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Abstract

In this paper we propose new approaches to estimating large dimensional monotone index models.

This class of models has been popular in the applied and theoretical econometrics literatures as they

include discrete choice, nonparametric transformation, and duration models. The main advantage

of our approach is computational: in comparison, rank estimation procedures such as proposed

in Han (1987) and Cavanagh and Sherman (1998) optimize a nonsmooth, non convex objective

function, and finding a global maximum gets increasingly difficult with a large number of regressors.

This makes such procedures particularly unsuitable for “big data” models. For our semiparametric

model of increasing dimension, we propose new algorithm based estimators involving the method

of sieves and establish asymptotic its properties. The algorithm uses an iterative procedure where

the key step exploits its strictly convex objective function. Our main results here generalize those

in, e.g. Dominitz and Sherman (2005) and Toulis and Airoldi (2017), who consider algorithmic

based estimators for models of fixed dimension. We extend our method to estimate multivariate

versions of these large dimensional models.
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1. Introduction

Monotone index models have received a great deal of attention in both the theoretical and

applied econometrics literature, as many economic variables of interest are of a limited or

qualitative nature. A leading special case in this class is the binary choice model which is

usually represented by some variation of the following equation:

yi = I[x′iβ0 − εi ≥ 0] (1.1)

where I[·] is the usual indicator function, yi is the observed response variable, taking the

values 0 or 1 and xi is an observed vector of covariates which effect the behavior of yi.

Both the disturbance term εi, and the vector β0 are unobserved, the latter often being the

parameter estimated from a random sample of (yi, x
′
i) i = 1, 2, ...n.

The disturbance term εi is restricted in ways that ensure identification of β0. Parametric

restrictions specify the distribution of εi up to a finite number of parameters and assume it is

distributed independently of the covariates xi. Under such a restriction, β0 can be estimated

(up to scale) using maximum likelihood or nonlinear least squares. However, except in special

cases, these estimators are inconsistent if the distribution of εi is misspecified or conditionally

heteroskedastic. Semiparametric, or “distribution free” restrictions have also been imposed

in the literature, resulting in a variety of estimation procedures for β0. The first was the

“maximum score” estimator proposed in Manski (1975). Identification of β0 was based on a

conditional median restriction, and based on that Manski (1975), Manski (1984) established

the estimator’s consistency. Kim and Pollard (1990) established its rate of convergence and

limiting distribution, which were n−1/3 and non-Gaussian, respectively.

A main drawback of the estimator is its computational difficulty. This arises from the

objective function in Manski (1975) being nonsmooth and nonconvex. This makes finding

a global optimum a formidable task. Furthermore the problem becomes more difficult the
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larger the dimension of xi.

Alternative semiparametric restrictions used in the literature were based independence/index

restrictions. Estimation procedures under this restriction include those proposed by Han

(1987), Ichimura (1993), Klein and Spady (1993b). These also have the robustness advan-

tage over parametric approaches, but like maximum score are difficult to compute due to

nonconvexity of their respective objective functions, and once again the difficulty increases

with the dimension of xi. Recent work which is motivated by computational concerns is Ahn

et al. (2018). However, their two step procedure involves a fully nonparametric estimator in

the first stage, so is also not suitable for models with a large number of regressors.

Consequently, a related drawback of all these procedures is that they are designed to esti-

mate parameters in models of a small and fixed dimension. A relatively recent and thriving

literature in econometrics and machine learning is recognizing the many advantages of allow-

ing for large dimensional models. Such models have a particularly well empirical motivation

in binary or discrete choice models. For example, in the decision whether or not to purchase

a particular good, explanatory variables would include prices of of other goods which are

substitutes or compliments, which could be a large set.

This is a special case of models that consider the situation when the dimension of xi is

large, and this is now often modeled with its dimension increasing with the sample size. Due

primarily to its empirical relevance there has been a burgeoning literature on estimation and

inference in certain econometric and statistics models with a large number of regressors or a

large number of moment conditions. Examples include work in Belloni et al. (2018), Belloni

et al. (2014b), Caner (2014), Cattaneo et al. (2018a), Cattaneo et al. (2018b), Chernozhukov

et al. (2017), Van de Geer et al. (2014), Han and Phillips (2006), Mammen (1989), Mammen

(1993), Newey and Windmeijer (2009), Portnoy (1984), Portnoy (1985).

Particularly related to the work in our paper of estimating large dimensional binary choice
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or monotone index models are the recent contributions in Sur and Candès (2019), Fan et al.

(2020), and Dominitz and Sherman (2005). Sur and Candès (2019) considers inference in a

large dimensional logit model, relying on the logistic distribution of the disturbance term.

As is the case with all parametric approaches, estimates and inference results are not robust

to such a rigid distributional specification.

In contrast, the approach in Fan et al. (2020) is semiparametric, and robust to distribu-

tional misspecification. They estimate parameters by optimizing at the objective function

introduced in Han (1987), but with the number parameters increasing with the sample size.

But unfortunately, such and related estimation procedures cannot be implemented in large

dimensional models. This is still the case even with recent developments in algorithms and

search methods for optimizing non smooth and/or non convex objective functions. See for

example important recent work based on mixed integer programming (MIP) as in, e.g. Fan

et al. (2020) and Shin and Todorov (2021).

Also related is the work in Dominitz and Sherman (2005), who consider an algorithmic

based estimator for parameters in a class of monotonic index models. Like in our paper the

motivation of their approach over existing methods is computational. But they focus on the

fixed dimension case, and impose a shape restriction on the disturbance term which restricts

the class of models compared to the existing semiparametric literature.

Therefore, in light of the drawbacks in the existing literature, this paper proposes a new esti-

mation procedure to address this omission in this literature. Specifically we aim to construct

a computationally feasible estimator for a semiparametric binary choice and monotone index

models with increasing dimension and establish its asymptotic properties. As we will discuss

in detail in the next section, our algorithm uses an iterative estimator based on a stochastic

gradient descent method(SGD), and we show how to use the method of sieves (Chen (2007))

to approximate the distribution in each stage of the iteration.2

2Alternative nonparametric methods could also be used. One example is kernel regression on the index. This
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The rest of the paper is organized in follows. In the next section we further discuss the mod-

els and parameters we wish to estimate and provide a brief literature review, highlighting

important related work in the econometrics, computational and computer science literatures.

In doing so we will compare the relative advantages and disadvantages from both theoretical

and computational viewpoints. Section 3 then introduces our algorithmic based estimators.

Section 4 then explores the asymptotic properties of this procedure, and provides detailed

regularity conditions on the sieve space and basis functions, as well as those on the dimen-

sion space of the regressors. Section 5 further explores the finite sample properties of the

estimator via a simulation study. Section 6 concludes by summarizing and future work, such

as discussing other models for which similar algorithm based estimators can be applied to.

2. Model and Related Literature

. Generally speaking, the class of models we will consider estimating are often referred to

as monotonic transformation models. One such variant was introduced in Han (1987). We

express this model as the equation:

yi = T (x′iβ0, εi) (2.1)

Where yi is an observed scalar dependent variable, xi is an observed vector of covariates of

fixed dimension p, and εi is an unobserved scalar disturbance term. T (·, ·) is an unknown

transformation function assumed to be monotonic in each of its arguments. β0 is an unknown

p dimensional vector of regression coefficients, often the parameter of interest to identify

and estimate from a random sample of (yi, xi). The popularity of class of models is that

that it nests many special cases that arise in the literature. This includes binary choice

models discussed in the previous section but also , censored regression models and duration

is in one sense appears similar to profile methods used in Ichimura (1993) and Klein and Spady (1993a).
But in fact since our algorithm preserves convexity throughout it converges to a global optimum in contrast
to theirs, which are very difficult to implement.
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models with unknown baseline hazard functions. Identification of β0 is usually based on the

assumption that εi has an unknown distribution that is is independent of xi. To estimate

β0, Han (1987) proposed the maximum rank correlation estimator. This involved optimizing

the objective function:

Gn(β) =
1

n(n− 1)

∑
i 6=j

I[yi > yj]I[x′iβ > x′jβ] (2.2)

He showed the optimizer, subject to a scale normalization was consistent and Sherman (1993)

established root-n consistency and asymptotic normality, under standard regularity condi-

tions. Variants of the model and the estimator include work in Abrevaya (1999), Abrevaya

(2000), Khan and Tamer (2007), Abrevaya et al. (2010), and more recently Khan et al.

(2019) and Fan et al. (2020). While a desirable feature of the original MRC estimator was

the generality of the class of modes that could be estimated, a major drawback was its

implementability. The objective function is nonsmooth and non concave, making finding a

global maximum virtually impossible when the dimension of xi is sufficiently large. Recent

advances in optimization routines such as mixed integer programing, used in, e.g. Fan et al.

(2020) and Shin and Todorov (2021) are very valuable, they do not completely solve the

problem as it still the case that optimization is np “hard”, where n is the sample size and p

is the dimension of xi- see, e.g. Shin and Todorov (2021) for a detailed discussion on this.

Other estimation procedures for this model that are not rank based include Cosslett (1983),

Ichimura (1993), Ahn et al. (2018). As is the case with the MRC estimator they are not well

suited for xi having a moderately large dimension.

Cosslett (1983) proposes an algorithmic estimator based on MLE and includes include two

steps. First he approximates the distribution of the error using basic distribution functions,

second he estimates β via MLE and repeats the process until convergence. However, the

estimators involves finding the maximum of a non-concave function. This is computationally

hard because while one can use grid search to find the maximum, with more than just a few

regressors it’s almost impossible to implement those methods in practice. As mentioned

5



previously, more modern methods such as MIP (Shin and Todorov (2021)) alleviate but do

not completely solve this problem. Ichimura (1993) also involves a non convexity objective

function in the iterative NLLS procedure. Ahn et al. (2018) involves two steps each of which

is closed form. However, it also cannot be used in large dimensional models due to the fully

nonparametric procedure in the first stage.

In this paper to address this omission in the literature, we propose a new iterative estimation

procedure that is based on the stochastic gradient descent method( SGD). Furthermore we

establish its asymptotic properties, specifically its convergence rate and limiting distribution.

One requirement of existing SGD algorithms is that the error distribution is known so we

instead use a sieve method to approximate the distribution. As we will explain, first we

use their algorithm to estimate β as if the error is logit distributed, second we use a sieve

method, for example Series Logit Estimator(SLE) to get the estimation of the distribution

of error.3 Finally we use their algorithm to estimate β again using the estimated distribution

and repeat until convergence. As we explain in detail below, we use the gradient method

to get the maximum of each iteration, since our SLE is based on logit MLE that is globally

convex in the parameters.

Algorithmic based approaches to estimate β in parametric models can be found in the com-

puter science literature. Kalai and Sastry (2009) used monotonic regression. While their

method is simple and fast in programming, they do not prove convergence. Agarwal et al.

(2013) propose an estimator based on Kalai and Sastry (2009). They proved consistency but

the estimator required the underlying distribution function be known.

Our iterative estimator is distinct from, but relates to Agarwal et al. (2013) and SGD,

which (unlike ours) requires the knowledge of the error distribution. In their setting the

SGD estimator is easy to compute because the algorithm of updating β is linear since the

3The choice of sieve estimator is crucial as not all methods ensure the distribution function estimator is
monotonic. Monotonicity is crucial for the convexity of our objective function within the algorithm. Chen
et al. (2011) show how Bernstein polynomials can be used to ensure monotonicity.

