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PREFACE

This volume is intended as a modest contribution to the much
discussed problem of the analysis of economic lime series, It does
not, of course, try to offer anything but a very tentative solution of
one particular problem out of this great complex. It deals with the
role and importance of the random element. But this seems to be one
of the most fundamental and important aspects of the whole problem,
whose importance for economics cannot be overemphasized. It arises
from the fact that the analysis of the random element can give us
somewhat secure foundations for statistical tests of our empirical re-
sults and enables us to establish their validity from the point of view
of modern statistics, The author has also endeavoured to give an eco-
nomic foundation, also rather tentative, to the statistical procedures
involved.

The book may be of some interest to a variety of scholars. The
economist, especially the nonmathematical economist, is referred to
Chapter I and Appendixes VI and VII. The economic and rather
nonmathematical statistician will perhaps be interested in Chapters
V to X which present the Variate Difference Method in a form com-
paratively free from mathematics. Appendix I gives a summary of
computations. It is also hoped that some of the tables may be useful
in empirical applications and reduce the amount of caleulations,
which is still considerable. The mathematical statistician is referred
to Appendixes IT and V. The historian of statistics will possibly be
interested in Chapter IL.

Most of the material contained in the book goes back to the origi-
nal work of Professor 0. Anderson and Dr. R. Zaycoff, of Sofia, Bul-
garia, The author is much obliged to them for the permission to use
some of the material published first in the Publications of the Statis-
tical Institute for Economic Research, State University of Sofia. A
new method is presented in Chapter VIII and Chapter X, Section B.

The work on this book was carried out under the auspices of the
Iowa State College Agricultural Experiment Station, Project Num-
ber 557. The author has to thank Mr, Norman Strand (Ames, Iowa)
for helping him with a W.P.A. project, O.P. No. 665-72-3-46, which
did most of the caleulation of the tables., Mrs. Gevernia Richardson
(Ames, Towa) supervised and checked the calculations and proofread
the book. She acted as the author’s secrelary and it is due to her, if
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PREFACE

the number of errors in the book and especially the tables is only a
minimum. Dr. I. Lubin (U. 8. Bureau of Labor Statisties) was very
helpful in eonnection with the collection of the agricultural price ma-
terial used as examples in this book.

Mr. Alfred Cowles and Professor H. T. Davis of the Cowles Com-
mission and Professor T. W. Schultz and Dean E. W. Lindstrom of
Iowa State College made possible the publication of this book which
is a common venture of the Cowles Commission for Research in Eco-
nomies and the Department of Economics and Sociology at Iowa State
College. Mr. D. H. Leavens of the staff of the Cowles Commission, is
to be credited with the editing of the book. He also very kindly ar-
ranged the drawing of the figures.

The author wants to express his sincere thanks to the following
who were very helpful in connection with the present book: Professor
Edward S. Allen (Iowa State College), Professor Eugen Altschul
(University of Minnesota), Mr. R. L. Anderson (Iowa State College),
Professor E. C. Bratt {Lehigh University), Mr. W. G. Cochran (Towa
State College, formerly Rothamsted), Mr. Alvin E. Coons (Iowa
State College), Professor H. T. Davis (Northwestern University),
Professor Harold Hotelling (Columbia University), Mr. Sven Laur-
sen (Copenhagen), Professor Edward S. Lynch (Iowa State College),
Mr. Herbert E. Jones (Cowles Commission), Mr. W. G. Madow (Co-
lumbia University), Dr. Horst Mendershausen (Colorado College),
Professor Erich Rothe (Penn College), the late Professor Henry
Schultz (University of Chicago), Professor Theodore W. Schultz
(Iowa State College), Professor George W. Snedecor (Iowa State Col-
lege), Mr. Herman M. Southworth {Iowa State College), Professor
George Stigler (University of Minnesota), Dr. A. Wald {Columbia
University), Professor S. S. Wilks (Princeton University), Dr. R.
Zaycoff (Sofia). Needless fo say, none of these who very kindly
helped me in various ways are to blame for any mistakes, errors,
omissions, and general blunders in this book, which the author claims
as his very own, '

GERHARD TINTNER
Departments of Economics and Mathematics
lTowa State College
Ames, Iowa
December, 1939

viii



Toue

awy

ows

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION
The Problem of Time Series - - - - - =« - - =« - -
The Components of Economic Time Series - - - - - - -
Economic “Errors” and Time Series - - - - - - - - =
The Variate Difference Method - - - - - - « - - -

CHAPTER 11
HISTORY AND LITERATURE OF THE VARIATE DIFFERENCE METHOD - -

CHAPTER III
CRITICISM OF THE VARIATE DIFFERENCE METHOD
The Aceuracy of Higher Differenees - - - - - - - - -
Serial Correlation - - - - - - - « e o« 4 . - .
Periodic Oscillations - - - - = « =« o o« - - 4 4 .

CHAPTER 1V
FUNDAMENTAL CONCEPTS
The Definition of Probability - - - - - - - -
Random Variable, Distribution, and Mathematlca] Expectatlon - -
Finite Differences - - - - = -~ =« - - - 4 4 - -

CHAPTER V
THE CALCULATION OF THE VARIANCES OF THE FINTTE DIFFERENCE
SERIEZ - =« - - - - - - - -« - - - . - -
CHAPTER VI

THE STANDARD ERROR OF THE DIFFERENCE BETWEEN THE VARIANCES OF
Two CONSECUTIVE SERIES OF FINITE IMFFERENCES - - - -

CHAPTER VII
CRITERIA FOR THE STABILITY OF THE VARIANCES OF THE SERIES oF FINITE
DIFFERENCES - - -~ - = = = =« = = = = = =

CHAPTER VIII
A TEST oF SIGNIFICANCE FOR THE STABILITY OF VARIANCES OF THE SE-
RIES OF FINITE DIFFERENCES - - - - - = - = = =

CHAPTER IX
REDUCTION OF THE RANDOM VARIATION BY SHEPPARD'S SMOOTHING
FoRMyULAE - - - - - - - -« - 4 4 - - -

-

1X

=

10

16
16
20

22
24
25

3z

51

67

T

100



&

0

SrgposmESONp

W

CHAPTER X

CORRELATION
Difference Analysis - - - -~ - - - - - - .
Selected Comparisons - - - - - - - Lo -

The Linear Relationship between the Mathematical Expectations

APPENDIX 1
SUMMARY 0F COMPUTATONS

Calculation of the Variances of Differences - - - - =
Calculation of the Variances Corrected for Seasonal - - -
Difference Analysis: Approximate Criterion - - - - -
Difference Analysis: Exaet Criterion - - - - - . -
Difference Analysiz: Tests of Significance - - - - - .
Smoothing by Sheppard’s Formulae - - - - . - .
Correlation: Approximate Criterion - - - - - - -
Correlation: Exaet Criterion -~ - - - - - . . =
Correlation: Tests of Significance - - - - - - - .
Correlation of the Random Elements and Linear Relationship

Mathematical Fxpectations - - - - - . - .

APPENDIX II
MATHEMATICAL NOTES
Notes to Chapter IV, Section A - - - - - - - .
Notes to Chapter IV, Section B - - - - - - - .
Notes to Chapter 1V, Seetion ¢ - - - - - - - =
Notes to Chapters V, VI, and VII - - - - - - .
Notes to Chapter VIIE - - - - - - - - - - -
Notes to Chapter IX - - - -« - - - - . - -
Notes to Chapter X - - - - - - - - . - -

APPENDIX I
SEASONAL VARIATION - - - =~ - - - =« - = .

APPENDIX 1V
THE STANDARD ERRORS OF SOME DERIVED STATISTICAL SERIES -

APPENDIX V
ALTERNATIVE METHODS
Sequences and Reversals - - - - - - - - - -
Serial Correlations - - - - - - - - - - - .

APPENDIX VI
THE VARIABILITY OF THE RANDOM VARIANCE THROUGH TIME -

APPENDIX VII
TEE NORMALITY OF THE RANDOM ELEMENT - - - - - -

INDEX 0 AUTHORS - - =~ = - =~ = = =« « = =

INDEX OF SUBJECTS - - - - - =~ - - - - = -

117
124
127

133
133
133
133
134
134
134
134
136

135

136
136
137
138
142
144
146

150

153

155
156

161

165
171

173



LEASO R BRE

fany
=

- e
F1 o 0D 2

16,

17.

18,

19.

TABLE OF CONTENTS

Differences of the Squares of Numbers - - - - - - - -
Differences of a Polynomial - - - - - - - - - - -~
Differences of an Exponential - - - - - - - - = =
Differences of a Hyperbola - - - - - - - - - = =
Differences of a Trigonometric Function with Long Peried - - -
Differences of a Trigonometric Function with Short Peried - - -
Annual American Wheat-Flour Prices and Differences, 1890-1937 -
Summary, Annual American Wheat-Flour Prices, 1890-1927 - - -
Binomial Coefficients ,,C¢, - - - - - - =~ - - - - =

1

Coefficients A,y — )

Summary, Monthly Wool Prices, 1890-1987 - - - - - - -
Summary, Annual Raw-8ilk Prices, 1890-1937 - - - - - -
B, , Multiplier for the Square of the Variance - - - - - -
Divisor for the Calculation of the Xurtosis - - - -
C,, Multiplier for the Difference between the Fourth Moment and B,,
Times the Sqguare of the Variange - - - - - - - - -
Calculation of Xurtesis and Standard Errors, Annual Ameriean Wheat—
Fiour Prices, 1890-1937 - - - - - - - - - - = =

N—1y
Coeﬂ‘icientsEN:3( )- - e e - - - - -

N

Coefficients F, = " 5 3
lome
N Nz N 3

Coefficients H,,,, - - - - - - -
Coefficients J,.y -

Differcnee Analysis, Annual Amencan VVheab-Flour Pr:lces, 1890 1937
Difference Analysis, Annual Wool Prices, 1890-1937 - - - - -
Difference Analysis, Monthly Wool Prices, 1890-1937 - - - - -
Difference Analysis, Annual Raw-Silk Prices, 1890-1937 - - - -
Selections for Comparison of the Original and Ten Differences - -
Limits for the Ratios of Sums of Squares of Selected Comparisons
of Differences, Level of Significanece 5% - - - - -
Limits for the Ratios of Sums of Squares of Se]ected Compansons
of Differences, Level of Significance 1% - - - - - - -
Limits for the Ratios of Sums of Squares of Selected Compansons
of Differences, Level of Significance 0.1% - - - - - - - -
Sums of Squares of Selected Differences, Annual American Wheat-
Flour Prieces, 1880-1937 - - - - - - - -~

bT
60
€8
70
71
71
75

7
82
87

93



31

32.

34.
a6
36.
37.
38.
39,
41,

42,
43,

44,
45.
46.

47,

LisT oF TABLES

ms, Annual American

Ratios of Sums of Squares for Selected Ite
Wheat-Flour Prices, 18980 193‘;'1 — g— {_7) -
eppard’s Smoothing - - - - -
WGoeﬂielglé::nftorLSh fl:)l]').‘ the Reduetion of the Random Variance by Smooth-
g with a Moving Average of Type n and Accuracy m - -
Reducnon of the Coefficient of Random Varlablhty (fv) by the Use (yf

i erages - -
g{n(::;guﬁ ofaihe Annual A;merlcan Wheat~Flour Prlces by Moving

ra - - e e e e e e e e e e ..
g:;mxg‘; of Correlatwn, Annual Wool (2) and Raw-Silk (y) Prices,

1890-1987 - - - - = - = = = - = - . - ..
Difference Analysis of Correlation, Annual Woe! and Raw-Silk Pnces,

1890-1937 - = - - - = - - s = -
Selected Comparisons of the Correlation of Annual Wool and Raw—S:]k
Prices, 1890-1987 - - - - - S
Coefficients for the Calculation of H,, and Sy - - -~ - - = -
Summary, Seasonal Monthly Wool Prices, 1890-1937 - - -
Difference Analysis, Monthly Wool Pnces, 1890-193‘7 (corrected for
seasonal) - - - - - - -
Reversals, Annual Amencan Wheat—FIour Prlces, 1890 1937 - - -
Serial Correlation Coefficients, Annual American Wheat-Flour Prices,
1890-1937 - - - - - - - < 4 4 4 - 4 -4 . a
Analysis of Serial Correlation, Annual American Wheat-Flour Prices,
1890-1937 - - - - - - - - - - - 4 . . - .
Serial Correlation Coefficients, Selected Comparisons of Annual Ameri-
can Wheat-Flour Prices, 1890-1987 - - - - - -
Amnual Prices and Annual Standard Dewatlons, Monthly Wool Pmces,
1890-1936 - - - - - - - -
Correlation Coefficients of Annual Standard Dev1atlons of Monthly
Wool Prices and Differences, and Original Annual Wool Prices -
Skewness and Kurtosis of Annual American Wheat-Flour Prices,
1890-1987 - - ~ - - - - - - - - . - - - .

xii

96
101

106
108
113
120
121
125
142
150

151
155

157
158
159
162
1684

166



TR o 10

LIST OF FIGURES

Annual Wheat-Flour Prices, 1890-1937 (Logarithmic Scale)
Annual Wool Prices, 1890-1937 (Logarithmic Scale)
Ammnual Raw-Silk Prices, 1890-1937 (Logarithmic Scale)
Serial Correlation Coefficients, Annual Wheat-Flour Prices, 1890- 1937
Frequeney Distributions of Monthly Wool Prices, 1800-1937: Ongmal

Fifth Differences, and Tenth Differences

xiii

115
115
116
158

167



THE VARIATE DIFFERENCE METHOD



CHAPTER 1

INTRODUCTION

A. The Problem of Time Series

The variate difference method is a statistical tool for the analysis
of the random element in time series. The statistical methods with
which we deal in the treatment of time series are of special interest fo
economists since most economic data come in the form of items that
are ordered in time. We use, for instance, monthly series of whole-
sale prices, yearly series of production of certain commodities, and so
on. It is, therefore, not surprising that a great deal of attention has
in the past been given to this problem.

It is, however, regrettable that no closer collaboration has pre-
vailed between the economists and the economic statisticians. The
economist feels that he has to take into account whatever he knows
from economic theory about the nature of the behavior of economic
quantities through time.' The mathematical statisticians in general do
nothing of this kind. Their contributions, which are sometimes very
valuable and often display great ingenuity, have been mainly mathe-
matical and mechanical. Most statistical methods fail to make sense
if interpreted from the point of view of the economist.

We shall try in this study to take the sirictly economic point of
view. That is to say, every statistical or maithematical operation, e.g.,
faking an average or caleulating a trend, has in our opinion a very
definite economic meaning. We think that it should be based on cer-
tain economic assumptions which should be clearly stated and which,
if clearly stated, in many cases will make us much more cautious in
the appraisal of particular statistical methods and results, The appli-
cation of any specific statistical method to an economic problem should
be made only if it can be handled and understood in economic terms.

But we should realize at the outset that we are not always going
to get a unique and definite answer from economics. The main reason
for this is that our knowledge of the forces that act on the develop-
ment of economic phenomena through time is extremely limited. The
part of economic theory that refers to it is known (not too properly)

1 0, Morgenstern, Wirtschaftsprognose, Vienna, 1928,
1



2 THE VARIATE DIFFERENCE METHOD

as the theory of economic dynamics.? Most of its problems are still
very far from even a theoretical solution in spite of the substantial
progress that has been made in this field in the last ten years. We
know almost nothing about the numerical values of the specific quan-
titative parameters and coefficients which oceur in dynamic econom-
ics.?

Hence, the economie assumptions on which we have to base our
statistical methods are unfortunately not very refined to start with,
and in any case very indefinite. This is certainly a handicap. If we
propose, nevertheless, certain methods for dealing with a specific as-
pect of the probiem of time series we do so becanse we feel that eco-
nomic theory, t0o, can make progress if the right or at any rate better
statistical methods are used. Only then can we hope to get at least an
idea of the order of magnitude of the quantities that enter into dyna-
mic econcomics and possibly, also, some indications for the further the-
oretical treatment of such problems.

B. The GComponents of Economic Time Series

In general, four components have been distinguished in an eco-
nomic time series: secular trend, cyelical Auctuation, seasonal compo-
nent, and a remainder.t The variate difference method is particularly
concerned with this remainder.

There seems to be no ebjection from the economie point of view
t¢ the distinction between these four components. In fact, we can
really imagine that they refer to longer- and shorter-run considera-
tions in the economic system.® If we take this approach we can think
of the longest run as referring to the secular trend (which, by the
way, may also contain so-called long waves) and the shortest as refer-
ring to the remainder term which, for reasons to be stated later, we
shall call the randem variation.

But the reader should be warned at the outset against overdoing

z F. H. Knight, “Statics and Dynamics” in The Ethics of Competition, New
York, 1935, pp. 161 ff. See also G. C. Evans, Mathematical Introduction to Eeco-
nomics, New York, 1930; C. F. Roos, Dynamic Economics, Bloomington, Indiana,
1934; and J. BR. Hicks, Value and Capital, Oxford, 1939,

2 See, however, H. Schultz, The Theory and Measurement of Demand, Chica-
20, 1938, and some of the work of the econometrists as published in Econometrica.

4 Sece, for instance, F. C. Mills, Statistical Methods Applied to Economics and
Business, revised edition, New York, 1938, pp. 225 ff.; W. C. Mitchell, Pusiness
Cycles, The Problem and Its Setting, New York, 1927; C. F. Roeos, “Correlation
and Analysis of Time Series,” Econometrica, Vol. 4, 1936, pp. 368 ff.; E. C. Bratt,
“The Divisibility of Time Series,” Eeview of Economic Studies, Vol, 5, 1938, pp.
79 fI.; W. Winkler, Theoretische Statistik, Berlin, 1931, pp. 106 ff.

5 A Marshall, Principles of Economics, 8th ed., London, 1920, pp. 878 ff.



INTRODUCTION 3

this conventional distinction between the four components which sug-
gests itself mainly from the mere visual impression of most economic
time series when plotted graphically. We certainly are in no position
to assume, for instance, that the components are independent. In fact,
it has been established (and it is highly probable from a priori eco-
nomie considerations) that there are definite relationships—for in-
stance, between the secular trend and the cyclical movement, The
point of view on these matters will depend essentially on the specific
theory of the business cycle that is adopted. If, for instance, we ac-
cept Professor Schumpeter’s theory of the cyclical movement,® there
will be no reason at all for distinguishing between the trend and the
business eycle since they are the same phenomenon. A similar con-
nection exists between seasonal and eycle.®

Another conclusion which we may draw from the study of eco-
nomic theory and especially business-cycle theories is the following:
On the basis of a priori economic considerations, it is highly improb-
able that economic time geries should follow a strict and rigid pattern.’
1t is, on the contrary, probable that the conditions at different periods
of fime are not the same. We have no reason to believe that the
economic forces that are effective during the boom are essentially
the same as those that are at work during the slump. This refers to
the cyclical movement. But there is also good reason to believe, for
instance, that a long-run period with rising prices produces an en-
tirely different situation from that arising from a period with falling
prices. This has to do with long waves or the secular trend.®

Hence, we shall have to look for the statistical method that does
least violence to our data and is not too strict and rigid. This is one
of the reagsons why the writer is, in general, opposed to the use of
rigid seasonal coefficients and, similarly, to the calculation of trends
according to some rigid formulae that cannot be justified on economic
grounds. A curve like the logistic, on the other hand, which has def-
inite, economically significant properties, could possibly be justified.
In spite of many imperfections the writer prefers moving averages on
grounds of flexibility, as he has pointed out in a previous publication.?

9J. A. Schumpeter, The Theory of Econowmic Development, Cambridge, Mass.,
1934, See also W. C. Mitchell, op. cit., pp. 412 .

fa 8. Kuznets, Seasonal Varigtions in Industry and Trade, New York, 1933,
pp. 303 fI.; J. WiSniewski, “Interdependence of Cyclical and Seasonal Variation,”
Feonometrica, Vol, 2, 1934, pp. 176 f.

" Bee on this point especially G. Haberler, Prosperity and Depression, New
Edition, Geneva, 1939, pp. 5 ff.

8 G. Haberler, op. cit., pp. 272 ff.; N. D. Kondratieff, “The Long Waves in
Economie Life,” Review of Economic Statistics, Vol. 17, 1935, pp. 105 ff.

? G, Tintner, Prices in the Trade Cycle, Vienna, 1935, pp. 22 ff.
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C. Economic “Errors” and Time Series

The author has tried to give elsewhere!'® an approach to a theoreti-
cal study of the relationship between errors in economic life and the
shape of economic time series, This is indeed an important problem
as its solution affords a necessary foundation to the statistical meth-
ods that we propose to use here. We can, however, give only a short
indication of the problems involved.

In the publication mentioned the author distinguished essentially
two types of errors that occur in economiec behavior, Errors of the
firat kind result from the fact that an individual who otherwise acts
rationally and makes eorrect forecasts of all relevant future data fails
for some reason to make all adaptations of the economic factors which
he controls in such a manner as to give him the maximum utility or
profit. The reasons for this are certain institutional obstacles, the in-
fluence of tradition, the sometimes imperfect work of organization,
negligence, and similar “frictional” causes. We can make the assump-
tion that those “errors of the first kind” will be more or less indepen-
dent for the economic activities of the same individutal and still more
hetween different individuals. Since we know furthermore that those
errors are probably of a rather small order of magnitude and as there
are many of them, we may expect that this type of errors is of more
or less random character. They are then much like the errors that
occur in the natural sciences and which are treated in the so-called
theory of errors.’* We should not be surprised if their effects followed
approximately the normal law of errors or at least a symmetrical law.
But they are probably of greater magmitude in time of great economic
change. Their variance can be expected to be somewhat correlated
with the general fluctuations. They are possibly not homoskedastic
but heteroskedastic in time.? They represent, so to speak, the influ-
ence of the nonpermanent causes that are working on the econemic
time series. Tt is clear, of course, that the term nonpermanent has
a different meaning with different units of time, e.g., with yearly or
monthly data. The fundamental units are very important for the def-
inition of randomness. It is really the fourth component, the random
clement, or the “remainder” term in our time series, that corresponds
roughly to these economic properties. (See also Appendixes VI, VIL.)

10 (7. Tintner, “A Note on Economic Aspects of the Theory of Errors in Time
Series,” Quarterly Journal of Economics, Vol. 53, November, 1988, pp. 141 .
11 ﬂ“ See, e.g., D. Brunt, The Combination of Observations, Cambridge, 1931, pp.
1A A Tsehuprow, Grundbegriffe und Grundprobleme der Korrelationsthe-
orie, Leipzig, 1925, p. 31.
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Besides this we have to distinguish errors of the second kind
which are the effect of erroneous forecasts. The influence of those
errors goes much deeper and it has been assumed by many theorists
of the cycle that they are intimately connected with at least the dura-
tion and amplitude of cyclical variations if they are not their cause.
Hence they have to do essentially with the second component of the
economic time series, the business cycle, and fall outside the scope of
our present study which is concerned only with the random part.™

Systematic deviations which enfer into consecutive items with
opposite signs would fall under the category of systematic errors or
results of errors of the second kind, which are the outcome of faulty
expectations and forecasts. As Mr. von Szeliski points out,'* alternat-
ing errors, for instance in price series, may result from a tendency of
violent changes in prices of speculative commodities and stocks on one
day being followed by opposite changes on the next day. A similar
point of view has also been presented by Mr. 8. Kuznets.*** They are
evidently results of mistakes in expectations and forecasts of non-
controllable factors and hence of errors of the second kind. If such
errors are important, they will not produce a smooth course of the
time series but some kind of a zigzag effect, where subsequent items
are strongly negatively correlated with each other, Phenomena of
this nature cannot be treated by the variate difference method, which
can only separate purely random fluctuations and the “smooth”™ part
of the time series. But they could be treated by the correlogram meth-
ods proposed by Mr. Wold*® in his recent book. (See also Appendix
V, Section B.)

The random element as defined above does not necessarily have
to do with the results of “noneconomic” causes and should not be con-
fused with them. These outside forces would only have effects which
come under the category of random variations if they were not cor-
rectly foreseen and if their influence was not lasting and small.

13 R. Frisch, “Propagation Problems and Impulse Problems in Dynamie Eeco-
nomies” in Heonomic Essays in Honour of Gustav Cassel, London, 1938, pp. 171 f.;
M. Kalecki, “A Macrodynamic Theory of Business Cycles,” Eeonometrica, Vol, 8,
July, 1935, pp. 327 f£.; J. Tinbergen, “Annual Survey: Suggestions on Quantita-
tive Business Cycle Theory,” FEconometrica, Vol. 3, July, 1935, pp. 241 ff.; E.
Slutzky, “The Summation of Random Causes as the Source of Cyclic Processes,”
Econometrica, Vol. 5, April, 1937, pp. 105 ff.; H, Working, “A Random Difference
Series for Use in the Analysis of Time Series,” Journel of the Americon Statis-
tical Association, Vol, 20, 1034, pp. 11 ff.

4V, von Szeligki, “Analysis of Random Errors in Time Series,” Appendix
II in C. F. Roos, Dynamic Economics, Bloomington, Indiana, 1934, pé). 251 f1f.

a8, Kuznets, “Time Series,” in Encyclopaedio of the Social Sciences, Vol.
14, New York, 1935, especially p. 635.

W H, Wold, A Study in the Analysis of Siationary Time Series, Uppsala,
1938, pp. 147 ff.
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D. The Variate Difference Method®s

A thorough analysis of the random element in economic time
series is very important for the following reason: Any statistical
comparison of time geries or their components or characteristics must
be based on the theory of probability on which all statistical methods
necessarily rest. But it is impossible to get any comparisons between
characteristics of economic time serieg that are valid, from the point
of view of probability, without having atl least an idea about the order
of magnitude of the random element involved. Suppose we want to
compare, for instance, two different seasonal patterns or the slope of
two different trends or to test the degree of agreement between the
business cycles in two different prices. It is then most important to
know something about the standard errors of the statistical para-
meters involved, which result from random fluctuations. Only these
standard errors or some equivalent information can give us an idea
as to how valid ultimately our conclusions are from the point of view
of probability. Hence, whereas the random element itself is prob-
ably not very important for economics, its importance arises from
the probability nature of every statistical comparison and hence also
of the comparison of certain characteristics of economie time series.
It must be the basis of tests of significance and of statistical tests of
hypotheses.

Another use to which the random variances of two time series
may be put is the following: If we correlate two variables each of
which is affected by errors, we somefimes desire not the two regres-
sion lines but one line of common relationship. The knowledge of the
ratio of the random variances or of the matrix of the random vari-
ances and covariances may help us to determine the direction in
which to minimize the errors.?”

16 See especially Q. Andersen, “On the Logie of Decomposition of Statistical
Series into Separate Components,” Journal of the Royal Statistieal Soctety, Vol.
90, 1927, pp. 548 fI.; O. Anderson, Die Korrelationsrechnung in der Konjunkiur-
forschung, Bonn, 1929; G. Tintner: Prices in ithe Trade Cycle, pp. 9 ff.; G. Tint~
ner, “On Tests of Significance in Time Series,” Annels of Mathemotical Statistics,
Vol. 10, 1939, pp. 139 . -

17 Sce for this general problem H. Schultz, The Theory and Measurement of
Demand, Chicago, 1988, p. 148, note; C. F. Roos: “A General Invariant Criterion
of Fit for Lines and Planes where All Variates Are Subject to Error,” Metron,
Veol. 13, 1937, pp. & f.; H. E. Jones, “Some Geometrical Considerations in the Gen-
eral Theory of Fitting Lines and Planes,” ibid. pp. 21 ff. For related problems
see also R. Frisch, Confluence Analysis, Oslo, 1934; H, Hotelling, “Relations be-
tween Two Sets of Variates,” Biometrika, Vol, 28, 1936, pp. 321 ff.; T. Koeop-
mans, Linear Regression Antlysis of Economic Time Series, Haarlem, 1927; R. G.
D. Allen, “The Assumption of Linear Regression,” Eeconomica, Vol. 6, 1959, pp.
191 ff. See also the forthcoming article of A. Wald, “The Fitting of Straight
Lines if Both Variables are Subject to Error.”
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The variate difference method is designed to deal with the ran-
dom element or the effect of errors of the first kind as defined abox_re.
We shall at this point give a brief indication of its nature and its
methods. .

The variate difference method starts with the fundamental as-
sumption that every economic time series consists essentially of two
parts. The first part is the mathematical expectation and is the effect
of the somewhat permanent causcs in economic life. We can in gen-
eral expect that it will show a more or less smooth shape. It will give
a nearly continuous curve if it is plotted against fime. Consecutive
items are highly positively, but not necessarily linearly, correlated
with each other.

The other component is called the random element and is essen-
tially the effect of the nonpermanent causes which work in economic
life. Tt represents among other things the result of errors of the first
kind. There is no reason to expect that the different items of the ran-
dom element are positively or negatively correlated. It is random in
nature and hence its items are more or less independent.

We assume that there is an additive connection between the ran-
dom element and the mathematical expectation of our time series.
Every item of the series consists of the mathematical expectation plus
the random element.

Professor Anderson of Sofia was the first to use the variate dif-
ference method extensively for the analysis of economic data. He has
devised an ingenious method for separating the two components which
we just distinguished, He starts from the proposition that every.
smooth curve can be indefinitely reduced by the process of finite dif-
ferencing. It is a well-known mathematical theorem that polynomials,
for instance, can be entirely eliminated by finite differencing. We can
simply assume that the smooth part of our time series, the mathemati-
cal expectation, can be approximated more or less closely by polyno-
mials of the variable time which otherwise need not be specified. This
approximation may hold true in a certain restricted neighborhood
only. If is not necessary that the whole series can be represented by
polynomials.

The same is certainly not true regarding the random element. The
random element cannot be reduced by finite differencing, since it is not
ordered in time. By its very nature, it cannot be significantly approxi-
mated by any kind of a function. If we, therefore, apply the process
of successive finite differencing to our original time series we shalil, in
general, reduce the smooth element or the mathematical expectation
more and more without significantly affecting the random element.
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The variate difference method proposes to give a statistical method
for answering this question: Beginning with which difference can we
be reasonably sure that we have more or less eliminated the nonran-
dom element or mathematical expectation? The method consists in-
calculating the variances (squares of standard deviations) of the orig-
inal series and of the series of successive finite differences. Then the
difference between variances of two successive series of finite differ-
ences is compared with its standard error. If the difference is smaller
than about three times its standard error, we can be reasonably cer-
tain, from the point of view of probabilities, that we have carried the
finite differencing far enough (Chapters V to VII).

This method of Anderson’s is based upon the idea of standard er-
ror. Strictly speaking therefore, it is applicable only for large sam-
ples, where the probability of a divergence between the sample vari-
ance and the true variance is not very great. Buf we propose, in Chap-
ter VIII, a new method, in which we apply R. A. Fisher’s z test or
Snedecor’s F table. In order to do this, we have to make the variances
of two consecutive difference series independent, which can be done
by the method of selection, We gelect the items from which the vari-
ances of two consecutive differences are calculated in such a way that
they are really independent. This involves, of course, some sacrifice of
information but gives us tests that are valid from the point of view
of modern statisties.

Assume that we have established the order of the finite difference
beginning from which we can be more or less sure that we have elimi-
nated the mathematical expectation. We can then get an approxima-
tion to the latter by the use of certain smoothing formulae. These
formulae eliminate the random element to a certain degree, but we can
get only approximations to the mathematical expectation {Chapter
IX). Our smoothed series will always contain a remainder of the orig-
inal random element. This, however, may be very small and can be
accurately estimated. It is then possible, also, to obtain an estimate
of the random variation in the series and in some statistical series
derived from the original or from the smoothed series. (See Appen-
dix IV.)

We can also use the variate difference method in order to calecu-
late the correlation between the random elements of two time series.
Here again we shall calculate the covariances, i.e., the product mo-
ments of the differences, and try to find out at which difference they
become stable, This can be done by formulae which involve the use of
standard errors (Chapter X, Section A). This method, strictly speak-
ing, is permitted only if the sample is large so that the empirieal val-
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ues are good estimates of the true population values which we do not
know. Otherwise, it will be shown in Chapter X, Section B, that we
can again apply the method of selection. That is to say, we can caleu-
late the correlation cocflicients of the differences of the two series in
such a way that the coefficients become independent with two consecu-
tive differences. We then can use Fisher’s transformation in order to
determine the difference beginning from which we can be reasonably
sure that the correlations become stable.

If we make the further assumption that there is no correlation
between the random and the nonrandom elements of either series, we
ean also ealculate an approximation to the linear relationship between
the mathematical expectations of the two time series. (Chapter X,
Section C.)



CHAPTER 11

JIISTORY AND LITERATURE OF THE VARIATE DIFFERENCE METHOD

The following is based upon an account given by Professor Yule
of the earlier history of the subject.! The first article using the vari-
ate difference method was by Professor J. H. Poynting.? It dealt with
the analysis of wheat prices in several countries and eotton and silk
imports into Great Britain. This paper was published in the year
1884, The next {wo papers were by Mr. R. H. Hooker® dealing, respec-
tively, with the correlation of marriage with trade and the effect of
the suspension of the Berlin Produce Exchange on prices. Both came
outf in 1901,

Miss F. K. Cave* published a paper on the correlation of bar-
ometric heights in the year 1904. There was a paper on corn prices
by Mr. R. H. Hooker in 1905.% Dr, L., March,® the well-known French
statistician, published in the same year an article on the numerical
comparison between statistical curves.

These papers belong, according to Yule, to the first period of the
development of the variate difference method. The later period is in-
augurated by a paper by the famous “Student” (W, S. Gosset)” on the
elimination of spurious correlation, which was published in Biometri-
ka in the year 1914. He introduced the idea of correlating differences
instead of the original series, in order to eliminate variability due to

1G. U, Yule, “On the Time Correlation Problem with Especial Reference to
the Variate Difference Method,” Journal of the Royal Statistical Society, Vol. 84,
1921, pp. 497 f.

2 J. H. Poynting, “A Comparison of the Fluctuations in the Price of Wheat
and in the Cotton and Silk Imports into Great Britain,” Journal of the Royal Sta-
tistienl Society, Vol. 47, 1884, pp. 84 ff. See also his Collected Scientific Papers,
Cambridge, 1920, pp. 506 ff.

*R. H. Hooker, “Correlation of the Marriage-Rate with Trade,” Jowrnal
of the Royal Statistical Seciety, Vol. 84, 1901, pp. 485 ff.; “The Suspension of
the Berlin Produce Exchange and its Effect upon Corn Prices,” Journal of the
Royal Statistieal Society, Vol. 64, 1901, pp. 574 f.

4+ F, B, Cave-Browne-Cave, “On the Influence of the Time Factor on the Cor-
relation between the Barometric Heights at Stations More than 1000 Miles Apart,”
Proceedings of the Royal Society of London, Series A, Vol. 74, 1804, pp. 403 ff.

% R. H. Hooker, “On, the Correlation of Successive Observations; Iﬁustrated by
Corn Prieces,” Journal of the Royal Stalistical Society, Vol, 68, 1005, pp. 696 ff.

6 1. March, “Comparaison numérique des courbes statistiques,” Journal de
la Seciété de Statistigue de Paris, Vol. 46, 1905, pp. 255 ff., 306 .

7 “Student,” “The Elimination of Spurious Correlation Due to Position in
Time or Space,” Biometrika, Vol. 10, 1914, pp:. 179 1f.
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position in time and space. Professor 0. Anderson® of Sofia also pub-
lished the first of his papers on the variate differencg method in the
same year. He introduced the idea of a random series and, for the
first time, that of standard errors, which enabled him to draw conclu-
sions based on the theory of probability.

Miss B. M. Cave and Professor Karl Pearson® published a paper
on numerical illustrations of the variate difference method in the same
year. This is a very extensive study of 11 economic time series in
Italy taken from a publication of Mortara. Miss Elderton and Karl
Pearson,'® in 1915, used the same method in a study on natural selec-
tion in man. The subject is mainly a correlation between sex and the.
death rate. Mr. A. Ritchie-Scott'* discussed some correlation prob-
jems in 1915.

The first critical article on the variate difference method was pub-
lished by Professor W. M. Persons’? in 1917. He made a very exten-
sive application of this analysis to 21 American economic time series.
He came to a general conclusion that deviations from a calculated
trend were more appropriate for his purposes than the study of dif-
ferences. He also criticized the variate difference method as then used
for not taking care of lag correlations.

The next eritical approach came from Professor Yule®™ and was
published in 1921. Whereas Yule agreed with the earlier writers on
the variate difference method (Poynting, Hooker, Cave, and March),
he disagreed with the subsequent contributors. The variate difference
method is in his opinion fairly well fitted for the isolation of oscilla-
tions of different duration in order to study them separately. But it
is not fitted for isolating random residuals and eliminating spurious
correlations due to time. The variate difference method is also not
able to deal with periodie oscillations, according to Professor Yule.

Miss Elderton and Professor Karl Pearson' answered the eriti-

8 0. Anderson, “Nochmals {iber *The Elimination of Spurious Correlation Due
to Pogition in Time or Space’,” Biometrika, Vol. 10, 1914, pp. 269 ff.

2 B. M. Cave and Xarl Pearson, “Numerical INustrations of the Variate Dif-
ference Correlation Method,” Biometrika, Vol. 10, 1914, pp. 340 ff,

1¢ ©. M, Elderton and Karl Pearson, “Further Evidence of Natural Selection
in Man,” Biometrika, Vol. 10, 1915, pp. 488 fI.

11 A, Ritchie-SBcott, “Note on the Probable Frror of the Coefficient of Corre-
latin:r{l3 énﬁ_the Variate Difference Correlation Method,” Biomeirike, Vol. 11, 1915,
pD. .

12 W. M. Persons, “On the Variate Difference Correlation Method and Curve-
Fitt(i}n%,’;fl’ublimt'ions of the American Statistical Association, Vol, 15, 1916-17,
pp. 602 1,

18 G. U. Yule, loc. cit.

. *Karl Pearson and E. M. Elderton, “On the Variate Difference Method,”
Biometrika, Vol, 14, 1922, pp. 281 ff. See also: K. Pearson, Tables for Statisti-
cians ond Biometricians, Vol. 2, London, 1931, pp. ceix ff,, 235,
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cisms of Persons and Yule in an article published in 1922. They con-
ceded fo Yule thaf very shori periodic fluctuations are not eliminated
by the process of finite differencing, but they stressed the point that
long periodic fluctuations are eliminated. They also developed some
methods to deal with Persons’ eriticism which was based on the exis-
tence of serial correlations between the subsequent jtems in the time
series.

The second article of Professor Anderson appeared® in Biomet-
rikke in 1923. His most important contribution was the classifica-
tion of time series as of three types: Zigzag or with strong negative
correlation between consecufive items; Random with no correlation
between consecutive items; and Smooth series with strong positive
correlation between consecutive items, The variate difference method
cannot deal with the first type, but proposes to separate the random
part from the smooth part of a series, Professor Anderson also intro-
duced serial correlations and studied the relations between the vari-
ances of the series of finite differences and the serial correlations of a
random series. He gave certain criteria and evaluated standard ex-
rors. As an example Professor Anderson gave an experiment in ran-
dom series (throwing of a coin).

Professor R. A. Fisher,*® {he eminent English statistician, dealt
critically with the variate difference method in his celebrated paper
on “The Influence of Rainfail on the Yield of Wheat at Rothamstied,”
published in 1925. His point of view is that, in general, curve fitting
is to be preferred to the correlation of differences, since it introduces
lower correlations between subsequent items. He very rightly points
out the close connections between the variate difference method and
Sheppard’s smoothing formulae. He shows that the variate difference
method, the application of Sheppard’s smoothing formulae, and the
fitting of polynomials are really based on the same fundamental idea.

The best mathematical exposition of the variate difference meth-
od is to be found in two articles published by Professor 0. Anderscn
in Biometrike in 1926 and 19271 Professor Anderson discussed the
following problems: He first dealt with the general problem of the
decomposition of a time series into its components. He further showed

15 0. Anderson, “Ueber ein neues Verfahren bei Anwendung der *Variate-Dif-
ference’ Methode,” meet'nka, Vol. 15, 1923, pp. 134 fF,

18R, A. Fisher, “The Influence of Rainfall on the Yield of Wheat at Rotham-
sted,’”” Philesophical Transactmns of the Royal Seciety of London, Series B, Vol.
213, 1925, pp. 89 fT., especially pp. 103 f.

Anderaon, b eber die Anwendung der Differenzenmethode (‘Variate Dif-
ference Method’) bei Reihenausgleichungen, Stabilitdtsuntersuchungen und Korre-
lationsmessungen,” Part 1, Biometrika, Vol. 18, 1926, pp. 293 ff.; Part 2, ibid., Vol.
19, 1927, pp. 53 I
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the connection that exists between Sheppard’s smoothing formulae
and the fundamental ideas of the variate difference method. Stand-
ard errors were found for the variances of the series of finite differ-
ences. Professor Anderson also developed standard errors for the
differences between the variances of two successive series of finite
differences. These are very important for the practical application
of his method. He dealt with the problem of serial correlations of dif-
ferences and with product moments and their standard errors. He
also introduced product moments of differences, which are very im-
portant for the study of correlations by the method of finite differenc-
ing. Professor Anderson dealt also with lag correlations and gave
certain criteria for the different types of statistical series (zigzag,
random, smooth) which he distinguishes. Those criteria were given
in terms of the variances of the series of finite differences. He also
investigated the dispersion and stahility of series (Lexis) by the
method of differences. The problem of serial correlations (Yule) also
received some attention. He dealt with the problem of short periodic
fluctuations and finally gave three numerical examples: a coin experi-
ment as an example of random series, a study of the digits of the num-
ber =, and a correlation hetween wheat prices in Berlin, New York,
and Chicago.

Professor A. L. Bowley!® dealt with the variate difference method
in his Elements of Statistics. He stressed the point that the data must
be very precise in order to enable the caleulation of higher differences.
According to him, the variate difference method is too refined and too
sensitive for ordinary statistical analysis.

Another article by Professor Anderson on the “Logic of Decom-
position of Statistical Series into Separate Components”*® was pub-
lished in English in 1927. He gave an exposition of his hypotheses
and methods and a criticism of the so-called Harvard method, which
was designed for dealing with economie time series. He distinguished
zigzag, random, and smocth series and stressed the connection of the
variate difference method with Sheppard’s smoothing formulae. He
gave three numerical examples: one random series based on the fre-
quency of certain letters in 36 printed lines; another dealing with in-
dexes of market prices; and the third dealing with the Berlin and
New York wheat quotations. .

The most extensive exposition of the variate difference method is

18 A, L. Bowley, Elements of Statisties, 4th ed., London, 1920, pp. 376 1.

12 (), Andersorn, “On the Logic of Decomposition of Statistical Series into
Sepaéiaéceﬁ(]nmpomnts,” Journal of the Royal Statistical Seociety, Vol 90, 1927,
PP. N
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contained in Professor Anderson’s German monograph,?® which was
published in 1929. He gave few mathematical proofs but he developed
hig argument at great length with special emphasis upon its economic
applications. IHe gave a very thorough exposition of the difference
analysis of time series and of the use of this method in correlation. He
takes strictly the point of view of probability theory and presents
the large-sample approach (standard errors). A mathematical ap-
pendix colleets all the formulae which are pertinent to the argu-
ment. He also gave certain humerical examples: a coin experiment
in order to show a random series, an analysis of egg prices, a cor-
relation which is again based on a coin experiment, and the corre-
lation between wheat prices in Berlin and New York. Another inter-
esting and economically sighnificant application of the variate differ-
ence method to economic time series was made by the same author in
an article published in 1931.2 It is an investigation of Bulgarian
economic data and an attempt to verify the quantity theory of money.

The present author used the variate difference method rather ex-
tensively in his study, Prices in the Trade Cycle, which was published
in 19352 He did not apply it for correlation purposes but for the
elimination of the random element in Furopean prewar commodity
prices and freight and interest rates. He treated 71 English prices,
83 German prices, 12 Dutch prices, 5 Austrian prices, and 3 Russian
prices according to this method. The book also contains a short ac-
count and discussion of the principal assumptions and procedures of
the variate difference method. A mathematical appendix gives a few
formulae. The author also endeavored to make use of the results se-
cured with the variate difference method when dealing with the fur-
ther analysis of the nonrandom components of the time series.

Dr, A, Wald,?® a Viennese mathematician (now at Columbia Uni-
versity), dealt with the variate difference method in his book on the
caleulation and elimination of seasonal variations (published in 1936).
He claims that seasonal variations frequently show periodic move-
ments of a short period. Hence the variate difference method could
not be applied without modification to a series which contains consid-
erable seasonal variation.

Dr. R. Zaycoff, a Bulgarian statistician, discussed Dr. Wald’s

20 (), Anderson, Die Korrelationsrecknung in der Konjunkturforschung,
Veriffentlichungen der Frankfurter Gesellschaft fiir Konjunlkturforschung, Heft
% Bgllu(l)'. lizx?éerson. “Ist die Quantititstheorie statistisch nachweisbar?” Zeit-
schrift fiir Nationalékonomie, Vol. 2, 1931, pp, 523 fI.

22 (7. Tintner, Prices in the Trade Cycle, Vienna, 1935.

22 A, Wald, Berechnung und Ausschaltung von Saisonschwankungen, Vienna,
1936,
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method in a number of publications and offerqd cgrtain criti(%isms.“
In an article published in 1937> ke gave two criteria for deciding, by
the variate difference method, at which difference the mathematical
expectation is eliminated. He claimed that those criteria hold true
even for short series and high differences. He also contended that it
js sometimes necessary to subdivide an economic time series since it
shows different behavior in its random element in different parts. He
gave a criterion for dealing with short periodic fluctuations.

The English statistician M. S. Bartlett dealt with “Some Aspects
of the Time Correlation Problem in Regard to Tests of Significance’2e
in 1935. He treated the problem of serial correlations and estimated
the efficiency of the variate difference method. This seems to be the
first attempt to use tests of significance in this subject.

The author proposed a new method of selection in a recent ar-
ticle*” which gives exact tests of significance but sacrifices some avail-
able information.

24 R. Zaycoff, “Ausschaltung der Saisonkomponente nach der Methode von
Dr. A, Wald,” Publications of the Statistical Institute for Economic Research,
State University of Sofia, 1935, No. 2-3, pp. 263 {., 274; “Uecber die Zerlegung
statistischer Zeitreihen in drei Komponenten,” ibid., 1936, No. 4, pp. 141 L.

25 R. Zaycoff, “Ueber die Ausschaltung der zufillipen Komponente nach der
‘Variate-Difference’ Methode,” ibid., 1937, No. 1, pg. 75 ff.

26M. 8. Bartlett, “Some Aspects of the Time-Correlation Problem in Regard
to Testsffof Significance,” Journal of the Royal Statistieal Society, Vol. 98, 1935,
o, 536 ff.

27 . Tintner, “On Tests of Significance in Time Series,” Annals of Mathe-
maticel Statistics, Vol 10, 1939, pp. 139 ff,



CHAPTER III

CRITICISM OF THE VARIATE DIFFERENCE METHOD

It has been pointed out in the foregoing chapter that the criticism
of the variate difference method centers more or less around the fol-
lowing points: (1) the aceuracy of higher differences (A. Bowley) ;
(2) serial correlations (W. M, Persons, R. A. Fisher, M. S. Bartlett) ;
(3) short periodic oscillations (G. U. Yule, A. Wald). We propose to
deal with these different points in turn.

A. The Accuracy of Higher Differences

This point was first raised by Professor Arthur L. Bowley in his
Elements of Statistics.” His view is that errors that occur in the data
are magnified in the differences and become larger with the higher
orders of the differences. This is true but it is pertinent only in so far
as the individual differences are concerned and not for all parameters
or statistics derived from them. The variances (squares of the stand-
ard deviations) of a difference series should, for instance, be divided
by a binomial coefficient in order to get an estimate of the true vari-
ance of the random element.? This divisor is so great that it would take
care, for all practical purposes, of those small inaceuracies in the orig-
inal data which, however, are magnified in the higher differences. This
binomial coefficient is, for the kth difference, equal to the number of
combinations of 2k things, taken k at a time. To give an example, the
binomial coefficient for the fifth difference is 252, for the sixth differ-
ence 924, ete. (Table 9). It increases rapidly with the order of the
difference. Professor Bowley is perfectly correct in stating that we
should not trust our individual differences of higher order too much.
But I do not think he is justified in so far as certain statistical para-
meters derived from higher differences are concerned.

