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Abstract

The literature on treatment choice focuses on the mean of welfare regret. Ignoring
other features of the regret distribution, however, can lead to an undesirable rule that
suffers from a high chance of welfare loss due to sampling uncertainty. We propose to
minimize the mean of a nonlinear transformation of welfare regret. This paradigm
shift alters optimal rules drastically. We show that for a wide class of nonlinear
criteria, admissible rules are fractional. Focusing on mean square regret, we derive
the closed-form probabilities of randomization for finite-sample Bayes and minimax
optimal rules when data are normal with known variance. The minimax optimal rule
is a simple logit based on the sample mean and agrees with the posterior probability
for positive treatment effect under the least favorable prior. The Bayes optimal rule
with an uninformative prior is different but produces quantitatively comparable mean
square regret. We extend these results to limit experiments and discuss our findings
through sample size calculations.
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1 Introduction

Evidence-based policy making using randomized control trial data is becoming increasingly
common in various fields of economics. How should we use data to inform an optimal
policy decision in terms of social welfare? Building on the framework of statistical decision
theory as laid out in Wald (1950), the literature on statistical treatment choice initiated by
Manski (2004) analyzes how to use data to inform a welfare optimal policy. Following Savage
(1951) and Manski (2004), researchers often focus on the average of welfare regret across the
sampled data (called expected regret) and obtain an optimal decision rule by minimizing a
worst-case expected regret. See Schlag (2006), Stoye (2009, 2012), Tetenov (2012), Ishihara
and Kitagawa (2021), and Yata (2021) for finite sample minimax regret treatment rules,
and Hirano and Porter (2009, 2020) for asymptotic analysis on treatment rules with limit
experiments.

When it comes to the ranking of different statistical decision rules, once we eliminate those
that are stochastically dominated, it becomes less obvious how we should compare decision
rules that do not stochastically dominate each other. Focusing on the expected regret, as
suggested by Manski (2004), provides a natural starting point. In general, regardless of
whether we consider a Bayes or minimax criterion, optimal decision rules defined in terms of
their expected regret are nonrandomized, i.e., given a sample, optimal decision rules either
treat everyone, or no-one in the population. There is, however, no compelling argument why
we should limit our attention to the mean of regret, as has been acknowledged by Manski
and Tetenov (2014) and Manski (2021). In fact, focusing solely on the mean of regret and
ignoring other features of the distribution of regret (e.g., second- or higher-order moments
and tail probabilities) can lead to rules that incur a large welfare loss due to random sampling
errors, especially when the sample size is small. As an artificial example, suppose that the
outcome of interest is +1 or −1 (success or failure) and imagine that we observe 100 successes
and 99 failures (the status quo is zero for everyone). The empirical success (ES) rule, which
is asymptotically optimal in terms of the mean of regret, suggests that everyone in the entire
population should be treated. If there is a swing of one outcome from +1 to −1 though,
then the same ES rule now dictates that no-one should be treated. Such high sensitivity of
treatment decisions with respect to sampling uncertainty implies that, given a sample, there
is always a non-negligible probability that ES rule incurs a large welfare loss.

To address these concerns, this paper proposes a novel approach to statistical treatment
choice by optimizing a nonlinear transformation of welfare regret. In what follows, we let
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g(·) be a nonlinear transformation of the regret loss. We assess the performance of each
treatment rule via the expected value of the transformed regret loss that it delivers. In
the spirit of Wald (1950), this average nonlinear regret over realizations of the sampling
process becomes the risk function. We refer to this risk as the nonlinear regret risk. Due to
the nonlinearity of g(·), information relating to other moments of the regret distribution is
encoded in the risk function. For example, when g(r) = r2, the associated risk function is
the sum of the squared expected regret and the variance of regret, penalizing decision rules
that lead to a high variance of regret. We refer to this nonlinear regret risk as mean square
regret.

This shift of criterion towards a nonlinear transformation of regret changes optimal
rules drastically. We show that, for a wide class of nonlinear regret risk, including mean
square regret, any deterministic decision rule is dominated by some randomized decision
rule (i.e., fractional assignment rule). That is, deterministic decision rules are inadmissible
once we take other moments or features of the regret distribution into account. This offers a
novel decision-theoretic justification for implementing a randomized (fractional) treatment
assignment rule, which differs from the justification given in the existing literature such as
the minimax regret treatment choice under a partially identified welfare (Manski, 2000, 2007;
Stoye, 2012; Yata, 2021) and the minimax regret rule with nonlinear welfare (Manski and
Tetenov, 2007).

We provide general results on Bayes and minimax optimal rules based on the nonlinear
regret risk. For mean square regret, we derive both Bayes and minimax optimal decision
rules, not only in Gaussian finite samples with known variance but also asymptotically.
These optimal rules are randomized, with the probability of assignment to the treatment
dependent on the t-statistic for the average treatment effect estimated from experimental
data. The probability of randomized assignment has a simple and insightful expression that
is easy to compute in practice. For example, an asymptotically minimax optimal rule for the
previous artificial example would allocate treatment to the population with a probability of
only 54%, dropping to 46% if one outcome switches.

We show that the form that our treatment rules take is closely related to the posterior
distribution for the average treatment effect. In particular, the minimax mean square regret
rule coincides with the posterior probability-matching assignment under the least favorable
prior. The posterior probability-matching assignment, known as the Thompson sampling
algorithm (Thompson, 1933), possesses a desirable exploration-exploitation property in bandit
problems. Our results show that the posterior probability-matching assignment can be
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justified in terms of minimax mean square regret, even in the static treatment choice problem
where the exploration motive does not exist.

Given a nonlinear regret risk and a prior for the underlying potential outcome distributions,
we obtain the Bayes optimal rules. Consistent with our admissibility results, Bayes optimal
rules are, in general, also randomized rules. For mean square regret, we show that the Bayes
optimal rule is a tilted posterior-probability matching rule, where the probability of random
assignment corresponds to the posterior probability tilted by a weighting term determined
by g(·). In a special case where the prior for the average treatment effect is supported only on
two symmetric points, the tilting term is nullified and the Bayes optimal rule boils down to
the Thompson-sampling type posterior-probability matching rule. For the minimax optimal
rule in a Gaussian experiment with known variance, we can show that a least favorable
prior is supported on two symmetric points. Hence, the minimax optimal rule follows the
posterior-probability matching assignment rule, and is a logistic transformation of the sample
mean. This minimax mean square regret rule is easy to compute and tuning parameter free.