6



objective function is convex. It is one type of a Newton Raphson procedure and an example

of the stochastic approximation method of Robbins and Monro (1951). In related work to

that, Toulis and Airoldi (2017) propose implicit SGD estimator and derived its the limiting

distribution.

What makes our iterative procedure distinct from all of these is it is not based on the

assumption of a known error distribution4. Instead, our iterative method uses the method

of sieve to estimate the unknown distribution. The method of sieves, proposed in, e.g.

Grenander (1981) uses a sequence of finite-dimensional spaces, which is called the sieve space,

to approximate an unknown infinite-dimensional space. The complexity of sieve space should

increase with the number of observations and the sieves should be dense in the unknown

space.

In our algorithm, we will use Series Logit Estimator(SLE), which is also used in Hirano et al.

(2003) when they estimate the propensity score function in a treatment effect model. It is a

special case of sieve MLE proposed by Geman and Hwang (1982), and they proved the con-

sistency of sieve MLE with i.i.d data. For dependent and heterogeneous data, White (1991)

provide a more detailed analysis. Hirano et al. (2003) use logistic model with power series.

They only require some smoothness properties of the unknown distribution. Our estimator

is similar to their two-step sieve estimator, but is iterative. It starts with modeling the

unknown function nonparametrically and then estimates the parametric part with GMM or

MLE. Under some regularity conditions, the parametric part of their two-step sieve estimator

can get
√
n−asymptotic normality, see Chen (2007), Chen et al. (2003) for more discussion.

As for the nonparametric part of sieve estimator, like Chen (2007) pointed out rates of

convergence and limiting distribution theory for smooth functionals can be established.

Our estimator can extend to high dimensional cases. By high dimension we mean as the

4Distribution free algorithmic approaches distinct from what we propose in this paper and based on different
assumptions include work by Dominitz and Sherman (2005), Gamarnik and Gaudio (2020), Lanteri et al.
(2020).
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sample size increases to infinity, the number of regressors can also increase to infinity. Fan

et al. (2020) propose general rank estimators in high dimensions. They apply the estimator

to Han’s MRC and obtain consistency if pn/n → 0 is satisfied, where pn is the number of

covariates and is growing with the number of observations n. Under a the more restrictive

condition that pn
2/n→ 0, they attain asymptotic normality of the estimator. However, for

implementation they use the algorithm by Wang (2007), which still suffers from the compu-

tational problems when the dimension is large, like many simplex search based algorithms,

such as in Nelder and Mead (1965).

Sur and Candès (2019) consider logistic regression in high dimension. They find an area in the

parameter space where MLE exists and they also explore what they call the ’average’ behavior

of the MLE, i.e, the true parameters are centered around a multiple of true parameter and

the asymptotic variance of the MLE are also centered. As our estimator involves logit MLE

inside the iteration we can apply some useful results from Sur and Candès (2019).

3. Estimation Procedure

In this section we introduce our algorithmic based estimator, establish its asymptotic prop-

erties and state the assumptions the theory is based on. For ease of illustration, we will focus

on the binary choice model, but the algorithm based estimator and its asymptotic properties

we discuss below easily carry over to the general monotone index model.

yi = 1{xTi β0 > εi} i = 1, 2, ...n (3.1)

xi is a p dimensional regressors whose transpose denoted by xTi , β0 is a vector of length of p,

1 is an indicator function and ε is an unobserved random variable. The distribution of ε must

satisfy some assumptions to make the estimator consistent. Specifically, we assume that it
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is J-Lipschitz condition, i.e, 0 ≤ g(b)− g(a) ≤ J ∗ (b− a) for all a ≤ b, where g : R → R is

the CDF of error. Also here we xi are some continuous random variables. Suppose we have

n observations, each observation xi is a p ∗ 1 estimator.

First, we introduce the explicit stochastic gradient descent estimator(SGD), the estimator is

a special example of stochastic approximation Robbins and Monro (1951), The following is

the SGD algorithm, where we denote iterations by the letter k, k = 1, 2, ...K(n), recalling n

denotes the sample size.

Algorithm 1 SGD estimator g(·) known

1: Starting with initial guess β̂0, and starting with k = 1, set Σ̂k = Ck, where Ck is a p ∗ p
matrix.

2: Set D̂k = (g(xTk β̂k−1)− yk) ∗ xTk
3: Update β̂k = β̂k−1 − γkΣ̂kD̂k , where γk is a “learning parameter”, whose properties we

discuss below.
4: Go back to Step 1 and set k = k + 1.
5: Repeat until you get β̂K .

We alter the SGD algorithm to find a minimum value for a convex loss function.

g(.) is a non-decreasing function, then according to Lemma 1, there exists a function G :

R→ R such that G′ = g and G is a convex function.

ζ(β; (x, y)) = G(xTβ)− yxTβ (3.2)

The loss function is similar to that proposed by Agarwal et al. (2013). Notice that the loss

function is convex in β since G is convex. Now the kth SGD updating for β̂ becomes:

β̂k = β̂k−1 − γkCk∇ζ(βk−1; (xk, yk)) (3.3)

So replacing Step 3 in the above algorithm this way, our SGD estimator at the Kth iteration

as β̂K .

But this algorithm is for the case with known error distribution. In our model since it

is unknown, we use the method of sieves to get a feasible semiparametric estimator. The
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following is the kth sieve SGD group updating for β, with k = 1, 2, ...K.

β̃k = β̃k−1 − γkCk
1

n

n∑
i=1

∇ζ̃k−1(βk−1; (xi, yi)) (3.4)

where ζ̃k−1(β̃k−1; (xi, yi)) is the estimation for ζ(β̃k−1; (xi, yi)) using logistic series estimation.

The following details each step of this algorithm :

Algorithm 2 SieveSGD group estimator

1: Denote initial estimate of β0 and g(.) as β̃0 and g̃0(.), and recall T denote transpose of a
vector; calculate ∇ζ̃0(β̃0; (xi, yi)) = (g̃0(x

T
i β̃0)− yi)xi for each i.

2: In first iteration, use group SGD updating in (4.5) to update β̃0 to β̃1
3: Calculate z1i = β̃1 ∗ xi for each i = 1, 2, ...n
4: Using the full sample of n observations, calculate logistic regression of yi on index π̃1

0 +
z1iπ̃

1
1 + z21iπ̃

1
2 + ... + zq1iπ̃

1
q to get estimation of error distribution g(.)(here q relates to

order of sieve approximation)
5: Calculate ∇ζ̃1(β̃1; (xi, yi)) = (L(π̃1

0 + z1iπ̃
1
1 + z21iπ̃

1
2 + ...+ zq1iπ̃

1
q )− yi)xi for each i, where

L(.) denotes the CDF of logistic distribution.
6: Go back to 2 to get next iteration and repeat. So in general, in kth iteration, use group

SGD updating (4.5) to calculate β̃k.
7: Calculate zki = β̃k∗xi for each i, and calculate logistic regression of yi on index π̃k0+zkiπ̃

k
1+

z2kiπ̃
k
2 + ...+zqkiπ̃

k
q to get estimation of error distribution g(.), calculate ∇ζ̃k(β̃k; (xi, yi)) =

(L(π̃k0 + zkiπ̃
k
1 + z2kiπ̃

k
2 + ...+ zqkiπ̃

k
q )− yi)xi for each i.

8: Set k = k + 1 and repeat step 5 and 6 until you get to K and β̃K .

We denote the SSGD estimator as β̃K .
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Finally we introduce a third algorithmic based estimator, also using the method of sieves.

Basically this just averages all the K estimates computed in the previous algorithm.

Algorithm 3 SieveSGD average estimator

1: Initially guess β0 and g(.) as β̃0 and g̃0(.), calculate ∇ζ̃0(β̃0; (xi, yi)) = (g̃0(x
T
i β̃0)− yi)xi

for each i = 1, 2, ...n.
2: In first iteration, use group SGD updating 4.5 to update β̃0 to β̃1
3: Calculate z1i = β̃1 ∗ xi for each i = 1, 2, ..n
4: Calculate logistic regression of yi on index π̃1

0 +z1iπ̃
1
1 +z21iπ̃

1
2 + ...+zq1iπ̃

1
q to get estimation

of error distribution g(.)(here q is the tuning parameter), calculate ∇ζ̃1(β̃1; (xi, yi)) =
(L(π̃1

0 + z1iπ̃
1
1 + z21iπ̃

1
2 + ...+ zq1iπ̃

1
q )− yi)xi for each i.(L(.) is CDF of logistic distribution)

5: Go back to 2 to update β̃1 to β̃2 and repeat. In kth iteration, use group SGD updating
4.5 calculate β̃k.

6: Calculate zki = β̃k ∗ xi for each i, calculate logistic regression of yi on index π̃k0 +
zkiπ̃

k
1 + z2kiπ̃

k
2 + ... + zqkiπ̃

k
q to get updated estimation of error distribution g(.), calculate

∇ζ̃k(β̃k; (xi, yi)) = (L(π̃k0 + zkiπ̃
k
1 + z2kiπ̃

k
2 + ...+ zqkiπ̃

k
q )− yi)xi for each i.

7: Repeat step 5 and 6 until you get β̃K .
8: Lastly, calculate the average of the K estimates, β̃k, k = 1, 2, ...K.

β̄K = 1
K−t

∑k=K−t
k=1 β̃k

We denote this averaged estimator, ASSGD, as β̄K .

To establish the validity of our algorithmic based estimators we use the assumptions that

are similar to Toulis and Airoldi (2017).

Assumption 3.1. {γk} = γ1k
−γ, where γ1 > 1 is the learning parameter, γ ∈ (0.5, 1].

Assumption 3.2. function g(.) satisfies J-Lipschitz conditions, i.e, 0 ≤ g(b) − g(a) ≤

J ∗ (b− a) and g(.) is non-decreasing and differentiable almost surely.

Assumption 3.3. The matrix Îi(β) ≡ xix
T
i has nonvanishing trace, that is , there exists

constant b > 0 such that trace(Îi(β)) ≥ b almost surely, for all β. The matrix I(β0) =

E(Îi(β0)), has minimum eigenvalue λf > 0 and maximum eigenvalue λ
f
< ∞. (These are

standard conditions- see, e.g. Lehmann and Casella (2006), Theorem 5.1,page 463).

Assumption 3.4. Ck is a fixed positive-definite matrix, such that Ck = C+O(γn), where||C|| =

1, C � 0 and symmetric, and C commutes with I(β). Every Ck has a greatest eigenvalue λc

and smallest eigenvalue λc.
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Our first theoretical result is for the SGD algorithm, which is for the parametric model as it

is based on knowing the error distribution.

Theorem 1. Under assumptions 3.1-3.4, assume K = n, use SGD algorithm 1 we get

E||β̂K − β0||2 ≤
8λ

2

cσ
2
x(1 + 2γ1λcλf1)

2γ1λcλf1
n−1 + exp(−log(1 + 2γ1λcλf1)φ(n))[||β̂0 − β0||+ (1 + 2γ1λcλf1)

n0A]

with n sufficiently large, where A = 4λ
2

c

∑
i γ

2
i < ∞ and φ(n) = n1−γ if γ ∈ (0.5, 1] and

φ(n) = log n if γ = 1. n0 is some constant.

Remark 1. Thus the above theorem establishes that estimator based on the first algorithm is

consistent and can converge at the parametric rate. While interesting as it can apply to any

parametric model, and not just logit or probit to yield a computationally tractable estimator

for a wide class of models, it is limited in scope when compared to distribution free estimators

discussed earlier in the paper.