B. Serial Correlation

The problem of serial correlation was brought into the discussion
of the variate difference method by the late Professor W. M. Persons
1 A, L. Bowley, Elements of Statistics, 4th ed., London, 1920, pp. 376 {F., 388 ff.

2 See for instance 0. Anderson, DMe Korrelationsrechnung in der Konjunk-
turforschung, Bonn, 1929, pp. 54 fI., 111 ff. Also below, Chapter V.

—_16 —
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in his critical article of 1917.2 A similar argument was later put for-
ward by Professor R. A, Fisher* and M. 8. Bartlett.’

We understand by serial correlations the correlations between
successive items of the same series, according to a definition given
by Professor Yulef in his celebrated article “Why Do We Sometimes
Get Nonsense-Correlations Between Time Series?” where he gave the
first complete treatment of this problem. For instance, we have a
geries with the general term w; and we correlate with every term w;
the one that immediately follows it, w.,—that is, we correlate the
original series with the series we get by shifting it by one item. This
would give us an example of a serial correlation.

Those correlations are very important in the treatment of time
series.” It is quite evident that a series that shows very strong
serial correlations cannot be treated as a random series. Its consecu-
tive items are not independent. Hence, a great number of propositions
of the theory of probability are certainly not applicable in such a case.
For instance any correlation found between this series and any other
series is very much devoid of meaning, in terms of probabilities, These
difficulties, however, can sometimes be overcome by making a proper
gelection of the items from which the correlation is caleulated. This
involves some loss of information but will enable us to interpret the
corrclation coefficients statistically in terms of probabilities (Chap-
ter X, Section B).

1t is the contention of Professor Persons® that the variate differ-
ence method becomes nonapplieable in the ease where there are serial

- correlations between two different items of the same series. He has,
however, already been refuted by Miss Elderton and Professor Karl
Pearson in 1922.° In their article these authors proposed a number of

3 'W. M. Persons, “On the Variate Difference Correlation Method and Curve-
Flttérag,’i; Publications of the American Statistical Association, Vol. 15, 1916-17,
TP .

¢+ R. A. Fisgher, “The Infiuence of Rainfall on the Yield of Wheat at Rotham-
sted,” Philosophical Transactions of the Royal Society of London, Series B, Vol
213, pp. 103 ff,

5 M, S. Bartlett, “Some Aspects of the Time-Correlation Problem in Regard
to T;gés ﬁqf Significance,” Journal of the Royal Statistieal Seciety, Vol. 98, 1935,
ED. .

€3, U. Yule, “Why Do We Sometimes Get Nonsense-Correlations between
Time-Series?” Jowrnal of the Royel Statistical Society, Vol. 89, 1926, pp. 1 fi.

TH, T. Davis, “The Econometric Problem” in Cowles Commission for Re-
search in Economics, Eeport of Third Annual Research Conference on Economics
and Statistics, Colorado Springs, 1937, pp. 11 ff.; H. Wold, A Study in the Analy-
sis of Stationary Time Series, Uppsala, 1938; see also Appendix V, Section B.

8W. M. Persens, lec. cit. .

# Karl Pearson and E. M. Elderton, “On the Variate Difference Method,”
Biometrika, Vol. 14, 1922, pp. 281 ff.; K, Pearson, Tables for Statisticians and
Biometricians, Vol. 2, London, 1931, pp. ccix ff., 235. ‘
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new criteria to take care of serial correlations.

Professor Anderson has developed this theory most fully in his
article in Biometrike'® and in his monograph.'* He has shown that
there exists a very definite connection between the variances of the
series of finite differences and the serial correlations of a statistical
series. Professor Anderson, as well as Professor Karl Pearson and
Miss Elderton, gives criteria in terms of finite differences by which we
can readily detect and deal with serial correlations (see Appendix V,
Section B).

A similay criticism was put forward by Professor R. A. Figher®
from an entirely different point of view. In his celebrated article on
“The Influence of Rainfall on the Yield of Wheat at Rothamsted,”
in 1925, Professor Fisher also deals eritically with the variate differ-
ence method. He contends that repeated finite differencing of a ran-
dom series introduces artificial correlations between the consecutive
items and hence diminishes the usefulness of the series of differences.
Thig, of course, is a criticism which is entirely justified. If we have
a random series in which every item is entirely independent of every
other, the first differences of this series will introduce serial correla-
tions between two consecutive ifems, the second differences will intro-
duce correlations between three consecutive items, ete, This is cer-
tainly a great shorteoming of the variate difference method. But it is,
in our opinion, more than balanced by advantages which this method
possesses especially from an economic point of view. It is here more
appropriate than the procedure of fitting curves, especially polyno-
mials, which Professor Fisher proposes.® The latter method may be
entirely justified and very well applicable in the natural sciences as,
for instance, biology and meteorology with which Professor Fisher is
dealing in the article quoted, but it is in our opinion too rigid for ap-
plication to economic guantities.*®

The decision depends essentially on the point of view that one
takes about the nature of economic data and economic phenomena in

20 0, Anderson, “Ueber die Anwendung der Differenzenmethode (‘Variate Dif-
ference Method’) bei Reihensusgleichungen, Stabilititsuntersuchungen, und EKor-
relationsmessungen,” Part 1, Biometrika, Vol. 18, 1926, ]}g) 315 ff.

110, Anderson, Die Kmelattonsrechnung in der onjunkturforschung, pp.
61 ff, 114 ff.

'-‘2R A. Fisher, loe. cit.

12 %, A. Fisher, Statistical Methods for Research Workers, Tth ed., London,
1938, pp. 148 1., Chapter V, Section 27; see also M. Sasuly, Trend Ana-lysw of
Statisties, Wa.shmgton. 1934,

132 The need for flexibility in the analysis of eeonomic time series was also
stressed by R. Frisch, “A Method of Decomposing an Empirical Series into Its
Cyelical and Progresswe Components,” Journal of the American Statistical Asso-
ciation, March, 1931, Supplement, pp. 73 f.
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general. If we could contend that we find the same rigid and invari-
able laws in social phenomena which the astronomers and physicists
or natural scientists in general have been able to detect, we should
always fit polynomials or other appropriate functions. Unfortunately,
the situation is quite different in economics. Eeonomic “laws,” what-
ever the definite meaning of this term may be, are not fixed in time
but change in different periods of time.* Se, for instance, a demand
curve, or a demand surface, is hardly likely to stay the same during
a number of years. To give another example which is even more im-
portant in connection with economic time series: the conditions for a
specific time series during the boom are probably different from those
that are prevailing in the slump.”® It is more than likely that econom-
ic phenomena in an expanding cconomic system are entirely different
from those in a stationary or declining system.'* Hence, we need in
economics a very flexible method for dealing with time series and we
shall have 1o put up with the serial correlations that the variate dif-
ference method introduces into our series. Apart from the serial cor-
relations, the variate difference method and the method of smoothing
are much more flexible. Hence, in spite of this shortcoming, they are
much less likely to infroduce errors systematically than any other
method, especially the fitting of polynomials. We may in some cases
be able to eliminate the trend by the fitting of orthogonal polynomials.
But this method does not seem to be applicable in series which contain
business cycles.

The author proposes in a later part of this book' a method which
eliminates, at least to a certain extent, those difficulties. It simply
consists in making a selection of entirely uncorrelated differences
from a time series. But it is evident that the number of uncorrelated
first differences is only one-half of the number originally contained in
the series, and the number of uncorrelated second differences is only
one-third, etc. We shall reduce our time series very greatly by this
method. Professor R. A. Fisher’s and Mr. Bartlett’s eriticisms stiil
held true. There are, nevertheless, cases where it may be advantage-
ous to make these selections. In any case, the method gives a signifi-
cant estimate. It really enables us to make an exact test of significance
and to use the methods of the analysis of variance that have been so
well developed by Professor Fisher himself.

4 L, Robbins, An Essay on The Nature and Significance of Economic Science,
2nd ed., London, 1937, pp. 54 fi., 79 ff.

o5 &5 G. Haberler, Prosperity and Depression, New Edition, Geneva, 1939, pp.
7 ff.

193418 J. A. Schumpeter, The Theory of Economic Development, Cambridge, Mass.,

17 See Chapters VIII and X, Section B.
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C. Periodic Oscillations

Professor Yule'® and Dr. Wald*® have objected that the occurrence
of periodic fluctuations with a short period renders the application
of the variate difference method impossible. It eannot be denied that
this is true, sinece such periodic fluctuations are not “smooth” in the
sense defined above, but are of the extreme zigzag nature which we
mentioned before. They show strong negative correlations between
neighbouring terms. Hence, they do not belong to the category of
fluctuations that can be eliminated or at least reduced by finite dif-
ferencing.

It is very unlikely, however, that fluctuations of thiz character
occur freguently in economic time series. One such case has been de-
seribed by Holbrook Working and Harold Hotelling.'* Professor An-
derson®* and Dr. Zaycoff* have more or less refuted Dr. Wald’s asser-
tions, which pertain especially to the seasonal fluctuations.

We have performed some experiments in order to test the valid-
ity of those objections (see Appendix III}. Isolated examples can, of
course, never be conclusive. The example given below is no argument
for the absence in all series of these oscillatory fluctuations which may
prevent the successful application of the variate difference method.
Dr. Zaycoff gives a criterion®? by which we can determine whether this
is the case. The present author, however, in dealing with prices has
never.found an example in which these oscillatory fluetnations oc-
curred.

It is nevertheless better, perhaps, to follow Dr. Wald’s advice?
and to eliminate the gseasonal variation before starting the difference
analysis. This has been done in the case of the commodity analyzed
below. The simplest way is to approximate the seasonal by the aver-
age monthly values, as we have done (Appendix III). The seasonal

18 J, U, Yule, “On the Time-Correlation Problem with Especial Reference to

the Vanate Difference Method,” Journal of the Royal Statistical Society, Vol. 84,
1921, pp. 497 {1,

19 A, Wald, Berechnung und Ausschaltung von Sazsomchwankungen Vienna,
1936, pp. 87 ff. See also H. Mendershaunsen, “Annual Survey of Statistical Tech-
nique: Methods of Computing and Ehmmatmg Changing Seasonal Fluctuations,”
Econometrice, Vol, 5, 1937, pp. 242 ff.

12a H, Working and H. Hotelhng, “The Applieation of the Theory of Errors
to the Interpretation of Trends,” Proceedings of the American Statistical Asso-
etation, March, 1929, pp. 73 ff. especw.lly p. 77.

20 See O, Anderson’s review of Dr. Wald’s book in Zeilsehrift fiir National-
dkonomie, Vol. 8, 1937, pp. 251 ff,

21 R, Zaycoﬁ *“Ueber die Ausschaltung der zuféllizen Komponente nach der
‘Variafe-Difference’ Methode,” Publications of the Statistical nsh.tute for Eco-
nomic Research, State Umvermty of Sofia, 1937, No. 1, pp. 100 ff

22 |, Zaycoﬂ’, op. oit., pp. 104 ff.

23 A, Wald, op. m.t,pp 37 f., 78.
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ig then differenced and by squaring the differences and summing them
up we get an approximation to the portion of the variance of the dif-
ference that is due to the seasonal. Deducting this portion from the
total variance we have an estimate of the variance due to the trend,
cycle, and random element alone. The further analysis of the vari-
ances of finite differences corrected for the seasonal will, however, not
differ very greatly from the ordinary procedure and will yield, gen-
erally, more or less the same results.



CHAPTER IV
FUNDAMENTAL CONCEPTS

A. The Definition of Probability

At this point a brief exposition of some of the more recent ideas
on the definition of probability seems in order. We do not believe, how-
ever, that it makes a great deal of difference for the application in
economic statistics from which definition of probability we start.

The older definition of probability, which may be called classical
and which goes back to Laplace, was based on the concept of equal
likelihood.! The probability of an event is defined as the ratio between
the number of favorable cases and the number of all equally possible
cases. But there are certain objections to the classical definition of
probability. The most important one from our point of view is that it
i8 in general impossible, in the applieations of probability to econom-
ies, to know a priori which events are equally possibie.?

There are two main tendencies which try to get away from the
clagsical definition of probability. The first may be called the formal-
istic one.® If is entirely sufficient from the point of view of the pure
mathematical theory of probability. The concept of probability is here
introduced as an undefined fundamental concept and all the proposi-
tions of the clagsical theory of probability follow without the necessity
of adopting the classical definition.

The third point of view, which more recently is especially associ-
ated with the name of von Mises, is the so-called frequency definition
of probability.t I seems to us to be better suited for our specific pur-

1 P. Laplace, Essai philosophique sur les probabilitiés, 4th ed., Paris, 1819;
English edition, New York, 1902.

2 R. von Mises and H. Pollaczek-Geiringer, “Probability,” in Encyelopaedia
of the Social Sciences, New York, 1935, See also O. Anderson, Einfiihrung in die
Mathematische Statistik, Vienna, 1935, pp. 19 fi.

3 Bee especially A. Kolmogoroff, “Grundbegriffe der Wahrscheinlichkeitsrech-
nung” in Krgebnisse der Mathemaiik und ihrer Grenzgebiete, Vol. 2, No. 3, Ber-
lin, 1923 H. Cramér, Roandom Varicbles and Probability Distributions, Cam-
bridge Tracts in Mathematics and Mathematical Physies, No. 86, Cambridge, 1937,

¢ R. von Mises, loe. c¢it.; see also Probability, Statistics and Truth, London,
1989 ; Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theo-
retisehen Physik, Vienna, 1931; H. Reichenbach, Wahrscheinlichkeitslehre, Leiden,
1935, pp. 79 ff.; A. Wald, “Die Widerspruchsfreiheit des Kollektivhegriffs der
‘Wahrscheinlichkeitsrechnung” in Ergebnisse eines mathemotischen Kolloguiums,
ed. Kar]l Menger, Heft B, 1935-36, pp. 38 ff.; A. Wald, “Die Widerspruchsfreiheit
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poses, since here probability is an empirical concept. The frequency
definition of probability is as follows:

We have first to assume a “collective,” which is a well-defined set
of individual events that have certain distinguishing characteristics.
The probability is defined as the limit to which the relative frequency
of the number of individuals possessing the characteristic in which we
happen to be interested tends as the total number of individuals con-
tained in the sample becomes larger and larger. Hence, probability is
simply the limiting value of the relative frequency (an empirical con-
cept) as our series of trials becomes infinite. (See also below, Ap-
pendix II, pp. 136 ff.)

One of the most important properties of the collective is the fol-
lowing: Suppose we make a certain selection of items from the origi-
nal series, which selection, of course, should be independent of the
characteristic. The new sample thus formed must show the same
probability as the old one. To give an example: let us assume that our
collective is the number of heads secured by tossing a eoin, and that,
the larger the number of trials, the nearer our relative frequency of
heads will tend towards the probability 14. This will happen only if
our coin is true or unbiased. If it should be biased, the limit will be
different from 4. Suppose now that we number every one of our
trials. We gimply attach the number 1 to the first trial, 2 to the
second, and so on. We make any selection from these numbers: for
instance, we take all the even throws or we take all the throws whose
number is a prime, or we take all the throws that come after a head
has been thrown, or we take all the throws that come after a sucees-
sion of two tails, ete. In all those new series formed from our old col-
lective the relative frequency of heads must ultimately tend towards
14 if the number of trials increases indefinitely just as in the original
collective.

An example given by von Mises® will help to clarify this concept.
Suppose I am traveling along a road and I am counting the milestones.
There is a big milestone at every mile and there are smaller markers
at every quarter mile. If I consider the milestones as my collective,
then the relative frequency of big milestones tends towards 14 if T
make my sample big enough. But this relative frequency certainly is
not the same if I choose every fourth milestone as a new collective.
des Kollektivbegriffes,” in M. Fréchet, Colloqgue Consacré ¢ lo Théorie des Prob-
abilitds, 2me partie, Paris, 1958 (Actualités Secientifigues et Industrielles, mo.
T35), pp. 719 ff. See also the excellent account of these ideas in E. Nagel, “Princi-
Ples of the Theory of Probability” in International Encyelepaedia of Unified Sci-

ence, Vol. 1, No. 6, Chicago, 1939.
5 R. von Mises, Probability, Statistics and Pruth, pp. 30 f.
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Then the relative frequency of large milestones will easily be seen to
be equal to 1 if T happen to start with a large milestone, or 0 if 1 hap-
pen to start with a small milestone, Its limit certainly will not be equal
to 14, as in the original collective. Next I take as my new collec-
tive all milestones that come after a big milestone. The relative fre-
quency of large milestones in the new collective will be equal to 0 and
again will not, in the limit, be equal to the relative frequency of large
milestones in the original collective. Hence, my collection of mile-
stones is not really a true collective according to von Mises and the
concept of probability ean certainly not be used in this connection.

If we start with this frequency definition of probability then all
the classical propositions in the theory of probability can still be used.
We propose, however, to make use in this connection of certain con-
cepts which ultimately go back to the classical theory of probability
but which have been especially developed by the Russian school of sta-
tisticians. In our opinion they are more suited to the treatment of our
problems than are the other concepts. They are based on the ideas
of the random or casual variable, of the distribution, and of the mathe-
matical expectation.

B. Random Variable, Distribution, and Mathematical Expectation

1t will be possible to give in this connection only a very short in-
dication of some fundamental concepts. The reader ecan easily find
more detailed information on this subject in other books.®? Our point
of view is essentially the one which has been called “stochastie.””

We understand a casual or random or stochastic variable® to be
a magnitude that can have a series of different values with definjte
probabilities. Those probabilities, as we have indicated above, are
simply limiting values of the relative frequencies of the variate in a
collective. To give a simple example: Suppose that we throw a die and
take as our characteristic the numbers 1 to 6. Those numbers are a
casual or random variable if it is a true die or even if it is a biased die.
Their probabilities are simply the limiting values of their relative fre-
quencies. In this particular case the probabilities will be 1/6 for every
number in a true die, and different from this in a biased die.

The values that the random or stochastic variable can take togeth-

6 J. V. Uspensky, Introduction to Mathematical Probability, New York, 1937.
See also helow, Appendix 11, pp. 136 ff.

7 L. von Bortkiewiez, Die Iterationen, Bexlin, 1917. See also O. Anderson, op.
cit., and J. V. Uspensky, op. cit. ) .

8 J. V. Uspensky, ¢p. cit,, pp. 161 fI.; W. Winkler, Theoretische Statistik, Ber-
1in, 1981, pp. 20 f£.
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er with their probabilities we shall call the distri‘k')ution of the gasual
or random variable. In our previous example, with the true dle_f:he
distribution will consist of the numbers 1 to 8 where the probability
of 1/6 is attached to every number. '

The mathematical expectation,® finally, is simply the sum of the
products of the values of the random variable and their respective
probabilities. The sum of those probabilities is, of course, alway_s equal
to 1. In the case of our true die, again, the mathematical expectation is:
B(z) =1-(1/6) +2- (1/6) 4 3- (1/8) 4-4- (1/6) + 5- (1/6) +
6- (1/6) = 3.5. The mathematical expectation is, in other words, the
weighted arithmetic mean of the values of our casual variable with
the probabilities as weights. Thiz is also the reason why it has been
called mean value (valewr moyenne) by some French statisticians.!®

Another concept which is of importance in this connection is the
population variance. It is the mathematical expectation of the square
of the deviations from the mathematical expectation. We have ¢ =
Eix — E(x)]%. In our example we have E(x) = 3.5 and o* =
(1 — 8.5)2(1/6) 4 (2 — 8.5)*(1/6) 4+ (8 — 3.6)*(1/6) 4 (4 —
3.5)2(1/6) 4+ (5 — 3.5)2(1/68) 4 (6 — 3.5)%(1/6) = 2.9167. Hence
the population variance is 2.9167 and the population standard devia-
tion, the square root of the variance, is 1.7078,

We should always distinguish the values of statistical parameters
calculated for the (hypothetically infinite) population and their sta-
tistical estimates calculated from the sample. The theorems of prob-
ability are strietly true only for the former kind. We know, however,
from Bernoulli’s theorem!! that we can expect (with a probability
a8 near to certainty as we like) that the relative frequency of an event
in a series of independent trials with constant probability will differ
from this probability as little as we like, if the number of trials be-
comes sufficiently large., The law of large numbers states: We can
expect with a probability as near to certainty as we please, that the
arithmetic mean of a number of stochastic variables with the same
mathematical expectation will differ from this mathematical expecta-
tion by less than any given number, however small, if the number of
variables becomes large enough and another condition is fulfilled.:?

C. Finite Differences

Only one other fundamental mathematical concept is necessary

% J, V. Uspensky, op. cit., pp. 161 ff.
10 (. Darmois, Statfistigue Mathématique, Paris, 1928, pp. 30 ff.
1 J. V. Uspensky, op. eit., pp. 96 fT.
12 J, V. Uspensky, op. cit., pp. 182 ff.
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for the treatment of the variate difference method. This is the idea of
finite differences.’®> We attach numbers to every item in our time se-
ries, for instance, the natural numbers 1, 2, 3, efc. Let us denote the ith
item (1 =1,2,38,---, N) by w:. Then the first finite difference A4™w;
= a;,, — w; . This will be the difference between the (¢4-1)th item and
the ith item. We form the series of second differences by performing
the same operation oh the series of first differences and so on for any
order of differences. This idea will be made clearer in Table 1.

TABLE 1
DIFFERENCES OF THE SQUARES OF NUMBERS
w; = 2

T T w, Al1) Alz) T A
1 1 3 2 0
2 4 5 2 0
3 o 7 2 0
4 16 0 2 ]
5 25 11 2 0
6 36 13 2 0
i 49 15 2 0
8 64 17 2 0
9 81 19 2 0
10 160 21 2 1

1l 121 23

12 144 5 I

Suppose those 12 items are our time series w. The number of
every item is given in the first column and the item itself is given in
the second column. The third column shows the series of first finite
differences (4) which is, of course, formed by subtracting from
every item in the second column the one immediately above. In the
fourth column is the series of second differences (A®). This series is
again formed by subtracting from every item in the third column the
one immediately above. In the fifth column we have the series of the
third finite differences (A®), It is again formed by subtracting from
every item in the fourth eolumn the one immediately above,

There is another thing which ean immediately be seen from this
table. We have chosen in our particular example as our time series w;
the squares of the natural numbers as shown in the first column., We

13 See, e.g., G. Boole, A Treatise on the Calculus of Finite Differences, 3rd ed.,
London, 1830; H. T. Daviz and W. F. C. Nelson, Elements of Statistics, 2nd ed.,

Bloomington, Indiana, 1937, pp. 216 f.; B, T, Davis, Theory of Linear Operators,
Bloomington, Indiana, 1936, pp. 85 ff. See also below, Appendix II, pp. 137 ff.
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note from our table in the fourth column that the second finite differ-
ences (4*) are stable (in our case equal to 2) and we see from the
fifth column that the third finite differences (A®) are always equal to
zero, The same would be true, of course, of the higher differences.
If we had chosen for our series w; the cubes of the natural num-
pers, the third finite differences would have been constant and the
fourth and all higher differences would have been equal to zero. Had
we, for instance, chosen the fourth powers of the natural numbers as
our series w;, the fourth finite difference would have been constant
and all differences higher than the fourth would have been equal to
gero. Generalizing this idea we can say: If our series is equal to the
nth power of the natural numbers, then the nth finite difference (4)
will be constant and all higher finite differences will be equal to zero.

TABLE 2

DIFFERENCES OF A POLYNOMIAL
w; =1 4 2i2—48 + 342

i w; Al Al Al3) AD IO
1 b 44 142 174 72 0
2 49 186 316 246 72 o
3 23b 502 562 318 72 0
4 37 1,064 880 390 72 Y
) 1,801 1,944 1,270 462 2 0
[ 8,745 3,214 1,732 534 72 0
7 6,959 4,946 2,266 606 72 0
8 11,905 7,212 2,872 678 T2 -
9 19,119 10,084 3,550 750

10 29,201 13,634 4,300

11 42,835 17934 | ... | -

12 60,769 | e ] e [— -

Let us now consider a polynomial of the degree n. As seen from
Table 2, the series of the nth finite differences is constant and all dif-
ferences of order higher than n will be zero. Hence, any polynomial
of the degree n can be completely eliminated by the process of finite
differencing if carried far enough.

A similayr statement holds true for other “smooth” functions—
that is to say, for functions which do not show an excessively zigzag
nature.’* Smooth functions have a strong positive correlation between
consecutive items. It has been shown by Professor Anderson® that

14 0. Anderson, “On the Logic of Decomposition of Statistical Series into Sep-
arate Components,” Journal of the Royal Statistical Society, Vol. 90, 1927, pp. 548

ff.; Die Korrelationsrechnung in der Konjunkiurforsehung, Bonn, 1929, pp. 46 ff.
15 O, Andergon, op. ¢it., pp. 107 ff.
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exponential functions or hyperbolae or trigonometric functions with
a long period cannot be completely eliminated but only reduced
to any desired degree by finite differencing. The only classes of func-
tions for which this is not the case are those showing strong negative
correlation between subsequent items or the extreme zigzag shape that
we have mentioned above.

TABLE 3
DIFFERENCES OF AN EXPONENTIAL

wy; =2%
i) w, |Am | A@ |Ae |Aw |AG) | Ao A |Am | A@ | Aae faan
1 ! 2 2 2 2 2 2 2 2 2 2 2 2
2 4 4 4 4 4 4 4 4 4 4 4
3 8 B 8 8 8 8 8 8 8 8! ..
4 16 16 16 16 16 16 i6 16 16 | veee | e aeeen
b 32 32 32 32 32 32 32 32 e | weeee | e | e
6 64 64 64 64 64 64 64 | ] e ] e | e | e
7T 1281 128( 128 | 128 | 128 | 128| ... cane | wmeme | eeewee | emeren | e
8 256 | 256| 256 | 256 | 256 | oo | oo oo | ewweme | wememe | eewene | weeenn
9 512 | B12| 512| 512 | et ] s JUCUUNE SRR IUUVI [N I
10 (1,024 11,024 1,024 | ... | el T JUUUIUR [ IV [N I,
11 12,048 {2,048 ... | ....- [V SO I ROV IR N
12 14,096 | ... SRS ISR ISR JUU IR U U VNI RV [N

We show a few examples of the process of elimination or reduc-
tion in the tables, Table 2 shows a polynomial of the fourth degree
whose fifth differences beeome zero and all higher differences vanish.
In Table 3 we have a simple exponential which cannot be complete-
ly reduced. Even in this disadvantageous case of an exponential
whose base is posifive and greater than 1, the highest values occur-
ring in every series of differences decrease with higher order of the
differences. The difference of a given order of any term is smaller
than the difference of the preceding order of the term following, Take,
for instance, the eighth difference of the third term, which is 8. It is
smaller than the seventh difference of the fourth term, which is 16.

Table 4 shows reduction of a hyperbola by taking successive finite
differences, It is seen that the absolute value of the differences (i.e.,
the value without regard to sign) decreases with the increasing order
of the difference. The same phenomencn is exhibited in Table 5 for a
trigonometric function of long period. The period, i.e., the distance
from maximum to maximum or minimum to minimum, is here 12
units. Variations of all these “smooth” functions can hence be greatly
reduced by taking finite differences.
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TABLE ¢

DIFFERENCES oF A TRIGONOMETRIC FUNCTION WITH SHORT PERIOD
2w
w; = sin —14
4

—r— T

i w A | A® | a@ | A | A®) | aw | A | A® ae | Ace | aan

11|t o 2| 4| ¢| o | -8{16(-16] 0 32
2 0 -1 2 -2 0 4 -8 8 0 [-16 82 —
sl 2| 1| oil-2] 4l 4| o 8|-16|16] w! .
4 1] 1 -2 2 0 -4 8 -8 0 4 ..
51 1 | 0 24 4] 0 | 8 e || e | e
6 0o | -1 2 -2 ! 0 4 -3 —
7 -1 1 ¢ -2 4 -4 -
8 0 1 -2 2 0
9 1 -1 0 2 -
10 0 -1 2 -
11 -1 1

12! © L ] e

But the same is not true with functions of an extreme zigzag na-
ture, as for instance trigonometric functions with a small period. This
is shown in Table 6, the period being 4 units. The differences are seen
to inerease in their numerical or absolute value, the higher the order
of difference. Hence we can not hope o eliminate or even reduce this
and similar functions by taking finite differences.

Whereas smooth functions can be eliminated or at least redueed
indefinitely by finite differencing, finite differencing has, of course, no
such effect at all on a random series. A true random series is not or-
dered in time and hence will not be affected by the process of finite
differencing. This different behavior of smooth curves (which repre-
sent the mathematical expectation) and random series (which repre-
sent the random element of our time series) is the starting point for
the variate difference method.

Finite differencing will not eliminate the random element but will
affect it in some other way. The forming of differences introduces cer-
tain serial correlations into the series of differences even if the items
in the original random series were entirely independent. But it is
very easy to see what this effect is and to calculate it in advance. Our
formulae for the standard errors and the estimates of the population
variance of the random element from the variances of the differences
take account of this fact. The correlations between the consecutive
items of the series of finite differences necessitate our making selec-
tions from these series if we want to apply the modern tests of sig-
nificance {Chapter VIII and Chapter X, Section B).



CHAPTER V

THE CALCULATION OF THE VARIANCES OF
THE FINITE DIFFERENCE SERIES

To recapltu]ate briefly, the fundamental idea of the varlate differ-
ence method is the following:

We begin with the assumption that the economie time series in
question consists of two parts: a “smooth” part which we shall call
the mathematical expectation and which we agsume to be the result of
the more permanent economic and social factors, and a random part
which is random in the sense defined in Chapter I, Section C. It may
be considered the resuit of the nonpermanent or less permanent fac-
tors in economie life. It is clear that the question of what is perma-
nent and what is not depends on the time unit. The random element
will be different in series of annual data from what it is, for instance,
in a series of monthly data. We have to use a concept that is very
similar to Alfred Marshall’s® ideas of long run and short run in eco-
nomie life (see also below, p. 72).

We assume that the mathematical expectation and the random
element are connected by addition. The variance of the entire series
can hence be split up into one part which comes from the mathemati-
cal expectation and another part which is the random variance. (The
variance is the square of the standard deviation.) Tt has already been
pointed out (see Chapter IV, Section C) that the smooth part or the
mathematical expectation can be eliminated, or at least reduced to any
desired degree, by successive finite differencing. Hence the part of the
variance that results from the mathematical expectation can be re-
duced in the same fashion. This is, however, true only for a “smooth”
and not for an excessively “zigzag” series.

The variance of the finite difference of any order is again equal
to the sum of the variance of the difference of the mathematical ex-
pectation and the variance of the difference of the random element.
The first component is reduced more and more in a smooth series by
successive finite differencing, the second component is not changed at
all apart from the multiplication by certain constants.

We ask ourselves the following question: Beginning from which
finite difference k, can we assume that the mathematical expectation

1 A. Marshall, Principles of Economics, 8th ed. London, 1920, pp. 378 ff.
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has been eliminated to a considerable degree and that we are left ap-
proximately with only the random element?* The solution of this prob-
Jem results from the following consideration: If we have a series
‘which consists only of the random element, then the variances of the
successive series of finite differences are equal, if corrected for the
multiplication by a binomial coefficient. This is self-evident from the
fact that the series is random, that is to say, is not ordered in time.
Hence the variance of its first and higher differences must be the same
as the variance of the original random series. '

This is the reason why we can make the following statement: If
we find a certain finite difference of the order k, such that the vari-
ance of the k.th difference is equal to the variance of the (&.+1)th dif-
ference and equal to that of the (&,+2)th difference, ete., then we shall
be justified in assuming that we have eliminated the mathematical
expectation to a reasonable degree by taking k, differences.* The
equality will, of course, never hold exactly true, since there will always
be a certain amount of random variation. We are essentially dealing
with problems in the realm of probability. Hence, we shall show that
it is required only that the difference between the variances of two
successive series of finite differences be smaller than three times its
standard error. This is sufficient from the point of view of the theory
of probability in assuring us reasonably well that in this k.th differ-
ence only traces of the mathematical expectation are left. This as-
sumption is justified only if our series is long enough. {We shall pre-
sent a procedure in Chapter VIIT which holds true also for short ser-
jes.) We can base this argument on Tchebycheff’s inequality,® which
holds true for all distributions. But in our case the distributions are
likely to be nearly normal and so we shall rarely be wrong in taking
three times the standard error as our “fiducial limit.”s

2 0, Anderson, Die Korrelationsrechnung in der Konjunkiurforschung, Bonn,
1929, pp. 44 if,, 52 ff.

2 0. Anderson, op. cit., pp. 54 ff. See also below, Appendix II, pp. 138 ff.

+ R, Zaycoff, “Ueber die Ausschaltung der zufilligen Komponente nach der
‘Variate-Difference’ Methode,” Publications of the Statistieal Institute for Eco-
nomic Research, State University of Sofia, 1837, No. 1, pp. T8 ff.

5 J. V. Uspensky, Introduction to Methematical Probability, New York, 1937,
pp. 182 ff, See also below, Appendix 1Y, pp. 139 ff.

_ 8RB, A, Fisher, “The Logic of Inductive Inference,” Journal of the Royul Sta-
tistical Society, Vol. 98, 1935, pp. 39 ff.; J. Neyman, “On the Two Different Aspects
of the Representative Method,” ibid., Vol. 97, 1934, pp. 558 ff. See also R. A. Fish-
er, Stotistical Methods for Research Workers, Tth ed., London, 1938, pp. 42 ff.,
Chapter I1I, Section 11; J. Neyman, “Cutline ¢f a Theory of Statistical Estima-
tion Based on the Classical Theory of Prohability,” Philosophical Transactions of
the Royal Society of London, Series A., Vol. 236, 1937, pp. 333 ff.; 8. 8. Wilks,
Statistical Inference, Prineeton, 1937, pp. 71 f.; R. A. Fisher, The Design of Ex-
perments, London, 1935, pp. 16 ff.



34 THE VARIATE DIFFERENCE METHOD

This corresponds to a level of significance of at least 8/90 from
Tehebycheff’s inequality. This inequality states that the probability
of a deviation, positive or negative, from the mathematical expectation
by more than ¢ times the standard deviation or standard error (where
¢ may be any positive number) is less than or equal to 1/¢% In our
case ¢ egunals 8. We get, of course, much better limits if we assume
normal distributions, an assumption that is sometimes justified in eco-
nomic data both from a priori considerations and from .an empirical
point of view (Appendix VII). Three times the standard deviation or
standard error gives us here a level of significance of 0.9973. That is
to say, we shall be disappointed only in about 3 cases in 1000 if we
accept this level of significance.

The common levels of tests of significance, ie., the b-per-cent
point, 1-per-cent point, and 0.1-per-cent point, give the following val-
ves in the case of Tchebycheff’s inequality: 4.47 times, 10 times, and
31.6 times the standard deviation. This means, for instance, that the
chances are not more than 1 in 100 that we may get by chance a devia-
tion from the mathematical expectation greater than 10 times the pop-
ulation standard deviation or error. It should be pointed out again
that Tchebyeheff’s inequality holds true for any distribution, The same
levels of significance, i.e., 5 per cent, 1 per cent, and 0.1 per cent, give
the following fidueial limits in case of a normal distribution, which we
may sometimes expect in economic data: 1,960, 2.576, and 3.290 times
the population standard deviation. That is to say, we ean, for in-
stance, expect that we shall be wrong only 1 fime in 100 cases in re-
jecting the hypothesis if we have a normal distribution and we get a
deviation from the hypothetical value greater than 2.576 times the
population standard deviation or the standard error.”

Our hypothesis is that the variances are equal. We consider here
only errors of Type I, i.e., errors committed by rejecting the hypothe-
sis if it is really true. Besides, there are errors of Type II which
arige if the hypothesis is not rejected if it is really false, i.e., if the
variances are not in reality equal.

We have first to find the variances of our original series and of
the series of finite differences in order to carry out this analysis. We
give, as an example, the yearly series of prices of wheat flour in the
United States between the years 1890 and 1937, that is, for 48 years.
The data are taken from the publications of wholesale prices of the
United States Bureau of Labor Statistics.

7G. U. Yule and M. G. Kendall, An Introduetion to the Theory of Statistics,
11th ed., London, 1937, pp. 350 ff.
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We show in Table 7 the process of finite differencing. The series
of first finite differences is formed by subtracting the first item of :the
original series (5.185) from the second item _(5.305), the result being
4-0.120, the first item in the series of first differences. Then the seec-
ond item is subtracted from the third item, the third item from the
fourth item, etc. In this way we get the series of firat finite differ-
ences. In this series again we subtract the first item (40.120) from
the second item (—0.959), which gives —1.079, the first item in the
series of second differences. The second item is subtracted from the
third item, and the third item from the fourth item, ete., and we get
the series of the second finite differences. By carrying out this pro-
cess ten times, we finally have ten series of finite differences which are
shown in Table 7.

A very useful check for this procedure consists in the fact that
the difference between. the nth item and the first item of the kth dif-
ference is equal to the sum of the first n—1 items of the (k+1)th
finita difference. (We denote here for the sake of convenience our
original series as the Oth difference.) Summing the ten items of the
series of our first differences: +0.120 — 0.959 — 0.540 — 0.412
0.049 -+ 0.152 4 0.796 + 0.138 — 0.955 4- 0.068 = —1.343. The dif-
ference between the eleventh and the first item of our original series
(0th difference) is equal to this sum of the first ten items of the series
of the first finite differences, i.e., 3.842 — 5.1856 = —1.343. Similar
checks, of course, hold true for the higher differences as well. For in-
stance, the difference between the eleventh item in our series of first
differences and the first item must be equal to the sum of the first ten
items in our serics of seeond differences, ete. Those checks shouid al-
ways be carried through, because otherwise some errors may creep
into the calenlations of the finite differences. It is desirable that those
checks should be made at not too infrequent intervals, because this fa-
cilitates the detection of errors.

In caleulating the finite differences we must bear in mind the
rules for algebraic subtraction. That is to say, to subtract a negative
number is the same as to add the absolute value, ete.

We notice, by the way, that every series of finite differences is
one item shorter than the preceding one, so that by taking ten series
of finite differences, we have finally reduced the number of items in
our series from 48 to 88, This, of course, puts a very definite limita-
tion on the number of finite differences that we can calculate. In a
short series like the one we are treating as an example, the ealculation
of very high differences reduces the number of items in our series
considerably. The same would not be true, however, in a series of
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monthly data where the reduction of the number of items would be
almost negligible. As a general rule, the order of the highest differ-
ence calculated should never be greater than half the number of items
of the original series. We could in our case go so far as the 24th dif-
ference.®

Having calculated the series of finite differences, we have now to
find the variances and, also, for reasons given later on, the fourth mo-
ments.? The variances {squares of the standard deviations) of the
finite differences are the statistical estimates or parameters that are
most important for the carrying through of the process of analysis by
the variate difference method,

The variance of the original series could, of course, be calculated
in the ordinary manner. That is to say, we could take the deviations
from the arithmetic mean and square them, sum them, and divide the
sum by the number of items less one, in our case, by 47. This is the
mean sum of squares and gives us the best estimate for the variance
of our original series. We divide by N—1 instead of N, because this
is the number of degrees of freedom left after we have calculated the
mean. Let our original series be called the difference of order zero.
We call w = §,'9/N the arithmetic mean of our original series, where
S, =3¥ w, is the sum of the original item in our series'® (Table 8).
The variance of the 0th difference or the series of original items is
then:

Yy =i (01— )
(N—1)
This can also be found by caleulating the sum of the squares in the
following manner, which is probably more econvenient on a ecalculating
machine.?
First, the arithmetie mean is found by summing up the items of

the original series (giving in our example a sum S, = 291.510) and
dividing the total by the number of items, that is to say, 48, The arith-

metic mean w iz 6.0731; then the items in the original series are
squared and we deduct from the sum of squares of the original items

(8, = 1,995.816) the square of the arithmetic mean (w* = 36.8825)

8 0. Anderson, op. e¢it.,, p. 55,

¢ 0. Anderson, op. cit., pp. 54 fI.; R. Zaycoff, op. cif., pp. 78 ff.; G. Tintner,
Prices in the Trade Cyele, Vienna, 1935, pp. 11 ff. See also below, Appendix II,
pp. 139 ff. For a summary of computations see Appendix I, Section A.

0 The motation is taken from R. A. Fisher, Statistical Methods for Research
Workers, Tth ed., London, 1938, p. 74, Chapter 111, appendix.

1 G, W. Snedecor, Statistical Methods, Ames, Towa, 1937, pp. 134 ff.
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multiplied by the number of items in the origin?d s:,eries (N = 48).. In
this way we find the sums of the squares of deviations frpm thg arith-
metic mean: 1,995.816 — 1,770.360 = 225.456. By dividing this num-
per by the number of items in the series minus 1 (that is to say,
N—1 = 47) we get the best estimate of the variance of our original
series: Vo = 225.456/47 = 4.7969. The formula for the calculation of
the variance of the criginal series is then:

(Sg“” — N’;U—“)
(N—1)

where S, = 3¥ w;? is the sum of the squares of the items of the
original series’® (Table 8, Table 17).

We do not regard the sum of the squares of the deviations from
the arithmetic mean as the best basis for an estimate of variances of
finite differences. We take, rather, the sum of squares of deviations
from zero or simply the sum of the squares of the finite differences
themselves.’®* The reason for this is the following: we know from our
assumptions that the true mean or mathematical expectation of the
random element is egual to zero. Hence, instead of taking the devia-
tiong from the arithmetic mean of the finite differences we take the
deviations from the true mean, which, by definition, is equal to zero,
gince the mathematical expectation of the differences of the random
element is egual to zero. (The arithmetic mean of any series of finite
differences is the difference between the last and first item of the pre-
ceding series of finite differences divided by the number of items. This
is the basis of the ehecks we have indicated above. There is, however,
no use in calculating those means of the series of finite differences.)

All we have to do is to square the finite differences and sum them
up. This can easily be done by the use of a table of squares, or with a
caleulating machine. The sums of the squares appear in Table 8
(8,%).

We have then to find the variance of every series of finite differ-
ences. This is done by dividing the sum of the squares by the num-
ber of degrees of freedom, L.e., by the number of items in the particu-
lar series of finite differences, and then by another constant. We di-
vide the sum of the squares of the first finite differences by the number
of items of our original series minus 1, that is, by 47. The sum of
squares of the third finite differences, for instance, is divided by the
sum of the items in our original series minus 3, that is to say by 45,
ete. This gives the mean squares.

12 R. A, Fisher, loc. cit.
130, Anderson, op. cit., pp. 54 ., 112 ff.

Vo:
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Having found the mean squares, we h_a,ve not yet the best esti-
mate of the random variance of the finite differences. It appears that
the mean squares increase very rapidly. Professor Anderson has
shown that the original variance of a random series is multiplied by a
certain binomial coefficient with every successive finite differencing.
This coefficient is for the kth difference equal to the number of combi-
nations of 2% things taken k at a time, »C;. For instance, the mean
square of the first finite differences is equal to the variance of the ran-

TABLE 8

SUMMARY, ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937

Sum of

Order of Sum Sum of Sum of
Diflerence Squares Cubes Fourth Powers
k Sl(k] ,5'2 *) Ssik) Sé(k)
0 291.510 1,995.816 15,497.211 135,336.771
1 1.531 65.445 —(0.755 695.146
2 -0.240 120.427 -170.871 1,873.501
3 1.799 350.674 401.786 17,129.582
4 0.765 1,148.594 1,4556.661 187,135.609
5 ! 6.408 8,928.982 -10,188.148 2,260,883.230
6 2,172 13,645,040 —28,194.388 27,985,208.869
7 15.765 48,688,015 251,455.786 854,892,010.774
8 10.581 173,928.318 785,204.865 4,672,561,429.029
9 58.534 624,202,720 -5,415,515.798 59,505,060,360.278
10 30.352 | 2,251,828.836 | -17,454,629.992 | 781,714,768,034.777

TABLE B (continued)

SUMMARY, ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937

Order of

Sum of

Sum of

Difference Fifth Powers Sixth Powers

ke R) S KO
0 1,302,985.812 13,604,986.791
1 —311.603 11,847.364
2 —6,325.144 43,227.464
3 25,001.813 1,171,261.175
4 863,046,123 40,940,464.576
5 -5,114,183.497 1,694,476,476.769
8 —309,827,424.524 76,358,979,389.846
7 -1,063,502,071.712 3,476,905,425,869.029
8 124,020,260,640.821 160,375,263,473,164.003
9 1,896,199,979,018.160 7,544,921,827,024,200.395

10 --49,157,453,123,299.549 859,319,726,450,087,749.431

14 0. Andersen, op. cit., pp. 54 ¥,
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TABLE £ (eoncluded)

SUMMARY, ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937

D(i’ézg:cfe SeveiutlTPocf.wera Exghﬁgx;gie“ .
. s, 5,
0 ' 147,489,750.629 1,669,633,466.799
1| -8,704.986 213,863.832
2 | -189,923.522 1,104,199.000
3 1,265,224.788 84,645,926.793
4 336,063,392.199 10,012,592,708.261
5 | -280,519,108.082 1,482,185,263,372.1560
6 | -1,721,183,508,245.942 233,273,978,783,075.287
" -55,703,051,803,429.628 87,217,856,952,905,647.657
8 9,440,545,501,946,463.816 6,261,852,918,586,706,782.149
9 683,544,731,361,408,015.578 . 1,049,4b7,745,656,437,306,286.888
10 -50,567,669,300,918,999,870.114 182,625,520,067,971,771,696,401.337

Number of items in the original series: N — 48.
Mean of the original series: w = 6.0731,
Fourth moment of the original series about the mean: m, = 96.8859,

dom series multiplied by the number of combinations of 2 things taken
1 at a time, which is equal to 2. The mean square of the second differ-
ences is the random variance muiltiplied by the number of combina-
tions of 4 things taken 2 at a time, which is equal to 6. The same holds
true for the higher differences. For instance, the mean square of the
series of the tenth finite differences is equal to the variance of the
original random series multiplied by the number of combinations of
20 things taken 10 at a time, which is equal to 184,756. Those eo-
efficients are tabulated in Table 9, which we take from Mr, Zaycoff’s
publication.*® In order to get the estimate for the variance of the ran-
dom element, we have simply to divide the mean square by the bino-
mial coeflicient ,;C;, given in Table 9.

In order to facilitate the numerical work we have calculated co-
efficients A,y which are given in Table 10. They are equal to

1
2ka (N _‘k )
where N is the total number of items in the original series, & the or-
der of the difference, and ..C: the binomial coefficient mentioned above.

All we have to do is to enter our table under the right N and % and
multiply the sum of squares of the differences in guestion by the num-

35 R. Zaycoff, op. cit., p. 80, Table 1.
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TABLE 9
BivoMIAL COEFFICIENTS ,,.C,

Order of Difference Coefficients
k 2kck

1

2

6

20

70
252
924
3,432
12,870
48,620
10 184,756

WU =1t b RO

ber given. Interpolation is necessary and should be done with the
help of the (negative) divided differences given in the same table.

