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Preface

Over the years econometricians have developed special statistical methods
lor handling the problems that arise in analyzing economic data. These
special problems and methods are the topic of numerous textbooks and
are studied by nearly every economics graduate student. Although econo-
metric techniques do have features which distinguish them from the
techniques used in other fields of application, there is a danger that these
special features are being overemphasized. By concentrating on the
uniqueness of econometric methods one tends to lose sight of the fact
that these methods are based on a general theory of inference. Often it is
possible to gain a better understanding of econometric problems, not by
¢mphasizing their peculiar characteristics, but rather by seeing how they
fit into the broader structure of statistical theory.

This book presents an attempt at unifying certain aspects of econometric
theory by embedding them in a more general statistical framework.
T'he unifying feature is the use of a priori information and the basic tool
is the traditional Cramér-Rao inequality. I believe that many confusing
aspects of the simultaneous equations problem can be cleared up by
viewing that problem in a broader context. Certain results on identifica-
tion and efficiency turn out to be quite elementary when viewed at a
general level but are not at all elementary when studied in the particular.
Furthermore, the limitations of our econometric theory are made clearer
when seen in the general framework of traditional statistical theory.

The present monograph can usefully be viewed as an extension of the
research reported in Cowles Foundation Monographs 10 and 14. These
carlier studies, many of them written by leading statisticians, represent a
systematic application of the methods of mathematical statistics to
cconometric problems. The present book uses the same basic approach
and many of the same techniques. By generalizing and extending these
earlier studies it has been possible to develop a unified theory of estima-
tion which contains many of their results as special cases.

The use of considerable mathematics is unavoidable in a book dealing
with econometric theory. The reader should be familiar with the material
contained in an introductory course in mathematical statistics and should
be comfortable with matrix notation. Nevertheless, this is not a treatise in

vii



viii Preface

mathematical statistics. My purpose has been to help bridge the gap
between the textbook presentation of econometric methods and the
mainstream of modern statistical thcory. Many of the more difficult results
are stated without proof; and most of the tedious algebra has been placed
in appendixes or omitted entirely.

The theory of efficient estimation is only a part of theoretical econo-
metrics; and theoretical econometrics is but a small part of the broad
subject of empirical cconomics. There has been in recent years an unfortun-
ate tendency to overemphasize formal econometric theory at the expense
of the commeonsense application of econometrics to real social problems.
In addition to the gap between econometric theory and traditional
statistical theory, there is an even greater gap between econometric
theory and good econometric practice. The reader will understand that
this book’s concentration on the former problem in no way diminishes its
author’s concern over the latter.

The research for this monograph has extended over an embarrassingly
long period of time. The first five chapters are a major revision of my
doctoral thesis submitted to the Economics Department at M.L.T. in 1966.
Chapter 6 presents the results of research that I began in 1963 while a
staff member of the Econometrics Institute of the Netherlands School of
Economics (Rotterdam). Various other parts of the book were written
while T was associated with the Transportation Center at Northwestern
University, the Cowles Foundation at Yale University, and the Center for
Operations Research and Econometrics at Louvain {Belgium). I am
grateful to these institutions, as well as the University of California,
Berkeley, for providing me with financial support, secretarial and research -
facilities, and, most of all, stimulating colleagues. Additional support from
the Ford Foundation, the National Science Foundation, and a U.S.
Government Fulbright Fellowship is gratefully acknowledged.

It is impossible to acknowledge all the help I have received in the many
years of this research. However, my debt to Ralph Beals, Jacques Dréze,
Frank Fisher, and H. Theil is enormcus. [ am also grateful to Walter
Fisher, Edmond Malinvaud, and Roy Radner, who read earlier versions of
the manuscript and made valuable comments. My thanks also to Donald
Dillaman, Ronald Lanstein, {tzhak Venezia, and Greg Woirol for pro-
gramming and research assistance.

Berkeley, California T.JR.
December 1972



CHAPTER 1

Estimation and Information

1. A PrRIORI INFORMATION

Feonometrics is concerned with the use of sample data to learn about
unknown economic parameters. In many applications, however, the
ceonometrician possesses, in addition to the sample, other information
about the parameters. For example, he may know from theoretical argu-
menis that the marginal propensity to consume lies between zero and one
or that a demand function is homogeneous of degree zero in all prices
and income. Or he may know from past experience that the demand for
<l s price inelastic. If this information is correct, it is surely useful to
incorporate it into statistical estimation procedures. Such additional
imformation may be valuable in increasing the precision of estimates
particularly when samples are small.

i’erhaps the most important ¢xample of the use of prior information
In cconometric estimation is in the simultaneous equations model. In this
nodel identifying restrictions, which usually take the form of excluding
certain variables from an equation, are imposed on the structural para-
mcters. These restrictions are thought to reflect valid information about the
(rue economic structure and are used in the recommended estimation
procedures. If no such information is available, the structural parameters
are unidentified and cannot be estimated at all. Furthermore, the reduced-
form parameters are then estimated imprecisely due to the collinearity
typically found among predetermined variables. Hence, the existence of a
priori information is basic to statistical inference for simultaneous
cquation systems.

These examples suggest that a wide class of econometric problems in-
volve inference in models where there are a priori constraints on the
parameters. Although these problems have received considerable attention
in recent years, there seems to exist no generai treatment of the subject.
The known results appear as isolated theorems and are scattered through-
out the literature. The present monograph develops a unified theory of



2 Efficient Estimation with a priori information

estimation in the presence of prior information. The analysis incorporates
both the Bayesian and the classical approaches to statistical inference.
In addition, the problem of estimating the parameters of simultaneous
equation systems is shown to be a special case of the general theory.

In this study we shall concentrate on two basic questions. First, how
valuable is a priori information in increasing the precision of parameter
estimation? Second, what are efficient methods of incorporating this
information into estimation procedures? The first question is basic to the
practical use of outside information. If the loss from ignoring information
is smail, there is no need to develop complicated methods of estimation
which incorporate it. If, however, the loss is large, then it is worth obtaining
and wsing such information in our statistical research. In this latter case,
the second question becomes important. If we wish to incorporate non-
sample information into our estimates, it is desirable to have convenient
and flexible means to do so. .

Our concern here will be solely with the problem of optimal point
estimation. The theory of hypothesis testing and confidence intervals is
not discussed explicitly, although optimal point estimates often form the
basis for optimal tests and optimal confidence regions. There are three
reasons for concentrating on point estimation. First, most econometric
application seems to be concerned with finding good point estimates of
economic parameters, rather than with the formal testing of theories.
Second, the theory of estimation can be presented at a general, yet useful,
level without getting involved in the distribution-theoretical problems
which arise in the theory of hypothesis testing. Finaily, in many statistical
decision problems, finding the optimal decision is equivalent to finding
an optimal parameter estimate. Hence, by concentrating on the problem of
point estimation we shail be able to explore the parallel between the
classical and the decision-theoretic approaches to inference.

Although we shall analyze only the problem of finding good estimates
using prior information, it should be emphasized that there also exists in
classical statistics the alternative problem of testing whether a body of
prior information is correct. For any given sample these are generally
mutually exclusive problems. Either one uses prior information to im-
prove sample estimates or ong uses the sample to test the validity of the
information. If one is unsure of the information, then it is dangerous to
use it; if one is sure of the information, then there is no need to test it.
In practice, of course, econometricians sometimes combine these alter-
native problems in a two-stage procedure which first tests a parameter
restriction and, if it is accepted, then uses the restriction in estimation.
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Latle is known about the properties of such two-stage procedures.
lndeed, it appears that these properties necessarily depend on the value
ol the unknown parameter and cannot therefore be easily studied within
the classical framework of statistical inference.!

The testing of prior information is a separate problem from using the
imformation in estimation, but there i1s a definite relationship between
their mathematical structures. Using an analogy with mathematical
programming, one may say (somewhat heuristically) that deriving the
optimal way of using correct prior information is the dual to the problem
ol finding an optimal test of that information (treated as a nuli hypothesis).
We shall not pursue this relationship, however, and shall study only the
former problem. Thus, throughout this examination of the value of using
prior information it will always be assumed that the information is correct.

In practice, however, prior information is not known with certainty.
We are never absolutely sure that our theoretical constraints are valid.
What then is the purpose of analyzing the value of using prior information
when the possibility of error is excluded? There is a simple classical answer
to this question. If the value of correct information is found to be small,
then it is clearly unwise to use doubtful information. If the value of correct
information is large, then it may pay to use even dubious information.
The study of valid prior knowledge is a necessary and useful beginning
10 the study of imperfect knowledge. Furthermore, if one is wiiling to
accept the Bayesian approach to inference, even uncertain prior informa-
tion can be incorporated into statistical procedures.

2. ALTERNATIVE APPROACHES

Prior information about parameter values may arise in various ways.
Sometimes theoretical reasoning or introspection suggests constraints
on the parameter space. Other times the results of past samples are thought
to give information about the parameters. In all these cases there exists a
priori information in the sense that the information does not arise from
the particular body of data currently being analyzed. To be more precise
about the meaning of a priori information and the ways it can be incor-
porated into statistical procedures, it will be necessary first to describe
more carefully the type of statistical problem we have in mind.

The basis of any statistical problem is a sample of observations. We shall
consider the sample to have arisen from n independent repetitions of an

1. See, for example, BANCROFT (1944},
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experiment. If each outcome of the experiment can be described by a
number, then the sample is described by an n-dimensional random variable
Y,. The joint probability function for ¥, is assumed to have a known
mathematical form but depends on a number of unknown parameters.
Specifically, the probability law for Y, is assumed to be represented by a
density function belonging to the family of densities

Sy, )

where y represents the vector of n observations on the random variable
Y, and & is a vector of m unknown parameters. (The restriction to density
functions is solely for convenience; all of the results can be extended to
more genecral classes of probability distributions.) The statistician is
assumed to know the function £, and also the set 4 of possible values for 8.
The problem is to choose a vector of m functions of the sample ¥, to be
used as an estimator of the true parameter §°,

The knowledge of f, and A constitutes important information about the
random experiment. in this sense every estimation problem involves a
priori information. However, our interest is not in this necessary informa-
tion that describes the stochastic process, but rather in extra information
that parrows down our ignorance about the unknown parameter. That is,
we consider a basic estimation problem (characterized by a family of
density functions f, and a parameter space A) and study the value of
additional information in improving the precision of estimating 6°.
Henceforth the phrase “‘a priori information” will mean this additional
information; the basic knowledge of the pair (f,, A) will always be under-
stood as given.

In order to measure the value of additional information we must have
some criterion for evaluating estimation procedures. Unfortunately,
there seems to be no criterion that is completely satisfactory. Currently
there are two alternative approaches to the statistical estimation problem
that are widely used. On the one hand there is the “classical” mode of
analysis which is based on a frequency interpretation of probability and
typically makes use of the concept of unbiasedness. This approach is
found in most of the leading econometrics textbooks and is accepted by
most practicing econometricians. On the other hand there is the Bayesian
mode of analysis which is rooted in decision theory and based on a sub-
Jjective notion of probability. This latter approach has become widely
used in recent years and seems particularly suited for certain economic
decision problems. We shall analyze the value of a priori information
using both approaches. Detailed descriptions of both are given in later
sections. Here we shall indicate only their general features.
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In classical statistics the original “givens™ of the estimation problem
are charactenized by the pair (f,. A). The function £, is sometimes called the
likclihood function and the set A is called the parameter space. Prior
mlormation takes the form of modifying the pair; for exampie, knowledge
thit & parameter must be positive reduces the parameter space A. Estimat-
myg procedures are evaluated on the basis of their sampling distributions
{or at least on the basis of approximations to these distributions). Typically
it “best” estimator is defined to be one that has smallest variance out of the
class of all unbiased estimators. Thus, under the classical theory, we study
the following situation : A sample is available from a process characterized
by the likelihood function f, and the parameter space 4. Based on that
sample a best estimate is calculated. If additional information were avail-
able, the process would be characterized by a different likelihood function
and parameter space. In general a different estimator would be best.
If the new estimator is more tightly distributed around the true parameter
than was the old estimator, we may say that the a priori information has
value. Furthermore, by specilying some measure of dispersion, we can
dctermine quantitatively the amount of gain.

Given the principle of unbiasedness, the classical estimator depends
only on f, and A. The Bayesian approach, however, dispenses with the
unbiasedness assumption and replaces it with a prior probability distribu-
tion on #. That is, in Bayesian statistics every process is characterized by
the triple ( f,, A, P) where P is a multivariate probability function defined
over the parameter space 4. The density f, is then interpreted as represent-
ing the conditional distribution of ¥, given #. Additional prior information
typically is expressed by modifying the prior probability distribution P.
The Bayesian estimate is obtained by first calculating the conditional
distribution of & given the observed value of ¥,. The mean (or some other
measure of central tendency) of this posterior distribution is taken as the
estimate. Thus, the Bayesian approach to our problem can be stated as
{ollows: A sample is available from a process characterized by the triple
{(f., A, P). Based on that sample a best estimate is calculated. If additional
information were available, the process would be characterized by a
different triple (presumably one with a less dispersed prior distribution)
and a different estimate would be best. Again, the value of the a priori
information can be measured by the decrease in dispersion of the resulting
estimator.

Since the Bayesian and classical approaches to statistical inference
are rather different, two modes of analysis are called for. In the first five
chapters of this book the classical approach is used. Alternative ways ol
incorporating prior information into the classical analysis are explored
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(chapters 2 and 3) and the results obtained are applied to the simul-
taneous equations model (chapters 4 and 5). In chapters 6 and 7 the
Bayesian mode of analysis is employed and compared with the classical
one.

3. CrassicaL ESTIMATION THEORY

The next few chapters will extend some of the important classical results
on efficient estimation so that they apply when a priori information is
available. it 1s useful to begin by summarizing these well-known classical
results. Since we arc primarily interesied in developing methods for
practical application, we shall not be concerned with fine mathematical
detail. For a comprehensive treatment of classical estimation theory the
reader may consuit CRAMER (1946), DUGUE (1958}, or WILKS (1962),

The classical estimation problem is to find a function of the sample
vector ¥, to use as an estimate of the unknown parameter vector 8°,
The model presented in section 2 can be formalized as follows. Let the
parameter space 4 be a subset of m-dimensional Euclidean space E"'
Consider the function

(3.1) Sy, 6)

which maps E” x E™ into the real line. We assume that (3.1) is a proper
density function in E" for every & in A. In particular, f, is nonnegative and
the equation

(3.2) f S0, 0 dy = 1

holds for all 8 in A. The integral is to be interpreted as a multivariate
Riemann integral over E”. We further assume that the sample vector ¥,
is distributed according to the density

Sy, 6°)
where 8° lies in 4.

The likelihood function f,(y, #) and the parameter space A characterize
a given estimation problem. The classical analysis usually is conducted
under the following assumptions;

1) The set A of possible values for § is a full m-dimensional set in E™
That is, 4 is either an open set or an open set augmented by some of its
boundary points.

2) Theset S of y values for which (3.1) is strictly positive does not depend
on 6. We shall refer to § as the sample space of ¥, .
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Y} The density (3.1) arises from independent sampling and hence factors
o nlerms.,

4} The likelihood (3.1) is 2 smooth function of 6. In particular, for all 8
i convex set containing 4 and for almost every y in 8, the functions
1. ) and log £ (y, B) possess partial derivatives with respect to 6 up to the
third order. Furthermore, twice differentiation under the integral in (3.2)
i possible.

5) ¥or any two vectors # and & in A, the functions f(y, 6) and f.(y, 8)
shiler for some vaiue of y. That is, distinct values of 8 give rise to distinct
probability functions for the sample and, hence, every #in A is identifiable.

6) The likelihood function is sufficiently well behaved to insure the
asymptotic normality of the maximum-likelihood estimator. These
conditions are discussed in CRAMER (1946), pp. 500-01, and LE Cam
(1953) and will not be listed here; they are needed only for the asymptotic
results given below.

The above regularity conditions are used in the derivation of the
classical theorems of estimation. It may be noted in passing that most of the
tamiliar distributions satisfy the above assumptions. (Discrete distribu-
nons can be included if the integrals are replaced by sums.) The most
notable exceptions are the rectangular distribution and truncated distribu-
tions with the point of truncation depending on &; these distributions
violute assumption 2). Although it is possible to prove some of the classical
theorems using weaker regularity conditions, no attempt to do so will be
made here.

EFFICIENT ESTIMATORS

The traditional theory of estimation, as developed by Fisher, Crameér,
Ruo, and others, is concerned with finding efficient, or at least asympto-
tically efficient, estimators of the unknown parameter vector & on the basis
of the sample Y,.2 An estimator #(Y,) is a vector of functions which does not
depend on the unknown 6. An estimator ¢ is unbiased if it is integrable and

(3.3) &t = f {0) o, B)dy = 6
s

for every 6 in 4. An unbiased estimator ¢ is efficient if it is square

2. When there is no chance of confusion we shall drop the distinction between the arbitrary
clement 0 and the true value 6°. Thus we shall speak of estimating 8 rather than estimating 6°.

3. The symbol & represents the expectation operator. By £t we mean the column vector
whose ith element is &1,.
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integrable with covariance matrix
Vi = [v;] = [6t; — 0)(¢; — 8,1

at least as small as that of any other unbiased estimator. That is, ¢t is
efficient if, for every #in A,

(3.4) V.-V

is positive semidefinite for all unbiased estimators s.

The use of the covariance matrix ¥ to compare estimators can be
motivated in the following way. A best estimator is one which is as close
as possible to the true parameter. If # is a scalar, the traditional measure of
distance has been the squared error (t — 6)?. The natural multiparameter
measure is the quadratic loss function

(t — 6YQ(t — 6)

where Q is a positive semidefinite matrix that determines the relative
weight given to each component of the estimation error vector and to
interactions between pairs of components. Since the distance between an
estimator and the true parameter is a random variable, the usual estima-
tion criterion is to minimize expected distance. If we restrict ourselves
to unbiased estimators, this results in ranking according to the measure

&(t — 0)YQ(t — 0) = &t — EIYQ(t — &) = tr QV,

where tr Q¥ represents the sum of the diagonal elements of QV,.
A best unbiased estimator could be defined as one which minimizes
tr Q. More precisely, an unbiased estimator #(y) is best if, for every & in A,

(3.5 tr QV, > tr QV,

for all unbiased estimators s. [t would appear that a best unbiased estimator
for the vector 8 must depend on the matrix Q of the quadratic loss function.
However, that is not the case. If ¥, — V] is positive semidefinite, then (3.5)

will be satisfied for any positive semidefinite matrix Q. Thus the classical
estimation criterion may be characterized as follows:

An unbiased estimator 1(Y,) is efficient if, for all 0 in A, the difference in the
covariance matrices
-Hh

5

is positive semidefinite for all unbiased estimators s(Y,). An efficient estimator
minimizes expected loss for any nonnegative quadratic loss (or distance)
Junction.
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ASYMPTOTIC EFFICIENCY

Since it is often impossible to find an efficient estimator, it is useful to
have an approximate concept. Consider a sequence of samples ¥, Y, ...,
), (where the index refers to the sample size) and the corresponding
sequence of density functions f,, £, . .., f,, where each of the f; depends on
the same parameter vector 6. A sequence of estimators t,(Y;), £5(Y3), ...,
1Y) {(where t, represents the estimator based on a sample of size n) is
ronsistent if, as n approaches infinity,

lim Prob{|t, — 8/ > &} =0

for any positive number &. In such a case we say that the estimator sequence
vonverges in probability to # and write

plim¢, = 6.

A consistent estimator ¢, (or more precisely, a consistent estimator
sequence) 1s said to have an asymptotic covariance matrix ¥, if, for all @
in A, the sequence of random variables \/:_1([,, — 6) converges in distribu-
tion to a normal random variable with mean zero and covariance matrix
};.* A consistent estimator ¢, is said to be asymptotically efficient if its
asymptotic covariance matrix is smaller than that of any other estimator.
That is, ¥, — ¥ is positive semidefinite for all consistent, asymptotically
normal estimators s,.

The concept of asymptotic efficiency is not as simple as the concept of
cfficiency for fixed sample size n. For example, it is not necessarily true
that the asymptotic covariance matrix of an estimator is the limit of n
times the finite-sampie covariance matrix. Indeed, it is possible for an
estimator to be asymptotically efficient but to possess no finite morents
at all. This results from the fact that classical asymptotic theory deals with
approximating distribution functions, not with approximating moments.
It is quite possible (in fact it is very common) for two distribution functions
to be “close™ to each other while their moments are far apart. For example,
the Student distribution with 30 degrees of freedom is well approximated
by a normal distribution, but none of its higher order moments are finite
whereas all the moments of the normal density are finite.

4. A sequence of random variables X,, X,, X5,... is said to converge in distribution to
the random variable Z if the corresponding sequence of distribution functions for the X,
converge pointwise to thedistribution function for Z atall continnity points of that distribution
function. It should be noted that some authors use the term “asymptotic covariance matrix”™
to refer to V,/n rather than ¥,. The convention used here s somewhat more convenient
notationally.
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A second problem with the concept of asymptotic efficiency is that it is
meaningful only if we restrict the class of estimators being considered.
Otherwise one can demonstrate that there are no asymptotically efficient
estimators! This results from the fact that it is possible to construct
estimator sequences which, for a few points in the parameter space A,
have arbitrarily small asymptotic variances. Since these estimators are
highly irregular and the set of parameter points for which they are “super-
efficient” has measure zero, they are of no practical concern. However,
they do point up the fact that asymptotic estimation theory is very tricky
and requires considerably more advanced mathematical tools than does
the smali-sample theory.®

TWO FUNDAMENTAL INEQUALITIES

The basis theorems of efficient estimation are usually stated in terms of
the information matrix. If ¥, is a sample of size n and f,(y. 8} is its density
function. the information matrix is defined as

_ *log f(%,.0)) _ [@logf, élogf,
36) R"““‘;[ 86, 80, J“‘g[ 80, a8, ]

where the last equality is verified by differentiating equation (3.2). The
asymptotic information matrix associated with a sequence of samples

Y,, Y;....,and a sequence of densities f, . f, .. ., is defined as
.1
(3.7 R = lim ER"'

It will be assumed that, for every possible parameter value, R and each R,
exist and are positive definite. We shall return to this assumption in
chapter 2 when the identification problem is discussed.

Two major results of classical estimation theory may now be stated:

CRAMER-RAO INEQUALITY. The matrix R, ' is a lower bound for the
covariance matrix of any unbiased estimator of 0. There exists an unbigsed
estimator whose covariance matrix attains this bound if and only if there
exists a vector function y) not depending on 0 such that the logarithmic
derivative of the likelihood function takes the form

dlog f,
i)

the vector t is the minimum variance bound (MV B) estimator.

(3.8) = R,(t — 0);

5. For more detailed discussions of the pitfalls in asymptotic estimation theory, see L
Cam (1953), Ra0(1965), and WoLFOWITZ (1965).
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ASYMPTOTIC CRAMER-RAO INEQUALITY. The matrix R is essentially a
lwer hound for the asymptotic covariance matrix of any consistent estimator
af & Furthermore, this lower bound is attained by the maximum-likelihood
etiptor,

I'hese two results have a long history and are associated with such
statisticians as H. Cramér, D. Dugué, R. A. Fisher, M. Fréchet, and C. R.
Rito. They are the starting point for our study of efficient estimation with
poor information. Indeed, the remaining chapters of this book deal
imost entirely with generalizations and applications of the two inequali-
ties when a priori information is available.

Before proceeding, however, some comments concerning these classical
theorems are in order. The inverted information matrix is a lower bound
m the sense that ¥, — R;! is positive semidefinite for 2ll unbiased esti-
mutors s. It wouid be a greatest lower bound if there were an estimator ¢
that had R, ! as its covariance matrix. Unfortunately, equation (3.8) is
yuite restrictive and for only a few density functions will such an estimator
exist. In fact it can be shown that the bound will be attainable only if
there exists a set of m sufficient statistics. This will be the case only if f,
1 i member of the exponential class of densities. Moreover, if the bound is
atlainable for one set of parameters #, it will in general not be attainable
lor any new set of parameters obtained by nonlinear transformation.
(}-‘or example in the one-parameter case. if the lower bound is attainable for
an estimator of 8, the bound is not attainable for an estimator of 62.)

Since the bound R; ' is not usually a greatest lower bound, it may
reasonably be asked whether the bound is worth much attention. The
unswer to the question lies in the fact that, for large n, the bound 1s approxi-
mately attained. That is to say, when » is large there exists an estimator
whose distribution can be well approximated by a normal density having
covariance matrix R ! The asymptotic Cramér-Rac inequality is a
statement of this approximation. Although R ! may not be attainable
for finite n, R~ ' is always attainable in infinite samples. The word *‘essen-
lially™ in the statement of the second theorem allows for certain patho-
logical cases where covariance matrices, for a few values of 8, are smaller
than R . These cases can be climinated by stating regularity conditions
on the class of estimators considered or by redefining efficiency by chang-
ing the phrase “‘for all 8” to the phrase “for all 8 except for a set of measure
zero.” A precise statement of the asymptotic inequality where careful
account is taken of the conditions needed for its validity can be found in
LECaM(1953}and in WoLFOWITZ (1965). Our concern is the generalization
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of the classical theorems for nonpathological cases and hence all of
the results that follow should be understood to require the same qualifica-
tions as discussed here.

The proof of the asymptotic theorem is difficult and will not be presented
here. The reader may consult KENDALL AND STUART (1967) for a sketch of
the proof and for further references. The proof of the finite-sample theorem
is not difficuit. Indeed the result is a direct consequence of the unbiasedness
assumption. If ((Y,) is an unbiased estimator then

(39) f (t; — 8)f(y.O)dy = 0 G=1...m)
5

for all @ in A. Let 6° be the true parameter vector and 8° + & some other
vector in A, Then, for alt i,

f (t; — OV 8° + &) — Ly, 0% dy = &,

and for any nonstochastic vector ¢ = (¢, , ..., c,)
o o €0+ O — [0 6%
B

If 6° is an interior point of A, then 8° + & will also lie in 4 for any ¢
with sufficiently small length. Hence (3.10) s valid if we set & = Ax and
take the limit as the scalar A goes to zero. Given our regularity assumptions
we obtain

- 2
(3.11) fzgm—ﬂﬂdﬁi}%%éﬁJidy=ZQ%.

Application of the Cauchy-Schwartz inequality for integrals vields the
result

LAY}
(3.12) Ve > max )
: x X R"X

where V' is the covariance matrix of ¢ and R, is the information matrix,
both evaluated at 6% It can be verified that the maximum occurs for x
proportional to R, 'c, Thus we obtain

(3.13) c'Ve > R e
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ter all . Furthermore, equality will obtain in (3.12) if and only if, for all ¢
and all y,

dlog f,

illd) it — 0) = Ke'RJ ! 50

where K is some scalar. This proves the small-sample theorem for 6° an
imterior point of A. By our continuity assumptions, however, the matrices
{ and R, are continuous in 6. Hence the result must also hold on the
houndary.

4. SoME MATHEMATICAL RESULTS

In the following chapters repeated use is made of some elementary
properties of matrices. Some of the more important of these properties are
summarized here. Consider a real symmetric matrix A of order n and the
yuadratic form

1) . X'Ax =) xxa;;

[
where x is an arbitrary real column vector. If the quadratic fort is non-
negative for all nonzero x, then A is said to be positive semidefinite. If the
yuadratic form is strictly positive for all nonzero x, then A is said to be
positive definite. The following are well-known facts about positive semi-
definite matrices :®

1) A positive semidefinite matrix with rank r has r positive characteristic
roots and n — r zero roots. A positive definite matrix necessarily has full
tink and n positive roots.

2} If P is any matrix with rank r, then P'P is positive semidefinite with
the same rank, Conversely, any positive semidefinite matrix A can be
written as A = P'P where P and A have the same rank.

3) If A is positive definite, then A~ ' exists and is also positive definite.

4) If 4 is positive semidefinite, then P'AP is also positive semidefinite
for any P where multiplication is defined. If 4 has full rank, then the rank
ol P'AP equals the rank of P.

5) If A is positive definite and B is positive semidefinite, then {4 + B)™!
cxists and is positive definite. Furthermore, the difference A~ {4+ B!
is positive semidefinite with the same rank as B.

6) If B is symmetric and idempotent (that is B = B’ = B?), then B is
positive semidefinite with rank equal to the trace of B. (The trace of a

6. See, for example, GRAYBILL (1961}, pp. 1-17.
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square matrix B is defined as the sum of the diagonal elements and is
written tr B. The trace is always equal to the sum of the characteristic
roots.)

THE GENERALIZED INVERSE OF A SYMMETRIC MATRIX

Consider an n x n symmetric matrix A having rank p. By a generalized
inverse for A, we mean any symmetric matrix A* with the properties

AA*A=A and A*AAY = A",

If p = n, then the ordinary inverse A~ " exists and is the unique generalized
inverse of A. If p < n, there will be many generalized inverses. One of them
can be constructed as follows. Since 4 is symmetric, it can be written as
O’'DQ where @ is an orthogonal matrix whose columns are the charac-
teristic vectors of 4 and D is a diagonal matrix consisting of the charac-
teristic roots. If DV is defined as the diagonal matrix formed by replacing
the nonzero elements of D by their reciprocals, then A* = Q'D*Q is a
generalized inverse.

Generalized inverses arise in the study of solutions to systems of lincar
equations. As is well known, if the matrix of a linear equation system is
nonsingular, the unique solution can be written in terms of the inverse of
that matrix. If the matrix is singular, the set of solutions can be expressed
in terms of the generalized inverse. Qur definition, which holds only for
symmetric matrices, is but a special case of the broader concept of a
generalized inverse of an arbitrary matrix. For details, the book by RAo
(1965), pp. 24-26, may be consulted.

THE KRONECKER PRODUCT OF TWO MATRICES

Let X be an n x m matrix and let vec X be the nm-dimensional column
vector formed from the elements of X taken one row at a time. Consider
a function f which maps E™ into the real line. If f is twice differentiable,
we may be interested in the matrix F of second partial derivatives with
respect to the elements of X. It is convenient to write this #m x nm matrix
in the block partitioned form

Fll FIZ Flrr

¥ 52f . £y Fy £y,
 d{vec X) d(vec Xy '

Fnl Fn2 Fm:
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where cach of the n? blocks is an m x m matrix. The matrix F,, consists of
vtoss partial derivatives with respect to elements of the pth and gth rows
ol .\t has typical element given by
33
0x,; 0xy;
When calculating such derivatives, one often notes that the matrix F

has & special form where each block F,_ is, apart from a scalar multiple,
the sume matrix. That is,

Foq = byC
where by, is a scalar and Cis a m x m matrix. Writing the n x n matrix of

clements b, as B, we then say that F is the Kronecker product of Band C;
and we write

F=B®C.

In general, we may define the Kronecker product of any two (not
necessarily square) matrices. Let Bbean r x smatrixandlet Cheay x ¢
matrix. Then we define the ru x sv matrix 8 ® C to consist of rs blocks
with the pg block given by b, C. It can be verified that the following
rclationships are valid whenever the indicated multiplication or inversion
is defined

(4® B)(C ® D) = (AC ® BD).
(A®B)~'=(4"'®B™ ).
(A® B) =(4'® B).

THE INVERSE OF A PARTITIONED MATRIX

Another result that will be useful in the following chapters concerns
the inversion of partitioned matrices. In general the inverse of a matrix is a
complicated function of the elements of the original matrix. However, it is
possible to find simple expressions for certain blocks of elements. Consider
the inverse of the symmetric partitioned matrix 4:

= [B C]‘l [R S:|
“lc p] |s T

where B and R arz square matrices of order n; D and T are square matrices
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of order m;and C and § are both n x m. By definition

, B CIiR S I, 0
(4.2) = )
C DI T 0o I,
Solving the four equations in {4.2) we have
43) R=B-CD'CYy"'=B"'+B'C(lD~CBC)"'C'B},
T T=D"1 4 DTIC(B - CD'CYy ' Cp~ =(D - C'BIC)!

as jong as B and D are both invertible. If B is invertible but D is not, the
right-hand expressions are still valid. For example, if D is the zero matrix,
we have

R=B"'— B IC(C'B~'C)"'C'B~ 1,



CHAPTER 2
Exact Prior Information

. INTRODUCTION

Within the classical framework prior information can be expressed in a
number of different ways. In each case either the likelihood function
f.{v. 0) or the parameter space 4 is modified by the added information.
il. for example, one incorporates knowledge obtained from previous
statistical studies, the likelihood function must be changed so as to include
the oid sample as well as the current one. The parameter space, however,
will remain unchanged as long as both samples depend on the same para-
meters. In contrast, if the prior information says that a given parameter
must be greater than zero, then the likelihood function is unchanged
but the set A is reduced. Since the classical estimation problem is com-
pletely characterized by the pair (f,, A), all prior information can be
described by the way it modifies the pair.

In practice we find that most prior information can be classified into
one of three general types. The information typically can be described
by (1) previous sample evidence, (2) inequality restrictions on the para-
meter space, or (3) equality restrictions on the parameter space. In the
first case the likelihood function is modified; in the latter two cases the
parameter space is modified. Qur analysis of prior information under the
classical approach will be confined to these three cases.

The phrase *‘information from previous samples” will be used to de-
scribe information embodied in a sample of data different from the one cur-
rently under analysis. This additional sample is considered to be the
realization of some random experiment and possesses a probability law.
The probability distribution of the previous sample need not be of the
same mathematical form as the probability distribution of the current
sample. The only requirement is that it depend, at least in part, on the
unknown parameter vector . Incorporating prior information into the
analysis is done simply by finding the joint probability function of the two
samples. In this way the classical theory can handle stochastic prior
information without the need of subjective probability distributions.

17
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Inequality restrictions do not affect the likelihood function but merel
reduce the set of possible parameter values. This is also true of equalit
restrictions. In both cases the new (restricted) parameter space is a subse
of the original one. In the case of equality restrictions the new paramete
space is usually reduced to a lower dimensionality. For example, if it i
known that two parameters 8, and 6, must sum to one, then 8, can b
replaced by 1 — 8, in the likelihood function. The number of unknowr
parameters is effectively reduced by one. In the case of inequality restric-
tions the new parameter space remains a set of m dimensions. Thus know-
ledge that 8, is greater than zero in no way reduces the number of para-
meters,

The distinction between information that reduces the dimensionality
of the parameter space and information that does not is important. The
mathematical tools which are useful in the one case are not useful in the
other. Therefore it is natural to treat these two cases separately. Chapter 3
will study the case of “inexact” prior information. This inciudes informa-
tion obtained from previous samples and information in the form of
inequality restrictions. The information is inexact in the sense that the
dimensionality of the parameter space is not reduced. The present chapter
will examine exact equality information which does reduce dimensionality.

The literature on estimation with exact information is limited. The
only case that has been examined in detail is that of the linear model under
linear constraints. A summary of results in this case may be found in the
textbooks of GOLDBERGER (1964) and THEeIL (1971). MALINVAUD (1970)
analyzes the use of constraints in the context of the nonlinear regression
model. The most important general study of constrained estimation is
presented in a series of articles on the constrained maximum-likelihood
estimator by AITCHISON AND SILVEY (1958), (1960) and by S1LVEY (1959).
The general problem is also discussed by ANDERSON (1951), HAMMERSLEY
(1950), KLEIN (1960), and KoormaNs, RUBIN, AND LEIPNIK (1950).
Many of the results that follow are contained in the above-mentioned
works, although their implications and generality seem not to have been
previously explored,

2. CoONSTRAINT EQUATIONS

The simplest type of exact information is the prior knowledge of some
elements of 6. This occurs, for example, when the economist belicves that
interest rates have no effect on aggregate consumption and therefore
deletes that variable from his consumption function. If interest rates are
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highly correlated with variables that do appear mn the regression equation,
then deleting the interest rate (when it in fact has zero coefficient) will
mcrease the precision of estimating the other parameters. Knowledge of a
specific element of the vector # is just one example of the more general
casce of information expressed by constraint equations. A more complex
example occurs in the estimation of demand functions. If & is the vector of
il price and income elasticities in a many-commodity market, the theory
of utility maximization implies that certain weighted sums of these
clasticities must equal zero. In the following discussion we shall examine
the gain in efficiency that results from such constraint equations.