To establish asymptotic properties of our SSGD algorithm based estimator for semiparamet-

ric models, we impose the following additional conditions. They are primarily for the sieve

component in our algorithm and similar to those in Hirano et al. (2003)

Assumption 3.5. the support X of X is a compact subset of Rp.

Assumption 3.6. the cdf g(.) is s times continuously differentiable, with s ≥ 4.

Assumption 3.7. the cdf g(.) is bounded away from zero and one on X.

Assumption 3.8. the density of X is bounded away from zero on X.

Assumption 3.9. q →∞ as n→∞ and q3/n→ 0.

With these assumptions we have the following result for our algorithmic based estimator for

the semiparametric binary choice and monotone index models:
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Theorem 2. Under assumptions 3.1-3.4 and 3.6-3.10, assume γ0 = 0. By setting n
1
2γ ≤

K(n) ≤ n
1
γ ,using sieve SGD group algorithm 2 we get

E||β̃K(n) − β0||2 ≤
2(C1

√
C2 + 4λ

2

cσ
2
x)(1 + 2γ1λcλf2)

2γ1λcλf2
(K(n))−γ

+ exp(−log(1 + 2γ1λcλf2)φ(K(n)))[||β0 − β0||+ (1 + 2γ1λcλf2)
n0A]

with n sufficiently large, where A = (C1

√
C2 + 4λ

2

cσ
2
x)
∑

i γ
2
i < ∞,φ(K(n)) = K(n)1−γ if

γ < 1 and φ(K(n)) = log(K(n)) if γ = 1. n0 is some constant.

Remark 2. Thus we can conclude that our algorithmic based estimator for the regression

coefficients in the semiparametric models are consistent and can indeed converge at the para-

metric rate. This is a main advantage of our approach compared to the existing literature,

as our algorithm is designed to be implementable with many regressors, in contrast to rank

based estimators and closed form estimators which require nonparametric estimation in the

first stage. The result shows that this does not come at a cost of a slower rate of convergence.

The next theorem establishes limiting distribution for the algorithmic estimator for models

of fixed dimension.

Theorem 3. Under assumptions 3.1-3.4 and 3.6-3.10, assume γ0 = 0. By setting K(n) = n

and γ ∈ (0.5, 1),using sieve SGD average algorithm 3 we get

√
n(β̄K − β0)→ N(0,Σ−12 Σ1Σ

−1
2 )

where Σ1 = Eg(xTk β0)(1−g(xTk β0))xkx
T
k and Σ2 = Eg′(xTk β0)xkxTk−f(xTk β0), where f(xTk β0)) =

lim
q→∞

xkR
q(xTk β0)

TERq ′(xTi β
∗)g′(xTi β0)x

T
i and Rq(xTk β0) is orthogonal polynomial function of

xTk β0, and Rq ′(xTk β0) denotes its derivative.

While the previous result is desirable it is limited in the sense that it is based on models of

fixed dimension. This is in contrast to some of the recent literature designed for big data sets

which are modeled as the dimension increasing with the sample size. To attain a result for
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these models, we impose the following additional assumptions on p, the number of regressors,

which now depend on n.:

Assumption 3.10. var(xTβ0) is bounded.

Assumption 3.11. p→∞ as n→∞ and p/n→ 0 where ρ is any positive number.

Assumption 3.12. p→∞ as n→∞ and p2/n→ 0 where ρ is any positive number.

With these additional conditions our next result establishes rates of convergence for the

algorithmic estimator.

Theorem 4. Under assumption 3.1-3.4 and 3.6-3.12, using sieve SGD group algorithm 2

and γ0 = 0 and by setting n
1
2γ ≤ K(n) ≤ n

1
γ with pK(n)−γ → 0,we get

E||β̃K(n) − β0||2 ≤
2(C3

√
C4C5 + 4λ

2

cσ
2
x)(1 + 2γ1λcλf2)

2γ1λcλf2
pK(n)−γ

+ exp(−log(1 + 2γ1λcλf2)φ(K(n)))[||β̃0 − β0||+ (1 + 2γ1λcλf2)
n0A]

with n sufficiently large, where A = (C3

√
C4C5 + 4λ

2

cσ
2
x)
∑

i γ
2
i < ∞ and φ(K(n)) =

(K(n))1−γif 1 − γ > 0 and φ(K(n)) = log(K(n)) if 1 − γ = 0. γ ∈ (0.5, 1]. n0 is some

constant.

Next, we state conditions for the limiting distribution theory of sieve based algorithm esti-

mator

Theorem 5. Under assumption 3.1-3.4 and 3.6-3.13, by setting K(n) = n and choosing

γ ∈ (0.5, 1) and p2

n2γ−1 → 0 → 0,using sieve SGD average algorithm 3, assuming γ0 = 0 and

xk are independent across each regressor, for any ς ∈ Rp with ||ς|| = 1 we get ||β̄K − β0|| =

op(
√

p
n
), and

√
n

ς ′(β̄K − β0)
(ς ′Σ−12 Σ1Σ

−1
2 ς)

1
2

→ N(0, 1)

14



where Σ1 = Eg(xTk β0)(1−g(xTk β0))xkx
T
k and Σ2 = Eg′(xTk β0)xkxTk−f(xTk β0), where f(xTk β0)) =

lim
q→∞

xkR
q(xTk β0)

TERq ′(xTi β0)g
′(xTi β0)x

T
i and Rq(xTk β0) is orthogonal polynomial function of

xTk β0, and Rq ′(xTk β0) denotes its derivative.

4. Extensions

One of the advantages of our proposed procedures is it can be used for more complicated

models involving a binary equation with many regressors, in which case rank based proce-

dures would be difficult to implement. Examples of these models include ones studied in

Manski (1987), Abrevaya et al. (2010), Khan and Tamer (2007), Khan et al. (2019), Khan

et al. (2020), for binary choice panel data models, triangular binary systems, duration mod-

els, multinomial choice models, and partially identified transformation models, respectively.

In this section we propose a new algorithmic based estimator for a the multinomial choice

model in Khan et al. (2019), a binary choice model with fixed effects a binary choice model

with sample selection.

4.1. Censored Duration Models

Duration models have seen widespread use in empirical work in various areas of economics.

This is because many time-to-event variables are of interest to researchers conducting em-

pirical studies in labor economics, development economics, public finance and finance. For

example, the time-to-event of interest may be the length of an unemployment spell, the time

between purchases of a particular good, time intervals between child births, and insurance

claim durations, to name a few.

Since the seminal work in Cox (1972), Cox (1975), the most widely used models in dura-

tion analysis are the proportional hazards model, and its extension, the mixed proportional
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hazards model, introduced in Lancaster (1979). These models can be represented as mono-

tonic transformation models, where an unknown, monotonic transformation of the dependent

variable is a linear function of observed covariates plus an unobserved error term, subject to

restrictions that maintain the (mixed) proportional hazards assumption.

The monotonic transformation model in its most basic form is usually expressed as

T (yi) = x′iβ0 + εi i = 1, 2, ...n (4.1)

where (yi, x
′
i)
′ is a (p+1) dimensional observed random vector, with yi denoting the dependent

variable, usually a time to event, and xi denoting a vector of observed covariates. The random

variable εi is unobserved and independent of xi with an unknown distribution. The function

T (·) is assumed to be monotonic, but otherwise unspecified. The p-dimensional vector β0

is unknown, and is often the object of interest to be estimated from a random sample of n

observations.

Duration data is often subject to right censoring for a variety of reasons that are usually a

consequence of the empirical researcher’s observation or data collection plan.

When the data is subject to censoring the variable yi is no longer always observed. Instead

one observes the pair (vi, di) where vi is a scalar random variable, and di is a binary random

variable. We can express the right censored transformation model as

T (vi) = min(x′iβ0 + εi, ci) (4.2)

di = I[x′iβ0 + εi ≤ ci] (4.3)

where I[·] denotes the indicator function, and ci denotes the random censoring variable. We

note the censoring variable need not always be observed, as would occur in a competing risks

type setting (see, e.g. Heckman and Honoré(1990)).

Here wish to allow for the presence of covariate dependent censoring, i.e., in the case where

ci can be arbitrarily correlated with xi. This would be in line with the form of censoring
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allowed for in the Partial Maximum Likelihood Estimator (PMLE) introduced in Citecox2.

Since the censoring variable need not be restricted to be a function of the index, this model

no longer fits intro the framework of single, monotone index models.

Nonetheless, Khan and Tamer (2007) sowed that the regression coefficients β0 could still

be identified and estimated because properly transformed variables could indeed satisfy a

monotone index condition. After such a transformation they proposed what they referred

to as a partial rank estimator. Like the rank estimators referred to at the beginning of this

paper, it involved optimizing a non smooth, yonconvex objective function, And so was to

suitable for large dimensional models. This motivates our algorithmic based approach.

To illustrate how to construct it for this model, we first transform the observed variables,

vi, xi, di as done in Khan and Tamer (2007):

y0i = vi (4.4)

y1i = divi + (1− di) · (+∞)

They then showed that for a pair of distinct observations, i, j that the probability P (y1i ≥

y0j|xi, xj) is monotonic in the index (xj−xi)′β0) This motivated a constructive identification

result and a rank based estimation procedure. A drawback of this procedure was compu-

tational, because like the original MRC the objective function was non smooth and non

concave. This motivates an algorithmic procedure similar to before, but with the following

adjustments for this model, and that is based on splitting the sample into pairs (1,n),(2,n-1),

etc.

Let yssi = I[y1i ≥ y0(n−i+1)] i = 1, 2, ...n/2.

Let xssi = (xi − xn−i+1).
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Here the kth sieve SGD group updating for β, with k = 1, 2, ...K.

β̃k = β̃k−1 − γkCk
2

n

n/2∑
i=1

∇ζ̃k−1(βk−1; (xssi, yssi)) (4.5)

where∇ζ̃k−1(β̃k−1; (xssi, yssi)), defined in detail below is the estimation for∇ζ(β̃k−1; (xssi, yssi))

using logistic series estimation described below.

1: Denote initial estimate of β0 and error distribution g(.) as β̃0 and g̃0(.), use standard
logit for g̃0(.), and recall T denote transpose of a vector; calculate ∇ζ̃0(β̃0; (xssi, yssi)) =
(g̃0(x

T
ssiβ̃0)− yssi)xssi for each i = 1, 2, ...n/2.

2: In first iteration, use group SGD updating in (4.5) to update β̃0 to β̃1
3: Calculate z1ssi = β̃1 ∗ xssi for each i = 1, 2, ...n/2
4: Using the sample of n/2 observations, calculate logistic regression of yssi on index π̃1

0 +
z1ssiπ̃

1
1 + z21ssiπ̃

1
2 + ... + zq1ssiπ̃

1
q to get estimation of error distribution g(.)(here q relates

to order of sieve approximation)
5: Calculate ∇ζ̃1(β̃1; (xssi, yssi)) = (L(π̃1

0 + z1ssiπ̃
1
1 + z21ssiπ̃

1
2 + ...+ zq1siπ̃

1
q )− yssi)xssi for each

i, where L(.) denotes the CDF of logistic distribution.
6: Go back to 2 to get next iteration and repeat. So in general, in kth iteration, use group

SGD updating (4.5) to calculate β̃k.
7: Calculate zki = β̃k ∗ xssi for each i, and calculate logistic regression of yssi on index
π̃k0 + zkiπ̃

k
1 + z2kiπ̃

k
2 + ... + zqkiπ̃

k
q to get estimation of error distribution g(.), calculate

∇ζ̃k(β̃k; (xssi, yssi)) = (L(π̃k0 + zkiπ̃
k
1 + z2kiπ̃

k
2 + ...+ zqkiπ̃

k
q )− yssi)xssi for each i.