We enter the table, for instance, under k=1 and interpolate for
N=48 in order to find the number by which we have to multiply the
sum of the squares of the first finite differences to get the best esti-
mate for their variance V,. The same process is repeated for every
difference,

The variances of the first and higher differences are calculated
according to the formula Vi, = S,% A,y , where

3=1

S,k = Nz_:k [Afk)fwi Jz’

i.e., the sum of the squares of the kth differences (Table 8), We find
from Table 10, for k=1 and N=48, Az = 0.010727. From Table 8
we have, for k=1, S.* = 65.445, the sum of the squares of the first
differences, The best estimate of the variance of the series of first
differences, V, = (65.445) (0.010 727) = 0.7020 (Table 17). The same
result would have been reached approximately by dividing S.%* by
(N—1).C,, i.e., caleulating 65.445/(47.2) == 0.6962. Similarly, for
the fourth difference, we get from Table 10 for k=4, N-=48, the co-
efficient 4,y = 0.000328. Multiplying by the value S,® for k=4 in
Table 8, which is 1,148,594 (sum of squares of fourth differences), we
get for the best estimate of the variance of the fourth differences V, =
0.3767 (Table 17). This is simpler than dividing 1,148.594 by
(N—4),C, or calculating 1,148.594/(44 - 70} = 0.3729.

The variances of the series of finite differences calculated in the
manner indicated above form our estimate for the true variance of the
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TABLE 10
C A= L
OEFFICIENTS KN — m
(k == Order of Difference)
T Number
i k=1 k=2
R |
N Ay D.D.* A,y D.D.*

10 0.055 556 0.002 9240 0.020 833 0.001 1573

20 0.026 316 0.000 9074 0.009 260 0.000 3208

30 0.017 242 0.000 4422 0.005 952 0.000 1566

40 0.012 820 0.000 2616 0.004 386 0.000 6914

50 0.010 204 0.000 1730 0.008 472 0.000 0598

60 0.008 474 0.000 1228 0.002 874 0.000 0423

70 0.007 246 0.000 0917 0.002 451 0.000 0314

80 0.006 829 0.000 0711 0.002 137 6.000 0243

90 0.005 618 0.000 0567 £.001 894 0.000 0193
100 0.005061 |  0.000 03390 0.001 701 0.006 01150
150 0.003 356 } 0,000 01688 0.001 126 0.000 00568
200 0.002 512 0.000 01008 0.000 842 9.000 00340
250 0.002 008 0.000 00672 0.000 672 0.000 00226
300 0.001 672 0.000 00480 0.000 559 0.000 00160
350 0.001 432 0.000 00358 0.000 479 0.000 00120
400 0.001 253 0.000 00278 0.000 419 0.000 00094
450 0.001 114 0.000 00224 0.000 372 0.000 00074
500 0.001 002 0.000 00182 0.000 285 0.000 00062
550 0.000 911 0.000 00152 0.000 304 0.000 00050
600 0.000 835 0.000 00130 0.000 279 0.000 00044
650 0.000 770 0.000 00108 0.000 257 0.000 00036
700 0.000 716 0.000 00096 0.000 239 0.000 00032
750 0.000 668 0.000 00084 0.000 223 0.000 00028
800 0.000 626 0.000 00074 0.000 209 0.000 00024
850 0.000 580 0.000 00068 0.000 197 0.000 60022
900 0.000 556 0.000 00058 0.000 186 0.000 00020
950 0.000 527 0.000 00052 0.000 176 0.000 00018
1000 0.000 501 0.000167 |

* Divided difference, negative.
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COEFFICIENTS Ay, —

TABLE 10 (continued)

1

2l (N — k&)

(k = Order of Difference)

Original
Series

10
20
30
40
50

80
70
80
90

100

150
200
250
300

350
400
450
500

550
600
660
700
750

800
860
900
250
1000

k=3 k=4
Ay D.D.* Ay 7 D.D.*

0.007 143 0.000 420 2 0.002381 | 0.0001488
0.002 941 0.000 108 9 0.000893 | 0.0000343
0.001 852 0.000 050 1 0.000 550 0.000 015 3
0.001 351 0.000 028 7 0.000 397 £.000 008 6
0.001 064 0.000 018 7 0.000 311 0.000 005 6
0.000 877 0.000 013 1 0.000 256 0.000 003 ¢
0.000 746 0.000 009 7 0.000 216 0.000 002 8
0.000 649 0.000 007 4 0.000 188 0.000 002 2
0.000 575 0.000 006 0 0.000 166 0.000 001 7
0.000 515 0.000 003 5 0.000 149 0.000 0u1 024
0.000 340 0.000 001 72 0.000 0978 0.000 000 498
0.000 254 0.000 001 04 0.000 0729 0.000 000 296
0.000 202 0.000 000 68 0.000 0581 0.000 000 196
0.000 168 0.000 000 48 0.000 0483 0.000 000 140
0.000 144 0.600 000 56 0.000 0413 0.000 000 104
0.000 126 0.000 000 28 0.000 0361 0.000 000 082
0.000 112 0.000 000 22 0.000 0320 0.000 000 064
0.000 101 0.000 000 192 0.000 0288 0.000 000 052
0.000 0914 { - 0.000 000 152 0.000 0262 0.000 000 044
0.000 0838 £.000 000 130 0.000 0240 0.000 000 038
0.000 0773 0.000 000 110 0.000 0221 0.000 000 032
0.000 0718 0.000 000 096 0.000 0205 0.000 000 028
0.000 0670 0.000 000 086 0.000 0191 0.000 000 024
0.000 0627 0.000 000 074 0.000 0179 0.000 000 020
0.000 0590 0.000 000 066 0.000 0169 0.000 600 020
0.000 0557 0.000 000 058 0.000 0159 0.000 000 016
0.000 0528 0.000 000 052 0.000 0151 0.000 000 016
0.000 0502 | e 0.000 0143 | ... s

* Divided difference, negative,
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TABLE 10 (continued)
COEFFICIENTS Ay == 1
TG (N — k)
{k == Order of Difference)
T e |
of Ttems k=5 k=6
Original
Series .
N Ay DD.* Ay D.D.*
10 0.000 794 0.000 062 9 0.000 271 0.000 019 37
20 0.000 265 0.000 010 6 0.000 0773 0.000 003 22
30 | 0.000 159 0.000 004 6 0.000 0451 0.000 001 33
40 | 0.000 113 0.000 002 48 0.000 0318 0.000 000 72
50 0.000 0882 0.000 001 60 0.000 0246 0.000 000 46
60 I 0.000 0722 0.000 001 11 0.000 0200 0.000 000 31
70 0.000 0611 0.000 000 82 0.000 6169 0.000 000 23
80 } 0.000 0529 0.000 0600 62 0.000 0146 0.000 000 17
90 | 0.000 0467 0.000 000 49 0.000 0129 0.000 000 14
100 | 0.000 0418 0.000 000 288 0.000 0115 0.000 000 0796
150 0.000 0274 0.000 0600 140 0.000 00762 0.000 000 0388
200 0.000 0204 0.000 000 084 0.000 00558 0.000 000 0228
250 0.000 0162 0.000 000 054 0.000 00444 0.000 000 0152
300 0.000 0135 0.000 000 040 0.000 00368 0.000 000 0106
350 0.000 0115 0.000 000 030 0.000 00815 0.000 000 0080
400 0.000 0100 0.600 000 0216 0.000 00275 0.000 000 0062
450 0.000 00892 0.000 000 0180 0.000 00244 0.000 000 0050
500 0.000 00302 0.000 000 0148 0.000 00219 0.000 000 0040
550 0.000 00728 0.000 000 0122 0.000 00199 0.000 000 0034
600 0.000 00667 0.000 000 0104 0.000 00182 0.000 000 0028
650 0.000 00615 0.000 000 0083 0.000 00168 0.000 600 0024
700 0.000 00571 0.000 000 0076 0.000 00156 0.000 000 0022
750 0.000 00533 0.000 000 0068 0.000 00145 0.000 000 0018
800 0.000 00499 0.000 000 0060 0.000 00136 0.000 000 0016
850 0.000 00469 0.000 000 0052 0.000 00128 0.000 000 0014
200 0.000 00443 0.000 000 0046 0.000 00121 0.000 000 0012
850 0.000 00420 0.000 000 0042 0.000 001156 0.000 000 0012
1600 000000399 | 0.00000109 | e

* Divided difference, negative.
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46
TABLE 10 {continued)
C CIENTS A 1
OEFFICIE! v T e
M aC (N —k)
(k== Order of Difference)
T Number | ' |
oifti[ 'tﬁ:s E=17 | k—8
Original
Series ) o L .
N Ay D.D.* Agy D.D*
10 | 00000971 | 0.00000747 | 0.0000389 | 0.000 003243
20 0.000 022 4 0.000 000 97 L 0.000 006 47 0.000 000 294
30 0.000012 7 0.000 000 387 0.000 003 53 0.000 000 110
40 0.000 008 83 0.600 000 205 | 0.000 002 43 0.000 000 0b8
50 0.000 006 78 0.000 000 128 \ 0.000 001 85 0,000 000 636
G0 0.000 005 50 0.000 000 087 i 0.000 00149 ; 0.000000 024
70 0.000 004 63 0.000 060 064 0.00000125 ' 0.000 000017
80 0.000 003 99 0.000 000 048 0.000 001 08 0.000 000 013 2
90 0.000 003 51 0.000 000 038 0.000 0G0 948 0.000 000 0103
100 0.000 002 13 (0.000 000 0218 0.000 D00 845 f 0.000 000 005 96
150 0.000 002 04 0.000 000 0106 0.000 Q00 547 0.00¢ 000 002 84
200 ¢ 0.000 00151 0.000 000 0062 0.000 000 405 0.000 000 001 68
250 i 0.000 001 20 0.000 000 00412 | 0.000 000 321 0.000 000 001 10
300 0.000 000 994 | 0.000 000 00290 | 0.000 000 266 0.000 000 000 T8
350 0.000 000 849 0.000 000 00214 | 0.000 000 227 0.000 000 000 58
400 0.000 000 742 | 0.000 000 00168 ; 0.000 0600 198 0.000 000 000 44
460 0.000 000 668 | 0.000 000 00134 | 0.000 000 176 0.000 000 000 36
500 0.000 000 591 | 0.000 000 00108 | 0.000 000 158 0.000 000 000 30
550 0.000 000 537 | 0.000 000 00092 | 0.000 (00 143 0.000 000 000 24
600 0.000 000491 | 0.000 000 00076 | 0.000 000 131 0.000 000 000 20
650 0.000 000 453 | 0.000 000 00066 | 0.000 §00 121 0.000 Q00 000 18
700 0.000 000 420 | 0.000 000 00056 | 0.000 000 112 0.000 000 000 14
750 0.000 000 392 1 0.000 000 00050 |  0.600 000 106 0.000 000 000 138
800 0.000 000367 | 0.000 000 00042 | 0.000 0000981 0.000 000 000 116
8560 0.000 000 346 | 0.000 000 00040 | 0.000 000 0922 0.000 000 D0D 104
900 0.000 006 326 | 0.000¢ 000 00034 | 0.000 000 0871( 0.000 000 000 092
960 0.000 000 309 | 0.000 000 00032 | 0.000 000 0825 0.000 000 000 084
1000 0.000 000298 | .o 0.000 000 0783 e rraenn

#* Divided difference, negative.
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TABLE 10 (concluded)
A— 1
COEFFICIENTS A, — -———-—-—--—%Ck N
{k == Order of Difference)
e e e A e e T e T
ﬂbiulmtelm k=9 k=10
onainel -
Sertes | .
N Aox D.D>* Ao D.D.*
10 {0.0000206 0.000 001 873 | o |
20 10.000 00187 0.000 000 089 1 0.000 000 541 0.000 000 027 0
30 |0.000 000979 | 0.000 000 0316 0.000 000 271 0.000 000009 1
40 |0.000 000663 | 0.000 0000161 0.000 000 180 0.000 000 004 b
50 | 0.000 000 502 | 0.000 000 009 9 0.000 000 135 0.000 000 002 7
60 {0.000 000 403 | 0.000 000 006 6 0.000 000 108 0.000-060 001 78
70 |0.000 000337 | 0.000 0000047 0.000 000 0902 | 0.000 000 001 29
80 |0.000 000290 | 0.000 000 003 & 0.000 000 0778 |} 0.000 000 000 96
90 |0.000 000 254 ; 0.000 000 092 8 0.000 000 0677 | 0.000 000 000 76
160 |0.000 600226 | 0.000 000 001 80 [ 0.000 000 0601 | 0.000 000 000 428
150  10.000 600 146 { 0.000 000 000 76 } 0.000 000 0387 | 0.000 000 000 204
200 0.000 000 108 | 0.000 000 000 454 | 0.000 000 0285 | 0.000 000 000 118
250 §0.000 000 0853 | 0.000 000 000 292 | 0.000 000 0226 | 0.000 000 000 078
800 |0.000 000 0707 0.000 000 000 208 | 0.000 000 0187 | ©,000 000 000 056
850  [0.000 000 0603 | 0.000 000 000 154 | 0.000 000 0159 | 0.000 600 OO0 040
400 | 0.000 000 0526 | 0.000 000 000 120 | 0.000 000 0139 | 0.000 000 000 032
450  {0.000 000 0466 | 0.000 000 600 094 | 0.000 060G 0123 { (.000 000 000 026
500 [0.000 000 0419 [ 0.000 000 000 078 | 0.000 000 0110 | 0.000 000 000 020
550 |0.000 000 0380 | 0.000 000 000 064 | 0.000 000 0100 | 0.000 000 000 0166
600  [0.000 000 0348 { 0.000- 000 000 054 | 0.000 000 00917| 0.000 000 000 0142
650  |0.000 000 0321 | 0.000 000 000 046 | 0.000 000 00846| 0.000 000 000 0124
700 {0.000 000 0298 | 0.000 000 000 040 |0.000 600 00784| (.000 000 000 0106
750 [0.000 000 0278 | 0.000 000 000 036 | 0.000 000 00731} 0.000 000 000 0092
800  |0.000 000 0260 ! 0.000 000 000 030 |0.000 060 00685| 0.000 000 000 0082
850  |0.000 000 0245 | 0.000 600 000 028 | 0.000 D00 00644 0.000 000 000 0072
300  10.000 000 0231 | 0.000 000 000 024 |0.000 000 00608| 0.000 000 000 0064
950  |0.000 GO0 0219 | 0.000 600 0G0 022 [0.000 600 00576! 0.000 000 000 0068
1000 10.0000000208 | ..o 0.000 000 00547

* Divided diference, negative.
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random element in our time series (Table 17). The k,th difference
has by assumption the property that we can be reasonably sure from
the point of view of probability that we have eliminated almost every-
thing but the random element. Hence the variance of the k,th differ-
ence and of all higher differences must be nearly or really equal—at
least the differences between them must be so small that we can expect
that they would be equal if it were not for certain irregular random
variations. We have to calculate the standard errors of the differences
between the variances of two consecutive series of finite differences in
order to have an objective test for this. This will be done in the fol-
lowing chapter.

This is, however, only one of the two possible approaches. The
other will be taken up in Chapter VIII. There, we shall not use the
crude test of significance with the standard error, which is applicable
only in the case of large samples. We shall give an exact test which
follows the modern ideas of statistics and can be applied even for short
series. It involves, however, a certain sacrifice of the available infor-
mation.

TABLE 11
SUMMARY, ANNUAL WooL PrICES, 1890-1937
Order of Sum of
Difference Sum Sam of Squares Sum of Cubes Fourth Powers
k S;(k) Sztkl Ss(k) 34(’”
v} 29.845 23.583 23.092 26.754
1 2581 | e 1.355
2 7.080 | 8.659
- R 23.407 | 95.190
4 | e 80417 | e 1,116.637
b 1 2BLT07 | e 13,698.515
6 999810 | ... 172,280.439
T 3,684.558 | . 2,205,897.664
8 ) 12969048 | ... 28,658,448.268
9 47,171,816 | ... 376,608,652.443
B 172,723.323 | .. 5,004,963,519.913

Number of items in the original series: N == 48,
Mean of thie original series: w — 0.6218.
Fourth moment of the original series about the mean: m, = 0.0521.

We show in Tables 11 to 13 the summaries of the sums, sums of
squares, and higher powers for the original and differences of the fol-
lowing prices, which we shall use later: Annual Wool Prices, Monthly
Wool Prices, Annual Raw-Silk Prices. In Tables 23 to 25 we list the
corresponding variances of the original data and the differences. All
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prices are for American commodities and refer to the years 1890 to
1937. They are all taken from the wholesale price series of the United
States Bureau of Labor Statistics.

In order to show an example for a monthly price, let us consider

——

—Order of

TABLE 12
SUMMARY, MONTHLY WooL PrRICES, 1890-1937

Sum of

Difference Sum Sum of Squares Sum of Cubea Fourth Powers
Tk S, e 5, ,S‘3 (&) 8,
) 260.37 289,890 296.425 374.627

1 e 2358 | e 1.076
2 - 4260 | . 2.084
 J 12543 | 18.920
L 41001 | . 176.277
b 140.617 | e 1,856.234
6 | e 497.297 | e 21,466.284
A —— L7976518 | e 262,229.740
8§ 6,606.214 | ... 3,825,671.725
9 24,581.166 | ... 43,490,554.286
10 92,386.968 | ... 588,154,218.983

Number of items in the original series: N == 576,
Mean of the original series: w — 0,6256.
Fourth moment of the original series about the mean: m, — 0.0849,

TABLE 13
SUMMARY, ANNUAL RAW-SILK PriceS, 1890-1937
Order ot Sum of
Difference Sum Sum of Squares Sum of Cubes Fourth Powers
k Sl k) 3,0 Stk S,“‘)
0 205.862 1,018.797 £,695.511 36,365,347
1 ) 36878 | 123.871
2 | e 74.258 501.398
3 e 206,732 3,686.184
4 | e 619,728 30,480.239
> S O 1,956.779 284,308.195
6 | e 6,394.062 2,915,948.943
i R T 21,322,868 81,720,8558.244
8 72,159.850 362,331,906.690
9 | 247,953.972 4,284,699,987.645
10 867,244,548 | 52,589,449,771.063

Number of items in the original series; N = 48,
Mean of the original series: w — 4.2888.
Fourth moment of the original series about the mean; m, — 28.6504,
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the calculation of ¥V, i.e., the variance of the sixth finite differences,
of the monthly wool prices. We get from Table 12 for £=6, S,;® =
497.297 (the sum of squares of sixth differences). From Table 10
we get by interpolation for =6 and N = 576 (since we have 576
items in the monthly series) A,y == 0.000 0019. The product of these
two numbers gives us the best estimate of the true variance of the
series of sixth differences of the monthly wool prices as V., =
0.000 9449, which is reproduced in Table 24 together with the other
variances.

We believe that the calculation of the variances of the differences
is greatly simplified by the use of Table 10, which should give a suffi-
cient accuracy for ordinary purposes. The squaring of the differences
and original items can be done with the help of tables of squares or a
calculating machine. A procedure which eliminates the influence of
the seasonal is given in Appendix HIL



CHAPTER VI

THE STANDARD EREOR OF THE DIFFERENCE BETWEEN THE VARIANCES
oF Two CONSECUTIVE SERIES OF FINITE DIFFERENCES

In what follows we propose to deal with our problem in the same
way in which it was first treated by Professor Oscar Anderson,® and
we shall also take into account certain refinements recently intro-
duced by Dr. R. Zaycofl® of Sofia, Bulgaria. We shall not, however, re-
produce here any of the mathematical formulations, but shall content
ourselves with the presentation of the logic of the reasoning and also
try to indicate the necessary calculations. Some formulae can be
found in Appendix II, pp. 139 ff. Appendix I, Section D, gives a
summary of computations. _

The standard error of the difference between the variances of
two consecutive series of finite differences as defined in the last chap-
ter involves the square of the variance of the lower difference series
itself, and also the kurtosis or excess of the distribution of finite dif-
ferences. A distribution with a positive kurtosis has a greater con-
centration of items around the mean than a normal distribution with
the same variance, The reverse is true for a negative kurtosis.* The
calculations are, however, greatly simplified if we have little or no
kurtosis. In this case we can use approximative formulas. This in-
volves 2 normal or nearly normal distribution of the original series or
‘the differences. (See Appendix VIL)

We have to caiculate the fourth moments of our original series
and of their finite differences in order to estimate the kurtosis. The
fourth moment of the original series should again be calculated for
the deviations from the arithmetic mean. We could find it by caleu-
lating the deviations of every item of our original series from the
arithmetic mean, raising them to the fourth power, and dividing the
sum by the number of items in our series, in our case, 48 (annual
wheat-flour prices). A more convenient method will be indicated later.

But when we calculate the fourth moment of the first and higher

1 0. Anderson, Die Korrelationsrechnung i der Konjunkturforschung, Bonn,

19291,41)1&. 57 fI., 113. See also G. Tintner, Prices in the Trade Cycle, Vienna, 1935,
Pp. .

*R. Zaycoff, “Ueber die Ausschaltung der zufilligen Komponente nach der
‘Variate-Difference’ Methode,” Publications of the Statistical Imstitute for Ece-
nomic Research, State University of Sofia, 1937, Ne. 1, pp. 78 fI.

8 H. T. Davis and W. F. C. Nelson, Elements of Stotistics, 2nd ed., Blooming-
ton, Indiana, 1937, pp. 317 f.

— 51 —
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differences, we do not take the deviations from the arithmetic mean,
but the deviations from the true mean or mathematical expectation of
the finite differences, which is by assumption equal to zero. The mathe-
matical expectation or the mean value of the random element is equal
to zero by hypothesis, Hence all we have to do is to raise the finite dif-
ferences to the fourth power. Since we have alrcady ealculated the
squares, it is very easy to get the fourth powers which are simply the
squares of the squares. All we have to do is to take the squares of
differences which have already been calculated, and then square them
again with the help of a table of squares or a calenlating machine. The
gum of the fourth powers of the kth differences, S,%), is also shown in
Table 8 for the annual wheat-flour prices, as well as the sums of the
cubes of the original data (0th difference), S:'®, which we shall need
later.

The mean fourth power of a given finite difference is found by
dividing the sums of the fourth powers by the number of items in the
series. The sum of the fourth powers of the first finite differences is
divided by the number of items in our original series minus 1, in
our case, 47. The sum of the fourth powers of the second finite differ-

ences is divided by the number of items in our original series, minus
2, that is by 46, etc.

TABLE 14

B, MULTIPLIER FOR THE SQUARE OF THE VARIANCE

Order of Oxder of
- pigme | B =3(,00 || B, =3(,C):
1 12 6 2,561,328
2 168 7 35,335,872
8 1,200 8 496,910,700
4 14,700 9 7,001,718,200
5 190,512 10 102,404,338,608

In order to find the kurtosis,* we still have to deduct from the
fourth moment of any finite difference three times the square of the
variance multiplied by the square of the binomial coefficient men-
tioned in Chapter V (Table 9}).5 Table 14 gives these numbers by
which the square of the variance is to be multiplied.* We call them
By . The difference between the fourth moment and the sqguare of the

4 R. Zaycoff, op. eit,, pp. 78 ff.

5R. A, Fisher, Stalistical Methods for Research Workers, Tth ed., London,
1938, p. 74, Chapter III, appendix.

€ R. Zaycoff, op. ¢it., Table 1, p. 80.
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TABLE 15
DIvVISOR FOR THE CALCULATION OF THE KURTOSIS
Order of k D(:)éder of %
‘_Diirg’:-eme iﬁ) GCi) 4 _'_ekrﬂ if_,‘o GCi)4
1 2 [ 263,844
2 18 7 3,395,018
8 164 8 44,916,498
4 1,810 9 607,041,380
5 21,252 10 8,345,319,268
TABLE 16
C,, MULTIPLIER FOR THE DIFFERENCE BETWEEN ‘THE FOURTH MOMENT AND
B;, TIMES THE SQUARE OF THE VARIANCE
Order of C —-.__1___. Order of ! C v——_l_
Difference L Difference 7
% RAVCHLE % 2 GCD*
1 0.500 000 0000 6 0.000 003 790 12
2 0.055 556 555 6 7 0.000 000 294 549
3 0.006 097 561 0 8 0.000 000 022 268 5
4 0.000 552 486 2 9 0.000 000 001 647 83
5 0.000 047 054 4 10 0.000 000 000 119 828
TARLE 17
CALCULATION OF KURTOSIS AND STANDARD ERRORS
ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937
Approximate
Order of Stangard Standard
Difference | Varlance Kurtnsiz Error of Error of
B . Vi— Vi | Vi— Vi
k Vk Dk Gk Qk HkN Bk 9""
0 47969 | 33.4472 1.45 6.73 6.780 0.71267 0.70751
1 0.7020 4.4384 9.01 12,30 13.545 0.05708 0.05183
2 0.4402 1.1000 5.68 16.34 18.108 0.02694 0.02431
3 0.3931 1.1920 .72 18.30 21.455 0,02148 0.01832
4 0.3767 1.1974 8.44 19.70 23.928 0,01912 0.01574
5 0.3662 1.2609 9.40 20.49 26,741 0.01788 0.01423
é 0.3548 1.3041 10.36 20.87 27.046 0.01700 0.01312
7 0.3501 1.2738 10.39 21.37 27.953 0.01638 0.01252
8 0.3426 1.2460 10.61 21.60 28.549 0.01686 0.01200
9 0.3334 1.2141 10.92 21.64 28.895 0.01541 0.01154
10 0.3243 | v | it [ e b e | e T,
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variance multiplied by B, must be divided by the sum of the fourth
powers of certain binomial coeflicients,” in order to give us the best
estimate of the kurtosis. The reason is the same as for the division of
the mean square of the differences by a binomial coefficient (page
40). These divisors appear in Table 15, We show in Table 16 the
reciprocals of these sums, or a coefficient C; by which the difference
between the fourth moment and the square of the variance multiplied
by B must be multiplied. The pertinent caleulations are shown in
Table 17 for our annual wheat-flour prices. The result is a number Dy
which is the best estimate of the kurtosis of the kth difference.
Dy, the best estimate of the kurtosis for the first and higher dif-
ferences, is calculated in the following way;
(65
T:fs‘?k —3 (2ka) 2 V2 S‘:k)
-Dk= k :lVN——_dk—_BkVEQ]Ck! k:]-:zl""
= GCH*

i=0

For instance, we get from Table 8 for the annual wheat-flour prices
for £ =2 the sum of the fourth powers of the second differences
8.® = 1,873.501. Table 17 gives us for the same price series for
k=2 the variance of the second differences as V; = 0.4402. The multi-
plier By is, from Table 14 for k=2, shown as 108. Hence we get for the
denominator of the expression which gives us the estimate of D, , the
kurtosis of the second differences, with N——2 = 46: (1,873.501/46)
— {108) (0.4492)* = 19.8005. This is to be divided by the factor giv-
en in Table 15, for k=2, which is 18. The division 19.8005/18 =
1.1000 gives us the exact value of D, , the best estimate of the kurto-
sis of the second differences. We could also have multiplied the value
19.8005 by the factor given in Table 16, Ci for k=2, which is 0.055
555 5656. This gives exactly the same result. The result is shown in
Table 17, together with estimates I, for the kurtosis of the other dif-
ferences of the wheat-flour prices.

The calculation for the original series is somewhat different from
that for the series of differences.® First we need also the sum of the
third powers of the original series S,(, since that is necessary for the
calculation of the fourth moment (Table 8 for annual wheat-flour
prices). It appears in our case to be equal to 15,497.211, We desig-
nate by m, the fourth moment about the mean. We have the well-
known formula®

7 Ibid.
8 Ibid., p. T8.
*H, T, Davis and W. F. C. Nelson, ep. ¢it., p. 81.
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TAEBLE 18
z
CORFFICIENTS E, = S(N—Nﬂ )
Number i Number }
“athe | Ey DD.* ‘e | K, DD+
Original Qriginal
Series Series
N N
10 2.430 000 0.027 7500 850 2.982 882 0.000 04274
20 2.707 500 0.009 5824 400 2.985 019 0.000 03326
a0 2.803 331 0.004 8544 450 2.986 682 0.000 02660
40 2.851 875 0.002 9325 500 2.988 012 0.000 02178
50 2.881 200 0.091 9633 550 2.98% 101 0.000 01814
60 2.800 833 0,601 4065 600 2.990 008 0.060 01536
70 2.914 898 0.001 0571 650 2.990 776 0.000 01318
80 2.925 469 0.000 8235 700 2.991 435 (0.000 01140
90 2.923 704 0.000 6596 760 2.992 005 $.060 01000
100 2.940 300 0.000 39666
300 2.992 505 0,000 00880
150 2.960 133 0.000 19884 850 2.992 945 0.000 00784
200 2.970 075 0.000 11946 900 2.993 337 0.000 00702
250 2.976 048 0.000 07972 950 2.993 688 0.000 00630
300 2.980 034 0.000 05698 1000 2094003 | e

* Divided difference, positive.

m, = 8, /N — 48, /N -+ 68,9%2/N — 3ivt

where S, = 135,386.771 is the sum of the fourth powers, S, =
15,497.211 the sum of the cubes, S.'® = 1,995.816 the sum of the

squares, and w = 6.0731 the mean of the original items of the wheat-
flour series (i.e., §,//N = 291.510/48), given in Table 8.2° The cal-
culation gives for the fourth moment about the mean: m, = (135,
336.771) /48 — (4) (15,497.211) (6.0731) /48 -+ (6) (1,995.816)
(6.0731)2/48 — (3) (6.0781)* = 96.8859,

This gives in our case m, = 96.8859. The formula for the kurto-
sis of the original series, D, , is: D, = (m, — Ey Vi2)Fy. We deduct
from the fourth moment m, three times the square of the variance of
the original series multiplied by a number which depends on N, the
number of items in the original series. The coefficient 3[ (N—1) /N]?
by which we have to multiply the square of the variance of the original
series (V,) is Ey. This is tabulated for selected values of N ; further
values can be found by interpolation (Table 18). In our example we

18 R, A. Fisher, loe, ¢it.



56 THE VARIATE DIFFERENCE METHOD

TABLE 19
1
COEFFICIENTS Fy =
1 4 " 6 3
N ' Nz Ns
Numb;r Number
ofi ]tte;: r D.D.* oi:gt;ehms F D
Orxilginal N " Orizinal ¥ D.D.
Series R Series
N
10 1.522 070 0,029 4511 350 1.011 511 0.000 02836
20 1.227 559 0.008 2375 400 1.010 063 0.000 02250
30 1.145184 0.003 8626 450 1.008 938 0.000 01796
40 1.106 558 0.002 2401 500 1.008 040 0.000 01468
50 1.084 157 0.001 4622 6560 1.007 306 0.000 01222
60 1.069 535 0.001 0295 600 1.006 695 0.000 01034
70 1.059 240 0.000 7640 8560 1.006 178 4.000 00836
80 1.051 600 0.000 5894 700 1,005 735 0.000 00768
20 1.045 708 0.000 4687 750 1.005 351 0.000 00670
100 1.041 019 0.000 27804 800 1.005 016 0.000 00592
1]
150 1.027 117 0.000 13730 850 1.004 720 0.000 00526
200 1.020 262 - 0.000 08182 . 900 1.004 457 0.000 00472
2560 1.016 161 ] 0.000 05432 950 1,004 221 | 0.000 00422
300 1.013 445 | 0.000 03868 1000 1.004 010  ——

* Divided difference, negative,

have to multiply the square of the variance of the original series of
wheat-flour prices, V,2 = (4.79698)* = 23.0102 (from Table 17), by
the value Ey for N = 48 from Table 18, which is 2.875 335. This
gives By V.2 = (2.875 335) (23.0102) = 66.1620. Deducting this from
m, = 96.8859 we get m, — Ey V,2 = 96.8859 — 66.1620 — 30.7239.

In order to get the best estimate of the kurtosis of the original
series D, , we have to divide this result by 1 — 4/N + 6/Nz — 3/N=
for N = 48, We give in Table 19 the reciprocals of this value which we
designate by Fy . The previous result m, — E»V.? has to be multiplied
by Fx from Table 19 for N = 48 which is 1.088 637. This gives the
best estimate for D, . The kurtosis of the original series of wheat-flour
prices, is D, = (80.7239) (1.088 637) — 33.4472 and has been tabu-
lated in Table 17.

The standard error of the difference between the variances of two
consecutive series of finite differences involves a few more calcula-
tions.! We have first to find certain magnitudes G, , which are the

11 R, Zayeoff, op. cit., p. 79 ff.
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TABLE 20

COEFFICIENTS Hy,yy
{k = Order of Difference)

of Items k==0 k=1 k—2 k=
in the
Original :
Series . [
—N H, | Dpb* | H, |DD* | H, |DD* H,, | D.D.*

10 2875 0.1384 | 4.748 | 0.8140 | 5.287! 0.4483 | 5263 | 0.5486
20 4259 01042 | 7.898) 0.235¢ | 9.770| 0.3458 | 10.749 | 0.4401
30 5.301| 0.0869 | 10.242 | 0.1948 | 13.228 | 0.2878 | 15.150 | 0.3710
40 6.170| 00762 | 12190 | 0.1694 |16.106 | 0.2502 | 18.860 1 0.3244
50 6.932| 0.0687 | 13.884 | 0.1517 |18.608 | 0.2237 | 22.104 | 0.2907

60 7.619| 0.0630 |15.401 | 0.1385 |20.845 | 0.208% ' 25.011 | 0.2650
70 8.249| 0.6585 | 16.786 | 0.1282 | 22.884 | 0.1883 27.661 | 0.2449
80 8.834| 0.0649 | 18.068 | 0.1198 | 24.767 | 0.1758 30.110 | 0.2284
90 9.3583 | 0.0518 | 19.266 | 0.1130 | 26.525 | 0.1654 ' 32.394 | 0.2147
100 9.901 | 0.04530 | 20.396 | 0.09818 | 28,179 | 0.14322 | 84.541 | 0.18562

150 12,166 | 0.03812 | 25.305 | 0.08212 | 35.340 | 0.11924 | 43.822 | 0.15402
200 14.072 | 0.03352 ) 29,411 | 0.07420 | 41.302 | 0.10426 | 51.523 | 0.13436
250 15.748 | 0.03030 | 33.121 | 0.06276 | 46.515 | 0.09378 | 58.241 | 0.12062
300 17.263 | 0.02784 | 36.259 | 0.065958 ; 51.204 | 0.08594 ;| 64.272 | 0.11038

350 18.655 | 0.02590 | 39.238 | 0.05538 | 55.501 ¢ 0.07978 | 69.791 | 0.10236
400 19.950 | 0.02432 | 42.006 | 0.05194 | 59.490 ; 0.07476 | 74.909 | 0.09582
450 21.166 | 0.02300 | 44.603 | 0.04910 | 63.228 | 0.07060 | T79.700 | 0.09044
500 22,316 ; 0.02188 | 47.068 | 0.04664 | 66.758 | 0.06706 | 84.222 | 0.08586

550 23.410 [ 0.02088 | 49.390 | 0.04454 ; 70.111 | 0.06400 | 88.515 | 0.08188
800 24,4541 0.02004 | 51.617 | 0.04270 ; 73.311 | 0.06134 | 92.609 | 0.07842
650 25.456 | 0.01928 | 3.7562 [ 0.04108 |76.378 | 0.05896 | 96.530 | 0.07538
700 26.420 | 0.01860 | 55.806 ; 0.03862 | 79.326 ; 0.05684 | 100,299 | 0.07266

750 27.350 | 0.01798 | 57.787 | 0.03828 | 82.168 | 0.05496 | 103.932 | 0.07020
800 28.249 | 0.01742 | 59.701 | 0.03712 | B4.916 | 0.05322 ] 107.442 | 0.06798
850 29.120 | 0.01694 | 61.557 | 0.03602 | 87.577 | 0.05166 | 110.841 | 0.06596
900 20.967 | 0.01646 | 63.8358 | 0.03502 | 90.160 | 0.05022 | 114.139 | 0.06414
950 30.790 | 0.01602 | 65.109 | 0.03412 | 92.671 | 0.04890 { 117.346 | 0.06240
1000 31591 66.815 | ... 95.116 | .. ... 120.466 [ ...

* Divided difference, positive.
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TABLE 20 (continued)
COEFFICIENTS Hy
(k¥ = Order of Difference)
Number
of Items
in the E=4 k=5 k=26 k=17
Criginal
Series
N H,; | D.D* H,y | D.D* H.,x | DD* H,\ D.D*
10 4.985| 0.6179 4.675 | 0.6539 4,893 | 0.6128 JUURUIUOV U
20 11,164} 0.5188 11.214 | 0.5833 110214 0.6357 10.662 | 0.6780
30 16.352 | 0.4443 17.047 | 0.5078 17.378 [ 0.5624 17.442 | 0.6092
40 20.795 | 0.3916 22,125 | 0.4520 23.002 | 0.5054 23.534 | 0.6524
B0 24.711| 0.3526 26,645 | 0.4091 28.066 | 0.4604 29,058 | 0.5065
60 28.237 ] 0.3223 30,736 | 0.3755 32,660 | 0.4244 34.123 | 0.4691
70 31.460 | 0.2952 34.491 | 0.3482 36.904 | 0.2947 38.814 {0.4378
80 34.412 | 6.2814 87.973 | 0.3255 40.851 ) 0.3699 48,192 | 0,4113
90 37.226 | 0.2617 41,228 | 0.3065 44,550 | 0.3488 47.305 |0.3886
100 39.843 | 0.22620| 44.293| 0.26514]| 4B.038| 0.30244, 51.191 |0.33804
150 51.158 ¢ 0.18738| 57.550 | 0.21962! 63.160 | 0.25084| 68.093 | 0.28104
200 60.522 ; 0.16316( 68.531| 0.19106, 75.702| 0.21818] 82,145 | 0.24456
250 68.6801 0.14628( 78.0841 0.17112| 86.611| 0.19528 94.373 | 0.21888
300 75.994 | 0.13370! 86,640 | 0.16624| 96.375; 0.17820 105.317 | 0.19962
350 82.679 | 0.12384| 94.452 0.14462| 105.285 | 0.16482| 115,298 | 0.18456
400 B8.871 [ 0.11588| 101.683 | 0.13520| 113.526, 0.15400) 124,526 | 0.17240
450 94.665 | 0.10920| 108.443 | 0.127421 121.226 | 0.14508| 133.146 |0.16228
500 100,125 | 0.10372| 114.814 | 0.12080] 128.479 | 0.13748; 141.260 | 0.15376
550 105.311 | 0.09884) 120.854 | 0.11514| 135.353 | 0.13094| 148.948 | 0.14640
600 110.263 | 0.09462: 126.611 | 0.11016| 141.900 | 0.12528| 156.268 | (.14000
650 114.984 | 0.09088] 132,119 | D.10582 | 148.164 | 0.12026| 163.268 ] 0.13436
700 115.528 | 0.08760| 137.410 | 0.10190| 154.177| 0.11554| 169.986 | 0,12034
750 123.908 | 0.08460 142.505 | 0.09842| 159,954 | 0.11206| 176.463 | 0.12484
800 128,138 | 0.08190, 147.426 | 0.09526 | 165.557 | 0.10818| 182.695 | 0.12076
850 |182.2323 | 0.07946 | 152,189 | 0.09240 | 170.966 | 0.10490| 188.733 } 0.11708
900 | 136.206 | 0.07722| 156.809 | 0.08976 176.211 | 0.10188 194.587 | 0.11370
950 |140.067 0.07514! 161.297 | 0.08734; 181.305 | 0.09912| 200.272 | 0.11060
1000 ’ 165.664 | ... 186.261 | ....... | 205,802 | Lo

143.824 | e

* Divided difference, positive.
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TABLE 2¢ (concluded)
COEFFICIENTS Hjy
(k = OQOrder of Difference)
I — __
e
%o the k=8 k=9 k=10
Original
Serics
_Bemes |
N Hyy D.D.* H.y D.D.* H..» D.D.*
T T | | | i |
20 10.191 0.7117 9.647 0.7878 9,061 0.7566
20 17.308 0.6491 17.025 0.6830 16.627 0.7120
40 23.799 0.5937 23.855 0.6300 23.747 0.6619
5O 29.736 0.5479 30.155 0.5849 30.366 0.6178
60 35.215 0.5097 36.004 0.5465 36.544 0.579%
70 40,312 0.4774 41.469 0.5138 42.348 0.5469
30 45.086 0,4498 46.607 0.4853 47812 0.5183
o0 49.584 0.4259 51.460 0.4607 52.995 0.4930
100 53.843 0.37192 56.067 0.40402 57.925 0.43436
150 72.439 0.51622 76.268 0.33832 79.643 0.36532
200 87.950 0.27022 93.184 0.29518 97.909 0.31938
250 101.461 0.24192 107.943 0.26440 113.878 0.28634
300 113.557 0.22062 123.163 0.24118 128.195 0.26128
350 124.588 0.20392 133.222 0.22290 141.259 0.24152
4060 134.784 0.19040 144.367 (.20808 158.385 0.22548
450 144.304 0.17920 154.771 0.19580 164.609 0.21210
500 1653.264 0.16968 164.561 0.18538 176.214 0.20080
850 161.748 0.16156 173.830 0.17642 185.254 0.19108
600 169.826 0.15444 182.651 0.16864 194.808 0.12258
650 177.548 0.14818 191.083 0.16174 203.937 0.17510
700 184.957 0.14260 199.170 0.15564 212.692 0.16846
750 192.087 0.13762 206.952 0.15014 221115 0.16250
800 198.968 0.13210 214.459 0.14520 229240 0.15710
850 205.623 0.12900 221.719 0.14072 237.095 0.15222
800 212.073 0.12526 228.755 0.13658 244.706 0.14774
950 218.336 0.12180 235.584 0.13282 262.093 0.14364
1000 224.426 242225 ¢ . 259276 ¢ ..

% Divided difference, positive,
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TABLE 21

COEFFICIENTS J,,
(k = Ovrder of DifTerence)

Number i
of Ilems
Ongima k=0 k=1
Series
N Jox D.D.* P D.D.*
10 0.040 816 0.001 8203 0.082 610 0.003 2906
20 0.022 613 0.000 7023 0.049 704 0.001 4167
30 0.015 590 0.000 3700 0.03b 647 0.000 7875
40 0.011 890 0.000 2282 0.027 672 0.000 5018
50 0.009 G08 0.000 1548 0.022 654 0.000 3476
60 0.008 060 0.000 1118 0.019 178 0.000 2552
70 0.006 942 0.000 0846 i 0.016 626 0.000 1952
86 0.006 096 0.000 0663 | 0.014 674 0.000 1542
90 0.005 433 0.000 0532 II 0.013 132 0.000 1249
100 0.004 501 0.000 03224 0.011 883 0.000 07656
150 0.003 289 s 0.000 01628 0.008 055 0.000 03926
200 0.002 475 0.000 00984 0.006 092 0.000 02388
250 0.001 983 0.000 00654 0.004 898 0.000 01604
300 0.001 656 0.000 00472 0.004 096 0.000 011564
350 0.001 420 0.000 00352 0.003 519 0.000 00868
400 0.001 244 0.000 00276 0.003 085 0.600 00678
450 0.001 106 0.000 00220 0.002 746 0.000 00644
500 0.000 996 0.000 00180 0.002 474 0.000 00446
550 0.000 906 0.000 00150 0.002 251 0.000 00372
600 0.000 831 0.0060 00128 0.002 065 0.000 00316
650 0.000 767 0.000 00110 0.001 907 0.000 00268
700 0.000 712 0.000 00094 0.001 773 0.000 00236
750 0.000 665 0.000 00084 0.001 655 0,000 00206
800 0.000 623 0.000 00072 0.001 552 0.000 00180
850 0.000 587 0.000 00066 0.001 462 0.000 00162
900 0.000 554 0.000 00058 0.001 381 0.000 00144
250 0.000 525 0.000 00052 0.001 309 0.000 00130
1000 0000499 | ... [ 0.001244 |

® Divided difference, negative.
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TABLE 21 (continued)

COEFFICIENTS Jyr

{k = Order of Difference)

Number
oifr}ﬁr:s k=2 =23
Original
Series
N | I DD+ Jow D.D>
BT 0.112 458 0.0036115 | 0116206 | D.003 0959
20 0.076 338 0.001 8766 0.085 247 0.001 8321
30 0.057 572 0.001 1374 0.066 926 0.001 1849
40 0.046 198 0.000 7625 0.055 077 0.000 8284
50 0.038 575 0.000 5465 0.046 793 0.000 6118
60 0.033 110 0.000 4109 0.040 675 0.000 4703
70 0.029 001 0.000 3202 0.035 972 0.000 3728
80 0.025 799 0.000 2564 0.032 244 0.000 2027
90 0.023 235 0.000 2102 0.029 217 0.000 2508
100 0.021 133 0.000 13162 0.026 709 0.000 16040
150 0.014 552 0.000 06910 0.018689 | 0.000 08632
200 0.011 097 0.000 04258 0.014 373 0.000 05392
250 0.008 968 0.000 02888 0.011 677 0.000 03690
200 0.007 524 0.000 02086 0.009 832 0.000 02682
350 0.006 481 0.000 01580 0.008 491 0.000 02038
400 0.005 691 0.000 01234 0.007 472 0.000 01602
450 0.005 074 0.000 00994 0.006 671 0.000 01292
500 0.004 577 0.000 00818 0.006 025 0.000 01064
550 0.004 168 0.000 00682 0.005 493 0.000 00890
600 0.003 827 0.000 00580 0.005 048 0.000 00758
650 0.003 537 0.000 00496 0.004 669 0.000 00652
700 0.003 289 0.000 00434 0.004 343 0.000 00566
750 0.003 072 0.000 00378 0.004 060 0.000 00498
800 0.002 883 0.000 00336 0.008 811 0.000 00440
850 0.002 715 0.000 00298 0.002 591 0.000 00390
900 0.002 566 0.000 00266 0.002 306 0.000 00852
950 0.002 433 0.000 00242 0.002 220 0.000 00316
1000 0002812 | | 0003062 | oo

* Divided difference, negative.
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TABLE 21 (continued)

COEFTICIENTS J .y
{k — Order of Difference)

Number
of Items
in the k=4 k=5
Original
Series - R ~
N da D.D.* Ioy D.D*
10 0117720 |  0.0025410 0.113 492 0.001 8215
20 0.092 310 0.001 7308 0.095 277 0.001 5676
30 0.075 002 0.001 1856 0.079 601 0.001 1260
40 0.063 146 0.000 8617 0.068 341 0.000 8466
50 0.054 529 0.000 6547 0.059 875 0.000 6596
60 0.047 982 0.000 5143 0.053 279 0.000 5285
70 0.042 839 0.000 4146 0.047 994 0.000 4331
80 0.028 693 0.000 3415 0.043 663 0.000 3613
90 0.035 278 0.000 2860 0.040 050 0.000 3061
100 0.032 418 0.000 18702 0.036 989 0.000 20448
150 0.023 067 0.000 10328 0.026 765 0.000 11592
200 0.017 903 0.000 06548 0.020 969 0.000 07464
250 0.014 629 0.000 04524 0.017 237 0.000 05208
300 0.012 367 0.000 03312 0.014 633 0.000 03342
350 0.010 711 0.000 02530 0.012 712 0.000 02950
400 0.009 446 0.000 01996 0.011 237 0.000 02336
450 0.008 448 0.000 01614 0.010 069 0.000 01896
500 0.007 641 0.000 01320 0.009 121 0.000 01570
550 0.006 981 0.000 01132 0.008 336 0.000 01322
600 0.006 415 0.000 00952 0.007 675 0.000 01126
650 0.005 939 0.000 00822 0.007 112 0.000 00974
700 0.005 528 0.000 00714 0.006 625 0.000 00843
750 0.005 171 0.000 00628 0.006 201 0.000 00746
200 0.004 857 0.000 00556 0.005 828 0.000 00662
850 0.004 579 0.000 00496 0.005 4977 0.000 00590
900 0.004 331 0.000 00444 0.005 202 0.000 00530
950 0.004 109 0.000 00402 0.004 937 0.000 00480
1000 0.008908 | oo 0.004 697 | o

* Divided difference, negntive.
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TABLE 21 (continued)
COEFFICIENTS Jyy
(k% — Order of Difference)
.::Nu;lber = T ' T
athe k=6
Drig-_inal
Series
N Jox D.D.* Lo _DDs*
10 0.097924 |  0.000 1355 0.169 866 0.007 3269
20 0.096 569 0.001 4017 0.096 597 0.001 2439
50 0.082 552 0.001 0483 0.084 158 0.000 9635
40 0.072 069 0.000 8113 0.074 523 0.000 7644
50 0.063 956 0.000 6467 0.066 879 0.000 6215
60 0.057 489 0.000 5276 0.060 664 0.000 5154
70 0.052 213 0.000 4388 0.055 510 0.000 4345
80 0.047 825 0.000 3707 0.051 165 0.000 3713
90 0.044 118 0.000 8173 0.047 452 0.000 3210
100 0.040 945 0.000 21654 0.044 242 0.000 22356
150 0.030 118 0.000 12594 0.083 064 0.000 13334
200 0.023 821 0.000 08238 0.026 397 0.000 08858
250 0.019 702 0.000 05810 0.021 968 0.000 06312
300 0.018 797 0.000 04318 0.018 812 0.000 04728
350 0.014 639 0.000 03332 0.016 448 0.000 03670
400 0.012 978 0.000 02652 0.014 613 0.000 02934
450 0.011 647 0.000 02180 0.013 146 0.0060 02400
500 0.010 667 0.000 01794 0.011 946 0.000 01996
550 0.009 670 0.000 01512 0.010 948 0.000 01680
600 0.008 914 0.000 01294 0.010 108 0.000 01448
650 0.008 267 0.000 01120 0.000 379 0.000 01254
700 0.007 707 0.000 00976 0.008 752 0,000 01096
750 0.007 219 0.000 00860 0.008 204 0.000 00968
800 0.006 789 0.000 00762 0.007 720 0.000 00858
850 0.006 408 0.000 00684 0,007 291 0.000 00770
900 0.006 056 0.000 00612 0.006 906 0.000 00692
950 0.005 760 0.000 00554 0.008 560 0.000 00626
1000 0.005483 | e 0.006 247 | e

* Divided difference, negative.