Suppose that the set of possible values that the unknown parameter
vector 6 may take is restricted to A4,, the solution set in A of k equations

(2.1) 2(6) =0 (i=1,...%

where k is less than m, the number of unknown parameters. Suppose further
that the g; are continuous and possess partial derivatives of at least the
second order. It will be assumed that the matrix of first partial derivatives

Og.
2.2} G=[gl= [é—g—l:l

has full row rank k when evaluated at the true parameter #°. That is, the
equations (2.1) are functionally independent in a neighborhood of 6°.

If the information contained in (2.1) has value, then there exists an
estimator using the constraints that has a covariance matrix lower than
any estimator that does not use the constraints. We already know that the
Cramér-Rao inequality gives a lower bound for the covariance matrix
of any unbiased estimator in the absence of prior information. It is natural
to seek a lower bound for estimators that use the information in (2.1).
The reduction in the lower bound due to the constraints can be used as a
measure of the value of that information.

The derivation of a lower bound for the variance of an unbiased esti-
mator proceeds as follows. Since 4, is not a set of full dimension in m-
space, the standard Cramér-Rao theorem is not applicable. However, it can
easily be modified. For any unbiased estimator ¢(1,),

2.3) j (t, — 0)ful. O)dy = O =1...m
S

for all 6 in the restricted parameter space A;. Proceeding along the same
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lines as our earlier proof, we obtain for any nonstochastic vector
c=(Csy-r.,Cp)

. 6° — Ly, 0°
04 [ Tel- st Dk

L3, 6%

where 6° is the true parameter and & = (£,,. .., &,) is any vector such that
8° + ¢ liesin A,.

Since (2.4) is valid for all 6° + £ in A, it is also valid in the limit as {
approaches zero along a path within the restricted parameter space.
Consider an infinite sequence of nonzero vectors &1, &2, £%, ... converging
to zero such that each #° + £*isin A,. By our continuity assumptions such
a sequence exists. Let

)dy = Zc,-é,-

és
S = 2 =12..)
X =g (=12

Then there is a subsequence of x?, x?, x3, ... that converges to a vector x.
Equation (2.4) becomes

d1
(2.5) f Z ct; — G?Vﬁ Z ggﬂ‘ xj\/ﬁ dy = Z Cix;

and again the Cauchy-Schwartz inequality yields the result:

' 22
(2.6) e » €D
X'R x

As in the case of unconstrained estimation, there is an inequality relating
the covariance matrix V¥ of any unbiased estimator and the information

matrix R,.
The inequality (2.6) is valid only for those vectors x that are possible
limits of the sequence x',x?,x°,.... Since 6° + & is constrained to

remain in the restricted parameter space, the set of permitted x-values is in
general not the entire unit sphere in m-space. In fact, the set of limit points
is the set of vectors having unit length and satisfying

2.7) G’x =0

where G° is the matrix (2.2) evaluated at 8°. This follows from the mean
value theorem which says that each x* in the sequence must satisfy the
equation

(2.8) G*x* = 0
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where G* is the matrix (2.2) with each row evaluated at some point between
" and 6° + & In the limit £ approaches zero and (2.8) approaches (2.7).

A lower bound for ¢Vt is obtained by finding the maximum value the
ripht hand side of (2.6) may take. Changing the normalization constraint
shightly, we are led to the following extremal problem:

maximize (¢'x)?
subject to
G’ =0
x'R.x = L
this problem can be solved using the method of Lagrange multipliers.
t'he inequality (2.6) becomes ¢’V > ¢'P,c where P, is given by!
12.9) P,=R7'— R7'G(GR;'G) 'GR; 1,

i matrix having rank m — k? This maximum is attained when x is a

muitiple of P.c.
This result can be expressed more simply in terms of the bordered

information matrix

R, G
(2.10) o o

and its conformably partitioned inverse

21 6 o -1 ]
{2 G 0 =l. .|

Thus the Cramér-Rao bound for the variance of an unbiased estimator
when prior constraints are used is given by the m x m northwest sub-
matrix of the inverted bordered information matrix. The decrease in the

hound due to the prior information is given by
(2.12) R;' — B, = R 'G(GR;'G) 'GR; ",

a positive semidefinite matrix having rank equal to the number of con-
straints k.

1. For notational convenience the superscript on G” is dropped. In the sequel all derivatives

are evaluated at the true parameter 8° unless otherwise stated.
2. Writing R7! as D'D and defining B = DG’. we see that P, has the same rank as the

idempotent matrix [ — B(B’'B)~'B..
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Given the constraint equations, it is possible to relax the assumption
that R, is nonsingular. The extremal problem just solved is the same as the
problem

maximize (c¢'x)?

subject to
Gx =10

X'(R, + G'G)x = 0.

 the matrix R, + G'G is nonsingular, then equations (2.9) through (2.12)
remain valid if R, is replaced by R, + G'G. The lower bound is then given
by the appropriate submatrix of

R,+GG G| P, *
G 0 Tl &
In this case the availability of a priori information makes estimation

possible. Without the information the parameters could not be estimated
at ail.

THE ATTAINABILITY OF THE BOUND

Typically, no unbiased estimator can be found with a covariance matrix
equal to F,. From the above derivation, it is seen that the bound is attain-
able only if the Cauchy-Schwartz inequality when applied to (2.5) remains
an equality for x = P,c and all c. This will occur if and only if, for all y,
J, is of the form

dlog f,

e 'Y

.13) P,

where ¢ does not depend on 8. Although it does not seem possible to state
more useful necessary conditions for this to hold, it is possible to present
an interesting set of sufficient conditions.

Suppose that there exists an MVB estimator s(Y,) when there is no prior
information. This means that the likelihood function can be written as

Zlog f,

(2.14) 0

= R,(s ~ 6).

Suppose further that the constraints (2.1) are linear so that they take the
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fsem (1) = a, In that case we can write

dlog f, B _ B _,dlog ],
LIS 17 1n-1 1 n
P—gg " = [ = R 'GIGR'G) 'GIR; ' =28

AR =[I — R;'G(GR; 'G)" 'Gl(s — )
=5~ R;'G(GR;'G)" (Gs — a) — 0
where neither G nor s depends on 6. Then, if R, is independent of # except

o ut most a scalar multiple, (2.15) is of the form needed for an attainable
bound. The MVB estimator is given by
b 1n) s* =5 — R, 'G(GR, 'G') " (Gs — a).

the results obtained above may be summarized as follows

In the presence of prior knowledge expressed by a set of k independent
onstraint equations, the matrix P, = R;' — R, 'G(GR,; 'G)"'GR, " is a
tewer hound to the covariance matrix of any unbiased estimator of 8. The
difference in lower bounds R - P, is a positive semidefinite matrix of
rnk k. A sufficient (but not necessary) condition for P, to be attainable is that

1) R, is attainable when the constraints are ignored,

1) R, can be written as the product of a matrix which does not depend on 6

and a scalar which may depend on 0, and

1) the constraints g(6) are linear.

3. THE ASYMPTOTIC BOUND

I'he asymptotic extension of these results has a similar form. It is merely
necessary to define
.1
ARY P= lm-P,=R™!'— R !G(GR™'G)" !GR!,
n—co
which is the m x m northwest submatrix of
1 -1 -1

"R, G R G
(12) lim | " =

"TEL G0 G 0

Fhen one can state:

In the presence of prior information expressed by a set of constraint
cyuations, the matrix P is essentially a lower bound for the asymptotic
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covariance matrix of any consistent estimator of 0. The efficiency gai
R™Y — P is a positive semidefinite matrix having rank k. The bound i.
attained by the constrained maximum-likelihood estimator.

A complete proof of this proposition is lengthy and difficult. Fortun.
ately, however, the classical proofs of the asymptotic Cramér-Rao in-
equality can be applied with only minor modification. It is necessary tc
show that the likelihood function defined on the restricted parameter space
A, satisfies the usual regularity assumptions. This has been done by
AITCHISON AND SILVEY (1958) in the course of deriving the asymptotic
distribution of the constrained maximum-likelihood estimator.

The method of maximum likelihood is by no means unique in giving
estimators with optimal Jarge-sample properties. Another general principle
of estimation—the method of minimum chi-square—also gives rise to
asymptotically efficient estimators.* Consider the quadratic form

(3.3) o) = (t ~ 8YR(t — 6)

where ¢ is an estimator of # that is asymptotically. normal and efficient
when there are no constraints; R is the asymptotic information matrix R
evaluated at # = r. The estimator ¢ might be, for example, the uncon-
strained maximum-likelihood estimator. In any case, t is an estimator
that is asymptotically normal with mean 6 and covariance matrix R L.
The variable ne converges in distribution to a chi-square variate as n
approaches infinity. The minimum-chi-square estimator of # in the
presence of the prior information is given by 8, the solution to the following
extremal problem:

minimize (¢t — 8YR(t — )
g
subject to
g(6) = 0.

The linearized minimum-chi-square estimator is given by #*, the solution
to the modified extremal problem:

miniamize (t — OYR(t — 0)

subject to
g+ GO —0=0

3. The minimum-chi-square method or some variant of it is used by MaLinvauD (1970},
pp. 283-6, who refers to it as the minimum-distance method, and by BasMann {1963),
who refers to it as the generalized classical estimating method. For further discussion of the
general principle see FERGUSON (1958). Our interpretation of this estimation method differs
somewhat from these authors since they do not use the information matrix.
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where G is the Jacobian matrix G evaluated at 8 = r. The solution to the
first extremal problem cannot be given explicitly. The solution to the
s oid problem, however, is easily obtained as

(v 6* =t — R™'G(GR™1G") 'gr)

where, for ease in notation, the ‘*hat’ has been omitted from R and G.
I'he basic theorem of the minimum-chi-square method is that both §
and 0% are asymptotically efficient. The argument for the case of §*
Illows; the reader may refer to CHIANG (1956) and FERGUSON (1958) for
the complete proof. Using the mean value theorem, we can write (3.4) as

1S 0* — 0° =[I — R™'G(GR™'G") 'G*]{t ~ 0%

where G* is the matrix G evaluated at some point between ¢ and 0°. The
capression in square brackets converges in probability to the matrix PR.
Hence, \/;(9* — 0°) has the same asymptotic distribution as PR\/;(t — 6.
But the latter random variable is asymptotically normal with mean zero
and covariance matrix P. Hence §* has an asymptotic variance equal to the
(' rumér-Rao lower bound.

It is important to emphasize that the optimality of the minimum-chi-
sjuare estimator depends crucially on the assumption that the uncon-
struined estimator ¢ has an asymptotic covariance matrix equal to R~ 1,
Ony if such an estimator ¢ can be easily calculated will the minimum-chi-
square approach be a practical method. Fortunately, for many problems
met in practice an easy-to-calculate, efficient estimator for the uncon-
stratned problem exists.

4. AN EXAMPLE

An important example where the bound P, is attainable in finite samples
15 the normal linear regression model with linear constraints.* Consider
the regression equation

(4.1) y=XB+u

where y is an n-dimensional vector of observations on a random variable,
Xisann x mmatrix of nonstochastic variables, fis a vector of munknown
parameters, and u is a vector of n independent normal random errors with

4. This case has been treated by THEL (1961), pp. 331-33 and by CHIPMAN AND Rao
(1964).



26 Efficient Estimation with a priori Information

zero mean and constant variance o2. The likelihood function for the sample
18

(42) S B.0%) = (2ne®) Fexp{—Fo 7y — XB)Y(y ~ XP)}.

The logarithmic derivatives are

dlogf, 1, _
4.3) B O'ZX Xib—p),

dlogf, n [uu 2
(*4) o 3\ m )

where b = (X'X)"'X'y is the least-squares estimator. The information
matrix for § and o2 is the (m + 1) x (m + 1) matrix

1
—=X'X 0
o2

(4.5} R, =
n
L 20*

Because R, is block diagonal, the Cramér-Rao bound for f may be
examined separately from that for ¢2. It is apparent that (4.3) is of the form
(2.14); however, equation (4.4) is not since u'u/n depends on the parameter
B. Thus, as is usual with the normal distribution, the Cramér-Rao bound
is not attainable for 6. No unbiased estimator has a variance as low as
20*/n. However, the least-squares estimator b does have the covariance
matrix 6?(X'X) ™" and hence is an MVB estimator of .

Suppose that the prior constraints are of the form

Gf = a.

Since the information matrix for (8, 6%} is block diagonal and the con-
straints do not involve 2, attention can be focused solely on 8. The con-
strained least-squares estimator is found by the use of Lagrange multipliers
to be

f=b—(XX)'GIGX'X)" G (G — a)
and the covariance matrix for f is
P,={(X'X)"' — (X'X) 'G[G(X'X) 16T IG(X' X))

Hence f is an MVB estimator in the presence of the a priori information.
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tuder plausible conditions on X'X, B is also asymptotically efficient ;
tul that is @ much weaker result. 1t is easy to verify that the constrained
st squares estimator £ is also the constrained maximum-likelihood
s minimum-chi-square estimator,

i be analysis can be extended to the case of the linear model with random
v mutrix or nonlinear constraints on § by considering the asymptotic
noaind, Again the constrained least-squares estimator is found to be
voemptotically efficient under weak regularity conditions. An interesting
yipheation of this approach is provided by DursIN (1960) in the context
-t the regression model with autocorrelated errors. Consider the simple
qme series model

A Vo= ax, + u (t=1,....n

sl the x, are nonrandom and « is an unknown scalar parameter. The u,
-onstilute a stationary autoregressive process

R U = puy_y + 1y

where {p| < 1 and the », are independent, identically distributed normal
ratulom variables with zero mean and variance o?.
yuations {4.6) and {4.7) may be combined to form the model

14 8) Vo= pYiog +ox, — apx,_, + 1 t=1...,n).

t vmilitional on y,, (4.8) may be treated as a normal regression model
with independent errors. The likelihood function has the same form as
i) where X is now the n x 3 matrix consisting of observations on
v, ,.X%,and x,_,;. The parameter vector f§ consists of the three elements
i, - p B2 =uw and f; = —ap. The unconditional likelihood function is
whtained by multiplying (4.2) by the density function for y,. However, this
re1m becomes insignificant when n approaches infinity and can be ignored
lor Lhe present asymptotic analysis. Thus our time-series model is a
~pecial case of the normal regression model with random explanatory
variables and a constrained parameter space. The constraint can be
vypressed by the nonlinear equation

8By, B2:Bs) =B+ B;=0
with matrix of partial derivatives given by
G=[B, B, ll=[a p I

The information matrix, in terms of the unconstrained parameter B, is
piven- by (4.5} with X'X replaced by its expectation. Again ignoring the



28 Efficient Estimation with a priori Informatio

row and column corresponding to g, we find
- 2 -

r—2 _ w o
M(1 — p%)
1 v M
R“—'—'hmmé’XX—B—i ar 1 r
L o r 1]
and
[ 1-~p? 0 —al - p%) )
0 ol —ro®
R '= M( - r?) M(l — ) ,
—rg? g’
—all - 2 . 21_ 2 —_
I ol ~ p%) M=) a*(l — p°) M=)

where M = lim £xZ/n and r = lim Zx,x,_,/nM.

If the constraint that 8,8, + B; = 0 is ignored and least squares is
applied to (4.8), there is no unique way to obtain estimates of p and «
from the estimates of 8. However, if one should choose to estimate p by 8,
and « by B, (and hence ignore B, entirely), the resulting consistent
estimator will have an asymptotic covariance matrix V given by the north-
west submatrix of R™1:

(4.9) V=

* WIS

If the constraint is imposed, then the constrained least-squares estimator
of p and x will have an asymptotic covariance matrix V* given by the
northwest submatrix of P= R~ — R™IG{GR™1G)"!1GR™!:
1 — p? 0
(4.10) V= o2
0
M(l — 2rp + p?)

Comparing V and V* we see that the imposition of the constraint
lowers the asymptotic variance of & but does not affect the asymptotic
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sartince of g at all. That is, the unconstrained least-squares estimator of p
i fully efficient. Since R™' — P is a matrix of rank one, there are always
Iimcar combinations of B whose variance remains the same when con-
siaaints are imposed. In this case, there turns out to be a very interesting
Jimcitr combination, namely the parameter p itself. Durbin uses this resuit
e construct a simple, efficient method of estimating : first, perform an
wnconstrained regression of y, on y,_,, X, x,_; then regress y, — py,_,
on v, — px,_; where p is the least-squares estimate §,. The coefficient
from the second regression has the same asymptotic distribution as the
«onstrained least-squares estimator and requires no nonlinear minimiza-
non techniques. Of course, there arc many other ways of efficiently
estimating e—including the linearized minimum-chi-square estimator
given in equation (3.4)—all having the same asymptotic distribution.

5. CONSTRAINT PARAMETERS

Another way of expressing exact prior information is to assume that the
clements of 9 are related functionally to a second set of parameters. Let o
be it vector of r unknown parameters. Suppose that the statistician knows
that cach 8; is a given function of the elementis of «. That is,

(1) 8, = ha) Gi=1,...m

where each k; possesses bounded partial derivatives of at least the second
order. [t is assumed that the matrix of first partial derivatives

5.2) H = b = [j—i]

.
has constant rank p in an open neighborhood containing the true para-
meter o, It is further assumed that the set of possible values that « may
take is an open set in r-dimensional Euclidean space.

Under these conditions it will generally be the case that, in a neighbor-
hood of 8°, m — p of the 6; can be expressed as functions of the remaining
. That is, it is possible to convert the m equations (5.1) and the r new
variables into m — p constraint equations involving oaly the 6;. Hence, the
cuse being considered here is essentially equivalent to the case presented
tn the previous sections. However, for a number of problems (of which the
simultaneous equations problem is an important exampie), the form (5.1)
15 more natural and more easily interpreted than the derived constraint
cyuations. Moreover, it will be possible here to derive covariance matrices
for estimates of both « and &.
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We begin by assuming that «° is identifiable. That is, if #° is the t
value of 8, then 2° is the unique solution of

(5.3) 6° = hiw).

This implies that H° the matrix (5.2) evaluated at «°, has full rank
Furthermore, we assume that the distance [h(a) — h(x°)| is bounded frc
below by a positive number in any closed set not containing «°. That
not only is «° the unique solution of (5.3), but in addition there are 1
“almost™ solutions distant from o These identifiability assumptio:
will be dropped later.

The derivation of the variance bound for this case can be split into tw
parts. First, a lower bound for ¥, the covariance matrix of an unbiase
estimator of f, is obtained; then a lower bound for ¥,, the covariang
matrix of an unbiased estimator of o, is obtained. For the first par
much of the derivation of section 2 is relevant. Equation (2.5) is still vali
except that the values of x for which it holds now differ. The paramete
8° + & is now constrained to lie not in the set A,, but rather in 4,, th
range of (5.1). Since the functions h; are continuously differentiable, we
have for any vector o

h(z) = h(a®) + H*a — o)
where H* is the Jacobian matrix (5.2) with each element evaluated some-

where between « and «°. Therefore any 6 satisfying the constraints must
be of the form 8° + ¢ with

&= H¥a — 2°).

Again considering a sequence £, &%, &3, ... approaching zero and the
corresponding sequence of normalized vectors x*, x?*, x%, .. ., we see that x
1s a possible limit point if and only if

(5.4) x=H%

for some vector z in r-space. Thus, (2.6) remains valid if (2.7) 1s replaced
by (5.4). The lower bound for ¢’'¥V;c is obtained by solving the constrained
extremal problem :°

maximize  (c'x)?
X

subject to
x=Hz

XRx =1
z unrestricted.

5. Again, for notational convenience, the superscript on H® will be dropped.
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[ lus, however, is the same as the problem:

maximize {(c'Hz)?
z

subject to
ZH'R Hz = 1.

The solution to the latter problem is obtained using the method of
I ugrange muitipliers. The objective function is maximized when z = N ¢
where

05.5) N, = H(H'R H)"‘H'

w i matrix having rank r. The value of the objective function at the maxi-
mum is ¢’N,¢. Hence, the Cramér-Rao inequality becomes

(h.0) ¢Vye > CH(H'R,H) 'He.

the decrease in the bound due to the constraints R; ' — N, is a positive
semidefinite matrix of rank m — r.

The second part of the problem is to find a lower bound for ¥,. Here the
procedure is quite simple. Since the functions f, and h are continuously
«hfferentiable, the compound function

Sy, W)} = f3(y, )
~ it density function that satisfies the classical regularity assumptions.

llence the information matrix for « is obtained by the chain rule:

dlog fr Z:81cogj,', a6,

da, & 08, da’

#* log f¥ ZZ(3"‘10gf a0, 00, zfﬁlogf,l 3%,
0o, 0 fa; 89,00, 3o, é‘a & 00, 0o, 0u;

15,7)

(5.%)

I'he second term on the right of (5.8) has zero expectation since

dlog f, . gfl_éJ‘ _ e
a0, f"“faek”é'é; ﬁ"aekl'o'

I'hus

Ii

&% log f¥
i on, da; da ;;hk'r"" °i

and. if H has rank r, the inverted information matrix for « is

(5.9) M, = (HR,H)™!
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The Cramér-Rao inequality becomes

(5-10) Ve =M =c(HRH ‘e

THE ATTAINABILITY OF THE BOUND

Only under restrictive conditions will there exist an unbiased estimatol
whose variance equals the lower bound. Again, linearity of the constraints
provides the simplest example. Suppose s is an MVB estimator when nc
constraints are present and hence

dlog f,
a0

If the constraints (5.1) are linear so that they are of the form

= R (s — 8).

(5.11)

(5.12) ¢ =Hax + a,
we can write

dlog f,
o6

N, = N,R,(s - Ha —~ a)

(5.13)
= [H(H'RH) "HR(s ~a) + a] — 0

and, using (5.7),

dlog fr ,0log £,
M= = M=,
(5.14) = (H'R H) 'HR(s ~ Ha ~ a)

= (H'R,H) 'H'R(s — a) — o

But, analogous to (2.13), the bound is attainable if the right-hand sides of
(5.13)and (5.14) are the difference between the estimator and the parameter.
This is the case if R, does not depend on @ (except perhaps for a scalar
multiple).

In summary we can state the following proposition :

In the presence of prior information expressed by a set of constraint
parameters a which are related to 0 by the known differentiable equations
& = h{a), the matrix N, = H(H'R H)"'H" is a lower bound for the co-
variance “matrix of any unbiased estimator of 0 and the matrix
M, = (H'R,H) ™! is a lower bound for the covariance matrix of any unbiased
estimator of o. The difference in lower bounds R, * — N, is a positive semi-
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detinite matrix of rank m — r. A sufficient (but not necessary) condition for
M, and N, to be attainable is that
1) R, ! is attainable when the constraints are ignored,
2) R, can be written as the product of a matrix which does not depend on 0
aned a scalar which may depend on 6, and
Y) the constraints hja) are all linear.

Again these results can be expressed more simply in terms of a bordered
ilormation matrix. Consider the square matrix of order 2m + r

R 0 —I

13.15) #2,=10 0 w
-1 H 0

that is partitioned into three row blocks (the first containing m rows, the
second containing r rows, and the third containing m rows) and similarly
three column blocks. The four northwest blocks can be interpreted as the
information matrix of f, in terms of 8 and «. Since f, does not depend
htrectly on o, there are biocks of zeros. The matrix [ — I H] is simply the
Jacobian of the constraint function

ha) — 8 = 0.

Thus (5.15) is formed in exactly the same way as (2.10). It is an information

matrix of order m + r bordered by a matrix expressing m constraints.
‘This matrix also turns out to be minus the expected value of the second
partial derivative matrix of the Lagrangean

148, 0,2) = log [,(y.6) + Y A[6;, — h{a)]
) i=1

where the 4, are taken to have zero expected value. That is,

—

?L 8L OL ]
0008 8o 068X
oL &L J*L
Jadld Oada dudd |

AL L &L
| 04 86" 0Adx’ OAGA |
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It is easily verified that the conformably partitioned inverse has the form

* *
Nl’l
-1 __ % ¥
R = M,
* * *®

with M, and N, on the diagonal. Thus the inverse elements of a suitably
bordered information matrix give lower bounds for the covariance
matrices of any unbiased estimator of 8 and a.

AN ASYMPTOTIC RESULT

The asymptotic extension of our results is straightforward. Defining
! !
M = lim EM" and N = lim HN"’

which are diagonal blocks of

“R, 0 I N * *
@-lzlim = ,

¢ 0 B * M *

I H 0 . % x

we can state the proposition:

In the presence of prior information expressed as (5.1), the matrices N
and M are lower bounds for the asymptotic covariance matrices of any
consistent estimators of 8 and o. The efficiency gain in estimating 0 is given
by R™' — N, a positive semidefinite matrix of rank m — r. The bound is
attained by the constrained maximum-likelihood estimator.

Again there are other optimal estimation methods. For example, the
minimum-chi-square estimators of § and « are also asymptotically efficient.
These are defined as the solution to the extremal problem

minimize (¢t — YR(t — 6)
]
subject to 8 = h(x)

where t is asymptotically normal with mean 6 and covariance matrix R~ !
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6. IDENTIFICATION

The analysis in the previous section is based on the assumption that a° is
the unique solution of

0.4 6° = h=).

$1 1 of interest to examine this assumption in greater detail. The probability
kiw for the sample is uniquely determined by the parameter 6. If there is
associated with the true parameter #° more than one vector « satisfying
{6.1), then it is not possible to speak of a ‘“‘true” parameter «®. Unless
there is more a priori information concerning the parameter &, any
solution of (6.1)is *‘true” in the sense that it implies the correct probability
distribution of the observable sample. Hence estimation of a is meaningful
only if b is a mapping such that 6° has a unique image vector a°.

Yet in practice we often meet problems where it is necessary to estimate
7 hut where it is not known that {6.1) has a unique solution. These problems
arise when o can be interpreted as the parameter of some hypothetical
experiment that has not been actually performed. If the experiment had
been performed, different values of the parameter would be associated with
different probability distributions of the resulting sample. Hence it is
yuite meaningful to talk about a true value of «. Unfortunately, the sample
that we are examining comes from some other experiment which depends
on the parameter 6. Although 6 and « are related by the equations (5.1),
il is not necessarily true that the mapping is one¢-to-one.

A simple example of this type of problem arises under the permanent
income theory of consumer behavior. Suppose that individuals make their
consumption decisions on the basis of long-run expected income. There-
fore the marginal propensity to consume out of permanent income may
be an interesting parameter related to the experiment of drawing random
individuals and observing their consumption and their permanent income.
This experiment is only hypothetical since most budget studies record
actual, not permanent, income. If the observations are normally distri-
buted, then the observed sample has a distribution described by five
parameters : the mean and variance of consumption, the mean and variance
of income, and the correlation coefficient between consumption and
income. These basic parameters (like our #) completely characterize the
probability law for the observed sample. But the structural parameters of
economic interest, including the marginal propensity to consume out of
permanent income, are telated to 8 in a complex way depending on how
expected income is related to actual income. Often it is a difficult question
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to determine whether estimation of the structural parameter « from the
given data is even possible.

This problem of estimating a structural parameter @ when the likelihood
function is in terms of another parameter @ is the essence of the famous
identification problem in statistical inference.® It will arise in chapter 4
when we turn to the simultaneous equations model. Although it would
take us too far afield to discuss the identification problem at length, it is
useful to see how it fits into our analysis. A parameter is said to be identi-
fiable if different numerical values of the parameter are associated with
different probability laws for the sample. In our classical estimation prob-
lem, the nonsinguiarity of R, guarantees that, at least locally, different
values of 8 can be distinguished by the sample. In fact, we have made the
stronger assumption that every @ in the parameter space A is identifiable.
Thus the question of the identifiability of the structural parameter a® rests
on the properties of h. If the functions are linear, then H is a matrix of con-
stants. In this case the question of identification is quite simple. If H has
rank equal to r, then there can exist but one solution to equation (6.1);
thus the analysis of section 5 is applicable, If H has rank less than 7, then o
is not identifiable. There are an infinite number of « vectors that give rise
to the same 6° and hence the same probability distribution of the sample.
Estimation of «° is impossible.

If the functions relating 8 and « are not linear, the problem becomes
more complex. If H has rank r when evaluated at «° then the true struc-
tural parameter is at least locally identifiable. That is, there exists a
neighborhood in which «° is the unique solution of 8° = h(a). If, however,
in a neighborhood of a® the matrix H has constant rank less than r, then
there will exist an infinite number of solutions to the equation 6° = k().
Hence if H nowhere has full column rank, then «° will generally not be
identifiable. If H everywhere has full rank, then «° is at least locally identi-
fiable and may possibly be globally identifiable.” The notion of local
identification is important because we usually possess rough inequality
information about «. Thus we can often restrict our attention to some small
region in r-space. If 2° is locally identifiable, suitable inequality constraints
will allow us to estimate the structure. If it is not locally identifiable, no
amount of inequality information will permit us to estimate «.

6. See, for example, FisHER (1966) and ROTHENBERG (1971).
7. Htis possible to state conditions for global identification in the nonlinear case, but they
are rather complicated, For details, see FISHER (19663, pp. 157-60.
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PARAMETER CONSTRAINTS WITHOUT IDENTIFIABILITY

There remains the question of estimating #. Is it possible to use the
inlormation in (5.1) to increase the efficiency of estimating @ even if « is not
wlentifiable?® The answer in general is ves. The derivation in section 5
depends on the fact that x is constrained. If an equation like (5.4) is valid
{with H° having rank less than m), then the parameter space of 6 is reduced
v a lower-dimensional space. Again the analysis is simple when the
functions h are linear. If the rank g of H is less than r and also less than m,
then the parameter 2° is clearly not identifiable. But (5.4) is still valid
snce H* = H® = H. In the derivation of the lower bound for ¥, the
function (¢’x)?> was maximized over the set of all x values in the column
space of H. If H has rank less than r, then the column space is spanned by a
subset H, of the columns of H. Then (5.6) is valid if H is replaced by H,.
This is equivalent to replacing the inverse of H'RH by its generalized
inverse. The prior information increases efficiency in estimating 6 as long
its p is less than m.

Even if the equations are not linear, a similar result applies. If there is
more than one value of a satisfying the equation #° = h(x), then the
matrix H® in equation {5.4) is not well defined. Nevertheless, it will stilt
be the case that @ is unrestricted if H everywhere has rank m. And if H
everywhere has rank less than m, the parameter space for # is necessarily
restricted. In the latter case, it will be possible to obtain estimates of # that
are more efficient than the unconstrained estimates if the restrictions do
not depend on the unidentifiable a. This will occur if the column space
of Ha) is the same for all « satisfying 8° = h{x). In other words, the result
given in equation (5.6) is still valid as long as N depends only on 8. Of
course, the inverse in {5.6} must be interpreted as a generalized inverse.

The above discussion should make it clear that the identifiability of o
and the existence of restrictions on @ are two separate questions. The
answers depend on the rank p of H, but in different ways, If H has constant
rank for all values near ¢ we can summarize the various possibilities as
lollows:

p=r p<r
-m locally identifiable « not identifiable
P =™ g unrestricted & unrestricted

« locally identifiable a not identifiable

p<m @ restricted 0 restricted

8. For convenience, the superscript will often be dropped and the phrase *a is identifiable™
used in place of “2° is identifiable”,
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IDENTIFICATION OF A SUBSET OF THE PARAMETERS

One further possibility that should be examined is that some elements
of 2 may be identifiable while the others are not. Again the matrix H is the
basis of the analysis. Suppose the vector « is partitioned into two parts, o,
and a,. Consider the equation

6.2) . [H“ Hujl[dal}= [0]
H,, H,,ilda, 0

that 1s obtained by differentiating (6.1). The partitioning of H into two
row blocks can be done in many different ways. Suppose, however, that
there exists a partitioning such that H,, has full column rank and H,,
is a matrix of zeros. If this is the case, do; has the unique solution zero
even if the full matrix H does not have full column rank. Since multiplying
(6.2) by a nonsingular matrix is permissible, the following result can be
stated. If H factors into AB where A is nonsingular and B is of the form

e 5]

BZ i BZZ

with B, having full column rank, then «, is locally identifiable. If «, is
identifiable, it may be estimated by an estimator whose covariance matrix

is no less than the appropriate submatrix of (HyRH,)”! where H, con-
tains the independent columns of H, including all those associated with ;.

7. A GENERALIZATION

If the two types of constraints considefed in this chapter are combined,
a more general treatment is possible. Suppose that, as before, the likelihood
function is uniquely determined by a vector 6. Suppose, however, that in
addition to the set of equations relating @ to «, there are also constraint
equations on o. We have

6, = h{w) i=1....m
Yila) =0 (i=1,... k).

Again assuming that all the functions are continuously twice differenti-
able, we form the Jacobian matrix

3]

(7.1)
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where W and H are the k x r and m x r matrices

-2 o[z
du; da;
Vhe set of o vectors that satisfy the constraint equation ¥(x) = 0 will be
villed the restricted structural parameter space and be denoted by A, If
the k constraints are independent so that ¥ has full row rank when
cvaluated at the true a® then A, is locally an r — k dimensional manifold.
We shall assume the Jacobian matrix for the system (7.1) has constant
wank for all a in a neighborhood of «° in the restricted parameter space Ay.
With respect to the problem of parameter estimation, three general
wucstions may be asked of this model: (1) Under what conditions is «
ulentifiable and estimable? (2) When and by how much does the knowledge
mcorporated in h and § increase the efficiency of estimating 67 (3) What
are cfficient estimators of « and 67 These questions can be answered in
terms of the matrix

H
(7.2) o= [ }
¥

and in terms of a suitably bordered information matrix.

The true a° is a solution of (7.1) when 6 ¢quals the true value 8°, Then o°
will be locally identifiable if the vector equation ®da = 0 has the unique
solution zero. That is, local identification occurs if @ has full column rank r
when evaluated at 2%, If in addition ¥ has full row rank k, then the bordered
information matrix will possess an inverse having the form

R, 0 —1 0]t [N, =*= =* =

60 0 H ¥ * M, * *
I H 0 0 I U
0 ¥ 0 o ¥ o % %

Suppose that «° is identifiable. Then using the methods of the preceding
sections, we find that the covariance matrix for any unbiased estimator
of # and a must satisfy the following inequalities :

Vard > N, = HM H',

7.3
73 Var@ > M, = C — C¥'(¥C¥)"'"¥C
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where
{7.4} C =(HRH+ YY) .

Again, all matrices are evaluated at the true parameter o°.
A special case occurs if ¥ is of the form

{7.5) Y =10l 0.

In this case we assume that the first k elements of o are known exactly
and the remaining elements are unconstrained. Substituting (7.5} into
(7.3) and (7.4) we have, after a bit of algebra,

M, = (HRH),
N, = HER I H

where H is the matrix obtained by deleting the first k columns from H.
This, of course, is the same result that was obtained in section 5.

In the special case (7.5} it is easy to verify that N, has rank r — k. We can
find the rank of N, in general by the following argument. The restricted
parameter space has the dimension of the space of vectors dff satisfying

df = H do

7.6
(76) 0 =Yda

where the matrices are evaluated at the true «® If ¥ has full row rank k,
the set of du satisfying the second equation of {7.6) has dimension r — k.
Furthermore, the set of vectors da satisfying @dy = 0 has dimensionr ~ p
where p is the rank of @. Then, using the fact that the dimension of the
range of a linear transformation is equal te the dimension of the domain
less the dimension of the null space, we have the result that the dimension
of permissible d0 is p — k. This is valid even if p is less than r and « is not
identifiable.