8: Set k = k + 1 and repeat step 5 and 6 until you get to K and β̃K .

We denote the SSGD estimator as β̃K .

4.2. Multinomial Choice

We consider the standard multinomial response model where the dependent variable takes

one of J + 1 mutually exclusive and exhaustive alternatives numbered from 0 to J . Specif-

ically, for individual i, alternative j is assumed to have an unobservable indirect utility y∗ij.

The alternative with the highest indirect utility is assumed chosen. Thus the observed choice

yij can be defined as

yij = 1[y∗ij > y∗ik,∀k 6= j]
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with the convention that yij = 0 indicates that the choice of alternative j is not made by

individual i. As is standard in the literature, an assumption of joint continuity of the indirect

utilities rules out ties (with probability one). In addition, we maintain the familiar linear

form for indirect utilities5

y∗i0 = 0,

y∗ij = x′ijβ0 − εij, j = 1, ..., J, (4.6)

where β0 is a p-dimensional vector of unknown preference parameters of interest whose first

component is normalized to have absolute value 1 (scale normalization). Note that for

alternative j = 0, the standard (location) normalization y∗i0 = 0 is imposed. The vector

εi ≡ (εi1, ..., εiJ)′ of unobserved error terms, attained by stacking all the scalar idiosyncratic

errors εij, is assumed to be jointly continuously distributed and independent of the p × J-

dimensional vector of regressors xi ≡ (x′i1, ..., x
′
iJ)′6. We stress that expression (4.6) is rather

general. By properly re-organizing xij’s and β0, (4.6) can accommodate both alternative-

specific and individual-specific covariates7

Consider a multinomial response model with 3 alternatives (J = 2) for now where the indirect

utilities for alternatives 0, 1, and 2 are

y∗i0 = 0,

y∗ij = x′ijβ0 − εij, j = 1, 2.

This simple model is sufficient to illustrate our approach, which is straightforward to be

applied to data with more alternatives.

5Our method can be applied to more general models with indirect utilities y∗ij = uj(x
′
ijβ0,−εij), j = 1, 2,

where uj(·, ·)’s are unknown (to econometrician) R2 7→ R functions strictly increasing in each of their
arguments. It will be clear that our rank procedure does not rely on the additive separability of the
regressors and error terms.

6We impose the independence restriction here to simplify exposition. As will become clear below, our
matching-based approach allows εi to be correlated with individual-specific regressors.

7See Cameron and Trivedi (2005) p. 498 for a detailed discussion.
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Given the indirect utilities, the observed dependent variables yij is of the form

yij = 1[y∗ij > y∗ik,∀k 6= j], j = 0, 1, 2,

Important work for semiparametric estimation of the cross sectional model include include

Lee (1995), who proposes a profile likelihood approach, extending the results in Klein and

Spady (1993a) for the binary response model. Ahn, Ichimura, Powell, and Ruud (2018)

propose a two-step estimator that requires nonparametric methods but show the second step

is of closed-form. Shi, Shum, and Song (2018) also propose a two-step estimator in panel

setups exploiting a cyclic monotonicity condition, which also requires a high dimensional

nonparametric first stage, but whose second stage is not closed-form as Ahn, Ichimura,

Powell, and Ruud (2018) is.

Khan et al. (2019) optimize the objective function

G1n(b) =
1

n(n− 1)

∑
i 6=m

1[xi2 = xm2](yi1 − ym1) · sgn((xi1 − xm1)
′b), (4.7)

with respect to b. This too is nonsmooth non concave and difficult to implement.

Our algorithmic estimator of β0 using all ith, mth observation pairs is constructed with the

following algorithm. It will involve kernel weights as in Ahn and Powell (1993)

ω̂im = kh((xi2 − xm2))

where k(·) is a kernel function and h is a bandwidth sequence and kh(·) = 1
h
k( ·

h
). Our

algorithm involves the following steps:

1. Start with initial guess β̃0, g̃0. The second is first guess of the conditional distribution

of εi1 so use say logit.

2. With these initial guesses calculate the p× 1 vector

∇ζ̃0(β̃0, xi1, yi1, ω̂im) ≡ (g̃0(x
′
iβ̃0)− yi1)xi1ω̂im
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for i = 1, 2, ...n.

3. Update β̃ as

β̃1 = β̃0 − γ1Ck
1

n2

∑
i,j

∇ζ̃0(β̃0, xi1, yi1, ω̂ij)

where γ1 is a “tempering” parameter, Cp is a p× p matrix (could be identity matrix).

4. With the updated β, β̃1, update g̃0 to g̃1 using sieves. Basically updating from logit to

flexible logit. Using all observations do logit, of yi1 on polynomial z1i, z
2
1i, z

q
1i, where here

z1i = x′i1β̃1. Denote the estimated intercept and regression coefficients by π̃0, π̃1, ...π̃q.

Our update g̃, from g̃0 to g̃1 is

g̃1(z1i) = Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)

where Λ(·) denotes the logit cdf.

5. calculate the p× 1 vector

∇ζ̃1(β̃1, xi1, yi1, ω̂im) ≡ (Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)− yi)xitiω̂ij

6. Go back to 3.

4.3. Panel Data Binary Choice Models

Here we consider estimation of a binary choice model with fixed effects. Andersen (1970)

considered the problem of inference on fixed effects linear models from binary response

panel data. He showed that inference is possible if the disturbances for each panel member

are known to be white noise with the logistic distribution and if the observed explanatory

variables vary over time. Nothing need be known about the distribution of the fixed effects

and he proved that a conditional maximum likelihood estimator consistently estimates the

model parameters up to scale.
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Manski (1987) showed that identification of the regression coefficients remains possible if the

disturbances for each panel member are known only to be time-stationary with unbounded

support and if the observed explanatory variables vary enough over time and have large

support.

Specifically, he considered the model:

yit = I[αi + x′itβ0 + εit > 0] (4.8)

where i = 1, 2, ...n, t = 1, 2. The binary variable yit and the p-dimensional regressor vector

xit are each observed and the parameter of interest is the p dimensional vector β0. The

unobservables are αi, and εit, the former not varying with t and often referred to as the

“fixed effect” or the individual specific effect. Manski (1987) imposes no restrictions on the

conditional distribution of αi conditional on xi ≡ xi1, xi2. His identification result is based

on the condition that

E[yi2 − yi1|xi1, xi2, yi1 6= yi2]

is monotonic in (xi2 − xi1)′β0.

His proposed an estimator of β0 up to a scale normalization that optimized the following

objective function

1

n

n∑
i=1

I[yi2 6= yi1]|(yi2 − yi1)− I[(xi2 − xi1)′β > 0]| (4.9)

As was the case with the rank estimators discussed earlier on in this paper , this estimator is

difficult to compute due to the non smoothness and non convexity of the objective function.

Attaining a global optimum becomes even more difficult the larger the value of p, making

this estimator unsuitable for large dimensional models.
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This motivates our algorithmic procedure we introduce here:

1. Start with initial guess β̃0, g̃0. The second is first guess of the conditional probability

of yi2 = 1, yi1 = 0 conditioning on yi1 6= yi2.

2. With these initial guesses calculate the p× 1 vector

∇ζ̃0(β̃0,∆xi,∆yi) ≡ (g̃0(∆x
′
iβ̃0)−∆yi)∆xiωi

for i = 1, 2, ...n. Where ∆yi ≡ (yi2 − yi1), ∆xi ≡ (xi2 − xi1), ωi ≡ I[yi1 6= yi2]

3. Update β̃ as

β̃1 = β̃0 − γ1Ck
1

n∗

n∑
i=1

∇ζ̃0(β̃0,∆xi,∆yi)

where γ1 is a “tempering” parameter, Ck is a p× p matrix (could be identity matrix),

n0 ≡
∑n

i=1 I[yi1 6= yi2].

4. With the updated β, β̃1, update g̃0 to g̃1 using sieves, basically again updating from a

logit to flexible logit. Using all observations, do logit of ∆yi on polynomial z1i, z
2
1i, z

q
1i,

where z1i = ∆x′iβ̃1. Denote the estimated regression coefficients by π̃0, π̃1, ...π̃q. Our

updated g̃, from g̃0 to g̃1 is

g̃1(z1i) = Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)

where Λ(·) denotes the logit cdf.

5. calculate the p× 1 vector

∇ζ̃1(β̃0,∆xi,∆yi) ≡ (Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)−∆yi)∆xi

6. Go back to 3.
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4.4. Selective Labeling Models

These models arise in the many domains where the observed binary outcomes are themselves

a consequence of the existing choices of of one of the agents in the model. These models

are gaining increasing interest in the computer science and machine learning literatures

where they refer the potentially endogenous sample selection as the selective labels problem.

Empirical settings for such models arise in fields as diverse as criminal justice, health care,

and insurance. For important recent work in this area, see for example Lakkaraju et al.

(2017). The authors there focus on judicial bail decisions, and where one observes the

outcome of whether a defendant filed to return for their court appearance only if the judge

in the case decides to release the defendant on bail. Letting ti denote the binary decision to

grant bail, and yi denote the binary outcome of the defendant returning for court appearance,

they consider a model of the form

yi =


0 or 1, if ti = 1

not observed (NA), otherwise

(4.10)

This process and the ensuing model can be best explained with the diagram below. The top

node indicates the decision made by the agent (judge in our criminology example) which

corresponds to a yes (ti = 1) or no (ti = 0) on individual i. The other observed dependent

variable, corresponding to the two nodes beneath the top one, is denoted by yi, where

yi ∈ {0, 1, NA} and denotes the resulting outcome (return to court in our example). The

selective labels problem occurs because the observation of outcome yi is constrained by the

decision ti made by the judge:
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Outcome yiOutcome yi

Decision ti

No failure failure Not Observed

Yes (ti = 1) No (ti = 0)

(yi = 1) (yi = 0) (yi = NA)

Of course controlling for selection bias has a rich history in the econometrics literature, but

usually for models where the outcome variable after selection is continuous. Seminal work in

the parametric literature is in Heckman (1974) and for a semiparametric approach see Ahn

and Powell (1993).

With the availability of regressors for each of the equations in the binary outcome our

econometric model is of the form:

ti = I[w′iδ0 + ηi > 0] (4.11)

yi = ti · I[x′iβ0 + εi > 0] (4.12)

Wish to first estimate δ0, β0 based on a random sample of (ti, wi, yi, xi).

Our proposed way is to first estimate k− dimensional vector δ0 first and with that, use a

matching as in Ahn and Powell (1993) to estimate β0. We will not use rank in either step

because the dimension of wi, xi are large. To illustrate will assume w.l.o.g. that each are

k × 1 vectors.

Algorithm for estimating δ0, which is identical to algorithm discussed in previous section :

1. Start with initial guess δ̃0, g̃0. The second is first guess of distribution of ηi, so use say

logit.
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2. With these initial guesses calculate the k × 1 vector

∇ζ̃0(δ̃0, wi, di) ≡ (g̃0(w
′
iδ̃0)− ti)wi

for i = 1, 2, ...n.

3. Update δ̃ as

δ̃1 = δ̃0 − γ1Ck
1

n

n∑
i=1

∇ζ̃0(δ̃0, wi, ti)

where γ1 is a “tempering” parameter, Ck is a k× k matrix (could be identity matrix).