64

THE VARIATE DIFFERENCE METHOD

TABLE 21 (continued)

COEFFICIENTS Jpp
(k = Order of Difference)

Number -
ug‘ Items
Oniginal k=8
Series
N Jex D.D> oy D.D.*
10 | 0131016 | 00035118 | o |
20 0.095 898 0.001 1005 0.094 720 0.000 9709
30 0.084 893 0.000 3802 0.085 011 0.000 8018
40 0.078 091 0.000 7132 0.076 993 0.000 6618
50 0.068 959 9.000 5901 0.070 376 0.000 5559
60 0.063 058 0.000 4966 0.064 816 0.000 4739
70 0.058 092 0.000 4238 0.060 077 0.000 4089
80 0.053 854 0.000 3660 0.055 988 0.000 3567
90 0.050 194 0.000 2193 0.052 421 0.000 3137
100 0.047 001 0.000 22676 0.049 284 0.000 22692
150 0.085 663 0.000 13858 0.037 938 0.000 14194
200 0.028 734 0.000 09346 0.030 841 0.000 09718
250 0.024 061 0.000 06732 0.025 982 0.000 07072
300 0.020 695 0.000 05080 0.022 446 0.000 05376
350 0.018 155 0.000 03968 0.019 758 0.000 04228
400 0.016 171 0.000 03186 0.017 644 0.000 03410
450 0.014 578 0.000 02616 0.015 939 0.000 02808
500 0.013 270 0.000 02184 0.014 535 0.000 02354
550 0.012 178 0.000 01852 0.013 358 0.000 02002
600 0.011 252 0.000 01590 0.012 357 0.000 01722
650 0.010 457 0.000 01382 0.011 496 0.000 01498
700 0.009 766 0.000 01208 0.010 747 0.000 01314
750 0.009 162 0.000 01068 0.010 090 0.000 01164
800 0.008 628 0.000 00952 0.009 508 0.000 01036
850 0.008 152 0.000 00850 0.008 990 0.600 00930
900 0.007 727 0.000 00768 0.008 525 0.000 00858
950 0.007 843 0.000 00694 0.008 106 0.000 00758
1000 0.006 996 | i L0007 727 | e

* Divided difference, negative,
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TABLE 21 (concluded)

COEFFICIENTS Jy
(k — Order of Difference)

P - aerm———eee]
—_

Series Number
of igws k=10 U the k=10
Original Originai
Number Series
N Jrow D.D.* N I sox ' D.D*
10 350 0.021 259 0.000 04448
20 0.023 223 0.000 8616 400 0.019 035 0.000 03606
30 0.084 708 0,000 7266 450 0.017 232 0.000 02982
40 0.077 442 0.000 6157 500 0.015 741 0.000 62506
50 0.071 285 0.000 5211
560 0.014 488 0.000 02138
60 0.066 074 0.000 4494 600 0.013 419 0.000 01844
T0 0.061 580 0.000 316 650 0.012 497 0.000 01606
80 0.057 664 0.000 3446 700 0.011 694 0.000 01412
90 0.054 218 0.000 3056 750 0.010 988 0.000 01252
100 0.051 162 0.000 22480
800 (.010 362 0.000 011186
160 0.039 922 0.000 14374 850 0.009 804 0.000 01002
200 0.032 735 0.000 099886 900 0.0092 303 (.000 00906
250 0.027 742 0.000 07342 950 0.008 850 0.000 00820
300 0.024 071 0.000 05624 1000 0008440 1 .

* Divided difference, negative.

kurtosis Dy divided by the square of the variance of the series of finite
differences in question V;2. We give the quantities Gy also in Table
17 for our example: &, = Dy /Vi2. We have, for instance, for wheat-
flour prices in Table 17, the variance and kurtosis of the fifth differ-
ence V; = 0.3662 and D, = 1.2609. We hence get for the G; = D,/V 2
= 1.2609/(0.3662)% = 9.40. This value and the other values of the
Gy for the annual wheat-flour prices are given in Table 17.

We next form quantities @, which are defined by the formula:
@ = Hiw/v1 § JevGi . The magnitudes Hyy and Jiy have been tabula-
ted in Tables 20 and 21. They are given for every difference from
k = 0to k = 10 and for selected values of N, the number of items in
the original series. The tables can also be interpolated and divided
differences are provided for this purpose. The caleulation method for
our exaraple, wheat-flour prices, is shown in Table 17.

To show the process of calculation, we shall indicate the opera-
tions for the calculation of the value @, of our wheat-flour prices. We
have G, =D;/V* = 1.3041/(0.3548)2 = 10.36 from Table 17 for
k = 6. By interpolation we find for H,y in Table 20 the value 27.045
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for N = 48 and & == 6 and similarly from Table 21 the value 0.065 579
for Jyy, k=6, N=48. By the formula given above, we then calculate

Q. = 27.045/T -+ (0.065 579) (10.36) = 20.87. This value and other
values of the @, for the wheat-flour prices are shown in Table 17,

The standard error e, of the difference between the variance of
the kth difference and the (k4-1)th difference series, Vi — Vi, is
equal to the variance of the lower series of differences V) divided by
Q. or e, = Vi/Ch . Take for instance again our annual wheat-flour
prices. We get from Table 17 for k=7, @. = 21.37, and the variance
of the seventh differences, V; = 0.35601. Hence the standard error for
the difference between the variances of the seventh and eighth differ-
ences, V, — Vg, is e; = V,/Q; = 0.8501/21.37 = 0.01638. This is giv-
en in Table 17 together with other ;.

If the kurtosis is small and we think we are near enough to a
normal distribution in order to be able to neglect it, we can use an
approximate error instead of the correct value of the standard error
indicated above. We substitute the numerator of Qs , that is, Hyy, for
@ itself and get for the approximate standard error ¢° = Vi/Hyy .
For instance, again for our annual wheat-fiour prices we have from
Table 17: V. = 0.3426; and by interpolation from Table 20 for N = 48,
k = 8: H,, = 28.649. This gives us for the approximate standard er-
ror of the difference between the variances of the eighth and ninth
finite difference series; &,° = V,/H.y = 0.3426/28.549 = 0.01200. This
value and other values of ¢.° are also given in Table 17.




CHAPTER VII

CRITERIA FOR THE STABILITY OF THE VARIANCES OF THE
SERIES OF FINITE DIFFERENCES

We have shown in the last chapter how it is possible to find the
standard error of the difference between the variances of two con-
gecutive series of finite differences. From the point of view of prob-
ability, it appears that these variances become stable in long series
if consecutive variances do not differ from each other by more than
about three times the standard error of the difference {(see above, pages
33 f.). Criteria have been given for this by Professor Q. Anderson® of
Sofia, Bulgaria, and they have been recently improved by Dr. R. Zay-
coff? of Sofia. We are going to use in this connection Dr. Zaycoff’s first
criterion, which he himself considers the better one,

The comparison is made in the following way. We form the cri-
terion (standard-error ratio) :

B (Vo= Vi)

Vi

This is the difference between two consecutive variances divided by its
standard error. The value of the difference between two consecutive
variances of the series of finite differences (for instance the difference
hetween the variances of the series of first finite differences and the
series of second finite differences, V, — V) is divided by the variance
of the difference of lower order (in our example by the variance of the
series of the first differences, V,). The result is multiplied by the
quantity @ with the index which corresponds to the lower of the se-
ries of finite differences (in our case by @,). We shall use the quan-
tities @, rather than the approximations Hy if we wish to be quite
accurate and if our distributions show considerable kurtosis. We do
this in our case for all the variances of the series of finite differences
of wheat-flour prices up to the tenth. The last criterion E,, for in-
stance, is the value of the difference between the variances of the
ninth and tenth finite differences, V, — V.., divided by the vari-

10. Anderson, Die Korrelationsrechnung in der Konjunkturforschung, Bonn,
1929, pp. 56 ff., 112 ff. See also below, Appendix II, pp. 139 ff., and Appendix I,
Sections C and T, for a summary of computations.

2R, Zaycoff, “Ueber die Ausschaltung der Zufillizen Komponente nach der

‘Variate-Difference’ Methode,” Publications of the Stutistical Inmstitute for Eco-
nomic Research, State University of Sofia, 1937, No. 1, pp. 78 ff.

— 87 —

Q-



68 THE VARIATE DIFFERENCE METHOD

ance of the ninth finite difference, V,, and multiplied by the quantity
Q. as described in the previous chapter (Table 22).

We have again in our example of annual wheat-flour prices, from
Table 17: V, = 0.3334 and V,, = 0.3243. We get from Table 22:
Q, = 21.64. Hence the eriterion K, for the difference between the
variances of the ninth and tenth differences is: B, = (Vy — Vi) @/ V,
= (0.3384 — 0.3243) (21.64) /0.3384 = 0.5906. This value and all
other values for the exact criterion R, for the annual wheat-flour
prices are tabulated in Table 22,

TABLE 22
DIFFERENCE ANALYSIS

ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937

Order of Ytandard Approximate
Difference Variance Kurtesis Ervor Standard
Ratio Error Ratio
kT v D, Q. R, Ro

0 4.7959 53,4473 6.73 5.7469 5.7878

1 0.7020 4.4384 12.30 4.5863 6.0514

2 0.4402 1.1060 16.34 1.7488 1.9368

3 0.3931 1.1920 18.30 07637 0.8952

4 0.3767 1.1974 19.70 0.5492 0.6668

5 0.3662 1.2609 20.49 0.6376 0.8012

6 0.3548 1.3041 20.87 0.2764 0.3582

7 0.3501 1.2733 21.37 0.45679 0.5987

8 0.3426 1.2460 21.60 0.5800 0.7668

9 0.3334 1.2141 21.64 0.5900 0.7885

10 03243 | [N UV K

Those criteria R,, B, R., etc., are arranged in a series. We are go-
ing to consider as reasonably stable the variance beginning from which
the K. becomes numerically smaller than 3 and stays more or less so.
The R’s for our annual wheat-flour prices are given in Table 22, where
also some of the caleulations are exhibited. Whereas R, and R, are
greater than 4, B, and all the following parameters are certainly
smaller than 2 and become very small indeed for higher differences.
Hence we can conelude that we have eliminated the mathematical ex-
pectation or the nonrandom element of our wheat-flour prices with
reasonable accuracy in the second or third difference in the particular
case under consideration. We ean say that in all probability beginning
with the second or third difference there are left only some remain-
ders of the nonrandom element which we ean neglect for our purposes

(see above, pages 83 £.). An zlternative procedure is given in Chapter
VIII.
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We shall now try to find the best approximation to the true ran-
dom variance of the original series. In order to do this we take the
variance of the series of finite differences beginning from which we
can be reasonably sure that we have eliminafed the nonrandom ele-
ment to the desired degree. In our case, for example, we should take
the variance of the second finite difference, which is equal to 0.4402
(Table 22). We could say that this probably represents a good ap-
proximation to the frue variance of the pure random element in our
time series, as defined above (Chapter I, Section C}.

If we desire to avoid a great deal of calculation and if we have
reason to think that the kurtosis of our series is not very great, we
may use the approximations Hyy instead of the better estimates Q.
We shall then form a criterion (approximate standard-error ratio):

— (Vk - Vku)

B v

HkN M

The procedure is also shown in Table 22, It is the same as the form-
er, except that we use the approximate instead of the more accurate
estimates of the standard errors.

In order to show the calculations, let us use, for instance, our
previous example and calculate the approximate criterion, B¢, for the
difference between the variances of the fourth and fifth difference
series of annual wheat-flour prices. We have from Table 22; V, =
0.3767 and V, = (.8662 as estimatfes for the two variances. Table 20
gives for k = 4 and N = 48, by interpolation, A,y = 23.928. Hence
the approximate eriterion B° = (0.3767 — 0.3662) (23.928) /0.3767 =
0.6668. The values of this approximate criterion R? are also given in
Table 22. They yield the same resuli as before. It appears that we
probably eliminate our mathematical expectation or nonrandom ele-
ment in the second or third difference, since B! and the following
values are all smaller than 2,

We have accomplished our goal, for many purposes, if we reach
this stage of our analysis. If we want, for instance, to make a com-
parison of our annual wheat-flour prices with some other statistical
data, we must know the limits of errors and inaccuracies involved in
this statistical comparison. We have seen that it is very improbable
that we shall get a deviation from the true value that is greater than
three times the standard deviation of the random element, which is
approximately 0.66. We are going to be wrong in only about three
cases out of a thousand if we indicate the probable limits of a devia-
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tion due to the random variation from the mathematical expectation
by == 8V, = = 1.99. (See above, pages 33 f.)

This is extremely important if we wish to compare two statisti-
cal series and if we desire to know whether differences can be ex-
plained by the random variation., The same can easily be done for
certain derived statistical series which we calculate from our origi-
nal series. We reproduce, in Appendix IV, the standard errors
of some statlistical series, some of which have been given previ-
ously by the author.* They should facilitate the comparison of certain
parameters calculated from the original series by giving their stand-
ard errors, It is, for instance, possible to indicate the standard error
resulting from the random variation that is retained afier caleulating
a moving average, a seasonal index, a trend, etc. All those statistical
estimates are most important hecause they give the desired statistical
mesasurements for definite economic purposes. They should always be
treated from the point of view of probability. The variate difference
method ean give us a reasonably good estimate of the random varia-
tion in those parameters which is due to the erratic element as defined
above. It enables us alse to make statistical tests of hypotheses,

The same type of analysis is shown in Tables 23 to 25 for the
other prices. We show the difference analysis for annual wool prices
in Table 23. Both the accurate eriterion E; and the approximate cri-
terion R indicate that we have already eliminated the nonrandom ele-

TABLE 23

DIFFERENCE ANALYSIS
ANNUAL WooL Prices, 1850-1937

Order of Standard Approximate
Difference Variance Kurtosis Error Standard
Ratio Error Ratio
k Vi D, Qe R, R

0 0.1069 0.020 93 6.72 4.9715 5.0234

i 0.02769 0.009 810 11.87 0.7671 0.8758

2 0.02590 0.006 434 15.39 -0.2020 -0.2377

3 0.02624 0.007 861 17.22 -0.0918 ~0.1145

4 0.02638 0.008 374 18.47 0.0840 (.1088

5 0.02626 0.008 302 19:26 0,1981 0.2647

6 0.02600 0.008 990 19.76 0.1673 0.2289

T 0.02577 0.008 934 20.17 0.1879 0.2603

g 0.02553 0.008 739 20.48 0.2727 0.2802

9 0.02519 0.008 493 20.64 0.2622 0.3671

10 0.02487 | s R

3 G. Tintner, Prices in the Trade Cycle, Vienna, 1935, pp. 81 ff.
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ment in the first or second finite differences, since both become, and
stay, smaller than 1 in absolute value, i.e., without regard to sign, for

= 2,3, efe.
TABLE 24
DIFFERENCE ANALYSIS
MoNTHLY Wo0L PrICES, 1890-1937
== rof — Standard Approximate

D?ég::n(;e Variance Kurtosis %:Lu; EE;E::}%;&D

k Bz o Dy Qs Ry R

o |o1121 © 0.0476626 | 23.87 | 234370 | 235141

1 0.002 054 0.000 9100 41.75 16.6066 20.1061

2 0.060% 237 0.000 1925 58.56 6.6750 8.1811

3 0.001 096 0.000 1904 66.93 4.0912 5.5411

4 0.001 029 0.000 1559 76.57 3.7434 52731

5 0.000 9787 0.000 1444 83.41 2.8804 42771

6 0.000 9449 0.000 1241 89.69 2.1642 3.3485

7 0.000 9221 0,000 1269 95.30 1.7776 2.8489

8 0.000 9049 0.000 1213 100.38 1.3979 2.3108

9 0.000 8923 0.000 1170 105.01 0.9650 1.6396
10 0.000 8841

Table 24 gives the same type of analysis for monthly wool prices.
The accurate criterion would indicate that the mathematical expec-
tation has been eliminated in the fifth difference, whereas the series

TABLE 25

DIFFERENCE ANALYSIS
ANNUAL Raw-S1Lx PRICES, 1890-1937

Order of

Standard

Approximate
Difference Variance Kurtesis Error Standard
Ratio Error Ratio
I Vi D, Q, R, R
0 2.8914 5.0209 6.76 5.8598 58775
1 0.3849 0.429 2 13.10 3.8639 2.9943
2 0.2714 0.163 4 17.35 2.5383 2.6489
3 0.2317 0.086 24 20.67 2.5320 2.6297
4 0.2033 0.047 31 23.19 2.3842 2.4599
b 0.1824 0.012 60 25.45 2.2590 2.2862
6 0.1662 ~—0.004 80 27.20 2.1113 2.0993
i 0.1533 ~0.018 70 28.66 2.0750 2.0241
8 0.1422 —(.021 80 29.70 2.0464 1.9677
9 0.1324 -0.023 45 30.39 1.7218 1.6387
10

0.1249




72 THE VARIATE DIFFERENCE METHOD

of the R} becomes numerically smaller than 3 only for £ = 7 and high-
er, indicating that we succeed only in the seventh difference in getting
rid of the nonrandom element,

Table 25 gives the difference analysis for the annual raw-silk
prices. Both the exact criterion Ry and the approximation E? point
to the second difference as the difference in which only fraces of the
nonrandom or smooth element remain.

Table 24 gives as an estimate of the true random variance of the
monthly wool prices: Ve = 0.000 9449, From Table 23 for the yearly
wool prices: V; = 0,02769. The random variance of the annual prices
is here almost 30 times as great as that of the monthly prices.

The explanation of this may be attempted in the following way:
some ecohomic causes, which may appear permanent from the point
of view of the shorter run, i.e., in the monthly series, become nonper-
manent and hence part of the random element from the point of view

of a longer run, i.e., in the annual series. (See also above, Chapter 1,
Section C.)



CHAPTER VIII

A TEST OF SIGNIFICANCE FOR THE STABILITY OF VARIANCES
OF THE SERIES 0F FINITE DIFFERENCES'

The variate difference method as developed by Anderson® gives
only asymptotic formulae for the estimated error of the difference be-
tween the variances of two consecutive finite differences of the original
geries (see Chapter VI). Those formulae hold true only for large sam-
ples.s It should be remembered that Anderson’s work in this field
dates back as far as 1914 and hence has not taken into account the
modern ideas of exact tests of significance as developed by R. A. Fish-
er and his school. In the following we shall make an attempt to apply
the Fisher approach to our problem and meet in this way some of the
criticism which has been leveled against the variate difference method.

The asymptotic formulae given by Anderson (Chapters VI, VII)
permit us a direct comparison of the variances of two consecutive dif-
ferences and they utilize all the differences which can be calculated.
We now make the assumption that the random element in the original
series is normally distributed. We could find an exact test of signifi-
cance for the ratio of the variances of two consecutive series of differ-
ences, if we knew the distribution of this ratio for correlated ob-
servations.* Tt is clear that even if the items of the original randoem
element are normally distributed and mutually independent we have
introduced serial correlations hbetween several consecutive items of the
series of differences by forming finite differences. Unfortunately, this

1 The author wants to express his thanks to Professor Harold Hotelling, Co-
lumbia University, Professor 8. 8, Wilks, Princeton University, Professor G, W,
Snedecor, Towa State College, Mr. W. G. Cochran, Rothamsted, and Dr. W. G.
Madow, Columbia University for their kind help and valuable suggestions in con-
nection with the subject treated in this chapter. See, on the general content of
this chapter, G. Tintner, “On Tests of Significance in Time Series,” Annals of
Mathemuatical Statistics, Vol. 10, 1939, pp. 139 ff. See also below, Appendix II, pp.
142 ff., and Appendix I, Section E, for a summary of computations.

19292 0. Andtg_‘son, Die Korrelationsrechnung in der Konjunkturforschung, Bonn,

, pp. b4 ff.

3 R. A. Fisher, Statisticel Methods for Research Workers, Tth ed., London,
1938, pp. 42 ff., Chapter III, Section 11.

+ See M. 8. Bartlett and J. Wishart, “The Distribution of Second Order Mo-
ment Statistics in a Normal System,” Proceedings of the Cambridge Philosophical
Society, Vol. 28, 1932, pp. 455 ff.; W. G. Cochran, “The Distribution of Quadratic
Forms in a Normal System with Applications to the Analysis of Cevariance,”
ibid., Vol. 80, 1934, pp. 178 ff.

— 3
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problem has not yet been solved and hence we canno? apply an exact
test of significance which would utilize all our material.

The problem can be solved, however, by a method which is not
efficient® in the sense that it utilizes all the information available, but
which gives an unbiased estimate. It is consistent.! We will call this
method the method of selection. We select from our difference series
the items which are independent and utilize only the uncorrelated dif-
ferences for the calculation of the variances and for their comparison.

To make this clear let us consider an example. Suppose we want
to compare the variance of our original series with the variance of the
first finite differences in order to see whether the “smooth” element
has already been eliminated by taking the first differences. We cannot
use all the original items and all the first finite differences because
this would mean comparing the variances of elements which are not
independent. By calculating the first finite difference we have intro-
duced a serial correlation between two consecutive items of the series
of first differences.

But we can do something else. We can take the first item, the
fourth, the seventh, the tenth, ete. of our original series and compare
the variance of those selected items with the variance of the second
item, the fifth, eighth, and the eleventh item, ete. of the series of the
first differences. By making these two selections we are really compar-
ing the variances of independent elements. We have made our selee-
tion in such a way as to make the elements which enter into the vari-
ances independent. But we have by this method reduced the number
of items from which we estimate our variances to one-third of the
number originally contained in the series. The number of selected
items should be the same in each series of differences,

We will call this selection “selection number 0-A” because we
compare the original series, that is, the 0th difference, with the first
differences. Instead of making this particular selection, we could
also have selected the items number 2, 5, 8, ete. of the original series
and the items 8, 6, 9, etc. of the series of the first differences. This we
will call the selection 0-B. Finally, we could have taken the items
number 3, 6, 9, ete. of the original series and the items number 4, 7,
10, ete. of the series of first differences, which would have given us
the selection 0-C. Zero is the “order” of the selection (Table 26).

If we want to get an unbiased comparison of the variances of the
first differences and of the second differences we can make five selec-

5 R. A. Fisher, op. cit., pp. 14 ff., Chapter I, Section 3.
€ Ibid., pp. 12 1i., Chapter I, Section 3.
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TABLE 26

SELECTIONS FOR COMPARISON OF THE ORIGINAL AND TEN DIFFERENCES

“aeloction | 0th Difference 1st Difference | Selection | #th Difference 6th Difference
A | 141-10 2-5-8-11 5-A | 1-14-27-40 7-20-33-46
0-B 2-5-8-11 3-6-9-12 5-B 2-15-28-41 8-21-34-47
0-C 3-6-9-12 4-7-10-13 5-C 3-16-29-42 9-22-35-48

| - 5-D 4-17-30-43 10-23-36-49

Selection | lstDifference | 2ndDifference | g | g yggygq | 11-24-87-50
1A 1-6-11-16 3-8-13-18 5-F { 6-19-82-45 12-25-38-51
1-B 2-7-12-17 4-9-14-19 5-G 7-20-33-46 13-26-89-52
1-C 3-8-13-18 5-10-15-20 5-H | 8-21-34-47 14-27-40-53
1-D 4-9-14-19 6-11-16-21 5-1 9-22-35-48 15-28-41-54
1-B 5-10-15-20 7-12-17-22 5.3 | 10-23-36-49 16-20-42-55
7—5;19_(;1?(;1_ 2nd Diﬁemnc?_ 8rd Difference E:E 1;:3;:2;:22 i;:gg::i:gg
2-A 1-8-15-22 4-11-18-25 5-M | 13-26-39-52 19-32-45-58
2-B 2-9-16-23 5-12-19-26 il
9.C 3-10-17-24 6-13-20-27 _Eek_c_ti_:_m_ 6th Difference 7th Difference
2-D 4-11-18-25 7-14-21-28 6-A | 1-16-31-46 8-23-38-53
2-E 5-12-19-26 8-15-22-29 6-B 2-17-82-47 9-24-39-54
o.F 6-13-20-27 9-16-23-30 6-C 8-18-33-48 10-25-40-556
2-G 7-14-21-28 10-17-24-31 6-D 4-19-34-49 11-26-41-56

o R e e e B ol I v
3-A 1-10-19-28 5-14-23-32 6-G 7-22-37-52 14-29-44-59
3-B 2-11-20-29 6-15-24-33 6-H | 8233853 15-30-45-60
8-C 8-12-21-30 7-16-25-34 6-I 9-24-39-b4 16-31-46-61
3-D 4-13-22-81 8-17-26-35 6-J | 10-25-40-55 17-82-47-62
3-E | 5-14-23-32 9-18-27-38 6-K | 11-26-41-56 18-33-48-63
3-F 6-15-24-38 10-19-28-87 6-L | 12-27-42-57 19-34-49-64
3-G 1-16-25-34 11-20-29-38 6-M | 13-28-43-58 20-35-50-65
3-H 8-17-26-35 12-21-30-39 6-N | 14-29-44-59 21-36-51-66
3-1 9-18-27-36 13-22-31-40 6-0 | 15-30-45-60 22-37-52-67

Selection | 4th Difference sth Difference | Selection | 7th Difference 8th Difference
4-A 1-12-23-34 6-17-28-39 7-A 1-18-35-52 9-26-43-60
4-B 2-18-24-35 7-18-29-40 7-B 2-19-36-53 10-27-44-61
i-C 3-14-25-36 8-19-30-41 7-C 3-20-37-54 11-28-46-62
4D 4-15-26-37 9-20-81-42 7D 4-21-88-55 12-29-46-63
4-E 5-16-27-38 10-21-32-43 7-E 5-22-80-56 18-30-47-64
4-F 6-17-28-39 11-22-33-44 7-F 6-23-40-57 14-31-48-65
4-G 7-18-20-40 12-23-84-45 7-Q 7-24-41-58 15-82.49-G6
4-H 8-19-30-41 13-24-35-46 7H | 8-25-42-59 16-33-50-67
41 9-20-81-42 14-25-36-47 71 9-26-43-60 17-34-51-68
47 10-21-32-43 15-26-37-48 7-3 | 10-27-44-61 18-35-52-69
4K 11-22-33-44 16-27-38-49 7-K | 11-28-45-62 19-86-53-70
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TABLE 26 (concluded)

SELECTIONS FOR COMPARISCN OF THE ORIGINAL AND TEN DIFFERENCES

Selection

Tih Difterence |  8th Difference | Selection | _th Difforence ‘oth Difference
7-L | 12-29-46-63 20-37-54-T1 8-R | 18-37-56-75 27-46-65-84
M | 13-80-47-64 21-38-55-72 8-S | 19-28-57-76 28-47-66-85
;:g ig:g;jg:gg ggjggg_:i | Selection | 9thDifference | 10th Difference
7-P | 16-33-50-67 24-41-58-75 9-A 1-22-43-64 11-32-53-74
7-Q | 17-34-51-68 25-42-59-76 9-B 2-23-44-65 12-33-54-75
— — - 9 3-24-45-66 13-34-55-76
_Selection | BthDifference | 9th Difference 9-D 4-25-46-67 14-35-56-77
8-A | 1-20-89-58 10-29-48-67 9-E 5-26-47-68 15-36-57-78
8B 2-21-40-59 11-30-49-68 9.F 6-27-48-69 16-37-58-79
8-C 3-22-41-60 12-31-50-69 9-G 7-28-49-70 17-38-59-80
8D 4-23-42 61 13-82-51-70 9-H | 8-29-50-T1 18-39-60-81
8-E 5-24-43-62 14-33-52-71 9-1 9-30-51-72 19-40-61-82
8-F 6-25-44-63 15-34-53-72 9-J | 10-31-52-73 20-41-62-83
8-G 7-26-45-64 16-35-54-73 9-K | 11-32-53-74 21-42-63-84
8-H | 8-27-46-65 17-36-55-74 9L | 12-33-54-T 22.43-64-85
81 9-28-47-66 18-37-56-76 9-M | 13-34-55-76 28-44-65-86
8J | 10-29-48-67 19-38-57-76 9N | 14-35-56-77 24-45-66-87
8-K | 11-30-49-68 20-39-58-77 9.0 | 15-36-57-T8 25-46-67-88
8L | 12-81-50-69 21-40-59-78 9-P | 16-37-58-79 26-47-63-89
8M | 13-32-51-70 22-41-60-79 9-Q | 17-38-59-80 27-48-69-90
8N |14-33-52-T1 28-42-61-80 9-R | 18-39-60-81 28-49-70-91
8-0 |15-34-53-72 24-43-62-81 9.8 | 19-40-61-82 29-50-71-92
8-P |16-35-54-T3 25-44-63-82 9-T | 20-41-62-83 30-51-72-93
8-Q | 17-36-55-T4 26-45-64-83 9-U | 21-42-63-84 31-52-73-94

tions, Selection 1-A takes items number 1, 6, 11, ete. of the first dif-
ferences and the items 3, 8, 13, etc. of the second differences. Selec-
tion 1-B has items number 2, 7, 12, ete. of the series of first differences
and items number 4, 9, 14, ete. of the series of second differences.
There are 5 possible selections of order one which are tabulated in
Table 26. This table gives all selections which will give indepen-
dent estimates of the variances of two consecutive differences, But
two selections of the same order, say 1-A and 1-B, are not independent.

We use Fisher’s z test” to compare the variances of selected items
of two consecutive differences. We have, however, facilitated the com-
parison somewhat by using the variance ratio or Snedecor’s F* in-
stead of the z which would necessitate a logarithmie transformation.
Further, we have adjusted our comparison to the testing of the ratio

7 Ibid., pp. 232 ff., Chapter VII, Section 41; G. W. Snedecor, Statistical Meth-
ods, Ames, Iowa, 1938, pp. 182 ff.

(5. W. Snedecor, loc. eit. See also R. A. Fisher and F. Yates, Statistical
Teables, London, 1938, pp. 28 {T.
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TABLE 27

LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance: 5%

Order of Difference: k

Number
of Itema
in the
Original
Series

N
10
20
30
40
50

60
70
80
90
100

156
200
250
300

350
400
450
ol

550
800
650
700
750

800
850
900
950
1000

k=10 k=1

Lower D.D.* Upper D.D.* Lower D.D.* Upper D.D.*
limit limit limit Hmit

0.052 | 0.0053 4792 ; 0.2418 | 00160 | 0.00271 | 7.399 | 0.4757
| 0.105 | 0.0037 2.379 | 0.0616 | 0.0421 | 0.00213 | 2.642 | 0.0889
0,142 | 0.0026 1.763 | 00276 | 0.0834 | 0.00172 | 1,758 | 0.0374
0.168 | 0.0022 1.487| 00168 | 0.0806 | 0.00140 | 1.379 | 0.0204
0.190 | 0.0017 1.310 | 0.0114  0.0946 | 0.00114 | 1.175 | 0.0122
¢.207 | 0.0013 1.205 | 0.0070 | 0.106 0.0010 1.053 | 0.0091,
0.220 | 0.0014 1.135 | 0.0066 | 0.116 0.0008 0.962 | 0.0085
0.234 | 0.0009 1.069 | 0.0042 | 0.124 0.0008 0.897 | 0.0052
0.243 | 0.0010 1.027| 0.0040 | 0132 0.0006 0.845 | 0.0041
0.253 | 0.00066 | 0.987| 0.00224; 0.138 0.00048 | 0.804 | 0.00238
0.286 | 0.00046 | 0.875| 0.00134 | 0.162 0.00034 | 0.685 | 0.00130
0.309 § 0.00082 | 0.808 | 0.00078 | 0.179 0.00022 | 0.620 | 0.00072
0.325 | 0.00028 | 0.769: 0.00062 | 0.190 0.00020 | 0.584 | 0.00058
0.339 | 0.00020 | 0.738 | 0.00042 | 0.200 0.00016 | 0.555 | 0.00044
0.349 | 0.000%14 | 0717} 0.00030 | 0.208 0.00014 | 0.533 | 0.00030
0.356 | 0.00014 | 0702 0.00026 | 0.215 0.00012 | 0.518 | 0.00032
0.363 | 0.00014 | 0.689 | 0.00028 | 0.221 0.00010 | 0.502 | 0.00016
0.370 | 0.00008 | 0.675 | 0.00014 | 0.226 0.00008 | 0.494 |0.00018
0.374 | 0.00008 | 0.668 | 0.00012 | 0.230 0.00006 | 0.485 | 0.00016
0.378 | 0.00008 | 0.662| 0.00014 | 0.233 0.00008 | 0.477 | 0.00014
0.382 | 0.00008 | 0.655| 0.00014 | 0.237 0.00006 | 0.470 | 0.00012
0.386 | 0.00006 | 0.648( 0.00012 | 0.240 0.00004 | 0.464 | 0.00010
0.380 | 0.00008 | 0.642| 0.00012 | 0.242 0.00004 | 0.459 | 0.00010
0.292 | 0.00006 | 0.636| 0.00010 | 0.244 0.00006 | 0.454 | 0.00008
0.396 | 0.00006 | 0.631] 0.00008 | 0.247 0.00004 | 0.450 | 0.00010
0.399 | 0.00004 | 0.627| 0.00008 | 0.249 0.00006 | 0.445 | 0.00008
0.401 | 0.00004 | 0.623| 0.00006 | 0.252 0.00000 | 0.441 | 0.00000
0.403 0.620] ..., 0.252 | e 0.441 | .. o

* Divided difference, lower limit, positive: upper limit,

negative.
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TABLE 27 {(continued)
LIMITS #OR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS OF DIFFERENCES
Level of Significance: 5%
Order of Difference: %
Number B
of Items k=2 k=—3
in the —_—— | — — -
Original
Series Lower DD Upyper D.D.* Lower D.D.* Upper DD
TN | lmit limit limit limit
10 |.0.0060 | 0.00181 | 15120 | L1391 | | s | e | e
20 [0.0241 | 0.00165 | 3.729 ;0.1512 | 0.0151 | 0.00133 | 5.404 | 0.2526
80 | 0.0406 | 0.00142 | 2.217 [ 0.05675 | 0.0284 | 0.00118 | 2.878 ; 0.0850
40 ! 00548 | 0.00115 | 1.642 (00284 | 0.0402 | 0.00105 | 2.028 | 0.0416
b0 | 0.0663 | 0.00099 | 1.358 | 0.0177 | 0.0507 | 0.00087 | 1.612 | 0.0239
60 | 0.0762 | 0.00080 { 1.181 |0.0113 | 0.0594 | 0.00076 1.373 | 0.0155
70 10.0842 | 0.00080 | 1.068 | 0.0092 | 0.0670 | 0.00071 | 1.218 | 0.0118
80 |0.0922 | 0.00087 | 0.976 |0.0066 | 0.0'741 1 0.00061 | 1.102 | 0.0085
20 10,0989 | 0.00061 | 0.210 {00053 | 0.0802 | 0.00059 1.017 | 0.0068
100 | 0:105 | 000044 | 0.857 ; 0.00296 § 0.0861 | 0.00044 | 0.949 | 0.003%0
150 [0.127 | 0.00032 | 0.70¢ }0.00160 | 0.108 0.00030 | 0.754 |[0.00184
200 10.143 | 0.00024 | 0.629 | 0.00098 | 0.123 0.00024 | 0.662 | 0.00114
250 |0.1556 | 0.00020 | 0.580 | 0.00066 | 0.135 0.00020 | 0.605 | 0.00082
300 [0.165 | 0.00012 | 0.547 | 0.00044 | 0.145 0.00014 | 0.564 |0.00056
360 (04171 1 0.00014 | 0.525 |0.00040 | 0.152 0.00012 | 0.536 | 0.00042
400 |0.178 | 0,00012 | 0.505 |0.00030 | 0.158 0.00010 | 0.515 |0.00030
450 [0.184 | 0.00008 | 0.490 [0.00024 |0.183 0.00010 | 0.500 |0.00030
500 )0.188 | 0.00010 | 0.478 |0.00022 | 0.168 0.00010 | 0.485 |0.00024
550 (0.193 | 0.00006 | 0.467 0.00016 |0.173 0.00008 | 0473 |0.00020
600 [0.196 | 0.00008 ! 0.459 |0.00016 |0.177 0.00006 | 0.463 |0.00018
660 10.200 | 000005 | 0.451 |0.00014 | 0.180 0.00006 | 0.454 | 0.00016
700 {0.203 | 0.00004 | 0.444 {0.00010 | 0.183 0,00006 | 0.446 | 0.00014
750 |0.206 | 0.00004 | 0.43% |0.00010 | 0.186 0.00004 | 0.439 '0.00012
BOO 10207 ; 000004 | 0.434 0.00008 |0.188 0.00006 | 0.433 |0.00010
850 10.209 | 0.00004 | 0.430 | 0.00008 | 0.191 000004 : 0.428 | 0.00012
900 {0.211 | 0.00006 | 0.426 | 0.00010 | 0.193 0.00004 | 0.422 | 0.00008
950 |0.214 | 0.00004 ; 0.421 | 0.00008 | 0.195 0.00004 | 0.418 | 0.60008
1000 |0.216 | weneonn. 0.417 | e 0.197 e 0414 | .

* Divided difference, lower limit, positive: upper [imit,

negative.
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Number
of 1tems
in the
Original

Series

N
10
20
30
40
60

60
0
80
90
100

150
200
2b0
300

350
400
450
500

550
600
650
00
750

800
850
900
950
1000

TABLE 27 (coniinued)

LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance: 5%

Order of Difference: %

k=4 k=5
Lower D.D.* Upper D.D.* Lower D.D.* Upper | D..*
limit limit fimit limit
0.0096 | 0.00110 7.997 | 0.4257  0.0062 0.00091 | 12.171 ; 0.7313
0.0206 | 0.00102 | 3.740 { 0.1233 0.0153 0.00089 4.858 | 0.1791
0.0308 | 0.00091 2.607 | 0.0574 | 0.0242 | 0,00082 | 3.067 | 0.0772
0.0399 | 0.00083 1.933 | 0.0335 | 0.0324 | 0.00076 | 2.295 | 00436
0.0482 | 0.00073 1.598 | 0.0208 0.0400 0.00065 1.860 | 0.0259
0.0555 | 0.00064 | 1.390 | 0.0145 | 0.0465 | 0.00064 | 1.601 | 0.0195
0.0619 | 0.00059 | 1.245 | 0.0107 ! 0.0529 | 0.00056 | 1.406 | 0.0134
0.0678 | 0.00057 | 1.138 | 0.0088 | 0.0585 | 0.00048 & 1.272 | 0.0098
0.0735 | 0.00042 | 1050 | 0.00464 | 0.0633 | 000041 | 1.174 | 0.00572
0.0943 | 0.00031 | 0.818 | 0.00228 | 0.0838 ¢ 0.00081 | 0.888 | (.00278
0,110 | 0.00022 | 0.704 | 000134 | 0.0993 | 0.00023 ! 0.749 | 0.00156
0.121 [ 0.00018 i 0.637 ! 0.00090 | 0.111 0.00018 0.671 | 0.00104
0.130 | 0.00016 0.592 | 0.00066 | 0.120 0.00016 0.619 |{0.00072
0.138 | 0.00012 | 0.559 | 0.00050 | 0.128 0.00012 0.583 0..00056
0.144 | 0.00012 | 0.584 | 0.00040 | 0.134 0.00012 | 0.555 |[0.00044
0.156 | 0.00010 | 0.514 . 0.00032 | 0.140 0.00008 | 0.533 |0.00032
0.155 | 0.00008 0.498 : 0.00026 | 0.144 0.00008 | 0.517 }0.00030
0.159 | 0.00008 | 0.485 ; 0.00024 | 0.148 0.00010 | 0.502 |0.00030
0.163 0.00006 | 0.473 | 0.00020 | 0.153 0.00006 | 0.487 | 0.00020
0.166 [ 0.00008 | 0463 [0.00016 | 0.156 0.00006 | 0.477 (0.00018
0.170 1 0.00006 | 0.455 |0.00016 | 0.159 0.00006 | 0.468 |0.00020
0.173 [ 0.00004 | 0.447 0.00012 | 0.162 0.00006 | 0.458 10.00016
0.175 | 0.00006 | 0.441 | 0.00014 | 0.165 0.00004 | 0.450 |0.00012
0.178 | 0.00004 | 0.434 | 0.00010 | 0.167 0.00008 | 0.2444 {0.00012
0.18¢ | 0.00004 | 0.42%8 !0.00010 | 0.170 0.00004 | 0.438 {0.00012
10,182 | 0.00004 | 0.424 | 0.00010 | 0.172 0.00004 | 0.432 |0.00008
0184 | e 0419 | .. 0174 ¢ 0,428 | ..

* Divided difference, lower limit, positive; upper limit, negative.
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TABLE 27 (continued)
LiMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS OF DIFFERENCES
Level of Significanee: 5%
Order of Difference: k
Number —
of Items k==¢6 k=17
inthe [— _
oéiegriirclgl Lower D.D.* Upper D.D.* Lower D.D.* Upper DI
N limit limit limit limit
i {1 S OO SRRSO SRUUUU N [NSRGU U [N [PRO
2.4 T IO (RN IRUORU JURUVUI (NNORN IUNUUUIO SR PR,
30 | 0.0113 | 0.00079 | 6.410 {0.2637 | 0.0085 | 0.00068 | 8.400 | 0.3743
40 | 0.0192| 0.00072 | 3.773 [0.2033 | 0.0153 | 0.00088 | 4.657 | 0.1441
50 | 0.0264| 0.00072 | 2.740 |0.0585 | 0.0221 | 0.00063 | 3.216 | 0.0711
60 [ 0.03361 0.00083 | 2.155 |0.0337 | 0.0284 | 0.00059 | 2.505 | 0.0434
70 | 0.0399 0.00055 | 1.818 [0.0222 | 0.0343 | 0.00056 | 2.071 ] 0.0288
80 | 0.0454 | 0.00053 | 1.596 |0.0166 | 0.0399 | 0.00051 1.782 ] 0.0202
90 | 0.0507 ] 0.00053 | 1.430 |0.0136 | 0.0450 | 0.00047 1.581 1 0.0150
100 | 0.0560| 0.00039 | 1.294 |0.00670| 0.0497 | 0.00037 | 1.431 | 0.00784
150 | 0.0757 | 0.00030 | 0.959 {0.00316! 0.0684 | 0.00029 1.039 | 0.00360
200 | 0.0905) 0.00023 | 0.801 0.00182( 0.0828 | 0.00023 | 0.859 | 0.00210
250 0.102 | 0.00018 | 0.710 [0.00108| 0.0943 | 0.00017 | 0.754 | 0.00128
300 ] 0.111 | 0.00016 | 0.656 |0.00090] 0.103 | 0.00018 | 0.690 | 0.00108
850 | 0.119 | 0.00012 | 0.611 {0.00060| 0.112 0.00010 | 0.636 | 0.00062
400 [0.126 | 0.00012 | 6.581 [0.000566 | 0.117 0.00012 § 0.605 | 0.00058
450 | 0.131 | 0.00010 | 0.553 (0.00044 | 0.123 0.00010 | 0.576 | 0.00046
50O |0.136 | 0.00008 | 0.531 0.00030 ! 0.128 0.00012 0.553 ; 0.00038
550 | 0.140 | 0.00008 ! 0.516 1:D.00028 | 0.134 0.00008 | 0.534 | 0.00032
600 |0.144 | 0.00008 | 0.502 :0.00024! 0,138 0.00006 | 0.518 | 0.00026
650 |0.148 | 0.00006 | 0.490 |0.00022 | 0.141 0.00006 | 0.505 | 0.00024
700 0151 | 0.00006 | 0.479 [0.00018 | 0.144 0.00006 | 0.493 | 0.00020
750 (0154 | 0.00006 [ 0470 [0.00016 | 0.147 0.00006 | 0.488 | 0.00018
800 |0.157 | 0.00006 | 0.462 10.00016} 0.150 0.00006 | 0.474 | 0.00018
850 [0.160 | 0.00004 { 0.454 10.00014 | 0.1563 0.00004 ; 0.465 | 0.00014
900 |0.162 | 0.00006 ; 0.447 l0.00012 0.155 0.00004 | 0.458 | 0.00012
950 |0.165 | 0.00004 | 0.441 70.00008 | 0.157 0.00006 [ 0.452 | 0.00012
1000 | 0.167 0485 | ... \ 0.160 | e 0446 | el

* Divided difference, lower limit, positive; upper limit, negative.
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S
Numbe
of Items

in the
QOriginal
Series

N

—_

10
20
30
40
50

60
70
80
90
100

150
200
250
300

360
400
450
500

550
600
650
700
750

800
850
200
950
1000

TABLE 27 (concluded)

LIMITs FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance: 5%

Order of Difference: k
k= k=9
Lower D.D.* Ubper D.D.* Lower D.D.* Upper | D.D.*
limit limit limit limit

0.0064 | 0.00059 | 11.033 | 0.5331 | 0.0047 ! 0.00052 | 14.658 | 0.7664
0.0123 | 0.00060 5.702 | 0.1880 0.0099 | 0.000 55 6.994 | 0.2490
0.0183 | 0.00060 3.822 | 0.0933 0.0154 : 0.000 54 4.504 | 0.1167
0.0243 | 0.00053 2.889 | 0.0524 0.0208 | 0.000 51 3.337 | 0.0659
0.0296 | 0.00052 2.365 | 0.0350 0.0259 | 0.000 48 2.678 | 0.0419
0.0348 | 0.00048 2,015 | 0.0245 0.0307 | 0.000 46 2.259 ; 0.0295
0.03%6 | 0.00046 1.770 | 0.0185 0.0353 | 0.000 45 1.964 | 0.0222
0.0442 | 0.00037 1.585 | 0.00936 | 0.0398 | 0.000 356 1.742 | 0.01078
0.0627 | 0.00028 1.1i7 | 0.00404 | 0.0576 | 0.000282] 1.203 | 0.00474
0.0768 | 0.00023 6915 | 0.00240 | 0.0717 | 0.000 216| 0.966 | 0.00254
0.0881 | 0.00019 0.795 | 0.00150 | 0.0825 | 0.000192; 0.839 | 0.00174
0.0974 | 0.00015 0.720 | 0.00112 | 0.0921 | 0.000 154! 0.752 | 0.00116
0.105 0.006014 0.664 | 0.00072 | 0.0998 | 0.000 124} 0.694 | 0.00080
0.112 0,00010 | 0.628 | 0.00062 | 0.106 0.000 10 0.654 | 0.00064
0117 0.00010 0.597 | 0.00050 | 0.111 0.000 12 0.622 | 0.00060
0.122 0.00010 0.572 | 0.00040 | 0.117 0.000 10 0.592 | 0,00044
0.127 0.00008 0.552 | 0.00034 | 0.122 0.000 08 0.570 | 0.60038
0.131 0.00008 0.535 | 0.00030 | 0.126 0.000 06 0.551 | 0.00032
0.135 0.00008 0.520 | 0.00026 | 0.129 6.000 08 0.535 | 0.00032
0.138 0.00006 0.507 | 0.00020 | 0.133 0.000 06 0.519 | 0.00020
0.141 0.00006 0.497 | 0.00020 | 0.138 0.000 06 0.509 | 0.00020
0.144 0.00006 0.487 | 0.00020 | 0.139 0.000 06 06.499 | 0.00020
0.147 0.00004 0.477 | 0.00016 | 0,142 0.000 04 0.489 | 0.00016
0.149 0.00006 | ¢.469 | 0.00014 ; 0,144 0.000 04 0.481 | 0.00016
0.152 0.00004 ¢.462 | 0.00012 ] 0.146 0.000 06 0.473 | 0.00014
0.154 0.458 0149 | 0466 [ ...

