cost on each stretch
is a given linear function of train length, which is independent of the
timing of the train in relation to that of other trains on the same or
other stretches,

If this function is expressed in dellars per train, it will still be nec-
essary also to place a dollar value on the car-day, and on the day’s de-
lay to freight, before a balancing of haulage cost and accumulation delay
is possible, All these things being given, the problem of finding a most
economical schedule is one of trial and error, where one examines
alternative structures, determines the haulage cost for each, the mini-
mum accumulation delay for each, and chooses that structure for which
the sum of accumulation delay cost and haulage cost is as small as
possible. While again the particular circumstances of the problem are
likely to permit short-cuts that reduce the number of comparisons
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between alternative structures that needs to be made, we will not press
the search for such short-cuts here,

11.5. Scheduling on a Nelwork with Civcuits

In the cases considered so far there is only one way in which a car
can go from a terminal i to a terminal j, where j> i. This is done by
joining successively a trainfrom i toi + 1, atrainfromi+ 1toi+ 2,
and so on, and finally a train from j - 1 to j, This feature of our model
made it possible to introduce the concept of referred time and thereby
to achieve a simplification of the analysis,

In the present section we shall consider a number of extensions of
the analysis which are best discussed and understood as scheduling
problems on networks that contain circuits, even if at first glance this
does not always seem to be the case in a literal sense. We shall only
give an exploratory discussion of a few such extensions, without at-
tempting a formal analysis. The concept of referred time is likely to
be less useful in most of these cases, In principle, one would need to
distinguish at a terminal j as many different concepts of “time referred
to i” as there are ways in which a car could travel from i to j. We
shall therefore use only “natural” time in our discussion. We shall con-
tinue to assume that classification and travel times are independent of
the flows of cars being classified or traveling and that limitations of
track capacity do not rule out any of the schedules that are otherwise
considered,

It is also unrealistic, on more complicated networks, to ignore the
problem of assignment of empty cars to next loading points. This prob-
lem is analyzed in more detail in Chapter 12, Here we shall assume
that besides the flows of loaded cars prescribed by the program, which
we shall here denote by iij, most economical flows ii- of empty cars
have already been determined, The scheduling problem thus is that of
most economical scheduling of trains to accommeodate the flows

+

Ll

X T X5 X
of all cars, loaded and empty. This assumption ignores possible “inter-
action” between the empty car assignment problem and the scheduling
problem. It also ignores possible differences between loaded and empty
cars in classification or travel times.

The analysis of Section 11.4 is still approximately valid for a net-
work consisting of one double-track line, of which each track is traveled
in one direction only, Perhaps the weakest spot in the assumptions
made there is the assumed even flow of car originations from loading or
discharging. The schedule itself indicates that cars are delivered for
these operations in bunches. In order that releases of cars from these
operations can be treated as an even flow, one would have to assume
that there is either enough natural variability in loading or discharging
times, or enough congestion in these operations, to convert a bunched
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input to these activities into an evenly flowing output, In the second
case, one would have to recognize congestion delays at Ioading or dis-
charging tracks as an additional cost of the bunching of cars in trains.

Further complications arise if the line considered has side
branches. In the network of Figure 11.14, with two-way traffic on each
stretch, there will be an advantage, at terminals A and B, in scheduling
train arrivals and departures in both directions of the “main line” in
such a way that

A'

ik

-
o -O— O O

—— et
O
- - A ——

- B
Fat
—
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Figure 11.14. Main Line with Branches

with suitably coordinated arrivals and departures of trains on the side
branches, cars from A’ or B’ for either direction, and cars for A’ and
B’ from either direction, can make connections with little accumulation
delay at A or B. That this is essentially due to the presence of circuits
in the network comes out more clearly if, in Figure 11.15, we draw the
same network with a separate line for each direction of flow.