4. With the updated δ, δ̃1, update g̃0 to g̃1 using sieves. Basically updating from logit

to flexible logit. Using all observations, do logit of di on polynomial z1i, z
2
1i, z

q
1i, where

z1i = w′iδ̃1. Denote the estimated intercept and regression coefficients by π̃0, π̃1, ...π̃q.

Our updated g̃, from g̃0 to g̃1 is

g̃1(z1i) = Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)

where Λ(·) denotes the logit cdf.

5. calculate the k × 1 vector

∇ζ̃1(δ̃0, wi, ti) ≡ (Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)− ti)wi

6. Go back to 3.

Now to estimate β0, we will do something similar, but control for selection bias. Our esti-

mator of β0 using all ith, jth observation pairs is constructed with the following algorithm.

It will involve kernel weights as in Ahn and Powell (1993)

ω̂ij = kh((wi − wj)′δ̂)

where δ̂ is our first stage algorithmic estimator described above. k(·) is a kernel function

and h is a bandwidth sequence and kh(·) = 1
h
k( ·

h
). Our second step algorithm involves the

following steps:
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1. Start with initial guess β̃0, g̃0. The second is first guess of the conditional distribution

of εi, conditioning on ηi > −w′iδ0, so use say logit.

2. With these initial guesses calculate the k × 1 vector

∇ζ̃0(β̃0, xi, ti, yi, ω̂ij) ≡ (g̃0(x
′
iβ̃0)− yi)xitiω̂ij

for i = 1, 2, ...n.

3. Update β̃ as

β̃1 = β̃0 − γ1Ck
1

n2

∑
i,j

∇ζ̃0(β̃0, xi, ti, yi, ω̂ij)

where γ1 is a “tempering” parameter, Ck is a k× k matrix (could be identity matrix).

4. With the updated β, β̃1, update g̃0 to g̃1 using sieves. Basically updating from logit

to flexible logit. Using all observations for which ti = 1, do logit, of yi on polynomial

z1i, z
2
1i, z

q
1i, where here z1i = x′iβ̃1. Denote the estimated intercept and regression

coefficients by π̃0, π̃1, ...π̃q. Our update g̃, from g̃0 to g̃1 is

g̃1(z1i) = Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)

where Λ(·) denotes the logit cdf.

5. calculate the k × 1 vector

∇ζ̃1(β̃1, xi, ti, yi, ω̂ij) ≡ (Λ(π̃0 + z1iπ̃1 + z21iπ̃2 + ...zq1iπ̃q)− yi)xitiω̂ij

6. Go back to 3.

Implementation of this algorithm involves selection of matching weights, as is often the case

for estimating selection and treatment effect models- see, e.g. Ahn and Powell (1993). As in

there, for consistency of our procedure we require hn → 0 as n→∞, and further restrictions

to ensure root-n consistency and asymptotic normality of the second stage estimator of β0.
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5. Simulation Study

In this section we explore the relative finite sample properties of our estimation procedure

by presenting the results from a series of Monte Carlo experiments. In the simulation study

we focus on the binary choice model:

yi = 1{xTi β0 > ε}

xi and β0 is a vector with length 9, the true value of β0 is {1, 1, 2, 4, 5,−1,−2,−4,−5}. ε

follows either standard normal distribution or cauchy distribution with location equivalent

to 0 and scale equivalent to 1. We set q = 2, which means we use z, z2 and z3 to estimate the

underlying distribution. The number of observations were 5000 or 10000. We calculate the

average time of each experiment, mean bias and root mean square error with 500 experiments.

MRC estimator and MS estimator are not feasible in the binary choice model with more than

3 regressors. We compare our estimator (KLT) with Dominitz and Sherman (2005) (DS),

where they use iterative least square with kernel estimation of the distribution of error, which

in one sense is similar to ours. One major problem with theirs is that there are 3 tuning

parameters in the process and no clear way to choose them in computing the estimator.

Table 1. computation time(second)
KLT DS

Sample size Normal error Cauchy error Normal error Cauchy error
5000 349.896 201.324 758.784 746.196
10000 642.756 400.62

We can see from Table 1 that our estimator requires much less time to compute than the

estimator of Dominitz and Sherman (2005). For the sample size of 10000, the time of our

estimator is around 10 min, which is reasonable and feasible for empirical studies.

Table 2 and Table 3 are the mean bias and root mean square error (RMSE) of our estimator

and their estimator. The mean bias does not decrease with the number of observations may
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Table 2. normal distribution comparison
KLT DS

N=5000 N=10000 N=5000
Beta Bias RMSE Bias RMSE Bias RMSE

1 -0.00245 0.074159 -0.00431 0.051545 0.089473 -0.00759
2 -0.00528 0.116748 -0.00543 0.085119 0.128051 -0.00852
4 -0.00383 0.215743 -0.01637 0.156179 0.236556 -0.01471
5 -0.00334 0.264365 -0.02086 0.194141 0.291545 -0.01225
-1 0.001095 0.073209 0.003431 0.051931 0.089551 -0.00076
-2 0.00202 0.119057 0.008036 0.086456 0.128528 0.00513
-4 0.001222 0.214129 0.016845 0.158186 0.236176 0.009738
-5 0.003662 0.263349 0.018584 0.19901 0.289038 0.013762

Table 3. cauchy distribution comparison
KLT DS

N=5000 N=10000 N=5000
Beta Bias RMSE Bias RMSE Bias RMSE

1 0.009164 0.141747 0.007211 0.102666 0.192022 -0.16365
2 0.011969 0.230573 0.010308 0.167794 0.379245 -0.3429
4 0.028555 0.422073 0.0264 0.289527 0.743516 -0.68575
5 0.046395 0.532154 0.028414 0.359989 0.919298 -0.84691
-1 -0.01341 0.14509 -0.00531 0.103166 0.194638 0.163287
-2 -0.00424 0.228275 -0.01507 0.161979 0.379526 0.345423
-4 -0.03135 0.419305 -0.02808 0.295145 0.735462 0.681659
-5 -0.04541 0.530584 -0.02518 0.371865 0.921918 0.853838
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due to the constant complexity of sieve space. The RMSE of our estimator decrease with

size. The bias and RMSE of their estimator is high and this may be because it’s hard to

select the many required tuning parameters with their procedure.

6. Conclusions

In this paper, we proposed a new estimation procedures for binary choice and monotonic

index models with increasing dimensions. From an empirical perspective the model can be

motivated by models of consumer demand with large consideration sets so prices of many

compliments and substitutes are explanatory variables. Existing estimation procedures for

this model cannot be implemented in practice when the number of regressors is large. In

contrast, our algorithmic based procedure can be used for many regressor models as it

involves convex optimization at each iteration of the procedure. We show this iterative

procedure also has desirable asymptotic properties when the number of regressors increases

with the sample size in ways that are standard in “big data” literature.

Our work here leaves areas for future research. This paper focused on a single equation

binary choice model. It would be interesting to see how the proposed algorithmic estimator

can be extended to nonbinary and/or systems of simultaneous equation models with a large

number of regressors in each equation in each model. For example rank estimators were

proposed for the multinomial choice model was proposed in Khan et al. (2019), but was

difficult computationally when there were many regressors. We aim to see how our approach

in this paper can be adapted to estimate that model and what its asymptotic properties

would be. Similarly, Khan and Tamer (2007) propose a rank estimator for duration models

with general forms of censoring, that was also difficult computationally for large dimensional

models, We conjecture now and aim to show in future work that our approach here is

adaptable for that class of models.
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Finally, our results here concern high-dimensional models where the number of covariates is

at most the same order as the sample size. A recent related literature concerns ultra-high-

dimensional models where the number of covariates is much larger than the sample size. In

those models some form of (approximate) sparsity is imposed in the model- see, e.g., Belloni

et al. (2014a), Belloni et al. (2017). In that setting, inference is conducted after covariate

selection, where the resulting number of selected covariates is much smaller. It would be of

interest to investigate if such an approach for that type of design can be considered using

our method here for large dimensional monotone index models.
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A. Appendix

Lemma 1. Suppose g : R → R is a non-decreasing function, then there exists a convex

function G : R→ R such that G′ = g.

Proof. Define G(x) =
∫ x
d
g(t)dt, where d is a constant. Then G(x) is convex since G′(x) =

g(x) ≥ 0.
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Lemma 2. Suppose X is a v∗1 vector of random variables X1, X2...Xv on product probability

space (Ω,F , P ). P is the product of measures P1, P2...Pv. The domain of at least one of

random variables is R and the measure of it is continuous. E(XTX) is positive definite

matrix. g(.) is a non-negative continuous function on R. Eg(XTβ) > 0 for constant vector

β with length v. Then Eg(XTβ)(XTX) is positive definite matrix.

Proof. We know E(XTX) and Eg(XTβ)(XTX) are semi-positive definite matrix. If detE(XTX) =

0 if and only if there is linear relation between X1, X2...Xv, then there is no linear rela-

tion between g(XTβ)X1, g(XTβ)X2...g(XTβ)Xv and we finish the proof.The sufficiency is

obvious and we only prove the necessity. There exists a linear relation among columns

of E(XTX) since detE(XTX) = 0. Denote E(XTX) as [A1, A2...Av]. Suppose A1 =

a2 ∗ A2 + a3 ∗ A3 + ... + av ∗ Av, where a1, a2...av are constant, and at least one of them

is not zero.By changing the second column into a2 ∗A2 + a3 ∗A3 + ...+ av ∗Av, we get a new

matrix denoted as [B1, B2...Bv]
2, By changing the second rows into a2∗B2+a3∗B3+...+av∗Bv

we get the new matrix, and the first 2 ∗ 2 elements are the following: E(X2
1 ) E(X1(a2X2 + a3X3 + ...+ avXv))

E(X1(a2X2 + a3X3 + ...+ avXv)) E(a2X2 + a3X3 + ...+ avXv)
2


Then the determinant of the above matrix is 0, then by Hölder’s inequality, X1 = a2 ∗X2 +

a3 ∗X3 + ...+ av ∗Xv.