* Divided difference, lower limit, positive; upper Hmit,

negative.
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TABLE 28
LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS OF DIFFERENCES
Level of Significance: 1%
Order of Difference: k&
:;*X_-umbe:_ - 7 — = - —
szftfhmes k=20 ] o k .':L_
Original
Serics Lower D.D.* Upper D.D.* Lower D.D.* Upper D.D.#*
TN | limit limit limit limit
10 |} 0.025 § 0.0039 0.844 10.5960 | 0.0087 0.00163 | 19.519 1.4475;
20 | 0.064 | 0.0031 38.884 [0.1254 | 0.0220 0.00157 | 5.060 | 06.2111
30 | G.095 | 0.0025 2,630 |0.05641 0.0377 0.00137 | 2.949 | 0.0786
40 | 0.120 0.0019 2,089 |0.0291 0.0b14 0.00120 | 2.168 | 0.0410
50 | 0.139 | 0.0018 -1.798 |0.0203 | 0.0634 | 0.00102 1753 | 0.0244
60 | 0157 0.0015 1,595 |0.0137 | 0.0736 0.00086 1.509 | 0.0157
70 | 0.172 0.0012 1,468 |0,0099% | 0.0822 0.00086 1.352 | 0.0129
80 | 0.184 0.0009 1.359 ;0.0066 0.0908 0.00066 | 1.223 | 0.0083
90 | 0,193 | 0.0010 1.292 {0.0063 0.0974 0.00066 1.140 | 0.0077
106 | 0.203 | 0.0007T6 1.230 10.00884| 0.104 0.00050 1.063 | 0.00402
150 | 0.241 | 0.00050 1.038 ;0.00198, 0.129 0.00036 | 0.862 | 0.00210
200 | 0.266 | 0.00034 | 0939 ]0.00110| 0.147 . 0.00028 0.757 | 0.00130
250 | 0.283 | 0.00028 0.884 [0.00086( 0.161 0.00020 | ©.692 | 0.00082
300 | 0.297 | 0.00024 | 0.841 |0.00066| 0.171 0.00018 0.651 | 0.00066
350 | 0.309 | 0.00020 0.808 |0.00048 | 0.180 0.00014 | 0.618 | 0.00048
400 | 0.319 0.060020 0.784 [0.00046 | 0.187 0.00012 0.594 | 0.00040
450 | 0.829 0.00012 | 0.761 |0.00030] 0.193 0.00012 ;| 0.574 |0.00030
500 | 0.335 0.60014 | 0.746 |0.00030| 0.199 0.00010 } 0.559 | 0.00028
650 | 0,342 | 0.00014 | 0.731 |0.00028| 0.204 0.00008 | 0.545 | 0.00022
600 | 0.349 0.00006 | 0.717 |0.00014} 0.208 0.00008 t 0.534 | 0.00020
650 | 0252 000008 | 0.710 [0.00016) 0212 0.00008 | 0.524 0060016
700 | 0.356 | 0.00008 | 0.702 [0.00012| 0.216 0.00006 ! 0.516 | 0.00016
750 | 0.359 0.00008 0.696 [0.00014| 0.219 0.00006 I 0.508 | 0.00014
800 10363 0.00008 0.689 1000014 | 0.222 0.00004 [ 0.501 10.00012
850 0.367 0.00006 0.682 [0.00014 | 0.224 0.00006 0.495 | 0.00010
900 | 0.370 | 0.00008 | 0.675 [0G.00014| 0.227 0.00004 0.480 | 0.00010
950 | 0.374 0.00008 | 0.668 [0.00012| 0.229 0.00004 0.485 | 0.00010
1000 | 0.378 0.662 } ... 0231 | 0.430

* Divided difference, lower limit, positive; upper limit, negative.
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in the
Original
Series

N
10
20
30
40
50

60
70
80
90
100

150
200
250
300

350
400
450
500

550
600
650
700
750

800
850
900
956
1000

0

r
)
!

TABLE 28 (continued)

LIMITS FOR THE RATIOS oF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance: 1%
Order of Difference: %

Lower
Hmit
0.0017
0.0110
0.0218
0.0819
0.0410

0.0496
0.0570
0.0637
0.0697
0.0755

0.0979
0.114
0.126
0.136

0.145
0.152
0.158
0.163

0.168
0.171
0.175
0.178
0.182

0.186
0.188
0.190
0.193
0.195

k=2 k=3
D.D.¥ Upper D.D.* Lower D.D.* Upper D.D.*
limit limit limit

0.00093 | 51.730 | 4.3514 | ... JRSSSUUIR LSS R

0.00108 | 8.216 { 0.4095 | 0.0060 | 0.00078 | 13.561 | 0.7648

0.00101 4,121 | 0.1308 0.0138 | 0.00078 5.913 | 0.2142

0.00091 2818 | 0.0623 0.0216 0.00076 3.771 1 0.0978

0.00086 2,195 | 0.0380 0.0292 0.00072 2.793 | 0.0651

0.00074 1.815 | 0.0237 0.0364 0.00063 2.242 | 0.0332

0.00067 1.578 | 0.0165 0.0427 0.00060 191 | 0.0233

0.00060 1.413 | 0.0121 0.0487 (.00051 1.677 | 0.0159

0.00058 { 1.292 | 0.0100 0.0538 0.00050 1.518 | 0.0131
0.00045 1.182 | 0.00546 | 0.0588 | 0.00041 1.387 | 0.00718
0.00032 0.919 | 0.00256 | 0.0794 0,00031 1.028 | 0,00340
0.00024 0.791 | 0.00150 | 0.0951 0.00024 0.868 | 0.00194
0.00020 0.716 | 0.00110 | 0.107 0.00018 0.761 | 0.00118
0.00018 | 9.661 | 0.00076 [ 0.116 (0.00018 0.702 | 0.00092
0.00014 0.623 | 000062 | 0.125 0.00012 0.656 | 0.00070
0.00012 0.592 | 000046 | 0.131 0.00014 0.621 | 0.00054
0.00010 | 0.569 ; 0.,00034 {0.138 0.00010 0.594 | 0.00044
0.00010 | 0.552 | 0.00032 | 0.143 0.00010 | 0572 | 0.00038
0.00006 0.536 | 0.00022 | 0.148 0.00008 0.553 | 0.00034
0.00008 0.525 | 0.00020 | 0.152 0.00008 0.536 | 0.00020
0.00006 0.515 | 0.00020 | 0.155 0.00006 0.526 | 0.00022
(0.00008 0.505 | 0.00022 | 0.158 0.00008 0.515 | 0.00024
0.00006 0.484 | 0,00016 |[0.162 0.00006 0.503 | 0.00018
0.00006 0.486 | 0.00014 | 0.165 0.00006 0.494 ; 0.00016
0.00004 0.479 | 0.00012 | 0.168 0.00004 0.486 ; 0.00014
0.00006 0.473 | 0.00012 [ 0.170 0.00006 0.479 | 0.00014
0.00004 0.467 | 0.00010 | 0.173 0.00004 0472 } 0.00012
0462 | ... 0170 | 0,468 § eereees

* Divided difference, lower limit, posilive; upper limit, negative.
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TABLE 28 (continued)
LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS OF DIFFERENCES
Level of Significanee: 1%
Order of Difference: %
1:;1;22:119 k—4 k=5
in the
Original
Series | Lower D.D.* Upper | D.D.* Lower D.D.* Upper | D.D.*
N Hmit limit limit limit
10 JRUSOR A R B S S
20§ 0.0034 | 0.00057 | 22.852 |1.4361F | 0.0019 | 0.00043 | 38,888 | 2.6818
30 | 0.0091 | 0.00063 | 8.491 [0.3493 | 0.0062 | 0.00051 | 12,070 | 0.5446
40 1 0.0154 | 0.00083 | 4.998 |0.144¢ | 0.0113 | 0.00053 | 6.624 | 0.2139
50 | 0.0217 | 0.00061 | 3.558 [0.0787 | 0.0166 | 0.00052 ;| 4.485 | 0.1061
60 | 0.0278 | 0.00055 | 2771 |0.0457 | 0.0218 | 0.00050 | 8.424 | 0.0597
70 | 0.0333 | 0.00064 | 2.314 10.0322 | 0.0268 | 0.00046 | 2.827 | 0.0462
80 | 0.0387 | 0.00050 | 1.992 !0.0225 | 0.0314 | 0.00044 |, 2,365 | 0.0288
50 | 0.0437 | 0.00046 | 1.767 10.0169 | 0.0358 | 0.00042 ; 2.077 | 0.0217
100 | 0.0483 | 0.00038 | 1.598 [0.00898| 0.0400 | 0.00036 | 1.860 | 0.0115
150 | 0.0671 | 0.0003C¢ | 1149 |(0.00416| 0.0579 | 0.00028 | 1.285 | 0.00508
200 | (,0820 | 0.00023 | 0.941 |0.00230; 0.0721 | 000022 | 1.031 | 0.00270
250 | 0.0934 | 0.00017 | 0.826 |0.00142) 0.0830 | 0.00019 | 0.896 | 0.00186
300 | 0.102 |0.00018 | (.755 [0.00116| 0.0926 | 0.00015 | 0.803 | 0.00124
350 | 0111 | 0.00014 | 0.697 |0.006082! 0.100 0.00012 | 0.741 | 0.00086
400 | 0.118 | 0.00012 | 0.666 |0.00064| 0.106 0.00014 | ©.698 | 0.00080
450 | 0124 | 0.00010 | 0.624 |0.006048| 0.113 0.00010 | 0.658 | 0.00052
500 {0.129 |0.00010 | 0.600 |0.00048 ; 0.11i8 0.00010 | 0.632 | 0.00050
B50 | 0.134 | 0.00008 | 0.576 |0.00034 | 0.123 0.00010 | 0.607 | 0.00048
600 | 0.138 | 0.00008 | 0.559 |0.00032 | 0.128 0.00406 | 0.583 | 0.00034
650 | 0.142 | 0.00006 | 0.543 |0.00022| 0.131 0.00008 | 0.566 | 0.00084
700 | 0.145 | 0.00006 | 0.5832 {0.00020| 0,135 0.00006 | 0.549 | 0.00022
750 | 0.148 | 0.00006 | 0.522 [0.00026 | 0.138 0.00006 | 0.538 | 0.00020
800 10151 |} 0.00006 } 0.509 }0.00018 | 0.141 0.00006 | 0.528  0.00022
850 | 0154 | 0.00006 | 0.500 [0.00016 | 0.144 0.00008 | 0.517 | 0.00020
900 | 0.157 | 0.00004 | 0.492 |0.00016 | D.147 0.00006 | 0.507 | 0.00020
9560 | 0.159 | 0.00006 | 0.484 |0.00014 | 0.150 0.00002 | 0.497 | 0.00010
1000 {0162 | ... 0477 | e 0151 | e 0492 | ...

* Divided difference, lower limit, positive; upper Hmit, negative.
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TABLE 28 (continued)

LimiTs FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance: 1%

S
—_r

Order of Difference: k

ﬁull?eb; k=6 k=1
in the
Qriginal I I
Series | Lower D.D.* Upper | D.D.* Lower D.D.* Upper | D.D.*
N lirnit limit limit Hmit
FT SR A R DUV A N S S S
-] ) R (U (OO, B I
30 | 0.0042 | 0,000 42 |17.250 | 0.8598 | 0.0029 | 0.00033 24.736 | 1.3283
40 | 0.0084 | 0.000 44 | 8.652 | 0.3024 | 0.0062 | 0.000 38 11.453 | 0,4366
50 | 0.0128 | 0.000 46 | 5.628 | 0.1458 | 0.0100 | 0.000 40 | 7.087 | 0.1992
60 | 0.0174 | 0.00045 | 4.170 | 0.0857 | 0.0140 | 000039 | 5.095 | 0.1127
70 | 6.0219 | 0.000 40 | 3.313 | 0.0518 | 0.0179 | 0.000 40 | 3.968 | 0.0719
80 | 0.0259 | 0.00042 | 2,795 | 0.0389 | 0.0219 | 0.00035 | 3.249 | 0.0453
90 | 0.0301 § 0.00035 | 2.406 | 0.0272 | 6.0254 | 0.00036 | 2.796 | 0.0341
100 | 0.0340 | 0.000 334 | 2.134 | 0.01408 | 0.0290 | 0.000 820 2.455 | 0.01748
150 | 0.0507 | 0.000 262 | 1.430 | 0.00588 | 0.0450 | 0.000 254 1.581 | 0.00698
200 | 0.0638 | 0.000 220 | 1.136 | 0.00336 | 0.0577 | 0.000 202 | 1.232 | 0.00366
250 | 0.0748 | 0.000 176 |0.968 | 0.00202 | 0.0678 | 0.000 188 | 1.049 | 0.00256
800 | 0.0836 | 0.000 156 | 0.867 ; 0.00148 | 0.0772 | 0.000 144 0.921 | 0.00168
360 | 0.0914 ;| 0.000 132 1 0.793 | 0.00108 | 0.0844 | 0.000142| 0.842 ! 0.00130
400 | 0.0980 | 0.000 120 |0.739 | 0.00086 |0.0915 0.000 112 | 0.777 |0,00090
450 | 0.104 | 0.000100 [0.696 | 0.00068 |0.0971 | 0.000 098] 0.732 | 0.00072
500 10.109 0.000 10 |0.662 | 0.00052 [0.102 0.000 10 | 0.696 |0.00068
650 }0.114 |} 0.00010 |0.836 0.00050 |0.167 0.000 10 | 0.662 | 0.00052
600 (0119 | 0.00006 (0,611 | 0.00036 |0.112 0.000 06 | 0.636 |0.00038
650 [ 0.122 | 0.60008 [0.593 | 0.00034 |0.115 0.000 08 | 0.617 |0.00038
700 |0.126 | 0.00008 |0.576 | 0.00084 |0.119 0.00006 | 0.598 {0.00032
760 [ 0.130 | 0.00004 10.559 | 0.00022 |0.122 0.00006 | 0.582 | 0.00030
800 |0.132 | 0.00008 |0.548 | 0.00022 [0.125 0.000 06 | 0.567 | 0.00024
850 |0.135 | 0.00006 |0.537 ! 0.00022 |0.128 0.000 06 | 0.555 |0.00024
900 10.138 | 0.00006 [0.526 | 0.00020 |0.131 0.000 06 | 0.543 |0.00020
950 | 0.141 0.00004 |0.516 ; 0.00020 (0,134 0.00004 | 0.583 | 0.00020
1000 0.143 [ . 0506 | ... 0136 | e 0.523
* Divided difference, lower limit, positive; upper limit, negative.
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TABLE 28 (concluded)

LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance: 1%

Order of Difference: k

Number

of Items
in the k=8 k=9
Original |__ — — -
Series | Lower D.D.* Upper D.D.>* Lower D.D* | Upper
N Iimit Yimit Hmit Jimit
b L TN RPN [PUNUR (RPRUURI EPRIUSEP ISPV R
20 | e | eeine | s | e I
30 | 0.0020 | 0.00027 | 35.547 {2.06b64 0.00022 ,51.676
40 | 0.00471( 0.00032 14.893 0.6039 0.00028 [19.589
50 | 0.0079: 0.00085 | 8.854 [0.2738 0.000 30 |10.968
60 | 00114 | 0.00035 | 6,116 |0.1401 | 0.0093 | 0.00032 | 7.426
70 | 0.0149 | 0.00035 | 4.716 [0.0931 | 0.0125 | 0.60032 | 5.557
80 | 0.0184 | 0.00034 | 3.784 |0.0559 | 0.0157 | 0.00031 | 4.415
g0 |0.0218 | 0.00033 | 3.225 10.0449 | 0.0188 i 0.00030 | 3.688
100 | 0.0251 | 0.000 298| 2.776 |0.02048 1 0.0218 | 0000 276| 3.174
150 | 0.0400 | 0.000 248 1.752 |0.00828 | 0.0356 | 0.000240| 1.944
200 | 0.0524 | 0.000 194 1.838 :0.00420 | 0.0476 | 0.000200| 1.465
250 | 0.0621 | 0.000172} 1.128 |0.00274 ! 0.0576 | 0.000158] 1.203
300 | 0.0707 | 0.000 148 | 0.991 10.00188 | 0.0655 | 0.000154| 1.057
350 | 0.0781 { 0.000130] 0.897 [0.00138 | 0.0732 | 0.000122} 0.946
400 | 0.0846 | 0.000 124 0.828 10.00112} 0.0795 | 0.000114] 0.874
450 | 0.0908 | 0.000112| ¢.772 |0.00090 | 0.0850 | 0.000 106 0.815
560 | 0.0964 | 0.000092) 0.727 |0.00072 ; 0.0903 | 0.000092| 0.767
650 | 0.101 | 0.00008 | 0.691 [0.00054 | 0.0949 | 0.000 098] 0.730
600 | 0.105 {0.00008 | 0.664 [0.00042 | 0.0998 | 0.000 084 | 0.694
650 | 0.109 1 0.00008 | 0.643 10.00042 | 6104 0.000 06 | 0.667
700 |0.113 | 0.00006 ; 0.622 |0.00034 | 0.107 0.000 06 | 0.647
750 | 0.116 | 0.60006 | 0.605 |0.00034 | 0.110 0.000 08 | 0.628
800 | 0.119 | 0.00006 | 0.538 |0.00028 | 0.114 0.00004 | 0.610
850 |0.122 | 0.00006 | 0.574 |0.000282 | 0.116 0.00006 | 0.598
900 [ 0.125 | 000006 | 0.560 10.00022 | 0.119 0.00006 | 0.580
950 | 0.128 | 0.00004 | 0.549 [0.00022 | 0.122 0.000 04 | 0.568
1000 | 0130 | ... 0.538 ! creiieeee 0124 | : 0.657

3.2087
0.8621
0.3542

0.1869
0.1142
0.0727
0.0514

0.02460
0.00978
0.00504
0.00292
0.00222

0.00144
0.00118
0.00096
0.00074

0.00072
0.00054
0.00040
000038
0.00026

0.00024
0.00036
0.00024
0.00022

* Divided difference, lower limit, positive; upper limit,

nepative,
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TABLE 29

LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED

COMPARISONS OF DIFFERENCES
Level of Significance; 0.1%

Order of Difference: &

fNumber

Ofirlltf}':? E=0 k=1

Original | —

__Series | Lower D.D.* Upper D.D.* Lower D.D.* Upper | D.D3*

limit limit limit Jimit )

10 | 0.0112 | 0.00252 | 22.350 | 15482 | 0.0018 | 0.00086 | 60.423| 4.9711
20 | 00364 | 0.00236 @ 6.868 | 0.2702 | 0.0104 | 0.00103 | 10.712 | 0.5339
30 | 0.0600 | 0.00210 | 4.166 | 0.1080 | 0.0207 | 0.00098 | 5.373  0.1735
40 | 0.0810 | 0.00170 | 2.086 | 0.0534 | 0.0305 | 0.00095 | 3.638 | 0.0861
50 | 0.0980 | 0.0016 | 2.552| 0.0356 | 0.0400 | 0.00084 | 2.777| 0.0481
60 | 0114 | 0.0013 | 2.196| 0.0228 | 0.04B4 | 0.00078 | 2.296| 0.0319
70 | 0127 | 0.0012 | 1.968| 0.0170 | 0.0562 | 0.00065 | 1.977| 0.0206
80 | 0139 | 0.0010 | 1.798 0.0121 ! 0.0627 | 0.00066 | 1771 0.0169
00 | 149 | 0.0011 | 1.677] 0.0114 | 0.0693 | 0.00058 | 1.602, 0.0123
100 | 0.160 | 6.00074 | 1.568| 0.00592| 0.0751 | 0.000490 | 1.479 | ©.00722
150 | 0.197 | 6.00050 | 1.267| 0.00286| 0.0994 | 0.00037 | 1.118 0.00350
200 | 0.222 | 0.00042 | 1.124| 0.00194| 0.118 | 0.00028 | 0.943 | 0.00196
250 | 0.243 | 0.00030 | 1.027| 0.00120] 0132 : 0.00020 | 0.845 0.00130
300 | 0.258 | 0.00028 | 0.967| 0.00094| 0,142 | 0.00018 | 0.780 | 0.00092
350 | 0.272 | 0.00022 | 0.920( 0.00072] 0.151 | 0.00016 | 0.734 | 0.00070
400 | 0283 | 0.00016 | 0.884| 0.00052| 0159 | 0.00014 | 0.699 | 0.00056
450 | 0291 | 0.00018 | 0.858] 0.00050{ 0.166 | 0.00012 | 0.671| 0.00052
500 | 0.300 | 0.00012 | 0.833 ] o.00084] 0.172 | 0.60012 | 0.645 | 0.00038
550 | 0.306 | 0.00016 | 0.816] 0.00040| 06178 | 0.00010 | 0.626 | 0.00038
600 | 0.814 | 0.00012 | 0.796| 000028 0.183 | 0.00008 | 0.607 | 0.00024
650 0.220 0.00010 0.782 0.00024 | 0.187 0.00006 0.695 | 0.00022
700 | 0.325 | 6.00010 | 0.770, 0.00024, 0.190 | 0.00008 | 0.584 | 0.00024
750 | 0.230 | 0.00008 | 0.758| 6.00020| 0.194 | 0.00008 | 0.572 ! 0.00022
800 | 0.334 | 0.00010 | 0.748| 0.00020| 0.198 | 0.00008 | 0.561 | 0.00022
850 | 0.339 | 0.00008 | 0.738| 0.00014| 0.202 | 0.00004 | 0.550 | 0.00012
500 | 0.342 | 0.00006 | 0.731] 0.00014| 0.204 | 0.00004 | 0.544 | 0.00010
950 | 0.845 | 0.00008 | 0.724| 0.00014| 0.206 | 0.00004 | 0.539 | 0.00012
1000 | 0.849 | e 0717 v 0208 | e 0538 | oo

* Divided difference, lower limit, positive; upper limit,

negative.
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TABLE 29 {continued)
LrMITs FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS 0F DIFFERENCES
Level of Significance: 0.1%
Order of Difference: k
Number ) ’ T -
“lathe. k=2 k=3
Original I
__Series_ | fower D.D.* Upper DL Lower DI Upper D.D»
N Timit limit limit Timit,
10 0.0004 § 0.00040 [216,122) 19.5712 | iis | i 1t | e
20 | 0.0044| 0.00061 | 20.410| 1.1859 0.0020 0.00040 | 392.934 | 2.6236
a0 | 0.0105) 0.00067{ 8.551, 0.2212 | 00060 | 000046 ; 13.698 | 0.6029
40 0.0172 | 0.00065 5239 0.1435 | 0.0106 | 0.00050 7.669 | 0.2424
50 ) 0.0237) 0,00061] 3.804] 0.0802 | 0.0156 | 0.00048 | 5.245 | 0.1241
60 | 0.0298 | 0.00059 | 3.002| 0.0478 { 0.0204 | 0.00048 4.004 | 0.0759
70 | 0.0357 ! 0.00057 | 2.524; 0.03851 0.0252 0.00046 3.245 | 0.0507
80 0.0414' 0.00048 | 21731 0.0227 | 0.0298 | 0.00042 | 2.738 |0.0334
90 0.0462 | 0.00049 1.946| 0.0185 | 0.0340 | 0.00043 2.404 ]0.0272
100 |0.0511 ] 0.00040} 1.761} 0.0099 0.0383 | 0.00035 2.132 1 0.01348
15¢ | 00711 1 0.00081 [ 1.266] 0.00458 | 06560 0.00028 | 1.458 |0.00576
200 | 0.0868 | 0.00024 | 1.087| 0.00254 | 0.0698 | 0.00022 1.170 | 0.00326
250 | 0.0989 | 0.00020 l 0.910! 000172 | 0.0810 | 0.00019 1.007 | 0.00210
300 |0.109 | 0.00018| 0.824; 0.00128 | .0905 | 0.00017 (.902 | 0.00154
350 0.118 ! 0.00016 | 0.760] 0.00088 | 0.099 0.00014 0.8256 |0.00112
400 | 0.126 | 0.00012 ! 0.716] 0.0007C¢ | 0.106 0.00012 0.769 | 0.00076
450 | 0.132 | 0.00012 | 0.681] 0.00054 ! 0.112 0.00010 | 0.781 |0.00070
50O | 0.138 | 0.00010 0.654| 0.00050 | 0.117 0.60012 | 0.696 |0.00068
§50 | 0.143 | 0.00008 | 0.629| 0.00038 | 0.123 0.00008 | 0.662 {0.00040
600 | 0.147 | 0.00010 | 0.610) 0.00036 | 0.127 0.00008 | 0.642 | (.00038
650 |0.152 | 0.00006 0.592| 0.00024 | 0.131 0.00008 [ 0.623 [0.00036
700 10.156 | 0.00006 | 0.580| 0.00022 | 0.135 0.00008 0.605 | 0.00036
750 10.158 | 0.00006 | 0.56%| 0.00026 | 0.139 0.00006 0.587 | 0.00024
800 |0.161 0.00008 | 0.556| 0.00020 { 0.142 0.00006 | 0.575 |0.00022
860 0.165 | 0.00006 | 0.546; 0.00020 | 0.145 0.00006 0.564 | 0.00022
900 [0.168 ; 0.00004 | 0.536| 0.00016 | 0.148 0.00006 0.553 | 0.00022
950 | 6.170 | 000006 | 0.528) 0.00014 | 0.151 0.00002 0.542 | 0.00012
1000 [0.173 | ... 0.521 | .. 0162 | e 0.586 | coooocenaee

* Divided difference, lower limit, positive; upper limit,

negative.
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TABLE 29 (continued)

LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS OF DIFFERENCES
Level of Significance: 0.1%

Order of Difference: [

Number

of ltems
in the

Original
Series__

N
0
20
30
4¢
5@

60
70
80
90
100

150
200
250
300

350
400
450
500
550

6060
650
700
750

800
860
800
950
1000

k=4 k=5
—Inwer D.D.* Upyper | D.D.* i Lower D.D.*_ _I;ﬁ;_m_'
Limit Limit Limit Limit
0.00099 |0.600 256 | 77.778} 5.6040 | 0,00048|0.000 168 154.7T17
0.00355 10,000 339 |21.738]1.0614 | 0.00218 | 0.000 250! 34.492
0.00694 | 0.000 386 |11.124) 0.3860 1 0.00466 | 0.000 294 15.970
0.0108 10.000 390 7.16470.1910 |[0.00760C |0.000 32 9.784
0.0147 j0.000 380 5.25410.1079 |0.0108 [0.00032 6.894
0.0185 0,000 280 4,17510.0723 ;0.0140 |0.000 33 5.316
0.0223 (0,000 370 3.462 [0,0481 | 0.0173 10.000 32 4.309
0.0260 {0.000 360 2,971 10,0362 }0.0205 0.000 30 3.635
0.0296 |0.000 218 2.609 | 0.01824 | 0.0235 ‘0'000 284 3.160
8.0456 | 0.000 258 1.697 [ 0.00750 { 0.0377 '0.0()0 242 1.875
0.0584 ;0.000 216 1.322 0.00414L0.0498 0.000 196 1.493
0.0692 (0.000 176 1.115 | 0.00252 | 0.0596 |0.000 186 1.247
0.0780 |0.000 148 0.989 10.00170 10.0686 |0.000 144 1.0841
0.0854 |0.000 142 0.904 j0.00142 |0.0758 [0.000 126 0.981
0.0925 (0.000 124 0.833 10.00102 (0.0821 [0.000 120 0.905
0.0987 | 0.000 106 0.782 [0.00082 (0.0881 |0.000 108 0.844
0.104 0.0006 19 0.741 (4.00068 (0.0935 (0.000 102 0.793
0.109 0.000 10 0.707 10.00054 |0.0986 |0.000 088 0,754
0.114 0.600 08 (.680 10.00048 (0,103 0.000 08 0.722
0.118 0.000 06 0.656 (0.00038 (0.107 0.000 08 0.695
0.121 0.000 08 0.637 10.G0038 |0.11% 0.000 06 0.671
0.125 0.000 08 0.618 |0.00036 ;0.114 0.000 08 0.651
0.129 0.000 04 0.600 {0.00024 !0.118  [0.000 06 0.633
0.131 (4.000 06 0.588 (0.00024 [0.121 0.600 04 0.617
0.134 0.000 06 0.576 |0.00022 10.123  |0.000 06 0.603
0137 [0.00004 0.565 10.00022 [ 0.126 0.000 06 0.589
0139 s 0.664 | ........... 0.129 ... 0.577

D.D.*

12.0225
1.8522
0.6186
0.2890

0.1578
0.1007
0.0674
0.0475
0.02370

0.60964
0.00492
0.00326
0.00206

0.00152
0.00122
0.00102
0.00078
0.00064

0.00054
0.00048
0.00040
0.00036

0.00032
0.00028
0.00028
0.00024

* Divided difference, lower limit, positive; upper limit, negative.
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TABLE 29 (continued)

LIMITS FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS OF DIFFERENCES
Level of Significance: 0.1%
Order of Difference: k

10
20
30
40
50

60
70
80
g0
100

150
200
250
300

350
400
460
500

B50
600
650
7100
750

800
850
900
950
1000

0.00133| 0.000 185 | 54.479| 3.1665 |0.00082] 0.000 137 | 86.667
0.00318] 0.000 232 | 22.824( 0.9656 [0.00219 0.000 185 | 32.403 !
0.00550| 0.000 263 | 13.168) 0.4252 0.00404) 0.000 217 17.606 |

0.00813| 0.000 277 | 8.916| 0.2245 ;0.00621{0.000 234 | 11.458
0.0109 | 0.000 280 ;| 6.671| 0.1570 50.00855 0.000 235 | 8.317
0.0137 | 0.000270 | 5.301;0.0874 |0.0109 )0.000 240} 6.542
0.0164 , 0.00028¢ | 4.427! 0.0654 (0.0133 10.000240 | b5.356
0.0192 ) 0.000 256 | 3.773| 0.03014 0.0157 | 0.000232] 4.519

0.0320 | 0.000224 | 2.266; 0.01176 {0.0273 |0.000206 | 2.607
0.0432 | 0.000 180 | 1.678| 0.00580 10.0376 |0.000184| 1.893
0.0522 | 0.000 170 | 1.388) 0.00386 |0.0468 |0.000152| 1.519
0.0607 § 0.000 146 | 1195 0.00250 00544 |0.000 138 | 1.308

0.0680 1 0.000 128 | 1.070|0.00184 |0.0613 |0.000130 | 1.160
0.0744 1 0.000116 | 0.978[0.00148 |0.0678 |0.000112 | 1.049
0.0802 | 0.000 104 | 0.904(0.00112 [0.0734 |0.000102 | 0.969
0.0854 | 0.000078 | 0.848| 0.00072 10.0735 |0.000094 | 0.906

0.0893 | 0.000 104 | 0.812)0.00090 {0.0832 |0.000084 | 0.855
0.0945 | 0.000 082 | 0.767 ] 0.00062 | 0.0874 |0.000 080 | 0.813
0.0986 | 0.000 07 0.736 | 0.00054 {1 0.0014 |0.000 074 | 0.778
0.102 | 0.00006 0.709 | 0.00046 [ 0.0951 |0.000 068 | 0.748
0.105 | 0.000 0B 0.686 0.0004010.0985 |0.000070 0.722

0.109 | 0.000 06 0.8661 0.00036 1 0.102  [0.000 06 0.69%
0.112 | 0.000 06 0.648( 0.00032 |0.105 {0.000 06 0.679
0.115 | 0.000 04 0.632| 0.00030 | 0.108 |0.000 04 0.661
0.117 | 0.000 06 0.617| 0.00024 | 0.110 | 0.000 06 0.643
0120 | o 0.606) .. ... 0118 | s 0.630

5.4264
1.4797
0.6153

0.3136
0.1795
0.1186
0.0837
0.03824

0.01428
0.00748
0.00422
0.00296

0.00222
0.00160
0.00126
0.00102

0.00084
0.00070
0.00060
0.00052
0.00046

0.0004¢
0.00036
0.00036
0.0002¢

* Divided difference, lower limit, positive; upper limit, negative.
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TABLE 29 (concluded)

LiMITs FOR THE RATIOS OF SUMS OF SQUARES OF SELECTED
COMPARISONS 0F DIFFERENCES

Level of Significance: 0.1%
Order of Difference: k

—_—
Number
of Items

in the
Original
Series

N

10
20
30
40
50

60
70
80
%0
100

1560
200
250
300

350
400
460
500

550
600
650
700
T80

800
850
200
950
1000

E—38 k=—9
Lower D.D.* Upper | DD* | Lower | DD.* | Upper | DD+
Limit Limit Limit Limit

U EUUURPURE EUUUUN SR IUURRUE DUUNUURURPI (R
AR DRSNS N DU BN IO B
0.00051 | 0.000 103 | 138.334 {19.269% § . | e ] e
0.00154 [0.000 146 | 45.643 (2.2287 | 0.00107 [0.000 116 | 64.737 | 3.83705
0.00300 |0.000 175 | 23.256 [0.8612 | 0.00223 [0.000 149 | 31.032 | 1.2398
0.00475 0.000 199 | 14.744 0.4354 | 0.00872 [0.000 166 | 18.634 | 0.5763
0.00674 | 0.000 209 | 10.390 :0.2458 | 0.00538 |0 000181 | 12.871 | 0.3183
0.00883 ;0.000 207 7.9382 :0.1503 [0.00719 [0.000 186 9.688 | 0.2036
¢.0109 0.000 210 6.429 10,1059 |0.00905 |0.000 185 7.652 | 0.1324
0.0130 [0.000210 | 5.870 [0.04786 |0.0100 [0.000192 | 6.328 | 0.05916
0.0235 10.000 192 2.977 10.01716 | 0.0205 (0,000 180 3.870 | 0.02038
0.0331 10.000170 2.119 10.00872 | 0.0295 0.000 158 2.8351 | 0.01002
0.0416 10,000 154 1.688 10.00626 10.0374 10,000 148 1.850 | 0.00610
0.0493 ;0.000 138 1.420 |0.00846 | 0.0448 |(0.000 124 1.545 | 0.00376
0.0562 10,000 118 1.247 10.00238 [0.0510 |0.000 124 1.357 : 0.00284
0.0621 |0.000 108 1.128 10.00172 10.0572 10.000 106 1.215 | 0.00208
0.0675 [0.000 100 1.042 [0.00160 10.0625 [0.000 098 1.111 | 0.00171
0.0725 0.000092 | 0.962 0.00112 [0.0674 [0.000 090 | 1.025 | 0.00118
0.0771 10.000 086 0.506 [0.00088 (0.0719 0.000 082 0.966 | 0.00114
0.0814 |0.000 078 (.862 0.00086 ]0.0760 10.000 078 0.909 | 0.00088
0.0853 10.000072 0.819 |0.00064 |0.0799 10.000 072 0.865 | 0.00068
0.038% |0.000 068 0.787 10.00062 |0,0835 |0.000 063 ; 0.831 | 0.00064
0.0922 10.000 064 0.756 (0.00044 |0.0869 |0.000 062 0.799 | 0.00064
0.08955 [0.000 060 0.784 0.00044 |0.0900 0.000 060 0.767 | 0.00044
0.0985 |0.000 050 (.712 0.00040 |0.093¢ [0.000 056 0.745 | 0.00044
0.101 0.000 06 0.692 10.000236 [0.0958 10.000 052 0.723 | 0.00044
(104 0.000 04 0.674 10.00032 {0.0984 |0.000 052 0.701 | 0.00028
0.106 en 0.658 | 0161 0.687 | cooeeeeeee

* Divided difference, lower limit, positive; upper limit, negative,
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of the sums of squares of selected differences (i.e., S, /8,% 1) jn.
stead of the variances themselves in order to avoid unnecessary com-
putations. We denote throughout by S.* the sum gf squares of se-
lected items of the lower difference, the kth, and by S,** the sum of
squares of selected items of the higher difference, the (b4+1)th; ki
the order of selection.

We give in Tables 27, 28, 29 the ratios for the following levels of
significance: 5% (Table 27}, 1% (Table 28), 0.1% (Table 29). In
calculating these tables we have made use of a property of 2z indicated
by Fisher. If the estimates of the variances are based on the same
number of degrees of freedom, the distribution of the z is nearly nor-
ma) with variance 1/n, where n is the number of degrees of freedom.®
Tables 27, 28, and 29 give for selected values of N (number of items
in the original series) the limits within which the ratios of the
sums of squares of selected items of the kth and (%41) th-differences,
S.%/5,%0 myst fall in order that we may be reasonably sure from
the point of view of the given level of significance that they may still
be eonsidered equal.

To give an example we have tabulated in Table 30 the sums of
squares of selected items of the differences for the annual American
wheat-flour prices, 1890 to 1937. For instance, for the selection 0-A
(Table 26}, this is done by taking only items 1, 4, 7, 10, etc. of our
original series and items 2, 5, 8, 11, ete. of the series of the first differ-
ences. The sum of the squares of the selected original items is S;* =

396.04 and of the selected items of first differences is S.* = 12,713
{Table 30). For selection 0-B (Table 26), that is to say, including
only items 2, 5, 8, 11, ete. of the original geries and items 3, 6, 9, 12,
ete. of the series of first differences, we get for the sum of squares of
the selected original items S.® = 350.36 and for the sum of squares of

the selected first differences S,%*+* = 21.471 (Table 30}). It should be
mentioned that the originals are corrected for the arithmetic mean,
but none of the differences are corrected since the a priori or true
mean of the differences is equal to zero,

The same method of procedure has been followed for the selection
0-C and also for the comparison of higher differences. We have for in-
stance, in Table 30, for the selection 1-A (Table 26) (that is to say,
by taking only the items number 1, 6, 11, 186, etc. of the series of first
differences and the items number 8, 8, 13, 18, ete. of the series of sec-

? R. A. Fisher, op. eit., p. 233, Chapler VI1I, Section 41; G. Tintner, op. cit.,
p. 141.
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ANNUAL AMERICAN WHEAT-FLoUR PRICES, 1890-1937

TABLE 30
SuMs OF SQUARES OF SELECTED DIFFERENCES,

Lower Higher Lower High‘er# '
Gelection Dificrence Diflerence Selection 1ifference Difference
S‘z(rc) 8, e _5"'2(10 8, k1)
0-A 396.04 12.713 b-A 234.859 265.980
0-B 350.36 21.471 5-B 189.8810 81.887
0-C 363.09 31.248 5-C 606.887 79.888
5-b 271.227 788.957
1-A 22.061 15.220 5-E 58.616 2,561.369
1-B 21.254 6.189 5-F 9.880 3,629.261
1-C 5.732 34.863 5-G 109.717 1,906.076
1-D 7.846 2B.542 5-H T7.967 308.582
1-B 7.016 34.068 5-1 6.275 1,450,478
5-J 75.206 1,703.660
2-A 6.227 23.908 5-K 394.668 547.686
2-B 31.957 80.091 5-L 941.350 61.766
2-C 12.008 83.613 5M 830,976 109.364
2-D 1.760 26.728
2-E 16.032 35.059 6-A 99.019 G,205.363
2-F 30.260 77.316 6-B 52.441 12,452.669
2-G 18.434 20.805 6-C 35.975 10,923.900
6-D 109.239 2,274.767
3-A 20.951 34.015 6-E 150.308 1,306.471
3-B 16.860 75.282 6-F 103.997 6,297.367
3-C 72.769 209.491 6-G 161.223 4,511.074
3-D 17.585 322,104 6-H 878.715 1,082.739
3-E 2.818 162.394 6-1 2,538.750 23.774
3-F 14.993 0.446 6-J 3,621.064 276.218
3-G 31.902 157.202 6-K 1,802.933 282,364
3-H 85.181 148.338 6-L 1.606 442,733
31 T72.561 30.515 6-M 1,370.876 411.256
6-N 1,797.165 1.218
4-A 29.647 149.507 6-0 613.630 1,287.797
4-B 45.289 613.622
4-C 194.370 324.917 T-A 208.326 79.230
4-D 318.796 106.094 7-B 506.364 12,359,940
4-E 162.872 72,725 7-C 466.594 19,319.770
4-F 0.857 41.531 7-D 42.228 9,922,430
4-G 156.929 94.893 7-E 1,300.762 3,216.760
4-H 142.592 401.872 7-F 6,432.291 1,364.830
4-I 20.064 1,002.23% 7-G 12,462.066 1,122,780
4-T 19.932 919.619 7-H 16,626,338 119.440
4-K | 10.300 166.569 7-1 1,841.058 215.230
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TABLE 20 (concluded)

SUMS OF SQUARES OF SELECTED DIFFERENCES,
ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937

Lower Higher l . _Lower ;-Iigher
Selection Difference Difference . Selection Difference Difference
gg (%) §uz tk+1) I Sa”‘) :S'z“““
7-J 1,250.436 1,031.470 8-Q 126.740 10,612.500
T-K 5,752.310 1,641.310 8-R 999.190 62,276.060,
7-L 4,076.319 518.260 - 1,601.280 54,354,730
7-M 1,526.068 1,817,190
TN 510.444 14,226.260 9-A 93,072,720 14,805.938
7-0 402.837 37,351.540 9-B [162,819.210 25,494,532
7-P 20,931 45,375.820 9-C | 128,706.780 17,065,958
7-Q 0.259 21,130.110 9-D 24,038.080 5,237.054
9-E 13,932,910 3,219.931
8-A 674.085 16,107.780 9F £5,345.870 11,367.214
2-B 1,634.623 1,603,730 9-G 55,068.050 21,082.836
8-C 13,245.577 8,180.230 9-H 92.960 16,974.181
8-D 35,714.201 8,008.290 9-1 180.420 1,706.103
8-E 45,961,650 2,466.020 9-J 31.300 27,974.904
8-F 22,246.940 623.850 9-K 1,291.250 | 205,019,690
8-G 504.830 52.140 9-L 6,213.070 | 496,864,273
8-H 12,308.570 2,213.720 9-M 6,432.520 | 578,171.661
81 19,326,020 6,419,820 9-N 2,465.440 | 261,656.803
8-J 8,954.840 6,830.010 9-0 896.210 2,512.917
8K 1,075.350 6,058.320 9-P 51.720 | 124,445.967
8-L 1,050.670 22,470,910 9. 1,837.670 | 233,185,649
8-M 2,153.800 91,741.140 9-R 5,130.290 | 129,552.484
8-N 1,142,040 | 161,602,390 9-8 3,440.880 20,871.581
8-0 250.880 | 128,434.790 9-T 301.160 717.008
8P | 16.532 23,453,700 9-.U 22,470,910 7,081,223

ond differences), the following sums of squares: S,® = 22.061 for

the selected items of the first differences, and S,** = 15.220 for the
gelected items of the second differences. This whole process has been
carried out in Table 30 for all selections up to the comparison of the
ninth and the tenth differences, i.e., selections of order 9.

We have made the assumption that our original series consists of
a “smooth” component which can be eliminated by successive differ-
encing (Chapter IV, Section C) and a random component which is
distributed normally about the mean zero with unknown variance. We
proceed to test the hypothesis that we have eliminated the nonrandom
or smooth element in the kth difference as follows: The ratio of the

sum of squares of selected items of the kth difference, S.% | to the



A TEST OF SIGNIFICANCE FOR THE STABILITY OF VARIANCES 95

summ of squares of the corresponding selected items of the (&4-1)th

difference, S;®" (the selections being given in Table 26), must fall
within the limits indicated in Tables 27, 28, and 29 if we want to be
gure from the point of view of specific levels of significance that the
two variances are really equal and that the difference arises by chance
fluctuations,

This test does not involve the true variances since it is nothing but
a modification of Fisher’s z test. We also know that, generally speak-
ing, we shall hardly ever have eliminated completely the “smooth"” non-
random component by taking finite differences. Frequently there will
be some remainder besides the true random component. Hence, we
shall be satisfied if our test yields satisfactory results in most cases
in a comparison of the variances (or sums of squares) of the kth and
(k--1)th differences and shall not ingist that it should always hold
true.

We give in Table 31 the ratios of the sums of squares for selected
items of the differences of annual American wheat-flour prices, the
selections being given in Table 26. For selection 0-A, for instance, the
ratio of the sums of squares of the selected original items and of the

first differences is equal to S,®/S,% = 396.04/12.713 (Table 30)
which is approximately 81.15236 (Table 31). The ratio of the sums of

squares for the selection 0-B is equal to §.®/8,%) = 350.36/21.471
(Table 30) which is approximately 16.31782 (Table 31). Finally, the
ratio for the selection 0-C is equal to 11.62037 (Table 31).

We proceed in the same way for the higher differences. For the
selection 1-A (Table 26), the ratio of the sums of squares of the se-
lected first differences and the selected second differences is §,% /8, %1
= 22.061,/15.220 (Table 30) which is approximately 1.44947 (Table
31). In the same way, for selection 1-B the ratio iz 8.43416; for selec-
tion 1-C, 0.16441; 1-D, 0.27489; 1-E, 0.20595; etc. All these ratios are
given in Table 31.