Figure 11.15, Network of Figure 11,14 Drawn with One-Way Lines

Circuits also arise, even on a single line with one-way traffic only,
if the structure of the schedule includes maintrackers, that is, trains
which by-pass certain intermediate yards. The network of Figure 11.16
illustrates such a case. Diagrams in natural time of the type of

o—r—0—r—Q—r——O0—>—LO—p—OH— 0

Figure 11,16, Single-Line, One-Way Network with Maintrackers
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Figure 11.7 can be used to analyze scheduling problems on networks
such as that in Figure 11.18, even with two-way traffic, and with main-
trackers between several pairs of terminals, The limitations of two-
dimensional diagrams begin to show up in networks with branches such
as that of Figure 11.14, and are fully apparent with regard to networks
such as that in Figure 11.17, in which circuits occur even if one disre-
gards direction of flow.

Figure 11.17. Network Containing Circuits

The method for determining a most economical schedule of given
structure under constant rates of origination, which was described in
preceding sections of this Chapter, can probably be extended without es-
sential difficulties to arbitrary networks containing any number of cie-
cuits. However, the more complicated the network is, the more the es-
sential part of the scheduling problem shifts to that of determining the
structure, rather than the timing, of the schedule. The reason is that in
rather complicated networks often a slight change in the timing of some
given train will cause some traffic flow x;; to miss a connection previ-
ously made, or permit it to make a connection previously missed, in
either case changing the structure of the schedule, Thus on networks
as complicated as the United States railroad system, or even a major
railroad company network, the first and foremost problem is that of
choosing between a finite but very large number of alternative schedule
structures. Problems of this type are classified in mathematics as
«combinatorial” problems. While basic mathematical tools to deal with
combinatorial problems have been developed by many mathematicians,
their application in computational procedures for solving complicated
practical problems is still in its first beginnings. !

In conclusion we wish to offer a few intuitive remarks on ways of
approaching the problem of choice of schedule structure on networks
with many circuits. It would seem natural to split this problem into two
parts. First, one would find a good schedule on what may be called the
score” of the network. In the core we include all routes that are part of
one circuit or another. If this were to form a disconnected set of routes
(as in the network of Figure 11.17, where the routes belonging to cir-
cuits form two separate networks) we add the minimum number of con-
necting routes necessary to make the core into one connected network.

1. For a survey of computational aspects of combinatorial problems see Tompking
(1952).
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Figure 11,18 shows the core so derived from the network of Figure
11.17. The route A B C has been added to reconnect the core.

A B C

Figure 11.18. Core of the Network in Figure 11,17

If we remove the core from a network, we are left with a number of
isolated branchings which we shall call trees (in accordance with es-
tablished mathematical terminology). The six trees of the network in
Figure 11,17 are shown in Figure 11,19, The point where a tree feeds
into the core will be called its feeding point, shown by a circle in Fig-
ure 11,19,

N <
7T A A

Figure 11,19. Trees of the Network in Figure 11.17

Now a first approximation to the scheduling problem on a network
with circuits could be obtained by treating programmed traffic flows to
and from all terminals of a tree (other than the feeding point) as if they
were programmed to and from a single terminal. The network of Fig-
ure 11,17 is thereby simplified to that of Figure 11.20, in which the
ramifications of the trees are ignored., The underlying idea is that the

Figure 11,20, Simplification of the Network of Figure 11,17

scheduling on a tree is not encumbered by circuit problems and can
therefore perhaps be adjusted to whatever schedule is found to be best
on the simplified network. Implicit in this is the assumption that speedy
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turnaround of engines at the dead ends of the trees is a problem of sec-
ondary importance, that can be neglected in a first approximation.

Even after this simplification, the scheduling problem is bound to
be complicated if several circuits are present. A further simplification
may be achieved by first concentrating on routes with heavy traffic and
thereafter filling in the schedule on the more sparsely traveled routes.
This procedure will be even more natural if track capacity on the
heavily traveled routes is a limiting factor. Of course any of the sim-
plifications suggested entails a cost by preventing one from finding the
theoretically very best schedule -- which however may be too costly to
compute anyway.

One other thought may be advanced very tentatively as a suggestion
for further research. It is conceivable that a sclution of the scheduling
problem could be made easier by the introduction of fictitious prices on
the cars, which vary with the location of the cars in such a way that they
increase as the car comes nearer to its destination., As cars accumu-
late at a certain terminal on the way, a point in time will be reached
where the gain in “locational” value from running a train to the next
terminal will be enough to make up for the cost of that train.