Imagine the outcome of interest now follows a normal distribution N(1, 1) with unit mean
and unit variance, whereas the status quo is zero for everyone. In this scenario, the infeasible
optimal rule is to treat everyone and the regret of any decision rule is supported on [0, 1].
Suppose the planner observes one observation from the N(1, 1) distribution and needs to
make a treatment choice. The ES rule is optimal in terms expected regret, but could be
far from ideal in terms of other features of the regret distribution. In fact, if the planner
adopted ES rule, then there would be a mass of 16% probability that she ended up with the
largest possible regret of one. In contrast with the mean regret criterion commonly used in
the literature, our means square regret criterion penalizes rules with large variance of the
regret distribution. If, instead, the planner implemented our proposed minimax rule, she
could avert such high chance of welfare loss: the probability of incurring a regret larger than
0.95 is only 1.4%. Also see Figure 1.1 for a comparison of the distributions of the regret for
ES rule and our proposed mean square regret minimax optimal rule.

In practice, the planner often has a preference for deterministic rules, and calculates a
sufficient sample size for their randomized experiment based on these deterministic rules.
We also show that implementing these deterministic rules can lead to a large efficiency loss
in terms mean square regret. For example, to guarantee the same mean square regret with
our proposed minimax optimal rule, ES rule and hypothesis testing rule require 40% and
1100% more observations, respectively.

Following Hirano and Porter (2009), we extend our finite sample results to a large
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ES rule Our proposed minimax rule

Mean of regret 0.1587 0.2077
Standard deviation of regret 0.3653 0.2650

Mean square regret 0.1587 0.1133
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Figure 1.1: Summary statistics and empirical distributions of regret for the ES rule (left) and
our proposed minimax optimal rule (right) in one N(1, 1) experiment, 10000 simulations.

sample setting by engaging with the limit experiments framework introduced by Le Cam
(2012). Even when potential outcome distributions are non-Gaussian but belong to a
regular parametric class, we can obtain a Gaussian limit experiment with a known variance.
Therefore, we can apply our results from a finite sample Gaussian experiment to a limit
experiment and find feasible and asymptotically optimal rules with some efficient estimator
of the parameters. Interestingly, in the limit experiment, the Bayes optimal rule under the
mean square regret remains different from the minimax optimal rule, although the resulting
mean square regret is quantitatively similar between the two rules. This is in contrast with
the linear regret risk, for which it is known that the Bayes optimal and minimax optimal
rules in the limit experiment are the same empirical success rule.

In a series of papers, Manski and Tetenov explored optimal treatment rules in frameworks
that go beyond the classical paradigm of the statistical decision theory laid out by Wald
(1950). Manski (1988, 2011) argues to maximize a functional of the welfare distribution
that at least weakly respects stochastic dominance. Manski and Tetenov (2014) consider the
performance of a statistical treatment rule measured in terms of quantiles of the welfare. Our
approach is distinct from the approaches taken by the aforementioned papers. In particular,
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we select treatment rules based on the distributions of their regret. Motivated by the risk
aversion of policy makers, Manski and Tetenov (2007) consider a concave and monotone
transformation of welfare measured in terms of a binary outcome, and define regret in terms
of the transformed welfare. Manski and Tetenov (2007) further show that the fractional
monotone rules are essentially complete. However, the set of fractional monotone rules
does not exclude deterministic rules. Our approach is also different from the approach of
risk averse welfare criteria taken by Manski and Tetenov (2007). To compare rules based on
features of the regret distribution other than the mean, we look at a nonlinear transformation
of regret. Manski and Tetenov (2007), in contrast, look at a concave transformation of the
outcome. In Appendix A, we discuss how our analysis differs from that of Manski and
Tetenov (2007) in greater detail.

The literature on the treatment choice problem has become an area of active research
since the pioneering works of Manski (2000, 2002, 2004) and Dehejia (2005) introduced a
decision theoretic framework to the problem. Minimax regret treatment choice rules for finite
samples are derived in Schlag (2006) and Stoye (2009). Tetenov (2012) considers asymmetric
regret criteria. Treatment choice analysis given partially identified welfare includes Manski
(2000, 2007), Stoye (2012), Christensen et al. (2020), Ishihara and Kitagawa (2021), and
Yata (2021). Chamberlain (2011) investigates a Bayesian approach to treatment choice, and
Christensen et al. (2020) and Giacomini et al. (2021) discuss a robust Bayesian approach.

There is a growing literature on learning in the context of individualized treatment rules
that map an individual’s observable characteristics to a treatment. See Manski (2004),
Bhattacharya and Dupas (2012), Kitagawa and Tetenov (2018, 2021), Mbakop and Tabord-
Meehan (2021), and Athey andWager (2021), among others. Our analysis does not incorporate
individuals’ observable covariates. Since the nonlinear regret risk aggregates the conditional
nonlinear regret risk additively, it is straightforward to incorporate observable discrete covariates
into our analysis, i.e., an optimal individualized fractional assignment rule that applies an
optimal fractional assignment rule to each subpopulation of individuals sharing the same
covariate value.

The rest of the paper is organised as follows. Section 2 introduces our setup. Section
3 studies the admissibility of decision rules with nonlinear regret risk. Section 4 presents
finite sample results on Bayes and minimax optimal decision rules. Section 5 extends our
results to the limit experiment framework and derives asymptotically optimal decision rules.
Section 6 evaluates the efficiency loss of using common deterministic rules via the lens of
sample size calculations. Section 7 concludes. Lengthy proofs and lemmas are reserved for
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the Appendix.