In order to test the above hypothesis we have now to turn to
Tables 27, 28, and 29. Can we say that the ratio resulting from selec-
tion 0-A is consistent with our hypothesis? Avre the variances of the
series of the original items and of the series of first differences ap-
proximately equal? Have we eliminated the nonrandom element by
taking one difference? The answer to this question can only be given
from the point of view of an arbitrarily chosen level of significance.
If we take, for instance, the 5% level, this has the following meaning:
A true hypothesis will be rejected, in the long run, in only 5% of the
cases, if we apply our criterion. (See above, pages 33 f.)
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26
TABLE 31
RATIOS OF SUMS OF SQUARES FOR SELECTED ITEMS
ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937
o S o o S
Selec- — Selee- = Selec- =
tion S, Y tion S, tion S,
5, 1) §, ) S, (ker)
0-A 31.15236*** 5-D 0.34378 7-Q 0.00001***
0-B 16.31782%+# 5-E 0.02288% '
0-C 11.62087%%* 5-F 0.00272%** B-A 0.04185
- B-G 0.06756 8B 1.61926
1-A 1.44947* b-H 0.25682 8-C 1.61744
i-B 3.43414% % 5-1 0.00488%%% 8-D 4.45965*
1-C 0.16441 5-J 0.04420 ; 8-E 18.63799%*
1-D 0.27489 5-K 0.72081 i 8-F 35.66072%**
1-E 0.20595 5-L 15.24123%%* 8-G 9.68220*
5-M 8.06545%* 8-H 5.56013*
2-A 0.26046 &1 3.01037
2-B 0.39901 6-A 0.01596%* 8-J 1.310693
2-C (+.14361 6-B 0.00421%¥* 8-K 0.17765
2-D 0.06582 6-C 0.00329%** 8-L 0.04676
2-KE (0.45729 6-D 0.04802 | 8-M 0.02348
2-F 0.29138 6-E 0.11505 8-N 0.00707*
2-G 0.90786 6-F 0.01651%* 8-0 0.00195%**
6-G (.03574 8-P (G.00070***
3-A 0.61593 6-H 0.81162 8-Q 0.01194%
3-B 0.22396 8-1 106.78683%** 8-R 0.01602*
8-C 0.84731 6-J 13.10944%* 8- 0.02946
8-D 0.05459 6-K 6.38514%*
3-E 0.01735%* 6-L 0.00363%%* 9-A 6.28618*
3-F 33.61659** 6-M 3.33339* 9-B 6.38644*
3-G 0.20294 8-N 1475.50493%+* 9-C 7.54173%
3-H 0.57390 6-0 0.47650 9-D 4.59000
3-1 2.87788* 9-KE 4.32708
T-A 2.62051 9-F 5.74863%
4-A 0.19830 7-B 0.04097 9-G 1.77167
4B 0.07381 7-C 0.02415 9-H 0.00583*
4-C 0.59821 7-D 0.00426%* 91 0.10575
4-D 3.00484% 7-E 0.40437 9-J 0.00112%**
4-E 2.23956%* 7-F 4.71289* 9-K 0.00630*
4-F 0.02064%* 1-G 11.10553* 9.1, 0.01250*
4-G 1.65875 7-H 88.13076%** 9-M 0.01113*
4-H 0.35500 7-1 8.55391%* 9-N 0.00942*
4-I 0.02900* 7-J 1.21228 9-0 0.15767
4-J 0.02167* 7-K 3.50471* 9-P 0.00042%**
4-K 0.06184 7-L 7.86539%* 9-Q 0.00788*
7-M 0.83980 o-R 0.03960
5-A 0.88299 TN 0.03588 g9-8 l 0.16486
5-B 2.31882 70 0.01079* 9.T i 0.42002
5-C 7.59672%* 7-P 0.00046%** ¢ 9.U 3.17331
Mote: * z'atiﬁ outelde the limit, level of gignificance 5.0%

*% ratin outside the limit, level of significance 5.0¢% and 1.0%

*+¢ potin cutside the limit, level of significance 5.09%, 1.0%, and 0.15%
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1f we consider it from the point of view of a level of significance
of 5% we can test the hypothesis by entering Table 27, interpolating
in it for the value of N equal to 48 and the value of & equal to 0. The
ratio of the sums of squares (8,% /8,%v) should fall within the limits
0.186 and 1.353, if the variances were equal. The value of the ratio
for selection 0-A, 31.15236 (Table 31), evidently falls outside these
limits. So does the ratio for selection 0-B which is 16.31782 and for
selection 0-C which is 11.62037.

Table 28 gives the following limits for a level of significance 1%
for N=48 and k=0; 0.135 and 1.856. All three ratios for the selec-
tions 0-A, 0-B, and 0-C, i.e., 31.15236, 16.31782, and 11.62037 (Table
31) lie outside these limits. We conclude, therefore, that our hypothe-
gis is unjustified from the point of view of this level of significance.

Finally, turning to Table 29 we are dealing with the level of sig-
significance of 0.1%. By entering Table 29 (for N equal to 48 and %
equal to 0) we find that the limits from this point of view are 0.0946
and 2.659. Again we see from Table 31 that all the ratios of sums of
squares for selections 0-A, 0-B, and 0-C, that is to say 31.15236,
16.31782, and 11.62037, fall outside the limits permitied by the theory
of probability. Hence, our hypothesis that the variance of the original
series is equal to the variance of the series of first differences is prob-
ably not justified since all three possible selections give ratios of the
sums of squares that fall outside the permitted limits for all levels of
sighificance which we consider.

In Table 31 we have put one star after the values of ratios that
fall outside the limits based upon the level of significance 5% but in-
side the limits based upon the levels of significance 1% and 0.1%. Ra-
tios that fall outside the limits given by the levels of significance of 5%
and 19%, but within the limits given by the level of significance 0.1%,
are designated by two stars. Finally, the ratios that fall outside the
limits on all three levels of significanece have three stars, On the other
hand, ratiog that fall inside all three limits given by the levels of sig-
nificance 5%, 1%, and 0.1% have no stars at all. The ratios for selec-
tions 0-A, 0-B, and 0-C have three stars because they do not fall within
any of the limits given by the three levels of significance.

The same procedure is followed for comparison of higher differ-
ences. For instance, the ratios for selections 1-A, 1-B, 1-C, 1-D, and
1-E, are respectively, 1.44947, 3.43416, 0.16441, 0.27489, and 0.20595
{Table 31). Entering Table 27 under N = 48, k = 1, we see that the
limits from the point of view of the level of significance of 5% are
0.0918 and 1.216. Entering Table 28, for N = 48 and k = 1, we find
that the limits, from the point of view of a level of significance of 19,
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are 0.0610 and 1.835. Tinally we enter Table 28 which gives us the
limits for a level of significance of 0.19%; for N = 48, and &k = 1, we
get the following limits: 0.0381 and 2.949.

We see from Table 31 that the first two of our five ratios for the
sums of squares of selected values of the first differences and second
differences, that is to say, 1-A with the ratio 1.44947 and 1-B with the
ratio 3.43416, fall definitely outside the limits given by the level of sig-
nifieance 5. The ratio 1-A falls inside the limits given by the levels
of significance 1% and 0.1% (one star). The ratio 1-B falls outside
all limits (three stars). The majority of our ratios, that is to say 1-C,
1-D, and 1-E, come within the limits given by all levels of significance
and hence have no stars at all. But this may not be sufficient, We
conclude, therefore, that the hypothesis that the variances of the first
and of the seeond differences are equal is probably not yet justified.
This result, like the previous one, is the same as that reached by the
cruder comparisons of the variate difference method as given by An-
derson, based upon standard errors of the differences between the
variances of two consecutive series of finite differences without mak-
ing any selections (Table 22).

In Table 31 also appear the ratios for higher selections. All com-
parisons of the ratios of the sums of squares of selected values of the
second and third differences, selections 2-A, 2-B, ete. fall within the
limits given by all levels of significance. This also agrees with the re-
sults established previously in Chapter VII by the method of standard
errors (Table 22). We should, therefore, conclude that the variances
of the series of the second and of the third differences are probably
equal or that we have already eliminated in the second or third differ-
ence to a considerable (and possibly sufficient) degree the smooth non-
random element.

A glance over Table 81 confirms this conclusion. But we must
keep in mind the faet that the number of items in our higher selections
becomes rather small. Originally we had 48 items in our series. Selec-
tions of order 9, that is, 0-A, 0-B, and 0-C, bring this number down to
about 15 items. Selections of order 1, that is, 1-A, 1-B, etc., bring it
down to as low as 8 items. Some of the comparisons based on the
selections of order 2, that is 2-A, 2-B, eic., are based on not more
than 6 items. Generally, a selection of order % is based only upon
{N—Fk—1)/(2k--8) items, if the original series contained N items.

Hence, in our case, some selections of order 8 contain no more
than 4 items, some selections of order 5 only 2 items, and selections of
higher orders also 2 items, until, in order 7, 8, or 9, we occasionally
get down to 1 item. This is, of course, a very meager basis of com-
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parison and we shall expect only most, not all, of our ratios to fall
within the preassigned limits. Our differences still contain some re-
mainder of the original nonrandom element which can never be com-
pletely eliminated. The condition of a normal distribution of the
random element is also only partly fulfilled (Appendix VII).

These are probably only slight inconsistencies, which we should
expect in a short series such as the series of annual wheat-flour prices
which contains only 48 items to start with. The assumption of nor-
mality is also not strictly fulfilled. But we should not be wrong in
thinking that the hypothesis is more or less justified, that we have
eliminated to a considerable extent our nonrandom component in the
second or third differences, and, hence, that the variances of the third,
fourth, fifth, and higher differences are more or less equal within the
limits of probability. It is interesting to note that we have established
the same results in the previous chapter from the point of view of An-
derson’s procedure by using the eruder methods of the standard error
of the difference between the variances of two consecutive series of
finite differences, applicable only in large samples (Table 22).

We propose to call our procedure the method of selection. It eon-
sists in making comparisons between independent items by selecting
them out of our total material in such a way that they become inde-
pendenf. This method will later be used again for the study of corre-
lation between time series (Chapter X, Section B). It is the only
method with which we are acquainted that is available for this and
similar purposes. We have pointed out before that it reduces the num-
ber of degrees of freedom considerably by reducing the number of
items contained in an individual comparison. But this loss of informa-
tion may be compensated for by the fact that we get an exact test of
significance for the hypothesis that the variances of. two consecutive
difference series are equal. This test is correct and unbiased from
the point of view of probability and modern gtatisties.



CHAPTER IX

REDUCTION OF THE RANDOM VARIATION BY
SHEPPARD'S SMOOTHING FORMULAE

We may be interested in the extent of the random element in our
time series as represented for instance by a coefficient of variability.
This coefficient of random variability (v = /V,,/w) is formed by di-
viding the random standard deviation, which is the square root of the
random variance [in our case of the annual wheat-fiour prices, V'V, =
v 0.4402 = 0.6635 (Table 17)], by the arithmetic mean [which is in
our case w = 6.0731 (Table 8)]. Hence we get for the coefficient of
random variability of the annual wheat-flour prices:v = 0.6635/6.0731
= (.1093, if we assume that the nonrandom element is eliminated in
the second differences (the difference beginning from which the
variances become more or less stable, k, = 2). We may want fo im-
prove our statistical series and to eliminate the random element at
least as far as possible.

1t follows from the very definition of the random or erratic ele-
ment that we ecan never find a true approximation to it as a function
of time and then subtract it from our original series in order to get
the mathematical expectation or the pure result of the permanent
causes which are effective in our time series. But it has been shown
by Professor Anderson that we can eliminate the random element to
any desired degree by using the so-called Sheppard’s smoothing for-
mulae.? (See also Appendix II, pp. 144 ff.,, and Appendix I, Section
F, for a summary of computations.)

The main idea of Sheppard’s smoothing formulae, which were

1 0, Anderson, Die Korrelationsrechnung in der Konjunkturforschung, Bonn,
1929, pp. 72 ff.

2 0, Anderson, op. cit., pp. 74 1., pp. 117 ff. See also E. T. Whittaker and G.
Robinson, The Colculus of Observations, London, 1924, pp. 291 fl.; W. F. Shep-
pard, “Redunction of Errors by Means of Negligible Differences,” Proceedings of
the Fifth International Congress of Mathematicians, Cambridge, 1912, Vol. 2, pp.
348 ff.; W. ¥, Sheppard, “Fitting of Polynomial by Method of Least Squares,” Pro-
ceedings of the London Mathematical Society, Second Series, Vol. 13, 1914, pp. 97
ff.; W, F. Sheppard, “Graduation by Reduction of Mean Square of Error,” Jour-
nal of the Institute of Actuaries, Vol. 48, 1914, pp. 171 ff., 390 ff.; <bid,, Vol. 49,
1915, pp. 148 ff.; W. M. Sherriff, “On a Class of Graduation Formulae,” Proceed-
ings of the Royal Society of Edinburgh, Vol. 40, 1919, pp, 112 ff. Sec also on mov-
ing averages H, Wold, A Study in the Analysis of Stationary Time Series, Upp-

sa.%}a, 1938, pp. 121 ff.; F. R. Maeaunlay, The Smoothing of Time Series, New York,
1981,

—100—
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TABLE 32

WEIGHTS FOR SHEPPARD’S SMOOTHING FORMULA: g, ,, (7)

n — 1: Straight Line, Mathematical Expectation Eliminated
in the First or Second Difference

( — Distance from Midpoint, m = Degree of Accuracy)
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m J j= j=1 =2 §=—28
1 0.383 3333 | 0.3333333 | v | e
2 ] 0.200 0000 | 0.200 0000 | 0.2000000 | oo,
8 0.1428571 | 0.1428571 | 0.1428571 | 0.142 8571
4 01111111 | 0311111y | 01111111 | 01411111 | Q111 1110 | oo,
5 0.090 9091 | 0.090 9091 § 0.090 9091 | 0.090 9091 | 0.090 9091 | 0.090 9091
6 0.076 9231 | 0.076 9221 | 0.076 9231 | 0.076 9231 | 0.076 9231 | 0.076 9231
T 0.066 6667 | 0.066 6667 | 0.066 6667 | 0.066 6667 | 0.066 6667 | 0.066 6667
8 (.058 82356 | 0.058 8235 | 0.0588235 | 0.058 8235 | 0.058 8235 | 0.058 8235
9 0.052 6316 | 0.052 6316 | 0.052 6316 | 0.0526316 | 0.052 6316 | 0.052 6316
10 0.047 6190 | 0.047 6190 | 0.047 6150 | 0.047 6190 | 0.047 6190 | 0.047 6190
m j=6 =1 j§=8 i=9 =10
6 00769281 | e | i s D e U
7 0.066 6667 | 0.066 6667 | oo | it | e | eereaeeenenes
8 0.058 8235 | 0.058 8235 | 0.058 82385 | ceereeeicice | oo | e
9 0.652 6316 | 0.052 6316 | 0.0526316 | 0.0528318 | .o | vrmrneeemrreaes
10 0.047 6190 0.047 6190 0.047 6190 0.047 6190 0.047 6120 | i

first developed by Mr. W. F. Sheppard, quite independently of the vari-
ate difference method, for use in his actuarial work, is the following:
We have to distinguish between the type of curve fitted and the accu-
racy of the fit, which are two entirely different things. The type of
curve fitted is a straight line, a parabola of the second degree, of the
third degree (eubic), ete.

Let us suppose that we want to fit a straight line, Then this
straight line can be fitted to three points, or five points, ete. (any odd
number of points) of the series, according to the depree of accuracy
desired. Let us assume that we decide to fit a straight line to five suc-
cessive points and that this is accurate enough for our particular pur-
poses, Then the process of mechanical smoothing according to Shep-
pard is ag follows: We take the first five points of our series and fit
a straight line according to the method of least squares, i.e., minimiz-
ing the sum of the squares of the deviations from the fitted curve. We
establish only the value of the midpoint, which is in our case item num-
ber three. This is the smoothed value of the third item.

Then we take again five consecutive points or items of our series,
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TABLE 32 (continued)
WEIGHTS FOR SHEPPARD'S SMOOTHING FORMULA: g, . (/)
— 2. Parabola of Second Degree, Mathematical Expectation Eliminated in
the Third or Fourth Difference
(7 = Distance from Midpoeint, m == Degree of Aceuracy)
m | =0 | =1 i=2 | j=3 i—=4 i =5
2 | 04857143 | 0.342 8571 |—0.085 7143 | R
3 | 033338333 | 02857143 | 014285711 —0.0952381 % .l
4 0.2556 4113 | 0.233 7662 | 0.168 8312 | 0.060 6061 | —0.0909091 | ... ... .
5 0.207 4592 | 0.196 8042 | 01608392 | 0.1025641 | 0.020 9790 | —-06.083 9161
[ 0.174 B252 | 0.167 8322 | (14685311 01118831 0.0629371| 0.000 0000
i 01511312 | 0.146 6063 | 0.1330317| 0,1104072} 0.078 7330 | 0.038 0090
8 | 01331269 | 0.130 0310 0.1207430' 0.10526382| 0.083 5913 | 0.055 7276
9 | 01189739 | 011676251 01101283, 00990712 | 0.083 5913 | 0.063 8886
10 0.107 B515 © 0.105 9170 ; 0.101 0134 | 0.092 8408 | 0.081 3992 | 0.066 6885
11 | 0.0981366 [ 0.096 8944 | 0.0931677| 0.086 9565 | 0.078 2609 | 0.067 0807
m!  j=6 i=7 | =8 j=9 i =10 j=11
6| -0.0769231 | ... o e | e | S
7| 0011 7647 | 0.070 6882 | | e
8 0.021 6718 | -0.018 5759 | —0.065 0155 | ...
9 0.039 3631 | 0.010 6148 | -0.022 B564 | —0.060 1504
10} 0.0487087 | 0.027 4600 | 0.002 9421 | --0.024 8447 | —0.055 9006
11| 0.053 4161 00372671 1 0.018 6385 | -0.002 4845 | -0.026 0870

-0.052 1739

but now items two to six. Again we fif a straight line aceording to the
method of least squares. This gives us the smoothed value for our
item number four, which is the midpoint of this series of five items.
Next we take items number four to eight, and fit again a straight line
according to the method of least squares. This gives us the smoothed
value for item number five, etc. The whole process can, of course, be
converted into smoothing by a moving average with certain weights
which have been established by W. F. Sheppard and Miss Sherriff.
They are represented in Table 32.° There is also a very interesting
connection between the weights of these smoothing formulae as shown
in Table 32 and the coefficients of the Gram polynomials given by Pro-
fessor H. T. Davis.* (See also helow, Appendix I, pp. 145 1.}

The same general process would be applied if we should decide to
smooth our series not with a straight line, but with a parabola of any

3'W. M. Sherriff, op. cit, p. 117; E. T. Whittaker and G. Robinson, op. cit,,
pp. 295 ff.; O. Anderson, op. ¢it., pp. 120 f.
SH T Davis, Tables of quher Mathematical Funetions, Vol. 11, Blooming-
ton, Indiana, 1935, pp. 307 f.
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TABLE 32 (continued)

WEIGHTS FOR SHEPPARD'S SMOOTHING FORMULA: g, (7)

n = 3: Cubic, Mathematical Expectation Eliminated
in the Fifth or Sixth Difference

{j = Distance from Midpeint, m = Degree of Accuracy)

103

i=1

m | §=0 j=2 i=3 i=4 |
2 0 0.567 0995 : 0.324 6753 —0.129 8701 | 0.0216 450| rocrrrrceen
4 0.4172494 | 0.314 6853 0.069 9301 | —0.128 2051 | 0.034 9650
5 | 0.3333333 | 0.2797203| 0.139 8601 | —0,023 3100 -0.104 8951 ; 0.041 9580
6 | 02784862 | 0.2468120| 01604278 | 0.0452489 ) —0.055 5327  ~0.081 4480
7 | 0.239 5159 | 0.219 2080 0.1623763 | 0.081 2964 | ~0.003 5723 | —0.063 5866
8 | 02102882 & 0.1964754| 01571803 | 0.0988331| 0.032 1505 | —0.027 8638
9 0 01875084 | 0.1776821| 0.1494145! 0.1063400| 0.0545161 | 0.002 4229
10 | 01692825 | 0.1619907| 0.1409919 | 0.108 4168| 0.067 8999 | 0.024 5294
11 | 01542334 | 01487414 0.1327231| 0.1075515| 0.0755149 | 0.039 8169
12 . 01416958 | 0.137 4313, 0.124 9375 | 0.1051141| 0.0794603 | 0.050 0750
m | j==8 F=1
6 | 0.045 2488 | s
7 ~0.0619195 | 0.046 4397 ... ...
8 | ~0.0619195 |—0.046 4396 0.0464396 | .ooooeen.
9 | ~0.039 0362 |-0.056 5352| —0.0343249 | 0.045 7666 :
10 | —0.015 1530 [—-0.043 1514] —0.050 0163 | ~0.024 8447 | 0.044 7205
11 | 0.004 5767 | -0.025 1716] —0.043 4783 | —0.043 4788 | —0.017 3913 | 0.043 4783
12 | 0.019 6568 10,008 4958] —0.030 4848 | —0.041 8124 | —0.037 3813 | ~0.011 4943
j=12 |
12 | 00421456 | o] o O P

degree. Again we have also to establish the degree of accuracy which
is necessary in our case, We may want to fit a parabela, say of the
second degree, to five items, or seven items, ete. Suppose we think the
fit of a2 parabola to five items is accurate enough. Then we take the
first five items of our series and fit a parabola to them, which gives us
only the smoothed value for the third item, as before. We next take
items number two to six, and fit to those five items again a parabola
of the second degree by the method of least squares, which gives us
the smoothed value for item number four, ete.

The same process holds true for parabolas of higher degree. All
those smoothing processes can be replaced by applying various mov-
ing averages with different weights. Those weights are represented
in Table 32. The n in Table 32 shows the type of curve which we want
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TABLE 32 (continued)

WEIGHTS FOR SHEPPARD’S SMOOTHING FORMULA: g, ,, (7)

n = 4: Parabola of Fourth Degree, Mathematical Expectation Eliminated
in the Seventh or Eighth Difference

(; == Distance from Midpoint, s = Degree of Accuracy)

m j=0 | §=1 F=Z ] =3 =4 =5
"4 |7 0.6192696 | 0.3045843 | —0.1522922 | 0.043 5120 | —0.005 4390 | ...
5 | 0.4759358 | 0.3225010 | 0.0115179 | —0.126 6968 | 0.066 2279 | —0.011 5179
6 | 0.3910871 | 03031024 | 0.098 5083 | —0.075 7756 | —0.078 0489 | 0.073 3508
7 | 03333333 | 0.2778439 | 0.1389220 | —0.011 1138 | —0.086 1816 |-0.027 7868
8 | 0.2010527 i 0.2536836 | 0.1558342| 0.036 2405 | —0.053 9984 | —0.071 6113
9 | 02585812 | 0.2321712 | 0.1609369 | 0.067 0884 | —0.018 2797 | -0.064 0732
10 | 0.2327844 | 0.2134099 | 0.1600574 ] 0.086 1848 | 0.011 3699 |-0.042 9668
m j=6 j=9 =28 j=9 j=10
6 100166708 | oooovee | oo | oo | e
7 | 00722394 |-0.0206398 | oo ] e Y o
8 |-0.009 4225 | 0.0673038 |-0.0286563 § oo | e b,
9 |—0.0516355 | 0.0092610 | 0.0608696 | 00256293 | .| ..
10 |—0.059 5504 |[—0.032 9519 | 0.021 0018 | 0.054 1063 | -0.027 0531 | oo

to fit. That is = 1 represents a straight line, n = 2 a parabola
of the second degree, n = 3 a parsbola of the third degree (cubic),
ete. The m represents the degree of accuracy. That is, if m = 1, we
fit our curve to three consecutive items; if m == 2, to five consecutive
items; if m = 3, {o seven consecutive items, etc. The number of items
in our moving average is 2m-1-1.

This whole process of smoothing with moving averages® will be
understood to be quite in the spirit of the variate difference method
(cf. Chapter I, Section C). It is congistent with our assumptions about
the random element. Tt will be remembered that our contention was
that the random element is the result of the less permanent causes
which affect only one or a few neighboring items of our series. Hence
it is evident that their effect could be eliminated by some process of
mechanical smoothing which would take out everything whose influ-
ence is not permanent, but is restricted to one or a few neighboring
items.

The variate difference method accomplishes only one thing in this
connection. It shows us, so to speak, how deeply rooted the influence
of those nonrandom causes is in our series. It gives us an indication
as to which type of curve to choose if we want to eliminate the ran-

#F. C. Mills, Statistical Methods, revised edition, New York, 1938, pp. 234 f.
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TABLE 32 (concluded)

WEIGHTS FOR SHEPPARD'S SMOOTHING FORMULA: g, (§)
n = 5: Parabola of Fifth Degree, Mathematical Expectation Eliminated

in the Ninth or Tenth Difference
(7 = Distance from Midpoint, sn = Degree of Accuracy)
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j—5

m i=0 j=1 j=2 i=—3 j=4

"5 | 0.656 2818 | 0.286 4318 | -0.163 6753 | 0.061 3783 | —0.013 6396 | 0.001 3640
6 | 0.5198857 | 0.321 5051 | —0,032 15056 | —0.110 7407 | 0.085 7347 |—0.027 8638
7 | 0.4860148 | 0.3145159 | 00582437 | —0.102 8536 | —0.040 0717 | 0.083 9641
8 | 03773052 | 0.206 8098 | 0.110 2436 | -0.053 7084 { 0,084 8028 | 0.008 4803
9 | 0.3333333 | 0.2770225 | 0.1385112 | —0.006 5958 | —0.079 1493 | —0.048 0549
0 | 0.2980443 | 02579175 | 0.152 8400 | 0.080 2498 | —-0.055 1706 | _0.067 8227

m ji=¢86 i=1 j=28 j=10

6 | eoosbrey | o
7 | -0.0282632 | 0.0060578 | ...
8 | 0.07046890 |-0.0448243 ! 0.0084803 | ...
9 | 0.0848634 | 0.0541328 | -0.048 0549 | 0.010 6789 | e

10 | —0.0151410° | 0.045 9244 | 0.038 1125 | —0.048 9755 | 0.012 5987

dom element to a certain degree (it determines n). The variate dif-
ference method, however, does not give us a criterion for the accuracy
with which this should be done( the m is still arbitrary).

It follows from Professor Anderson’s exposition® that the type
of moving average which should be chosen is determined in the fol-
lowing way: If the nonrandom element is already more or less elimi-
nated in the first or.second finite difference, we may take n=1, or a
moving average which is equivalent to fitting a straight line to a num-
ber of consecutive items. If the mathematical expectation is elimi-
nated only in the third or fourth finite difference, we have n=2, and
we choose a moving average which is equivalent te fitting a parabola
of the second degree to a selected number of consecutive items, If the
nonrandom element is eliminated in the fifth or sixth finite difference,
we choose a moving average which is equivalent fo fitting a parabola
of the third degree (a cubic) to a selected number of consecutive items
{r=3) ete. If the nonrandom element is eliminated in the kth finite
difference, n = /2 for k, even, or n = (k1) /2 for I, odd.®

¢ See, however, R. Zaycoff, “Ueber die Ausschaltung der zufilligen Kompo-
nente nach der ‘Variate-Difference’ Methode,” Publications of the Statistical In-
stitute for Economic Research, State University of Sofia, 1937, No. 1, p. 82.

T Q. Anderson, op. ¢it., p. 74 f£.

* R, Zaycoff, op. cit., pp. 82 if.
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Even if the nonrandom element or the mathematical expectation
is eliminated to a considerable degree in the k. th difference, we cannot
represent the mathematical expectation of the whole time series by a
parabola of degree k—1 whose k.th difference would vanish {Chapter
1V, Section C). The variate difference method tells us only something
about the approximate behavior of a time series in the neighborhood
of a point and not about the whole shape of it. Hence all we can say
is that in the small (ém kleinen) the series behaves like a certain para-
bola and we can hence use Sheppard’s smoocthing formulae of a given
type » as defined. But we cannot make any statement about the de-
velopment of the series over the whole period considered. The variate
difference method gives us no indication about the behavior of the
series in the large (im grossen). This is one of the most important
distinctions between the variate difference method and the {itting of
orthegonal functions,

The number of items to which we fit those parabolas or which we
inelude in our moving averages is still arbitrary. We shall have to bal-
ance in this case the advantage of greater accuracy against the great-
er labor of using longer moving averages. Tables 38 and 34 should be
helpful in this connection.

We have represented in Table 33 the degree to which we reduce

TAELE 33

COEFFICIENT L, FOR THE REDUCTION OF THE KANDOM VARIANCE BY SMOOTHING
WITH A MOVING AVERAGE OF TYPE 7 AND ACCURACY m

Type of
Curve Degree of Accuracy

| m=1 m=2 E m=3 ; m=4¢ m=35 m=6

1 0.333 3333 | 0.200 0000 | 0.142 8571 | 0.111 1111 | 0.090 9091 | 0.076 9231
2 0.485 7143 | 0.333 3333 | 0.255 4113 | 0.207 4502 | 0.174 8252
3 - 0.567 0995 | 0.417 2494 | 0.333 3333 | 0.278 4862
4
5

- —-| 0.619 2696 | 0.475 9358 | 9.391 0671
........................................................................ 0.656 2818 | 0.519 8857

Type of l
Curve Degree of Accuracy

n m=" m=—238 m=29 m =10 m=11
1 | 0.066 6667 | 0.058 8235 | 0.052 6316 | 0.047 6190 | oo
2 1 0.151 1312 | 0.133 1269 | 0.118 9739 | 0.107 5515 | 0.098 1366
3 0.239 5159 | 0.210 2882 | 0.187 5084 | 0.169 2325 | 0.154 2334
4 0.233 2333 | 0.291 0527 | 0.258 5812 | 0.2832 TBAA | oo | oo
5 | 04360148 0.3773052 | 0.333 3333 | 0.298 9443 |
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the variance of the random element if we use a moving average of a
certain length, In our case of annual wheat-flour prices, for instance,
we can take n=2, assuming that the mathematical expectation is elim-
inated only in the third finite difference (Table 22). It follows from
Table 33° that we can reduce our random variance approximately to
49 per cent, simply by using the approximation m=2, which involves
a moving average including five items. L., is the coefficient by which
the original random variance V,, is multiplied if we use a moving aver-
age of type n and accuracy m. We can reduce our random variance to
one-third if we make m=3 or use a moving average which includes
seven items. We can reduce the random variance to about 26 per cent
if we use a moving average which includes nine items (m=4). We
can reduce it to approximately 21 per cent if we use a moving average
which includes 11 items (m=>5), ete. (Table 33).

We have, in our case, chosen a moving average which includes 7
items and which reduces the random variance to one-third (n=2,
m=3, Table 33). We consider this value as sufficiently accurate for
our purposes, The remaining random variance of our series of annual
wheat-flour prices should hence be approximately 0.15, whereas the
original one was about 0.44 (Table 17). This is, in our opinion,
enough reduction. A greafer accuracy would imply much greater la-
bor since the moving averages become longer.

We give in Table 84 the reduction of the coefficient of random
variability v. Entering it for »=0.10 and n=2, m=8, we see that the
coefficient of the remaining random variability after the smoothing is
abhout 0.058 or less than 6%.

We have arranged in Table 32 the values of the weights gum(§)
of the moving averages in the following way: § is the distance of the
item from the midpoint. In our case, n=2, m=3, that is, we have de-
cided to use a moving average which is equivalent to fitting a parabola
of the second degree to seven consecutive items. The item in the mid-
dle (7=0) is multiplied by 0.338 3333 (Table 82). The items distant
by 1 from the midpoint (j=1) are multiplied by 0.285 7148, the items
distant by 2 from the midpoint (7=2) are multiplied by 0.142 8571.
Finally, the items distant by 8 from the midpoint (j=38) are multi-
plied by —0.095 2381. Tt follows from the nature of moving averages
that the sum of weights must always be equal to 1.

The first smoothed value (m') which we establish by using our
moving averages is for item number four. We get it by using a mov-
ing average including the first seven items of our series of annual

? R. Zaycoff, op. ¢it., p. 85, Table 4.
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TABLE 34
REDUCTION OF THE COEFFICIENT OF RANDOM VARIABILITY (V)
BY THE USE OF MOVING AVERAGES
{» =1, Straight Line; m = Degree of Accuracy)

oy v —0.02 v=:0.04 v = 0.06 v=0.08 =010
1 0.011 5470 0.023 0940 0,034 6410 0.046 1880 0.067 7350
2 0.008 9443 0.017 8885 0.026 8328 0.035 7771 0.044 7214
2 0.007 5693 0,015 1186 0.022 6779 0.030 2372 0.037 7964
4 0.006 8667 0.013 3333 0.020 0000 (1.026 66867 0.033 3333
5 0.006 0302 0.012 0605 0.018 0907 0.024 1209 0.030 1511
6 0.005 5470 0.011 0948 0.016 6410 0.022 1880 0.027 7350
T 0.005 1640 0.010 3280 0.015 4919 0.020 6559 0.025 8199
8 0.004 8507 0.009 7014 0.014 5521 0.012 4028 0.024 25636
9 0.004 5883 0.009 1766 0.013 7649 0.018 3533 0.022 9416

10 0.004 3644 0.008 7287 0.013 0931 0.017 4574 0.021 8218

m v—=0.12 v==0.14 v==0.16 »=018 v = 0.20
1 0.069 2820 09.080 8290 0.092 3760 0.103 9230 0.115 4700
2 0.053 6656 0.062 6099 0.071 5542 0.080 4984 0.089 4427
3 0.045 3567 0.052 9150 0.060 47483 0.068 0336 0.075 5929
4 0.040 0000 0.045 6667 0.053 3333 0.060 0000 0.066 6667
5 0.036 1814 0.042 2116 | 0.048 2418 0.054 2720 0.060 3623
6 $.033 2820 0.038 8290 - | 0.044 3760 0.049 9230 0.055 4700
7 4,030 9839 0.036 1478 | 0.041 3118 0.046 4758 0.051 6398
8 0.029 1043 0.033 9550 i 0.038 8057 0.043 6564 0.048 5071
9 0.027 5299 0.032 1182 0.036 7065 0.041 2948 0.045 8831

10 0.026 1861 0.030 5505 0.034 9148 0.039 2792 | 0.043 6436
m | v=—=02b v == 0.30 =035 = (.40 » = 0.45 » =050
1) 014438376 | 0.173 2051 | 0.2020726 | 0.230 9401 | 0.2592 8076 | 0.288 6751
2 1 0.111 8034 | 0.134 1641 | 0.156 5248 | 0,178 8854 | 0.201 2461 [ 0.223 G068
3 1 00944911 | 0.1133893 | 0.1322875 | 0.151 1858 ; 0.170 0840 | 0.188 9822
4 ] 0.0823333 | 0.1000000 | 0.116 6667 | 0.133 3383 | 0.150 0000 | 0.186 6667
5 100753778 | 0.090 4534 | 0.1055290 | 0.120 6045 | 0.135 6801 | €.150 7656
6 | 006023375 | 0.0832050 | 0.0970726 | 0.110 9400 | 0.124 8075 | 0.138 6750
T | 0.064 5497 | 0.077 4597 | 0.09086%6 | 0.108 2796 | 0.1161895 | 0.129 0994
8 | 0.060 6339 | 0.0727607 | 0.0848875 | 0.097 0142 | 0.109 1410 | 0.121 2678
9 1 00673539 | 0.0688247 | 0.0802955 | 0.091 7662 | 0.1083 2371 | 0.114 7079

10 | 0.064 5544 | 0.065 4653 | 0.076 3762 | 0.087 2871 | 0.098 1980 | 0.109 1089
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TABLE 84 (continued)
REDUCTION OF THE COEFFICIENT OF RANDOM VARIABILITY (%)
BY THE USE oF MoVING AVERAGES
(n = 2, Parabola of Second Degree; m = Degree of Accuracey)

m v=0.02 v==0.04 v =0.06 »=0.08 v=10.10
2 0.013 9386 0.027 8773 0.041 8158 0.055 7546 0.069 6932
3 0.011 5470 0.023 0940 0.034 6410 0.046 1880 0.057 7350
4 | 0.010 1076 0.020 2153 0.030 3229 0.040 4306 0.050 5382
5 0.008 1095 0.018 2191 0.027 3286 0.036 4382 0.045 5477
6 0.008 3624 0.016 7248 0.025 0873 0.033 4497 0.041 8121
7 0.007 7751 0.015 5502 0.023 3254 0.031 1005 0.038 8756
8 . 0.007 2973 0.014 5946 0.021 8919 0.029 1892 0.036 4866
9 0.006 8985 0.018 7970 0.020 6956 0.027 5941 0.034 4926

10 0.006 5520 0.013 1180 0.019 6770 0.026 2360 0.032 7950

11 0.006 26564 0.012 5307 0,018 7961 0.025 0614 0.031 3268

m »=0.12 »=—=0.14 »=0.16 v =10.18 »=10.20
2 0.083 6318 0.097 5706 0.111 5091 0.125 4478 0.139 3864
3 0.069 2820 0.080 8290 0.092 3760 0.108 9230 0.115 4700
4 0.060 6459 0.070 7535 0.080 8612 0.090 9688 0.101 0765
5 0.054 6572 0.063 7668 0.072 8763 0.081 9858 0.091 0954
6 0.080 1745 0.058 5369 0.066 8994 0.076 2618 0.083 6242
7 0.046 6507 0.054 4258 0.062 2009 0.069 9761 0.077 7512
8 0.043 7839 0.051 0812 0.058 3785 0.065 6758 0.072 9731
9 0.041 3911 0.048 2894 0.055 1881 0.062 0867 0.068 9852

10 0.039 3540 0.045 9131 0.062 4721 0.059 0311 0.065 5901

11 0.037 5921 0.043 8575 0.050 1228 0.056 3882 0.062 6535
m; =025 » =0.30 v==0.3b v = 0.40 v =045 » = 0,50
21 01742330 | 0.2090796 | 0.243 9262 | 0.298 7728 | 0.313 6194 | 0,348 4660

"8 01443376 ; 0.173205% | 0.2020726 } 0.2309401 | 0.259 8076 ; 0.288 6751
4| 01263456 | 0.151 6147 | 0.176 8838 | 0.202 1529 | 0.227 4220 | 0.252 6912

5 01138692 | 0.136 6481 | 0.1594169 | 0.1821908 | 0.204 9646 | 0.227 7384
61 01045302 | 01254363 | 0.146 3424 | 0.167 2484 | 0,188 1544 | 0.209 0605
71 0.0971890 | 0.116 6268 | 0.136 0646 | 0.155 5024 | 0.174 9402 | 0.194 3780
8| 0.0912164 | 010945696 | 0.127 7029 | 0.145 9462 | 0.164 1895 | 0.182 4328
9! 0.0862315 | 0.1034778 ! 0.120 7241 | 0,137 9704 | 0.15b 2167 | 0.172 4630

10| 0.0819876 | 0.098 3851 | 0.114 7826 '| 0.1311802 | 0.147 5777 | 0.163 9752

11| 0.0783169 | 0.093 9803 | 0.102 6437 | 0.125 2070 | 0.140 9704 | 0.156 6338
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TABLE 34 {continued)
REDUCTION OF THE COEFFICIENT OF RANDOM VARIABILITY (v)
BY THE USE OoF MOVING AVERAGES
(n = 8, Cubic; m == Degree of Accuracy)

m | v=002 | v=0.04 »=10.06 v == 0.08 v =10.10
3 | 0.004 7628 [ 0.002 5255 0.014 2888 0.019 0511 0,028 8138
4 0.004 0853 0.008 1707 0.012 2560 0.016 3413 . 0.020 4267
5 0.008 6515 0.007 3030 0.010 9544 0.014 6059 0.018 2674
6 0.003 3376 0.006 6752 0.010 0127 0.013 3503 0.016 6879
7 0.003 0953 0.006 1905 0.009 2858 0.012 3810 0.015 4763
g8 | 0.0029003 | 0.0058005 0.008 T008 0.011 6011 0.014 5013
9 0.002 7387 0.005 4773 0.008 2160 0.010 9547 0.013 6834

10 0.002 6018 0.005 2036 0.007 8054 0.010 4072 0.013 0089
11 0.002 4838 0.004 9676 0.007 4514 0.009 9353 0.012 4191

12 0.002 3807 | 0.004 7614 0.007 1422 0.009 5229 0.011 9036

E) v=—=10.12 v»==0.14 v=10.16 v =0.18 »=10.20
3 0.028 5766 0.033 3394 0.038 1022 0.042 8649 0.047 6277
4 0.024 5120 0.028 5974 0.032 6827 0.036 7680 0.040 8534
5 0.021 9089 0.025 5804 0.029 2119 0.082 8634 0.036 5148
6 0.020 0255 0.023 3631 0.026 7007 0.030 0382 0.033 3758
7 0.018 5718 0.021 6668 0.024 7621 0.027 8573 0.030 9526
8 0.017 4016 0.020 3018 0.023 2021 0.026 1024 0.029 0026
9 0.016 4320 0.019 1707 0.021 9094 0.024 6481 0.027 3867

10 -0.015 6107 0.018 2125 0.020 81423 0.023 4161 0.026 0179

11 - 0.014 9029 0.017 3867 0.019 8705 0.022 3543 0.024 8382

12 0.014 2843 | 0.016 6630 0.019 0458 0.021 4265 0.023 8072

m | »v=025 =030 v—=0.35 =040 v=1045 v = 0.50

T 87| 0.059 5346 | 0.0714418 | 0.083 3485 | 0.095 2654 | 0.107 1623 | 0.119 0692

4 | 0.051 0667 | 0.0612800 | 0.0714984 | 0.081 7067 | 0.0919201| 0,102 1334
5 | 0.04564386 | 0.0547723 | 0.063 9010 | 0.073 0297 | 0.082 1584 | 0.091 2871
6 100417198 | 00500637 | 0.058 4077 | 0.066 7516 | 0.075 0956 | 0.083 4396
T | 0,038 6908 | 0.046 428% | 0.054 1670 | 0.061 9052 | 0.069 6434 | 0.077 3315
8 | 0.036 2538 | 0.043 b040 | 0.050 7546 | 0.068 0053 | 0.065 2559 | 0.072 5066
9 | 0.0342334 | 0.0410801 | 0.0479268 | 0.0547735 | 0.0616202 | 0.068 4668

10 | 00325224 | 0.0390268 ) 0.0455313 | 0.052 0858 | 0.0b83 5402 | 0.065 0447

11 { 00310477 | 0.087 2572 | 0.043 4668 | 0.049 6763 | 0.055 8859 | 0.062 0954

12 | 0.029 7590 | 0.085 7108 | 0.041 6626 | 0.047 6144 | 0.053 5662

0.059 5180
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TABLE 34 (continued)
REDUCTION OF THE CORFFICIENT OF RANDOM VARIABILITY ()
BY THE USE OF MOVING AVERAGES
(n = 4, Parabola of Fourth Degree; m = Degree of Accuracy)
Tm | v—002 v =10.04 »=006 | ©=008 | v=0.10
T 0.0157387 | 00314775 | 00472162 | 00629549 | 0.0786937
5 0.013 7976 0.027 5952 0.041 3929 0,055 1906 0.068 9881
6 0.012 5071 0.025 0141 0.037 5212 0.050 0283 0.062 5354
7 0.011 5470 0.023 0940 0.034 6410 0.046 1880 0.057 7350
8 0.010 7899 0.021 5797 0.032 3656 0.043 1594 0.053 9493
9 0.010 1702 (.020 3404 0.030 5105 0.040 6807 0.050 8509
0 0.009 6495 0.019 2991 0.028 9486 | 0.038 5982 0.048 2477
v=012 | v=014 | v=01c | v=o018 » = 0.20
4 0.094 4324 01101712 \ 0.125 9099 0.141 6486 0.157 3874
5 0.082 7857 0.096 5833 | 0,110 3810 0.124 1786 0.137 9762
6 0.075 0424 0.087 5495 I 0.100 D566 0.112 5636 0.126 0707
7 i 0.069 2820 0.080 8290 0.092 3760 I 0,103 9230 0.115 4700
8 0.064 7392 0.075 5290 ! 0.086 3189 0.097 1087 0.107 8986
9 0.061 0211 0.0711912 ¢ 00813614 | (.091 5318 0.101 7018
10 0.057 8973 | 0.067 b468 i 0.077 1964 b 0.086 8459 0.096 4955
m] v=025 | »==030 | »=085 | v=040 | v=045 | v=050
4| 01967342 0.236 0810 | 0.275 4279 | 0.314 7747 | 0.8354 1216 | 0.393 4684
b| 01724702 | 0.206 9643 0.241 4584 | 0.275 9524 | 0.310 4464 | 0.544 9405
6| 01563384, 0.1876060 | 0.218 8737 | 0.250 1414 | (.281 4091 | 0.312 6768
71 01443376 | 0173 2051 | 0.2020726 | 0.230 9401 | 0.259 8076 | 0.288 6751
8| 01348732 | 01618479 | 0.188 8226 | 02157972 | 0.2427718 | 0.269 7465
9 01271272 | 0.1525526 | 0.177 9781 | 0.203 4035 | 0.228 8290 | 0.254 2544
10 | 0.1206193 | 0.144 7432 | 0.168 8671 | 0.192 9909 | 0.2171148 | 0.241 2386

wheat-flour prices (w) (Table 35). The first item (5.185) is to be
multiplied by —0.0952, the second item (5.305) is to be multiplied by
0.1429, the third item (4.346) is to be multiplied by 0.2857, the fourth
item which is at the midpoint at the year 1893, (4.006) is to be multi-
plied by 0.3333. The fifth item (3.594) has to be multiplied by 0.2857,
the sixth item (3.643) by 0.1429, and the seventh item (8.795) by

—0.0952,

The process of calculation is exhibited in Table 85. All the mov-
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TABLE 34 (concluded)

REpUCTION OF THE COEFFICIENT OF RANDOM VARIABILITY (V)
BY THE USE OF MOVING AVERAGES
{n == 5, Parabola of Fifth Degree; m = Degree of Accuracy)

m » = 0.02 v = 0.04 »—0.06 » = 0.08 v == 0,10
5 0.016 2022 | 0.0324045 | 0.0486067 | 0.0648090 | 0.0810112
6 0.014 4206 | 0.0288412 | 0.0432619 | 0.0576825 | 0.072 1031
7 00132063 | 0.0264126 | 0.0396189 | 0.0528251 | 0.066 0314
8 0.0122850 | 0.0245701 | 0.0368551 | 0.049 1401 | 0.081 4259
9 0.0115470 | 0.0230940 | 0.0346410 | 0.0461880 | 0.057 7350

10 00109352 | 00218703 | 00328055 | 0.0437406 | 0.054 6758

m =012 =014 . v=10.16 »=10.18 » = (.20
5 0.097 2135 | 01134157 | 0.1296180 | 01458202 | 0.1620224
8 0.086 5237 | 01009443 | 01153650 | 0.1287856 | 0.1442062
7 0.079 2377 | 0.0924440 | 01056503 | 0.1188566 | 0.132 0628
8 00737102 | 0.0859952 | 0.0982803 | 01105653 | 0.122 8503
9 1 0.069 2820 | 0.080.8290 | 0.0923760 | 01039230 | 0.1154700

10

0.065 6110 0.076 5461 0.087 4813 0.098 4164 0.109 3516

m|{ v=025 | v—030 | v—085 | v—040 | v=045 | »=0.50

5 | 0.2025280 | 0.243 0337 | 0.283 5393 | 0.324 0449 | 0.364 5505 | 0.405 0561
6| 0.1802578 | 0.2163093 | 0.2523608 | 0.288 4124 | 0.324 4640 | 0.360 5155
7| 01650786 | 0.198 0948 | 0.2311100 | 0.264 1257 | 0.207 1414 | 0.330 1571
8 | 01535620 | 0.1842755 | 0.214 9881 | 0.245 7007 | 0.276 4133 | 0.307 1258
9
0

0.144 3376 | 0.1732051 | 0.202 0726 | 0.230 9401 | 0.259 B0T6 | 0.288 6751
0.136 6895 | 0.164 0274 | 0.191 3653 | 0.218 7032 | 0.246 0411 | 0.273 3700

1

ing averages are symmetrical around the midpoint, and hence Table
32 is sufficient. The simplest method of calculation is to multiply every
item of the series by the corresponding weights, a process which is
shown in Table 35. The asterisks in this table indicate the items to be
summed diagonally up and down from the midpoint to give the
smoothed value for the year 1893, which is 4.028. The other smoothed
values in the last column are found similarly.