Another aspect of the scheduling problem has not been mentioned at
all yet. This is random fluctuations, in travel times, in classification
times, and in traffic flows, Safety margins to allow for such fluctuations
will be needed in any realistic schedule. We have not attempted to intro-
duce this consideration in the present exploratory discussion of the
scheduling problem.



Chapter 12

SHORT-HAUL ROUTING OF EMPTY BOXCARS

12.1. Purposes of the Study

12.1.1. Demands of a Transporiation Program
on the Freight-Car Fleet

Throughout our study of railway operations a great deal of empha-
sis has been laid on the time required to carry out a shipment. As was
pointed out in Chapter 6 the importance of time arises not only through
its effect on the inventories customers need to carry and on railroad
operating costs, but also through its effect on the amount of rolling stock
the industry needs in order to carry out a given amount of business.
Thus if we had estimates for some future year of the number of car
miles and car loadings, and if we knew, from studies such as that of the
Federa}l Coordinator of Transportation, discussed in Chapter 6, how long
it took to load a car, to haul it so many miles, etc., we would have a
very goad start on estimating the amount of rolling stock that would be
needed. An important part of this problem, however,remains to be dis-
cussed. This is the relation between the set of traffic flows from each
place to each other place and the number of empty car miles required to
sustain this set of flows.

Hultgren (1948, pp. 111-120) has shown that loaded car-miles and
empty car-miles rise and fall together, but not in the same ratio, The
swings of empty car-miles seem to be proportionately less than those
of loaded car-miles, One could estimate the level of empty car-miles
corresponding to a given set of traffic flows by using ratios like those in
Hultgren’s study. There are, however, serious shortcomings to such an
approach and in addition several reasons for investigating a more direct
one.

To give an idea of the magnitudes involved: in 1951 loaded car-
miles for Class I railways were 20.6 billion and empty car-miles were
10.6 billion (ICC, Statistics of Railways in the United States, 1951). The
ratio of loaded to total car-miles fluctuates between 60 and 70 per cent
(Hultgren, 1948, p. 118, Chart 52). The predominant movement of traffic
in the United States is eastward. This arises from the fact that most
manufacturing takes place in the East and most farming in the Midwest
and West; so we have bulky raw materials moving east and compact
manufactured goods moving west. The result is that empty freight cars
for Western loading must be supplied from Eastern terminals, and a
considerable amount of empty-car mileage is brought about in the
process, Now if one year’s transportation program is very much like
another year’s we should expect the empty-car mileage to be about the

195
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same for the two years; and if the two years were proportionately the
same, that is, if the A to B traffic changed in the same ratio as the C to
D traffic, etc., then we should expect that empty-car mileage would also
vary in the same proportion. It is quite clear though that changes in the
program which are nof proportional can give rise to very radical
changes in empty mileage, even though the total loaded car-miles re-
main nearly the same as before. I we desire, therefore, to make any
statements as to the adequacy of freight car supply for these more un-
usual changes, we must develop a more direct method of calculating the
empty mileage associated with the given program.

12.1.2. A Means of Evaluating the Existing Car Service Procedures

Except for “system cars” (cars on their owners’ tracks) within the
confines of a single railroad, the movement of empty freight cars is
governed by three things, First is the set of so-called Car Service
Rules agreed upon by the various railroad companies and administered
by the Car Service Division of the Association of American Railroads.
Second are the Per Diem Agreemenls. “Car Service Rules and Per
Diem Agreements are established for the purpose of providing an im-
proved movement of cars interchanged between railroads, to minimize
the movement of empty cars, fo coordinate equipment so that an im-
proved car supply can be had by shippers, to facilitate general move-
ment of loaded cars, and to establish uniform charges for cars on lines
of other than the owners, commonly known as Per Diem Charges”
(Freight Traffic Red Book, 1950, p, 951}. The third controlling factor
consists of special directives issued by the Car Service Division. These
represent a cooperative attempt on the part of the different railroads to
predict the time, place, and extent of extraordinary needs for loading,
and to take measures to supply these needs by directing that empty cars
be moved in certain ways, often contrary to those specified by the Car
Service Rules. These directives can be interpreted as a recognition of
the fact that the Car Service Rules and Per Diem Agreements do not by
themselves lead to the most efficient use of the freight car fleet. While
the application of these rules can become quite involved, the main idea
they express with regard to the movement of empties (that is, cars for
which no load is available) is that these cars should be moved in the di-
rection of the home road. In a brief space it is difficult to avoid doing
the rules an injustice, for they are not quite this rigid,' but it is never-
theless true that car ownership is given a more important role than con-
siderations of the needs for and availabilities of empty cars at various
locations,