2 Setup

Consider the assignment of a binary treatment D ∈ {1, 0} to a population of individuals
whose treatment effects can be heterogeneous. Let Y (1) be the potential outcome when
D = 1 (with treatment) and Y (0) be the potential outcome when D = 0 (no treatment).
Denote by P ∈ P the joint distribution of (Y (1), Y (0)). Define µ1 := E[Y (1)] and µ0 :=

E[Y (0)] as the means of the potential outcomes Y (1) and Y (0) under the distribution P . We
assume that the welfare of the planner is determined by the mean outcome in the population.
Defining the population average treatment effect as τ := µ1 − µ0, the infeasible optimal
treatment policy is as follows: allocate D = 1 to each individual in the population if τ ≥ 0

and allocate everyone D = 0 otherwise.

Since τ is unknown, the planner collects an experimental sample of the observed outcomes
of n units randomly drawn from the population P . We assume the experimental design is
known to the planner. The experiment generates a random vector Zn := {Yi, Di}ni=1 ∈ Zn,
where Yi is the observed outcome of unit i, Di is the treatment status of unit i, and Zn is
the sampling space. Let P n be the sampling distribution of Zn, which depends on P as well
as the known experimental design.

After observing data Zn, the planner chooses a statistical treatment rule δ̂ that maps
Zn ∈ Zn to a proportion of individuals to be treated, i.e.,

δ̂ : Zn → [0, 1],

where δ̂(zn) can be interpreted as the probability of treating one individual according to a
randomization device after observing Zn = zn.

Remark 2.1. We say δ̂ is a non-randomized or deterministic rule if δ̂(zn) ∈ {0, 1} for almost
all zn ∈ Zn. We say δ̂ is randomized or fractional if 0 < δ̂(zn) < 1 for almost all zn ∈ Zn.

Applying the statistical treatment rule δ̂ to the population yields a welfare of

W (δ̂) := W (δ̂, P ) := µ1δ̂ + µ0(1− δ̂)

to the planner. The infeasible optimal treatment policy that maximizes welfare is δ∗ :=

1{τ ≥ 0}. Following Savage (1951) and Manski (2004), we define the regret of δ̂ as its
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welfare compared to the welfare of δ∗, i.e.,

Reg(δ̂) := Reg(δ̂, P ) := τ [1{τ ≥ 0} − δ̂].

Since Reg(δ̂) is a random object that depends on realizations of the random vector Zn,
Manski (2004) follows Wald (1950) in measuring the performance of δ̂ using its risk, i.e., the
expected regret across realizations of the sampling process:

R(δ̂, P ) := EPn [Reg(δ̂)] :=

∫
zn∈Zn

Reg(δ̂(zn))dP n(zn),

where EPn denotes the expectation with respect to P n.

The risk criterion R(δ̂, P ) ranks treatment rules by the means of their regret. We, instead,
consider a planner whose assessment of the performance of statistical treatment rules depends
not only on the mean of regret but also on some other features of the regret distribution.
To take other features of the regret distribution into consideration, we look at the nonlinear
transformation of regret:

g(Reg(δ̂)),

where g : R+ → R is some nonlinear function. The planner’s preference over statistical
decision rules δ̂ is measured by the expected value of g(Reg(δ̂)) with respect to realizations
of Zn:

Rg(δ̂, P ) := EPn [g(Reg(δ̂))]. (2.1)

We refer to the criterion Rg(δ̂, P ) as the nonlinear regret risk. Due to the nonlinearity
of g(·), Rg(δ̂, P ) depends not only on the mean but also on other features of the regret
distribution, including its higher-order moments. For instance, if we specify the quadratic
function g(r) = r2, the squared regret is

(Reg(δ̂))2 = τ 2[1{τ ≥ 0} − δ̂]2.

This squared regret constitutes the new loss function, and we can evaluate the performance
of δ̂ via mean square regret :

Rsq(δ̂, P ) := τ 2EPn [1{τ ≥ 0} − δ̂]2.
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Remark 2.2. Similar to in classical estimation theory, we can decompose

Rsq(δ̂, P ) =
[
R(δ̂, P )

]2

+ V (δ̂, P ),

where R(δ̂, P ) is mean regret risk, and

V (δ̂, P ) := EPn
[
τ(1{τ ≥ 0} − δ̂)− τEPn [1{τ ≥ 0} − δ̂]

]2

is the variance of the regret Reg(δ̂). Therefore, in addition to the standard mean regret
criterion R(δ̂, P ), mean square regret also takes into account the variance of regret. Ranking
treatment rules by the mean square regret criterion thus has the benefit of penalizing rules
with high regret variance.

3 Inadmissibility of deterministic rules

Viewing the nonlinear regret risk Rg(δ̂, P ) defined in (2.1) as the risk criterion within Wald’s
framework of statistical decision theory, we introduce the following definition of admissibility
of a statistical treatment rule:

Definition 3.1 (Admissibility and inadmissibility under nonlinear regret risk).

(i) A statistical treatment choice rule δ̂ : Zn → [0, 1] is admissible under the nonlinear
regret risk Rg(δ̂, P ) = EPn [g(Reg(δ̂))] if no δ̂′ 6= δ̂ dominates δ̂, i.e., there is no δ̂′ such
that Rg(δ̂

′, P ) ≤ Rg(δ̂, P ) holds for all P with the inequality strict for some P .

(ii) A statistical treatment choice rule δ̂ : Zn → [0, 1] is inadmissible under the nonlinear
regret Rg(δ̂, P ) if there exists a decision rule δ̂′ 6= δ̂ that dominates δ̂.

As in standard statistical decision theory, admissibility of δ̂ defined through nonlinear
regret is a minimal requirement that a desirable statistical treatment rule should satisfy.

Assumption G (Nonlinear Transformation). The nonlinear transformation g : R+ → R is
differentiable and g(·) is strictly increasing on R+ \ {0} with g′(0) = 0.

Assumption G puts mild restrictions on the shape of the nonlinear transformation.
Together with Assumption G, the next theorem shows that, in terms of nonlinear regret
risk, deterministic assignment rules are inadmissible.
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Theorem 3.1. Consider a deterministic rule δ̂D that is nondegenerate at some P ∈ P with
τ 6= 0, i.e., P n(δ̂D = 1) ∈ (0, 1) for some P with τ 6= 0. If Assumption G holds, then there
exists a randomized rule δ̂R that dominates δ̂D.