Since the case considered here includes the cases presented in the
earlier sections of this chapter, it is worth summarizing the results:

For the model defined by (7.1}, we have under the previously described
regularity conditions:

1) The structural parameter vector o° is (at least) locally identifiable
if the rank of ®° equals r, the number of structural parameters. If the rank of
® is constant in a neighborhood of «° in the restricted parameter set A, this
rank condition is also necessary for local identification.
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2) Suppose ® has constant rank in a neighborhood of o® in A,. The
prameter space of @ is locally restricted to a manifold of less than m dimen-
sinns if and only if the rank of ® is less than m + k. This will necessarily be
the case if k > r — m (i.e., if the number of independent constraints plus the
number of 0 parameters exceeds the number of structural parameters).
1 the parameter space is restricted, the minimal covariance matrix of an
efficient constrained estimator is smaller than that of the unconstrained
vstimator, the difference being the positive semidefinite matrix

R7' - HC[C™! — W(¥C¥) 'WICH’

where C is the inverse (or generalized inverse) of H'R H + W''Y. If the
nverse exists, o is locally identifiable and can be estimated with covariance
matrix no less than

C[C™! - W(¥C¥)'¥]C.

3) Unless r and h are linear in «, there is in general no estimator that is
minimum variance unbiased. Asymptotically, however, both the constrained
maximum-likelihood estimator and the constrained minimum-chi-square
estimator are efficient as long as o is identifiable. The latter estimator is
defined as the pair of functions 6*(y) and o«*(y) that minimize

(8 —tyR(6 — 1)
subject to the constraints
& = hix)
0 = ()

where t is any estimator of 6 that is asymptotically efficient among the class
of unconstrained estimators and where R is evaluated ar 0 = t.

8. SOME QUALIFICATIONS

The resuits of this chapter are for the most part applicable only for
large samples. In general the finite-sample bounds will not be attainable.
Unfortunately the accuracy of the asymptotic approximation is almost
never known, A particularly interesting question arises in the case where
the Cramér-Rao bound is attainable when no a priori information is
present, but the modified bound is not attainable with the information.
Suppose, for example, we wish to estimate the coefficient vector of the
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regression model (4.1). If no prior information is available, the least-
squares estimator is best. If the prior information is in the form of a non-
linear constraint equation, the bound P, will not usually be attainable.
But the maximum-likelihood estimator will have a sampling distribution
which can be approximated by a distribution that has a covariance matrix
P. Since P is smaller than R, one can conclude that the maximum-likeli-
hood estimator f is better than the least-squares estimator b as far as the
approximation is valid. But the properties of b are known exactly whereas
the properties of § are known only approximately. It is possible that b is
better than J, that using the a priori information on the basis of large-
sample theory actually makes things worse. Thus we have the choice of
using the estimator b which has known properties or using § which for
large n is definitely better but for small n is perhaps worse.

The answer depends, of course, on how close the approximation is.
But it also depends on the loss function. If our loss function is really an
unbounded quadratic function {which is the basis presumably for mini-
mum variance estimates), then any estimator whose distribution has thick
enough tails will be rejected because of infinite variance. Yet the maximum-
likelihood estimator under constraint may very well have infinite variance
for every sample size n but, for large n, be approximated by a distribution
with finite variance. What is needed to analyze these questions is a more
careful theory of the appropriate (truncated) loss function. This issue is
touched on by CHERNOFF (1956) but the problem remains unsettled.
Until these issues are better clarified in the statistical literature, all
asymptotic results, including the ones given here, must be treated with
caution. Nevertheless, it is probably useful to treat the asymptotic results
as approximately valid until more evidence is available.



CHAPTER 3

Inexact Prior Information

1. INTRODUCTION

The use of exact equality restrictions is limited by the fact that in practice
most prior information is vague. Often we are unwilling to place such
" slrong restrictions on the parameter space. An alternative is to express the
mformation in an inexact form. The Bayesian approach provides one way
of doing this. By using a prior probability distribution to describe our
feeling about the likely values of the parameter, we have great flexibility.
Yet it is not necessary to leave the classical statistical framework to incor-
porate vague information. Inequality restrictions, for example, provide a
means of describing imprecise knowledge without introducing subjective
probabilities. Such restrictions are easy to formulate and can be made as
loose or as tight as we desire. Although it is sometimes difficult to compute
estimates which satisfy inequality constraints, they do provide a useful
tool when the number of parameters is small.

A second way of incorporating inexact prior knowledge is by means of
previous samples. Much of our prior knowledge about economic para-
meters comes from previous empirical research. If sufficient information
about the pastresearch is available, it can be incorporated into the analysis
of current data. Indeed, since most economic research is based on previous
studies, leaving out the past results is a poor statistical procedure. The
intelligent use of past sample evidence can be very important in increasing
the precision of estimates based on current samples. We shall begin our
discussion of inexact prior information with a study of previous sample
evidence. Sections 4 and 5 concern the problem of using inequality
restrictions. The Bayesian analysis is delayed until chapter 6.

2. INFORMATION FROM PREVIOUS SAMPLES

Suppose that the statistician has available to him, in addition to the
sample Y,, another independent sample from which he obtains the

43
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estimator . Suppose further that the statistician knows that 8 is distributed
according to the probability density fy(f, ). That is, the probability
law for 8 is a known function of the unknown parameter 6. Then the joint
density function for Y, and @ is given by

(2.1) f0.3,6) = f(v,0)- fo(B. 6)

as long as ¥, and @ are independently distributed.

If f; and f, satisfy all the regularity conditions of section 1.3, then f
will also. Thus, all the assumptions of the Cramér-Rao inequality are
satisfied if we treat f as the density function for the sample (¥,, 8). If the
information matrix for fis denoted by R, it follows from the multiplica-
tive form of (2.1) that

2.2) R, =R, + R,

where R, is the information matrix associated with f,. Since all three
matrices are positive definite, it follows that R;' — R ! is positive
definite. Hence we have the result that the lower bound for the variance
of an unbiased estimator is decreased when information from a previous
sample is used.

The question of the attainability of the bound in finite samples is difficult
to answer in general. Although it does not appear possible to specify
easily interpretable necessary conditions for the attainability of the lower
bound, an interesting set of sufficient conditions can be established.
Recall that the Cramér-Rao bound can be attained if and only if f can be
expressed in the form

dlogf
oo

where * is an estimator independent of 0. Suppose that f, and f, can be
written as

2.3) = R(t* - )

dlog f,
o6 - Rn(t - 9}1
(2.4) g
o
a0 = Rols =)

where ¢ depends on Y, and s depends on f. That is, suppose that t isan MVB
estimator of § when only Y, is available and that 5 is an MVB estimator
when only ¢ is available.
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An expression for the logarithmic derivative of fis obtained by adding
the two equations of (2.4):

dlogf 6logﬁ,+610gfo

a0 oo o6
1) = (R, + Ro)[(R, + Rg)™ "(Ryt + Rys) — 6]
= R,(t* — ).

Thus we have the required form as long as
26) t* = (R, + Ro)™'(R, + Ros)

«foes not depend on 6. It is clear that r* will be independent of § if R, and
R, do not depend on 8. This is overly strong, however; it is sufficient that
R, and R, each factors into a matrix independent of 8 and a common
sitlar which may depend on 8.

‘The above discussion may be summarized in the following extension of
the classical Cramér-Rao inequality:

In the presence of stochastic prior information expressed by an independent
estimator of 8, the matrix R = (R, + Ry)™! is a lower bound for the
covariance matrix of any unbiased estimator of 8. The bound is attainable if
hoth f, and f, can be written in the form (2.4) with R, and R, not depending
on ) (except perhaps for identical scalar multiples).

AN EXAMPLE

We consider again the normal regression model
2.7) y=Xf+u

where y is an n-dimensional vector of observations on a random variable,
Xisann x mmatrix of nonstochastic variables, fisa vector of munknown
parameters, and u is a vector of n independent normal random errors with
sero mean and covariance matrix ¢21, The likelihood function is

28)  fi. 8.0y = 2no?) Fexp{ —3o 72y — XB(y — XB)}.

Suppose now that there exists a previous sample from the same process.
That is, the statistician has available an observation on an #,-dimensional
normal random vector y, and an n, X m matrix X, such that £[y,] = X,f
and Var [y,] = ¢2I. The likelihood function for the sample y, will be of
the same form as (2.8) with subscripts on y, n and X. The joint sample
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(¥, ¥o) will have a normal density f such that

Blogf_l ,
a7 _?XX ;3)+ XOX - B

1
= (XX + XoXo)(b* ~ B),

dlogf n+ ng[u'u + uguy _ g
éet ~  20° n+ ng
where b* = (X'X + XX,5) X'y + Xpyo). Hence b* is an MVB esti-
mator of § with covariance matrix equal to the bound ¢%(X'X + X;X,)" !,
the northwest submatrix of
HX'X + XpXo) ! 0

(2.9) R1= . 954

The combined sample gives rise to an efficient estimator for § and an
attainable Cramér-Rao bound because both samples come from the same
stochastic process. If, however, the second sample came from a process
with a different variance, b* would depend on the unknown 2 and the
bound would not be attainable. Prior information which is derived from a
different stochastic process than that which produces the sample will in
general not give rise to an estimator whose variance equals the lower
bound.

AN ASYMPTOTIC RESULT

In order to complete the analysis of stochastic prior information,
we turn to an extension of the asymptotic Cramér-Rao ineguality. Defining
the asymptotic information matrix for f by

_ 1 1
(2.10) R = lim -R, = lim _[R, + Ry,

we can argue as above that, since R satisfies the same regularity conditions
as R, the classical theorem applies. The only remaining question is the
value of R. This, of course, depends on the value of

(2.11) Iim%Ro.
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I 1t is supposed that the prior information does not change as the sample
¥, gets larger, then R, is a fixed matrix and the limit in (2.11) is simply the
scro matrix. As the sample gets larger, the prior information plays a
sinaller role. In the limit, it is of absolutely no value.

A more interesting case arises when the prior information is of the same
order of magnitude as the sample information. In other words, it can be
“assumed” that the limit in (2.11) is a positive definite matrix R,. This
tiction should be interpreted as follows: We are interested in an approxi-
mation to R, that is valid for “large” n. By “‘large™ one means a sample size
small enough to occur in practice, but large enough to make the approxi-
mation error reasonably small. For such a sample, R,/n may very well be
much larger than the approximation error. In such cases it is convenient
Lo accept the fiction that R, is a function of » and that (2.11) possesses a
nonzero limit R,. Then we can conclude that stochastic information re-
duces the bound for the asymptotic covariance matrix of a consistent
vstimator. These results can be summarized in the following:

In the presence of stochastic prior information expressed by an independent
estimator, the matrix R™! defined in (2.10) is essentially a lower bound for
the asymptotic covariance matrix of any consistent estimator of 0. This
lower bound is attained by the maximum-likelihood estimator (where f
is the relevant likelihood function). The matrix R~* differs from R™! only
if the prior information is of the same order of magnitude as the sample
information. If the prior information is independent of n there is no gain in
usymptotic efficiency.

3. SoME EXTENSIONS

The preceding results depend on the assumption that § and Y, are
independently distributed. In practice this is not always the case. Current
research often uses some of the data that was used in past research,
Nevertheless, as long as the previous sample contains some independent
information, it has value. If f and Y, are dependent, (2.1) must be written as

(31) f(gv L8 0) = f;:(y, B)fo(g,y, 6)

where f, is now interpreted as the conditional density of 8 given Y.
The information matrix for f is still R, + R, if Ry is defined to be the
expected conditional information matrix for 8. That is,

d*log |,
Ro= ~8ip [W]
i¥Yg
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This matrix is necessarily positive semidefinite. It will be nonzero as long
as the conditional density of § for given Y, has a nonzero information
matrix.

Another practical problem is that the previous and current samples
may not depend on the same set of parameters. For example, cross-section
and time-sertes data are both useful in estimating demand equations.
But a model developed for the cross-section data will contain some
parameters that do not appear in the time-series model, and vice versa.
It is useful to modify our analysis to include this case. Let 8, be a vector of
parameters relevant only to the current sample. Let 8, be a vector of
parameters relevant to both samples. Let 85 be a vector of parameters
relevant only to the previous sample. Then the joint density (assuming
independence) is

(3.2) FAA Y 'fo(gz ’ 93 ,0,,05).

If we define the two information matrices in terms of the combined vector
0 =1(0,,8,,0,), there will be blocks of zeros whenever a particular
parameter does not appear in the density. For example, R, and R, can be
expressed in partitioned matrix form as

Ay, A, O 0 0 0
R,=| A4, Ay 0 Ro=[0 B, 323 -
0 0 0 0 B;, B,,

We are interested in the upper left part of (R, + R,)™ ! since that is the
lower bound for the covariance matrix of efficient estimates of the
parameters (f,,6,) relevant to the current sample. Using again the
notation for partitioned matrices, we wish to have an expression for the
northwest corner of

An A, JI U
(R, + Ro)™" = Ay, Azz + By | Byy
0 B32 |B33

Upon application of the rules for inverting partitioned matrices we find
that the covariance bound for (8,, 6,) is

Al 1 A 12 ot

Ay Ay + C
where C is the matrix B,; — B,3B33'By,. If 8, and 8, are relevant to f;
and identifiable, then C will necessarily be positive definite. In that case the
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prior information is valuable in lowering the covariance for 8,.
Furthermore, if A,, is not zero, then the prior information helps in
estimating 0, as well as 8,. (This despite the fact that the information is not
directly relevant to 8, .)

In all of our discussion in the past two sections we have assumed that the
likelihood function f; describes the probability law of some actual sample.
Some authors, however, have suggested that f; might be used to describe
prior information that is obtained from any source. Suppose, for example,
a statistician has inexact information about £ that arises from introspection.
He might feel that his information is equivalent (in the sense of being just
as convincing) as that obtained in a sample having likelihood f,. Thus,
he might use the above analysis even though f, reflects no actual sample
but merely his subjective beliefs. This approach is due to THEIL AND
GOLDBERGER {1961), who use the name “mixed estimation” to describe
their procedure for combining subjective information and data. By
expressing subjective beliefs in the form of pseudosamples, it is possible to
incorporate probabilistic subjective information without using the formal
apparatus of Bayesian decision theory. Whether there is any advantage to
this approach over the Bayesian one remains to be seen.

4. INEQUALITY CONSTRAINTS

Perhaps the simplest way to express a priori information about an
unknown parameter vector is by means of a set of inequalities. For example,
we might know that 8, is greater than zero and that 6, lies between zero
and one. This information can be expressed by the system of linear
inequalities

1 0 6, 0

0 1 [ p :| > 01

0 —14-7 -1
which is a special case of the general matrix form Bf > b. There is no need,
however, to restrict ourselves to linear inequalities. The quadratic
inequality 67 + 2 < 1 might naturally arise in the study of dynamic
systems where the prior knowledge is that the system is stable. Thus, we
shall use the term “‘inequality constraint” to mean any information that
reduces the parameter space A to a full-dimensional subset of A. More
precisely, we assume that the inequalities describe a set A* which is either

open or is an open set augmented by some of its boundary points. We
exclude only those sets that have lower dimensionality than the original
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parameter space. Given this definition of inequality constraints, we now
explore the gain in efficiency that can result from using such constraints in
estimation procedures.

Since inequality information surely has value, it would seem that the
use of inequality constraints should reduce the Cramér-Rao lower bound
for the variance of an unbiased estimator. In fact, however, this is not the
case. The Cramér-Rao inequality was derived for an arbitrary full-
dimensional parameter space A. Since the lower bound does not depend on
the parameter space, restricting it to A* cannot lower the bound. A similar
argument also applies to the asymptotic Cramér-Rao inequality. Putting
this more formally we have:

Despite the presence of a priori information that restricts 8 to a subser of
A, the lower bound for the variance of an unbiased estimator of 0 remains
R as long as the restricted parameter space has full dimension. Further-
more, the unconstrained maximum-likelihood estimator remains asymptotic-

ally efficient with covariance matrix R™*.

In other words, inequality constraints are of no value in increasing
cfficiency as long as the requirement that estimators be unbiased is
maintained. Furthermore, even if the assumption of unbiasedness is
dropped, it remains true that, asymptotically, inequality constraints do
not help. For large nthe probability that the maximum-liketihood estimator
violates the constraints is almost zero; hence there is nothing to gain by
maximizing subject to constraint.’

To interpret the above to mean that inequality constraints are worthless
would be a serious error. Rather, it points out that the classical theory,-
which is based on unbiasedness on the one hand and asymptotic approxi-
mations on the other, has important weaknesses. Nonstochastic prior
mformation, according to this theory, increases efficiency only if it reduces
the dimensionality of the parameter space. Since inequality constraints do
not reduce dimensionality, they cannot increase efficiency. But this result
crucially depends on the use of unbiasedness in the classical definition of
efficiency. A quite different answer is obtained if we evaluate estimators
(biased or not) on the basis of mean square error. Although there is no
general theory of estimation available when the unbiasedness assumption
is dropped, it is possible to make some statements concerning the improve-
ment of estimation precision with inequality constraints using the mean
square error criterion.

1. This argument is valid only if the true 8% is an intertor point of A*, However, since the
boundary of 4* has zero measure, the asymptotic Cramér-Rao inequality is still relevant.
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A natural multiparameter measure of the dispersion of an estimator
around the true value is the mean square error matrix

4.1) &t — )t — 8).

If  is unbiased, this is simply the covariance matrix. An estimator s could
be said to be better than an estimator ¢ if the difference in their mean square
error matrices were negative definite. This would imply that s had lower
expected loss for any quadratic loss function; that is,

(4.2) &(s — BYQ(s — 6) < £(t — 8Y0(t — 6)

for all possible # and all positive semidefinite Q. One is tempted to try to
find Cramér-Rao type bounds using the mean square error matrix in
place of the covariance matrix. This turns out not to be fruitful since the
only lower bound is the zero matrix. However, it is still possible to compare
any two estimators using the mean square error criterion.

AN IMPROVED ESTIMATOR

Suppose t is an unbiased estimator of 8 that does not use the inequality
information. Its mean square error matrix must be at least as large as R, !
If we can construct an estimator s that uses the inequality information
and has a mean square error matrix less than R, !, then we will have
demonstrated that the information has value. Unfortunately, it does not
seem possible in general to construct such an estimator. However, il we
aliow the estimator to depend on the weight matrix @, it is possible to find
an estimator which has lower expected loss than any other estimator t
which does not use the information.

Consider the estimator z which is defined as that point in (or on the
boundary of) A* that is closest to ¢ using the metric Q. That is, z is the
solution of
(4.3) minimize (t — 8)Q(t — )

fed
where A is the closure of 4*. If A* is convex, then the problem defined by
{4.3) has a unigue solution. In general it will depend on the set 4* and on
the matrix (. We have the following result:

If A* is convex, the estimator 2 is better than the estimator t in the sense
that
iz — 8YQz — )] < &T(t — 8YQ(t — 0)]
for all § in A*. Furthermore, the inequality is strict if Q is nonsmgular and
Pr(t € A] is not equal to one.
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The assumption that A* is convex is crucial. If A* is not convex, there is
no way to use the prior information which necessarily is an improvement
over ignoring it. Although restrictive, the assumption of convexity is often
met in practice. Linear inequalities, for example, always give rise to convex
sets. Finding the estimator z will often be a difficult problem. In two
dimensions graphical methods are possible. In higher dimensions quadratic
programming techniques can be used if the constraints are linear in-
equalities. In general, however, it will not be easy to find z.

It should be noted that z is not necessarily an optimal estimator.
All we can show is that it is better than r. Its major weakness is that it
depends on the matrix . Two statisticians with the same data and the
same constraints need not obtain the same estimate if they weight the
various components of error differently. This is in contrast to the classical
case of unbiased estimation where the weight function never enters the
solution,

To prove the result consider first the following :

LemMA. Let A be a closed convex set in n-dimensional Euclidean space.
Let d be adistance function. Let t be a point exterior to A and let z be a point
in A such that

(4.4) diz, t) < d(s, 1)
for all points s in A. Then,

(4.5) d(z, 0) < d(t, 8)
Jorall @ in A.

Proof. Suppose the lemma is false and that y is a point in 4 such that
d(z, y) = d(t, y). Then let r be that point on the line segment zy such that
d(r, y) = d(t, y). Due to the convexity of 4, r is in 4 and hence r is distinct
from ¢. Construct the triangle (see figure 3.1) that has vertices at r, t, and .

t

z r ¥

FiGure 3.1
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Since d(t, y) = d(r, y) the angle try must be strictly less than 90°. (It may
cven be zero if 7, ¢, and y are collinear.} Hence the angle zrt must necessarily
be greater than 90°. Thus the line segment zt is the longest side of the
obtuse triangle ztr. But this means that r is a point in A such that
d(r,t) < d(z,t). Since the assumption that d{z, y) = dit, y) leads to the
violation of (4.4), we must conclude that no such point y exists.

This lemma can be applied to the case considered in our proposition.
If @ is nonsingular, we may let the distance function be

(4.6) dis,) = (s — YQ(s — 9.

Then the point z defined by (4.3) satisfies {4.4). Since A is convex, it follows
that

4.7) (t —0Y0( — 6) > (z — 6)Qlz — 6)
as long as ¢ is exterior to A4. If this occurs with positive probability, then
&t - 6)Qt — 0)] > 6[(z — 0)YQ(z — 8]

and the proposition is proved. If @ is singular, then (4.6) is not strictly a
distance function. However, the argument is still valid if the strict
inequality in (4.7) is replaced by a weak inequality.

5. THE LINEAR MODEL WiTH INEQUALITY RESTRICTIONS

Up to this point we have always assumed that the statistician knew,
except for a few unknown parameters, the probability density function
for the random sample. Without this assumption we can say little about
efficient estimation procedures, with or without prior information.
However, in the case of the linear regression model it is possible to prove
some results without specifying the mathematical form of the density.
Therefore we shall in this section digress slightly and discuss the problem
of using inequality restrictions in the regression model where the error
distribution is not specified. In that case we are naturally led to the con-
strained least-squares estimator.

The problem of estimating the parameters of the linear regression model
with inequality constraints has been discussed by ZELLNER (1961), JUDGE
AND TakavaMa (1966), and others. These authors have typically con-
sidered only linear inequalities, but the theory holds for the more general
case of any convex constrained parameter space. Most of the previous
literature is concerned with the computational problem of minimizing
the sum of squared residuals when the estimator is constrained to satisfy
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the inequalitics, When the inequalities are linear, this turns out to be a
quadratic programming problem. There seems to be little known about the
optimality properties of this constrained estimmator. A few examples
have been presented to show that the constrained estimator has lower
mean square error than the unconstrained estimator. One might con-
jecture that this is so under general conditions. The following example
demonstrates that this is false.

THE BEST LINEAR UNBIASED ESTIMATOR
Let v be a vector of n random variables that can be written in the form
(5.1) y=Xf+u

where X is an n x m matrix of fixed numbers and £ is an m-dimensional
vector of unknown parameters. The n-dimensional random error term u
has mean zero and covariance matrix a2I. Without loss of generality we
may assume¢ ¢ = 1. The matrix X has full rank m. The unrestricted
parameter space for f§ is E™.

If there were no further restrictions, the best linear unbiased estimator
of § would be obtained (according to the Gauss-Markov theorem) by
minimizing the sum of squared residuals. For any arbitrary estimator
this sum may be written as

(52) S=0-XP-XPH=0-BHXXb-p+yMy

where b = (X'X) !X’y and M = I — X(X'X)"'X". If § is unrestricted,
§ is minimized by the least-squares estimator b. This estimator has an
expected value equal to § and a covariance matrix equal to (X'X) 1.

The least-squares estimator b is best in the sense that it has the “smallest™
covariance matrix out of the class of linear unbiased estimators. That is,
if # is linear in y and has expectation equal to §, then its covariance matrix
V will satisfy the inequality

cVez (X' X) e

for arbitrary vector ¢. Alternatively, we may describe the optimality of &
by noting that, among the class of linear unbiased estimators, it minimizes

(5.3) EB — BroB — B

for all positive semidefinite matrices Q. These are equivalent statements
and are summarized as: b is the best linear unbiased estimator.

Suppose the statistician has information that § lies in A*, some non-
empty convex subset of E™ We shall assume that A* has full dimension m.
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Linear inequalities, of course, give rise to such a set. Suppose that the a
priori information is correct; that is, f does in fact lie in A*. The question
then is to find the best way of using the information,

Since the least-squares estimator does not use the fact that 8 lies in 4*,
onc would think that a better estimator could be found. If we use the
traditional criteria, this is not true. We have the following proposition :

Despite the presence of a priori information that restricts the parameter
space, the unconstrained least-squares estimator b remains best linear
unbiased as long as the restricted parameter space has full dimension.

This proposition follows from the standard proof of the Gauss-Markov
theorem. Any linear estimator can be written in the form

B=b+Cy=b+CXp+Cu

If § is to be unbiased, we must have CX 8 = 0 for all B in the restricted
parameter space A* Since A* contains an open subset, this implies
CX = 0. A little algebra yields the expression

B — HB - By =(XX)' + CC.
Hence the best estitnator is still obtained by setting C = 0.

CONSTRAINED LEAST SQUARES ‘

The previous argument depends on the fact that only local unbiasedness
is used in the Gauss-Markov theorem. Thus our result is exactly the same
as that found in section 4. It is natural, then, to proceed as we did there and
to drop the unbiasedness assumption and evaluate estimators by the mean
square error criterion. And a natural estimator to examine is the constrained
least-squares estimator.

Let A be the closure of the set 4* Then we may define the constrained
least-squares estimator as that function of the sample that minimizes the
sum of squared residuals S subject to the constraint that the estimator lies
in 4. If 4* is convex, then there will exist a unique solution b* to the
problem, Using (5.2) we may write the problem as

(5.4) minimize B — BYX'X(§ — b).

If b satisfies the constraints, then the constrained least-squares estimator
b* equals b. If b violates the constraints, then b* lies on the boundary of the
constraint set. The constrained least-squares estimator may be interpreted
as a minimum-distance estimator where distance is defined in terms of the
least-squares precision matrix XX,
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It is natural to suppose that the constrained least-squares estimator is
necessarily better than the unconstrained estimator. This however is not
true. We have the following rather surprising result given by LOVELL AND
PrescoTT (1970) and ROTHENBERG (1968):

The constrained least-squares estimator can, for some B and some loss
matrix Q, be worse than the unconstrained estimator b.

A simple example demonstrates this proposition. Although it is highly
artificial, the example does satisfy all of the traditional least-squares
assumptions. Let y,u, and § all be two-dimensional vectors and let X be

given by
1 1 20
= . 'X = .

Suppose u, and u, are independent random variables, each having the
same two-point distribution

Pr[ui= 1] =%s Pr[ui= —1] =%

It is simple to verify that fu = 0 and fuu’ = L
The ordinary least-squares estimator for this problem is

[ l] l [yl ] [ : [ ] [ ,
t2 yl yl ﬁ 2 \ 1 1 "2 |‘

(5.5) 28, + B, < 1,

then the constrained least-squares estimator is found by minimizing

(by — B + (by — B,)?

for B satisfying (5.5). Suppose the true parameter vector is § = (0, 0).
Then the sample space for the least-squares estimator (b, , by} is given by
the four points (1, 0), (0, 1), (— 1, 0), and (0, — 1). Each point occurs with
probability of one-fourth. Only the first point violates the constraints.
Solving the constrained least-squares problem for b = (1,0) we obtain
the value b* = (0.6, —0.2). Thus, the constrained least-squares estimator
has a sample space given by the four points (0.6, —0.2), (0, 1), (—1, 0} and
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{0, —1). By simple calculation we obtain the mean square error matrices

.S
M=é&[b— Bb-p] = [000 0.(;0]’
M* = &[(b* — pIb* — B = [ -8:3: —ggﬂ

Comparing M and M*, we see that using the constraint lowers sub-
stantially the mean square error for 8, but raises slightly the mean square
error for §,. Thus M — M* is not positive semidefinite. If our loss matrix
Q puts most of its weight on §,, then the constrained estimator is worse
than the unconstrained estimator.

Although this example is very special, it does illustrate the basic point:
When inequality restrictions are present, constrained least squares may be
worse than unconstrained least squares. It should be emphasized that the
assumption of a discrete distribution for « is not crucial to the argument
a smooth density function with two rather peaked modes at +1 and — 1
gives the same result. Also, the fact that there are no degrees of freedom is
inconsequential. These assumptions were made to simplify the arithmetic.

Although the above example satisfies all the traditional least-squares
assumptions, it is obviously not typical. The question remains whether in
practice such cases will ever occur. It appears that as the probability
distribution for b becomes smoother and more bell-shaped, it becomes
more difficult to construct cases where b is better than b*. If one assumes
that the errors are normally distributed, no such paradoxical example
seems possible, As a general proposition it appears that, if b is normally
distributed and A* is convex, the constrained estimator b* is necessarily
better than b. If this is the case, then there is little chance in practice of
having b* worse than b. For moderately large samples, b will be approxi-
mately normal and the paradoxical case ruled out. Thus, constrained
least squares is probably a good estimation method in practice. Finally,
we note that our counterexample cannot occur when f§ is a scalar. Thus,
in the one-parameter case we can conclude that constrained least squares
is an improvement over ordinary least squares. As we have seen, this does
not generalize to the case of multiparameter estimation.

The constrained least-squares estimator does not make use of any
loss function or of any special properties of the error distribution. It
depends only on the data and the constraint set A*. If we modified our
estimator to take the weight matrix Q into account, we could always find
an improvement over the unconstrained least-squares estimator. Suppose
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we define the alternative estimator b**, which is the solution of the
problem

mir}‘in}ize (B — bYO(B — b).

This estimator does not have the property of minimizing the sum of
squared residuals S and therefore is not properly a constrained least-
squares estimator. It is, however, an estimator that uses the prior informa-
tion and, for a quadratic loss function with weight matrix @, has lower
expected loss than the unconstrained least-squares estimator. This follows
directly from our results in section 4.

6. SUMMARY

We have seen in these two chapters how a priori information can be
incorporated into the classical theory of estimation. in most cases both
finite-sample and asymptotic results were possible. Unfortunately, the
last case pointed out the difficulty of the classical approach. Finite-sample
resuits depend crucially on the unbiasedness assumption, a criterion that
is not easily defended. Asymptotic resuits are necessarily only approxi-
mately valid in application and the accuracy .of the approximation is
almost never known. Thus the results of this chapter, like all those of
classical statistics, must not be overstated. We shall return to a discussion
of the usefulness of the classical approach to inference in Chapter 6.

Our analysis of the general theory of constrained estimation is now
completed. Of the various classical ways of expressing a priori information
that have been discussed, perhaps the most interesting to econometricians
is the use of constraint parameters. This is because the celebrated
“simultaneous equations problem™ is an example of this case. It is on this
important example that the remaining chapters of our study will con-
centrate.



CHAPTER 4

Efficient Estimation of Simultaneous Equation Systems

1. INTRODUCTION

One of the important stochastic models used in econometric research is
the system of linear equations commonly known as the simultancous
equations model. This model, in its simplest form, relates a vector of
random variables y linearly to a vector of predetermined variables x and
an additive randorm error vector u:

By + I'x = u.

The matrices B and T' are unknown parameters; the error vector u is
usually assumed to be normally distributed with mean zero and covariance
matrix X. A major econometric problem is to estimate the structural
parameters B, I', and Z (or certain functions of them) based on a random
sample on x and y. In particular, often the aim is to estimate the so-called
reduced-form parameters I1 = —B™!I" and Q =B 'EB’~! which
completely characterize the conditional distribution of y given x.

If B, I', and Z are entirely unknown, the statistical analysis of the model
is elementary. The structural parameters are unidentified and cannot be
estimated ; the reduced-form parameters can be estimated by the method
of least squares which yields minimum-variance unbiased estimates.
However, the traditional treatment of the simultaneous equations model
usually assumes that certain elements of B, I', and I are known a priori
and need not be estimated. In this case, if enough structural information is
known, it is possible to estimate B, I, and X ; furthermore, it is possible to
use the information to obtain reduced-form estimates more efficient than
those given by least squares.

In its traditional form, the simultaneous equations problem is a special
case of the following general statistical problem: We wish to estimate an
unknown parameter vector f that determines the probability distribution
of a set of sample data; however, it is known a priori that 8 belongs to
some lower-dimensional subset of the possible parameter space. (In the
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simultaneous equations model, # consists of the elements of IT and Q;
the restrictions on & result from the a priori information on B, T', and X.)
This, of course, is the general problem that we examined in chapter 2.
Our purpose here is to apply the earlier analysis to the simultaneous
equations problem in an attempt to give a unified classical treatment of
that topic. The value of overidentifying restrictions in increasing the
efficiency of reduced-form estimation is analyzed in some detail. Inaddition,
the well-known identification problem is viewed in a new light. In chapter 7
we shall return to the simultancous equations problem and analyze it
from a Bayesian point of view.

2. THE MODEL*

Let y, be a G-dimensional vector of random endogenous variables which
are related to the K-dimensional vector of predetermined variables x, by a
system of G linear equations with additive random errors u, :

(2.1) By, + I'x, = u,.

The G x G matrix Band the G x K matrix I contain unknown parameters
which are to be estimated from the sample that consists of n observations
on the G + K variables y, and x,. The matrix B is assumed to be non-
singular. The error vectors u,,...,u, arc assumed to be independently
distributed normal random variables each with mean wvector zero and
nonsingular covariance matrix X. The assumption that X is nonsingular
means that the equation system (2.1) can contain no identities. This
assumption is made solely for the ease of exposition. The derivations that
follow are easily modified to include systems containing identities (see
appendix B).

The predetermined variables x, are characterized by the fact that they
are distributed independently of the error vectors u_ for t < s. That is, the
errors are independent of current and past values of the predetermined
variables. The predetermined variables may be generated by a completely
different process from that which generates the errors (in which case they
are calied exogenous variables) or they may be past values of the endo-

* For a more complete description of the model, see KoopMaNS, RUBIN, AND LEIPNIK
(1950). Our approach follows closely the methods used in this classic article. Indeed a
major part of this chapter consists of rederiving and finding an explicit expression for their
equation (3.127). An alternative derivation of some of the results that follow may be found
in ROTHENBERG AND LEENDERS (1964).
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genous variables which happen to be distributed independently of the
future errors.
Since B is nonsingular, the structural form (2.1) may be written in the

reduced form

yo=—B7I'x, + By,

(22) =IIx, + v,

where Il is a G x K matrix and v, is a normally distributed vector with
mean zero and nonsingular covariance matrix . The reduced-form
parameters (T, Q) are related to the structural parameters (B, T, Z) by
the equations

M= -B'T
@3) Q=B'3B.

The joint conditional density function for y,,¥y,,...,», given
X1y Xy,.n.sX,ist

24 S(TLQ) = @m0y exp{ ~5 L0, — TeyQ'(y - nx,)}.

This can be written more conveniently in terms of the observation matrices
X, an n x K matrix of observations on the K predetermined variables,
and Y, an n x G matrix of observations on the G endogenous variables.
We shall assume that

n
XX =Y xx,
r=1
the matrix of sums of squares and cross products of the predetermined
variables, is nonsingular. The density function can then be written in
logarithmic form as

log f = k — inlogdet @ — 1 tr[Q~ (Y’ — TIX')(Y — X1

(2:3) Kk —inlogdetQ — L tr Q™ '[({T1 — P)X'X(I1 — P} + nS]

1. More precisely, (2.4) is the conditional density for the endogenous variables given those
elements of x,, ..., x, that are either exogenous or lagged values y, with 1 < 0. For a
derivation of (2.4) see KooPmans, RUBIN, AND LEPNIK (1950), pp. 72-73.
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where x is a constant and P and S are the matrices

P=YXXX)!