In the present chapter we shall examine these needs and availabili-
ties at different times and we shall attempt to discover how empty cars

1. “¥ empty, ... cars ... may be moved locally in an opposite direction from the
home road . .. if to be loaded for delivery on or movement via the home road.” Rule 2(c),
Code of Car Service Rules, Freight Traffic Red Book, 1950, p. 952.
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should be routed if the only consideration were that empty car-miles be
minimjzed. It should be emphasized at this point that while for sim-
plicity car-miles are the only cost we consider in this routing, many
others, such as the costs of congestion, might very legitimately be
brought in.

Once these hypothetical short-haul routings were known, it would in
principle be possible to compare them with the actual routings brought
about by the three agencies mentioned earlier and in this way facilitate
an evaluation of existing car service procedures. Because, however,
our study is a rather crude one and because information on actual
empty-car flows is sparse, we must be satisfied for the present with a
somewhat more modest goal, as follows,

12.1.3, Stability of the Short-Haul Routing Patlerns

We shall compare the short-haul routing patterns-that are derived
for empty cars for several different years and for the four quarters of
one year. If the pattern should be found to be a very unstable one we
would consider this as evidence of difficulties that the car service pro-
cedures must overcome, In this case we would not expect a set of rules
as simple as the Car Service Rules to provide efficient direction; judg-
ment, organized flows of information, and special directives would carry
most of the burden. If on the other hand a high degree of stability should
be found, a simple set of rules might be found to suffice.

12.2. The Daia

The data published by the Interstate Commerce Commission on
commodity movements by rail are, generally speaking, of two sorts.

For brevity we shall refer to these two as program data and flow dala.
Each relates to a given period of time. The program data tell us, for
instance, how much corn traffic originated in Illinois in 1949, and how
much terminated in the same period. The flow data tell us how much
corn moved from Illinois origins to Pennsylvania terminals.

While it is clear that program data can be obtained from flow data,
the reverse is not the case unless some assumption is made which gives
us a rule to use in assigning the supplies of, say, corn in one state to the
demands for corn in other states. If we wished to carry out this process,
market prices would provide one such rule. Namely, Illinois will ship to
Pennsylvania if the price of corn in Illinois plus the cost of transporting
corn to Pennsylvania is less than the price of corn in Pennsylvania.

That is to say, those shipments will be made which are profitable, ?

Notice, however, that the flow pattern which would result from such a
calculation is a purely hypothetical one; it might or might not agree with
the actual flow data, depending on the validity of the assumptions made,

2, In Fox (1953) this approach is applied, with the additional complication that the
program itself depends on prices. Demand and supply curves are given for each location,
and flows, program, and prices are solved for simultaneously.
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As far as carload commodities are concerned, both program and flow
data are available, in various degrees of detail. The program data are
the result of complete tabulations of traffic by individual railroads and
are published by the ICC for several degrees of classification. The flow
data consist of estimates derived from a one per cent carload waybill
sampling procedure of the Commission. The classifications are years,
states, and commodities in detail,

The one commodity, however, with which we are particularly con-
cerned here appears in none of the published programs or flow data,
This “commodity” is the empty freight car, and any information on its
movements must be inferred from data on the movements of commodi-
ties proper.

We have seen above that the program data for any particular com-
modity could be used to set up a hypothetical flow pattern for that com-
modity. This is the procedure we shall follow in determining the flows
for empty cars, with the added complication that the program data must
also be estimated before we can start. These latter data will be derived
from the program data for all other commodities.