Proof. Given a deterministic rule δ̂D, we establish the existence of a randomized rule δ̂R that
yields Rg(δ̂D, P ) ≥ Rg(δ̂R, P ) for all P ∈ P with the inequality strict for some P ∈ P .

Given δ̂D, let B be a Bernoulli random variable with Pr(B = 1) = λ, independently of
the sample Zn. Consider the following randomized rule:

δ̂R = (1−B)δ̂D +B(1− δ̂D).

This rule randomly flips the assignment of the deterministic rule δ̂D if B = 1. Since the
probability of assignment to treatment when δ̂R is implemented is (1−λ)δ̂D +λ(1− δ̂D), the
regret of δ̂R is

Reg(δ̂R) = τ
[
1{τ ≥ 0} − (1− λ)δ̂D − λ(1− δ̂D)

]
= (1− λ)Reg(δ̂D) + λReg(1− δ̂D).

Hence, the nonlinear regret risk is

Rg(δ̂R, P ) = EPn
[
g
(

(1− λ)Reg(δ̂D) + λReg(1− δ̂D)
)]
.

We now take the directional derivative (from above) of Rg(δ̂R, P ) with respect to λ at λ = 0,

∂Rg(δ̂R, P )

∂λ

∣∣∣∣∣
λ↘0

= EPn
[
g′(Reg(δ̂D))

(
Reg(1− δ̂D)−Reg(δ̂D)

)]
= EPn

[
g′(Reg(δ̂D))τ(2δ̂D − 1)

]
= τ

[
g′(Reg(1))P n(δ̂D = 1)− g′(Reg(0))P n(δ̂D = 0)

]
.

If τ > 0, Reg(1) = 0 and Reg(0) = τ , so

∂Rg(δ̂R, P )

∂λ

∣∣∣∣∣
λ↘0

= τ
[
g′(0)P n(δ̂D = 1)− g′(τ)P n(δ̂D = 0)

]
= −τg′(τ)P n(δ̂D = 0) ≤ 0
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where the second equality follows from the assumption that g′(0) = 0, and the inequality in
the last line follows from g′(τ) > 0 due to strict monotonicity of g(·). Since P n(δ̂D = 0) > 0

for some P ∈ P with τ 6= 0, the inequality in the last line holds with a strict inequality at
those P .

In the case where τ < 0, we have Reg(1) = −τ and Reg(0) = 0. We hence have

∂Rg(δ̂R, P )

∂λ

∣∣∣∣∣
λ↘0

= τg′(−τ)P n(δ̂D = 1) ≤ 0,

where the inequality is strict at some P ∈ P with τ 6= 0 due to the nondegeneracy of δ̂D.

Having shown that ∂Rg(δ̂R,P )

∂λ

∣∣∣
λ↘0
≤ 0 for any P and is strictly negative at some P , we

conclude that there exists λ > 0 in a neighborhood of zero such that the resulting randomized
treatment choice rule dominates δ̂D. This completes the proof.

This result shows that if we consider the space of decision rules to comprise nondegenerate
rules (i.e., P n(δ̂ = 1) ∈ (0, 1)), deterministic assignment rules δ̂D ∈ {0, 1} are inadmissible.
Equivalently, the class of randomized decision rules is essentially complete and any admissible
decision rule among the nondegenerate decision rules has to be a randomized rule.

This theorem contrasts sharply with the known admissibility of deterministic rules in
more standard formulations of the treatment choice problem, where the (negative) expected
welfare corresponds to the risk criterion in Wald’s framework of statistical decision theory.
For hypothesis testing problems with monotone likelihood ratio distributions, Karlin and
Rubin (1956) show that the class of deterministic threshold rules is essentially complete
(i.e., for an arbitrary decision rule δ̂ including randomized ones, there exists a deterministic
threshold rule that performs as well as δ̂). As exploited in Hirano and Porter (2009) and
Tetenov (2012), the essential completeness of deterministic threshold rules carries over to the
treatment choice problem, implying that optimal rules among the deterministic threshold
treatment assignment rules are admissible.

4 Finite sample optimality

LetD be the set of statistical decision rules under consideration. We measure the performance
of a rule δ̂ ∈ D by its nonlinear regret risk Rg(δ̂, P ), which depends on the true data
generating process P . In this section we look at two optimality criteria and derive general
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results on optimal rules for these criteria. We illustrate the usefulness of our results using
specific parametric models.

4.1 Bayes optimality

Definition 4.1 (Bayes nonlinear risk and the Bayes optimal rule). Let π be a prior distribution
on P ∈ P . The Bayes nonlinear (regret) risk of δ̂ with respect to the prior π is

rg(δ̂, π) :=

∫
P∈P

Rg(δ̂, P )dπ(P ).

A Bayes optimal rule δ̂π with respect to the prior π is such that

rg(δ̂π, π) = inf
δ̂∈D

rg(δ̂, π).

Moreover, we say that a prior distribution π is least favorable if rg(π, δ̂π) ≥ rg(π
′, δ̂π′) for all

prior distributions π′.

We now characterize the Bayes optimal rule for the Bayes nonlinear risk. It turns out
that under mild restrictions on the nonlinear transformation g, the associated Bayes optimal
rule is also randomized. To proceed, let π(P |zn) be the posterior distribution of P given a
prior π and Zn = zn.

Theorem 4.1. Suppose Assumption G holds, and the following conditions are true:

(i) g(Reg(δ̂)) ≥ 0 for all δ̂ ∈ D and P ∈ P.

(ii) There exists some treatment rule δ̃ ∈ D such that Rg(δ̃, P ) is finite.

(iii) For almost all zn ∈ Zn, the posterior distribution π(P |zn) puts nonzero probability mass
on both {P ∈ P : τ(P ) > 0} and {P ∈ P : τ(P ) < 0}.