Theorem 1. Under assumptions 3.1-3.4, assume K = n we get

E||βK − β0||2 ≤
8λ

2

cσ
2
x(1 + 2γ1λcλf1)

2γ1λcλf1
n−1 + exp(−log(1 + 2γ1λcλf1)φ(n))[||β0 − β0||+ (1 + 2γ1λcλf1)

n0A]

with n sufficiently large, where A = 4λ
2

c

∑
i γ

2
i < ∞ and φ(n) = n1−γ if γ ∈ (0.5, 1] and

φ(n) = logn if γ = 1. n0 is some constant.
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Proof. We start from Eq. (3) and k is the iterative times,

βk − β0 = βk−1 − β0 − γkCk∇ζ(βk−1; (xk, yk))

then,

||βk − β0||2 =||βk−1 − β0||2

− 2γk(βk−1 − β0)TCk∇ζ(βk−1; (xk, yk))

+ γ2k||Ck∇ζ(βn−1; (xk, yk))||2 (A.1)

for the third term,

γ2k||Ck∇ζ(βk−1; (xk, yk))||2

≤ 4γ2kλ
2

cσ
2
x

its expectation is bounded as

E(γ2k||Ck∇ζ(βk−1; (xk, yk))||2)

≤ 4γ2kλ
2

cσ
2
x

for the second term,

E(−2γk(βk−1 − β0)TCk∇ζ(βk−1; (xk, yk)))

= −2γkE((βk−1 − β0)TCk∇ζ(βk−1; (xl, yk)))

= −2γkE((βk−1 − β0)TCk∇h(βk−1; (xk, yk))) [where∇h(βk−1; (xk, yk)) = E(∇ζ(βk−1; (xk, yk)|Fk−1)]

= −2γkE((βk−1 − β0)TCk(∇h(βk−1; (xk, yk))−∇h(β0; (xk, yk)))

≤ −2γkλcλf1E||βk−1 − β0||2

Where λf1 is the least eigenvalue of Eg(xTk β0)x
T
k xk. The last inequality comes from strong
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convexity by Assumption 3.3 and 2. ∇h(β0; (xk, yk)) = 0 is implied by Eq.3.1

g(xTk β0)− E(yk|xk) = 0

=⇒ g(xTk β0)xk − E(yk|xk)xk = 0

=⇒ E(∇ζ(β0; (xk, yk)) = 0

=⇒ ∇h(β0; (xk, yk)) = 0

Then we can rewrite Eq. A.1 as

E||βk − β0||2 ≤(1− 2γkλcλf1)E||βk−1 − β0||2 + 4γ2kλ
2

cσ
2
x

1

(1 + 2γkλcλf1)
E||βk−1 − β0||2 + 4γ2kλ

2

cσ
2
x

By corollary 2.1 in Toulis and Airoldi (2017) with ak = 4γ2kλ
2

cσ
2
x and bk = 2γkλcλf1,and

K = n we get

E||βK − β0||2 ≤
8λ

2

cσ
2
x(1 + 2γ1λcλf1)

2γ1λcλf1
n−1 + exp(−log(1 + 2γ1λcλf1)φ(n))[||β0 − β0||+ (1 + 2γ1λcλf1)

n0A]

with n sufficiently large, where A = 4λ
2

c

∑
i γ

2
i < ∞ and φ(n) = n1−γ if γ ∈ (0.5, 1] and

φ(n) = logn if γ = 1. n0 is some constant.

Theorem 2. Under assumptions 3.1-3.4 and 3.6-3.10, assume γ0 = 0.By setting n
1
2γ ≤

K(n) ≤ n
1
γ ,using sieve SGD group algorithm 2 we get

E||β̃K(n) − β0||2 ≤
2(C1

√
C2 + 4λ

2

cσ
2
x)(1 + 2γ1λcλf2)

2γ1λcλf2
(K(n))−γ

+ exp(−log(1 + 2γ1λcλf2)φ(K(n)))[||β0 − β0||+ (1 + 2γ1λcλf2)
n0A]

with n sufficiently large, where A = (C1

√
C2 + 4λ

2

cσ
2
x)
∑

i γ
2
i < ∞,φ(K(n)) = K(n)1−γ if

γ < 1 and φ(K(n)) = log(K(n)) if γ = 1. n0 is some constant.

Proof. the following are notations and definitions from Hirano et al. (2003) with some

changes; we use matrix norm ||A|| =
√
tr(A′A). Define

LN(π) =
1

n

n∑
i=1

(yilnL(Rβ̂
q (xi)

′π) + (1− yi)lnL(1−Rβ̂
q (xi)

′π))
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Rβ̂
q (xi) ≡ Rq(xTi β̂), Rβ̂

q (x) ≡ Rq(xT β̂), Rβ0
q (x) ≡ Rq(xTβ0),R

q(.) is the basis functions in

Hirano et al. (2003) with order q. ERβ̂
q (xi) = 0 for non-constant term and ERβ̂

q (xi)
′Rβ̂

q (xi) =

1. ι(q) = supx∈X ||Rβ̂
q (xi)||, where ι(q) ≤ Cq for some constant C. L(.) is logistic distribution.

g∗(x) ≡ g(xTβ0). LN(π) is the MLE of yi on xTi β̂. Define

π̂q = argm
π
axLN(π)

then, we have

||βk − β0||2 =||βk−1 − β0||2 − 2γk
1

n

n∑
i=1

(βk−1 − β0)TCk∇ζ̂(βk−1; (xi, yi)) + γ2k
1

n

n∑
i=1

||Ck∇ζ̂(βk−1; (xi, yi))||2

where ∇ζ̂(βk−1; (xi, yi) = (L(R
βk−1
q (xi)

′π̂q)− yi)xi.

for the second term, by maximize LN(π), we get

1

n

n∑
i=1

L(Rβk−1
q (xi)

′π̂q)− yi)Rβk−1
q (xi) = 0. (A.2)

then,

E(L(Rβk−1
q (xk)

′π̂q)− g(xTk β0))R
βk−1
q (xk)|βk−1, π̂q) = O(

√
1/n). (A.3)

We can approximate L(R
βk−1
q (xk)

′π̂q) and g(xTk β0) with R
βk−1
q (xk)

′π̃q and Rβ0
q (xk)

′π̃∗q , accord-

ing to Lorentz (1986), assuming the second term is increasing8, then equation becomes

E((Rβk−1
q (xk)

′π̃q −Rβ0
q (xk)

′π̃∗q )R
βk−1
q (xk)) = O(

√
1/n) +O(q−s). (A.4)

then we can get π̃wq

π̃q = E(Rβk−1
q (xk)R

β0
q (xk)

′)π̃∗q +O(
√

1/n) +O(q−s). (A.5)

8we can relax this to allow some portion of the function is not increasing, but it will not change the result
here.

42



then,

E(2γk
1

n

n∑
i=1

(βk−1 − β0)TCk∇ζ̂(βk−1; (xi, yi)))

=2γkλcE
1

n

n∑
i=1

(L(Rβk−1
q (xi)

′π̂q)− yi)(xTi βk−1 − xTi β0)

≥2γkλcEβk−1
E((L(Rβk−1

q (xk)
′π̂q)− g(xTk β0))(x

T
i βk−1 − xTk β0)|βk−1)

− (O(ι(q)q−s
1√
n

) +O(
ι(q)2

n
) +O(

1√
n

))(Eβk−1
||βk−1 − β0||2)

1
2

−O(
1√
n

)Eβk−1
||βk−1 − β0||2

≥2γkλcEβk−1
E((Rβk−1

q (xk)
′π̃q −Rβ0

q (xk)
′π̃∗q ))(x

T
i βk−1 − xTk β0)|βk−1)

− γk(O(q−s) +O(
ι(q)2

n
) +O(

1√
n

))(Eβk−1
||βk−1 − β0||2)

1
2 −O(

1√
n

)Eβk−1
||βk−1 − β0||2

≥2γkλcEβk−1
E((R̃βk−1

q (xk)
′π̃∗q −Rβ0

q (xk)
′π̃∗q ))(x

T
i βk−1 − xTk β0)|βk−1)

− γk(O(
√

1/n) +O(q2−s) +O(
ι(q)2

n
))(Eβk−1

||βk−1 − β0||2)
1
2 −O(ι(q)2

√
q

n
)Eβk−1

||βk−1 − β0||2

≥2γkλcEβk−1
E((R̃βk−1

q (xk)
′π̃∗q −Rβ0

q (xk)
′π̃∗q ))(g̃

−1(R̃βk−1
q (xk)

′π̃∗q )− xTk β0)|βk−1)

− γk(O(
√

1/n) +O(q2−s) +O(
ι(q)2

n
))(Eβk−1

||βk−1 − β0||2)
1
2 −O(ι(q)2

√
q

n
)Eβk−1

||βk−1 − β0||2

where R̃
βk−1
q (xk)

′ ≡ R
βk−1
q (xk)

′E(R
βk−1
q (xk)R

β0
q (xk)

′) and g̃(xTk β0) ≡ Rβ0
q (xk)

′π̃∗q .
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The first inequality is coming from

E
1

n

n∑
i=1

(L(Rβk−1
q (xi)

′π̂q)− yi)(xTi βk−1 − xTi β0)

=E
1

n

n∑
i=1

(L(Rβ∗
q (xi)

′π̂∗q )− g(xTk β0))(x
T
i βk−1 − xTi β0)

+ E
1

n

n∑
i=1

(L(Rβk−1
q (xi)

′π̂q)− L(Rβ∗
q (xi)

′π̂∗q ))(x
T
i βk−1 − xTi β0)

− E
1

n

n∑
i=1

(yi − g(xTk β0))(x
T
i βk−1 − xTi β0)

=Eβk−1
E((L(Rβ0

q (xk)
′π̂∗q )− g(xTk β0))(x

T
i βk−1 − xTk β0)|βk−1) + (O(ι(q)q−s

1√
n

) +O(
ι(q)2

n
))(Eβk−1

||βk−1 − β0||2)
1
2

+O(
1√
n

)Eβk−1
||βk−1 − β0||2 + Eβk−1

E((L(Rβk−1
q (xi)

′π̂q)− L(Rβ0
q (xk)

′π̂∗q ))(x
T
i βk−1 − xTk β0)|βk−1)

+O(
1√
n

)(Eβk−1
||βk−1 − β0||2)

1
2

=Eβk−1
E((L(Rβk−1

q (xk)
′π̂q)− g(xTk β0))(x

T
i βk−1 − xTk β0)|βk−1)

+ (O(ι(q)q−s
1√
n

) +O(
ι(q)2

n
) +O(

1√
n

))(Eβk−1
||βk−1 − β0||2)

1
2

+O(
1√
n

)Eβk−1
||βk−1 − β0||2

where π̂∗q is the value of π̂q when βk−1 = β0 in equation A.2. The proof is similar to the

bound on (5) in the addendum of Hirano et al. (2003).
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then,

E(xTkR
βk−1
q (xk)

′O(
1√
n

)|βk−1) = E(xTkR
βk−1
q (xk)

′E(L(Rβk−1
q (xk)

′π̂q)− g(xTk β0))R
βk−1
q (xk)|βk−1, π̂q)|βk−1)

=E(xTkR
βk−1
q (xk)

′(π̃q − π̃∗q )|βk−1) + E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)O(q−s)|βk−1, π̂q)|βk−1)

+ E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)(R

βk−1
q (xk)−Rβ0

q (xk)π̃
∗
q )|βk−1, π̂q)|βk−1)

=E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)(yi − g(xTi β0)))|βk−1)

+ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)(g(xTi β0)−Rβ0

q (xi)π̃
∗
q ))|βk−1)

+ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1

∗ (
1

n

∑
i

Rβk−1
q (xi)((R

β0
q (xi)−Rβk−1

q (xi)
′E(Rβk−1

q (xk)
′Rβ0

q (xk))π̃
∗
q ))|βk−1)

+ {E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1

∗ (
1

n

∑
i

Rβk−1
q (xi)(R

βk−1
q (xi)

′(E(Rβk−1
q (xk)

′Rβ0
q (xk)−Rβk−1

q (xi)
′)π̃∗q ))|βk−1)

+ E((xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)(R

βk−1
q (xk)−Rβ0

q (xk)π̃
∗
q )))|βk−1, π̂q)|βk−1)}

+ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)O(q−s))|βk−1)

+ E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)O(q−s)|βk−1, π̂q)|βk−1)

By requiring s ≥ 4.5 and we consider q = nd, d < 1/5 and d > 1
2(s−2)the bound become

O(
1√
n

) +O(ι(q)2
1√
n

)||βk−1 − β0||

see Appendix B for more information.

O(
√

1/n) is invariant to k if Eβk−1
||βk−1−β0||2 is convergent for k and n sufficient large. We

will address this issue later.