12.3. Surpluses and Deficits of Emptly Boxcars

If the number of empty freight cars that originates in a region dur-
ing a given period is greater than the number that terminates there, the
region will be called a freight-car surplus region. Conversely a deficit
region will be one where the number of empties terminating is the
greater. Finding the program for a given year, then, is simply a matter
of determining the levels of the year’s surpluses and deficits for all the
regions. I all freight cars were equally useful for all purposes, this
determination would be much easier than it actually is. We must, how-
ever, take account of the fact that an empty gondola car is of no use to a
shipper who wants to load oranges. Surplus and deficit figures relating
simply to freight cars would not be very meaningful, for later, in the
process of deriving flows, we might unwittingly assign one region’s sur-
plus, consisting mostly of boxcars, to the filling of another region’s
deficit, consisting mostly of flat cars. To reduce these errors due to
the summing up of different k.nds of things, we shall confine our whole
discussion to the movement of boxcars alone. Precisely the same pro-
cedure could be applied to each of the other types of freight car. By
thus confining our study to a relatively more homogeneous group we re-
duce the seriousness of these objections, and by concentrating on box-
cars we still have in our study a sizable fraction of the whole freight car
population. The total cars in active service in 1950 and the breakdown
by types of car are shown in Table VIII, where it can be seen that box-
cars constitute more than a third of the total stock of rolling equipment.
While we can be a little more comfortable with the assumption that
every boxcar is like every other than with the assumption that all cars
are alike, it should be realized that even this restricted simplification
is far from true. I by some standard it is thought that too much
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Table VIII

Freight Cars on or about Dec. 31, 1950
(Class I Line-Haul Railways Plus Private Lines)*

Number Per cent

Boxcars 717,424 36.16
Flatcars 65,196 3.28
Stock cars 47,971 2.42
Gondolas and hoppers 866,489 43,67
Tank cars 149,330 7.53
Refrigerator cars 127,210 6.41
Other freight-carrying cars 10,594 .23

Total 1,984,214 100.00

*Source: ICC, Siatistics of Railways in the Uniled States, 1950, Table 24, p, 29,

distortion is introduced into the final estimates of empty car flows by
this assumption of homogeneity, the class of cars examined could be
still further reduced. As we shall see below, however, such a procedure
would very quickly lead to diminishing returns, quite apart from the fact
that computations would increase i the same number of cars were to be
included in the study. The reason is that the estimates of the program
for the type of car being studied quickly deteriorate if this car is not
one of the main classifications for which related information is pub-
lished by the ICC.

We shall now describe the method used to derive from the program
data for all commodities the estimated boxcar program of surpluses and
deficits for the different states in the U.S. for a period of a year,

Unfortunately, for our purposes, the unit of the published origina-
tion and destination figures is not the carload but the ton (Table 51-A,
ICC, Statistics of Railways in the United States, 1940-52). Thus it is
necessary to convert these figures to carloads through the use of sta-
tistics of average tons per car for the various commodities. While the
latter are available for each of the 500 commodities in the ICC classifi-
cation, we shall for computational ease use only the ones corresponding
to the coarse six-commodity classification: Products of Agriculture;
Animals and Products; Products of Mines; Products of Forests; Manu-
factures and Miscellaneous; and Forwarder Traffic.® Table IX lists
these tons-per-car figures by year and by commodity group.

3. “The term ‘forwarder traffic’ means freight traffic consigned by or to a forwarder,
i.e., a company, firm, or individual recognized as engaged in the buginess of collecting
and accumulating less-than-carload shipments into consolidated carloads without an
ownership interest in the property so handled.” ICC, Statistics of Railways in the United
States, 1950, p. 40.
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The first important thing to notice in the table is the absence of any
mention of the state concerned. These are U.S. averages; where the
true figures differ between states we have a source of error in our con-
version from tons to cars. The second feature to notice is the wide dif-
ference in the averages between the several commodities. This differ-
ence is somewhat reassuring with respect to the source of error just
mentioned. By treating heavy commodities such as Products of Mines
separately from light commodities such as Animals and Products we
are ensuring to some extent against the chance that a tons-per-car fig-
ure for a mining state exceeds the U.S. average for the same complex of
commodities while at the same time a similar figure for a cattle-
raising state falls below the U.8. average. Using these average load fig-
ures then, the following conversion from tons to cars can be made for
each state and each commodity:

Tons of Commodity Group X - Tons of Commodity Group X
Terminated Originated . Car Surplus Due
To Commodity X

Tons of Commodity Group X
Per Car

A negative surplus is taken to be a deficit.