Then for almost all zn ∈ Zn, the Bayes optimal rule δ̂π exists, is randomized, and satisfies

∫ [
τ(P )g′

(
τ(P )(1{τ(P ) ≥ 0} − δ̂π)

)]
dπ(P |zn) = 0. (4.1)
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Proof. Under conditions (i) and (ii), it is straightforward to show (see, for example, Theorem
1.1 in Lehmann and Casella (2006)) that the Bayes optimal rule δ̂π is such that

δ̂π ∈ min
δ̂∈[0,1]

∫
g(Reg(δ̂))dπ(P |zn), for almost all zn ∈ Zn, (4.2)

provided the solution of (4.2) exists for almost all zn ∈ Zn.

Then the existence of δ̂π follows from continuity of the objective function (4.2) in δ̂ ∈ [0, 1],
which itself follows from the fact that g is continuously differentiable. (4.1) follows from the
first order condition for (4.2). To see 0 < δ̂π < 1 for almost all zn ∈ Zn, note g′(τ) > 0 for
all τ > 0 because g is strictly increasing on R+ \ {0} by Assumption G. Thus,[

∂

∂δ̂

∫
g(Reg(δ̂))dπ(P |zn)

]
δ̂↘0

=−
∫

[τ(P )g′(τ(P )1{τ(P ) ≥ 0})] dπ(P |zn)

=−
[∫

P∈P:τ(P )>0

[τ(P )g′(τ(P ))] dπ(P |zn) + g′(0)

∫
P∈P:τ(P )<0

τ(P )dπ(P |zn)

]
=−

[∫
P∈P:τ(P )>0

[τ(P )g′(τ(P ))] dπ(P |zn)

]
< 0,

where the last inequality follows from Assumption G and condition (iii). Similarly,[
∂

∂δ̂

∫
g(Reg(δ̂))dπ(P |zn)

]
δ̂↗1

=−
∫

[τ(P )g′(τ(P )(1{τ(P ) ≥ 0} − 1))] dπ(P |zn)

=−
[
g′(0)

∫
P∈P:τ(P )>0

τ(P )dπ(P |zn) +

∫
P∈P:τ(P )<0

[g′(−τ(P ))τ(P )] dπ(P |zn)

]
=−

∫
P∈P:τ(P )<0

[g′(−τ(P ))τ(P )] dπ(P |zn) > 0.

The above calculations imply that we can always reduce
∫
g(Reg(δ̂))dπ(P |zn) by moving

δ̂ away from both 0 and 1 and toward an interior point. Therefore, δ̂π must be such that
0 < δ̂π < 1, for almost all zn ∈ Zn.

Remark 4.1. In general, the Bayes optimal rule depends on the nonlinear transformation g
and the model specification for P . The calculation of the posterior expectation in (4.1), which
requires integration with respect to the posterior distribution of P , can be complicated. To
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gain further insight, consider the simple case where g(r) = r2 and P = Pτ is parameterized
by the one dimensional parameter τ ∈ R, where τ = E[Y (1)] − E[Y (0)] (for example, the
outcome is normal with known variance). It follows that the prior distribution is indexed by
τ and written as π(τ), and the Bayes optimal rule with respect to the Bayes mean square
regret

rsq(δ̂, π) :=

∫
Rsq(δ̂, Pτ )dπ(τ)

is characterized as

∫ [
τ 2(1{τ ≥ 0} − δ̂π)

]
dπ(τ |zn) = 0, (4.3)

where π(τ |zn) is the posterior distribution of τ given the prior π(τ) and data Zn = zn, with
Zn ∼ P n

τ .

Further to this, if the prior π(τ) is supported on two symmetric points τ ∈ {a,−a} for
some a > 0, it follows that

δ̂π(zn) =

∫
a21{τ ≥ 0}dπ(τ |zn)∫

a2dπ(τ |zn)
=

∫
1{τ ≥ 0}dπ(τ |zn)︸ ︷︷ ︸

posterior probability that treatment effect is non-negative

,

which is the exact form of the posterior probability matching rule, as used by Thompson
(1933). If the prior is not supported on two symmetric points, it holds that

δ̂π(zn) =

∫
τ 21{τ ≥ 0}dπ(τ |zn)∫

τ 2dπ(τ |zn)
=

∫
1{τ ≥ 0}dπ(τ |zn)︸ ︷︷ ︸

posterior probability matching

∫
τ 2dπ(τ |zn, τ ≥ 0)∫

τ 2dπ(τ |zn)︸ ︷︷ ︸
weight

, (4.4)

where π(τ |zn, τ ≥ 0) denotes the posterior distribution of τ conditional on τ ≥ 0. Thus, for
the mean square regret, the Bayes optimal rule is a tilted version of the posterior probability
matching rule.

Remark 4.2. In contrast, for the linear regret risk R(δ̂, P ), the Bayes optimal rule is

δ̂(zn) =


δ̂(zn) = 1,

∫
τ(P )dπ(P |zn) > 0,

δ̂(zn) ∈ [0, 1],
∫
τ(P )dπ(P |zn) = 0,

δ̂(zn) = 0,
∫
τ(P )dπ(P |zn) < 0,

which is deterministic unless
∫
τdπ(τ |zn) = 0.
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We now provide a simple example for which we derive the finite sample Bayes optimal
rule with respect to a flat prior. This example also sheds some light on the form of the Bayes
optimal rule in large samples, which is discussed in Section 5.

Example 4.1 (Testing an innovation with normal outcome and mean square regret). Let
g(r) = r2. Suppose the distribution of Y (0) is known to the planner and without loss of
generality, E[Y (0)] = 0. Therefore, the planner only needs to learn E[Y (1)] and in the
experimental design she allocates all units to the treatment. Let Ȳ1 be the sample average
of observed outcomes. Assume Ȳ1 ∼ N(τ, 1) is normally distributed with an unknown mean
τ ∈ R and a known variance normalized to one, with the likelihood function

f(ȳ1|τ) =

√
1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) ,∀ȳ1 ∈ R. (4.5)

Proposition 4.1. In Example 4.1, consider the uniform (improper) prior πf on τ . Then
the Bayes treatment rule with respect to the mean square regret is

δ̂πf (Ȳ1) = Φ
(
Ȳ1

) [
1 + Ȳ1 ·Ψ(Ȳ1)

]
,

where Ψ(x) := φ(x)
Φ(x)(1+x2)

> 0 for any x ∈ R, and where Φ(·) and φ(·) are the cdf and pdf of
a standard normal random variable, respectively.