(2.6) |

S=ZY[I - X(XX)"'X1Y.
R

The probability law for the endogenous variables (given X) is uniquely
determined by the parameter matrices (I1,€}). Yet for any pair ([1°, Q9
there are an infinite set of different matrices (B, T, Z) that satisfy (2.3).
Hence the structure is not identifiable unless some a priori constraints are
placed on the parameters. We shall concentrate on the case where the
identification restrictions take the form of knowing specific elements of
B,T, and X. The case of more general restrictions is treated briefly in
section 8. Knowledge of specific elements of (B, I', Z) will be referred to as
“zero-order” restrictions. The knowledge that a given element of (B, T, I)
is zero will be called a homogeneous zero-order restriction. The knowledge
that a parameter is a given nonzere number will be called a nonhomo-
geneous zero-order restriction.

Let « be a column vector consisting of those elements of (B, I, £) that
are not known a priori. We assume that « may take on any real value such
that B is nonsingular. Let 8 be a vector consisting of all the elements of
(1, ©2}. Then (2.3) is a set of equations of the form

2.7 6 = h(a),

and (2.4) is a probability function expressed in terms of 8 alone. We are
therefore in a position to apply the results of chapter 2 concerning the
efficient estimation of the basic parameters 8 and the constraint parameters
a. Specifically, the purpose of the present chapter is to use the general
theory of constrained estimation to answer the following questions: (1)
What increase in efficiency is gained in estimating the reduced-form
parameters 6 by imposing the restrictions (2.7)? (2) Of what value are
restrictions on the elements of 7 (3) When will the structural parameters x
be identifiable? (4) What methods of estimation yield efficient estimates of &
and «?

It wili be convenient to distinguish between those clements of x and @
that refer to the coefficients (B, I, IT) and those elements that refer to the
covariance matrices (X, ). Hence, the column vectors o and @ are
partitioned as

o) e
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where J is an r-dimensional vector of all the unkrown elements of Band I';
# 15 an r*-dimensional vector of all the unknown elements of £; nis a GK-
dimensional vector of all the elements of I1; and w is a G*-dimensional
vector of all the elements of Q.2 ‘

When forming vectors out of the clements of matrices, we must specify
the order in which the elements are listed. It will be convenient to follow
the convention of first taking the elements of the first row, then the elements
of the second row, then the elements of the third row, etc. Any matrix
element that is known a priori will simply be omitted. Let =; be the trans-
pose of the ith row of I1 and let «; be the transpose of the ith row of Q.
Let ;. ;. and o; be column vectors consisting of the unknown elements of
the ith row of B, I, and Z, respectively. Then =, w, 4, and o may be written
as

T oy o, G

Mg g Og ag

where §; is the vector of unknown coefficients in the ith structural equation :

v= [

In this study we shall concentrate on the cfficient estimation of § and =,
treating ¢ and o as nuisance parameters.

3. EFFICIENT ESTIMATION: STRUCTURAL RESTRICTIONS
IGNORED

Before examining the usual situation where a number of structural
parameters are known a priori, we shall first consider the case where
B, T, and I are completely unrestricted. In this case structural estimation
is impossible since the structure is not identified. Furthermore, equations
(2.3) impose no restrictions on the reduced-form parameter space. Thus
the density (2.4) may be considered as the likelihood function for (I1, Q)
with the structure completely ignored.

In order to study the efficiency of unconstrained reduced-form estima-
tion, we need only to recall the general results of classical estimation theory

2. Due to symmetry there are really only 1G(G + 1) different unknown elements of €.

However, as explained in appendix A, the derivations that follow are considerably simplified
if the symmetry is ignored. The final results are not affected by this convenient simplification.
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presented in chapter 1. By the Cramér-Rao inequality, a lower bound to the
covariance matrix of any unbiased estimator of f that does not use a priori
restrictions is given by R, ! where

_ Plogf
3.4 R, = _‘g[ae,.aa,.]

is the information matrix for f. Furthermore, 2 lower bound to the
asymptotic covariance matrix of any consistent estimator of # is given by
R™! where

1
(3.2) , R = lim -R,

n—wo N
is the asymptotic information matrix. Under independent sampting and
certain regularity conditions the maximum-likelihood and minimum-
chi-square estimators are asymptotically efficient ; that is, their asymptotic
covariance matrices are equal to the lower bound R,
The information matrix for the reduced-form parameters can be derived

from {2.5). The details are given in appendix A. Partitioning according to
n and w, we obtain the square matrix of order GK + G?

Plogf d*logf
dnon’ Ondow'

~%l 82 10g f 82 log f
dw on' dw dw’

33) Q'@ .4 0
N [ 0 4ma? ®Q"‘)]

R, =

where ® represents the Kronecker product and where 4, = £(X'X).
The asymptotic information matrix is given by’

R R Q' .# 0
4 = 11 12 —
G4 R [Ru Ru] [ 0 %(Wl@fz-*J
where
1 1
(3.5) M = lim ;.,ll,, = lim ;é(X "X).

We shall assume that the stochastic process that generates X is sufficiently
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regular to insure that .# is finite, positive definite, and equal to
plim X' X/n.3

The least-squares estimator P = Y'X{X'X)™! is unbiased and has a
covariance matrix given by Q ® £(X'X)" L. If X is nonstochastic, this
covariance matrix is equal to the lower bound given by the inverted
information matrix. In fact, with other arguments, it can be shown that P
is also efficient when X is stochastic. An unbiased estimator for Q is given
by

se =Ko - ! Y1 — XXX XTY.

n

Although its covariance matrix is slightly larger than the Cramér-Rao
bound, it also can be shown to be efficient. The least-squares estimators
Pand § (which are also the unconstrained maximume-likelihood estimators)
are asymptotically efficient with asymptotic covariance matrix given
essentially by*

o QR #! 0
(3.6) R*=[ 0 2@®QJ

4. EFFICIENT ESTIMATION: STRUCTURAL RESTRICTIONS
UTIiLiZED

If the information that some structural parameters are known a priori
is utilized in estimating 8, the asymptotic covariance matrix of the optimal
estimator may be less than R~ . Furthermore, if there are enough restric-
tions put on the structure, the structural parameter o can also be estimated.
These results concerning simultaneous equation systems follow from the
general theory of constrained estimation presented in chapter 2, section 5.
The relevant results obtained there may be summarized as follows.

If it is known that the true #° satisfies the equation

0 = hix)
where « is a vector of unknown parameters, then, under certain regularity

3. See, for example, KooPMANS, RUBIN, AND LEIPNIK (1950), pp. 133-36. This assumption
implies that, if X contains lagged endogenous variables, the difference equation system (2.2)
is stable.

4. Because we ignore the symmetry constraint on Q, R;;}! must be reinterpreted before it is
actually the covariance matrix for §. See appendix A for details.
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conditions, the following hold:

1) The structural parameter « is locally identifiable if the matrix H of
partial derivatives has full column rank when evaluated at the true «°
If a is also globally identifiable, it can be consistently estimated. The lower
bound for the asymptotic covariance matrix of any consistent estimator
of « is given by

M = (H'RH) !,

2) The reduced-form parameter space is restricted if the rank of H is .
less than the dimension of 8. A lower bound for the asymptotic covariance
matrix of any consistent estimator of @ is given by?

N = HH'RH) 'H'.

3) The bounds M and N are attained by the asymptotic covariance
matrices  of the constrained maximum-likelthood and minimum-chi-
square estimators.

4} The gain in reduced-form efficiency due to imposing the constraints
iIs given by the positive semidefinite matrix R~! — N. This matrix is
nonzero as long as the rank of H is less than the dimensionality of 6.

Our analysis of the simultaneous equations model will involve the
evaluation of M and N for the process having likelihood function (2.4)
and the constraints implied by (2.3). The asymptotic information matrix R
has already been given in (3.4). The remaining task is to derive the partial
derivative matrix for the transformation that relates the reduced-form
parameters 8 to the structural parameters . Partitioning according to
(2.8), we define the (GK + G?) x (r + r*) matrix

o i

|3 3| [Hy, Hy

@.1) H= fo 0 _{Hzl i
a6 Do

where H is evaluated at the true parameter vector o
if H has full column rank, the matrix M can be partitioned according to
(8, o) and written as

[Mu Mlz] _ ([ 2 Hal}[fau 0 ][Hu 0 })
LMz M, ¢ H;, 0 Ry, ||H,, Hy
_ [HruRan + H3 R,,H,, H§1R22H22:|—l

H’ZZRZZHZ} H,22R22H22

5. Even if H does not have full column rank, # wiil be restricted if H has less than full row
rank. In that case, the inverse in N should be interpreted as a generalized inverse.



Efficient Estimation of Simultaneous Equation Systems 67

where use is made of the fact that R,;. R,,, and H,; are all zero matrices.
The matrix N can be written in partitioned form as

43) |:N“ N12J=|:H11 O:H:Mn Mlz:H:H’u 51:|
Ny Ny, Hyy Hy || My My 0 Hy,

Thus the lower bound for the asymptotic covariance matrix of a consistent
cstimator of « is given by the GK x GK matrix

(4.4) N11=H11M11 '11,

and the lower bound for the asymptotic covariance matrix of a consistent
estimator of § is given by the r x r matrix®
My, = [H\ R\, H, + H3 Ry3H,,
(4.5) ~ Hy Ry Hyy(Hy Ry y Hopy) " HY, Ry H 170
= [M(l) + M@ 4 M“”]'l.

In order to derive cxplicit expressions for M, ; and N; we must calculate
the matrix H. Before we turn to that task, however, it will be useful to
examine the form of equation (4.5). If H,; has full column rank r, then
MW = H\ R, H,, is strictly positive definite. The sum M + M)
however, may be singular and in an important special case is in fact zero.

Suppose that there is no a prion information on the elements of X
except that the matrix i1s positive definite. In that case the equation
(= B 'IB'"!is a one-to-one transformation from the G?-dimensional
parameter space of £ to the G2-dimensional parameter space of & The
matrix H,, will be nonsingular and the messy expression for M + M
given in (4.5) collapses to the zero matrix. Thus, if Z is unrestricted, the
analysis is greatly simplified. The structural parameters will be identified
only if H,, has full column rank r. In this case, a lower bound for the
asymptotic covariance matrix of a consistent estimator of & is given by

{4.6) My = ’uRuHu)_ls
and a lower bound for the asymptotic covariance matrix of a consistent
estimator of  is given by
(4.7) N112H11(H'11R11H11)—1H’11-

The case in which there are no restrictions on the structural covariance
matrix ¥ is perhaps the most important one in econometric practice.

6. To obtain {4.5) we have used the formula for the inverse ofa partitioned matrix given in
sectiont 4 of chapter 1. This formula is valid only if H;, has full row rank; it is shown in
appendix A that this is necessarily the case.
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Whereas economic theory often suggests that certain regression coefficients
are zero, rarely does the economist possess reliabie prior information on
the error variances and covariances. Nevertheless, it is possible that in
some instances it is known that certain covariance terms are zero. For
example, it might be argued that two structural equations describing two
separated sectors have independently distributed error terms. In such
cases it is important to realize that the asymptotic efficiency of the estimates
of 6 and = can be increased by making use of the Z-restrictions. Suppose
that H,, has full column rank so that the structure is identified on the basis
of restrictions on B and I alone. Then, by (4.5), M,, is the inverse of a
matrix that is the sum of a positive definite matrix and a positive semi-
definite matrix. The restrictions on X will increase the efficiency of estimat-
ing 6 and n as long as the second matrix is nonzero.’

For the next two sections we shall concentrate on the case where there
are no Z-restrictions. The matrices M,, and N, are formed using (4.6)
and (4.7) after an explicit expression for H,, is found. In section 7 we
return to the case of Z-restrictions (which require the evaluation of H,,
and H,,). There it will be proven that a priori information on the structural
covariance matrix does indeed improve the efficiency in estimating the
coefficients § and 7.

5. THE DERIVATION OF Hj,

The matrix H depends on the exact nature of the a priori restrictions
placed on the structure. We begin by describing the restrictions on the
coeflicient matrices B and I'. Consider the ith structural equation. Suppose
that B;, the vector of unknown coefficients of endogenous variables,
consists of g; elements and that y,, the vector of unknown coefficients of
predetermined variables, consists of k; elements so that §; consists of
r; = g; + k; unknown parameters. It will be convenient to define the
following matrices:

C; = the g; x G matrix obtained by striking from a G x G identity
matrix the rows corresponding to the endogenous variables
whose coefficients in the ith equation are known. (E.g., the pth
row of I; is removed if §;, is known a priori.)

D, = the k; x K matrix obtained by striking from a K x K identity
matrix the rows corresponding to the predetermined variables

7. All of the results in this chapier concert asympiotic covariance matrices and asymp-
totic efficiency. When there is no possibility for confusion, however, we shall occasionally
drop the adjective *“asymptotic” to simplify an already complex terminology.
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whose coefficients in the ith equation are known. (E.g, the pth
row of I is removed if y,, is known a priori.)

1, = C,I1 = the matrix of reduced-form regression coefficients corres-
ponding to the endogenous variables whose coefficients in the
ith equation are unknown. :

Finally, it is useful to define the r, x K matrix

I | I
o e

which summarizes all the prior information on the coefficients of the ith

structural equation.
The matrix H,, is obtained by differentiating the GK equations

(52) Ty = — z ﬁri?is
with respect to the elements of 4. Upon calculation one finds
on ap .
5.3 == - g Yis = P I?Is = —f"n 5

for all §,, not known a priori and
on,, | —BF is=gq
Hpe 2{ 0 ifs#gq
for all y,, not known a priori.® Thus the rp block of the partitioned matrix
H,, is given by

(3:4)

om
. L= —BPW .
The complete matrix H, is given by
om Om ]
65, o, Blw,  pw
dn ) .
H = — = - = —_
I1 651 ; . _
ong  Ong B W BoWy
| 8} 895 ]
(56) i W, 0 0
ﬁ“IK ﬁlGIK 0 W'2
= - - O
B, I '
0 W

8. Cf. GOLDBERGER (1964), pp. 370-71.
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If we define W to be the block diagonal matrix with the W, as diagonal
blocks, we can rewrite (5.6) in a more convenient form. The partial
derivative matrix H,, is given by the GK x r matrix

(5.7) Hyy=-B"'® L)W

where r = Zr, is the total number of structural coefficients to be estimated.

If there are no other restrictions on the structural parameters, the
possibility of structural estimation and the existence of restrictions on 7
depend on p, the rank of H,,. From (5.7) it is clear that the rank of H,
is equal to the rank of W since (B~* ® I,) is nonsingular. Furthermore,
because of the block diagonal form of W, the rank of W is the sum of the
ranks of the W,. Of course, the rank of W depends on the (unknown) value
of the structural parameter 8. For our rank conditions to be useful, it must
be assumed that p is constant for all § in a neighborhood of the true §°.

The reduced-form coefficients = are restricted by the prior information
on the structure if p is less than GK. Since each matrix W, has a rank no
greater than its column dimension K, if any W, has rank less than K
then = is surely restricted. But it is also true that the rank of W, cannot
exceed its row dimension I1,. Thus the reduced-form coefficients are
necessarily restricted if one (or more) structural equation has less than K
unknown coefficients.

The structural coefficients are locally identifiable if and only if W has
rank r. In fact, since the relation between structure and reduced form can
be written as the linear equation BIT® + I' = 0, this condition is also
valid for global identification. The block diagonal form for W indicates
that, under the zero-order constraints considered here, each structural
equation can be studied separately as far as identification is concerned.
The structural coefficients of the ith equation are identiftable if W, has full
row rank r;; and, if W has less than full row rank, at least one of the
cocfficients of the ith equation is not identifiable. Since the rank of W,
cannot be larger than K, a necessary condition for identifiability is that the
number of unknown coefficients in the ith equation be less than or equal to
the total number of exogenous variables in the system. Moreover, since
multiplying all of the coefficients of the ith equation by a constant does
not affect I1, at least one of the restrictions must be nonhomogencous.

An interesting special case occurs if W, is square and nonsingular. Since
its rank wiil equal both r; and K, each of the coefficients of the ith struc-
tural equation is identifiable, but no reduced-form restrictions are
imposed by the information on that equation. In such a case the structural
equation is said to be exactly identified. 1f there were one less structural
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restriction so that 6; consisted of r; + 1 coefficients, then &, would not be
ilentifiable. Suppose, instead, W, is rectangular with r; < K and possesses
{ull rank r;. Then there is a surplus of information in the sense that
one of the structural restrictions could be relaxed without destroying the
identifiability of &,. In this case the equation is said to be overidentified.
It is easy to verify that the reduced form is necessarily restricted if any
structural equation is overidentified and that the reduced form is
unrestricted if all the structural equations are exactly identified.

A difficulty with these results is that the matrix W depends on the true
parameter matrix I1°. It is rare that the econometrician has much intuitive
feeling about the true value of I1. Of course, I can always be estimated.
Nevertheless, it is often desirable to have the above rank conditions for
restrictions and identifiability expressed in terms of the structural matrices
B and I" about which economists have more information. Consider the
matrix identity

SR

e 0 I |* W

0 b
where the (r; + G) x (G + K) matrix on the left is denoted by T,. Since
the second matrix is nonsingular and the third matrix is block triangular,
the rank of 7; equals G plus the rank of W,. Now the bottom part of T,
consists of r, rows taken from a G + K identity matrix. Each row corres-
ponds to one of the elements of §;. Consider the matrix (B; I')) which is
formed by deleting from the true structural coefficient matrix (B° T9
the columns associated with these r; elements. Thus (B; T',) consists of the
structural coefficients for those variables which appear in the ith equation
with a known coefficient. Since T; can be put in block triangular form by
reordering the columns, its rank must equal r; plus the rank of (B, T).
We conclude, therefore, that the rank of W, equals r, — G plus the rank of
(B, I

We can summarize the results of this section as follows:

The matrix H,, is given by —(B™' @ I,)W’ and has the same rank as
W. The matrix W is block diagonal with the ith block given by the r; x K
matrix

If there are no other types of structural constraints, then the reduced-form
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coefficients are restricted if and only if at least one of the W, has rank less
than K. Furthermore, the ith structural equation is identified if and only if
W, has rank r;. Since the rank of W, equals r; — G plus the rank of (B, T)),
these conditions can also be stated in terms of the true structural coefficient
matrices.

6. THE VARIANCE BOUND

We may now evaluate M, and N, to obtain the lower bounds on the
covariance matrices of efficient estimates of 8 and n. From (4.6), (5.7), and
(3.4) we can write

M11 =(h"|1RuHu)—l
(6.1) =[WB'®I)JQ '@ B @1yWw] !
=WZ '@ W !

where use is made of the fact that £ = BQB'. Hence

Ny = Hu(H'uRuHu)‘lH’u

(6.2) =B @ IIWIWE ' @ W] WB' @ I,).

The matrix M, may be rewritten in a somewhat more meaningfu! way.
Using (3.5) we can write

W,X'XWio!! W, X XWia'®
(63) WE™' @ M)W = lim '_115 -
Wy X'X W6 W, X'X Wio5C
But, by the definition of W,
XW; = X[II, D]
(64) -[%-V, X]=Z

where Y, is the matrix of current endogenous variables that appear in the
ith equation with unknown coeflicients, V; is the corresponding matrix of
reduced-form errors, and X is the matrix of exogenous variables that
appear in the ith equation with unknown coefficients.. Hence Z; is the
“purified” matrix of variables which appear in the ith structural equation
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with unknown coefficients. Then
Z,Z,0" Z,Zpo'0 ]
{6.5)- M, =plimn : ,
ZgZ,6% ZpZ ;6%
a form equivalent to the covariance matrix given by ZELLNER AND THEIL
(1962) for the three-stage least-squares estimator.

Equations (6.1} and (6.2) express compactly the covariance matrices of
asymptotically efficient estimators of the structural and reduced-form
coefficients. These expressions are derived under the assumption that (1)
every structural equation is identified, and (2) there is no a priori informa-
tion on Z. It is of some interest to consider the question of relaxing these
assumptions.

The problem of underidentification can easily be handled. Suppose
that the first structural equation is underidentified ; that is, the rank of
W, is p, which is less than r,. Then &, cannot be estimated consistently.
Let W be the matrix consisting of p, independent rows of W,. Then, if
W1 replaces W, in W, equation (6.2) is still valid for the lower bound on the
covariance matrix of an estimator of 7. Furthermore, if the first p, rows
and columns of M,, are ignored and W ¥ replaces W, , (6.1) remains valid
for the lower bound on the covariance matrix for an estimator of (8,, .. ., 3;).
If Wt should be nonsingular (i.e., if p, = K), then the K x K identity
matrix will serve for W{ since both will span the same space. These observa-
tions follow from the discussion in section 6 of chapter 2.

The assumption that there is no a priori information on I is quite
crucial to the derivation of (6.1) and (6.2). As was pointed out in section 4,
in the presence of I-restrictions the expressions for M,, and N,, become
much more complicated. An examination of this case follows.

7. COVARIANCE RESTRICTIONS

Although a priori information concerning elements of the structural
covariance matrix is probably rare in practice, it is still of some interest
to examine the effects of such information on estimation efficiency. If it
turns out that Z-restrictions are very valuable in increasing the efficiency
of estimating & and =, then it would seem that more attention ought to be
placed on learning about the variances and covariances of the structural
disturbances. In any case, from a purely logical point of view, it is quite
asymmetric to limit oneself to coefficient restrictions in a theoretical
study of the simultaneous equations problem.
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There are, of course, many ways to express a priori information about .
The most natural extension of the analysis in the previous sections is to
consider the zero-order restrictions of knowing the numerical values of
some of the ¢,;. The constrained Cramér-Rao bound for 4 can be calculated
from (4.5) after expressions for H,; and H,, are found. These expressions
are relatively simple although the derivations are rather tedious and are
given in appendix A. Although there is no difficulty in evaluating H for the
general case of zero-order restrictions, the resulting expressions are not
very illuminating. For any given set of restrictions, equation M,, can be
evaluated numerically; but general algebraic expressions for the Cramér-
Rao bound are not interpretable. However, for two special cases of zero-
order Z-restrictions, an algebraic analysis is quite useful, The first case
assumes that the statistician knows every element of T. The second case
assumes that the matrix £ is known to be diagonal.

Z COMPLETELY KNOWN

The assumption that ¥ is known a priori is, on the face of it, very
implausible. It is difficult to imagine many real-world problems where the
econometrician knows the true value of £ but not the true values of B
and I'. Consider, however, the following case: A structure has been
estimated in the past from a large sample so that very precise estimates of
B, T, and Z have been obtained. Because of certain technological changes,
however, some ¢lements of B and I” have shified. It is now desired to
reestimate the model on a new (small) sample. Those elements of B, T,
and Z that have not shifted (and these might include every element of Z)
may be assumed to be known. The problem then is to efficiently estimate
the remaining parameters under the assumption that X and certain other
parameters are known.

Another justification for studying the case of a known X is to be able to
compare the results with other problems involving covariances as nuisance
parameters. It is well known that in the “traditional’’ normal linear regres-
sion model, prior information on the covariance matrix does not increase
the efficiency of estimating the regression coefficients. This is a result of the
block diagonal form of the information matrix. For example, in the
unconstrained reduced form (3.3), the least-squares estimator is best
regardless of whether Q is known or unknown. This is not the case with
simultaneous equations. Prior knowledge of X does improve the efficiency
of estimating B, I, and I1. The best estimator of IT when ¥ is unknown is
not the best estimator when X is known. Thus one purpose of the present
discussion is to shed light on this difference between the traditional
regression model and the “‘simultaneous equations” case.
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Our task is to find expressions for the Cramér-Rao bounds M,, and N,
when, in addition to the restrictions imposed on B and T, there is also the
restriction that ¥ is known. The Jacobian matrix for the transformation
{2.3) is now

7 on

1) H = Hy | (o
Hal " | o

il

since X is known. If H has full column rank, the asymptotic variance bound
for & is

M, = (H'RH}_I = (HrlanHu + H’ZIRZZHZI)_I
—_ [M(I) + M(2)}-1_

- The matrix M = H{ R, H,, has been evaluated in scction 6 and is
given by the inverse of (6.5). The matrix M'® = H, R,,H,, is derived
in appendix A and takes the following form: M® js an r x r matrix
consisting of zeros except for those elements corresponding to a pair of
endogenous parameters. If m{}’ is the element of M'? corresponding
to the ith and jth elements of J, m{3’ will be nonzero only if both &; and 4,
are elements of B. If §; is §,, and &, is §,,, then

(73) mf}) = quapr + B‘VBSP'

From (6.5) we can obtain the corresponding element of MY = H} R, H, ,:

(7.2)

R , i
m{}) = th ;yqysap = phm;(yq - vq) (ys - Us)ﬂ'p

(7.4 1
= plim - Yoy 07 — w07

Hence, the matrix M |, is obtained by inverting a matrix that is identical to
MW except for those elements corresponding to a pair of elements of B.
For those elements, m{}’ is replaced by

.1
(7.5) m}’ + m? = plim - Vayso® + BrSE.

H the structural parameters are identified by the coefficient restrictions
alone, then these parameters can be estimated even if the X-restrictions are
ignored. In that case the minimal asymptotic covariance matrix for & is
given by the inverse of M. Thus using the fact that ¥, is known reduces
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this covariance matrix as long as at least one element of M'® is nonzero.
Examining (7.3) we see that the diagonal elements corresponding to
unknown elements of B are necessarily positive. Hence knowledge of X
- will always increase the efficiency of an optimal estimator of the structural
parameter & as long as there exists at least one unknown element of B.
Similarly, the efficiency of an optimal estimator of the reduced-form
parameter x is also increased since the covariance matrix is now

Hy [MY + M®)H L

If the coefficient restrictions taken by themselves are not sufficient to
identify the structural parameters, then the knowledge of ¥ may enable
one to estimate parameters that otherwise would not be estimable.
In this case, however, there is the possibility that the efficiency in estimating
n is unaffected. If the structure is identified without the X-constraints, then
the addition of these constraints necessarily increases the efficiency of
estimating the structural and reduced-form regression coefficients.

AN EXAMPLE

Since the formulas for efficiency gain under covariance restrictions
arc rather complicated, it is uscfil to consider an example. We take the
simple consumption function model

C,=af +u,

CG=Y -4
where C, is consumption in year ¢, ¥, is income, and Z, is exogenous
demand (all measured as deviations from their sample means). The
reduced-form equation

Y=nZ + v,
has as parameter the multiplier

|

n=h(oc)=l_a.

If the marginal propensity to consume « and the structural error variance
a? are both unknown, the reduced-form parameter space is unrestricted.
Hence the asymptotic variance bound for estimating = is given by the
reciprocal of the information term. If the u, are normal and independent,
this may be written as '

2 2

g

Rl=— = ——
M (1 — o)A
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where w? is the variance of v, and .# is given by
o1
M = lim ;ZZ,’.

The asymptotic variance bound for estimating « is given by
1 (1 -2 ]™"  o*(l — )
(1-a)? o? Y 2
If ¢ is known a priori, these variance bounds drop. Using (7.5) and the

results in appendix B concerning systems containing identities, we have
for the bound on estimating «

(HRH)™! =

o*(1 - )?

(M 4 M1 =
M+ ! M+ 26%

The variance bound for estimating = now becomes

0.2

(1 — a)A + 26°%)

In either case the percent decrease in asymptotic variance is given by
207 21 — R?
M+ 20 "2 - R?

where R? is the population squared correlation coefficient for the reduced-
form equation. If R? = 0.9, then there is an 18 percent reduction in
variance due to the prior information. If R?* = 0.5, then there is a 66 percent
reduction. In practice, of course, exogenous demand is highly correlated
with income and hence the efficiency gain is relatively small. Furthermore,
this very simple model with only one error term probably exaggerates the
value of knowing the error variances. NevertHeless, the gain from X-
restrictions is clearly not negligible. This is in sharp contrast to the classical
regression model where knowledge of the error variances has no value
whatever. In our model, for example, knowing the value of & is important,
but knowing the value of w is not. These results all follow from the fact
that the information matrix H'RH does not have the block diagonal form
of R. :

Z KNOWN TO BE DIAGONAL

A more realistic form of a priori information is the knowledge that T
is a diagonal matrix. Although we rarely know the entire T matrix, we
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sometimes know that the errors of two structural equations are uncor-
related. This assumption has been made in a number of econometric
models (e.g., BAsMaNN [1963] and KLEIN [1950]), although it is perhaps
mathematical convenience rather than economic realism that has been
the motivation. It is, however, probably the case that the zero-covariance
assumption can often be justified in practice. We shall examine the effects
of making this assumption without further justification.

The task is similar to the one of the previous subsection. We must find
expressions for the Cramér-Rao bounds M,, and N,, when, in addition
to the zero-order restrictions imposed on B and I, therc is also the
restriction that ¥ is an unknown diagonal matrix. The asymptotic variance
bound for & is of the form (4.5). That is, assuming that H has full column
rank,

M1.1 = [H1, Ry H,, + H3 Ry Hy,y
(7.6) — Hy Ry Hao(H52R:Hy0) ' Hy 3Ry Hy 17!
= [M(U + M(Z) + M(J)]"‘l_

Since M and M® have been evaluated already, the remaining task
is to evaluate M Again, the algebraic derivation has been placed in
appendix A. The result is that M'® is an r x r matrix of zeros except for
those elements corresponding to a pair of elements of B. If the ith element
of é is B,, and the jth element is 8, then

an m}sz{ 0 5 %fp#r,
—2p%p°P ifp=r.

To form the matrix M,, we add the three matrices MV + M® + M and
invert. It can be demonstrated that M®' + M is nonzero as long as
there is at least one unknown element in B and B is not diagonal. Thus
knowledge that £ is diagonal makes M,; and N,, smaller than they
would be if only the restrictions on B and I' were used. Again this con-
clusion is based on the assumption that the structure is identifiable even
without the X-restrictions.

8. Z-RESTRICTIONS AND IDENTIFICATION

We may now summarize some results on structural identification.
When the zero-order restrictions involve only the elements of B and T,
the identifiability of the elements of & depends on the matrix H,,. When
there are X-restrictions in addition to the restrictions on B and I, the
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entire H matrix must be examined. Recall that H is the (GK + G?) x

(r + r*) matrix
H= [H“ 0 ]
Hy Hy,

The submatrix H,, is given in equation (5.7}; typical elements of H,,
and H ,, are given in appendix A. Applying the general theory developed in
chapter 2, section 6, we can conclude that the complete set of structural
parameters a = (4, g) is locally identifiable if H has full column rank.
The question of identification for simultaneous equation systems is thus
one concerning the rank of the Jacobian matrix H.

The rank of H,, has been analyzed already in section 5. In appendix A
it is shown that H,, always has full celumn rank under zero-order restric-
tions (given that B is assumed to be nonsingular). Hence, a sufficient
condition for the identifiability of the complete set of structural parameters
is that H;, have full column rank. However, depending on the number of
Z-restrictions, this condition is not always necessary.

When there are no restrictions on X, H,, is nonsingular. In that case
H ,; having full column rank is both necessary and sufficient for the local
identifiability of a. With Z-restrictions, however, the condition is no
longer necessary. It is possible for H to have full rank r + r* while H,,
has rank less than r. For this to be the case, it is clear that H must have no
more rows than columns. Hence a necessary condition for identification
isthatr + r* < GK + G%. Or

(GK + G* — ) + (G* ~ r*) = G%;

the number of coefficient restrictions plus the number of covariance
restrictions must be at least as great as the number of structural equations
squared.

An analysis of sufficient conditions for identifiability is difficult when
Z-restrictions are present. Since identifiability is not the major topic of
this study, we shall not pursue the matter further. FisHER (1966), using a
different approach, has studied the topic extensively. Further results
may be found in ROTHENBERG (1971), WEGGE (1963), and 1in section 10
below.

9. EFFICIENT ESTIMATORS

Up to now we have described the asymptotic covariance matrix of
efficient estimators under various types of a priori information, but we
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have not discussed the problem of finding an efficient estimator. It is not
our purpose to present new estimators or to develop computational
algorithms for old ones. All that will be done in this section is to determine
which of the previously proposed estimators of § and = are asymptotically
efficient.

Returning to the general notation of section 2, we write the likelihood
(24) as

9.1} S, w)
and the constraints (2.3) as

(9.2) = hy(d)
(9.3) w = hy(d, o).

As before z and w are vectors consisting of all the elements of IT and Q;
8 and g are vectors consisting of only the unknown elements of B, I', and X.
The unconstrained least-squares estimators of IT and Q are

(9.4) P=YXXX)!, §= %Y'[I - X(X'X)"'X1Y,

and may be written in vector form as
(9.5) p = vecP, s =vecS.

The matrices R,, and R,, are the asymptotic information matrices R,
and R,, evaluatedat = = pand @ = s. It is assumed that H has full column
rank and the structural parameters (, ¢) are identifiable.

Since reduced-form estimates can easily be obtained using (9.2} and (9.3),
we shall discuss only structural estimation. Specifically, we shall consider
the following estimators: {I) full-information maximum likelihood,
(2) linearized maximum likelihood, (3) minimum chi-square, and (4) three-
stage least squares. Single equation methods, such as two-stage least
squares, are generally not efficient and will not be considered.

FULL-INFORMATION MAXIMUM LIKELIHOOD

The maximum-likelihood estimator of {3, o) is the solution to the
extremal problem

(9.6) ma:gimize SR (8), hy(d, 5)],
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which, under our assumption of normality, is equivalent to
maximize 2»n logldet B| — nlogdet T
b, a

6.7 -~ tu[Z"YBY + I'X)(YB' + XI)].

If there are no X-restrictions, the maximum-likelihood estimator of &
can be expressed as the solution of the “concentrated” extremal problem®
I(BY + I'X)(YB + XI)

|BJ?

{9.8) miniamize

The maximum-likelihood estimatot of (4, &) given by (9.7) is consistent
and asymptotically efficient as long as all of the structural restrictions are
taken into account. That is, the function (9.7) is to be maximized only with
respect to the unknown elements of (B, T, Z). In particular, if Z is restricted,
the solution of (9.8) is not efficient. The maximum-likelihood estimator of
(7, w} can be obtained from the maximum-likelihood estimator of (6, o)
by using (9.2) and (9.3). These reduced-form estimates are efficient as long
as the structural estimates are.

LINEARIZED MAXIMUM LIKELIHOOD

The maximum-likelihood estimators are difficult to compute since the
normal equations for (9.7) and (9.8) are nonlinear. Suppose however
some consistent, but inefficient, estimator of (, o) is available. An example
would be the two-stage least-squares estimator. Then one could linearize
the log likelihood function (9.7) around the inefficient estimator and
maximize it instead of the true likelihood function. Explicit formulas for
the linearized maximum-likelihcod estimator are given by ROTHENBERG
AND LEENDERS (1964). They also prove that the linearized estimator is
asymptotically efficient.

MINIMUM CHI-SQUARE

The minimum-chi-square estimator of (9, g) is the solution of the
extremal problem?!®

mir;imize [p — ky(8)IR, [P — 1 (9)]

(9:9) + [s ~ hy(8, ) Ryy[s — hy(6,0)],

9. See, for example, KoorMaNS AND Hoobp (1953), pp. 160-61.
10. The minimum-chi-square approach to constrained estimation is discussed in chapter 2,
section 2.
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which, upon substitution for R and &, is equivalent to
minimize tr[S™Y(P + BT!DX'X(P + B7'I)
3,0
(-10) + (I — ST'BISB TP,
If ¥ is unrestricted, the second term can be made zero for any estimate B

by setting £ = BSB'. Thus, in the case of no E-restrictions, the minimum-
chi-square estimator for & is the solution of

(9.11) minimize tr(S” (P + BT'DX'X(P + B™'I)].
8

The minimum-chi-square estimator of (8, g) given by (9.9) is consistent
and asymptotically efficient if all structural restrictions are taken into
account. The reduced-form estimates found by using (9.2) and (9.3) are
also efficient. These observations follow from the general theory of
constrained estimation developed in chapter 2. The solution to (9.11) is
called by MALINVAUD (1970) the minimum-distance estimator of 4.
It is clear from the preceding discussion that this estimator is efficient only
if £ 1s unrestricted.