Thus we have for each state six car-surplus estimates, one for each
commodity group, from which we must now derive estimates of boxcar
surpluses {or flatcar surpluses, etc., if we so desired).

Through the early years of our study no data on the relative uses of
boxcars and other cars were published. In 1949, however, the ICC began
presenting in their Carfoad Waybill Analyses some very valuable infor-
mation on the distribution of car types in the haulage of each commodity
in the Commission’s detailed classification.

From this source we learn for example that of the 36,965 freight
cars in the sample which were used in the carload transportation of
Products of Agriculture in 1952, 27,532 were boxcars, 7,127 refriger-
ator cars, 63 stock cars, 791 gondolas, 797 hoppers, 1 flat, 617 special
cars, and 37 tank cars(ICC, Carload Waybill Statistics, 1952, Statement
5354, File 40-C-8, p. 1). These statistics, like all others in the Waybill
Analyses, are based on a one per cent sample of the audited waybills of
Class I railroads and are consequently subject to sampling errors,
Furthermore, the errors in an estimate, as the caveat in the introduc-
tion to each of these reports states, will tend to be larger when the
number of cars {i.e. number of waybills) to which it corresponds is
smaller, This need not worry us too much here, however, for our com-
modity groups are very broad and the sample, while from a percentage
point of view small, is in absolute size large indeed. It is well known
that the absolute size of a random sample controls the accuracy of esti-
mates derived from it much more decisively than does the ratio of the
sample size to the whole population. Table X lists for the years 1949,
1950, and 1951, the ratios of boxcars used to freight cars used in the
transportation of each of our six commodity groups. It can be noticed
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Table X

Ratios of Boxcars Used to Freight Cars Used,
by Commodity Group, 1949-51*

Products Animals Products | Products | Manufacture
Year of and of of and Forwarder
Agriculture | Products Mines Forests Misc. Traffic
1949 0.750 0.081 0.064 0.526 0.578 0.962
1950 0.725 0.094 0.062 0.523 0.585 0.964
1951 0.739 0.083 0.055 0.558 0.558 0.964

*source: ICC, Carload Waybill Statistics, 1949, 1950, 1951, Statements 5058, 5159, 5258,
File 40-C-B.

first that the variation in the ratio for any one commodity group from
year to year is very small. This is fortunate, for we have no informa-
tion about the ratios for earlier years, 1940-48, We shall use the 1949
ratios for each commodity as estimates for these earlier years. On the
other hand, the variation of these “boxcar per car” figures between com-
modity groups is seen to be very substantial, as we should expect. The
lowest figures are those for Animals and Products and for Products of
Mines, both of the major parts of which call for special purpose cars --
stock and refrigerator cars in the first case and gondolas and hoppers in
the second.

These figures, like the tons per car figures, are derived from data
for the U.S. as a whole and therefore introduce errors into our calcu-
lations whenever they differ from the corresponding {unknown) figures
for the individual states.

We can now translate the freight car surpluses into boxcar sur-
pluses by multiplying by the appropriate boxcars per car figure. The
final formula is:

Tons of Commodity Tons of Commodity

- . Boxcars per Car Estimated Boxcar
Group X Terminated Group X Originated for Commodity - Surplus Due to
Tons of Commodity Group X Commodity Group X .

Group X per Car

These six surpluses (some of which may of course be negative) can now
be summed to give the final boxcar surplus for the year and state being
considered. The results of these calculations for the eleven years in
our study are printed on the maps in Figures 12.3 through 12.13. For
simplicity the states have been aggregated into the twelve regions de-
scribed in Table XI and Figure 12.1.