We can eliminate the random element in this way to the degree
which we have decided on previously and get a series m’ which repre-
sents the true mathematical expectation within the limits of the ap-
proximation desired. We can assume that it is not far from the course
which our prices would have taken if only about one-third of the origi-
nal random influences had been effective. The result of our smooth-
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TABLE 35
SMOOTHING OF THE ANNUAL AMERICAN WHEAT-FLOUR PRICES
BY MOVING AVERAGES
n=2m=3
(Weights, g, ,(j) from Table 32)

Year Amimal i—0 J — 8 3 -—2 3 =3 Smociuthed

“e | 9 =0.3333|g=10.2857| g = 0.1429 g = —0.0952 >
1890 5.185 1,728 1.481 0.741 —0.494% | ..
1891 5.30b 1.768 1.516 0.758* —-0.605
1892 4,346 1.449 1.242% 0.621 0414 | ...
1893 4.006 1.335* 1.146 0.572 —0.382 4.028%
1894 3.594 1,198 1.027* 0.513 —0.342 3.604
1895 3.643 | 1.214 1.041 0.521% —0.347 3.689
1896 3.7195 1.265 1.084 0.542 -—0.361* 4066
1897 4,591 1.630 1.512 0.666 —0.437 4.317
1898 4.729 1.576 1.3561 0.676 -—0.450 4.348
1899 3.774 1.2568 1.078 0.539 —0.359 4,183
1900 3.842 1.281 1.098 0.549 —40.366 3.81¢9
1901 3.810 1.270 1.089 0.544 —0.363 3.651
1602 3.808 1.269 1.088 0.544 —{0.363 4.036
1903 4.330 1.443 1.237 0.619 —0.412 4.614
1904 5,378 1.793 1.687 0.768 —0.512 4.907
1905 5.422 1.807 1.549 0.776 —0.516 5.005
1906 4276 1.425 1.222 0.611 —0.407 4,949
1907 4,875 1.625 1.398 0.699 —0.464 49566
1908 5.418 1.806 1.5648 0.774 —0.516 5.239
1509 b. 766 1.919 1.645 0.822 —0.548 5.b62
1210 b.495 1.832 1.670 0.785 —0.5623 b.667
1911 5.078 1.693 1.451 0.725 —0.484 5.239
1912 5.271 1.757 1.506 0.753 —0.502 4,836
1913 4.544 1,515 1.2908 0.649 —0.433 4.939
1914 5.006 1.697 1.456 0.728 —0.485 5.120
1915 6.663 2.221 1.904 0.952 —0.635 6.556
1916 7.264 2.421 2.075 1.038 —0.692 8.191
1917 11.397 3.799 3.266 1.628 —1.086 9.762
1918 10.200 3.400 2.914 1.457 —0.971 11.505
1919 11.998 3.999 3.428 1.714 —1,143 I 11.966
1920 12.675 4.225 3.621 1.811 —1.207 1 10.836
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TABLE 35 (concluded)

SMOOTHING OF 1HE ANNUAL AMERICAN WHEAT-FLOUR PRICES
BY MOVING AVERAGES
n=2m=—23
(Weights, g, ,(7) from Table 32)

Year Annual j —( 3 —=1 g o2 j =8 Smoothed
_yalwe i o 0.3333 g = 0.2857 | g = 0.1420 | g = —0.0052 |—oNe
w m
1921 [ 8.326 2.775 2.379 1.189 0793 0.447
1022 7.282 2.427 2.081 1.040 —0.694 7.922
1923 6.385 2.128 1.824 0.912 —0.608 6.704
1924 7191 2,897 2,055 1.027 —0.685 7.487
1025 2.828 2,943 2,522 1261 | —g.602 7.999
1926 8.426 2.809 2.407 1.204 | —0.802 8.257
1927 7.433 2.478 2.124 1.062 ~0.708 7.954
1928 7.205 2.402 2.059 1.029 —0.686 7.434
1929 6.786 2.262 1.939 0.969 —0.646 6.442
1930 5.626 1.875 1.607 0.804 —0.536 5.502
1

1931 4578 1.526 1.208 0654 | —0.436 4782
1932 | 41961  1.399 1.199 0.599 —0.400 4726
1922 | 5.683 1.894 1.624 | 0812 —0.541 5.592
1934 | 6778 2.258 1.935 0.968 —0.645 6.575
1936 | 7.676 2,559 2.193 1.097 —0721
1036 ! 6.836 2.279 1.953 0.977 —0.651 | e
1937 | 6716 2939 1.919 0.959 —0.640 |

ing process and of the approximations m’ are shown in Table 35, We
also show in Figure 1 the original annual wheat-flour prices, 1890 to
1987, w, and the approximation to their mathematical expectations
found by an application of Sheppard’s moving averages, m’ .

The same smoothing process has been carried through for the fol-
lowing price serieg, 1890 fo 1937: annual wool prices, annual raw-silk
prices, and monthly wool prices.

It appears from cur difference analysis as shown in Table 23 that
we have probably eliminated the nonrandom element in the annual
wool price series in the second or third difference. Assuming n—=2 and
choosing m=-4, i.e., 3 moving average compriging 9 items, we smoothed
the original annual wool prices w by applying the weights g.,(7)
(Table 32). Both the original data w and the smoothed values m’, the
approximations to the irue mathematical expectation, are shown in
Figure 2.
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FIGURE 3.—ANNUAL RAW-SILK PRICES, 1890-1937 (LOGARITHMIC SCALE).

Table 25 shows for the annual raw-silk prices a result similar to
Table 23. Assuming that we have eliminated the mathematical expee-
tation of this series in the third finite difference, we get n=2. 1If we
choose again a moving average of 9 items, we have m=4, This means
that we take the weights g, .(7) as given in Table 32. Our original ran-
dom variance is in this case reduced to about one-fourth (Table 33,
Ly for n=2, m=4). We show in Figure 3 the original series of raw-
silk prices w together with the smoothed values m’ which are an em-
pirical approximation to the mathematical expectation,

Finally, we see from the difference analysis in Table 24 that we
have to go probably as far as the seventh difference in order to elimi-
nate even approximately the nonrandom element or mathematical ex-
pectation in the monthly wool prices. Hence we get n—4 and choose
m=4. This means that we reduce our original random variance to
about 629 (Table 83).



CHAFTER X

CORRELATION
A. Difference Analysis

The variate difference method has been used very frequently for
the purpose of calculating correlations.! It seems, indeed, to be very
well suited for two purposes—to calculate the correlation between the
random elements of two time series and also to get a measure of the
linear relationship between the mathematical expectations or the non-
random components of the series (see Section C). We treat in this
connection only the simplest case. More involved problems, dealing
with serial correlation, lag correlation, and multiple eorrelation, have
been discussed in the literature (see Chapter II).

Following some ideas put forward by Tschuprow,? we can state
our problem in this form: Correlation applies only to stochastic or
random variables (Chapter IV, Section B). Nonrandom variables,
like our mathematical expectations, can have functional relationships,
which are always strictly true (at least in theory) and need not, of
course, be linear, But correlation is essentially a stochastic relation-
ship between random variables. This relationship, again, need not be
linear. Two random or casual variables are stochastically indepen-
dent, if the distribution of one is independent of the value of the
other. If this is not the case we get certain stochastic relationships
one of which may be measured by the correlation coefficient. This
measures the closeness of the linear stochastic relationship between
the two random variables. But if two random variables are not
correlated this does not necessarily mean that there is no stochastic
relationship between them. It is possible, for instance, to have a def-
inite relationship between the values of one variable and the variance
of the other,

We make an assumption similar to that in Chapter V, but we are

t 0. Anderson, Die Korrelalionsrechnung in der Konjunlkturforschung, Bonn,
1529, pp. 37 1., 81 ff., 122 ff.; Einfihrung in die mathematische Statistik, Vienna,
1935, pp. 267 if.; “Ist die Quantitiitstheorie statistisch nachweisbar?” Zeitschrift
fiir Nationailokonemie, Vol, 2, 1931, pp. 523 fI,

. 2A. A, Tschuprow, Grundbegriffe und Grundprobleme der Korrelationsthe-
orie, Berlin, 1025, especially pp. 12 ff.; O. Anderson, Die Korrelationsrechnung in
der Konjunkturforsdhung, pp, 81 f.
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now considering two time series® We assume that each consis’f:s of
the mathematical expectation and the random element. There is no
correlation between the mathematical expectations and the random
clement of the same series. Only corresponding elements of both
series are correlated. That is, we assume that there is a correlation
only between the random elements that refer to the same period of
time. Our procedure ean be very easily generalized for lag correla-
tions.* This wonld assume that the correlation exists only between
the random elements, which are lagged by a certain number of units.
Our assumption does not involve any considerable restriction. We do
not consider here the case in which there is a relationship between one
item of the random element of one series and several items of the
other series.’

We assume further that the population variance of the random
element of one time series is o2 and of the other series «,2. The popu-
lation value of their product moment is n. The product moments of
the differences of two pure random series which satisfy our condilions
should be equal if properly calcutated and adjusted for the multiplica-
tion by the same binomial coefficient that appears in the variances
(Chapter V, see Table 9). Hence, if we have eliminated the nonran-
dom elements or mathematieal expectations to a considerable degree
in the k.th difference, we should have the following relationship:®

Pr, = Pron = Pz =+

where p,. denotes the empirical approximation to the produet moment
of our two series calculated from the xth differences. It is an estimate
of the true product moment =, This is the relaticnship that we have 1o
test statistically.

The values pr are ecaleulated similarly to the Vi which were em-
pirical approximations to the population variances (Chapter V). In
fact, we have to divide by the same bhinomial coefficients (Table 9) or
multiply by the corregponding factors Ay (Table 10). The following

are the formulae:?
_ [Se(zy) — Nw(z) w(y)]
- N—1 ’

0

3 Bee p. 32 ff. and Appendix II, “Mathematical Notes,” pp. 146 I, Appendix
1, Section @, gives a summary of computations.

1 0. Anderson, op, ¢it.,, pp. 125 ff.

5 Ibid., pp. 130 ff.

8 Ibid., pp. 89 ff., pp. 127 fI.

7 Ibid., p. 127,
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for the original series, and

5@ (zy)

— 7 =~ Q) , E=1,2,..-,
N uC, - S (30) Au

for the first and higher differences. w(z) and w(y) in these formu-
Iae denote the arithmetic means of the two original series and S*! (zy)
is the sum of the products of their kth differences, the original series
being counted as the Oth difference. The values of the coeflicients Auy
have been tabulated in Table 10.

We want to find out beginning from which k.th difference the
mathematical expectations have been considerably eliminated so that
only the random elements are left. Hence the product moments s
should be approximately equal within the limits of probability. They
are empirical approximations to the true population product moment
of the random elements of the two series, = . The test can be performed
in two ways. We may use the method of the standard errors which is
permitted only with large samples. It will give us a criterion for the
stability of g, . Or we may calculate empirical independent correla-
lation coefficients (making a transformation to z as suggested by Fish-
er) and test their stability statistically. Similar procedures have been
used with the variances (Chapters VII and VIII). The latter proce-
dure will be shown in Seetion B for the problem of correlation.

We first want to describe the method of standard errors proposed
by Anderson.? The approximate standard error of the difference be-
tween the empirical product moments of two consecutive differences
(D — Drn), é&°, depends upon the square of the product moment and
the product of the variances of the two series. If we take empirical
approximations we get the formula:

so_ VL
k y

kN

where
2+ Vi () Vi(y)
2

Pr has been defined before and is an empirical approximation to the
product moment of the random elements of our original series. Vi (z)
and Vi(y) are empirical approximations to the variances of the kth
difference of the two series. Hy has been tabulated in Table 20.
This approximation is valid only if we assume that we are not

Lk:

8 I'bid., pp. 89 ff., 127 ff.
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too far from normal correlation and that a term which corresponds to
the kurtosis does not appear.” We give the correct procedure later,
We ecan again form an approximative criterion:

Rko — (pk_'pku) .
Vi

A value of R,* numerically smaller than 3 will give us a fiducial limit

which, from the point of view of probability, will be sufficient in

most cases for testing the kyth difference beginning from which we re-
tain only the random elements in our series (see above, pages 33 ff.).

HkN .

TABLE 36

SUMMARY OF CORRELATION, ANNUAL WOOL {x) AND
Raw-SiLk (y) PRrICEs, 1850-1937

Qvder of Sum of

Differcnce Products S("’(a:yz) S (mzy) ka)(w2y2)
k S (xy)
0 148.236 838.585 134.868 860.730
1 4971 | e 9.110
2 9576 | e ] eeeeeerenes 49.820
3 26270 | s ] e 425,150
4 br{(1:3 - T U [ 8,713.846
5 230206 | s e 34,410.202
6 T05.986 | s | e 335,864.333
7 1,912.628 | s e 3,406,367.622
8 6,869.021 | .| e 35,828,491.213
9 21,872,764 | s | erreeeee 389,309,546.730

10 73040158 | . e 4,367,448,092.124

Second-order product moment of original series: m, , = 45.87.

This procedure has been followed with the annual wool and raw-
silk prices. They have been compiled from the wholesale price series
of the United States Bureau of Labor Statistics. The data cover the
period 1890 to 1937. We show in Table 36 the sums S® (zy) of the
products of the originals and differences of the yearly wool (x) and
raw-silk prices {y). The same table also contains other data referred
to later.

In Table 37 we find the empirical approximations to the product
moments of the original and differences, p . The product moment of
the original items (0th difference) is calculated aceording to the for-
mula: '

® Ibid., p. 127
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po = (S (2y) — N w(x)w(y)]
0 N—..l »

where N=48 ié the number of items in our two series, w(x) the mean

of the wool prices is 0.6218 (Table 11), w(y) the mean of the raw-
silk prices is 4.2888 (Table 13). We have further from Table 36:
S® (zy), the sum of the products of the items in the two original se-
ries, is 148.236 (Table 86, k=0). Hence we get p,, the approximation
to the product moment of the original series, equal to 0.4304 (Table
37).

The same procedure has been adopted for the higher differences,
where we use the approximate formula g = S% (xy) Ay . The values
of the first factor, the sums of the products of the kth differences of
the two series, are given in Table 36. The coefficients Axy have been
tabulated in Table 10. We want, for instance, to find ., the empirical
approximation to the product moment of the third differences of the
two series. We have from Table 36 under k=3: S® (xy) = 26.270. We
get from Table 10 by interpolation for k=3, N==48: A,y = 0.001121.
Hence we have for p, the value 0.02045, which has again been tabu-
lated in Table 37. Table 37 also gives all the other values of the
. up to k=10.

We have now to calculate the values of Ly, = (1 -+ Vi (2) Vi (w) 1/
2. They are again tabulated in Table 37. Suppose, to give an example,

TABLE 37

DIFFERENCE ANALYSIS OF GORRELATION,
ANNUAL W00L AND RAW-SILK PRICES, 1890-1937

| Approxi- o
Order of Product Standard mate [ Correlation
Difference Moment Error Standard ! Coefficient
Ratio Error
Ratio
k P L, Oy My By | By |
0 0.4304 0.247 167 6.74 0.2665 51144 | 51421 | 0.7743
1 0.05332 | 0.006 752 | 12.38 0.05640 | 2.7601 | 3.0194 | 0.5167
2 0.08500 | 0.004 127 | 15.62 0.035641 | 1.83493 | 1.6644 | 0.4175
3 0.02945 | 0.003 474 | 17.82 0.03219 { 1.3124 | 1.579%7 | 0.3777
4 0,02b11 | 0.002 997 | 20.0% 0.02229 | 1.3396 | 1.5955 | 0.3429
b 0.02146 | 0.002 625 | 22.31 0.01412 | 1.3548 | 1.5626 | 0.3101
6 0.01835 | 0.002328 | 24,52 0.00771 | 23378 | 25782 { 0.2792
7 0.01375 | 0.002 070¢ | 26.69 0.00293 | 0.1291 ) 0.1352 | 0.2187
8 0.01353 | 0.001906 | 29.17 | —0.00114 | 1.2361 | 1.2098 | 0.2246
9 0.01168 | 0.001736 | 31.50 | —0.00384 | 0.876% | 0.8046 | 0.2023
10 i 001082 | il | e ] e | [ . 0.1888




122 THF, VARIATE DIFFERENCE METHOD

we want to find L, . We have from Table 37: p, = 0.01375; and from
Table 23: the variance of the seventh differences of the annual wool
prices, V,(x) = 0.02577. Table 25 gives the variance of the seventh
differences of the annual raw-silk prices, V;(y) = 0.1533. Hence we
establish by a short calculation the value of L; = 0.002 070. This val-
ne and the values of all the L, for 2=0,1,--. , 9 are given in Table 37.

The approximate criterion B:® which assumes a normal or nearly
normal correlation is given by: Ry’ = (pv — Do) How/ VI We
get the values for py, and L; from Table 37. Hiy has been tabulated in
Table 20. If we want, for instance, to find the approximate criterion
R.° for the difference between the product moments of the fifth and
sixth differences, p, — Ds, we have the following data: From Table
37, p, = 0.02146, p, = 0.01835, and L; = 0.002 625. Interpolating
in Table 20 for k=5 and N=48, we get the value 25.741 for Hyv. A
short calculation gives B,° = 1.5626 as an approximate criterion for
the difference between the product moments of the fifth and sixth dif-
ferences of our yearly series.

The hypothesis that we eliminate the nonrandom element in our
product moments of the annual wool and raw-silk prices in the second
differences seems to be somewhat justified by the values of the approxi-
mate criterion B, given in Table 37. Its absolute values become small-
er than 3 and stay so beginning with the second difference. We may
hence be justified from the point of view of large-sample theory in
making this statement. The correlation between the random elements
of the two yearly series ean hence be estimated by the correlation co-
efficient of the second differences of both series. We have, in Table 37,
r, = 0.4175. In general, the correlation coefficient of the kth differ-
ences is 7% = P/ V Vi(2) Vi (¥). The coefficient of determination®®
{square of the correlation coefficient) is about 0.17. This means that
about 17¢ of the variance of the random element of one variable can
be explained linearly by the variation of the random element of the
other.

For the annual series of wool and raw-silk prices and for their
differences we have also applied the more rigorous method which in-
volves the knowledge of a term corresponding to the kurtosis in the
case of the difference analysis of one single series. It necessitates a
knowledge of the sums of the products of the squares of our two series
and their differences as well as of the sums of the producis of the
squares of the one variate times the values of the other variate, The
parameters M, which are necessary for our calculations are shown in

sa M. Ezekiel, Methods of Correlation Analysis, New York, 19230, p. 120.
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Table 37. We construct a better criterion Ry according to the formu-
lae:?®

_ (»— D) Qx
VI

HkN
\/1 + JkN Mk

Hi.» and Jiyz have been tabulated in Tables 20 and 21. The values M;
are given for the differences, k = 1, 2, --- by the formula:

Mk Z[S(k) (wz.yz)

a'aj;

and

=

&

N—k

The coefficients By and Cj are given in Tables 14 and 16, N is the num-
her of items in the original series (in our case N==48), and L has
been calculated before and is given in Table 37 for our example. Table
36 shows the values of the S® (z2y?), i.e., the sums of the products of
the squares of the two original series and the difference series.

The calculation of M, is somewhat more complicated, We have:

M, = [";’_EN Lo ]FN.

Ey and Fy are coefficients which have been tabulated in Tables 18 and
18. m.. is the second-order product moment and the best estimate of
it is given by:

—BLe|Ce,  E=12e.

My = SO (229?) — 2 w(y) SO (x%y) — 2w (x)S© (2y7)
-+ w{(¥)25, (&) 4+ W ()28, (y) + 4w z)w (y) 5 (2y)
— 8N 0 (x) ¥ (y)?.
The sums S (x*y?), S© (x2y), S (x2y*), and S (xy) are given
in the summary (Table 86, k=0). We get for the annual wool prices

the sum 8./ (2) and the mean w(x) from Table 11. Table 138 gives

the values for raw-silk prices of S, (y) and w(y). The second-order
product moment m.. is also given in Table 36. For our example,
Msy, = 45.87, M, = 0.2665 (Table 37). ‘

The results which appear in Table 37 are really not very different

16 fbid., p, 127. See also Appendix II, pp. 147 ff,, and Appendix I, Section H
for a summary of computations.
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from those reached before with the approximate criterion Re. In
fact, we sce that probably the mathematical expectations have been
eliminated and the random elements common to the annual raw-silk
and wool prices have been separated out in the first or second differ-
ence. None of the approximate criferia E.° or the new better criteria
R, are greater than 1.6 for a difference higher than k=1. Hence we
should conclude, at least in this particular case, that it was not real-
ly necessary to make the exact test and the approximate test was more
or less sufficient. There ts some additional labor involved in the more
exact tests but it cannot be considered prohibitive.

B. Selected Comparisonst?

We can also try to find the % th difference, beginning from which
the differences of our two series contain approximately only the ran-
dom elements, in another way. We start with the same assumptions
as before but have also to agsume that we are dealing with normal or
nearly normal correlation between the random elements. We calcu-
late the correlation coefficient »” for the correlation between selected
items for the kth differences of our two series and another indepen-
dent correlation coefficient 7y, for the correlation between selected
items of the (k4-1)th differences of our two series. If we have elimi-
nated to a considerable degree the nonrandom elements in our k.th
difference, then the correlation coefficients r;m and ﬁw and coeffici-
ents of selected independent higher differences should be equal within
the limits of probability.

The selections are again made by use of Table 26, which gives all
the possible arrangements. The selections are arranged in such a way
that the differences of order k and k-1 which they contain are inde-
pendent and hence also the correlation coefficients (Table 38).

We use Fisher’s transformation'? for z;" which is now also given
in the tables by Fisher and Yates.** The difference 2y — 2'%., should
be distributed nermally with a standard error of

1 1
\/n—3+n—1

for k=0, that is, a comparison of the correlation between the original

11 G, Tintner, “On Tests of Significance in Time Series,” Annals of Mathe-
matical Statigties, Vol. 10, 1939, pp. 189 ff. See also Appendix II, pp. 148 fF., and
Appendix I, Section J, for a summary of computations.

12 R. A. Pisher, Statistical Methods for Research Workers, Tth ed., London,
1938, pp. 202 f., Chapter VI, Section 35.

2 R. A. Fisher and F. Yates, Statistical Tables, London, 1938, p. 36.
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TABLE 38
SELECTED COMPARISONS OF THE CORERELATION OF ANNUAL
WooL AND RAW-SILK PRICES, 1890-1937

: " NurIx:ber of | Correlation Coefficients Transformations Ratio of the

election | ems  r o T it Difference

in Selection Dilﬁ'oevr\:rll‘ce Dilyilé;rce méfr“’eﬁie Dili{fg‘:::e ™

—_ to its Stand.

n ', 'y "1 2 230 ard Error

0-A 16 0.8270 0.0973 1.179 0.097 2.85
0-B i5 0.6187 0.1609 0.723 0.172 1.40
0-C 15 0.8136 {.8545 1.138 1.272 —0.34
1-A 9 0.7848 (.4769 1.058 0.517 1.08
1-B 9 0.6798 0.0526 0.829 0.053 1.56
1-C 9 0.55636 0.5706 0.624 0.648 —0.05
1-D 9 0.4871 {0.84&0 0.469 1.250 --1.57
1-E 8 —0.0921 0.0484 —0.092 0.048 —0.26
2-A 6 —0.8361 0.2173 —1.208 0.221 ~—2.26
2-B [ 0.7624 0.8607 1.002 1.295 -—0.46
2-C 6 0.8075 0.6789 1.120 0.827 0.46
2-D 8 0.1290 —0.7285 0.130 ~—0.925 1.67
2.E 6 0.7581 —0.5689 0.992 —0.645 2.58
2-F 6 0.9219 0.8503 1.601 1.258 0.54
2-G 6 —0.3482 0.5554 —0.363 0,626 —1.57
3-A 5 ~0.8225 0.9150 —1.165 1,657 —3.84
3-B 5 —0.5143 0.8105 —0.568 1.129 —0.79
3-C 5 0.8392 0.0224 1,218 l 0.022 1.69
3D § 0.8344 —0.9778 1.202 —2.240 —4.86
3-E 4 0.8322 —0.8907 1.196 —1.425 3.21
3-F 4 0.9192 —0.8803 1,583 —1.377 8.62
3-G 4 0.5112 0.6486 0.566 0.773 —0.2b
8-H 4 \—0.6424 0.9743 —0.762 2170 —3.59
3-1 4 —(1.9248 0.88156 —1.620 1.382 —3.68
4-A 4 0.7991 —0.5583 1.097 —0.630 212
4-B 4 0.2717 0.8346 0.279 1.203 —1.13
4-C 4 0.0140 0.8951 0.014 1.446 —1.88
4-D 4 0.4869 0.9119 0.532 1.537 —1.22
4-E 4 ~-0.7064 0.9716 —0.880 2.120 —3.66
4-F 3 ~0.9114 0.9734 —1.6356 2.151 —3.69
4-G 3 0.6426 0.4774 0.762 0.520 024
4-H 3 0.9166 0.0903 1.664 0.090 1.47
41 3 0.6038 0.5925 0.699 0.681 0.02
4-J 3 0.9858 —0.45387 2.461 --{1.489 2.95
4-K 3 0.9962 —0.8123 3.130 —1.133 4.26
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TABLE 38 (concluded)
SELRECTED COMPARISONS OF THE CORRELATION OF ANNUAL
WooL AND RAw-SILK PRICES, 1890-1937
Number of Correlation Coefficients Transformations | Ratio of the
tems i T — ifference
Setecton | tn Seesion| Lewer | MR\ dower T migner | Derns

’ - " ’ , to itz Stand-

" x LAY L 2n ard Error
5-A 3 —0.7238 0.8101 —0.917 1.127 —2.04
b-B 3 -0,1727 0.8068 —0.174 1.119 —0.95
5-C 3 0.6087 0.0604 0.707 0.060 0.65
5-D 3 0.5396 —(0.8283 0.604 —1.182 —1.79
5-E 3 0.4968 0.0932 0.537 0.023 0.44
5-F 3 0.9475 0.7151 1.807 0.898 091
5-G 3 0.8807 —0.5391 1.379 | —0.603 1.98
5 H 3 0.6275 —0.6360 0.587 —0.761 1.34
b-1 3 0.5776 0.3803 0.659 0.400 1.06
5-J 3 —0.7098 0.6470 —0.887 0.770 1.66
5-K 2 —0.4296 —0.6968 —0.460 -—0.861 —0.28
5-L 2 0.6775 . 0.8794 0.825 1.373 —0.39
5-M 2 —0.0286 0.9735 -0.029 2.156 —1.54
6-A 3 0.6256 —0.4726 0.733 -—{.514 1.256
6-B 3 0.7295 —0.4085 0.928 —0.434 1.36
6-C 3 0.5935 —0.6824 0.683 —0.834 1.52
6-D 2 ~—0.0714 —0.8190 -0.071 —1.164 —1.08
6-E 2 —0.6302 —0.0667 —0.742 —0.067 —0.48
6-F 2 —0.8822 0.7592 —1.383 0,994 —1.68
6-G 2 —0.7514 0.5810 —0.9756 0.664 —1.16
6-H 2 —0.5679 0.0277 —0.643 0.028 047
6-1 2 —(3.5249 0.7362 —0.583 0.942 ---1.08
6-J 2 ~—0.7760 0.7930 —1.035 1.080 -—1.49
6-K 2 | —0.6714 0.6198 | —0.814 0725 | 1.00
6-L 2 ~—4.6264 —0.8921 —0.736 —1.432 & . 0,49
6-M 2 0.8174 | —0.2216 1149 | —0.225 |  0.97
6-N 2 0.8785 —(.9853 1.369 —2.453 = 2.69
6-0 2 0.1404 —0.7115 0141 —0.890 | 0.73

series and the first difference (selections 0-A,

culate the arithmetic means of the differences whose true means are

0-B, and 0-C). The
standard error is equal to V2/(n—1) for all other %’s, i.e., for selec-
tions of order one or higher. The n is the number of items in the se-
lections in question.” This follows from the fact that we need not cal-

zero and hence lose only one degree of freedom here, whereas we have

4 R, A. Fisher, op. ¢it., pp. 208 ff.
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to calculate the arithmetic mean of the original series and lose there
three degrees of freedom.

We have applied this method to the coefficients of correlation of
selected comparisons of the annual wool and raw-silk prices. The re-
sults are more or less encouraging and show that the mathematical
expectation has probably been eliminated in the first or second differ-
ences—the same result which we reached before. They are presented
in Table 38.

To give an example: For sclections 0-A we take items number 1,
4, 7, 10 ete. of the original series and items number 2, 5, 8, 11, etc. of
the first differences (Table 26). This gives us a correlation coefficient
of r’ = 0.8270 for the original series and the corresponding z; from
Fisher’s table is equal to 1.179 (Table 38). The correlation coefficient
between the selected items of the first differences is 5. = 0.0973
and the corresponding 2., from Fisher’s table is 0.097 (Table 38). The
difference is zx — 2ry = 1.082 and its standard error is vI/13 - 1/15
= (.379 since we have =16 and the order of selection is zero. The
difference is about 2.85 times the standard error.

Take for instance selection 1-A, that is, items 1, 6, 11, 16, ete. of
the first differences and items 3, 8, 13, 18, ete. of the second differences
{Table 26). We get a correlation coefficient of »’ = (0.7848 for the
first differences and #'%.. = 0.4769 for the second differences. The
corresponding 2 and 2'x.. are 1.068 and 0.517 (Table 38). Their dif-
ference is 0.541 and the standard error is v/1/4 = 0.5 since n=9.
Hence the difference is equal to only about once its standard error
and hence probably not significant,

We show in Table 38 the ratios of the differences of the 2’s, 2’ —
2’4+, to their standard errors. Here again as in Chapier VIII we
should not hope for a too close agreement with the theory, since we
have probably not eliminated @il the nonrandom elements in the sec-
ond differences of our series. Our samples also become very small
with higher selections. Table 38 seems however to support the hypo-
thesis, to a certain degree, that we eliminate the nonrandom parts in
the second differences. The exceptions are not too numerous. The dif-
ference of the 2’s exceeds three times its own standard error only in
rare cases.

C. The Linear Relationship between the Mathematical Expectations

We can now try to get an estimate of the linear relationship be-
tween the nonrandom elements in the wool and raw-silk prices.
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Tschuprow,'s Anderson,” and recently Wold'" have shown that the
empirical correlation coefficient between two stochastic or random
variables consists really of elements of three different correlations:
the correlation between the random elements, the correlation between
the arithmetic means of the random elements, and the correlation (i.e.,
a measure of linear relationship) between the mathematical expecta~
tions. The second terms disappear under our assumptions (and also
with Wold) and we are left with only elements pertaining to the corre-
lation between the random elements and to the linear relationship be-
tween the mathematieal expectations.'®

Denoting the empirical approximation to the product moment of
the mathematical expectation by p(m) and the empirical approxima-
tion to the product moment of the random parts by px,, we have the
following relationship:

N—1
puz—rﬁh*{-p('m’)-

We get also a similar relationship for the variances of both price
series.

If we carry the caleulations through we get the following re-
sults for the linear relationship between the mathematical expecta-
tions of the annual wool prices and raw-silk prices: We have from
Table 37 the values for the product moments: p, = 0.4304 and (since
ky, = 2, the random elements being more or less isolated in the second
differences) py, = p. = 0.03500. Hence we get in our case for an esti-
mate of the product moment of the mathematical expectation from
p(m) = po— [(N~—1)px,/N] with N = 48, p(m) = 0.3961. We take
the second differences as the ones in which we have eliminated the
nonrandom element in so far as it enters into the correlation of the
yearly wool and raw-silk prices. By reasoning similar to that before
we have from Table 23 for the wool prices (2): V,(z) = 0.1069 and
the approximation to the random variance: V.(z) = 0.02590. We
have the formula V[m(x)] = V,(z) — [(N—1)Vy (2)/N]. The
approximation to the variance of the mathematical expectations of the
wool prices is 0.08154. Table 25 gives the data for the approximation

5 A A, Tschuprow, op. eit.
18 0. Anderson, Die Korrvelationsrechnung in der Konjunkturforschung, p.
124, formula 79.
L 7 H.m\gold, A Study in the Analysis of Stationery Time Series, Uppsala,
938, p. .
18 See also Appendix II, pp. 148 ff.,, and Appendix I, Section J, for a summary
of computations.
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to the variance of the mathematical expectations of the raw-silk price
V[m(y)] which is 2.6257. Hence the correlation which measures the
linear relationship between the mathematical expectations of the an-
nual wool and raw-gilk prices is

r{m) =p(m) /v Vim@) 1 [Vm{#)] = 0.8560.

We want to stress again the fact that the correlation coefficient
between mathematical expectations has not the same meaning as a
correlation coefficient for random variables. It cannot be interpreted
stochastically, i.e., from the point of view of probability, and meas-
ures only the average linear relationship of the two mathematical ex-
pectations over the period considered.
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APPENDIX 1

SUMMARY OF COMPUTATIONS
A. Caleulation of the Variances of Differences

Caleulate the differences of the series w;: At%iw,, Find the sum of the origi-
nal serieg 8,0 — .Z.'i‘_’ﬂ'l.u1€ . Sguare the original items and the differences and find
the sum of the squares of the original series and differences 5, —2”-"(‘5”"10')2
where the 0th difference A0, == w, is the eriginal series. Form the mean of the
series w = §,9/N where N is the number of items in the original series. The

best estimate of the variance of the original series is V, = (5,9 — N w2}/ (N—1).
The estimates of the variances of the kth differences are: V, = §,®4,,. The
coefficient A, is given in Table 10.

B. Caleulation of the Variances Corrected for Seasonal

Find the means of all the Januaries, Februaries, etc.: w;*. Differencing this
series and proceeding as before we have S5,*#% — ¥ ;—21 (AR, *y2 . The corrected

variance of the original items is: Vy* = [S,(0 — Nwz — (N/12)(S;*@
— 12 w?)]/(N—1). The corrected values for the variances of the differences are:
V. = [S,% — (N/12) S,*®] A,,. The coeficient Ay is given in Table 10.

C. Difference Analysis: Approximate Criterion

Form the variances V. or the corrected variances V;* as described in Sec-
tions A and B. The approximate criterion of the stability of the uncorrected
variances is: B = (V; — Vi, ) Hyy/ Vs and for the variances corrected for
seasonal: R*0 — (V,.* — V. *)H,./V,*. The coefficient H,, is given in Table
20. An absolute value of R,? or R ** smaller than 3 indicates stability of the
variances.

D. Difference Analysis: Exact Criterion

Find the values of S,®, S,® as in Section A. Calculate the sum of the
cubes of the original 1tems S {0} == ZN w and the sums of the fourth powers
of the original series and the dszerences S, = ZN-"(Alk)wi)‘ (here again, the
original series is the Oth difference). Find the fourth moment about the mean of
the original series: m, — (S,0/N) — (48, Mw/N) + (68,0w2/N) — 8ws,
The best estimate of the kuriesis of the original series is D, = (m, — E,V 2} Fy.
E, and F', are given in Tables 18 and 19. The best estimates of the kurtosis of
the differences are: Dy == {{S,®/(N-—Fk)] — B,V,2}C;; B, and C, are tabulated
in Tables 14 and 16. Form the values G, — D,/V,;2 for the original series and
differences, and the values Q, — Hy/ V(1 + Jiy Gy), again for the original
series and differences. The coefficients H,, and J,, are given in Tables 20 and
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91. The exact eriterion for the stability of the variances of the difference series
is then: B, == (Vi ~ V4, ) @/Vy. A numerical value of R, smaller than 3 in-
dicates stability of the variances.

E. Difference Analysis: Tests of Significance

Make selected comparisons of the kth and (k+1)th differences according to
Table 26. Find the sum of squares of the selected differences: §,® — 3" (Athiy, )2
and 5,01 == 37 (Atk1bw ;)2 where T’ and 3" denote summation over the selec-
tions given in Table 26. Form the ratio S, /S,®1) | If the variances of the kth
and (k+1)th differences are equal, then this ratio should fall within the limits

given in Tables 27, 28, and 29. These limits are calculated from the point of view
of a 5%, 1%, and 0.1 level of significance.

F. Smoothing by Sheppard’'s Formulae

Let k, be the difference at which the variances become stable. Put n — k,/2
for k, even and » == (k,41)/2 for &, odd. Vka is the best estimate of the true

random variance. Table 32 gives the weights of the smoothing formulae g,,,(7)
whete j is the distance from the midpoint. The degree of aceuracy m can be de-
termined by taking into consideration that the variance of the smoothed series
m;' is V{m') = L,,V; (Table 83). Table 84 shows the reduction of the coeffi-

cient of random variability v = VT",'%/ w, if the weights given in Table 32 are
applied to the original series w; .

G. Correlation: Approximate Crilerion

Given two series x and y, find the sums of the original items S, {z) and
8,®) (y) and their means w {(x) == S, (x)/N and w(y) = S, (y)/N. Find
the sums of the squares of the original end differences, S,® (x) and S, ().
Calculate the estimates of the variances of the originals and differences of both
series, Vi (z) and V, (¥}, as in Section A. Find also the sums of the products of
the originals and the differences of both series, S®) (xy). The best estimate of the
product moment of the original two series is: p, = [S(® (zy) — Nw({z) w(y)l/
{N—1), and the best estimate for the product moments of the differences is:
P = S® (2y) A.,. The coefficient 4, is given in Table 10, Form alse L, =
[ + Vilx) Vi(¥)]1/2 for the original and differences. The approximate cri-
terion for the stability of the produet moments p, is then given by: 1%,50 =

(Px — Pro)Hyy/ VL, (Hyy is tabulated in Table 20). A numerical value smaller
than 3 indicates stability.

H. Correlation: Exact Criterion

Find the values of 8,0} (x}, S, (® (y), 8,0 (x), S, (y), S® (2y) as before
(Section G) and also S(9 (22y) and S0 (xy?), the sums of the products of the
values of one original series times the squares of the other, Caleculate S0 (x2y2},
the sums of the produets of the squares of the original series or difference series
times the squares of the other. Find the second-order product moment of the
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original series m,, = S® (x2y2) — 2w (y) SO (xty) — 2w (x)SO (ay?) +
wW(y)? 8,0 (x) + w(x)? 5,00 () + dw(x) wly) S5© (ay) — 3N w(2)? w(y)*
Calculate the parameters M, = [(m,,/N) — E, L,]1F,, where L, is calculated
as above (Section G) and Ey and F, are given in Tables 18 and 19. For the
differences: M, =— [S® (x2y*)/ (N — k) — B.L,]C, , where L; is calculated as be-
fore and By and C; are given in Tables 14 and 16. Finally, form for the original
series and the differences the values: @ = Hy/VI + (JyyMy/Ly), where Hyy

and Jiy are given in Tables 20 and 21. The exact criterion is then B, = (p, —
p,,,,,)@,c/ \/—I_ak. Again, 2 numerical value smaller than 3 indicates stability.

I. Correlation: Tesls of Significance

Use again the selected comparisons as given in Table 26. Find the variances
and product moments for the kth and {k-+1) th differences, using selected items; p'y ,
PV (2) Ve (8),V i (2),V',, (7). Form the correlation coefficients for the kth
and (k+1)th differences based upon the selected items: ', = p',/VV 3 (2) V' (¥}
and 7'y, = P4/ VV i (®) Vi,,(¥). Find the transformed values 2z, and
2y, from Fisher's table (R. A. Fisher, Statistical Methods for Research Workers,
Tth ed., London, 1938, Table V-B; R. A. Fisher and F. Yates, Statistical Tables,
London, 1938, Table VII). Let n be the number of items in the selection. Then

the standard error of the difference 2, — 2/, is VI{1/(»—3)] + [1/{(n—1)]

for k=0, i.¢c., selected comparisons of order zero, The standard error is VZ/ (n—1)
for higher selections. A difference smaller than three times its standard error
indicates stability.

J. Correlation of the Random Elements and Linear Relationship of the
Mathematical Expectations

Let &, be the difference at which the product moments p, or the correlation
coefficients of the selecied comparisons ¢ become stable. Compute the variance
of the mathematical expeetation of «: Vim(x)] = V,(z) — [ (N—1) Vi, (z)/N1;

the variance of the mathematical expectation of y: Vim(y)] — V () —
[(N—1) Vk‘, (¥)/N]; and the product moment of the mathematical expectations:

p(m) == p, — [(N—1)p, /N]. The correlation between the random elements in
# and ¥ gives the correlation coefficient: r, —=p, /V Vi, (2) Vi (#). The linear re-
lationship between the mathematical expectations of x and y is measured by:

r(m} = p(m)/VV[m{z)] V[m(y)].
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MATHEMATICAL NOTES

The following notes will give the mathematical statistician some of the neeces-
sary background for the ideas involved in the procedures of the variate difference
method. The reader is referred, however, to the original work of Anderson' and
Zaycoff? for a more detailed {reatment.

Notes to Chapter 1V, Section A

Let N be the total number of cases observed and N, the number of them
which show a certain charaeteristic. The frequency definition of the probabilitys
p is then:

. Ny
{1) p=lim—,
Noroa N

We take a sample from our original series in a way which is independent of the
characteristic, but arbitrary otherwise. We have N’ cases in our sample and N’
of them show the characteristic. We should have in a true collective apain:

Il : Nl’
(2) p'=lim—=p,

Nrsw N

and similarly for any further samples N”, N, ete, we should always get
p=p =p =p"=-.

Notes to Chapter IV, Section B

A random or casual or stochastic variablet x can assume a number (say M)
of values z,, ... , x, with certain definite probabilities p,, --- , Py, where
2’,‘1 p; = 1. The values of « and their probabilities are the distribution of .

e

The distribution law is continuous if & varies continuously.
The mathematical expectation® of , E(x), is defined as:

N
(3) E(z) = u,p;.

=1

1 0. Anderson, Die Korrelationsrechnung in der Konjunktncforschung, Bonn, 1929, especially
pp. 101 . See alsp G, Tintner, Prices in the Trade Cyele, Vienna, 1935, pp. 81 #f.
2R, Zayeoff, “Ueber die Ausschaltung der zufillipen Komponente nach der *Veariate-Differense’
Methode,” Publications of the Statisticz] Imstitate for Economic Rescarch, State University of Sofia,
1937, Na. 1, pp, 75 £
3R, von Mises, Probability, Statistics and Tmth, London, 1939; Wahrscheinlichkeitarechnung,
Vienna, 1931, pp. T . See nlso. R. von Mises and H, Pollaczek-Geiringer, article “Probability” in
Encyclopaedia of the Social Sciences, New York, 1937, Vol. 12, pp. 426 fi.; A. Wald, “Die Wider-
spruchsireiheit des Kollektivbegriffe der Wahracheinlichkeitsrechnung,” Ergebnisse eines mathema-
:i;;hm Kolloguiums. No. 8, Vienna, 1837, pp. 38 ff.; 8. 8. Wilks, Statiatical Inference, Princeton,
7, pp. 2, fl.
4 J. V. Uspensky. Introeduction to Mathematical Probability, New York, 1037, pp. 161 f,
5 Ibid., pp. 163 ff.
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We have E(ax + by) = aB(x) + bE(y), for any constants ¢, b, and any de-
pendent or independent random variables #, . The relation E (zy) == E(*)E(y)
holds true only for uncorrelated random wvariables.

The mathematical expectations of the powers of x are the moments® about
Zero, p gt

A
(4) E(xty =3 x4" pizwa y

fe=1
and the mathematical expectations of the powers of the deviations from the mathe-

matical expectation of x, F(x), are the moments about the mathematical expecta-
tion, #,:

M
(5) E[m—*E(m)]“:é;[m—'E(m}]“Pi:#a-

The second moment about the mathematical expectation, Efx — E(x)]2=—¢2, is
the population variance, its square root the population standard deviation o.

We denote throughout population values by Greek symbolg and assume a
hypothetieal infinite population, of which our observations are a sample. These

assumptions are justificd by the economie considerations given in Chapter 1, Sec-
tion C.

The following formulae are useful:

(6) Bo== #y=1,

N W= E(x),

(8) =0,

1)) By ot —p 2,

(10) Bo—p, —8p, 0 +2u'8,

an =g —dp p +6p p B,

Notes to Chapter IV, Section C

Given a time series w; ({ == 1, 2, ..., N) we define the first difference of
w; as:

(12) A w; =Wy, — Wy

The second difference is the difference of the first difference:

(13) AW, =AM, —ADw = w,, — 2w, +w; .

and generally the kth difference is defined as:

(14} AW, =3 Cy - w0 —3Cy - T 40wy g+ (—1)%- 0wy 5
where ,C, ig the number of combination of k things taken o at a time, a binomial
coefficient:

_ k(1) (—2) - -+ (b—a+1)

15 C
(15) k- 1.2.3.--q

8 8. 8, Wilks, ob. cit., vo. 7 fi.
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Anderson? gives the special form of the finite difference of polynomialg, exponen-
tial funetions, hyperbolas, and trigonometric functions (see also above, Chapter
IV, Section C).

Notes to Chapters V, VI, and VII

Given an economic time geries w;, 1= 1, --- , N, we assume that if is com-
posed of two parts:3 a random element »; and the mathematical expectation or
smooth part m; = E(w,;), which can be eliminated by differencing. We assume
that the connection is linear:

(16) w; =Wy + €.

The two parts are not correlated:

(17) E(mx;) =0, 4,§==1,2,...,N.
The elements of the random part are not correlated with each other:

(18) E(xx) =0, i,4=1,2,...,N,is#7.
The mathematical expectation of x is zero and its population variance o%:

(19) E(x) =0, i==1,2,---,N,
(20) Eix2) —=otz=p,tv, i=1,2,---,N.
We get for the kth difference of x:

(21) E(Atg) =0,

because of (19) and since the differences are linear forms in the x,'s in (14}.
The expectation of the squares of the differences is.:

(22)  E(A®5)2= 50 = E(,C, 5 — 4C, - Bispr + )2
ZRGCE w%, + 02, v — 2,000 cmi g T, )
=oiCr - B (2;?) = G- 1,0 = G- 0,

pecause of (18) and since

(23) k02 0+ 4 107+ G = 0y

If we define the population variance of the kth difference of the random element
as o2 = #,®/,.C,, we have the following relations (Oth difference is the origi-
nal series ;) : i

(24) a

2 = 2 - —_— .. — g2
gt T 02t = =,

If we have eliminated the smooth nonrandom element or the mathematical
expectation m in the k th difference of w, we should have approximately:

(25) Vko:Vkm:VIm =,

2

where V), is an empirical approximation to o2

7 Q. Anderson, ep. cit., pp. 108 fi.
2 Ibid., pp. 110 ff.
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In the kgth difference and higher differences of w; only the random element x;
remains and hence relations (25) hold true. This is the relationship which we
have to test statistically,

For large samples, if the standard errors can be calculated with sufficient
accuracy, we have two important tests of signifiecance. (An exact test for small
samples will be given later.) First is Tchebycheff's inequality? which holds true
for any distribution. If t is a positive constant and if x is a random variable,
with variance o2, then the probability P of the inequality la—E(x)} < to, is:

1
(26) Pz1——.

If x is a randorn variable, which is normally distributed, such that its probability
law is;:

1 —

(27) p(x)de—=—exp (_u(_“’l]:)dx,
‘ o V2T 2 o2
then the probability of a deviatien |¢| = [[z—E(x))/¢| < %, is given by the
integral:
Tt 1 —12

(28) P= J —— exp (-1} dt,

V2w 2

-t
which has been frequently tabulated. (It should be noted that these tests neces-
sitate a knowledge of the true population variance o2, which can be estimated
with some accuracy only in large samples.)

In order to test differences between the variances of consecutive series of dif-

ferences, we have to find the standard error of the difference V, — V., whose
square is

(29) et = B (Vy— Vi,,)2,

where V, is the variance of the kth sample difference, an empirical approximation
to the true value o,2.
We have:

N

2w
30 w o= L
(30) w N

as the arithmetic mean of the original series w, and

Nk
(31) Sa(k):z‘(atk)wi)a’ ].‘,:0’ 1’2’“,'
i=1

the sums of the kth differences raised to the ath power. The original series is the
Oth difference.

It follows from formulae given by Tschuprow, Anderson, Fisher, and Zay-
coff'® that an unbiased estimate of the population variance o2 of the original

5 8. 5. Wilks, op. cit.,, p. 8: J. V, Uspensky. op. cit., p, 204,

10 A, A. Tschuproff, “On the Mathematica] Expectation of the Moments of Frequeney Distribu-
tions,” Biometrika, Vol, 12, 1819, pp. 140 ff.;: O. Anderson, ep. cit., pp. 103 ff. : Mathematische Sta~
tistik, Vienna, 1935, pp. 213 f.; R. A. Fisher, Statistical Methods for Research Workers, Tth ed.,
London, 1938, pp. 77 ff., Chapter 111, appendix;: R. Zaycoff, lee. cit., p. T8.
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series is:

N —
'Z' (w; —w)*® S0 N g2
(32) Vo==2 =

N—=1 N—1

The unbiased estimate of the variances of the higher differences, o2, follows
from (22) if we take into account that the true mean or mathematical expeciation
of x is zero (Formula 19):

¥k

3 (AGny))2

i=1 S
33 = =8 WA, .,
(33) Vi (NyuC, o2 A

Similarly we get the estimates for the kurtosis of the original series, u,(®) —
3 (o,2)2:

1 1 ¥ — —
{34) D= — X (w;—w):—3 (N—1) 2V::
4 6 3lNi= N °
1 e
N N2 N3

= (m,~E, V2 Fy ;
m, = (S5, /N) — (45,w/N) + (6S,0w2/N) — 3w+,

For the series of differences, 5, — §{a,2)? is estimated by:

1 ( 1wk
(35) D, = X (A® )t 3(,,C)2 V2 }
z (kCi)‘L (N—-k) =1

8,00
= [N-—-—k“B" V2 ] C-

The eonstants A, , By, Fy, By, Cy have been tabulated in Tables 10, 18, 19,
14, and 16.