THREE-STAGE LEAST SQUARES

The three-stage least-squares (3SLS) estimator of é may be expressed
as the solution to the problem

(9.12) minimize tr[£~1(BP + [)X'X(BP + I)]

where £ is some consistent estimator of I (e.g., the two-stage least-squares
estimator).'! Unlike the maximum-likelihood and minimum-chi-square
methods, three-stage least squares is computationally convenient since
(9.12) is quadratic in J. It involves only solving a large system of linear
equations.

When X is unconstrained, 3SLS is consistent and asympiotically
efficient. This follows from the discussion in section 6 where the asymptotic
bound for § was found to be (6.5), the same expression as derived by
Zeliner and Theil for the 3SLS estimator. However, when X is constrained,
3SLS is no longer efficient since 1ts asymptotic variance remains unchanged
although the asymptotic variance bound decreases.

11. Thisinterpretation of three-stage least squares is due to BAsMANN (1965}, The original
presentation is given by ZELLNER AND THEIL (1962).
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10. A GENERALIZATION

By assuming that all a priori information takes the form of zero-order
structural restrictions, we have been able to derive explicit expressions
for the minimum variance bounds M,, and N,,. We shall now consider
more general structural restrictions which include zero-order restrictions
as a special case. Unfortunately, it will not be possible to derive results as
explicit as those in the previous sections.

Let a now be interpreted as the vector of all the elements of (B, I', Z).
Then

(10.1) 8 = hix)
is the set of equations (2.3) relating the G* + GK reduced-form parameters

6 to the 2G* + GK structural parameters x The matrix of partial deriva-
tives

a0
(10.2) H= I:a]

cannot possibly have full column rank since it has more columns than
rows. In fact, from the results of section 5 and appendix A, it follows that H
has rank G? + GK for all permitted «.

Previously we have considered restrictions that set certain elements of o
equal to known numbers. A more general assumption is that the restrictions
can be represented by a set of equations

(10.3) Yla) = 0

where ¥ is a vector of k differentiable functions. It is clear that zero-order
resirictions are a special case of (10.3). We shall assume that the k equations
(10.3) are independent. That is, we assume that ¥, the matrix of partial
derivatives of y, has full row rank k for all « near the true o°.

It will be convenient to partition ‘¥ as

(10.4) ¥ =¥, ¥,

il d
w[8) (2]

are k x G(G + K) and k& x G* matrices. Then we can form the Jacobian

where
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marrix
103 o-["]-|an u,
. = P - 21 _22 >
¥, ¥

which has G* + GK + k rows and 2G? + GK columns. The matrix ¢
depends, of course, on the (unknown) value of «. We shall assume that,
- in a neighborhood of «?, its rank p is constant for all « satisfying (10.3).
From section 7 of chapter 2 we know that the identifiability of the
structural parameters « and the existence of restrictions on the reduced-
form parameters # depend on the rank g of the matrix @. In particular,
a is locally identifiable if p = 2G? + GK (ie., if @ has full column rank).
Furthermore, & is restricted if p is less than G* + GK + k (i.e., if @ has
less than full row rank). By examining the dimensions of ¢ we observe
that a necessary condition for identifiability is that k be at least as large
as G2, A sufficient condition for 8to be restricted is that k be larger than G2,
These order conditions are simple extensions of the conditions obtained
previously for zero-order parameter constraints on the structure.
Using the derivations of section 5 and appendix A, we can write an
explicit expression for ®. Defining W to be the (G + K) x K matrix

7= 1)

we have
B 'e@W) 0
(10.6} Q= A B"'®B™!
¥, ¥,

where A is a G* x G(G + K) matrix with typical element given by (A.5).
It is shown in ROTHENBERG (1971} that the rank of @ is equal to
G? + GK + p* where p* is the rank of the k x G? matrix

(10.7) O* =W,[I, ® (B I)]+ ¥, ® 23]

Thus we have the simple identification criterion due to WEGGE (1965):
The structural parameter o® is locally identifiable if ®* has rank G2
when evaluated at o If the rank is constant in a neighborhood of a®,
then this condition 1s also necessary for local identifiability. Similarly,



Efficient Estimation of Simultaneous Equation Systems 85

we have a simple criterion for the existence of reduced-form restrictions:
The reduced-form parameter @ is restricted if ®* has constant rank less
than k for all & near «® that satisfy (10.3).

If & is restricted, then the asymptotic covariance matrix for an efficient
estimator is smaller than that given by the unconstrained Cramer-Rao
bound R™!. The minimal covariance matrix for an estimator of 0 was
derived in chapter 2 and is given by

(10.8) H[C — CY¥'(¥YCY') "WCIH'

where C is the inverse (or, if singular, the generalized inverse} of
H'RH + W"Y. For any given problem one can evaluate (10.8) at some
estimated value of the structural parameter o

If none of the constraint equations (10.3) involve I, then some simplifica-
tion occurs. Identification and the existence of restrictions on I1 depend
on the rank of

H B '@WwW
(10.9) [ “J = [( )].
¥, ¥,
Equation (10.7) defining ®* remains valid with ¥, equal to zero. The

minimum covariance matrix for an efficient estimator of the reduced-form
regresston coefficients n is given by

{(10.10) H\[Cy, — C\ WY, Cy, V) "W, C,JHY,.
Using the results of section 6, we can write C,, as
C,, ={HR,H,, + "\¥,]!
=[Z7' @ 4% +¥,W,]!
where .#* is the (G + K) x (G + K) matrix
YY vx
X'y X'XJ'

(10.11)

M* = plim1 [

: n

These results on identification and cfliciency are, of course, very similar

to the ones presented in the earlier sections of the chapter. In the case of

zero-order parameter restrictions we were abie to derive explicit formulas

for the covariance matrices of efficient estimators. Here in the case of

more general restrictions we can only give expressions for the form of these
matrices. This is the cost of the increased generality.
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11. SUMMARY

In this chapter we have applied the theory of efficient estimation with
prior information in the form of constraint parameters to the simul-
taneous equations model. Expressions for the asymptotic variance
bound were found for both the reduced-form regression coefficients I1
and the structural coefficients B and I'. In addition, some results on the
identifiability of the structural parameters were obtained by examining
the Jacobian matrix H of the reduced-form transformation. Finally, we
were able to show that the three-stage least-squares estimator and Malin-
vaud’s minimum-distance estimator are asymptotically efficient only if
there are no restrictions on the matrix Z. The maximum-likelihood and
minimum-chi-square estimators that take into account all the restrictions
are both asymptotically efficient.

The algebra produced in this chapter yields only very modest qualitative
results. The important question is whether the efficiency increases due to
4 priori restrictions are numerically important. The formulas derived
here must be applied to some actual econometric problems in order to
answer this question. That task is begun in chapter 5.



Appendix A

We shall derive expressions for some of the important matrices used in this chapter.
The information matrix R, is obtained by taking derivatives of the logarithmic
likelihood function (2.5). If 7, and =, are elements of I1, then a typical element is

Plogf .
(Al) —g‘a?p‘ja‘n——g(vp ;x,,’x,s
and the limiting matrix R, has the form Q™! ® .#. Each cross partial derivative
with respect to an element of IT and an element of Qs linear in P — 1T and hence has
zero expected value. Thus, R, = R}, = 0.

The matrix R, is somewhat more difficult to derive. Let a;; ,, be the elemnent of the
information matrix obtained by differentiating with respect to w;; and w,. Since
is symmetric this submatrix should be of order 4G(G + 1} and should consist only
of the elements a,;,; with i > j and & > L Furthermore, when taking derivatives,
we should impose the restriction w,; = w;;. Unfortunately, the resuiting matrix is
cumbersome and difficult to work with. Therefore, we have used an alternative
approach which is considerably more convenient.

Suppose we ignore the symmetry and treat £ as consisting of G? independent
elements. Taking derivatives, we obtain

rs

) logf = __zlm)q.r + %Z Z Z u[jv“'a)ipwﬂ'j’

fe,, Tl
2% lo, _ _ o
-¢ dw ga{ = — o™ + &3 E Z Y v fofoTwY + oYe’ )
Pa rs i i T
n
= —wq'wsl"
2

since #v,, is by definition the reduced-form covariance w;. But, of course, Q is
symmetric and the limiting matrix of elements can be written as

(A2) Ry =3Q7'®@Q™)

If the symmetry of € is consistently ignored in all of the calculations, it can be
shown that we obtain the same answers as if we had systematically imposed the
symmetry constraints at each step. Since the derivations are considerably easier if the
constraints are not imposed, we have followed the former procedure. However, we
must still interpret the matrix R,,. Since there are in fact only $G(G + 1) different
elements of €, the G* x G* matrix R3;' cannot represent a covariance matrix for an

87
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estimator of Q. The following heuristic interpretation may be helpful. Any symmetri
matrix £2 can be written as ) = 4{(B + B') where B is not necessarily symmetric
If we ignore the symmetry of Q we are, in effect, working with B. Suppose one has ar
estimate B of B. Then an estimate of Q would be {8 + 8. The covariance betweer
any two elements of @ could be written as

Dpo + byp by + b

Cov{w,,, ;) = Cov —11?2—‘12 3

(A.3) = 4{Cov(b,, b,,) + Covlb,q. b,)].

Thus, if R7;' is thought of as a lower bound to the covariance matrix of an estimator
of B, then a lower bound for an estimator of £ is given by a matrix whose typical
element (corresponding to w,, and w,,) is

W g + 0,0, .

Asymptotically, this bound is attained by the least-squares estimator 5.

We shall now derive the typical clements of the Jacobian matrices H,, and H,,
and also of the matrices H,, R, H,, and H; R,,H _,. Finally, for the case where I
is diagonal, we shall derive an expression for the typical eiement of the matrix
HYy 1Ry Hyo(H,R35H3,) ™ 'Hy3 Ry, H - The matrices H,, and H,, are obtained by
differentiating the G? elements of Q,

(A.4) W, = Z Z Brie, B,

with respect to é and o.

Each element of the G* x r matrix H,, corresponds to an element of Q and an
clement of . It is clear from (A.4) that the derivative of any w,, with respect to an
element of T js zero. Hence H,, contains a column of zeros for each element of &
that comes from I'. The clements of H,, corresponding to elements of B take the
following form. If 8, is not known a priori, then

amra _ aﬁr ! 5 j i aﬁ‘ i
B~ 2T [ﬁ;“*f + W]

(A.5) . == LEE BB + Bo B
i

It

H

—(wf7 + ©, 57

The matrix H,, is of order G* x r* (where r* is the number of unknown elements
of X). If ¢, is unknown, then

) D0 e,

do,

Hence H , is obtained by striking from B™! @ B~ the columns that refer to known
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elementsof X. Since B~! ® B~ ! hasfull rank (and therefore G* independent columns),
H,, must necessarily have full column rank.

Each element of the r x r matrix H,,R,,H,, corresponds to a pair of structural
regression coefficients. The ij element (corresponding to d; and 4)) is zero if either
d,0r 6, or both are elements of I'. If §; = B, and é; = ..., then, using (A.5) and (3.4),
we have

(H'Z!R22H2 l)l'_,l = % Z Z Z Z (msqﬂrp + quﬁspb”’w”‘(wx'q'ﬁ”p‘ + wr'q'ﬁ!‘pl)
Hevg 0™ + PP BTP + PP BIP + w o .07F)
w“_gw’ + pFpgee
where use has been made of the relation

o5 = Z Z ﬁ:‘rwijﬁjs'
L

A7

Each element of the ¥* x r* matrix H;,R,,H,, corresponds to a pair of unknown
elements of . The ij element, where i represents o,, and j represents a,,, is given by

(HJZJRZZHZZ)U = % ZZZZ 'Braﬁsbwrr’m:s‘ﬁr'tﬁx'ﬂ

A 8 r s r s
(A8) = —lomo"
Hence, H,,R,,H ,, is obtained by striking from 3Z~! ® £~ the rows and columns
corresponding to the known elements of .

Each element of the r x r* matrix i}, R,,H,, corresponding to an element of &
and an unknown element of . The rows corresponding to elements of I are zero.
The other elements are of the following form (where the ith row represents f,, and the
jth column represents o,,):

(H'ZIRZIHZZ)EJ' = _-21 Z Z Z Z (mmﬁ'P + w’qﬁsp)a)rr'mss’ﬁr‘aﬁs'b
(A.9) = —Hp%™ + pY).
An important matrix for considering Z-restrictions is

M3 = —H'lezszz(H’g_szszz)- 1}-:{JZZ‘RZZ'HZJ‘ -

Unfortunately, although we have an expression for the typical element of H) ;R ,,H 5.
we cannot find a simple expression for its inverse except for special cases. If the
prior information is of the form that restricts X to be diagonal, then H3,R,,H,,isa
G x G diagonal matrix with the ii element given by

(A.10) (H33R 5 H,, ) = 30s™.

The inverse is a G x G diagonal matrix with the ii element equal.to 2. Hence, if



90 Efficient Estimation with a priori Information

& =fandd; = §,,
m = —4 3 (B%a” + BroTl(pa” + po)

we have

(A.11) { 0 i per,

—2f°F e if p=r.



Appendix B

The results in this chapter are based on the assumption that X, the matrix of
structural error covariances, is nonsingular. This means that all G structural equations
are stochastic with nondegenerate random error terms. In most economic models,
however, there appear linear identities—nonstochastic equations that contain no
unknown parameters. The purpose of this appendix is to show that, afier a trivial
redefinition of certain matrices, the results of the chapter apply to the case in which
there are linear identities.

One way to handle the case of linear identities is simply to “solve them out.”
That is, the identities can be used to reduce the number of structural equations and
the number of endogenous variables so that the reduced system has a nonsingular
covariance matrix of structural errors. If the system is linear and B is nonsinguiar,
this can always be done. The trouble with this method is that the a priori constraints
will become more complicated. If the original system had only zero-order coefficient
restrictions, the process of solving out the identities will introduce restrictions of a
higher order. Furthermore, the parameters of the original model are usually easier
to interpret than the parameters of the reduced model. For these reasons, therefore,
it is desirable to work with models that contain the identities.

Suppose the system contains G’ stochastic equations and G — G’ identities.
We assume that there are no unknown parameters in the identities. The complete
system (2.1) can be partitioned as follows:

oG

BZI B22 2 rZ 0
where y, is a vector of G’ of the dependent variables, y, is a vector of the remaining
dependent variables, x is the vector of all K endogenous variables, and u, is the
G'-dimensional vector of disturbances. The matrices B, ,B,,, and I'; are known a
priori. If the matrix B is nonsingular, then there exists some ordering of the endo-
genous variables for which B, ; is nonsingular. We assume y, and y, are chosen so

that B, is nonsingular.
The system (B.1) is equivalent (as far as the stochastic part is concerned) to

{B.2) B,y + Byo[—BzByyy — B Taxi+ Fix =y,
or
(B.3) By, +Tx=u,

2
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where

B= B,, — B1232_21B2h

I'=T, ~ B;,B;, T,

It is easy to verify that Bis simply the inverse of B!}, the G’ x G’ upper left submatrix
of B~1:

(B.4)

B B -1 Bl! Blz
(B.5) B"=[ 11 12} =[ 2:'_
le B22 Bz1 B 2
The reduced form for (B.3) is
(B6) y = Mx +u
where
(B.7) I, = —-B'r= -[B”l"1 + B'2I,),
(B3) v, =B"lu, = Bly,.

All of the relevant stochastic information is given by the probability distribution of v,
since b, is uniquely related to the basicerror term », . The constraint equations relating
the reduced-form parameters I, and €, , to the structural parameters B,,, B,,, ;.
and I, are given by

0, = —{B"'T", + B'T,],

(B9) ,
Q,, = BU'E,,B!""

But equations (B.9) are simply a subset of the equations (2.3):
n=[n]=-Lse wallr]

- 1, = Bzl pg22 I, ’
Q- l:n” le] [B“ Blz] [zll 0:”:311 gl2

ey, Q) Le» B2]Lo of[B* B[
Hence the derivatives of (B.9) can be obtained by taking a subset of the derivatives of
(B.10). But these latter derivatives have already been calculated in section 5 and
appendix A. Since these calculations do not depend on the invertibility of X, they are
valid in the present context. The only change needed is that &% and ¢/ should be
interpreted as being typical elements of 227! and Z,'. Elements of the form § and

w;; should be interpreted as typical elements of the full G x G matrices B~ ! and Q.
The relevant information matrix for (I, ,0,,) is

[ﬂl‘,‘ ® M 0 ]
0 QL ®QrN T

(B.10)

(B.11)
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Equation {5.7) becomes
(B.12) H,, = —(B"@nHw
where W is unchanged. Equation (6.1) becomes
My, = (Hy Ry Hyp) ™!
(B.13) = [W(B" @ Q! @ £)(B'" x hWw]!
= [WE[ @ )WL
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CHAPTER 5

The Value of Restrictions

1. INTROPUCTION

The results obtained up to now indicate that under rather general
conditions a priori restrictions that reduce the dimensionality of the
parameter space result in an increase in estimation efficiency. In this
chapter we shall consider the question of how important this increase is in
practice. That is, we shall investigate the magnitude of the efficiency in-
crease that results from a priori restrictions.

In order to speak of the amount by which efficiency is increased, we
must first define some cardinal measure of efficiency. Up to now efficiency
has been treated as an ordinal concept. An unbiased estimator ¢, has been
called more efficient than an unbiased estimator s, if the difference in
covariance matrices ¥, — V, is positive semidefinite for all 8. If § were a
scalar, then this difference in variances would be a perfectly satisfactory
measure of efficiency increase. When # is a vector, however, it is not at all
obvious how to measure the “magnitude” of ¥, — V,. A common way to
measure the size of a covariance matrix is to consider its determinant
value.! This approach, however, has little intuitive appeal. Further-
more, it cannot be applied to our problem since the covariance matrices
involved may be singular; the determinant will give the absurd measure
of zero.

The following approach has greater appeal. In the general problem
posed in chapter 1, the unknown parameter vector f must be estimated by a
vector function of the sample t, = 1(Y,). Suppose the statistician possesses
a loss function L(t,, 6) defined over the possible values the estimator and
parameter may take. If this function expresses the importance of various
estimation errors, then it is natural to rank estimators according to their
expected loss. If L(t,, 8) is a general guadratic function in the estimation

1. See, for example, ZELLNER AND THEIL (1962), p. 63.

94
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errort, — 0,1t can be written as
(L1) L=, —0yQu, — 0) +({t, — q, + 4o

where @ is a positive semidefinite matrix, g, is a vector, and g, is a scalar.
Then, for any unbiased estimator ¢,,, expected loss is given by tr QV, + g,.
Thus the ranking of unbiased estimators in this case is based on tr QF,.
The estimator ¢, is best if tr Q¥, < tr Q¥ for all unbiased s and for ali
permissible values of 6. The efficiency gain due to using ¢, instead of s, is,
according to the approach suggested here, measured by the difference in
expected loss

(1.2) tr V, — V)

The function tr QV, is thus a useful measure of the size of a covariance
matrix. It has the advantage over the determinant in that it is derivable
from decision-theoretic considerations and can be nonzero ¢ven when ¥,
is singular. Furthermore, the cardinal measure (1.2) is consistent with the
ordinal measure V, — V, as we showed in chapter L.

The above discussion also is relevant for asymptotic efficiency. In that
case, however, t, is replaced by the random variable ¢ whose distribution
approximates that of ¢,. Then ¥, is the covariance matrix of the approxi-
mating distribution (i.e., the asymptotic covariance matrix). The decision-
theoretic interpretation is less convincing in this case, however, since
&L(t,, 8) need not be finite even though £L(t, §) is finite. This results
from the fact, alluded to in section & of chapter 2, that an unbounded
loss function is not really appropriate for decision-theoretic purposes.
Again the theory ought to be conducted with a truncated loss function as
suggested by CHERNOFF (1956). Unfortunately very little is known about
this extension of classicdl estimation theory.

The major difficulty with the efficiency measure tr QV is that it depends
on an arbitrary matrix Q. This however should not be surprising since 1t is
clear that the statistician’s preferences must appear somewhere in the
analysis. Indeed, the amazing thing about the classical theory of minimum-
variance unbiased estimation is how far one can go before one needs to
specify the relative importance of the different elements of 8. All the
theorems on the Cramér-Rao bound can be stated in terms of expected
quadratic loss, but there is no need to do this. Only when we drop the
unbiasedness assumption is it necessary to introduce the matrix @ in
order to obtain qualitative resuits. For quantitative conclusions, however,
the loss matrix Q is crucial.
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2. A GENERAL RESULT

Consider now the case of constraint parameters presented in section !
of chapter 2. The asymptotic? covariance matrix of an efficient estimato;
of @ is given by R™ ' if the constraints are ignored and by H(H'RH)™*H
if the constraints are used. Hence the efficiency gain is measured by

(2.1) tr[QR™' — QH(H'RH)™'H'}.

For many purposes it is more interesting to look at the ratio
_ t[QH(H'RH)™ 'H']

B tr[QR™']

This “efficiency ratio’”” measures the relative efficiency of the unconstrained
estimator with respect to the constrained estimator. It is thus analogous
to the traditional one-dimensional notion of relative efficiency. If » is
near zero, then the loss due to not using the constraints is very large. An
n-value of one-half indicates that loss is cut in half if the constraints are
used. An n-value near one indicates that there is little loss which results
from ignoring the constraints.

Ideally we would like to get some indication of the size of n that depends
on {, R,and H in a very simple way. In particular since H depends on the
constraint parameters that are unknown, it would be desirable to find an
expression for y that is not sensitive to the value of H. Unfortunately,
it does not appear possible in general to find such an expression for #.
In one very special case, however, an amazingly simple answer results.
Suppose for a moment that ¢ and R both are equal to anm x m identity
matrix. That is, (1) expected loss depends only on the sum of the variances
and (2) the efficient unconstrained estimator has a covariance matrix
with unit variances and zero for all covariances. In that case

(2.2)

_ u{HHH)'HY  trl]
B tr[l,] Tl ]

Thus if there are ten elements of 8 but only three constraint parameters o,
the efficiency of the unconstrained estimator of 8 is three-tenths.

r
m.

2. Becanse the application to simultaneous equation systems involves nonlinear con-
straints which make the finite-sample variance bound unattainable, the rest of this chapter
will concentrate on the asymptotic theory. The adaptation of these results to the finite-sample
case is trivial. Again, in order to simplify the terminology, the adjective “asymptotic™ wiil
often be dropped.
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This very special case generalizes if we are willing to settle for some
inequalities. The basic result of this section is given by the following
theorem :

The efficiency ratio n satisfies the inequality
(2.3) — =S ==

where r is the dimension of a, m is the dimension of 8, Ay is the smallest
characteristic root of the matrix R™'Q, A, is the largest root, and i is the
arithmetic average of the m roots of that matrix.

The proof is straightforward. Since R is positive definite and Q is
symmetric, there exists® a nonsingular matrix 4 such that A'RA = |
and A'QA4 = D where Dis a diagonal matrix consisting of the characteristic
roots of R™!Q. Defining X = A~ 'H, we can write the numerator of (2.2)as

tr{QH(H'RH)™"'H'} = tt[(H'RH)" 'H'QH] = tr[(X'X)" ' X'DX].
But this last term may be written either as
(X' X)X XA,] + ul(XX) XD - i,DX]
or as
(X' X)X XA,] - u{(X'X)"'X(AJ — D)X].

In both cases the second trace is nonnegative since both D — A,I and
Anl — D are positive semidefinite. Thus,

Ate[l] < t[QH(H'RH)'H'] < A, tr[1,].

Furthermore,

tr[QR™ ] = trf[R™'Q] = ¥ 4 = ml

i=1
Dividing, we obtain (2.3).

If the characteristic roots of R™'( are not widely dispersed so that 4,
and 4,, are close to each other, then y must be approximately equal to r/m.
If @ should equal R, as is the case if both are identity matrices, then 7 is
exactly r/m. Thus our result suggests that if QR ™' is nearly the identity
matrix, the efficiency gain due to a reduction in the dimension of the
parameter space of fis roughly proportional to the decrease in dimension-
ality.

3. See, for example, THRALL AND TORNHEIM (1957), p. 188,
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Our inequality gives a precise statement only if the characteristic roots
of R™'Q are highly concentrated. In fact, the upper bound need not be
less than one. Unfortunately, it is not at all clear that in practice the roots
will be highly concentrated. Even if Q is the identity matrix, there is no
particular reason to expect the roots of R™ ! to have any special concentra-
tion. Thus our general result is not always useful. It does, however, have a
practical use. One is often interested in the size of » in order to decide
whether it is worthwhile to go to the extra trouble of estimating # subject
to the constraints. Particularly when one is not entirely sure of the validity
of the constraints, one wants to know their potential value (if correct)
before risking their use. The inequality (2.3), however, does not depend
on the matrix H except for the column dimension r. It depends only on the
matrices Q and R, the one given by the statistician’s loss function, the
other estimable without using the constraints at ail.

Thus a possible procedure to follow when in doubt about using the a
priori constraints is (1) estimate 6 and R(8) by a method that ignores the
constraints, (2) find the characteristic roots of the estimated R and derive
the bounds on #, and finally (3} if the upper bound is small enough to
suggest a large efficiency gain, reestimate  using the constraints. Of covrse,
if it is essential to estimate the constraint parameters «, then the question
does not even arise.

The purpose of this section has been to get some indication of the size
of the efficiency gain due to imposing restrictions. We must conciude,
however, that if one really wants a precise measure of this gain, there is no
alternative to actually evaluating numerically the matrices R™! and
H(H'RH)™‘H'. Since these matrices depend on the unknown parameters
o and 6, one must first estimate these parameters and then use them to
estimate the covariance matrices. The general results of this section are
suggestive, but practice with specific problems and actual data must be
the ultimate test of the value of a priori restrictions. In the following
sections we shall look at twe small simultaneous equation systems and
calculate the various covariance matrices that were derived in chapter 4.

3. ExamMpPLE I: AN ARTIFICIAL MODEL

Before we turn to an example which has some “real-world" interpreta-
tion, it will be useful to illustrate the results of chapter 4 by an artificial
example. This will have the advantage of presenting the basic ideas without
our getting lost in a morass of numerical calculation. We shall turn to a
model that does try to represent an actual econometric process in the
next section.
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Consider the two-eguation model
Y1+ Braya + viaxs =y
Basyy + y2 + varXy + va2%2 =

where y, and y, are endogenous variables; x,, x,, and x, are the exo-
genous variables. The random errors are assumed to be normally distri-
buted with zero mean and zero covariance. There are thus six zero-order
restrictions :

(3.1)

Bii=1  yu=0,
(32 Baz=1, v2=0,
g,z =0, Y23 = 0.
The reduced form of this system is
(3.3) Vi =T Xy + WyaXy + WXy + )
V2o =W Xy + RypXa + MpaXy + Us.

The vectors of reduced-form and unknown structural coefficients are
given by

] -
[ [ B
T2
713
Tra
T = . 5 = ﬂZI .
oy
721
22 .
22
Lﬂza_ -

We shall consider the estimation of these regression coefficients under
four different assumptions about the use of a priori information :

1) Ifnostructural restrictions are used, the structural parameters cannot
be consistently estimated. The minimum (asymptotic) variance bound
for the unconstrained estimator of m is derived in chapter 4, section 3, and

is given by

(3.4) RI'=0@ .4

where £2 is the 2 x 2 covariance matrix of reduced-form errors and .#
is the 3 x 3 limiting sample matrix of cross products for the exogenous
variables.
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2) Hthe five coefficient restrictions are used (but the constraint ¢, =
ignored), the five unknown structural coefficients § can be efficientl

Efficient Estimation with a priori Informatio.

estimated with an asymptotic covariance matrix
[M(“T te= (Hy Ry Hy)™ !
where, by equation (5.6) of chapter 4, H, ; isthe 6 x 5 matrix:

(3.5)

gt
0
0

p2!
0

K

0
ﬁll
0
0
ﬁll
0

0
0
it
0
0

ﬁll

ﬁ12
0
0

BZl
0
0

0
ﬁlz
0
0
ﬁ22
0

0
0
g2
0
0

ﬂzz

T2

LZ¥)

0

0
1
0
0
0

Lo R e R = T o= R e

o e O 0 O O

The reduced-form covariance matrix is now
(3-6) H1 I[M“’}” IH'u = Hl 1(H'11R1 1H1 1)_ lHlu-

3) Iftheconstraint o, = 0isused along with the coefficient restrictions,
the covariance matrix for an efficient estimate of é becomes

(3.7) MY 4 MP 4 M3n-t
and that for n becomes
{3.8) H (MY + M® 4 MOTIH
where, using equations (7.3) and (7.7} of chapter 4,
[y, + FHA* 0 wy,0'? + 224 0 07
0 0 0 00
M = | w,,6'2 + 2261 0 w,,06% + 262 0 0O,
0 0 0 00
L 0 0 0 0 o0l
C—281421 ¢ 0 0 07
0 0 0 00
M3 = 0 0 —2B12812 ¢
0 0 0 00
L 0 0 0 0 0J
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4) Finally, if Z is assumed to be entirely known, then the covariance
matrices for efficient estimates of § and n become

(3_19) [M(l) + M(Z)]*l,
(3.10) H, (MY + MPIH, .

All of the above covariance matrices depend on the values of the un-
known parameters. In order to see how efficiency is affected by the use of
a priori information it is necessary to know the numerical values of these
parameters. We shall evaluate the various covariance matrices under the
assumption that the true parameters are given by

1 1 00 1
B = ., TI= ,
21 (1 1 0]
1 0 0]

1 0
S [ PR P

0 1
[0 0 1]

These numerical assumptions were chosen for computational con-
venience. Since the model is purely artificial, the question of “reatlistic™
values does not have much meaning. On the basis of the above numerical
specifications of the structure, it follows that

—1 1 -1 -1 1
B-l= » I ’
2 -1 1 1 -2
2 =3 5 3
Q- . gt- _
-3 5 32

It is of interest to evaluate the upper and lower bounds of the inequality
(2.3) before proceeding to actually evaluate the covariance matrices.
We shall do this for the simplest case, in which only the five coefficient
restrictions are used. If we ignore the estimation of 2, we have from (2.2)
and (3.6)

_ uQH, (H\,R,H,)) HY)
t{QET

where Qis a6 x 6 loss matrix for the six elements of . If we take Q 10 be
the identity matrix, the evaiuation of (2.3) involves only finding the charac-
teristic roots of R],!. Since the matrix R7,' is of the Kronecker product
form, this is easily accomplished. There are three roots equat to 6.85 and
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three roots equal to 0.15. With m = 6 and r = 5, the inequality (2.3)
becomes

0.04 < 5 < 1.65.

Itisclear that this inequality tells us nothing and that numerical evaluation
of the covariance matrix of the restricted estimators is needed.

The basic matrices necessary for the calculations and the resulting
asymptotic covariance matrices for efficient estimates of the parameters
are reproduced in the appendix to this chapter. Tables 5.1 and 5.2 present
some useful summary measures of the gain in efficiency resulting from the
use of correct prior information. I'n table 5.1 the asymptotic variances of
the efficient parameter estimates are given. In table 5.2 the loss measure
tr QF, is evaluated for two alternative quadratic loss functions. In one
case the matrix @ is simply an identity matrix and expected loss is ex-
pressed as the sum of the variances. In the other case the matrix ¢ is
square with all elements equal to unity. It expresses expected loss as the
variance of the sum of all the regression coefficient estimates.

TABLE 5.1 ARTIFICIAL NUMERICAL. EXAMPLE:
ASYMPTOTIC VARIANCES OF EFFICIENT ESTIMATES

‘Parameter Type of a priori restrictions on structure
Case 1 Case 2 Case 3 Case 4
none* B.T only Z diagonal Z known
Structure
Bz 0.50 0.40 0.09
Y1ia 3.00 2.60 1.37
B2 1.00 0.60 0.30
¥a1 200 1.60 1.30
Y22 2.00 1.60 1.30
Sum 8.50 6.80 4.36
Reduced form
. 2.00 1.50 1.40 1.09
ys 2.00 1.50 140 1.09
A 2.00 2.00 1.60 1.30
T, 5.00 3.00 2.60 1.37
Ty, 5.00 3.00 2.60 1.37
My 5.00 : 5.00 4.60 4.28
Sum 21.00 16.00 1420 10.50

* Structural parameters not identified.
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TABLE 5.2 ARTIFICIAL NUMERICAL EXAMPLE:
MEASURES OF EFFICIENCY GAIN DUE TO STRUCTURAL RESTRICTIONS

Loss function Type of structural restrictions
Casé ! Case 2 Case 3 Case 4
hone B, T only X diagonal Z known
Structure
tr[ V5] - 8.50 6.80 4.36
tr{Q, V) - 4.50 3.60 335
Reduced form
tr[V,] 21.00 16.00 14.20 10.50
tr[Q, V] 3.00 3.00 2.60 1.37

Note: The matrix Q, is a square matrix of appropriate size consisting solely of ones. The
matrices ¥; and V, represent the appropriate minimal covariance matrices for 6 and .

It 1s seen from these tables that the degree of efficiency gain depends on
what loss matrix is used. Some variances drop sharply under a priori
information while others hardly change at all. Furthermore, the co-
variances are affected considerably by the imposition of structural restric-
tions. Yet the overall impression is that a priori restrictions are important
in increasing efficiency. When X is (correctly} assumed to be diagonal and
the five structural coefficient restrictions are used, the reduced-form
variances are cut by amounts ranging from 8 to 30 percent of their un-
restricted values. If T is known and the five coefficient restrictions are
used, the loss due to reduced-form estimation error (as measured by
either loss matrix) is half of that obtained if no structural restrictions are
used. Finally, it is interesting to note that adding the assumption that T is
diagonal to the coefficient restrictions reduces loss by nearly 20 percent
in our example.

4. ExaMPLE II: A MacrogecoNomiC MODEL

The importance of overidentifying restrictions in increasing the effici-
ency of reduced form estimation depends on the particular model and
data that are used. Since the model presented in the previous section is
completely artificial, it cannot tell us much about the value of a priori
information in practice. A more fruitful test lies in the use of models and
data that are representative of actual econometric applications. For this
purpose we shall study a simple, but by no means trivial, macroeconomic
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model of the United States economy which has been developed by KLEIN
(1950). This model, the first of three analyzed in his monograph, has been
estimated by various methods and has become a classic in the econometric
literature. Our use of Klein’s model I and his original data will facilitate
comparisons of the present results with those of others who have also
used this numerical example.

The system consists of three behavioral structural equations and a
number of identities. The precise form in which the system is written is
somewhat arbitrary since the identities can be “solved out” in varying
degrees. Since the theory of chapter 4 is most easily applied when there
are only zero-order restrictions, this will dictate the form of the system
we shall use. Specifically, we shall consider a system of seven structural
equations in seven current endogenous variables and eight predetermined
variables. The variables are listed in table 5.3 and are further described in
Kiein's study.* The system contains three stochastic structural equations.
These are a consumption function

4.1) C=08P+8,W+86,P_ |+ 8, + uy,

an investment function

{4.2) IT'=06P+ 6,P | + 6,K_| + 8 + uy,

and a labor demand function

(4.3) W, =0oY + 6,0t + 0y, Y_; + 815 + us.