The derivation of the program of boxcar surpluses and deficits
from the programs for all other commodities is now complete, The
next step is to build up from these program data a hypothetical system of
empty boxcar flows which brings about the least amount of empty boxcar
mileage possible. Before we can go on to this routing problem,
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Table XI

Regions and Representative Points

States Included

I

V11

vViI

Maine

New Hampshire
Vermont
Massachusetts
Rhode Island
Connecticut

New York
New Jersey
Canada

Ohio
Pennsylvania
Michigan
West Virginia

Maryland

Delaware

Virginia

District of Columbia
Florida

Georgia

North Caroling
South Carolina

Indiana
Ilinois
Wisconsin

Alabama
Arkansas
Kentucky
Mississippi
Tennessee
Louisiana

Minnesota
North Dakota
South Dakota

Colorado
Iowa
Kansas
Nebraska,
Missouri

Representative Point

Boston, Massachusetts

New York, New York

Cleveland, Ohig

Columbia, South Carolina

Chicago, Illinois

Jackson, Mississippi

Minneapolis, Minnesota

Kansas City, Missouri
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Table XI continued

‘Region States Included Representative Point

IX New Mexico Fort Worth, Texas
Texas
Oklahoma

X Wyoming Ogden, Utah
Utah
Idaho
Montana

X1 Arizona Monterey, California
Nevada
California

X1 Oregon Portland, Oregon
Washington

however, a short discussion must be devoted to the assumed distances
between'regions.

12.4. A Simplified Rail Nehwork

Table XI describes the twelve-region division of the U.S. and lists
for each region a representative point, This grouping of states has been
done by weighing the following factors: geographical proximity, simi-
larity of economic status and product, pattern of railway facilitics, and
the possibility of selecting a single center for the area which would
dominate other possible centers as a focal point for shipping. The pur-
pose of picking representative points is to establish an origin from
which to measure rail distances. The cities selected do not necessarily
represent important gateways or rail centers; these would often be less
satisfactory for present purposes than the points chosen. The criteria
of selection are admittedly rather vague, but they include some of the
following congiderations. Since we are interested in the distances to
and from ullimate origins and destinations of traffic, large centers of
population are not necessarily the points to choose. One would expect
this to be the case especially in the farm states. Wheat is not grown in
large cities. Secondly, unless there is very good reason to think that
originations and destinations are concentrated along the edge of a re-
gion, a point in such a place should be avoided, in order not to favor
flows to the region bordering this edge. This consideration excludes St.
Louis in Region VIII. One should attempt in setting up the regional
classification to avoid bipolar regions such as Region XI which includes
Los Angeles and San Francisco. Since the state-by-state character of
our data precludes this, we picked an intermediate representative point,
If we had for a region complete information about where empties arose
or where they were needed, and in each case the precise number, it
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vit i Boston
Minneapalis q

vili
Kansas City ©

OCoiumbiaq

Figure 12.1, Regions and Representative Points

Portland

Minneapolis

Boston

29
New York

Jackson

Figure 12,2, A Simplified Rail Network
with Distances in Miles
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might be possible to specify our representative point more closely in

mathematical terms. Since in any case such information is not avail-
able, it is perhaps best to think of the point roughly as a traffic center
of gravity for the region.

Table XII gives the assumed representative distances between re-
gions, The italicized entries in the table are short-line rail distances
between representative points; the other entries are rail distances be-
tween representative points which differ only slightly from short-line
ones; they are derived from the italicized entries by finding the short-
est route over these links., The reason for not using short-line dis-
tances between all the points is that we have a somewhat simpler rail
network as a result. As far as our final routing calculations are con-
cerned this small change has no effect. The conceptual rail network
corresponding to the distances of Table XII is shown in Figure 12.2,

12.5. Finding the Shovi-Haul Routing Patterns

Once the surpluses and deficits are known, the short-haul routings
can be computed by the so-called “simplex” method of Dantzig.* We
shall not describe the method beyond stating the condition which is nec-
essary and sufficient for the solution. This condition was first formu-
lated by ‘Koopmanss in relation to the problem of finding the most eco-
nomical routing of empty ships. It is quite similar to those conditions
developed in Chapter 4 for the efficient use of a highway network., Here
it is somewhat simpler because we have disregarded congestion. I in
the present problem we were concerned with the routing of gll traffic,
this simplification would have less justification.