Proposition 4.1 is a direct application of Theorem 4.1. Since the prior is flat, the ‘posterior
density’ is proportional to the likelihood (4.5). The form of the Bayes optimal rule then
follows (4.4). The Bayes optimal rule δ̂πf is a product of two terms. The first term, Φ(Ȳ1), is
the posterior probability that the treatment effect is positive given the uninformative prior,
and corresponds to the posterior probability matching rule. The second term, (1+Ȳ1 ·Ψ(Ȳ1)),
adjusts the first term upwards if Ȳ1 > 0, and adjusts it downwards if Ȳ1 < 0 (note that
Ψ(x) > 0). Therefore, this Bayes optimal rule tilts the posterior probability matching rule
and assigns treatment with a probability closer to zero or one. Also see Table 1 and Figure
5.1 for the magnitudes of the probability assignment of the Bayes optimal rule and posterior
probability matching rule with respect to the uniform prior.

4.2 Minimax optimality

As an alternative to Bayes rule, this section studies minimax optimal rule for nonlinear regret
risk.
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Definition 4.2 (Minimax optimal rule). A minimax optimal rule δ̂∗ is such that

sup
P∈P

Rg(δ̂
∗, P ) = inf

δ̂∈D
sup
P∈P

Rg(δ̂, P ).

The following proposition characterizes the minimax optimal rule as a Bayes rule under
a least favorable prior.

Proposition 4.2 (Lehmann and Casella (2006)). Suppose π is a distribution on P such that

rg(δ̂π, π) = sup
P∈P

Rg(δ̂π, P ).

Then: (i) δ̂π is minimax; (ii) π is least favorable.

Proposition 4.2 is a direct result of Lehmann and Casella (2006, Theorem 5.1.4). Using
Proposition 4.2, we can attempt to find the minimax optimal rule by adopting a ‘guess-and-
verify’ approach: guess a least favorable prior and derive its associated Bayes optimal rule;
verify that the resulting Bayes nonlinear regret risk equals the worst frequentist nonlinear
regret risk of the Bayes optimal rule. In general, it can still be difficult to guess the
least favorable distribution. However, in many parametric models, the support of the least
favorable distribution is often discrete and finite, or the minimax optimal rule has a constant
frequentist risk across its parameter space. See, for example, Kempthorne (1987). This
greatly simplifies the problem. We now demonstrate the minimax optimal rule for Example
4.1.

Theorem 4.2. In Example 4.1, a finite sample minimax treatment rule is

δ̂∗(Ȳ1) =
exp

(
2τ ∗Ȳ1

)
exp

(
2τ ∗Ȳ1

)
+ 1

,

where τ ∗ ≈ 1.23, which solves

sup
τ∈[0,∞)

1

2
τ 2E

[
1

exp
(
2τ Ȳ1

)
+ 1

]
, (4.6)

or, equivalently, solves

sup
τ∈[0,∞)

τ 2E

( 1

exp
(
2τ Ȳ1

)
+ 1

)2
 , (4.7)
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where the expectation is with respect to Ȳ1 ∼ N(τ, 1). Moreover, a least favorable prior π∗

on τ is a two-point prior such that π∗(τ ∗) = π∗(−τ ∗) = 1
2
.

Remark 4.3. The minimax optimal rule is a simple logistic transformation of the sample
mean and is straightforward to calculate. Moreover, the minimax optimal rule agrees with
the posterior probability matching rule, i.e., the treatment probability equals the posterior
probability that the treatment effect is positive with respect to the least favorable prior,
which is supported on two symmetric points around zero. In this way, we justify the posterior
probability matching rule in a static environment without multiple exploration phases.

Remark 4.4. The treatment probability of our suggested minimax optimal rule is always
between zero and one. As such, our rule naturally provides a degree of confidence on the
hypothesis that τ > 0, i.e., the treatment effect is positive. Given data from the single phase
experiment, a larger value of δ̂∗ means we are more confident that τ > 0, while a smaller value
of δ̂∗ signals much less evidence supporting a positive treatment effect. Consider a scenario
where Ȳ1 is only slightly larger than zero. While the empirical success rule will assign
the innovation treatment to everyone in the population, our rule only allocates a fraction
(more than 50 percent) of the population to the innovation. The allocation probability
can be interpreted as a measure of confidence in the performance of a treatment. Such
an interpretation would not be possible if the optimal rule is deterministic rather than
randomized.

Remark 4.5. On a more technical note, the proof of Theorem 4.2 relies on some new
techniques that are absent from the existing treatment choice literature. For the mean regret
criterion, deterministic threshold rules form an essential complete class, so the minimax
optimal rule with respect to mean regret can be found by directly minimizing the worst-
case regret with respect to the threshold, without figuring out a least favorable prior. See
for example, Stoye (2009); Tetenov (2012). However, for mean square regret, deterministic
rules are inadmissible, and it becomes essential to find the probability distribution of a least
favorable prior. To find a least favorable prior, we adopt the ‘guess-and-verify’ approach.
By observing the form of the mean square regret, we guess that a least favorable prior π∗ is
such that

π∗ (τ) =
1

2
, π∗ (−τ) =

1

2
,

for some 0 < τ < ∞. Within this set of candidate least favorable priors π∗τ indexed

by τ , Theorem 4.1 implies the Bayes optimal rules admit the form δ̂π∗τ (Ȳ1) =
exp(2τȲ1)

exp(2τȲ1)+1
.

Furthermore, rsq(δ̂π∗τ , π
∗
τ ) follows the form in (4.6), and is equivalent to the form in (4.7).
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Then, our guess for the least favorable prior is

π∗ (τ ∗) =
1

2
, π∗ (−τ ∗) =

1

2
,

where τ ∗ solves (4.6) or (4.7). With this guess of the least favorable prior, we further establish
that the following condition holds:

Condition 1. rsq(δ̂∗, π∗) = supτ∈[0,∞) Rsq

(
δ̂∗, Pτ

)
.