The 3 x 3 covariance matrix of the contemporancous errorsu, , u,,and u,
is denoted by X and is assumed to be nonsingular. The errors are assumed

to be normally distributed with zero means.
The system is completed by four identities

Y+ W,=C+1+6G

Y=W, +P+T
(4.4)

K=1+K.,

W=W + W,.

Defining y as the vector of the seven current endogenous variables and
x as the vector of the eight predetermined variables, we can write the

4. Our notation differs slightly from Klein’s. We use P instead of I for profits, Further,
our Yis ¥ + T— W, in Klein's notation (i.e., our ¥ is net private product whereas his is
national income). Qur model, however, is identical with his.
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TABLE 5.3 VARIABLES IN KLEWN's MoDEL |

Current Endogenous Variables

y=C Consumption

vy, =1 Net private investment

ya = W, Private wage bill

y,=P Profits

ys = W Total wage bill

Ve =Y Net private national product

¥y, =K End-of-year capital stock
Predetermined Variables

x; = W,  Government wage bill

x;=T Business taxes

X3 =G Government expenditures

Xy =1 Time (1931 = 0)

xs = P_,  Lagged profits

xs =K., Lagged capital stock

x;=Y_, Lagged net private national product

Xy =1 Unity (dummy variable representing the constant term)
system as
(4.5) By+Tx=u
where

y=(CILW,FWYK)

(4'6) xrz(WlsT;GstsP—]sK—ls Y—lsl]

u’ = (u1!u25 u3505 0) 0: 0)~

The matrices B and I may be partitioned as follows:

B = [Bll BIZ:I -
BZI BZZ

0

|
!
|
|
|
|
|

!
!
!
!
I
\
I
!
1

_4,
_55

-5,
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il 0 0 — b4 0 0 — by
00 0 -8 =8, 0 —4

r-[]- 000 e 00 T e
L -101 0 0o 0 0 0
10 o 0o 0 0 0
000 O o 1 0 0

L 100 0 o 0 0 0

The reduced form is
4.7 y=—-B"I'x+B lu=Ix+uo

Although (4.7) consists of seven equations, they are not independent.
The iast four rows of II can be derived from the first three by using the
four structural identities (4.4). Furthermore, the vector v has a singular
normal distribution of rank three. There will be no loss of information,
therefore, if we consider only the first three equations of (4.7). The relevant
matrices of the reduced-form system are I1,, the 3 x 8 matrix obtained by
deleting the last four rows of I, and €, , the covariance matrix for v, v,,
and v;. These matrices may be written as

(4.8) T, = B''T, + B!,
(4.9) Q,, = BI'ZBV

where B'! and B'? are submatricesof B~ *.

We may now apply the theory of chapter 4 to this simultaneous equa-
tions system. The first three reduced-form equations contain twenty-four
unknown regression coefficients

p
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and nine unknown elements of Q,,. If the structural constraints were
ignored, these parameters could be estimated by the method of least
squares. The resulting estimator of r would have an asymptotic covariance
matrix given by

(4-10) Rl_ll = Qll ® -/”_1

where .# is the limiting moment matrix of the predetermined variables.
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Equations (4.8) and (4.9) relate the thirty-three reduced-form parameters
to the structural parameters B, I', and Z. But there are only twenty-one
unknown elements of the structure—the twelve coefficients

& =(8,,03,...,0,3)

and the nine elements of . Thus the zero-order restrictions on B and T
impose a number of constraints on the reduced form. If we further impose
restrictions on X, more constraints are added. We shall consider the
estimation of § and = in the following three cases:

1) If ¥ is unrestricted, equation (4.9) may be ignored since 1t is a one-to-
one transformation imposing no constraints on the reduced form. The
Jacobian of (4.8) is the 24 x 12 matrix®

(4.11) H, =B"I,)W

where the block diagonal matrix W is presented in table 5A.4 of the
appendix. The unrestricted information matrix for x is simply the inverse
of (4.10). The asymptotic covariance matrix for an efficient estimator of § is
given by

(4.12) [Mm]_l = {H'uRuHu)_l-
The asymptotic covariance matrix for an efficient estimator of n is given by
(4'13) 'EIII(I:FIlI{II.I:"ll)_1 r11'

2) If £ is known to be diagonal, the asymptotic covariance matrix for
an efficient estimator of é is given by

(4.14) IMM 4 M® 4 M1

where M*?) amd M are 12 x 12 matrices containing mostly zeros.
The nonzero elements are given in appendix tables 5A.5 and 5A.6. The
asymptotic covariance matrix for an efficient estimate of = is given by

(4.15) Hy MY+ MP 4+ M7

3) If ¥ is known completely, the asymptotic covariance matrix for an
efficient estimator of 4 is given by
(4.16) MY + M@~ 1,
The asymptotic covariance matrix for an efficient estimator of n is
given by
4.17) Hy MY + MP]7THY L

5. Cf. chapter 4, appendix B, equation (B.12).
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5. EXAMPLE II: NUMERICAL RESULTS

The covariance matrices given in equations (4.10) through (4.17) are
functions of the matrices B, I, Z, and .#. In order to compare the efficiency
of the varous estimators it will be necessary to evaluate the covariance
matrices at some assumed “true’’ values of the unknown parameters.
For B and I' we shall use the two-stage least-squares estimates based on
the twenty-one-year sample presented in Klein's monograph.® As for Z,
we shall use two alternative specifications. In specification I we use the non-
diagonal matrix obtained from the residuals of the two-stage least-
squares regression. (No adjustment for degrees of freedom is made.)
In specification II we use the same two-stage least-squares estimates of
the variances but put all covariances equal to zero. The same B and I
matrices are used in both cases.

With these assumed “true’ structural parameters we can form all of
the previously defined covariance matrices as soon as we specify the
limiting moment matrix .#. For purposes of comparison it is useful to
take the X'X matrix of predetermined variables for the twenty-one-
year sample presented by Klein, Since the sample sum of squares and
cross products X’'X is really an estimate of n times .#, our calculations
yield asymptotic covariance matrices divided by the sample size n. The
matrix X'X is reproduced in appendix table 5A.8.

The result of all the calculations is a set of covariance matrices for
efficient estimates of & and = based on alternative specifications as to the
true structure and the number of a priori restrictions used in estimating,
The following seven different sets of assumptions were used:

I. True £ nondiagonal
A, No structural restrictions
B. Restrictions on {B, I'} only
C. Restrictions on (B, I'); £ assumed known
11. True I diagonal
A. No structural restrictions
B. Restrictions on (B, I'} only
C. Restrictions on (B, IN); T assumed diagonal
D. Restrictions on (B, I'); £ assumed known

6. The estimates and some of the summary statistics can be found in GOLDBERGER,
NAGAR, AND ODEH {1961), ROTHRENBERG AND LEENDERS (1964), and ZELLNER AND THEIL
(1962}). It should be noted, however, that the calculations in the latter two papers contain
some errors. All of the matrices used in the present experiment are given in appendix tables
SA.7-5A.10.
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Foreach ofthese seven cases a 24 x 24 covariance matrix for an efficient
estimator of n was calculated. For each of the five cases where the structure
isidentified (excluding, therefore, cases [-A and I1-A)a 12 x 12 covariance
matrix for an efficient estimator of § was calculated.”

To help in summarizing the reduction in sampling variability due to the
imposition of structural restrictions, the standard deviations (i.e., the
square root of the diagonal elements of the covariance matrices) are
presented in tables 5.4 and 5.5. Expected quadratic loss tr OV is evaluated
in table 5.6 for each of the covariance matrices. In this latter table the
variances and covariances associated with the constant terms are ignored.
Thus V; is the 9 x 9 matrix of structural covariances after the rows and
columns associated with the constant term have been deleted. Similarly,
V, 1s the 21 x 21 matrix of reduced-form covariances (again ignoring
constant terms) and V¥ is the 7 x 7 northwest submatrix of V,. Again two
alternative loss matrices are used. In the one case we use an identity matrix
of appropriate size. In the other case we use 0, , a matrix consisting solely
of ones. Of course, these are but two out of an infinite set of loss matrices
that could be used.

A glance at the standard deviations in tables 5.4 and 5.5 indicates re-
duced-form precision is increased considerably as a result of restrictions
on the structural form. This is confirmed by the loss measures presented
in table 5.6. The imposition of twelve overidentifying restrictions on B
and I" has a very strong effect on the reduced-form covariance matrix.
With either loss function and either specification, loss is reduced by
a factor of 50 or more. Of course, the reduction in reduced-form variability
is not uniform but rather is concentrated in a few elements of #n. The
coeflicients of W, and t seem to be affected much more than the others.
Nevertheless, the total impact of the use of prior information is striking.

The effects of restrictions on the matrix X are much less striking, al-
though still substantial. The assumption of a completely known I cuts
expected loss by up to 50 percent when compared to the case in which
only coefficient restrictions are used. The assumption that ¥ is diagonal
cuts loss by up to 25 percent. However, these reductions in expected loss
arc small when compared to the 98 percent reductions obtained from the
restrictions on Band I,

7. These twelve covariance matrices are reproduced in appendix tables 5A.11-5A.14.
Due to their large size, the seven reduced-form matrices are not reproduced in their entirety;
instead, only the 8 x 8 submatrices corresponding to the parameters of the first equation
are presented. Since the matrices are asymptotic covariance matrices divided by 21, they
may serve as approximations to the actual covariance matrices for a sample of that size,
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TaBLE 5.4 KLEN'Ss MODEL. I
STANDARD DEVIATIONS OF EFFICENT CORFFICIENT ESTMATORS
{Specification I:  nondiagonal)

Equation and True Type of structural restrictions
coefficient parameter
value Case A Case B Case C
none* B, I only Z known
Structure:
Consumption
P 0.017 0.097 0.067
w 0.810 0.036 0.035
P_, 0.216 : 0.094 0.077
1 16.555 1.281 1.247
Investment
P 0.150 0.134 0.082
P_, 0.616 0.131 0.095
K_, ~0.158 0.029 0.025
1 20.278 5927 5.048
Labor demand
Y 0.439 0.029 0.024
t 0.130 0.027 0.026
Y, 0.147 0.033 0.029
i 1.500 1.099 1.095
Reduced form:
Consumption
W, 0.684 2299 0.072 0.063
T ~0.129 0.349 0.248 0.157
G 0.664 0.355 0.206 0.131
t 0.159 0.706 0.028 0.027
P_, 0.769 0471 0.129 0.126
K_, —0.105 0.108 0.034 0.026
Y_, 01719 - 0.256 0.038 0.035
1 42,830 28.703 7.448 5.782

* Structural parameters not identified.

The efficiency inequality (2.3) again turns out to have no value, at least
when @ is the identity matrix. The characteristic roots of R}, even when
the rows and columns associated with the constant term are deleted, are so
widely dispersed that the inequality merely says that efficiency lies between
zero and one. It appears, therefore, that the inequality (2.3) cannot be
generally relied on for giving insight into the value of a priori restrictions.
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Tarte 5.5 KLEW’s MoDEL I:
STANDARD DEVIATIONS OF EFFICIENT COEFFICIENT ESTIMATORS
(Specification II: £ diagonal)

Equation and Type of structural restrictions
coefficient
Case A Case B Case C Case D
none* B.T only X diagonal X known
Structure:

Consumption
P 0.108 0.097 0.084
w 0.040 0.039 0.039
P_, 0.101 0.095 0.086
1 1.307 1.292 1281

Investment
P 0.143 0.127 0.097
P, 0.139 0.127 0.106
K., 0.033 0.032 0.030
1 6.776 6.490 6.031

Labor demand
Y 0.033 0.028 0.027
t 0.029 0.028 0.028
Y., 0.037 0.033 0.033
1 1.139 1.137 1.137

Reduced form:

Consumption
W, 2.380 0.078 0.074 0.072
T 0.408 0.236 0191 . 0.168
G 0.368 0.211 0173 0.152
t Q.731 0.038 0.038 0.038
P_, 0488 0.124 0.121 0.120
K_, 0.112 0.035 0.032 0.029
Y., 0.265 0.045 0.042 0.041
1 29.722 7.643 7.021 6.503

* Structural parameters not identified.

The calculations presented above indicate that the imposition of twelve
overidentifying rtestrictions in Klein’s model reduces enormously the
variances of the reduced-form estimator. It is natural to ask whether the
reduced-form variances would increase much if one or two of the less
plausible restrictions were relaxed. That is, suppose we estimated the
structure including a few more variables in each equation and then sofved
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TasLE 56 KLEN'S MopeL I:
EXPECTED QUADRATIC Loss UNDER ALTERNATIVE STRUCTURAL RESTRICTIONS

Specification 1: T Nondiagonal

Loss function Type of structural restrictions
Case A Case B Case C
none B.T only Z known
Structure
te( V] - 0.0580 0.0299
tr[Q, V] - 0.0153 0.0119
Reduced form
te[ V] 14.0282 0.2765 0.1339
tr[V¥] 6.3620 0.1290 0.0644
tr[Q, V¥] 3.0529 0.0393 0.0279
Specification I1: £ Diagonal
Loss function Type of structural restrictions
Case A Case B Case C Case D
none B, T only I diagonal Z known
Structure
tr( V3] - 0.0678 0.0559 0.0401
tr{Q@, V3] - 0.0105 0.0097 0.0093
Reduced form |
trf V] 14,1139 0.2759 0.2009 0.1542
tr(V*] 6.8215 0.1266 0.0907 0.0749
tr[Q, V7] 3.2734 0.0421 0.0349 0.0330

for the reduced form. What is the added cost (in terms of increased reduced-
form variability) of fewer restrictions? This question can be answered
quite easily. Suppose, for example, someone believes that sales are an
important determinant of investment demand. This would suggest that
net product Y should have a nonzero coefficient in the investment equa-
tion. If the zero constraint is dropped, the model now includes thirteen
structural parameters and the matrix H,, gets an added column. All
of the covariance matrices may now be recalculated with the new H,,
matrix and compared with the earlier ones.

In order to make the comparisons meaningful, the “true’” values of the
parameters must remain the same for all calculations. Thus, even though
we are relaxing some of the constraints (i.e., estimating more parameters),
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we will assume that the coefficients really are zero. We are asking the
question: What is the cost of relaxing a restriction that really is valid?
This is, of course, the same question we asked when comparing the twelve-
restriction model with the no-restriction model. The answer, in the case of
letting Y appear in the investment equation, is that the cost is modest:
the mean reduced-form variance increases 15 percent. (Recall that relaxing
twelve constraints increases the mean vartance 5000 percent!)

The cost of relaxing a valid constraint depends, of course, on the specific
constraint and on the other constraints which are being imposed. For
Klein’s model we started with Case [-B and removed, one by one, twelve
constraints until we arrived at an exactly identified system. At each stage
we evaluated the covariance matrix bound (4.15) and calculated its trace
and other summary statistics. The order in which constraints are relaxed
is somewhat arbitrary, but we tried to relax the more implausible ones
first. Table 5.7 presents the order chosen. When all tweive restrictions
were removed, the system (4.1-4.3) became the exactly identified system

C=3,W, + 8P+ 6,W, +8,t +3P_, +6K_, +8,Y_, + 84
T=0,P+ 0,0Y + 6,,G + Oyt +8,3P_ + 8,.K_| + 8,5Y_, + 8,6
Wl = 617Y+ 618“/2+519T+ 520t+521P_1 +522K_1 +523Y—l+524‘

In two cases we also added constraints to see what the effect would be.
These results are also presented.

Table 5.7 presents, for each set of imposed constraints, three measures
of the variability of the reduced-form estimates. First we have the sum of
the variances of the twenty-one coefficient estimates (excluding constant
terms). Second we have the sum of the variances of the seven coefficient
estimates of the first equation. Finally we have the variance of the sum of
the seven coefficient estimates of the first equation. Since each measure
indicates the same general result, we will comment only on the first
measure.

The table indicates that the reduced-form variances increase moderately
when the first new constraints are dropped. Furthermore, the increase is
not smooth but is concentrated in one or two constraints. Thus dropping
the constraint that private workers and government workers have the
same marginal propensity to consume causes an 180 percent increase in
the sum of reduced-form variances; and adding a time variable to the
investment function causes a 200 percent increase.

These results suggest that, at least in Klein’s model, relatively few
overidentifying structural restrictions are needed to yield substantial
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TABLE 5.7 REDUCED-FORM EXPECTED Lo0Ss AS A FUNCTION OF THE NUMBER OF
OVERIDENTIFYING RESTRICTIONS
(Experiment 1)

Number of Change Expected loss
overidentifying '
restrictions tr v, trv¥ wwQ,v:
14 Delete ¢ from labor equation 0.264 0.121 0.032
13 Delete W from consumption equation  (.268 0.123 0.032
12 BASIC KLEIN MODEL 0277 0.129 0.039
i1 Add Y to investment equation 0321 0.143 0.055
10 Add Y_, to investment equation 0.480 0.176 0.080
9 Add P_, to labor equation 0.543 0.198 0.090
8 Add K_, to labor equation 0.714 0.258 0.113
7 Add Y_, to consumption equation 0.862 0.370 0.268
6 Add K_, to consumption equation  1.044 0.492 0.291
5 Add t to consumption equation 1.221 0.631 (0.437
4 Replace W by W, and W, in

consumption equation 3415 2403 1.154
3 Add G to investment equation 4.327 2778 1.304
2 Add ¢ to investment equation 12923 6.347 3.046
1 Add W, to labor equation 13.899 6.360 3.053
0 Add T to labor equation 14.028 6.362 3.053

TABLE 5.8 REDUCED-FORM EXPECTED Loss AS A FUNCTION OF THE NUMBER OF
OVERIDENTIFYING RESTRICTIONS

(Experiment 2)
Number of Change Expected loss
overidentifying
restrictions tr ¥, trvy @, vy
0 EXACTLY IDENTIFIED MODEL 14.028 6.362 3.053
1 Delete t from investment equation 4.864 2811 1.353
2 Replace W, and W, by Win
consumption equation 3.264 1.340 0.705
3 Delete G from investment equation 2.441 1.07¢ 0.600
4 Delete W, from labor equation 1.269 1016 0.583
5 Delete X _, from consumption
equation 1.050 0.980 0.567
6 Delete T from wage equation 0.997 0.460 0.311

7 Delete ¢ from consumption equation  0.862 0310 0.268
12 BASIC KLEIN MODEL 0.277 0.129 0.039
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gains in efficiency. This is illustrated in table 5.8 where, beginning with the
cxactly identified model described above, restrictions are imposed in an
order that maximizes efficiency gain. We see that adding just one con-
straint has an enormous effect on efficiency : the sum of the variances is
cut in third. The next few constraints also have a big impact. As a result
thie first six constraints cause a fourteenfold increase in precision.

6. SUMMARY

By actually evaluating some of the algebraic expressions derived in
chapter 4, we have been able to shed some light on the basic question:
What is the value of prior structural information? Although the two
numerical examples given in this chapter are by no means. conclusive,
one might conjecture the following:

1) As far as variances are concerned, zero-order restrictions on the
structural coefficients B and I" probably increase reduced-form efficiency
more than proportionately. That is, in a model with ten structural co-
efficients and twenty reduced-form coefficients, use of the restrictions
will cut reduced-form variances by more than half.

2) Constraints on I are less important than constraints on B and T,
at least in models with many predetermined variables.

3) Not all constraints are of equal value. A small number of structural
restrictions may have an enormous effect on reduced-form precision.
The addition of further restrictions may have little value.

4) The greater the collinearity among the predetermined variables,
the greater is the gain from imposing structural restrictions.
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ARTIFICIAL NUMERICAL EXAMPLE: BASIC MATRICES

TABLE 5A.1

R, =Q'®@.#:

Ry H, :

'
11

MO =

M)

M(S).
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Hil
{ 0 1 -1 0
{0 1t 0 -1
-2 1t -1 0 ©
2 0 -1 1 0
-2 0 -t 0 1
4 -2 1 0 0

TaBLE 5A.2 ARTIFICIAL NUMERICAL EXAMPLE: ASYMPTOTIC (COVARIANCE
MATRICB‘R)R EFFICIENT STRUCTURAL PARAMETER ESTIMATES

Restrictions on B and [ only: (M~ = (H| R, H,,)"!
05 -10 0 0 0
-1.0 3.0 0 0 0
0 0 1.0 —-10 -10
0 0 -1.0 20 1.0
0 0 -10 1.0 20

Restrictions on B, I'; T diagonal : [M"!? + M?' + M31]~!
04 -08 -02 0.2 0.2
-0.8 2.6 04 -04 -—-04
-02 04 06 —-06 -—-06
02 -04 -—-06 1.6 0.6
02 -04 -06 0.6 1.6

Restrictions on B and I';  known [M®" + M*)~!
0.093 —-0.18 —0.023 0.023 0.023
~0.186 1372 0.047 —0047 —0.047
-0023 0.047 0302 -0302 -0302
0023 —-0047 -0302 1.302 0.302
0023 -—-0047 -0.302 0.302 1.302
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TABLE 5A.3  ARTIFICIAL. NUMERICAL EXAMPLE: ASYMPTOTIC COVARIANCE
MATRICES FOR EFFICIENT REDUCED-FORM PARAMETER ESTIMATES

No structural restrictions: R7,' = Q ® .4 !
2 0 0 -3 0 0

0 2 0 0 -3 ]
0 0 2 0 0 -3
-3 0 0 5 0 0
0 -3 0 1] 5 0
0 0 -3 0 0 5
Restrictions on B and I only: H, ,(H| |R* H, ) 'H,,
L5 0.5 0 -2 -1 0

6.5 L5 0o -1 -2 0
0 0 2 0 0 -3

-2 -1 0 3 2 0
-1 -2 0 2 3 0
0 60 -3 0 0 5

Restrictions on B, I'; T diagonal: H, [M*) + M@ + MUN-1q,
1.4 0.4 02 —-18 —-08 -02
0.4 1.4 02 —-08 -18 -02
0.2 02 16 —04 -04 =26
-18 —-08 -04 26 1.6 04
-08 —-18 -04 1.6 26 04
-02 -02 -26 04 04 4.6

Restrictions on B and T'; Z known: H, ,[M") + M@ g,
1.093 0.093 0023 -—1.i8 —0.186 —0.023
0.093 1.093 0023 -—0.186 —1.186 -0.023
0.023 0.023 1.302 —0.023 -0023 -2302

—1.18 —0.186 —0.023 1.372 0.372 0.047
—0186 -—1.186 —0.023 0372 1.372 0.047
—0.023 —-0023 -2302 0.047 0.047 4.302
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TaBLE 5A4 KLEN'S MODEL I THE MATRIX W

(741 Maz Taz Mas Mas Mg Taq TMag)
W = Msy M5y Mgz M5y Tgs Txg Mgy TMsy
: 0 0 0 0 1 0 0 0
L0 0 0 V] 0 (¢] 0 1 ]
[Tay Taz Taz Mg Tas Tgg Moo n“ﬂ
0 0 0 0 1 0 0 0
w2 -
0 0 0 0 #] 0 0
L O 0 0 0 0 0 0 1
Mgy Moz Tes Mea Tgs TNoe Fe7  Tos |
0 0 1 0 0 0 0
PVS =
0 0 0 0 0 1 0
LO 0 0 0 0 0 1]

TABLE SA.5 KLEIN'S MoptL [: Nonzero ELEMENTS oF M@

Number of Corresponding General Specification  Specification
element parameters Jorm I* s

11 BiaBra a0ttt + pHgY 186.18928 73.69574
12 BiaBys w50t + fHB5E 116.51068 51.75721
15 B1a B wy o't + Y ~52.91604 21.82293
19 Bia Bae waeo!? + A8 248.53375  —13.15615
2 B15 Bys wgsol! + BILA5! 136.97282 66.31372
25 Bis Baa s ot? + g —28.14636 17.07019
29 B1s Bis wseo'? + [301 278.97625 57.70544
55 B4 Baa W, 4012 + fH2pAe 114.11698 60.97878
59 B4 Bas w02 + FHB%2 — 16998437  —13.15615
99 Bse Bas gs0>> + B3B3 1009.19353  410.43393

* Specification I has a nondiagonal Z. Specification 11 has a diagonal X. The numbers have
been multiplied by the sample size, 21.
NoTE: M*? s a 12 x 12 symmetric matrix. Here only the upper part is given.
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TABLE 5A.6 KLEIN'S MopeL [: NoNzero ELEMENTS oF M

Number of Corresponding General Specification

element parameters Jform I
11 BiaBia —2pH g4 —43.64586
12 BisBis —2p41 83! —34.14038 -
21 BisBia —~2p%1 84 —34.14038
22 Bis Bis —2p%1 %! —26.70507
55 Bas Baa —~2p42p42 —43.64586
99 Bis B —2p°3p%3 —57.26366

* Specification 11 has a diagonal £. The matrix M'® is irrelevant for Specification 1, where T
is nondiagonal. The numbers have been multiplied by the sample size, 21.

TabLE 5A.7 KLeIN’s MoODEL [: “TRUE” STRUCTURAL PARAMETERS

1 0 0 —-00173 —08102 0 0]
01 0 —01502 0 0 0
00 1 0 0 04389 0
B=|110 0 0 -1 0
00 1 1 0 -1 0
010 0 0 0 -1
(0 0 1 0 —1 0 0]
o000 o —02162 0 0 —16.5548 |
000 0 06159 01578 0  —202782
000 —0134 0 0  —01467 —1.5003
F={-10 1 0 0 0 0 0
6010 O 0 0 0 0
000 0 0 1 0 0
100 o 0 0 0 o |

Specification 1:
1.0d41 04379 —0.3850

= 0.4379 1.3832 0.1926
-03850 01926 04764

Specification I1:

1.0441 0 0
T = 0 1.3832 0
0 0 0.4764
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TaBLE 5A8 KLEIN'S MopeL I: SuMs oF SQUARES AND Cross PRODUCTS OF
PREDEYTERMINED VARIABLES, X°X

vy
A
At
Yo
Vs

Vi

X1

626.87

X

789.27
1054.95

X3

1200.19
1546.11
2369.94

X,

238.00
176.00
421.70
770.00

Xg

1746.22
2348.48
3451.86
—11.90
5956.29

Xa

21,683.18
28.766.25
42,026.14
590.60
69,073.54
846,132.70

X, Xg

636443  107.50
8436.53 14290
1247350 20820
495.60 0.00
20,542.22 34390
244.984.77 421040
72,200.03 1217.70
21.00



TaBLE 5A.9 Kvrein's MopeL 1: “Truge” B! aAND 1 MATRICES

[ 1.663683 0663683  1.219449
0153115  LI53115 —0.051793
0797393 0797393  1.512484
B™' =| 1.019405  1.019405 -0.344828

0.797393 0.797393 1.512484
1.816798 1.816798 1.167656

L 0.153115 L153i15 —0.051793

0.684233  —0.128467 0.663683 0.159016
—0.029061 —0.175847 0.153115  —0.006754
-0.151345 —0.133563 0.797393 0.197228
—0.193483 —1.170750 1019405 —0.044966
0.848655 —0.133563 0.797393 0.197228
—0.344828 -0.304314 1.816798 0.152262
L —0.029061 —0.175847 0.153115 —0.006754

—0.663683 0.128467
—0.153115 0.175847
—0.797393 0.133563
—1.019405 1170750

—0.797393 0.133563
—1.816798 0.304314
—0.153115 0.175847

0.000000 —1.347916 ]
0.000000 —0.124054
0.000000 —0.646047
0.000000 —0.825922
0.000000 —1.646047

0.000000 — 1.471970
1000000 —0.124054 |

0.768451 —0.104729 —0.17889%3
0.743307 —0.181961 —0.00755%8
0.663510 —0.125829 0.221881
0.848247 -—0.160862 —0.050586
0.663510 —0.125829 0.221881
1511757 —0.286691 0.171295
0.743307 0.818039 —0.007598

42.829782 7]
25.840167
31.639541
37.030409
31.639541
68.669949
25.840167
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TaBLE 5A.10 KLEIN'S MoDEL I: “TRUE” {2 MATRICES

Specification 1: £ Nondiagonal

392422 240452 284593 3.48280 284593 632874 2.404527
240452 200269 207279 233442 207279 440721 200269
284593 207279 272596 2.19277 272596 491872 207279
0 =| 348280 233442 219277 3.62445 219277 581722 233442
2.84593 2.07279 272596 219277 272596 491872 207279
6.32874 4.40721 491872 581722 491872 10.73594 4.4072]
L 2.40452 200269 2.07279 233442 207279 440721 200269

Specification 11: £ Diagonal

(420760 129445 299579 250625 299579 5.50205 1.294457)
1.29445 1.86496 136199 1.79742 1.36199 3.15941 1.86494
299579 136199 263318 1.72460 263318 435778 1.36199
Q= 250625 1.79742 172460 2.57907 1.72460 4.30367 1.79742
299579 136199 2.63318 1.72480 2.63318 435778 1.36199
5.50205 3.15941 435778 430367 435778 8.66145 3.15941
L1.29445 186496 136199 1.79742 1.36199 3.15941 1.86496




TaBLE 5A.11 KLEN'S MODEL I: CovARIANCE MATRICES FOR EFFICIENT ESTIMATES OF &

(Specification I: £ Nondiagonal)

0.009475 —0.000962 —0.006528 —0.013185 0.005467 —0.004478  (.000085 - 0.035957 —0.001023

0000551 0.001044

0.000889

¢.001325 —0.000594 —0.028997 0.000353 —0.000388 0.000187 —0.037002 —0.000105 -0.00048% 0D.000058  0.002929

0.008857 —0.010163 —0.004941 0.005585 —0.000304 0.052893 0.00077%
1.641701 ~0.026024 0.000238 —0.004192 1.296841  0.008870

0.017895 —0.015050 0.001925 —0.441019 0.000058

0.017033 -0.001846 0.345989 0.000109

0000817 —0.165994 —0.000200

Case [-B: X unrestricted

0.000435 —0.001277

0.003847  0.000856 --
0.000277  0.000045 —
0.000449  0.000060 —
0.000132 0000236 —

0.027222
0.600635
0.006055
0.010030
0.001703

35127825 0.037242 —0.023846 --0.049073 0618163
0.000837 -0.000182 —0.000782 —0.004902

0.000718 —0.000027

0.601075 —

0.012520
(.015355
1.207477



0.004480 —0.00758 —0.002750 0.000826 0001546 —0.001237 —0.000084 0.011008 —0.000540 000037t 0000549 0.000543
0001231 —0.000651 —(.027598 —0.000006 —0.000079  0.000127 —0.024110 —0.000145 —0.000457 0.000097 0.003067
0.005881 —0.022864 —0.001367 0.002625 —0.000115 . 0.003046 0.000478 0000531 —0.000963 0.027091

1,555066 —0.003493 —0.018833 ~0.001980 0785263 0007288 0.004008 0.002455 —0.598387

0.006685 —0.005573  0.000641 —0.150117 0.000374 0000069 —0.000310 —0.004463

0.008937 —0.000727 0.093558 —0.000205 —0.000256 0.000404 —0.011089

0.000613 ~0.121764 —0.000104 0.000085  0.000142 —0.001961

25481689 0.017919 —0.013958 —D.029770  0.659307

0.000568 —0.000086 —0.000527 —0.003582

0.000672 —0.000120 0.012101

0.000832 —0.016586

1.199555

Case I-C: T known



TABLE 5A.12 KLEIN’s MODEL [: COVARIANCE MATRICES FOR EFFICIENT ESTIMATES OF &

(Specification I1: £ Diagonal)

0011669 —~0.001414 —0.007881 —0.009318 (.000000 0.000000 0.000000 0.000000 0.000000
0.001570 —0.000560 —0.032098 0.000000 0.000000 0.000000 0.000000  Q.000000

0.010180 —0.010418 (Q.000000 0.000000 0.000000 0.000000 0.000000

1709211 0000000 0000000 0.000000 0000000  0.000000

0.020556 —0.017605 0.002700 -0.600196 0.000000

0.019445 —0.002586 0.497374  0.000000

0.001075 —0.218751  0.000000

45913945  0.000000

Case [I-B: ¥ unrestricted

0.001078 —

0009448 —0.001252 - 0.006265 —0.004997 —0.002776 0.002378 —0.000365 0.081055 0.000125 —

0.001504 —0.000619 —0.031129  0.000009 —0.000008 0.000001 --0:000259 — 0.000081
0.008941 —0.014952 0.002229 —0.001909 0.000293 —0.065097 —0.000014

1670324  0.009996 —0.008561 0001313 —0.291870 0.001454 —
0.016099 --0.013788 0.002115 — 0470062 0.000136 —

0.000000 0.000000  0.000000
0.000000 0.000000  C.000000
0.000000 0.000000  0.000000
0.000000  0.000000  0.0D0D00
0.000000  0.000000  0.000000
0.000000  0.000000  0.000000
0.000000  0.000000  0.000000
0.000000  0.000000  0.000000
0.000228 —0.001048 --0.003935
0.000822 —0.000019 0.014814
0.001394 —0.017892

1.296511

0.000026 --0.000122 —0.000456
0.000017 0.000078 0.000294
0.0000603 0000013 0.000050
0.000308 —0.001414 —0.005308
0.000029 —0.000133 - 0.000498



0.016175 —0.002085 (.385919 —0.000117 0.000023 0.000114 0000427
0.000998 —0.201656 0.000018 —0.000004 —0.000017 --0.000065

42114277 —0.003983  0.000845 0.003874 0.014547

0.000787 —0.000167 —0.000765 —0.002874

0.000809 —0.000079 0.014589

0001119 —-0.018925

1.292633

Case 1I-C: I diagonal

0.007052 —0.001231 —0.004355 0.003315 —0.001199 0001027 —0.000157 0035001 0.000111 -0.000023 —0.000104 —0.000404
0.001504 —0.000635 —0.031194 0.000002 —0.000001  0.000000 —0.000049 - 0.000077 0.000016 0.000075 0.000281
0.007418 ~0.021586  0.000965 —~0.000827 0.000127 —0.028178 —0.000006 0.000001 0.000006 0.000022

1641293  0.004368 —0.003741  0.000574 —0.127531 0.001420 —0.000301 —0.001382 —0.005188

0009370 —0.008025 0.001231 —~0.273584  0.000080 —0.000017 — 0.000078 -0.000293

0011239 —0.001328 0.217641 —0.000069 0000015 0.000067 0.000251

0.000882 —0,175845  0.000011 —0.000002 —0.000010 — 0.000039

36.377440 —0.002343  0.000497 G.002279 0.008557

0000752 —0.000160 —0.000732 - 0002748

0.000808 —0.000086 0.014562

0.001086 —0.019047

1292173

Case 11-D: T known



TaBLE 5A.13  KLEIN'S MODEL 1: COVARIANCE MATRICES FOR EFFICIENT ESTIMATES OF m,
{Specification 1: £ Nondiagonal)

5283567 —0.246348 -—0.061289
0.154936 —0.066984
0.125987

Case I-A : No structural restrictions

0.005119 0011482 —0.007865
0.061303 —0.048713
0.042602

—1.576078
0.077158
~0012511
0.498606

0.000131
0.001783
—0.001738
0.0007%4

Case 1-B: Restrictions on B and T only

0426751
—0.021455
0.058782
—0.105892
0.221691

--0.002086
0.000345
0.001032
0.000498
0.01657t

0.192752
—0.010109
0.008371
—0.059552
0.031969
0.011684

0.001289
0.006606
—0.005892
0.000355
-0.000620
0.001158

—0.168432
0.011931
—0.043107
0.041787
—0.115586
—-0.016728
0.065563

0.001366
0.001347
—0.001873
—0.000265
—0.0024%7
0.000457
0.001440

—60.630595
2557263
—0.620891
18.918029
—5.959048
—2.896976
2653334
823.872798

—0.329938
- 1.401291
1.222398
—0.059523
—0.004089
—0.241732
—0.131806
55.467976



0.004013 0.005684
0.024606

Case I-C: X known

—0.003236 —0.000057
~0.018895 0.000701
0.017245 —0.000783
0.000743

—0.002069
—0.000565
0.001112
0.000550
0.015921

0.000622
0.002767
—0.002569
0.000198
—0.000496
0.000651

0001218
0.000873
—0.001103
—0.000318
~0.002170
0.000296
0.001248

—0.138630
—0.605286
0.535024
—0.027041
—-0.032057
-0.136164
—0.097351
33.437145



TABLE 5A.14 KLEIN'S MODEL I: COVARIANCE MATRICES FOR EFFICIENT ESTIMATES OF 7,
(Specification II: X Diagonal)

5665116 —0.264137 —0065715 - 1.689882
' 0.166124 —0.071821  0.082730
0.135085 —0.013414

. 0.534617
Case 1I-A : No structural restrictions

0.006154 0012830 —0.009001 0.001419
0.055682 —0.046515 0.002972
0.044663 —0.002033

. 0.001479
Case II-B: Restrictions on B and T only

0457568
~0.023005
0.063026
—0.113539
0.237700

—0.003084
—0.003881
0.005787
—0.000667
0.015448

0.206671
—0.010839
0.008975
—0.063853
0.034277
0.012528

0.001190
0.005948
—0.005835
0.000267
—0.001043
0.001203

—0.180595
0.012793
—0.046219
0.044804
—0.123933
—0.017936
0.070298

0.002002
0.003701
—0.004424
0.000081
—0.002529
0.000638
0.001994

—65.008967
2.741933
—0.665728
20284173
—6.389374
—3.106178
2.844941
883.367869

~0.333800
— 1326926
1251516
—0.054664
0.087707
-0.249798
—0.193680
58.408330



0.005432 0.009339
0.036508

Case [I-C . T diagonal

0.005165 0.007865
0.028087

Case [I-D: X known

—0.006152
—0.030538
0.025940

—0.004348
-0.023108
0.023243

U001230
0.002155
—0.001389
0.001439

0.001189
0.001814
—0.001082
0.001425

B IR
—0.003704
0.004636
- 0.000664
0.014640

—0.002514
—0.003298
0.004166
—0.000641
0.0144%96

DAUN G
0.004198
—0.004158
0.000195
—0.000855
0.001006

0.000691
0.003213
—0.003277
0.000154
—0.000777
0.000844

[EX R} B St
0.002983
—0.003300
0.000053
—0.002103
0.000483
0.001748

0.001759
0.002525
—0.002834
0.000031
--0.002018
0.000422
0.001690

—0.947283
0.891803
—0.038518
0.048301
—0.207532
—0.160770

49.289500

—0.224711
~0.738779
0.704702
—0.029815
0.031390
—0.173823
—0.147599
42.286565



CHAPTER 6

The Bayesian Approach to Econometrics

. INTRODUCTION

The analysis in the previous chapters is based entirely on the classical
approach to statistical inference in which the sampling distributions of a
suitably restricted class of estimators are compared. It is by no means
clear, however, that this classical analysis is the most appropriate for
econometric research. Many statisticians in recent years have argued that
a more natural basis for econometric inference can be found in a Bayesian
decision-theoretic approach. Thisis particularly the case when the problem
is to measure the value of a priori information.