Our condition is that there must exist a set of fictitious prices or
“potentials,”® one for each of our representative points, which has the
following two characteristics. (1) The difference in potentials between
any two points must not exceed the distance between these points, and
(2) if the boxcar flow between any two points is positive, the potential at
the receiving point must exceed the potential at the sending point by an
amount just equal to the distance between the two points. Of course,
distance is used here as a substitute for cost of emply movement, on the
simplifying assumption that the latter is proportional to the former.
Dantzig’s method consists essentially in showing how to proceed in a
systematic manner from an arbitrary initial routing pattern for which
such a set of potentials does not exist to a routing pattern for which one
does,

4, Dantzig {1951e, pp. 359-374). For a description of the development of this prob-
lem, see our introduction,

5. Koopmans (1947). See also Koopmans and Reiter (1951).

6. A term suggested by an analogous problem in the flow of electricity through a net-
work of conductors.
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12.6. Results

Figures 12.3 through 12,13 show the short-haul routing patterns of
empty boxcars for the programs of each of the years 1540-50, and Fig-
ures 12.14 through 12,17 the same for the four quarters of 1949. Sur-

pluses for each region are shown as the boxed figures alongside each
representative point, and the magnitudes of the various flows (in
hundreds of cars} are shown alongside each segment of the pattern.

_
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12.7. Conclusions with Respect to Stability

In Figure 12.18 we have reproduced all of the resulting short-haul
routing patterns on a single page, where they can be seen at a glance for
easy comparison. Since a judgment as to whether one pattern is very
different from another is to some extent a subjective matter, we shall
leave part of the final decision concerning stability to the reader.
Notice, however, that in the eleven years only {five different yearly pat-
terns arise: 1941, 1946, 1947, 1948, and 1950 are of one type, let us say
type A, 1943 and 1945 of type B, 1942 and 1944 of type C, 1940 alone of
type D, and 1949 alone of type E. While the fourth quarter of 1949 is of
the common type E, the other quarters of 1949 are unlike each other and
unlike any of the yearly patterns. While the peacetime years taken by
themselves and the wartime years taken by themselves do seem to show
a fair amount of stability, the quarterly patterns for 1949 seem to indi-
cate that seasonal instability warrants a closer inspection of other years
than we have given them. One encouraging aspect of our results is this.
The stability found to exist seems sufficient to justify the hope that
incremental-cost freight rates that take into account a shipment’s con-
tribution to empty-car movement can some day be put into effect. Shori-
haul empty-car routing patterns like the ones we have examined in this
chapter are a prerequisite to the administration of such a rate struc-
ture. The computations for such purposes would have to be a good deal
more detailed than the simple one we have carried out here, but it is
clear that the complexities of the problem are not so great as to carry it
beyond the reach of existing techniques.

12.8*%, Appendix. Formal Descriplion
of the Surplus-Deficit Computation Procedure

In this section the exact procedure used in deriving the surplus-
deficit estimates is described, It differs from the verbal account in 12,3
only insofar as some adjustments of the initial data are concerned.

Since only Class I line-haul railroads reported, there was a dis-
crepancy between tons originated and tons terminated for the whole U.S,,
within each commodity group. I one had summed originations and ter-
minations for any commodity group over each state and Canada, he
should have found that total originations equaled total terminations
within each commeodity group, The actual discrepancy between the two
was undoubtedly caused by error and by “leakage” of freight tonnage on
to the Class II and Class III railroads (i.e. railroads which do not gross
over $1,000,000 a year). Since no data were available for the true origi-
nations and terminations, it was decided to adjust the figures initially so
that tons originated would equal t_olas term_i_nated. The initial adjustment
was carried out as follows: Let O, and TIIA equal the number of tons
in commodity group M reported originated and terminated in state i, re-
spectively. Then for each M
(12.1) z oy - z ™M = cM
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where CMequals the discrepancy between the two. To adjust 6%‘4 and
T;" tofind 0{"[ and T;", respectively, we divide C* evenly and appor-
tiogﬁach half among the O;" and ’I‘{‘d according to their percentage of

Z 0; . Thatis,
1
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The transformation of the adjusted tons originated and tons termi-
nated was carried out as follows: Let oM equal the proportion of box-
cars to all cars used in shipping commodities in group M for a given
year. Let M equal the reciprocal of the average number of tons per
car for commodities in group M and for a given year. Then

(12.4) z oM gM (TM _ oM)
M

gives us an estimate for surplus or deficit box cars attributable to each
state i,
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