The left-hand side of Condition 1 is the Bayes mean square regret of δ̂∗ with respect to
our hypothesized least favorable prior π∗, and the right-hand side of Condition 1 is the worst
mean square regret of δ̂∗. Thus, Proposition 4.2 implies that δ̂∗ is a minimax optimal rule
and π∗ is least favorable. See also Figure 4.1 for a graphical illustration. The full proof of
Theorem 4.2 is left to Appendix B.
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Figure 4.1: Illustration of Condition 1 for Theorem 4.2. The dotted line is rsq(δ̂π∗τ , π
∗
τ ) as a

function of τ ; the solid line is Rsq

(
δ̂∗, Pτ

)
as a function of τ .

5 Asymptotic optimality with mean square regret

In this section we derive asymptotically optimal rules via the limit experiment framework
(Le Cam, 2012), following the approach taken by Hirano and Porter (2009). We first consider
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a local parametrization of the statistical model P so that, in large samples, the treatment
choice problem is equivalent to a simpler problem in a Gaussian limit experiment. Then, we
examine and normalize our nonlinear regret in the limit, and find the corresponding optimal
treatment rule. A feasible and asymptotically optimal treatment rule also follows if there
exists an efficient estimator of the parameters in the original statistical model P . For a
review, see Hirano and Porter (2020).

5.1 Limit experiments

For simplicity, we focus on regular parametric models of P ∈ P with mean square regret
Rsq. Semiparametric models and other nonlinear regret criteria can also be considered, albeit
necessitating more technical analysis. Without loss of generality, consider a case where the
distribution of Y (0) is known and the mean of Y (0) is zero. Suppose now the distribution of
Y (1), denoted by P , is parameterized by a finite dimensional parameter θ ∈ Θ ⊆ Rk. Hence,
the population average treatment effect is

τ(θ) =

∫
zdPθ(z).

Data Zn = {Zi}ni=1 is independently and identically drawn from Pθ. In particular, Zi ∼
Pθ, where Zi ∈ Z and Z is the support of Zi. We now imagine a sequence of experiments
En := {P n

θ , θ ∈ Θ} in which the sample size n grows. Let θ0 ∈ Θ satisfy τ(θ0) = 0. We
consider a sequence of local alternative parameters of the form θ0 + h√

n
, h ∈ Rk, the most

challenging case in which to determine the optimal treatment rule, even in large samples.

Assumption DQM (Differentiability in Quadratic Mean). There exists a function s : Z→
Rk such that∫ [

dP
1
2
θ0+h(z)− dP

1
2
θ0

(z)− 1

2
h′s(z)dP

1
2
θ0

(z)

]2

= o(‖h‖2), as h→ 0,

and I0 := Eθ0 [ss′] is nonsingular.

Assumption DQM is a standard assumption in the limit experiment framework (e.g.,
Van der Vaart, 1998). The function s can usually be interpreted as the derivative of the
loglikelihood function so that I0 is the Fisher information under Pθ0 .

Assumption C (Convergence). A sequence of treatment rules δ̂n in the experiments En is
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such that βn(h, 1) := EPn
θ0+

h√
n

[δ̂n] → β(h, 1) and βn(h, 2) := EPn
θ0+

h√
n

[(δ̂n)2] → β(h, 2) for

every h as n→∞.

Compared to mean regret criterion, our mean square regret additionally depends on the
second moment of decision rules. Thus, Assumption C assumes convergence of both first and
second moments of decision rules, differing from Hirano and Porter (2009), who only look at
convergence of the first moment of decision rules. Under Assumptions DQM and C, we first
establish the following result that allows us to simplify the original treatment problem to a
Gaussian experiment in large samples.

Proposition 5.1 (Van der Vaart (1998)). Suppose En satisfy Assumption DQM and a
sequence of treatment rules δ̂n in En satisfy Assumption C. Then there exists a function
δ̂ : Rk → [0, 1] such that for every h ∈ Rk,

β(h, 1) =

∫
δ̂(∆)dN(∆|h, I−1

0 ), β(h, 2) =

∫ (
δ̂(∆)

)2

dN(∆|h, I−1
0 ),

where N(∆|h, I−1
0 ) is a multivariate normal distribution with mean h and variance I−1

0 .

Proposition 5.1 is a special case of Van der Vaart (1998, Theorem 13.1 and Theorem 7.10)
applied to the mean square regret setup, following Hirano and Porter (2009, Proposition 3.1).
To use Proposition 5.1, note for any treatment rule δ̂n in the experiments En, the mean square
regret is

EPn
θ0+

h√
n

[
τ

(
θ0 +

h√
n

)2(
1

{
τ

(
θ0 +

h√
n

)
≥ 0

}
− δ̂n

)2
]
,

which depends on δ̂n only through EPn
θ0+

h√
n

[δ̂n] and EPn
θ0+

h√
n

[δ̂2
n], to which we can apply

Proposition 5.1. Thus, in terms of the mean square regret, any converging sequence of
treatment rules is matched by some treatment rule in a simpler Gaussian experiment with
unknown mean h and known variance I−1

0 .

Let τ̇ be the partial derivative of τ(θ) at θ0. Since τ (θ0) = 0, it follows that
√
nτ
(
θ0 + h√

n

)
→

τ̇ ′h as n→∞. Thus, for any rule δ,

√
nReg

(
δ,

(
θ0 +

h√
n

))
→ τ̇ ′h [1 {τ̇ ′h ≥ 0} − δ] := Reg∞(δ, h),

and n
[
Reg

(
δ,
(
θ0 + h√

n

))]2

→ (Reg∞(δ, h))2 as n→∞. Hence, normalizing by n, for any

converging rule δ̂n in the sense of Proposition 5.1, we define the corresponding limit mean
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square regret as

R∞sq (δ̂, h) :=

∫ (
Reg∞(δ̂(∆), h)

)2

dN(∆|h, I−1
0 ) (5.1)

= E∆∼N(h,I−1
0 )

[
Reg∞(δ̂(∆), h)

]2

.