The last inequality comes from approximate continuous function g̃−1(R̃
βk−1
q (xk)) by A.4.

f(xTk β
k−1) ≡ E((R̃

βk−1
q (xk)

′π̃∗q−Rβ0
q (xk)

′π̃∗q ))(g̃
−1(R̃

βk−1
q (xk)

′π̃∗q )−xTk β0)|βk−1). Denote xTk βk−1
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as z, we can rewrite R̃
βk−1
q (xk)

′π̃∗q −Rβ0
q (xk)

′π̃∗q as E(Rβ0
q (xk)

′π̃∗q |z)−Rβ0
q (xk)

′π̃∗q , so f(.) ≥ 0

with equality if and only if βk−1 = β0. f
′(xTk β0) = 0 and f ′′(xTk β0) = E(g̃−1)′(R̃β0

q (xk))(
∂R̃

βk−1
q (xk)

′π̃∗q
∂(xTk βk−1)

|βk−1=β0)
2 ≥

0 since g̃(.) is increasing.

∂R̃
βk−1
q (xk)

′π̃∗q
∂(xTk βk−1)

|βk−1=β0 =
∂Rβ0

q (xk)
′

∂(xTk β0)
π̃q +Rβ0

q (xk)E(
∂Rβ0

q (xk)

∂(xTk β0)
Rβ0
q (xk))π̃q

We know that ERβ0
q (xk)E(

∂R
β0
q (xk)

∂(xTk β0)
Rβ0
q (xk))π̃q = 0 and Rβ0

q (xk)E(
∂R

β0
q (xk)

∂(xTk β0)
Rβ0
q (xk))π̃q is con-

tinuons in xTk β0 and (g̃−1)′(R̃β0
q (xk)) = 1/(g′(xTk β0) + O(q−s)), so f ′′(xTk β0) > 0. then, by 2

we have

E(2γk
1

n

n∑
i=1

(βk−1 − β0)TCk∇ζ̂(βk−1; (xi, g(xTi β0)))))

≥2γkλcλf2Eβk−1
||βk−1 − β0||2

− γk(
√

1/n))(Eβk−1
||βk−1 − β0||2)

1
2 − γkO(ι(q)2

1√
n

)Eβk−1
||βk−1 − β0||2

where λf2 is the smallest eigenvalue of E(g̃−1)′(R̃β0
q (xk))(

∂R̃
βk−1
q (xk)

′π̃∗q
∂(xTk βk−1)

|βk−1=β0)
2xTk xk.

for the third term,

γ2k
1

n

n∑
i=1

E||Ck∇ζ̂(βk−1; (xi, g(xTi β0)))||2

≤4γ2kλ
2

cσ
2
x

Then,

E||βk − β0||2 ≤ (1− 2γkλcλf + γkO(ι(q)2
1√
n

)E||βk−1 − β0||2

+γk(O(
√

1/n))(Eβk−1
||βk−1 − β0||2)

1
2 + 4γ2kλ

2

cσ
2
x
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then, if n is sufficiently large, n ≥ n1,

E||βk − β0||2 ≤(1− 2γkλcλf2)E||βk−1 − β0||2

+ γk(O(
√

1/n))(Eβk−1
||βk−1 − β0||2)

1
2 + 4γ2kλ

2

cσ
2
x

≤ 1

1 + 2γkλcλf2
E||βk−1 − β0||2

+ γk(O(
√

1/n))(Eβk−1
||βk−1 − β0||2)

1
2 + 4γ2kλ

2

cσ
2
x

Here we can treat (Eβk−1
||βk−1− β0||2)

1
2 ≤ Eβk−1

||βk−1− β0||2 + 1. Then we can see from the

bound for Eβk−1
||βk−1− β0||2 of each iteration that EβK(n)−1

||βK(n)−1− β0||2 is convergent for

K(n) = n
1
γ and n sufficient large even if O(

√
1/n) is variant to k. So we can choose the

supremum of O(
√

1/n) among each iteration. then, assume γ0 = 0, there exists a constant

C1 such that O(
√

1/n) ≤ C1n
1
2

E||βk − β0||2 ≤
1

1 + 2γkλcλf2
E||βk−1 − β0||2 + γkC1n

1
2 (Eβk−1

||βk−1 − β0||2)
1
2 + 4γ2kλ

2

cσ
2
x

Since Eβk−1
||βk−1 − β0||2 converges, by guess Eβk−1

||βk−1 − β0||2 ≤ C2k
−γ we can solve the

inequality easily, we are done if the guessing is right in the aggregate inequality. By setting

K(n) = n
1
γ and corollary 2.1 in Toulis and Airoldi (2017) with ak = (C1

√
C2 + 4λ

2

cσ
2
x)γ

2
k and

bk = 2γkλcλf2, By setting n
1
2γ ≤ K(n) ≤ n

1
γ ,using sieve SGD group algorithm 2 we get

E||β̃K(n) − β0||2 ≤
2(C1

√
C2 + 4λ

2

cσ
2
x)(1 + 2γ1λcλf2)

2γ1λcλf2
(K(n))−γ

+ exp(−log(1 + 2γ1λcλf2)φ(K(n)))[||β̃0 − β0||+ (1 + 2γ1λcλf2)
n0A]

with n sufficiently large, where A = (C1

√
C2 + 4λ

2

cσ
2
x)
∑

i γ
2
i < ∞,φ(K(n)) = K(n)1−γ

if γ < 1 and φ(K(n)) = log(K(n)) if γ = 1. n0 is some constant. We can choose C

large enough so that
2(C1

√
C2+4λ

2
cσ

2
x)(1+2γ1λcλf2)

2γ1λcλf2
+ ||β̃0 − β0|| + (1 + 2γ1λcλf2)

n0A ≤ C2, then

Eβk−1
||βk−1 − β0||2 ≤ C2k

−γ.
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Theorem 3. Under assumptions 3.1-3.4 and 3.6-3.10, assume γ0 = 0. By setting K(n) = n

and γ ∈ (0.5, 1),using sieve SGD average algorithm 3 we get

√
n(β̄K − β0)→ N(0,Σ−12 Σ1Σ

−1
2 )

where Σ1 = Eg(xTk β0)(1 − g(xTk β0))((ExkxTk )−
1
2xk + xTk β0lβ0)((ExkxTk )−

1
2xk + xTk β0lβ0)

T and

Σ2 = Eg′(xTk β0)(I+lβ0(β0)
′)(ExkxTk )−

1
2xkx

T
k . lβ0 = [1/l1, 1/l2, ...1/lp], and li is the ith element

of (ExkxTk )
1
2β0.

Proof. W.L.O.G, we set ExkxTk = Ip and then we calculate the variance without this assump-

tion by using (ExkxTk )−
1
2xk and (ExkxTk )

1
2 (β̄K −β0) to replace xk and (β̄K −β0) respectively.

First, we write equation 4.5 as 1
n

∑n
i=1∇ζ̃k−1(β̃k−1; (xi, yi)) = 1

γk
(β̃k−1 − β̃k). By Theorem

2, Taylor expansion on 1
n

∑n
i=1∇ζ̃k−1(β̃k−1; (xi, yi)) we get 1

n

∑n
i=1∇ζ̃k−1(β̃k−1; (xi, yi)) =

1
n

∑n
i=1∇ζ̃k−1(β0; (xi, yi))+

1
n

∑n
i=1

∂∇ζ̃k−1(β0;(xi,yi))

∂β
(β̃k−1−β0). We know that 1

n

∑n
i=1∇ζ̃k−1(β0; (xi, yi))−

1
n

∑n
i=1∇ζ(β0; (xi, yi))− 1

n

∑
i x

T
i β0lβ0(yi− g(xTi β0)) is negeligible from the similar argument

in theorem 2, then if we prove 1
n

∑n
k=1

1
γk

(β̃k−1 − β̃k) is negligible o(1/
√
n) and

1

n

n∑
i=1

∂∇ζ̃k−1(β0; (xi, yi))

∂β

p−→ (
1

n

n∑
i=1

∂∇ζ(β0; (xi, yi))

∂β
+ lim

q→∞
ExkRβ0

q (xk)
′E(Rβ0

q (xk)g
′(xTk β0)x

T
k ))

is negligible o(1/
√
n). then 1

n

∑n
k=1(β̃k − β0) behaves like

(
1

n

n∑
i=1

∂∇ζ(β0; (xi, yi))

∂β
+ lim

q→∞
ExkRβ0

q (xk)
′E(Rβ0

q (xk)g
′(xTk β0)x

T
k ))−1

∗( 1

n

n∑
i=1

∇ζ(β0; (xi, yi)) +
1

n

∑
i

xTi β0lβ0(yi − g(xTi β0)))

→ N(0,Σ−122 Σ11(Σ
−1
22 )T )

where Σ11 = Eg(xTk β0)(1− g(xTk β0))(xk + xTk β0l
t
β0

)(xk + xTk β0l
t
β0

)T and Σ22 = Eg′(xTk β0)(I +
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ltβ0(β0)
′)xkx

T
k and ltβ0 = [1/β

(1)
0 , 1/β

(2)
0 , , , 1/β

(p)
0 ]′.

1

n

n∑
k=1

1

γk
(β̃k−1 − β̃k) ≤

1

n
(− 1

γn
(β̃n − β0) +

n−1∑
k=1

|( 1

γk
− 1

γk−1
)(β̃k − β0)|+

1

γ1
(β̃0 − β0))

≤ 1

n
(− 1

γn
(β̃n − β0) + C

n−1∑
k=1

1√
k

+
1

γ1
(β̃0 − β0))

= o(1/
√
n)

This means 1
n

∑n
k=1

1
γk

(β̃k−1 − β̃k) is negligible.

For Σ1

lim
n→∞

(
1

n

n∑
i=1

∇ζ(β0; (xi, yi)) +
1

n

∑
i

xTi β0lβ0(yi − g(xTi β0)))

=Eg(xTk β0)(1− g(xTk β0))(xk + xTk β0lβ0)(xk + xTk β0lβ0)
T

For the second term in Σ2, if we use the similar argument in theorem 2, we know that the

second term is negligible.

lim
q→∞

ExkRβ0
q (xk)

′E(Rβ0
q (xk)g

′(xTk β0)x
T
k ) = Eg′(xTk β0)xTk β0lβ0xTk = Eg′(xTk β0)lβ0(β0)′xkxTk

since (ExkRβ0
q (xk)

′)Rβ0
q (xk) = xTk β0lβ0 by getting fitted value of xk regressing on Rβ0

q (xk).

At last we drop the independent assumption ExkxTk = Ip.Then N(0,Σ−122 Σ11(Σ
−1
22 )T ) becomes

N(0,Σ−12 Σ1(Σ
−1
2 )T ). where Σ1 = Eg(xTk β0)(1−g(xTk β0))((ExkxTk )−

1
2xk+x

T
k β0lβ0)((ExkxTk )−

1
2xk+

xTk β0lβ0)
T and Σ2 = Eg′(xTk β0)(I + lβ0(β0)

′)(ExkxTk )−
1
2xkx

T
k . lβ0 = [1/l1, 1/l2, ...1/lp], and li

is the ith element of (ExkxTk )
1
2β0.
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Theorem 4. Under assumption 3.1-3.4 and 3.6-3.12, using sieve SGD group algorithm 2

and γ0 = 0 and by setting n
1
2γ ≤ K(n) ≤ n

1
γ with pK(n)−γ → 0,we get

E||β̃K(n) − β0||2 ≤
2(C3

√
C4C5 + 4λ

2

cσ
2
x)(1 + 2γ1λcλf2)

2γ1λcλf2
pK(n)−γ

+ exp(−log(1 + 2γ1λcλf2)φ(K(n)))[||β0 − β0||+ (1 + 2γ1λcλf2)
n0A]

with n sufficiently large, where A = (C3

√
C4C5 + 4λ

2

cpσ
2
x)
∑

i γ
2
i = O(p) and φ(K(n)) =

(K(n))1−γif 1 − γ > 0 and φ(K(n)) = log(K(n)) if 1 − γ = 0. γ ∈ (0.5, 1]. n0 is some

constant.