Anderson!t gives the square of the standard error of the difference between
two variances of consecutive differences in the following form:

(36) =K (Vy, — o) + B(Vy —02)2 — 2B (V}, — 02) (Vy,,; — %),

_ #y—3(e%) 25 g,
(87) E(Vk-—-az)i’_ Nk I:l"— (2ka)2 (N—k)
2(02)2[ 40 k .
N—Fk| (xCn)? 2(N—%) {’

&1 k-2
Sa =3 GG kCiu)? 23 ;. 1Ciup)2 + .0 + E(C, . Cp)2
=0 =0
and

11 O, Anderson, Die Korrelationsrechnung in der Konjunkturforschung, pp. 112 ff,
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P . i 25" 4o }
- e o N—k 2kck ‘ 2k+2ck+1 (N—k'_l)
(38) |
2(e2)? raCap eN—2k—1 = k+1 ]
N—k #0% k2l " Ne-k--1 2(N—k—1) |

k1 k-2
Sa =23 (0 2nCix)* +23 GOy 11Crie)? + -+ + £ (Lo £ Crnn) ?-
i=0 i=0
Anderson and Zayeoff12 have calculated the values of these complicated for-
mulae for k=20, 1, 2, --- , 10. We use the values ¥} as the best empirical ap-
proximations to the true population variance o?, and the values D, as the best
empirical approximations to the true kurtosis of the population p, — 3(02)2. We
get for the empirical approximation of the standard error:

39) e _ Yk
. S Qk,

H,
(40) Q i

[ (N—ky(N—k—1)

(41) Hyy= = ,
bf b" —_
BN+ b7 (N—E) (N—F—1)
(42) G, =D,/V,2,
b ( ¢’y ) N

v\ % T N e (1)
(43) Ty = 5 .

by N 4 b", —

(N—-k) (N—I—1)

The values of the constants, B, b, b”, ¢, and ¢’ necessary for the ealculation
of the other magnitudes have been established by Zaycoff13 and are reproduced in
Table 39. We also give tables for the constants H,, and J,, for k=1, 2,.--, 10
and selected values of N (Tables 20, 21).

If we have a normal or nearly normal distribution, the kurtosis can be neg-
lected compared with the square of the variance, ie., if G, is small. We may use
ag an approximation:

Vi

(44) IS

Hyy .
Anderson gives an asymptotic formula for large N and k = 6;

_ (3k41) V2 VETER
T 2(2k+1)3 (N—k—1)

(45) (e,")2

12 Ibid., p. 57 BR. Zaycoff. op. cit.,, pn. 78 1.
13 R. Zaycoff, op. cit., p. T9.
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TABLE 89

COEFFICIENTS FOR THE CALCULATION OF Hy AND Jyy

Order of
_ Difference | by by [ C ¢y

k
0 0.500 000 1.000 000 1,006 000 0.500 000 0.000 000
1 0.277 978 0.222 222 1.111 111 0.055 556 0.444 444
2 0.254 444 0.108 889 1.093 333 0.134 444 0.286 667
3 0.209 592 0.067 347 1.080 817 0.101 837 0.384 490
4 0.187 314 0.046 838 1,072 058 0.094 092 0.415 470
5 0.169 365 0.034 973 1.065 577 0.084 752 0.462 166
6 0.156 063 0.027 391 1.060 548 0,078 301 0.500 878
7 0.145 367 0.022 202 1.056 511 0.072 936 0.538 428
8 0.136 617 0.018 466 1.053 180 0.068 562 0.573 423
9 0.129 268 0.015 672 1.050 373 0.064 872 0.606 639

10 0,122 988 0.013 518 1.047 967 0,061 715 0.628 200

We form two criteria R, and R,°, based upon the accurate value (39) or ap-
proximation (44), which give the ratio of the difterence between variances of
sucecessive differences and its standard error:

Vk _' Vku — (Vi — Vkﬂ) Qk

{46} R =
¥ € Vi ’
@ R o Ve Vi (Vi — Vi) Hy
T e Vi

These values should be used for a judgment about the probability that the
variances of the higher differences are more or less equal, and that hence the
nonrandom component or mathematical expectation has been eliminated. This
problem has to be decided from the point of view of fiducial limits., Generally, a
value of [R.] or |{R,* < 3 will be sufficient.

Notes to Chapter VIII4

We make here the same assumptions as before but we also have to assume
that the random element %; is normally distributed with mean zero and variance
o2, We can then use Snedecor’s F table!s or Fisher's s distributioni® for an
exact tegt of significance which does not invelve a knowledge of the true variance
of the random element and can hence be applied in even small samples. The test
invelves, however, some loss of information.

We propose the method of selection.’? Suppose we want to compare the vari-
ance of the Ith series and the (k+41)th series of differences. We will then select
the items 7, j+ (2k+3), j +2(2k4+3), 543 (2k-+3), - - - from the series of kth dif-

141 am greatly indebted to Professors H. Hotelling, (Colombia), S. 8. Wilks {Princeion), G.
W. Snedecor (Fown State College), Dr. W. G. Madow (Colwmbia), and Mr. G. C. Coehran (Roth-
amsted) for having had the opportunity to diseuss the following ideas with them.

15 Gz, W. Bnedecor, Statistical Metheds, Ames, Iowa, 1838, pp, 184 ff,

16 B. A, Fisher, op. eit., pp. 26C¢ ff., Table VI.

17 G, Tintner, "“On Tests of Significance in Time Series,” Annals of Mathematical Statistics,
Vol. 10, 1932, pp. 139 ff.
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ferences and the items number j+k+1, jt+k+14+(2k+3), j+HEk+1+2(2k43),
jHkT1+3(2k+3), - - from the series of (k-+1)th differences, where j =— 1, 2, 8,
-+ 2k+3. There are altogether 2k+3 possible selections, each of which gives an
independent estimate of ¢%, but which of course are not independent of each other
(Tzble 286),

Let us now ealculate the variances V', and V’,,, from the selected items:

X (Adkgp)e

48} Vo R
( k N—Ie
2048 T 2kMk
v 2 (AleDg )2
49 ‘ L '
(49) LR N A
W'zmzckﬂ

where 3’ and 3" denote summation of the selected differences. If (N—k)/{2k1+3)
or (N—k—1)/(2k+-3) are not whole numbers, they should be replaced by the
nearest integers. The correction will be small with somewhat large N. We form
z—= talog, (V,/Vy, ). It is distributed with n, = (N—k)/(2k+3) and n, ==
(N—k—1)/(2k+3) degrees of freedom. We counld also enter Snedecor’s ¥ table
for these numbers of degrees of freedom. The 2 tends to be normally distributed for
moderately large samples with a standard error of v (2k-+3)}/(N—E—1) since
with somewhat large N the number of degrces of freedom will be nearly equal.

We proceed as follows: Suppose we take always exactly the same number of
selected items of the kth and (k--1)th differences in order to agsure approximately
the normal distribution of 2, which is then based upon (N—k—1)/(2k+3) degrees
of freedom, According to Fisher?® it is nearly normally distributed with mean zero
and standard deviation &(¢),y, = V(2k13)/(WN—k—1). We get the values
2P = 1.96 8(%) gy, 2a1%) = 2576 8(2) i, and 2, (01%) = 329 &(2) y; for
the levels of significance, 5%, 1%, 0.1%. We write generally 2y, (s} where s —
5%, 1%, 0.1% arc the levels of significance.

Let us now define the new variances of the differences:

_ I (Atkigy )2 Szﬂﬂ
(50) V.= = ,
N—Ek—1 N—k—1 o
ok+3 FF Topgs ok
_ I (AR gy )2 T (k1)
(51) Vi = - 2 .
N—k—1 N—k—1

ok+3 " 2k+2VEn * oka2Ch

248
where again X" is summation over the selected values of the kth differences and
3" summation over the selected values of the (k+1)th differences. The symbols
§2fk) and S,%1) are the sums of squares of the selected differences, Then, according
to Fisher’s analysis of variance, half the natural logarithm of the ratio of the
variances must be smaller than z,,!*) if the variances are not to be considered
unequal from the point of view of a level of significance s.

18 R. A. Fisher. op. e¢it., p. 238, Chapter VII, Seectinn 41,
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The ratio should always be greater than 1, since 2 is not negative. Hence we
have to distinguish two cases: 1f Vi, > Vi,
Vi
(52) % log, —

251

< sz(s) H]

or

14 S @&._. C

(53) _ k — j 2h+2 ™~ k+1 < exp{zsz(s)) :Fﬁk(” ,
Vi Sz(k’u) <G

where I (®) is Snedecor’s variance ratio for the level of significance s and the
number of degrees of freedom n, — n, = (N—k—1}/(2k--3).
Introducing the symbol oy =— ,; ,Cy,, /aC), we get

5, < Fypt®

(54) —
32 {k+1) oy,

If, on the other hand, ¥, << V,_, , we get by similar reasoning:
S, 1
>

S,y FL () gy

(55)

We finally have the following limits for the ratio of the sum of squares of se-
lected kth differences to the sum of squares of selected (k+1)th differences:

1 S_ky Frapt®
(56) <A B
Frx'® ay, Szckm o,

These limits are of course different for different levels of significance ¢ and have
been tabulated for selected N and for k—0,1,..., 9, 8===5%, 1%, 0.1%, in Tables
27, 28, 29.

Notes to Chapter 1X

The following ingenious method, preposed by Anderson,!? connects the variate
difference method with Sheppard’s smoothing formulae,?® and, incidentally, also
with the Gram polynomials.2

Suppose that we have established to our satigfaction that the nonrandom ele-
ment or mathematical expectation of the time series is eliminated to a consider-
able degree by taking k, differences. We will, in order to simplify our notation,
put k,/2 — n for k, even and (k,41)/2 == » for k, odd.

We know that only the random element remains in the 2nth and higher dif-
ferences, But we cannot reconstruct it from the differences. We will try to find
a funetion f,, such that the variance:

{57} D= E(x; + f;}? = minimum.

1# 0, Anderson, op. cit., pp. 117 ff.

20 B. T, Whittaker and G. Robinson, The Calculus of Qbservations, London, 1924, pp. 201 fi.

;;71%: 'T. Davis, Tubles of Higher Mathematical Fanetions, Vol. 2, Bloomington, Indiana., 1935,
pD. .
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Assume that f; is a linear function of the 2nth and higher central differences of
¥, or w,:

{58} fi=batzmg, 4 baemyg, ...,
where the b’s are constants, which are to be determined by the method of least
squares, But remembering that:
(59) ARy, (=1 P[0l + %5,)
--—2‘,,,(}1(511_,”,_1 S R B P S S § LR G- ) I

we may also write f, as a weighted average:
o
{60) fi:Fle (T3 + 205y + Wy,

where the W, are certain weights, if we decide to take approximation m—n+1,
i.e., to include only the terms, b,,..-, b,,_,,, in formula (58). This gives (2m-+1)
terms in (60). The values of the »'s which give the least-square solution have
been established by Sheppard and Anderson. They give the optimum weights, say
& (7}, for W, and have been tabulated in Table 32. Replacing the 2nth and high-
er differences of «; in (58) by the same differences of w; (they are by assump-
tion equal since m; has been eliminated) we get the smoothing formula:

(61) M =3 G () (Wig + Wi_) + Gum (0) ;5

i=1

where m,;" is the approximation to the frue mathematical expectation m; and w;
an item of our original time series. The variance of m' is found by:

(62) o2 (m') :aZ[ggynmz Gy + gnmz(o)] ;

i=1
and as an approximation we get:

(63) Vim) =V, L.,

where L, is the term in brackets in (62) (Table 33). If v = VV, / w is the co-

efficient of random variability, we get for the coeflicient of variability of the
approximation to the mathematieal expectation:

v(m'y —=+VEL,, (Table 34).

It is interesting to note the connection between our weights g, () of the
moving averages of Sheppard’s formulae and the Gram polynomials as tabulated
by Professor H. T. Davis.2?2 We have for instance:

(64) I1.(7) =4,

where A is the value for p — m of his coefficients for the fitting of 2 straight
line;2¢
22 Ihid. T am greatly indebted to Professor H, T. Davis (Northwestern University) for having

brought thiz connection to my attention.
23 Ibid., pp. 326 /.
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(65) Iem{f) = A + §2B,

where A and B are the values for p — e in his tables for fitting a parabols ;24
(66) () =A + 2B + j4C,

where 4, B, and C are the values for p = m for fitting a quartic;?5 and

(67) Im(7) = A + 2B + j*C + j5D ,

where A, B, C, and D are the values for » — m for his tables for fitling a sex-
tic;2® and similarly for higher values of the g's.

Notes to Chapter X

Let w(x); and w(y); be two time series of the same type as discussed;
m(x); and m(y),; are the mathematical expectations of the two series, which
again are “smooth” and can be eliminated by differencing. The random elemerts
xz; and y; have the mathematical expectation zero and the population variances
o2(x) and o2(y)}. They are not correlated with the mathematical expectations and
only corresponding items x; and ¥, are correlated. The product moment of the
population is 7.

(68) wi(z); =m(x), + 5,
(69) w @) =m)i + v,

(70) E(z,) =E(y;) =0,

(T E(@®) =oi(), E(?) =),

(72) E(xy) =7, i=1,2,---,N,
(73) E(zy;) =F (22)) = E(yy,) =0, id,

(74) Elm(z);x;] =E[m(z)9;] = E[m(y) #; 1 =E[m(y),»;1=0,
tji=1,2,---,N.

We want first to test by Anderson’s method?? the stability of the product
moment by its standard error, which is possible only in large samples. We can
prove by an argument similar to that for the variances of the differences that the
properly adjusted produet moments of the differences of random series are equal,
The standard error has the same form as (36), except that we get E(x?y2) —
E(2?) B (y?) —2[E (2y) ]* instead of #, — 8(02)% and [E (xy)]2 +E(22) E (32)
instead of 2(02)2, Hence the formulae calculated by Anderson and Zaycoff can
be used with little adaptation.

Let w(x) and % (y) be the arithmetic means of the two origingl series and
S (2y) the som of the products of their kth differences:

Nk
{756) St (ay) = 3 Atkp(x), AW (yy, k=0,1,2,-...
4=1

24 Ibid,, pp, 3§82 f1.
35 Ihid., pp, 342 11,
24 Ibid., pp. 850 fI.
27 0. Anderson, op. eit., pp. 123 fI.
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Define the empirical approximations to the product moments as:

(76) po=[$ﬁw(x)i—?v(m[w(y)i—ﬁ(y)] ]/(N—l)
=1
= [S© (wy) — Nw(z)w(y)1/ (N—1),
Nk
(17) By =[ T A®w (x) ; 0w (y), ]/(N—k) Cr
i=1
= St (zy) A, , E=1,2,....

If we decide to neglect the first term mentioned above, i.e., the term involving
the product moment of the squares of & and y (which would be justified in the case
of normal or neatly normal correlation), we get as an approximation to the
standard error of the difference between the empirical product moments of the
kth and the (k-41}th differences, (g, — Pp,q):

VT,
H kv

(78) 60 =

where L, is an empirical approximation to [72 + e2(x)e(y}]/2,

2
79 L= 2+ sz(w) Vk(y),

and V,(x) and V,(y) are the sample variances of the kth differences of the series
w{=x); and w(y); as defined in (32) and (33).
It ig also possible to form again an approximate criterion R,,

(80) ‘ék (pk p&) HkN
vI;

A fidueial limit |f¢k°|< 38 will in most cases be accurate enough for testing the
k th difference beginning from which the product moments contain only the ran-
dom elements x; and y; .

We get 2 more exacet criterion R,, if we do not neglect the ferm E (x2y2) —
E(22)E(y2) — 2[E{(2¥)1?. In order to find the best approximation to its popu-
lation value we have to ealeulate:

81) 5O (zeyd) = 3 [w(x) ] @ [w(y) I6

i=1

for the original two series; and for the original series and differences:
(82) S (x2y2) _2 [A“ﬂw(a—) PlABwE) e, k=12

Further we must obtain the second-order product moment of the two original
series:

(83) -m.M:S"’) (z2y?) —21?(;;) Stey {x2y) —zﬁ(m) Sto) (xy2)
+ w ()2 8, (z) -+ w(2)28,™ () + 4w(x) w(y) SO (2y) —3Nw(z) 2w (¥)2.
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The best empirical approximation io the term F(x2y2) — E(22)E(y2) -—
2[E (xy) ]2 is, then, in terms of the original two series:

2
'm‘z,ﬂ _3(N_1 ) Ln

N
N My 0
= = ——FE L, |Fy:;
{84) M, ) n G 3 [ N ~ o] ¥
TRTN W
and in terms of the difference series of both time series:
Sk (mﬂyz)
Tk e
(85) M, = p
3 C
i-o
x) 2.
— S_(f.@_gkLk c,, k=1,2,....
Nele )

We form the quantities:

(86) Qu=Hy/ VI T Ty I708)
and the true criterion appears as:

(87) By == (3, — Py §/ VL,

the ratio of the difference p, — p,, to its own standard error,

In order to apply Fisher’s test?® we have to calculate our empirical product
moments, say p'; and p",, , from selected and hence independent items of the kih
and (k-+41)th differences of the two series. Then we calculate the empirieal cor-

relation coefficients +/, and +',, for two selections of kth and (k+1)th differences
(Table 26):

(88) % :——l"—:.
VV () Vi (w)

and similarly for r',, . We then make the transformation: 2/, = %[log, (1 + #})
—log, (1—",} 1, and similarly for #’,,,.2* The difference 2’y — &%y Will be nor-
mally distributed with a standard error of Vi/{n—38) - 1/(n—1) if k — 0 and
VZ2/(n—1) if k=1, 2, .... The = is the number of items contained in the se-
lection. The difference in the number of degrees of freedom arises from the fact
that we have not calculated the means of the differences.

This test of Fisher will again give us the kth difference beginmning from
which we can assume that the correlations contain only the random elements
gince they are approximately equal.

We can use our knowledge of the k,th difference beginning from which we
can be reagsonably sure that only the randem element is contained in our series,

28 R. A. Fishex, op, cit., pp. 208 ff., Chapter V1, Section 35: G. Tintner, loe. cit., pp. 189 ff.

25 R. A, Fisher and F. Yates, Statistical ‘Tables, London, 1838, p. 36; R. A. Fisher, op. cit., p.
215, Table V-B.
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for getting an approximation to the linear relationship between the mathematical
expectations m(x); and m(y);.3% Denoting their product moments and variances
by m, we have:

(89) Py == ﬂ,‘“-f-z)(m),

90 Vo) =2ty 14

(%0) 2(2) =N ko(“") + Vim(x)1,
—1

(91) Vo) =——V, &) +VImw)],

where the terms with the index %, are the best empirical approximations to the
product moment, and the variances of the population of the random elements.
From these relationships we ean caleulate the parameters referring to the mathe-
matical expectations and we get finally as a measure of the linear relationship:

p(m)

VVIm(x)] Vim(y)]

The correlation between the random elements is given by:
Py,

VVi (@ Vi, (0)

(92) r{m) =

(93) =

30 0. Anderson, op, eit., p. 124: H. Wold, Analysis of Stationary Time Series. Uppaala, 1938,
po. 200 £



APPENDIX III

SEASONAL VARIATION

It has been suggested by Dr. A. Wald in his monograph on seasonal varia-
tionst that sometimes these fluctuations may prevent the successful application
of the variate difference method. This would be the case if they belong to the
category of extreme zigzag oscillations with strong negative correlation between
gubsequent items. See also above, pp. 16 ff. We have, therefore, made some ex-
periments on the monthly wool prices as compiled by the United States Depart-
ment of Labor. The period covered is 1890 to 1937.

TABLE 40
SUMMARY, SEASONAL MONTHLY Wool PRICEs, 1820-1937
Month |i . Maonthly Means Month \ Mont!{l.y Means
January 0.6335 TJuly P 0.6212
February 0.6344 August 0.6260
March 0.6366 September 0.6242
April 0.6298 Oectober 0.6210
May 0.6225 November 0.6235
June 0.6127 December 0.6221

SUMS oF SQUARES OF THE SEASONAL

Order of Order of .
Difference S ) Difference Sy
_ 2 e 2

k k

0 4.697 86729 [} 0.104 73618
1 0.000 43916 7 0.397 82858
2 0.000 82308 8 1.530 323384
3 0.002 32342 ] 5,940 61810
4 0.007 79800 10 23.218 43194
5 0.028 10450 T O

We have computed the seasonal in the following way. We took the means of
the Janunaries, Februaries, ete. (Table 40) and using these means as our data we
carried through a difference analysis. The result of this difference analysis is
shown in Table 41. We have corrected our variances of the original series and
of the higher differences V; of the wool prices for the seasonal variation by de-
ducting from the original variances the part which iz more or less explained by

1 A. Wald, Berechnung und Ausschaltung von Saisenschwankungen, Vienna, 1936, See aiso,
Q. Anderson in Zeltschrift fiir Nationalskonomie, Vol. 8, 1937, pp. 261 ff.; R. Zaycoff, “Ucber die
Anmhnltupg der zufiillizgen Komponente nach der ‘Varlate-Difference’ Methode,” Publications of
the Statistical Institute for Economic Research, State University of Sofia, 1937, No. 1, pp. 10¢ ff.
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the seasonals. The assumption is that there is no correlation between the sea-
sonal and the random element. Then we get a result which iz not very different
from the one shown previously.?

TABLE 41

DIFFERENCE ANALYSIS, MONTHLY Wool. PRICES, 1890-1937
(corrected for seasonal)

Approximate
‘Variances Standard-Error
Order of Corrected Percentage Ratio
Difference for Seasonal Seasonal Corrected
e for Seasonal
k v Ry
0 0.112 ¢ 0.09 23.6178
1 0.002 085 0.93 20.1179
2 0.001 225 0.97 8.0857
8 0.001 087 0.82 5.5869
4 0.001 020 0.87 5.3627
b 0.000 9693 0.96 4.8444
6 0.000 9353 1.02 3.4117
7 0.000 9123 1.06 2.9135
8 04.000 8949 1.11 24108
9 0.000 8819 1.17 1.6997
10 0.000 8735 1.20

Our corrected variance V,* can be ecalculated by the following formulae:
Vo* = [5,09 — N #* — (N/12) (8,*1© — 12w2)]/(N—1) for the original se-
ries; and for the differences: V,* = [S,%& — (N/12) S,*®] A,,, k=1, 2,
.-+, where w is the mean of the original series, S, the sumsg of the squares of
the kth differences of the uncorrected series, and S,®* the sum of the squares of
the kth differences of the seasongl ag defined above (Table 40), The coefficient
Ay is given in Table 19,

We show in Table 41 the corrected variances V,* for the wool prices as well
as the percentage of the seasonal, It appears that these percentages do not vary
greatly. The percentage of the seasonal is throughout about 1%. (Table 41).
Hence it is not probable that the seasonal in this price is of the nature of an ex-
treme zigzag element which would make the variate difference method inapplic-
able. In this case the percentage of the seasonal in the variances would increase
the higher the difference. Since it stays more or less stable it follows that we
may be able to make the assumption that the seasonal in this eommodity is not of
a nature which would prevent the application of the ordinary methods of separat-
ing the mathematical expectation and the random element by taking higher dif-
ferences.

Thie point of view is also confirmed by Table 41. Here we show difference
analyses of the variances which have been corrected for the seasonal V,*. We
use only an approximate criterion R,*° which does not make any use of the kur-
tosis. This criterion is caleulated aceording to the formula:

2 See Appendix I, Sections B and C, for a summary of computations.
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Ryyo—= (Vi* — Vi *YH,, /V,.*

and iy the ratio of the difference between the variances of the kth and the
(k+1)th differences of the series corrected for the seasomal (V,* — ¥,,,*%) to
its standard error.

The criteria lead more or less to the same resulis and the differences in the
old and new R’'s (Tables 24 and 41) are really very minute, In the case of the
monthly wool prices we should assume that we probably have eliminated the
mathematical expectation in the eighth difference because our criteria then be-
eome smaller than 2 and stay so. The results would probably have been even bhet-
ter had we calculated the more accurate criterion which involves the kurtosis, but
it would have meant some additional labor.

We suppose that this experiment hag been successful in so far as our results
are not much affected by the elimination of the seasonal. Hence we should be led
to believe that, at least in price data, we shall rarely if ever find a seasonal ele-
ment which is of this extreme zigzag nature. Should this, however, be the case
we have given this method for correcting for the seasonal variation and avoid-
ing any possible error.



APPENDIX IV

THE STANDARD KRRORS OF SOME DERIVED STATISTICAL SERIES

We have seen how the variate difference method permits us to estimate the
random variance o2. We have also given some formulae in Chapter IX which
indicate the reduction of the original random variance by the use of apprepriate
Sheppard smoothing formulae (Table 83).

The preblem which we want to treat here is the following: Suppose we > have
a time series and the estimate of its random varianee V, . What is the random

variance or the standard error of some statistical series derived from the original
series by applying moving averages? This is a continuation and amplification of
some formulae given in a previous publication.!

We want first to state again two propositions which are important for the
method of moving averages. This procedure seems to us preferable to any other
method when dealing with economic time series. Suppose we have given a time
series with the general term ;. We smooth this with certain weights W', where
2m W, = 1. This moving average hence has the length 2n4-1. We have the

=0

smoothed values: 3’y — 2‘?_ " W', y;. We smooth the series 3’ again with another
moving average with the weights W, 2';1_ . W, = 1, which has the length
2m-+41. We get 4", — 2'“ W",—, y'; . This process of double smoothing can be re-
placed by a simple smoothmg Y= Smn W, gy, of the original series with

r=—tl—0
a moving average with weights W"; = E;{:,"“‘ Wi Wini-
If we derive from an original series ¥ with random variance o2 by mechani-
cal smoothing a new series y'; = 3* W', ¥,,,, the variance of the new series
F=-n

¥ is equal to o2 37 W .2, provided we make the assumption that the errors in
I—-n +

the original y; are mutually independent and have the same variance. This for-
mula covers a wide range of parameters,. If we take for instance the arithmetic
mean of the series ¥, or make the weights W, = 1/N where N is the number
of items in the series, we get the well-known formula for the variance of the
arithmetic mean,® o2/N,

It is also of some interest to investigate the serial correlations which are in-
troduced by applying moving averages. Suppose again that we have a random
element y; whose items are independently distributed about zero with a variance
o2, We apply a moving average W’ to the series y;, which containg 2n4-1 items.
We have: y', = 2n Wi 4. The serial correlation between the items y; and

¥ ;. is then equal to: »y, = (Z2m-E Wy W'K_,M)/(E;‘z_n W;2).
To give & simple example:* Suppose that a time series with a random vari-

1 (}. Tintner, Prices in the Trade Cycle, Vienna. 1935, pp. 84 ff.

2 Ihid., v. 84, formula (52).

3 See, e, H. T. Daviz and W. F. C. Nelzon, Elements of Statistics, 2nd ed., Bloomington,
Indiana, 1987, p. 196,

4 {3, Tintner, op. cit.,, p. 85.
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ance V, is smoothed with a thirteen-month moving average in order to eliminate

seasonal variation. The weights W' are in this case: 1/24, 1/12, ... , 1/12, 1/24,
The random variance of the smoothed series is [(2/242) + (11/122)] V, =

0.0792 V, . We pet for the serial correlations of items of the new series which

is free of seasonal variations: for K=1, i.e., items distant by one fime unit,
T, == 0.96; for K — 2, ie, items distant by two time units, r,, = 0.87. The
values of the other serial correlations are 7, = 0.78, r ,, = 0.70, r;, = 0.61,
gy == 0.52, 7oy = 044, 75y = 035, 7, 0.26, r,y = 0.17, 7,,, = 0.09, r ;,, =
0.002, All other serial correlations are zero. There is no serial correlation be-
tween items in the new series distant from each other by 13 or more units.



APPENDIX V

ALTERNATIVE METHODS
A. Seguences and Reversals

An interesting alternative method for the treatment of time series has been
developed by Mr. Herbert E. Jones of the Cowles Commission. He studies random
series by the method of sequences and reversals.t

A sequence ig defined as the case in which two or more consecutive first dif-
ferences of the series have like signs. A reversal occurs at a change of signs of
the first differences.

The expected number of reversals in a random serics with normal distribu-
tion is given by the following asymptotic formula:

E(R) = (2/8) (n—2),
where E(R) is the expected number of reversals, n the number of items in the
series. The standard error is given by:
e, = V2r/3,

We treat our example of the annual prices of wheat flour according to this meth-
od. The results are shown in Table 42,

Its meaning is this: In our original series for instance (zeroth difference) we

TABLE 42
REVERSALS, ANNUAL AMERICAN WHEAT-FLoUR PRICES, 1800-1837
Order of Number Number of Expeeted Standard
Difference of Items Revarsals Number of Error
Reversals
k n R E(R) L
0 48 19 30.7 3.3
1 47 25 30.0 3.2
2 46 30 29.4 3.2
8 45 33 28.6 3.2
4 44 32 28.0 3.1
b 43 32 27.4 3.1
6 42 32 26.7 31
i 41 31 26.0 3.1
8 40 30 25.4 3.0
9 39 29 i 249 3.0

1 H. E. Jones, “Theory of Runs as Applied to Time Serles,” Cowles Commission for Research
in Economics, Report of Third Annual Research Conference on Economics and Statisties, Colorade
Springs, 1937, pp. 33 f.; A, Cowles and H. B, Jones, ““Some a Posteriori Probabilities in Stock Mar-

ket Action,” Econometrica, Vol. 5, 1937, pp. 280 f.; see also L. von Bortkiewiez, Die Ierationen,
Berlin, 1917,
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have 48 items and 19 reversals. This means its own difference series, i.e., our
series of first differences, changes 19 times from plus to minus or from minus to
plus. Next, the series of first differences includes 47 items and has 25 reversals.
Its own difference series, that is our series of zecond differences, shows 25 times
a change from plus to minus or from minus to plus, etc.

It is interesting to note that this analysis enforces the results already estab-
lished in Chapters VIL and VIII with the help of the variate difference method.
We saw there that the mathematical expectation was probably already eliminated
in the second or third difference and that all higher differences hence contain only
the random element. We see from Table 42 above that the difference between
the actual and the ¢xpected number of reversals exceeds two times its standard
error only in the original series (0th difference}. In all other differences the
expected and the actual values of the number of reversals come so close that they
could be considered as true randem series,

B. Serial Correlations

Professor G. U. Yule? was the first to consider extensively the problem of
serial or autocorrelations. Prof. H. T. Davis® also estublished some significant
results in this field. A recent book of Dr, H. Wold* is an attempt to study sta-
tionary time series mainly from the point of view of serial correlations.

The close connection of serial correlations with the fundamental ideas of the
variate difference method has been established by Anderson.5 He showed the re-
Iationship between the serial correlation coefficients (7)) and the variances of
the differences of a random series (V).

His result appears as follows: We form the serial or autoeorrelations of a
time series by correlating the series with itself, lagged by a lag L. Hence every
item w; of the original series is correlated with the item w;,; . It appears that
we have 7, == 1 since the series correlated with itself has of course perfect cor-
relation (lag zero), Further Ty = (-1 - A serial correlation with negative lag
is the same as the one with pogitive lag. All serial correlations (except for lag
zero) are zero in the case of independence,

We form a geries ... Teay Ticaps Tiazyr Toays TPy Teayr Frayr Toays -+« and
the central differences of =,,. The 2kth central differénce is dencted by
Aty . It can be shown® that in a true random series the central difference
Ay . is propertional te ¥V . ,Cy, the variance of the kth difference. We have
alse for a long series:

0k Ve=VolaCy—2  uChia 7o) + 2+ 5Chip ey -+ (—1)0200, 1.

We show in Table 43 the serial correlations of the annual wheat-flour price

2G. U. Yule, “Why Do We sometimes Get Nonsense-Correlations Between Time Series?™
Journal of the Xoyal Statistical Society, Vol, B9, 1926, pp, 103 ff. See also H. Vaon Schelling, Die
wirtschaftlichen Zeitreihen als Problem der Korrelationsrechnung, Bonn, 1931,

3 H. T, Davis, “The Econometric Problem,” Cowles Commission for Research in Economics,
Beport of Third Anmual Research Conference on Economics and Statistics, Colorado Springs, 1937,
pp. i1 ft.; H. T, Davis, “Mathematical Adventures in Social Science,” American Mathematical
Monthly, Vol, 46, 1938, pp, 101 I,

4H. Wold, A Stndy in the Analysie of Stationary Time Series, Uppsala, 1988, See also M. M.
Flood, “Recursive Methods and the Analysis of Time Serfes,” Cowles Commission for Research in
Economies, Report of Fourth Annual Research Conference on Economics and Statisties, Colorado
Springs, 1938, pp. 50 ff.

4511' O. Anderson, Die Korrelationsrechhung in der Kenjunkturforschung, Bonn, 1928, pp. 11 £.,
11 .
6 Ibid., p. 114,
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TABLE 43

SERIAL CORRELATION COEFFICIENTS
ANNUAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937

E;z Serial Lag Serial Lag Serial
in Correlation in Correlation in Correiatiun
Years Coefficlent Years Coefficient Years Coeflicient. .
L i L Teny L T
1 0.8546 17 —0.0906 | 33 —0.0925
2 0.6854 18 —0.1025 34 0.0876
3 0.5114 19 —0.1292 35 0.3604
4 0.3489 20 —0.1522 36 0.5592
b 0.3091 21 —0.2766 37 0.7511
6 0.2724 22 —0.3957 38 0.58656
i 0.2820 23 } —{0.5983 39 0.0263
8 0.2950 24 —(.6487 40 —0.6390
9 0.2427 25 —0.5830 41 -—0.9765
10 0.1471 26 —0.3727 42 —0.7744
11 0.0096 29 -—0.1414 43 -—0.4128
12 —0.0999 28 0.0881 44 0.6417
13 —0.1564 29 0.3473 45 0.4991
14 —0.1580 20 0.4061 46 —0.9333
15 —0,1098 31 0.2629
16 —0.0830 32 0.0084

data 1890 to 1937. We have calculated all possible serial correlation coefficients
from a lag L — 1 to a lag L — 48. Their meaning is as follows: The annual
wheat-flour prices (as given in Table 7) have been correlated with themselves
shifted by one year for a lag L — 1. That is, we correlate the price for 1890 with
the price for 1891, the price for 1891 with the one for 1892, ete. The result of
this coryelation is a serial correlation coefficient for L = 1, »;, == 0.8546. In the
same way we found the serial correlation for a lag I, — 2. Here we correlated
the price for 1890 with the price for 1892, the price for 1891 with the one for
1893, ete. This gives us a serial correlation coefficient for L — 2, r,, = 0.6854.
The other serial correlation coefficients have been formed in the same way. The
correlogram?” is shown in Figure 4.

We complete this series by adding to it the serial correlation coefficients for
negative lags, remembering that Tipy = Ty - Then we difference the resulting
series and form the central differences for o s Af'ﬂ‘)r‘»k) . They gre shown in
Table 44 for £k — 0, 1, 2, ..., 10. We see that beginning from about & — 2 the
ratios At#y ./ . Cy .V, become rather stable and are all about 1/5. We should
hence conclude that the random element alone or almest alone is present beginning
from the second or third difference. Or, that we have then eliminated to a con-
siderable degree the nonrandom element or the mathematical expectation of the
annual wheat-flour prices. This is the same result as the one established previ-
ously by the difference analysis (Chapter VII) or by the test of significance
{Chapter VIII). The analysis of the serial correlations of the annual wheat-flour
prices substantiates our previous resnlts.

7 H. Wold, op. cit,, p, 147 fI.
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FIGURE 4.—SERIAL CORRELATION COEFFICIENTS, ANNUAL WHEAT-FLOUR PRICES,
1890-1937
TABLE 44

ANALYSIS OF SERIAL CORRELATION
ANNUAL AMERICAN WHEAT-FLOUR PrIcES, 1890-1937

Ovder of Gentral .]“)ui;i.:"c;rences
Difference of Serial Correlation Ratio
Coeflicients

k A(M)T(-k) Awk“'r(—k)/zkck - Vllc
0 1.0000 0.2085
1 — 0.2908 —0.2071
2 0.5340 0.2022
3 — 1.5640 : —0.1989
4 5.1826 0.1965
B —17.8978 —0.1939
6 63.0248 0.1923
ki —224.5974 —0.1869
8 807.2740 0.1831
9 —2,921,3642 —0.1802

10 10,632.4254 i 01775
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TABLE 45
SERIAL CORRELATION COERFFICIENTS, SELECTED COMPARISONS OF
ANNUDAL AMERICAN WHEAT-FLOUR PRICES, 1890-1937
Lag MNumber of Berial Lag Number of Serinl
in Selection | Items in the Corrclation in Selection | Items in the Corralation
Yenrs Selection Cocfticient [ Years Selection CaefTicient
L # Ly L n 'r’( L
1 1-o 24 0.7648*%*%| § 8-8 b 0.1367
1-8 23 0.9485%** 8-2 4 0.2644
2 Zeaw 16 0.6852## g_i : _gggjl_g
2-8 15 0.7786%%* 86 4 |—01138
2.y 15 0.6001%* )
8¢ 4 0.2804
2 3-0 12 0.4470
3-8 11 0.4826 9 9-a 4 0.0265
3-y 11 0.3257 9-R 4 —0.1361
3.8 11 0.7966%* 4y 4 0.0336
9-8 4 —0.2103
4 4-a 9 0.3932 O-e 4 0.4900
4-8 9 0.5139 9-f 4 0.7294
4-y 9 0.6121 9-n 4 0.8184
4-8 9 0.1047 9-6 4 0.7424
4-2 8 0.1966 Ot 4 —0.0264
5 5-o 8 0.2088 9 3 0.0881
5-8 7 0.4539
5-Y 7 0.7833% | 10 10-« 4 0.2100
5-5 7 0.6495 10-8 4 0.3609
5.5 7 0.2185 10-¥ 4 0.7655
5.t 7 0.2064 10-8 4 0.6786
10-¢ 4 0.8033
6 6-00 6 0.0018 10-¢ 8 0.6233
6-8 6 0.2779 10-% 3 0.0560
6-v 6 D.2214 10-6 3 ~—0.0595
6-8 (] 0.3176 10-¢ 3 —0.3678
6-= 6 0.9080* 10-x 3 —0.2715
6-% 6 0.3987* 10-A 3 ~0.4562
6-7 6 0.3087
7 T-a 6 0.4242 11 11-a 4 0.3077
7-8 5 0.3867 11-8 8 0.6267
T-e 5 0.3579 11-e 8 |—0.2084
7-t 5 0.4582 11-¢ 3 —0.1667
7-n 5 0.1403 11-9 3 —0.5769
7.8 5 _0.2983 11-# 3 —0.3406
11~ 3 -—0.2485
8 8-« 5 0.8480 11-x 3 0.6938
8-8 b 0.3762 11-x 3 0.9961
8-y 5 i 0.2005 11-p 3 0.4662

* TFalls outside 5% Hmits

**Outside 1% and 5% limits.

*++ OQutgide 0.1%. 19, and 5% limits,
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It is interesting to test the significance of the serial correlation coefficients.
Pisher's exact test® of significance, however, cannot be directly applied, since of
course the elements entering into a serial correlation coefficient are not indepen-
dent. But we can again make them independent by selection (Table 45).0

Take for instance the serial correlation coefficient +',,, which refers to a lag
L == 1. We make a selection 1-o by taking only the first, the third, the fifth, ete.
pairs. This gives us a serial correlation coefficient for the selected items v, —
0.7648. If we make the other possible seleetions I-#, (i.e., include only the pairg
number 2, 4, 8, etc.) we get in our case of the annual wheat-flour prices a serial
correlation coefficient for the selected items 7'\, — 0.9485. Similarly we make
selection 2-a by taking only the pairs 1, 4, 7, etc.; 2-8 by taking the pairs 2, 5, 8,
ete.; 2-v by taking the pairs 3, 6, 9, ete. This gives the serial correlation coeffi-
cients for selected items = ,, which ave 0.6852, 0.7786, and 0.6991. All the serial
correlation coefficients for sclected and hence independent items are tabulated
in Table 45.

We can now use Fisher's exact test, since our items are independent. The
number of degrees of freedom is n--2 if n is the number of pairs in the particu-
lar selection (Table 45). The problem can be dealt with from different levels of
significance. We have again in Table 45 designated by * a serial eorrelation co-
cfficient, which is gignificant from the point of view of a level of significance of
5% but not from a point of view of levels of significance 1% or 0.1%; ** desig-
nates a serial correlation coefficient which is significant from the point of view
of levels of significance 5% and 1% but not from the level of 0.1%. Finally, ***
indicates that the serial correlation coefficient is significant from all three levels
of significance.

To give an example, selection 2-a gives a serial correlation coefficient of
0.6852, We have in this particular selection » == 16 and hence the number of de-
grees of freedom equal to 14. Entering Table VI in Fisher and Yates tablesi® for
14 degrees of freedom we get a value of 0.4973 for 5%, 0.6226 for 1%, and 0.7420
for the 0.1% level of significance. Our empirical serial coefficient, 0.6852, is great-
er than the first two values but smaller than the third. We hence conclude that
the serial correlation is significant for levels of 5% and 1% but not for 0.1%. The
serial coefficient hence has ** in Table 45,

Glancing over Table 45 we see that hardly any of the serial correlation co-
efficients with L — 8 or higher are significant. Hence, we should conclude that
the third and higher serial correlation coefficients are probably already zero or
near to zero, This again agrees well with our contention that we have eliminated
the nonrandom element in the third difference, as stated above (Chapter VII).

8 B, A, Figher, Statistical Methods for Researeh Workers, Tth ed., London, 1938, pp. 188 ff.,
Chapter VI, Sectinn 34,
oG Tmtner, “On Tests of Significance in Time Series,” Amnnals of Mathematical Statistics,
Vol. 10 1939, pp. 141 ft,
A. Fisher and F. Yates, Stafistical Tables, London. 1928, Table VI; sce alsoe R. A, Tisher,
op. clt Ta'ble V A,



APPENDIX VI

THE VARIABILITY OF THE RANDOM VARIANCE THROUGH TIME

Dr, Zaycoff pointed out in an interesting article,! that we frequently find the
random variance not constant in time. Hence the assumption that all elements of
the random part of the scries have the same variance is not fulfilled for long
series. We have performed an experiment, which substantiates his eontention,

Table 46 exhibits the standard deviations of the monthly wool prices and
their differences for every ycar from 1890 to 1936. A glance at this table con-
firms the impression that the standard deviations are not constant in time. The
years in whieh especiaily high values occur are the war years, 1917 to 1920, and
also the years of great crises, 1903, 1923, 1932.

We show in Table 47 the correlation coefficients for correlations between the
average annual prices, also given in Table 46, and the standard deviations of the
monthly wool prices and their differences. All these correlation coefficients are too
high not to be significant. We have 47 items in each series. Entering Fisher's
table? for 45 degrees of freedom we see that the value of the correlation coeffici-
ent is 0.4648 for a level of significance 0.1%. All our correlation coefficients are
higher than this.

1f we leave out the years 1903, 1917-20, 1923, and 1932 from our ealeulations
we have only 40 items left, The correlation coefficients between the annuzal wool
prices and the standard deviations of the monthly wool prices and their differ-
ences, disregarding these exeeptional years, are also given in Table 47. The levels
of significance are now, from Fisher’s table for 38 degrees of freedom: 0.4032 for
8 level of significance 1% and 0.5018 for a level of significance 0.1%. None of our
correlation coefficients are significant from the point of view of the latter level
of significance, But two of them are also not signifieant from the point of view
of the level 1%. Hence we may conclude that there is probably not much correla-
tion between the monthly variances and the annual prices if we disregard excep-
tional years.

This result fits in with our economic considerations as shown in Chapter I,
Section C. We should expect that the random errors will increase in years of war
or exceptional economic change, People will be more likely to make errors of the
first kind since they have to adapt themselves to changing conditions. The effect of
the nonpermanent causes in economic life can be expected to be greater in these
years.

1R, “Uecber die Ausschaltung der zufilligen Komponente nach der "Varlate-Difference’
Met!;o%," Plll:lmatlm‘las ;! of the Statistical Institute for Economic Research, State University of Sofia,
193 o, 1, pp
2R, A. Fisher, Statistical Methods for RHesearch Workers, 7th ed., London, 1938, Tablo V-A;
R. A. Fisher and ¥. Yates, Statistical Tables, London, 1938, Table VI, p. 36. See also G, W. Snede-
eor, Statistical Methods, Ames, Jowa, 1938, Table 7.2, p. 133.
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TABLE 47

CORRELATION COEFFICIENTS OF ANNUAL STANDARD DEVIATIONS oF MONTHLY WOOL
PRICES AND DIFFERENCES, AND ORIGINAL ANNUAL Wooit PRICES

! All Ttems exeept| All Items except
Order of All Ttems 1908, 1917-1920, | Order of All Items 1903, 1917-1920,
Difference | 1896-193¢6 1623, 1932 Difference 1890-1936 1923, 1932
Tk 2

0 0.6875 0.4634 6 0.6844 0.4772

1 0.7159 0.8744 7 0.6775 0.4724

2 0.6850 0.4362 8 0.6640 0.4649

8 | 0.6825 0.4739 9 0.6168 0.3161

4 r 0.6849 0.4836 10 0.6150 0.4636

5 0.6434 0.4816




APPENDIX VII

THE NORMALITY OF THE RANDOM ELEMENT

It is interesting to investipate the normality of the distribution of the ran-
dom element in the price series we have considered.t We should from a priori eco~
nomic reasons (Chapter I, Section C) expect a more or less normal or at least
symmetrical distribution.

We show in Table 48 the k-statistics, the skewness (g,), and kurtosis® (g.)
of the original data and differences of the annual wheat-flour prices, 1890 to 1937.
They are calculated from the sums given in Table 8. We also exhibit the stand-
ard error of the skewness (e¢,’) and of the kurtosis (e,’). It appears that the skew-
ness is rather insignificant in the higher differences. The kurtosis on the other
hand is significant and stays so even for high differences. Since it is positive we
have a distribution that is more peaked than a normal one.

The same impression is also gained from Figure 5 which shows the distribu-
tions of the original monthly wool prices, 1890-1937, as well as the distributions
of the fifth and tenth differences of the same price series. We have zlso exhibited
in these graphs the corresponding mormal distributions. All the distributions
show kurtosis, the peaks being much higher than in a normal distribution with
the same variance. The original prices also have considerable skewness, probably
mainly due te the secular trend, which is already more or less eliminated in the
higher differences. ’

1R, Zaycoff, “Ueber die Ausschaltung der zufilllicen Komponhente nach der ‘Variate-Difference’
Methode,' Publications of the Statistical Inatitute for Economic Research, State University of Sofis,
1537, Mo, 1, pp. 108 ff.

2 R. A. Fisher, Statistical Methods for Research Workers, 7th ed., 1938, p. 78 f., Chapter IIL
Appendix ; G. W. Snedecor, Statistical Methods, Ames, Iowa, 1938, pp. 147 f£. The k.statistics seem to
be related to the semi-invariants of Thiele, See A. Fisher, The Mathematical Theory of Probability,
2nd ed., New York. 1930, pp. 191 ff.
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