The classical theory may be criticized on a number of grounds. In the
first place the theory is based on restrictive assumptions. The exact lower
bounds derived in chapter 2 are valid only for unbiased estimators.
Attempts to extend the results to the case of biased estimators are not
fruitful ; the answer always depends on the bias function, about which we
know nothing. The remaining results in chapter 2 are of an asymptotic
character. These probably give reasonable approximations for mod-
erately large samples but may be very poor when samples are small.
Since many econometric studies use short time series, the asymptotic
results must be viewed with suspicion, Thus the classical theory, which
uses either the unbiasedness assumption or asymptotic approximations,
is quite restrictive in the type of answers it can give. The numerical results
in chapter 5 are only approximate measures of estimation precision.
And the classical constrained estimators are only approximately optimal.

The classical theory can also be criticized for the unrealistic way a
priori information is expressed. In practice the statistician possesses
imprecise knowledge about the unknown parameters. Rarely can this be
expressed in an exact equation of the type studied in chapter 2. Inequality
constraints are not always a satisfactory alternative since they ignore
the fine detail of our knowledge and, in addition, are inconvenient to use.
Often it is more natural to express a priori information in terms of a

132
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subjective probability distribution. Thus a Bayesian approach that
begins with 2 prior probability distribution over the entire parameter
space is often more convenient than the classical approach of equality or
inequality restrictions.

A final objection to the classical approach is that it usually ignores the
decision aspect of economic estimation. The value of information is
assigned without regard to the use to which the information will be put.
Although the classical mean square error measure can be interpreted as
expected loss when a decision maker has a quadratic loss function, the
classical theory rarely explores the relationship between estimation and
decision.

These criticisms suggest that a reformulation of our problem in Bayesian
terms may be of value. In the Bayesian framework we shall be able to drop
the unbiasedness assumption, allow for a flexible way to describe a priori
information, and, in addition, place the entire analysis in a decision
context. This chapter begins by presenting the basic features of Bayesian
econometric analysis. Then a Bayesian theory of the value of a priori
information and its application to the simultaneous equations problem
follows in chapter 7.

2. BAYESIAN DEcCIsION THEORY

Statistical decision theory is concerned with the analysis of random
experiments for the purpose of making the best decisions under conditions
of uncertainty. More formally, “a statistical decision problem arises when
we are faced with a set of alternative decisions, one of which must be made,
and the degree of preference for the various possible decisions depends
on the unknown distribution™ of some random variable.! Examples of
statistical decision problems are easy to find in the economics literature.
The familiar stochastic inventory problem is typical. There a firm has
available past sales data which can be used in making current inventory
decisions. The optimal decision depends both on the costs involved and on
future demand. Since future demand is related stochastically to past
demands, the problem is to use optimally the sample observations in
making ordering decisions.

The inventory problem is only one example of a statistical decision
problem in economics. Indeed it may be argued that most cconometric
problems are of this type. The ultimate purpose of economic research is

1. WaLp (1950), p. 2.
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to improve economic policy, whether it be the policy of a household, a
firm, or a government. The topics and methods of economic research are
varied, but the policy aspect is basic to every area. To use the phrase of
MARSCHAK {1953), “knowledge is useful if it helps to make the best
decisions.” : ‘

The proposition that econometric research is most usefully viewed as a
part of the decision-making process is, of course, not new. The leaders in
the development of econometrics have always emphasized the connection

_ between economic research and policy application. Yet, there has been a
noticeable gap in connecting the methods of econometric research with its
purposes, The statistical methods of econometrics are only rarely justified
on the basis of their value for economic decision making. The econometric
techniques discussed in the previous chapters are based on the classical
concepts of unbiasedness and minimum variance. The losses involved in
actually using these techniques in practice are almost never considered
when judging alternative statistical methods.?

The traditional way of using data in economic decision problems in-
volves a two-stage process. First, data are collected and point estimates of
unknown parameters are made. Second, the point estimates (and perhaps
their standard errors} are used by policy makers in making decisions.
Decision making and statistical estimation are split into two separate
problems. The decision maker does not concern himself with the methods
used in obtaining the estimates; and the statistician does not concern
himself with the specific uses that will be made of his estimates. Estimation
methods are based on certain general principles (¢.g., minimum variance
unbiasedness) that are presumably of universai validity.

But how universal are these principles? The idea that an estimator
ought to have a small variance is very plausible. The second moment may
be a somewhat arbitrary measure of dispersion, but without a specific
decision problem in mind it is probably as good as any other general
measure. The real problem of classical estimation theory lies in the assump-
tion of unbiasedness. Why should we restrict ourselves only to unbiased
estimators when secking the best estimate? There seems to be no answer
that is convincing. One is led to accept Savage’s remark that “a serious
reason to prefer unbiased estimates seems never to have been proposed.”?
Thus if we accept the proposition that statistical methods ought to be

2. Two important exceptions are W. FISHER (1962) and THEIL (1961). Fisher uses a
Bayesian approach similar to the one developed here. Theil keeps within the classical frame-
work of unbiased estimators but explicitly develops a decision problem and a oss structure.

3. SAVAGE (1954), p. 244.
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appropriate to the decision problem for which they are used, then we
must conclude that the traditional point estimates are optimal only by
chance. In addition, the value of a priori information as measured in the
previous chapters of this monograph may have little relation to the true
measure which is based on the improved decisions that are made possible.
Of course not all econometric problems can be usefully considered as
decision problems. Often we are interested in estimating economic
relationships in order to get a better feeling for the structure of the econ-
omy. Although in the long run some policy decisions may rest on our
estimates, no immediate decision is intended. In these cases the classical
point estimates and covariance matrices may prove to be quite satis-
factory. Furthermore, as we shall see, it is often the case that the traditional
approach gives answers that closely approximate decision-theoretic ones.
Thus, one should view the Bayesian approach not as replacing the classical
approach, but rather as providing an attractive alternative for certain
classes of problems. Both classical and Bayesian methods have their
uses. The problem facing practicing econometricians is to decide which
approach is most appropriate for the particular research at hand.

3. THE BAYESIAN ANALYSIS

With these general observations, we shall turn to the technical features
of the Bayesian analysis. Only the very basic notation and ideas will be
given here. For a more detailed presentation the reader is directed to the
books by DEGRoOT (1970), LINDLEY (1965), RAIFFA AND SCHLAIFER (1961),
and ZELLNER (1971).

The usual analysis of statistical decision theory distinguishes two
problems. One is the problem of making the best decision on the basis of a
given set of data ; the other is the problem of designing the best experiment
in order to get information upon which a decision will be based. Both
problems are important in most statistical work and the distinction
between them is often not emphasized. In this respect, however, econo-
metrics is an exception. In most instances the econometrician does not
have the opportunity to design an experiment ; his data are given to him
as the result of past history and are not under his control. Thus, that aspect
of decision theory which is concerned with experimental design is often
irrelevant for econometrics. For that reason we shall ignore in this chapter
the problems of experimental design and examine only the problem of
making terminal decisions.
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The problem to be analyzed can be summarized as follows. Given that a
random experiment has been performed and the data are before us, a
decision must be made. The effects of any action that is taken depend on
the unknown state of the world. Furthermore, the data can be thought of as
the observed value of a random variable whose probability distribution
depends on the true state of the world. How should we use the data to
make the best decision?

It is clear that we must specify more carefully what we mean by the
“best” decision. Let the state of the world be represented by the parameter
vector 8. Suppose that {a} is the set of acts that are open to the decision
maker. We assume that the set of all pairs (g, &) can be ranked in order of
preference by means of a loss function L{a, 8). Thus

L(a,, 8,) < L{a,, 8,)

is equivalent to the statement that (e, , 8,) is preferred to (a,, 8,). If § were
known, then the best decision would be to select the act that minimizes
L{a, 6). However, f is not known and hence a decision problem arises.

If an experiment is performed, the decision maker can base his decision
on the sample ¥,. The act taken will be a function of the random variable ¥,
and hence a random variabile itself. The decision function that assigns an
act to a sample outcome will be denoted by the symbol d:

a= d(¥,).

The problem of making the best decision is thus one of selecting the best
decision function. We assume that, for any given 8, the best decision func-
tion d is the one with smallest expected loss (sometimes called risk)

3.1 Hd, 6) = f Lid(y), 611y, 8) dy
5

where f{y, 6) is, as in the classical theory, the density function of ¥, for
given #; the integration runs over the set § of possible sample values ¥,.
Thus, for any given @, a decision function can be judged by examining its
risk function. The statistical decision problem is to find the best decision
when 6 1s unknown.

There are a number of solutions that have been proposed for the
statistical decision problem. The basic idea of every solution, of course,
is to choose the decision rule that has the smallest risk. If there were a
decision function 4* which had uniformly minimum risk (ie.,
r[d*, 0] < r[d, 8] for all # in the parameter space A and for all d), then d*
would be optimal. In general, however, no such function exists and some
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further criterion is necessary. The various proposed solutions differ with
respect to the added criterion that is imposed.

The traditional school solves the problem by restricting the class of
decision rules to be considered. If the restrictions are strong enough,
there will be a unique decision rule, in the permitted class, that minimizes
risk for all 0. In some cases, the restriction of unbiasedness is sufficient to
obtain a uniformly best decision rule. If @ and a are m-dimensional vectors
and loss is quadratic in a — 6, this traditional approach leads to decision
functions that are unbiased and have minimum variance. Thus the
classical theory of estimation presented in chapter 1 can be thought of asa
restricted solution to a guadratic decision problem. Unfortunately, as
already pointed out, the assumption of unbiasedness, although super-
ficially plausible, is quite arbitrary. It has no connection with the loss due
to incorrect decisions and, hence, is unsatisfactory from a decision-
theoretic point of view.

The minimax solution to the statisticai decision problem is based on the
conservative procedure of avoiding the very worst. For each possible act,
focus is put on the largest possible risk. The optimal act is then the one
that minimizes this maximum risk. Although much mathematical analysis
has been devoted to the minimax solution, few people would probably
recommend its use as a general solution to the statistical decision problem.

The most controversial and yet perhaps the most attractive answer to
the decision problem is the so-called Bayesian solution. This approach
makes use of the decision maker’s own prior information about 0. It is
based on the commonsense argument that even in the absence of data,
decision makers do make reasonable decisions. Hence, some a priori
information is already available before the experiment is made and this
information should be used to make the best decision afier the data are
available.

More specifically, it is assumed that the decision maker’s uncertainty
can be summarized in a probability function on 8. This probability func-
tion represents the “betting odds” that the decision maker would give if
he were offered a series of gambles concerning the true value of £ The
Bayesian solution to the statistical decision problem is to select the act
that minimizes expected loss where the expectation runs over the joint
distribution of ¥, and 8. Thus the Bayesian solution minimizes

(3.2) r*d) = J J. Lid, 6)f(y, O)D(B) dy df = L rid, )D(8) df
AvYS

where D(6) is a multivariate density on the parameter space A representing
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the prior beliefs of the decision maker and f(y, #) is now interpreted as
the conditional density of Y, given 8.4

The Bayesian solution to the statistical decision problem can be derived
from a set of basic principles of consistent behavior, This theory is dis-
cussed in detail by SAVAGE (1954) and by PRATT, RAIFFA, AND SCHLAIFER
(1964) and need not be reviewed here. However, a few comments on the
appropriateness of the Bayesian approach may be of some value. The
Bayesian theory is sometimes criticized because it assumes that parameters
are random variables while by definition parameters are fixed numbers.
This criticism is based on a terminological confusion. The Bayesian
analysis does not require @ to represent a random outcome of some actual
experiment. We do not have to pretend that the real world was “drawn”
from the set of all possible real worlds with a certain probability. Bayesian
decision theory merely argues that people who wish to decide consistently
in uncertain situations should act as though 6 were a random variable with
a certain distribution function. It is convenient to use the terminoiogy of
random experiments when describing 6 even if there is no experiment in
mind.,

The problem of specifying an appropriate subjective probability func-
tion D(#) is a very real one. It is not easy to express in simple terms rather
vague beliefs about parameter values. Furthermore, it is often difficult
to find a family of prior distributions that is rich enough to incorporate the
decision maker’s beliefs but simple enough to be algebraically workable.
Yet, considerable prior information about parameters is usually available ;
using a probability distribution that captures the essence of the informa-
tion is surely better than ignoring the information entirely.

In practice the rule given in (3.2) is not the most convenient one for
analyzing the data after the experiment has been performed. An equivalent
and simpler rule can be given as follows. By Bayes’s formula the posterior
density on #{i.e., the conditional distribution of 8 given Y, = y)isdefined as

Sy, 0)D(0)

(3.3) . DO =Dy = 0

where

0) = | 1,006 o

4. For notational convenience we drop the subscript n from the density function.
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is the marginal density on Y,. Thus (3.2) can be written as

@ = | [ | Lian.eoe de] £ dy.
5 A
Since f* is nonnegative, r*(d) is minimized if, for every y,
(3.4} J‘ L{a, 0)D'(6) db
A

is minimized over {a}. Hence the optimal Bayes decision is that which
minimizes expected posterior loss.

We may summarize the above discussion by noting that every Bayesian
decision problem can be solved in three steps. First, a loss function that
expresses approximately the relative importance of various decision
errors is specified. Second, the posterior density function is derived from
the prior density and the likelihood function of the process. Third,
the optimal act is obtained by minimizing expected loss where the
postertor distribution of & is used in the expectation. If, as is commonly
assumed, loss is quadratic in the decision error a — 6, we may write

&L(a,0) = &a — 6YQa — 6)
= (a—~B8YQa — B) + &0 — BYQ6 — )

where 8 is the posterior mean of 8. Hence, under quadratic loss the optimal
decision for any Q is to choose the mean of the posterior distribution of 8.

4, SPECIFICATION OF THE PRrRIOR DENSITY

The major problem in any Bayesian analysis is specifying a prior density
that represents the decision maker’s beliefs and is at the same time con-
venient to use in deriving the optimal decision. Since the optimal decision
will depend on the characteristics of the posterior density function, we
should like to begin with a prior that gives rise to a rather simple posterior.
Unfortunately, this is often not possible.

By Bayes’s formula the posterior density is proportional to the product
of the likelihood function and the prior density. Thus we are led to examine
functions of the form

{4.1) - DO = DOy, K()

where K{y) is a normalizing factor insuring that the area under D’ equals
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one. If 8 is a scalar, we may choose any positive function for D(6) as long
as the product has a finite integral. Even if the resulting posterior is not
algebraically convenient, it can always be plotted on paper. Numerical
integrations can be used to calculate moments. However, if 8 is a vector
of many dimensions, we are not so free in choosing the prior density.
Unless D(6) has a particularly convenient form, the posterior density
will be unworkable. Algebraic derivation of moments will be intractable
and numerical integrations too costly for practical use.

The problem is to specify a family of prior densities such that (1) any
deciston maker’s prior information can be approximated by a member of
the family and (2) any member of the family gives rise to a simple posterior
density. The monograph by RAIFFA AND SCHLAIFER (1961) presents one
solution to the problem by developing the “natural conjugate” family
of distributions. This family may be described as follows. The likelihood
function f(y, #) is positive for all y in the sample space § and all 8 in the
parameter space 4. Let S* be the set of y values for which the integral

0y df = -———
[ 10000 = 1o
is finite. Then consider the natural conjugate family of functions
(4.2) D(6) = f(, O)K*(y)

indexed by y € §*. If y, is the actual sample value and y, indexes the prior
density, the posterior density will be proportional to

(4.3) Sy, 0)1(y2.6)-

But (4.3) can be interpreted as the joint likelihood of two independent
samples y; and y,. Hence, if the prior density is a member of the natural
conjugate family, the algebra of finding the posterior density is identical
to that of finding the distribution of two independent samples from the
same process. This latter problem is often very easy, especially if f(y, &)
is a distribution that possesses a fixed dimensional sufficient statistic.
Thus, if the prior beliefs can be expressed in a density function of the form
{4.2), the algebra of the Bayesian analysis is greatly simplified.

For a number of econometric problems, the natural conjugate family is
very flexible in describing prior beliefs. For example, in the normal linear
regression model

v=XB+u
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the likelihood function is proportional to
" exp{ —h(B — bYX'X(B ~ b) — thy'(I — X(X'X)™'X"]y}

where h is the reciprocal of the error variance ¢2. The natural conjugate
prior density for § and h is proportional to

h¥eexp{—1h(B — dYB(E — d) — Fhc}

where g and ¢ may be any positive numbers, d may be any vector having
the same dimension as #, and B may be any positive definite matrix of the
appropriate dimension. This joint density on the parameters can be
interpreted as the product of a conditional normal density on f for given h
and a marginal gamma distribution on h. The implied marginal density on
B is multivariate Student with arbitrary mean vector and covariance
matrix. Thus, if the decision maker’s information on # can be approxi-
mated by a symmetric distribution, the natural conjugate form allows for
considerable flexibility. Furthermore, if the natural conjugate family of
priors is used, the posterior density on § will have the same algebraic
form as the prior. Since the lower-order moments of the Student density
are simple functions of the basic parameters, the posterior distribution
will be easy to analyze.’

Unfortunately, the natural conjugate theory does not always give a
convenient family of prior densities. For some very important ¢cono-
metric problems the family defined by (4.2) is very restrictive and often
will not {it the prior beliefs of the decision maker. This will in general be
the case when we are analyzing systems of regression equations. Consider,
for example, the reduced-form system

v, =1Ilx, + 7,

where y, is a vector of G random variables, x, is a vector of K nonrandom
variables, and v, is a vector of G random errors. If we assume that v, has a
multivariate normal density with mean zero and covanance matrix 2,
the likelihood function for a random sample of size n 1s°

T, Q) x | " exp{ -+ tr Q™ (¥ — XIT')V(Y — XIT')}
5. For details, see RAIFFA AND SCHLAIFER (1961), chapter 13,

6. We shall drop the multiplicative constants (which may depend on the sample dataj in
writing the likelihood function. The symbol « should be read as “is proportional to.”
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where Y and X are observation matrices. The likelihood function can be
rewritten as

(4.4) f(TI1, Q) oc |Q " exp{ —3tr Q7 '[(TT — P)(X' X)X — PY + nS]}

where P and S are the least-squares estimates
1
P=YX(XX)? S=H(Y—XP’)’(Y—XP’).

If we treat Q as known, the function (4.4) describes a normal density
for IL. Thus the natural conjugate for a reduced-form system is a normal
-density on the unknown parameters I1. This would seem to be a useful
resuit since typically prior information about the regression parameters
can be roughly approximated by a normal distribution. But the catch
lies in the fact that (4.4)is not a general normal density, but one that forces
severe conditions on the variances of our prior beliefs. In particular, a
density proportional to (4.4) implies

(4.5) Var TI,-J- = w“'mjj

where w;; is a diagonal element of Q and m;; is a diagonal element of
(X'X)" '. The form (4.5) implies

Varn,, Varm,;

- L}
Varm,; Varnm;

that is, the variances of all parameters in the rth equation must be propor-
tional to the variances of the corresponding parameters in the sth equation.
Since there is no reason why our a priori beliefs about the n;; should be
related in this way, we must conclude that the conjugate family is too
restrictive to incorporate our beliefs. Another way of illustrating this
point is by expressing the variance formula (4.5) as the matrix

V=[v]=[Varn;] = om

wherc  is the column vector of the w;; and m is the column vector of the
m;;. The matrix V, representing as it does the prior beliefs of the decision
makcr, should be free from constraint (except that it must be positive).
Yet the conjugate theory forces it to be of rank one. This restriction seems
unacceptable.

If © is in fact known, we can get around the problem by generalizing
the natural conjugate family. Although (4.4) is a very restrictive normal
family, replacing it with an arbitrary normal density on IT does not cause
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any problems. The posterior distribution of I1 remains normal and the
derivation of posterior moments is elementary. If, however, {2 is unknown,
this gencralization is not available. An arbitrary normal prior density on
[1 does not combine with the likelihood function to form a tractable
posterior density since £2 enters in a complicated way. The joint conjugate
density on IT and €} derived from (4.4) by replacing the data matrices with
arbitrary matrices of constants may be interpreted as the product of a
normal density on IT conditional on 27! and a Wishart density on Q™ °.
This joint density yields a tractable posterior density but the variances of T1
are restricted as before.” A similar result applies if we consider the struc-
tural equations of a simultancous equations model. Again the prior
distribution implied by the natural conjugate theory has unsatisfactory
constraints on the choice of prior variances.

The explanation of this result is worth pursuing. The conjugate theory
suggests that all prior information arises from previous samples from the
same stochastic process. Thus all prior information must satisfy certain
constraints that apply to data generated by the process. In ¢conomics,
however, we do not believe that all our prior information comes from
previous samples. We have theoretical arguments that put constraints
on our parameters. Also we have access to various sorts of stochastic
models referring to the same parameters. For example, we can use both
cross-section and time-series data to study demand equations. It is not
plausible to assume that our a priori information, based on cross-section
analysis, can be formulated as if it arose from a time-series sample.

It would appear that, although the Bayesian approach is appropriate
for economic decision problems based on econometric models, the notion
of a conjugate family of prior densities is not always useful. When systems
of interrelated equations are analyzed, the conjugate family is not rich
enough to incorporate the prior beliefs that economists typically possess.

If instead of using the conjugate theory one simply works with an arbi-
trary density D(IL, ), the posterior density is of the form

D(IT, Q) o« D(TL, )|~ exp{ —3 tr Q™ '[(I1 — P)}(X'X)(IT — PY + S]}.

In general, this posterior will be very difficult to work with. Some simpli-
fication is possible if the prior density is of the form

D(I,Q) = D,(ID,@Q" ")

7. For an analysis of the conjugate normal-Wishart distribution, see DEGRoOT (1970),
pp. 175-80, or ANDO AND KAUFMAN (1965).
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where D, is a Wishart distribution. Then the marginal posterior density
on Il can be written as

4.6) 3(I1) oc D(ID)S* + ([T - P)X'X(I1 — P)|™*

where S* and x depend on the parameters of D,. This posterior density
is the product of the prior density D,(IT) and a matrix Student density.
Except for the special case where D (I1) is everywhere uniform, the density
{4.6) is not easy to handle analytically. Its moments must be determined
by numerical approximation methods which are quite complex if IT has
many elements.

Under most circumstances the algebra of the Bayesian analysis will not
be easy when systems of equations are involved. Covariance matrices
are never known in advance, so that some prior density on Q will be
needed. It appears, however, that the marginal posterior distributions
of [Tare not very sensitive to the prior distributions of Q. Thus the assump-
tion of a Wishart distribution with large variances might be a reasonable
solution. Nevertheless, even with this assumption, the densities are not
particularly suited for analytical work. Each probiem will have to be
examined separately and the appropriate numerical approximation
methods applied.

5. A SimpLE ECONOMETRIC MODEL

In order to illustrate the Bayesian theory, we consider a very simple
Keynesian consumption function model. The system contains one
behavioral equation that relates consumption expenditure C, linearly to
disposable income Y, and a stochastic error u, :

(5.1) Co=aY, + f+ u,.
The system is closed by the identity
(5.2) Y, =C + Z

where Z,, the difference between income and consumption, is called exo-
genous demand. The reduced form consists of two equations, but there is
only one independent relation. We shall be interested in the income
equation

(5.3)
=rZ,+p+ 1,

where x is the familiar income multiplier.
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A sample (for example, a_ time series of annual observations on con-
sumption and income} of size n is assumed to be available. If the Z, are
taken to be nonstochastic, the probability distribution of the sample is
determined once we have specified the joint distribution of the n error
terms. We shall assume that the errors u, have independent, identical
normal distributions with mean zero and variance ¢>. The likelihood
function can then be written in the two alternative forms

(542) il B k) o (1 — af'h* exp {—%hZ(c, ¥, - ﬂ)z},

(54b) fz(ﬂ, P h) o n_"hﬁn eXp {_2_::22()1 "" nZl - P}z},

depending on which set of parameters we use. For convenience, we use
the precision parameter h (which is the reciprocal of the error variance o?)
instead of the variance itself.

This multiplier model is precisely the one considered by HAAVELMO
(1947) in his classic paper. It is presented here because it is the simplest
example of a simultaneous equations system. Indeed, the model is so
simple it seems strange to even use the words *‘simultaneous™ and
“system” in describing it. There is only one stochastic equation involved
and the traditional methods of analysis are easily applied. Yet even in this
simple case, the traditional solution is not completely satisfactory.
It seems useful then to develop in detail the Bayesian solution and to
compare it with the traditional one.

In order to apply the methods of Bayecsian decision theory we must
first specify the decision problem. What exactly are the acts open to the
decision maker and what is his loss function? For purposes of illustration
we shall assume that the decision maker is a forecaster whose task is to
predict the level of disposable income in year 7 given the level of exo-
genous demand. Further it is assumed that the loss function is quadratic
in the prediction error

(5.5) LY, Y)=( - vy

where ¥, is the chosen act. The problem, then, is to find the best forecast
given Z_ and the information from the previous sample.

The traditional solution to the decision problem is to use certain ‘‘best”
estimates as certainty equivalents for the unknown variables. Thus the
forecast is

Y=pZ +7r
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where v_is set equal to its mean value zero ; p and r are minimum-variance
unbiased estimates of = and p. These estimates are obtained by least
squares applied to (5.3). The Bayesian solution, on the other hand, is to
choose the forecast which minimizes

(5.6) &Y, - Y)? = ¥2— 2V.6(Y) + constant

where the expectation is over the conditional distribution of Y, given Z,
and the previous sample. Taking the derivative of (5.6) with respect to ¥,
and setting it to zero, we find that the Bayesian forecast is simply the condi-
tional mean of Y,. Using (5.3) we can write the Bayesian forecast as

{5.7) Y.=6Y,=7Z.+5

where Tand g are the mean values of the posterior distribution on z and p.

According to (5.7) the Bayesian solution, like the classical solution,
uses certainty equivalents for the unknown parameters. The difference
between the solutions lies in the particular certainty equivalents chosen.
The next task, then, is to derive the posterior density of (x, p) and to calcu-
late their mean values.

The posterior analysis is somewhat complicated by the fact that the
required posterior distribution concerns the parameters (n, p) whereas
typically our prior information is expressed in terms of the structural
parameters («, f, h). Indeed, the interesting aspect of simultaneous egua-
tion theory—both Bayesian and traditional—is the influence of structural
restrictions on the reduced-form distributions. A general Bayesian treat-
ment of this problem appears in chapter 7. In the present example the
calculations are elementary. Since the system given in (5.1) and (5.2)
contains only one stochastic equation, the transformation between struc-
ture and reduced form is simple. Any joint probability density on the
structural parameters can easily be transformed to obtain the implied
density on the reduced-form parameters.

The Bayesian analysis thus involves two steps: deriving a posterior
density from the likelihood function and the prior density, and deriving
the distribution of the reduced-form parameters from the initial informa-
tion on the structural parameters. These two steps can be taken in either
order, giving rise to two different ways to proceed. On the one hand, wecan
use the prior structural density (denoted by D) and the likelihood function
file, B, k) to derive the posterior structural density D' and then use the
definitions of = and p to derive the implied posterior reduced-form density
D'. On the other hand, we can directly use the definitions to derive the
reduced-form prior density D from the prior structural density D and
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then use D and the likelihood function f,(r, p, k) to derive the posterior
reduced-form density D'. These two ways can be expressed diagram-
matically as follows:

structure  reduced form
prior D(z, p,h) — D(m, p)
posterior  D'(e, B,h) — D'(m, p)

For purposes of illustration, we shail explore both routes in our derivation.
6. THE BAYESIAN SoLUTION

We begin by deriving the posterior density for the structural para-
meters. The derivation will be done first under the assumption that the
parameter ¢ is known. This is, of course, a very unrealistic assumption
and will be dropped later. For the prior on (x, f) we shall take a very simple
form. Specifically, it is assumed that the prior information on § is very
weak and can be treated as a uniform distribution over the entire real line.®
Further, we assume that the prior density on « is rectangular over the
interval (0, 1). Thus we have the joint prior density on e and f given by

(6.1} Diw, B da df} oc du df

for0<a<l,—w < f < o
The joint posterior density can be written as

D'(x, ) oc D(et, B)f1(o, B, )

6.2
€2 o (1 = aPh* exp{—1h T (C, — ¥, — B?)

where h is the reciprocal of ¢%. The marginal posterior density for the
parameter a is given by

D'{a) o fw (1 — ay'h*" exp {“%hZ(Cr 2 ﬁ)z} dp
(6.3) oc (1 — a)thtt- ”exp{-;h 3le, = ay,)z}
o {1 — af'h¥*~ Yexp{ —3hl(x — a)*m + ns?]}

8. This diffuse prior can be thought of as the limit of a sequence of prior densities with
ever increasing variances; see DEGROGT (1970), pp. 190-201. STEIN (1965) discusses some
difficulties in using a diffuse “improper™ prior distribution.
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for0 < o < 1. Thelower case letters ¢, and y, represent variables measured
as deviations from their sample means; a, m, and s* are the familiar

least-squares statistics

a—= Zey,
Tyl
The posterior density for the marginal propensity to consume is seen
from (6.3) to be the product of two curves : (1) a sharply decreasing curve
(1 — o) representing the Jacobian of the transiormation relating u, and y,,
and (2) a normal density with the least-squares estimatc 4 as mean. These
two curves are drawn in figure 6.1. Since the mean of the product wili
undoubtedly be to the left of the mean of the normal curve, figure 6.1
gives a clear illustration of the upward bias of the ordinary least-squares
estimate of the marginal propensity to consume.

m=3Xy?,  s?=-E(c, — ap)

= |-

(6.4)

(1-0)°
N{a)

0 .1 2 A 4 .5 6 ¥ R 9 1.0

_FiGure 6.1

The Bayesian approach was applied to some actual data to get an idea
of the shape of the density given by (6.3). Annual U.S. consumption per
capita (1947-64) was used for C, and disposable income per capita was
used for ¥, (all in constant 1964 dollars). The resulting estimates for a
and m were found to be 0.862 and 581,700, respectively. Under the assump-
tion that & = 25, the posterior distribution locks more or less symmetric
with center at 0.775. Both prior density D, and posterior density D', are
drawn in figure 6.2.
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Dj{a)

_NL D {e)

60 .65 790 75 .80 .85 .90

FIGURE 6.2

Now that the density D'{a) has been found, it is easy to find the posterior
density for the multiplier. Since

1
a=1——,
n
the density for = is given by
_ 1 {1
(6.5) D\(n) = =D|1 — = (1 <7 < co)
3 n

This density is drawn in figure 6.3 for the same data as before. It is skewed
slightly to the right and has a mean of 4.51. The density for p can be found
in a similar way ; its mean is approximately 1315. Thus, according to the
Bayesian theory, the best forecast is given by

¥, = 1315 + 451Z,.

Using ordinary least squares on the reduced-form equation yields the
classical solution

¥, = 1300 + 4627
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b

0 1 2 3 4 5 6 7 8

FIGURE 6.3

The Bayesian joint posterior density on (z, p) can be found more directly
by noting that the prior density (6.1) implies a prior density on (r, p) of the
form

~ 1
D(z, p)dr dp oc Fdn dp
for] < m < o0, —o < p < co. Hence the joint posterior density is
D'(r, p) o« D(n, p) fa(m, p, h)

(6.6) N
cc w0 e exp{—FZm - Z, - p)’}

and the marginal posterior density for the multiplier is
6.7 Di(n) oc o~ D=V expy {—2% (n — p)’m + n§2]}
T

for1 < n < co;p,m, and 5 are the reduced-form least-squares estimates
analogous to those in (6.4).

THE ANALYSIS WITH UNKNOWN 0o

It is now necessary to relax the assumption that ¢ is known. We shall
assume instead that little is known about this parameter and that the
density on h, the reciprocal of ¢, is diffuse. Thus we assume that our joint
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prior on the structural parameters is given by
D(a, B, h) do df dh oc do dff dh

for0<a<l, —wo < f < w, < h< . Using this prior density we
can derive the posterior densities for the parameters and compare them
with our previous results. We shall concentrate our attention on the
marginal distributions of « and .

Equation (6.3) is the conditional density on « for a given value of h
By integration we obtain the marginal density

=)

Dij(a) IJ‘ (1 — okt~ Yexp{ —4h{(a — aPm + ns*]} dh
(6.8) ¢ e
x(l — cx)”l:n ¥ (o - a)?;"—z] ©<a<l)

The posterior density for the marginal propensity to consume is again the
product of two curves, but this time the normal density is replaced by a
Student density (with n degrees of freedom). Thus, if & is unknown and its
prior is diffuse, the least-squares estimate should be used in place of #
and the normal density of (6.3) replaced by the Student density. If the
prior density on h were not diffuse, the resulting posterior density on «
would differ from (6.8). If, however, the prior density on h were of the
gamma form and the prior on « remained rectangular, the posterior
density on a would remain of the Student form. On the other hand, if the
prior distributions on « and # are not of these very special forms, exact
algebraic analysis is almost impossible. Then numerical approximation
methods are required to perform the necessary integrations.