Proof. with assumption 3.11, we only have two changes here. The first one is

E(2γk
1

n

n∑
i=1

(βk−1 − β0)TCk∇ζ̂(βk−1; (xi, yi)))

=2γkλcE
1

n

n∑
i=1

(L(Rβk−1
q (xi)

′π̂q)− yi)(xTi βk−1 − xTi β0)

≥2γkλcEβk−1
E((R̃βk−1

q (xk)
′π̃∗q −Rβ0

q (xk)
′π̃∗q ))(g̃

−1(R̃βk−1
q (xk)

′π̃∗q )− xTk β0)|βk−1)

− γk(O(
√
p/n) +O(

√
pq2−s) +O(

√
pι(q)2

n
))(Eβk−1

||βk−1 − β0||2)
1
2 −O(ι(q)2

√
q

n
)Eβk−1

||βk−1 − β0||2

The second one is

γ2k
1

n

n∑
i=1

E||Ck∇ζ̂(βk−1; (xi, g(xTi β0)))||2

≤4pγ2kλ
2

cσ
2
x

then, if n is sufficiently large, n ≥ n1,

E||βk − β0||2 ≤(1− 2γkλcλf2)E||βk−1 − β0||2

+ γk(O(
√
p/n))(Eβk−1

||βk−1 − β0||2)
1
2 + 4pγ2kλ

2

cσ
2
x

≤ 1

1 + 2γkλcλf2
E||βk−1 − β0||2

+ γk(O(
√
p/n))(Eβk−1

||βk−1 − β0||2)
1
2 + 4pγ2kλ

2

cσ
2
x
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By corollary 2.1 in Toulis and Airoldi (2017) and setting n
1
2γ ≤ K(n) ≤ n

1
γ , we get

E||βK(n) − β0||2 ≤
2(C3

√
C4C5 + 4λ

2

cσ
2
x)(1 + 2γ1λcλf2)

2γ1λcλf2
pK(n)−γ

+ exp(−log(1 + 2γ1λcλf2)φ(K(n)))[||β̃0 − β0||+ (1 + 2γ1λcλf2)
n0A]

with n sufficiently large, where A = (C3

√
C4C5 + 4λ

2

cpσ
2
x)
∑

i γ
2
i = O(p) and φ(K(n)) =

(K(n))1−γif 1 − γ > 0 and φ(K(n)) = log(K(n)) if 1 − γ = 0. γ ∈ (0.5, 1]. n0 is some

constant.
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Theorem 5. Under assumption 3.1-3.4 and 3.6-3.13, by setting K(n) = n and choosing

γ ∈ (0.5, 1) and p2

n2γ−1 → 0 → 0,using sieve SGD average algorithm 3, assuming γ0 = 0 and

xk are independent across each regressor, for any ς ∈ Rp with ||ς|| = 1 we get ||β̄K − β0|| =

op(
√

p
n
), and

√
n

ς ′(β̄K − β0)
(ς ′Σ−12 Σ1Σ

−1
2 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xTk β0)(1 − g(xTk β0))((ExkxTk )−
1
2xk + xTk β0lβ0)((ExkxTk )−

1
2xk + xTk β0lβ0)

T and

Σ2 = Eg′(xTk β0)(I+lβ0(β0)
′)(ExkxTk )−

1
2xkx

T
k . lβ0 = [1/l1, 1/l2, ...1/lp], and li is the ith element

of (ExkxTk )
1
2β0.

Proof. There are two differences compared to the proof when p is fixed. The first it the

following:

1

n

n∑
k=1

1

γk
ς ′(β̃k−1 − β̃k) ≤

1

n
(− 1

γn
ς ′(β̃n − β0) +

n−1∑
k=1

|( 1

γk
− 1

γk−1
)ς ′(β̃k − β0)|+

1

γ1
ς ′(β̃0 − β0))

<
1

n
(− 1

γn
(β̃n − β0) +

n−1∑
k=1

|( 1

γk
− 1

γk−1
||ς ′||||β̃k − β0||+

1

γ1
ς ′(β̃0 − β0))

<
1

n
(− 1

γn
(β̃n − β0) +

n−1∑
k=1

|(k − (k − 1))|C
√
p

k
+

1

γ1
ς ′(β̃0 − β0))

= o(

√
p

n
)

this means 1
n

∑n
k=1

1
γk

(β̃k−1 − β̃k) is negligible.The second difference is the following:

The second-order term of Taylor expansion of ∇ζ̃k−1(β0; (xi, yi)) is
∂2∇ζ̃k−1(β̃

∗
k ;(xi,yi))

∂β2 , where

β̃∗k = ψβ̃k + (1 − ψ)β0 and ψ ∈ [0, 1].
∂2∇ζ̃k−1(β̃

∗
k ;(xi,yi))

∂β2 is bounded since β̃K = β0 + o(1)

and Σ22 has bounded derivatives. Then the second-order term of Taylor expansion of

1
n2

∑n
k=1

∑n
i=1 ς

′∇ζ̃k−1(β0; (xi, yi)) is bounded by C 1
n

∑n
k=1 ||Eς ′xk||

p
kγ
≤ C 1

n

∑n
k=1

p
3
2

kγ
, which

is o(
√

p
n
) if p2

n2γ−1 → 0.
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then 1
n

∑n
k=1(β̃k − β0) behaves like

(
1

n

n∑
i=1

∂∇ζ(β0; (xi, yi))

∂β
+ lim

q→∞
ExkRβ0

q (xk)
′E(Rβ0

q (xk)g
′(xTk β0)x

T
k ))−1

∗( 1

n

n∑
i=1

∇ζ(β0; (xi, yi)) +
1

n

∑
i

xTi β0lβ0(yi − g(xTi β0)))

then for any ς ∈ Rp we get ||βK − β0|| = op(
√

p
n
), and

√
n

ς ′(βK − β0)
(ς ′Σ−12 Σ1Σ

−1
2 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xTk β0)(1 − g(xTk β0))((ExkxTk )−
1
2xk + xTk β0lβ0)((ExkxTk )−

1
2xk + xTk β0lβ0)

T and

Σ2 = Eg′(xTk β0)(I+lβ0(β0)
′)(ExkxTk )−

1
2xkx

T
k . lβ0 = [1/l1, 1/l2, ...1/lp], and li is the ith element

of (ExkxTk )
1
2β0.
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B. Appendix B

E(xTkR
βk−1
q (xk)

′O(
1√
n

)|βk−1) = E(xTkR
βk−1
q (xk)

′E(L(Rβk−1
q (xk)

′π̂q)− g(xTk β0))R
βk−1
q (xk)|βk−1, π̂q)|βk−1)

=E(xTkR
βk−1
q (xk)

′(π̃q − π̃q)|βk−1) + E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)O(q−s)|βk−1, π̂q)|βk−1)

+ E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)(R

βk−1
q (xk)−Rβ0

q (xk)π̃q)|βk−1, π̂q)|βk−1)

=E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)(yi − g(xTi β0)))|βk−1)

(B.1)

+ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)(g(xTi β0)−Rβ0

q (xi)π̃q))|βk−1)

(B.2)

+ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1

∗ (
1

n

∑
i

Rβk−1
q (xi)((R

β0
q (xi)−Rβk−1

q (xi)
′E(Rβk−1

q (xk)
′Rβ0

q (xk))π̃q))|βk−1) (B.3)

+ {E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1

∗ (
1

n

∑
i

Rβk−1
q (xi)(R

βk−1
q (xi)

′E(Rβk−1
q (xk)

′Rβ0
q (xk)−Rβk−1

q (xi)
′)π̃q))|βk−1)

+ E(xTkR
βk−1
q (xk)

′(E(Rβk−1
q (xk)(R

βk−1
q (xk)−Rβ0

q (xk))π̃q)|βk−1, π̂q)|βk−1)} (B.4)

+ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)O(q−s))|βk−1) (B.5)

+ E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)O(q−s)|βk−1, π̂q)|βk−1) (B.6)

For B.1
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E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)(yi − g(xTi β0)))|βk−1)

≤ E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)(yi − g(xTi β0)))|βk−1) +O(ι(q)3q−s

√
q
√
n

)

≤ 1

n

∑
i

xTi βk−1lβk−1
(yi − g(xTi β0)) +O(ι(q)3q−s

√
q
√
n

)

≤ O(
1√
n

) +O(ι(q)3q−s
√
q
√
n

)

where we use || 1
n

∑
iR

βk−1
q (xi)

′R
βk−1
q (xi))

−1−Iq|| = Op(ι(q)
√

q
n
) by Newey (1997). The next-

to-last equation needs independence assumption of xi across each regressor. Even without

the independence assumption we still can get the last equation.

For B.2

E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)(g(xTi β0)−Rβ0

q (xi)π̃q))|βk−1)

=O(ι(q)2q−s)(1 +O(ι(q)

√
q

n
))

For B.3

E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1

∗ (
1

n

∑
i

Rβk−1
q (xi)((R

β0
q (xi)−Rβk−1

q (xi)
′E(Rβk−1

q (xk)
′Rβ0

q (xk))π̃q))|βk−1)

=O(ι(q)2
1√
n

)(1 +O(ι(q)

√
q

n
))||βk−1 − β0||

Here ERβk−1
q (xi)((R

β0
q (xi) − R

βk−1
q (xi)

′E(R
βk−1
q (xk)

′Rβ0
q (xk))π̃q) = 0 because by regressing

Rβ0
q (xi))

′π̃q on Rβ0
q (xi) we get the residual ((Rβ0

q (xi) − R
βk−1
q (xi)

′E(R
βk−1
q (xk)

′Rβ0
q (xk))π̃q),

which is orthogonal to R
βk−1
q (xi).
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For B.4

{E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1

∗ (
1

n

∑
i

Rβk−1
q (xi)(R

βk−1
q (xi)

′(E(Rβk−1
q (xk)

′Rβ0
q (xk)−Rβk−1

q (xi)
′))π̃q))|βk−1)

+ E((xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)(R

βk−1
q (xk)−Rβ0

q (xk)π̃q)|βk−1, π̂q)|βk−1)}|βk−1)

=0

For B.5

E((xTkR
βk−1
q (xk)

′)(
1

n

∑
i

Rβk−1
q (xi)

′Rβk−1
q (xi))

−1(
1

n

∑
i

Rβk−1
q (xi)O(q−s))|βk−1)

=O(ι(q)2q−s)(1 +O(ι(q)

√
q

n
))

For B.6

E(xTkR
βk−1
q (xk)

′E(Rβk−1
q (xk)O(q−s)|βk−1, π̂q)|βk−1)

=O(ι(q)2q−s)

Adding the bound together, we get

O(
1√
n

) +O(ι(q)3q−s
√
q
√
n

) +O(ι(q)2q−s)(1 +O(ι(q)

√
q

n
))

+O(ι(q)2
1√
n

)(1 +O(ι(q)

√
q

n
))||βk−1 − β0||+ 0

+O(ι(q)2q−s)(1 +O(ι(q)

√
q

n
)) +O(ι(q)2q−s)

≤O(ι(q)2q−s) +O(
1√
n

) +O(ι(q)2
√
q

n
) +O(ι(q)2

1√
n

)||βk−1 − β0||

By requiring s ≥ 4.5 and we consider q = nd and d < 1/5 the bound become

O(
1√
n

) +O(ι(q)2
1√
n

)||βk−1 − β0||
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