The marginal density for the multiplier is obtained from (6.7) as follows :

- ® h
D'l’(n) OCJ- i‘t—"‘”)h*‘"'”exp {_F (n — p)zﬁ + nEZ]} dh
0 ¥4

Fil oD
ot ir1+(:'r—p)2§—2 .

Even though (6.7) was more complicated, the density on = (after the
uncertainty in his accounted for) is of the familiar form: a Student density
times a Jacobian term. A comparison of (6.7} and (6.9) indicates that
knowledge of ¢ changes substantially the analysis of the reduced form.
This, of course, is the expected result given our analysis in chapter 4.
Constraints on ¢ mmply constraints on the reduced-form parameters.

(6.9)
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The posterior distribution (6.7) should have a smaller variance than the
posterior distribution (6.9) since it uses more prior information. Similarly
the posterior distribution of « given in (6.3) should have a smalier variance
than the one given in (6.8). Our numerical results (summarized in table 6.1)
verify these statements. If o is assumed known and equal to the two-stage
least-squares estimate of 25, one finds that the posterior variances of
both & and x are lower than is the case where ¢ is not known.

TABLE 6.1 BAYESIAN ANALYSIS OF HAAVELMO'S MODEL: THE VALUE OF KNOWING

SiGMa
Sigma assumed known Sigma assumed unknown
to equal 25 (Diffuse prior on h}
Posterior mean of o 0.7749 0.7636
Posterior variance of « 0.00077 0.00370
Posterior mean of 4.5129 44410
Posterior variance of 0.3343 0.8063

It is-of interest to examine how more precise prior information on «
affects our posterior distributions. If instead of using a rectangular
distributton on o we had used an informative prior distribution centered
near (.75, the posterior variances would fall. This is described in table 6.2
for the case of prior densities of the beta form

Die) oc 21 — afF (0 <a< 1)

TABLE 6.2 BAYESIAN ANALYSIS OF HAAVELMO’S MODEL | INFORMATIVE PRIORS ON

ALPHA
(Diffuse prior on )
Prior density Posterior density
&) Var({x) &(a) Var(z) &) Var(m)

0.50  0.0833 0.7636 0.003701 4.441 0.8063
0.75  0.0208 0.7724 0.002141 4,555 0.6916
075 00110 0.7723 0.001835 4.536 0.62%6
075  0.0065 0.7715 0.001607 4.503 0.5595
075 0.0045 0.7705 0.001441 4472 0.5047

The decrease in posterior variance represents the value of a priori
structural information. In chapter 7 we shall examine in detail the relation-
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ship between prior information and reduced-form precision in the
Bayesian context.

The model examined in this section is very simple. Furthermore, the
prior information was very weak. More interesting applications of the
Bayesian techniques would involve models with a more intricate structure.
Unfortunately, little is known about the practical application of Bayesian
techniques in more complex situations. An interesting exiension of the
Haavelmo model is given by CHETTY (1968); a two-cquation supply-
demand model of the Belgian beef market is analyzed by MORALES (1971).
It appears, however, that the application of Bayesian methods to systems
of simultaneous equations will be difficult because of the many numerical
integrations required. One may hope that approximation methods will be
developed to overcome these difficulties. DREZE (1968) presents one
attempt at simplifying the analysis by developing a Bayesian version of the
limited-information maximum-likelihood method of estimating para-
meters of overidentified structural equations. The method proposed by
Dreze allows considerable flexibility in expressing prior probabilities
and yet is computationally feasible. Like all limited-information methods,
it ignores some of the prior information in order to get simple calculations.
This, however, may be a reasonable approach in practice. In any case, some
approximations appear to be necessary before Bayesian methods can be
used in actual econometric research.



CHAPTER 7

The Value of Bayesian Structural Information

1. INTRODUCTION

In chapter 4 we examined from a classical point of view the general
simultaneous equations model

By+TI'x=u

It was shown that if enough was known about B, T, and the error co-
variance matrix Z, the reduced-form parameter space was restricted.
In such cases an estimator that takes the restrictions into account will
have (at least asymptotically} a smaller covariance matrix than the un-
restricted estimator. Thus information that takes the form of exact equality
constraints on the structural coefficients (e.g., knowing that certain
variables do not appear in certain equations} can sometimes increase the
efficiency of reduced-form estimation.

But exact knowledge of structural parameters is usually not available.
More often we possess only vague information. In such cases the Bayesian
approach, which begins with a prior probability distribution over (B, I, X),
seems more convenient than the classical approach, where some para-
meters are known exactly and others are known not at all. Hence we
analyze the following statistical problem: Instead of exact restrictions
on the structural parameters, the econometrician possesses a multivariate
subjective probability distribution over (B, I, Z). That prior distribution
combined with the sample data yields a posterior distribution on both the
structural and the reduced-form parameters. We seek the relationship
between the posterior variance of the reduced-form parameters and the
prior variance of the structural parameters. That is, we wish to measure the
value of Bayesian structural information in increasing reduced-form
precision.

2. THE GENERAL PROBLEM

In its traditional form, the simultaneous equations model is a special
case of the general constrained-parameter model presented at the end of

154
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chapter 2. That classical model has the following structure : The likelihood
function for the sample ¥, depends on the m-dimensional parameter
vector @ and is denoted by f.(y, 8). It is known, however, that the elements
of 8 are derived from a set of more basic ‘“‘structural” parameters. In
particular, each 6; is a given differentiable function of a, a vector of r
structural parameters :

(2.1) 8, = hix) (i=1,..,m).

The.number of structural parameters in general will be greater than m.
However, some additional information is available concerning «. In the
classical theory this information is expressed in the assumption that the
structural parameters satisfy k independent equations:

The problem is to use the sample data to make inferences about « and 6.

In the framework of classical estimation theory, three general questions
may be asked of such a model: (1) Under what conditions is o identifiable
and estimable? (2) When and by how much does the knowledge incor-
porated in h and ¢ increase the efficiency of estimating 67 (3) What are
efficient estimators of o and 67 In chapter 2 we answered these questions
by using the information matrix R, and the partial derivative matrices H
and ¥. These classical answers were summarized in section 7 of that
chapter.

We shall now analyze this problem of constrained estimation from a
Bayesian point of view. The likelihood function will be written as f(y|6)
and interpreted as the conditional density of ¥, given & The relation (2.1)
defining the parameter  as a function of the structural parameter o
remains the same. However, the prior information now takes the form of a
probability density on « rather than of exact constraints. That is, the
equations (2.2) are replaced by a probability function representing the
subjective beliefs of the statistician concerning the probabie values of a.
We shall assume that the probability distribution is described by the
continuous density function D(x) defined over r-dimensional Euclidean
space. Furthermore, to facilitate comparison with the classical answers,
we shall assume that loss is quadratic in the estimation errors.

Replacing (2.2) by the prior density D{o) represents an important move-
ment to greater realism. The classical theory assumes that some informa-
tion on a is known cxactly so that the parameter space is reduced to a
manifold in r-space. It is also assumed that nothing is known about the
location of « on the manifold. However, as DREZE (1962) has pointed out,
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this is quite unlikely to occur in practice. Rarely does an economist
possess information about which he is absolutely certain. And rarely does
he possess absolutely no information about the remaining parameters.
Typically the economist has prior information on all the parameters.
Some parameters are known more precisely than others, but almost never
is it a matter of all or nothing at all.

By allowing the density D{a) to be as concentrated or dispersed as
needed to capture the economist’s prior knowled ge, the Bayesian approach
is much more flexible than the classical one. Of course the cost of this
greater flexibility may sometimes be high: it is not easy to find a density
that captures the economist’s vague information, especially when there
are many parameters. And, as we discussed in the previous chapter,
such a density may not be computationally convenient after it has been
specified. Nevertheless, the advantages of the Bayesian approach may
often outweigh these difficulties. In any case it is of interest to see how the
value of structural information can be evaluated in the Bayesian context.

Again we can ask three questions concerning such a model: (1) Under
what conditions is o identified and estimabie? (2) How is the precision in
estimating @ increased by the use of the structural information? (3) What
are efficient estimates of « and 6? However, before proceeding to answer
these questions, we must define more precisely what is meant by efficiency
and identification in a Bayesian framework.

3. IDENTIFICATION AND PRECISION FROM THE
BAYESIAN POINT OF VIEW

Suppose we possess a prior probability density D(e) over the structural
parameters. Given the relation # = h(a), this implies a prior probability
function on 6. Combining the prior on  and the likelihood function f(y|6),
one can derive by Bayes’s formula the posterior distribution of 8 (i.e,, the
conditional distribution of # given y). The mean of this posterior distribu-
tion (assuming it exists}is a function of y and is the Bayesian estimator of 8
under quadratic loss. It has the property that it minimizes, for all functions
i{y), the expected, or Bayes, risk

(1) = & ,[Hy) ~ 07 Q[Hy) — 6)
= &8,[t(y) — 60[Hy) ~ 0] = &8, 1)

where @ is an arbitrary positive semidefinite matrix. By notational con-
vention & , represents the expectation over the joint distribution of 8
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and Y,; &,, represents the expectation over the conditional distribution of
y given §; and &, represents the expectation with respect to the marginal
(prior) distribution of 8. The risk function #(8,¢) is simply the classical
measure of mean square error.

Suppose the statistician originally possessed the prior distribution D,
but now possesses the more concentrated distribution D,. Typically this
will mean that D, and D, have the same expected values, but D, has a
smaller covariance matrix than D. If t, and ¢, are the Bayes estimators
for D, and D, respectively, then the gain from having the more precise
information about & can be defined as simply the change in mean square
error '

(3.1) rB, o) — riB, t))

Of course (3.1) is a function of the unknown parameters and can take
both positive and negative values depending on the value of 6. Hence in
order to get a measure of the gain in estimation efficiency due to increased
prior information, we must find some “average” value for (3.1). In the
classical case the measure of efficiency gain was evaluated at the true
parameter values a® and 0° This could also be done here. In practice,
of course, we would evaluate (3.1) at the best estimate of 8. Before the
sample is available, that would be the prior mean.

A second possibility is to take the expectation of (3.1) as a measure of the
gain. The problem then arises whether to use the density D, or the density
D in calculating the expectation. Since the density D, presumably
describes more precise information, the latter choice is probably prefer-
able. A third possibility is to calculate the Bayes risk for each estimator and
measure the gain by the change in Bayes risk. These three possibilities
may be stated algebraically as

(3.1a) r(6°t,) — r(8°%1¢)),
(3.1b) & r(0, ty) — &,1(6, 1)),
(3.1¢c) &or(f, 1o) — &,1(0, 1))

where &, represents the expectation with respect to the density D, and &,
represents the expectation with respect to D, . The first measure is closest
to the classical measure used in the earlier chapters. The last two measures
are more in the Bayesian spirit. From a decision-theoretic point of view,
(3.1b) would seem to be preferred. However, for our later results it will be
more convenient to choose the third measure for gain in efficiency resulting
from additional prior information. Since the optimal estimator under



158 Efficient Estimation with g priori Information

quadratic loss is the posterior mean, we have for any Bayes estimator
r* = 8,0 — SOy)Q[0 — E0y)] = &tr OV,

where ¥, is the covariance matrix of the conditional distribution of &
given y. Thus our measure of the gain from possessing structural informa-
tion is the difference in expected posterior variance (the expectation being
over the marginal distribution of y}).

There remains the question of defining identifiability in the case of
Bayesian prior information. In classical statistics we say that a model is
identifiable if distinct points in the parameter space give rise to distinct
probability functions for the sample. Thus the structural parameters of the
model described in section 2 are identifiable in the classical sense if, for
any two distinct parameter values o; and a, satisfying (2.2), the likelihood
functions f,[h{a;)} and f,[h(x,)] differ for at least some values of y. If this
were not the case, we could never, on the basis of sample evidence, distin-
guish between «, and «,. In particular we could never find an estimator
which was consistent for all admissible values of .

From the Bayesian point of view, the posterior density function sum-
marizes all of the prior and sample information that is available. If the
posterior density for the structural parameter « is highly concentrated
around its mean, then we are in an excellent position to distinguish
between possible values of a. If, however, this density 1s highly dispersed,
then we are in a poor position. Thus one is tempted to define identification
in terms of the degree of concentration of the posterior density. A model
would be called unidentified only in the limiting case where the posterior
density approaches (in at least one dimension) a degenerate “‘uniform™
density over the entire line. In general this can occur only when both the
prior density is “‘uniform™ in some dimension and the model is also un-
identified in the classical sense. This follows from the fact that the posterior
density is proportional to the product of the prior density and the likeli-
hood function.

This definition of identification is not very satisfactory since it is solely
in terms of the posterior density. Thus it is possible, according to our
definition, for a parameter to be identifiable even though the data were
completely irrelevant. In fact, if the prior density is unimodal and bell-
shaped, the model will almost always be identifiable. The problem here
is that in the classical case, the concepts of identifiability and estimability
are almost equivalent. In our definition we have extended to the Bayesian
case the concept of estimability, but have not captured the idea that
identification also concerns the way the sample is relevant to the final
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estimate. Hence we shall use the word “estimable’ rather than “identifi-
able” when referring to a posterior density concentrated around its
mean and leave unanswered the question of an appropriate Bayesian
definition of identification.’

4. A BAYESIAN INFORMATION INEQUALITY

We shall now present some results which relate the precision of reduced-
form estimates to the precision of the prior density on the structural
parameters. For any twice differentiable multivariate density function
D{a) we define the precision matrix F as the matrix having typical element

B 8% log D(x)

4.1
@1 do; 0o

D{o) dov.

The matrix F measures the concentration of the distribution of a around
its mean. If D(x) is multivariate normal, then F is the inverse of the co-
variance matrix of a. In general, if F is nonsingular, then F~' is a lower
bound to the covariance matrix V of a. More precisely, for any density
D(o) that is everywhere twice differentiable, ¥ — F~! is positive semi-
definite. The inverted matrix equals the covariance matrix if and only if
D(x) is normal. This result, which is the multivariate version of an in-
equality due to Weyl, is proved in the appendix to this chapter.

The precision matrix F is a useful measure of concentration because of
the following result, which generalizes a finding of SCHUTZENBERGER
(1958):

The expected posterior covariance mairix of any estimator of the
structural parameter vector o is at least as large as

(4.2) {&(H'RH) + FI™!

where H is the matrix of partial derivatives for the function h(a) and R, is the
information matrix for f,; the expectation is with respect to the prior density
on a. If h(x) is linear, a lower bound for the expected posterior covariance
matrix of the reduced-form parameter vector 8 is given by

(4.3) H[&(H'RH) + F"'H".

These bounds are attained only if the posterior density is normal with
variance independent of y.

1. For further discussion of the identifiability concept in Bayesian statistics see DREZE
(1962) and ZELLNER (1965).
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The proof of this result is given in the appendix. Here we shall make a
few comments about its interpretation. The matrix H'R_H is the informa-
tion matrix of & based on f[Ma)]. It measures the amount of information
concerning « that is available in the sample. In general it will depend on the
unknown parameters; hence the first term in (4.2) is the expected sample
information. The prior precision matrix F measures the amount of
information about o contained in the prior density function D{s). The
sum of these two matrices gives an upper bound to the precision in
estimating o. It is known that, with a normal likelihood function and a
normal prior density, the posterior precision is the sum of prior precision
and sample precision.? Our result indicates that the normal model gives
a bound for other models. The theorem also suggests that if the sum is a
singular matrix, then there exists some dimension along which there is
zero precision. That is, the posterior density of « is uniform on some sub-
space. Hence we can give a partial answer to our first question: The
structural parameter o is estimable only if the matrix [£(H'R,H)} + F]
is nonsingular. The bound (4.3) is valid even if the matrix is singular. In
that case the generalized inverse must be used.

The Schutzenberger inequality does not give a complete answer to our
basic question concerning the relationship between the posterior variance
of # and the prior precision of «. In the first place, (4.3) is only a lower
bound for the mean posterior variance. In general the variance will be
larger—perhaps even much larger. Secondly, (4.3) is valid only if h(a) is
linear in « This is not satisfied in the simultaneous equations model
with which we began. It should be no surprise that general exact answers
are not possible since the prior distribution of 8 is related in a simple way to
the prior distribution of « only if h is linear. Thus, exact general results
will not be available in the Bayesian framework any more than they are
available in the classical framework. The best we can do is to find some
approximate answer that will be valid when the sample size is large and
the posterior distribution is highly concentrated. Of course, for any specific
problem, one can always calculate the expected gain by evaluating the
appropriate integrals and obtain an exact answer. This, however, is often a
formidable task and in practice we must rely on approximations.

Consider the following modification of our result. Suppose the sampie
size is large enough that the unconstrained maximum-likelihood estimator
of § is approximately normally distributed. Since this estimator is approx-
imately sufficient for 6, little is lost by replacing the likelihood function

2. See, for example, RAIFFA AND SCHLAIEER (1961), p. 312.
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f.(6) by the asymptotic distribution of the maximum-likelihood estimator,
at least when n is large enough. Then, if the prior density is nearly normal,
the posterior density on « will aiso be approximatety normal. Its precision
matrix will be the sum of the prior precision matrix F and the sample
information matrix H'R_H. This type of argument,® which can be made
precise in terms of limiting sequences of prior and posterior densities,
leads us to large-sample results similar to those in classical theory. For
large n, the expected mean square error matrix of the Bayesian estimator
of « is approximately

(4.4) (HRH + F)~".

The expected mean square error matrix of the Bayesian estimator of & is
approximately

(4.5) H(H'RH + F)" 'H"

In both cases H and R, are evaluated at the true parameter «°. Further-
more, the inverse in {4.5) can be replaced by the generalized inverse if the
matrix is singular.

To the extent to which these approximations are valid, we can use (4.4)
and (4.5) to answer our original questions. The question of the estimability
of « depends on the existence of the inverse in (4.4}. The question of the
value of the structural information depends on the size of (4.5). If there
were no structural information at all, the Bayes estimator of § would
approximately equal the maximum-likelihood estimator and its mean
square error matrix would be approximately R, '. Thus the prior informa-
tion has value if the matrix

(4.6) R7' — HHRH + F)'H'

is positive semidefinite and nonzero.

Using a little algebra we can derive some simple conditions for estima-
bility and improved reduced-form precision. If the matrix F has rank k,
there exists a k x r matrix P such that F = P'P. Then the structural
precision matrix can be written as

(H P)[R, 01[H
HRH + F = = CDC
0o rlLp

3. For a heuristic argument similar to the one presented here see LINDLEY (1963), part 2,
pp. 128-30. A proof would have to follow along the lines of LE CaM (1953) and is beyond the
scope of the present study.
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where C' = (H'" P') and D is the block diagonal matrix composed of
the information matrix and an identity matrix. Since D is nonsingular,
(H'R,H + F)has an inverse if and only if C* has full row rank r. Further-
more, the matrix (4.6) is the northwest submatrix of

4.7 D~! — Cc(Cc'poy*C.

Since (4.7) is necessarily positive semidefinite, so is (4.6). It can also be
verified that either matrix is zero if the other is. But (4.7) will be zero if
and only if C has full row rank m + k. Since C has the same rank as
(H' F), the answers to our original questions may be given as follows :

1} The structural parameter « is estimable if and only if (H' F) has
rank r. Thus a necessary condition for a to be estimable is that the rank of
¥ plus the rank of H be at least as great as r. If H has full column rank r,
this is assured for any F; if F has full rank -, this is assured for any H. In
general, the number of independent Bayesian constraints (measured by the
rank of F) plus the number of independent pieces of sample information
{measured by the rank of H) must be no less than the number of structural
parameters. These results are the same as the classical results if F replaces
W'Y as a measure of prior information.

2) The matrix R;' — H(H'R,H + F)*H’' is positive semidefinite.
It is equal to the zero matrix (and hence the prior information is of no
value in increasing reduced-form precision) if and only if the rank of
(H"  F)equals m plus the rank of F. Since the rank of (H' F)isat most r,
the prior information has value as long as the rank of F is greater than
r — m. Again these results are the same as the classical results if F replaces
Yy,

3) As we have already stated, the best estimator—in the sense of
minimizing Bayes risk under quadratic loss—is the posterior mean.

5. A LimiTt RESULT

The previous discussion indicates that the Bayesian and classical
measures of the value of information are closely related. In certain cases
the classical measure is in fact the limit of the Bayesian measure as the
prior information becomes more and more precise.

The classical constraint y{a) = 0 can be viewed as the limiting case of a
prior density on « that is concentrated along the manifold y(a) = 0.
Suppose o is a random variable such that y{x) has mean zero and co-
variance matrix equal to V, Using (4.2) and (4.3) we can calculate a lower
bound to the expected covariance matrix of the posterior distribution of a
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and at least an approximation to a lower bound to the expected covariance
matrix of the posterior distribution of 8. If we consider a sequence of prior
densities, each with &[y(e)] = ¢ but with Var[y{a)] decreasing, we can
derive a sequence of lower bounds. It is the limiting value of this sequence
that concerns us here. ‘

There is a problem in specifying the sequence of prior densities. We
would like to capture the idea of a probability density function that puts
most of its mass near the surface (o) = 0. But in addition we must specify
how that mass is to be distributed along the surface. The classical con-
straint says that the parameter must satisfy y(z) = G but says nothing
further about its value. A possible Bayesian analogue is to assume a prior
distribution that spreads the mass uniformly along the surface. The notion
of a uniform prior density over an unbounded region is not a happy one.
However, since we are interested in the limiting behavior of a sequence
of densities, the idea can be made precise by considering a sequence of
densities with fixed mean but whose variance (along the surface) grows
without bound.

To make things simple, let us proceed with the case where both y/(x)
and h(x) are linear. Thus the classical model is

§ = Hao

(5.1)
0=Wu

where H is an m x r matrix and ¥ is a k x r matrix. A Bayesian density
that is similar in spirit to the exact constraint Wa = 0 is the multivariate
normal density

b
(5.2) Dmy=xap-EMVWa—iwa

with a large and b small. With this density o has mean zero and precision
matrix given by

(5.3) F = (a¥'¥ + bl).

The concentration ellipsoid for this density is elongated in the direction
determined by W'¥. As a approaches infinity and b approaches zero, the
distribution becomes concentrated along the hyperplane ¥a = 0.
Thus one way to express the idea that o almost surely satisfies the con-
straint is to say that « is a2 random variable with precision matrix {5.3)
with large a and small b.
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The inequalities (4.2) and (4.3) say that a lower bound for the mean
posterior covariance matrix for the Bayesian estimator of « is

(HRH + F) ' = (H'RH + a¥'¥ + bI)~!
-and the bound for 8 is
H(H'RH + F)"'H = HIHRH + a¥'¥ + bI)"'H’
where R = &[R,]. Using the identity {4.3) of chapter 1, we find that in the
limit as @ approaches infinity and b approaches zero
é, Var[aly] = lgl}c (H'RH + a¥'¥)"!
> C — CY'(¥C¥) '¥C

and

& Var[8ly] > lim H(H'RH + a¥"¥)"'H'

> H[C — C¥'(YCV) '"¥wCIH’

where C = (H'RH + W'¥)™!. These are exactly the classical bounds of
chapter 2, section 7, except that R, is replaced by its expected value.
Thus, at least in the linear case, the classical bounds are indeed the limit
of the Bayesian bounds when the prior information becomes exact.
Using asymptotic approximations, similar results can be obtained for the
nonlinear case.

6. SoME QUANTITATIVE RESULTS

The general results of sections 4 and 5 can now be applied to the
simultaneous equations model. If X is the n x K matrix of observations
on K predetermined variables and Y is the n x G matrix of observations
on G endogenous variables, then the likelihood functions for the simul-
taneous equations model can be written in logarithmic form as

(6.1) logf =k — $nlogdet Q@ — Ltr[Q~{(Y' ~ [IX")(Y — XTI

where k is a constant. As long as we have no prior information on X,
it is possible to study the problem of estimating B, I, and II separately
from the problem of estimating £ and (1.* Since we are mostly interested

4. The derivation in section 4 of chapi;er 4 concerning exact constraints carries over to the

Bayesian case. If F consists of zeros whenever the element refers to Z, we can simply ignore
the parameters T and
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in the former set of parameters, we shall ignore the covariance matrices
and define 6 to be the vector of I1 elements taken by rows; o is then the
vector of (B, I') elements also taken by rows. The function relating fto a is

(6.2) II=-B7'T,

which has Jacobian

98] _ n-d ,
(6.3) H—[@]—[B (' Iyl

If any element of « is known exactly, the corresponding column of H is
deleted. The information matrix for (6.1) is
&% log f -
R, = [ ‘gaa,.aaj] =Q7'® .#,
where .#, = &(X’'X). These results were derived in chapter 4.

We are now in a position to determine numerically the value of struc-
tural restrictions in increasing reduced-form precision. For this purpose
we shall take two econometric models—one artificial and the other based
on actual data—and evaluate the matrix (4.5) for alternative prior precision
matrices. In this way we can observe how posterior reduced-form precision
varies with changing prior structural information.

The first model is the artificial one given in chapter 5 consisting of the
two structural equations

Yo+ Bia¥a + ¥iixy + ViaXa + y13Xs = Uy
Bar¥i + Yo+ YauXy + Ya2Xy + ¥a3xXs = Uy

The “true” parameter values are again assumed to be as follows:

B=11, I_:OOI, z“__10_
21 i 10 01

Using these values and the 3 x 3 identity matrix for .#,, we can
evaluate H and R, at the true value «°. We then examine a number of
alternative prior distributions. All of them have the following form:
the precision matrix F is diagonal with three nonzero elements (cor-
responding to ;. 712, ¥23) and the rest zero. The three nonzero elements
all take the same value denoted by ¢. Thus we assume that the econo-
metrician knows essentially nothing about f,;, 13, B21» v21 and 7y,
but has a prior distribution on y,,, y,, and y,; which has mean zero,
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zero correlations, and equal variances. The normalization constraints
B = By, = 1 are taken as exact.

When the parameter ¢ equals zero, we have no prior information at all
and the system is not identified. The matrix H'R,H + F is singular and no
constraints are imposed on the reduced form. Ordinary least squares
on the reduced form is the best estimating procedure and yields a co-
vartance matrix that is approximately R,;!. When the parameter ¢
approaches infinity, the three structural coefficients are known with
certainty. We are in the case of exact restrictions and the classical formulas
are valid. The system is overidentified and can be estimated with greater
precision. The interesting question is to examine the intermediate stages
where ¢ is neither zero nor infinite,

This we have done for a number of values of ¢. As a measure of reduced-
form precision we have taken the trace of the mean square error matrix.
Thus, using the approximation resuits of section 5, we calculate

tr HHH'RH + F,]"'H'

for various values of ¢. The results are presented in table 7.1. We observe
that the’imposition of exact constraints yields a 25 percent reduction in
reduced-form variability. Exactly half of this reduction can be attained by
relaxing the constraints and assuming they are true on the average but with
variance equal to one. Since the magnitude of the coefficients in the model
are of the order of unity, a variance of one is quite large. Thus it appears
that, when the data are weak, imposing an imprecise Bayesian restriction
can be very important in increasing reduced-form precision. This is also
seen in our second example, Klein’s Model I of the U.S. economy.
Klein’s Model 1 (which we have already discussed in chapter 5) consists
of three behavioral structural equations in fifteen variables. With four

TaBLE 7.1 REDUCED-FORM PRECISION: ARTIFICIAL MODEL

Structural Structural Trace of reduced-
prior precision prior variagnce Jorm posterior

@ ! covariance matrix

0 o0 210

0.5 200 19.3

1 1.00 185

10 0.10 16.5

25 0.04 6.2

100 0.01 i6.1

ool 0 16.0
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identities and the normalization constraints, there are potentially thirty
unknown structural parameters in B and I. Klein, however, imposes
eighteen exact restrictions (all of the type that call certain parameters
zero) so that only twelve structural parameters need be estimated. A
complete Bayesian approach would begin with a multivariate prior
density over the thirty structural parameters.® This, however, was not done
in our calculations. In the first place, the technical problem of working
with such large matrices (particularly, the inversion of a 30 x 30 ill-
conditioned matrix) makes this impractical. In the second piace, many
of the exact restrictions are very reasonable and would in a Bayesian
analysis receive very high precision. Therefore, we start with Klein’s
model and relax six of the eighteen restrictions. These six are then replaced
with a prior probability distribution. That is, beginning with a model
containing eighteen structural parameters, we impose diffuse priors
over the original twelve and nondiffuse priors over the added six. Again
we assume that the 18 x 18 prior precision matrix is diagonal and that the
six nonzero diagonal elements are equal to the common value ¢.

In Klein's original model consumption depends on wages, profits,
and lagged profits ; investment depends on profits, lagged profits, and the
capital stock ; private wages depend on income, lagged income and time.
Thus each equation has, after including a constant. term, four unknown
parameters. Our model adds lagged income and the capital stock to Klein's
consumption function; income and lagged income to his investment
equation; and lagged profits and the capital stock to his labor demand
equation. These additions seem plausible; it is surely not known with
certainty that these variables enter with zero coefficients. Therefore we
replace the exact restrictions with the assumption that these variables have
coefficients with prior mean zero and prior precision ¢.

As ¢ approaches infinity, we have Klein’s original model. If ¢ equals
zero, we have completely ignored six restrictions and have a classical
model with eighteen structural parameters to be estimated. Since we
ignore six correct restrictions, the reduced form will be estimated less
precisely than if we had used them. The intermediate cases, where ¢ is
finite but nonzero, are of interest to us here. By varying ¢ we can sec how
replacing exact restrictions with stochastic ones affects reduced-form
precision.

S. Indeed, a complete Bayesian approach would also place a prior distribution on Z.
By assuming that the elements of F relating to the parameter I are all zero, we are in fact
assuming a diffuse prior on these parameters.
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The results of our experiment are presented in table 7.2. Again the same
three loss functions are used as in chapter 5. We see that the six exact
restrictions are very important in reducing the variability of the reduced-
form estimates. Ignoring the restrictions entirely causes a fourfold in-
crease in the average variance. By imposing the restrictions in stochastic
form much of the loss in precision can be regained. For the model in
guestion, most of the coefficients can be interpreted as marginal propensi-
ties. All economists would agree that their magnitudes lie in the range
{— 1, + 1) Thus from an economist’s point of view a prior density with unit
variance is quite uninformative. It represents almost no information.

TABLE 7.2 REDUCED-ForM PrECisioN: KLEIN's MODEL

Structural Structural Trace of reduced-
prior precision prior variance Jorm posterior
covariance matrix

@ o ! tr v, tr V¥ tr @,V
0 0 1.044 0.492 0.291
0.5 2.000 0.715 0.367 0.261
1 1.000 0.707 0.363 0.259

25 0.040 0.578 0.310 0.205

100 0.010 0.471 0.265 0.164
900 0.001 0.32% 0.198 0.129
o0 0 0.277 0.129 0039

Yet such a prior density results in a significant reduction in reduced-form
variability. A prior precision that is more descriptive of the degree of
uncertainty that economists possess about the parameter would be 100,
implying a prior standard deviation of 0-10. This results in two-thirds of
the precision gain that would be attained if the coefficients were known
with certainty.

The above calculations are based on a series of approximations and do
not yield exact Bayesian results. Nevertheless, these examples suggest
that prior information that is rather imprecise from an economist’s point
of view may be very important in increasing reduced-form precision. In a
macroeconomic model where collinearity among the predetermined
variables is high, every little bit of structural information helps. If imposing
exact restrictions is dangerous because they may be false, then imposing
stochastic ones is much better than ignoring them. The Bayesian approach
to incorporating prior information may be a very attractive alternative
to the classical methods currently in use.



Appendix

1. THE GENERALIZED WEYL INEQUALITY*

Let f(y) be the probability density function for the n-dimensional random variabte
Y. Let S be the region in n-space for which f(y) is strictly positive. We assume that f
is everywhere twice differentiable (which implies that f and the partial derivatives f;
are all zero on B, the boundary of 5). Then V, the covariance matrix of ¥, satisfies the
inequality

(A1) cVe=cF!
where c is any vector of constants and F is the matrix with typical element

& log f
—_—— d
P Jdy

If F is singular, then (A.1) is still valid if ¢ is in the.row space of F and F~'
interpreted as the generalized inverse of F. If ¢ is not in the row space of F, then
¢'Ve is infinite.

Proof. Using the n-dimensional Stokes theorem (which says that the integral of a
differential form over the boundary B of a surface § is equal to the integral of the
derivative of the form over the surface), we have

K
(A2) fs(yi - yi)a_f_ dy = — 8, + L 3, — 1)) dyg
= _5‘J
and
logf alogf dlog f 3
G oy = j IOy + [ 5dy
| log f alogf
(A.3) Ry ol fiyrdy +f W, dy
_ alogfalogff{y)d
s % ¥

where i, is the mean of y;,é;; is the Kronecker delta, and dy, represents the dif-
ferential dy,dy, . .. dy, with dv, deleted. Then for arbitrary vectors ¢ and d, we obtain

* For the one-dimensional version see HarDy, LITTLEWOOD, AND POLYA (1952), p. 165.

169



170 Efficient Estimation with a priori Information

from (A.2)

(Ad) f S ey — )t Zda log /

fld _chdl

By the Cauchy-Schwartz inequality, this lmpllCS
c'Ve dFd = (cd)>
If ¢ is not in the row space of F, then d may be chosen such that ¢'d is nonzero and
d'Fd is zero. In that case, ¢'Ve is unbounded. If ¢ is in the row space of F we can
exclude the possibility that d'Fd is zero since that will occur only when ¢'d = 0.
Hence a lower bound for ¢'Ve can be obtained by finding
- (c'd)®
& dFd
subject to the convenient normalization rule d'Fd = 1. This results in the value
¢'F*c where F* is the generalized inverse of F. (That is, F* satisfies FF™F = F))
If F is nonsingular, we get {(A.1).
The inequality will be an equality only if the two terms in the mtegra[ (A.4) are

proportional for the maximizing value 4 = F*¢. This requires log f to be propor-
tional to (y — u)' F(y — p), which is true only for the normal density.

2. THE GENERALIZED SCHUTZENBERGER INEQUALITY

Let f{h{z)] be the likelihood function in terms of the structural parameters.
Then, assuming all of the expectations are finite, the matrix

&, [t — )t — o)) — [E(H'RH) + F]7!

is positive semidefinite for any estimator 1.
Proof. By Weyl’s inequality

logh !
— — Y > g =
&yt — o)t — af] = Var[aly] = [f;.y 5, 00, j|

where D' is the posterior density of x given y. (By A = B we mean 4 — B is positive
semidefinite.) Hence,

,,[(I—ac)(l—a)])- é"[é'; 5210gD’:I*1

P da; B
dlog D)
= *['”"’v'ﬁ?w?amf]
i T

where the last inequality follows from the convexity of the inverse function. By
Bayes’s formuia

(A.5)

log D{a}y) = log f[h«)] + log Dz} - log g(y)
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where D is the prior density on z and g is the marginal density on y. Hence,

#Plogd , Flogf ?logD
" du By " day ™t dw,; da;
and
&2 log D’ 8 log f % log D
(A6) &y o 0w, 8 Aat; Oux; + 0 oty ot

Combining {A.5) and (A.6) we get
&t — a)t — o] = —[S(H'RH) + F]!

since

0% log f Ohy Ok,
26,00, da, b,

log f
S g, ~ O L L
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