With (5.1) as the mean square regret in the limit experiment, we can apply our finite
sample results in Section 4 and derive a feasible and asymptotically optimal treatment rule
via an efficient estimator of the parameters.

5.2 Feasible and asymptotically optimal rules

We first present results in terms of minimax optimality. Denote h
 as convergence in

distribution under the sequence of probability measures P n
θ0+ h√

n

. Define στ :=
√
τ̇ ′I−1

0 τ̇

to be the standard deviation of τ̇ ′∆, where ∆ ∼ N(h, I−1
0 ).

Theorem 5.1. Suppose Proposition 5.1 holds, τ(θ0) = 0, and τ(θ) is differentiable at θ0.

(i) The minimax optimal rule in the limit experiment is

δ̂∗(∆) =
exp

(
2τ∗

στ
τ̇ ′∆

)
exp

(
2τ∗

στ
τ̇ ′∆

)
+ 1

,

where τ ∗ ≈ 1.23, and which solves (4.6).

(ii) If, in addition, there exists a best regular estimator θ̂ such that

√
n

(
θ̂ − θ0 −

h√
n

)
h
 N(0, I−1

0 ), for all h ∈ Rk, (5.2)

and there exists some estimator σ̂τ
p→ στ under θ0, the feasible treatment rule

δ̂∗F (Zn) =
exp

(
2τ∗

σ̂τ

√
nτ(θ̂)

)
exp

(
2τ∗

σ̂τ

√
nτ(θ̂)

)
+ 1
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is locally asymptotically minimax optimal in terms of mean square regret:

sup
J

lim inf
n→∞

sup
h∈J

nRsq(δ̂
∗
F , θ0 +

h√
n

) = inf
δ̂∈D

sup
J

lim inf
n→∞

sup
h∈J

nRsq(δ̂, θ0 +
h√
n

),

where J is a finite subset of Rk and D is the set of all decision rules that satisfy
Assumption C (slightly abusing notation).

Theorem 5.1 extends our finite sample results to a large sample setting. Given a regular
parametric model, the maximum likelihood estimator (MLE) usually satisfies (5.2). Thus,
Theorem 5.1 suggests a simple way to construct an asymptotically minimax optimal rule in
terms of mean square regret: estimate the parameters of Pθ via MLE, calculate a t-statistic
for the mean, and then carry out a simple logit transformation for the t-statistic. This rule
is always fractional and very easy to implement for practitioners. We expect that our result
can also be extended to regular semiparametric models.

Next, we derive a feasible rule that is locally asymptotically Bayes optimal. Let π(θ) be
a positive and continuous prior density on Θ (slightly abusing notation). For a treatment
rule δ̂n that satisfies Assumption C, the normalized Bayes mean square regret is

nrsq(δ̂n, π) =

∫
nRsq(δ̂n, θ0 +

h√
n

)π(θ0 +
h√
n

)dh.

We define the Bayes mean square regret in the limit experiment when n→∞ as

r∞sq (δ̂) := π(θ0)

∫
R∞sq (δ̂, h)dh.

That is, as the Bayes mean square regret with respect to an uninformative prior. Then we
can apply Theorem 4.1 to derive the Bayes optimal rule for the limit experiment. Given
an MLE estimate of the parameters in Pθ, Theorem 5.2 further implies that a feasible and
asymptotically optimal Bayes rule also follows with a simple transformation of the t-statistic
for the mean.

Theorem 5.2. Suppose Proposition 5.1 holds, τ(θ0) = 0 and τ(θ) is differentiable at θ0. Let
π(θ) be the density of a prior distribution on Θ that is continuous and positive at θ0.

(i) The Bayes optimal rule in terms of mean square regret in the limit experiment is

δ̂B (∆) = Φ

(
τ̇ ′∆

στ

)(
1 +

τ̇ ′∆

στ
Ψ

(
τ̇ ′∆

στ

))
. (5.3)
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That is, r∞sq (δ̂B) = infδ∈D∞ r
∞
sq (δ), where D∞ is the set of all treatment rules in the

N(h, I−1
0 ) limit experiment.

(ii) If, in addition, there exists a best regular estimator θ̂ such that

√
n

(
θ̂ − θ0 −

h√
n

)
h
 N(0, I−1

0 ), for all h ∈ Rk,

and there exists some estimator σ̂τ
p→ στ under θ0, the feasible treatment rule

δ̂B,F (Zn) = Φ

(√
nτ(θ̂)

σ̂τ

)[
1 +

√
nτ(θ̂)

σ̂τ
Ψ

(√
nτ(θ̂)

σ̂τ

)]

is locally asymptotically Bayes optimal, i.e.,

lim
n→∞

nrsq(δ̂B,F , π) = inf
δ̂∈D

lim inf
n→∞

nrsq(δ̂, π).

In the limit, the Bayes optimal rule is a tilted posterior probability matching rule with
respect to the uninformative prior. Compared to the posterior probability matching rule,
the Bayes optimal rule assigns treatment with a probability closer to zero or one. Compared
to the limit minimax optimal rule, the Bayes optimal rule also assigns treatment with a
probability close to zero or one. This contrasts with the case of linear regret risk, where it
is known that the Bayes optimal and minimax optimal rules are the same empirical success
rule. See Figure 5.1 and Table 1 for various rules in a Gaussian limit experiment with unit
variance. It can be seen that all three randomized rules approach one as Ȳ1 gets large. For
sufficiently large positive values of Ȳ1 (e.g., 2.33), the Bayes and minimax optimal rules are
to effectively treat everyone. Even with a modest value of Ȳ1 = 0.84, the Bayes optimal rule
recommends a probability of treatment of 0.94, which is quite high when compared with the
corresponding probability of 0.8 recommended by the posterior probability matching rule.
Figures 5.2, 5.3 and 5.4 present the mean square regret, mean regret and standard deviation
of regret of the optimal rules in the same Gaussian limit experiment with unit variance. We
make several observations: firstly, although they admit different forms, our Bayes optimal
and minimax optimal rules in the limit experiment exhibit a similar performance in terms
of the mean square regret (Figure 5.2); secondly, the ES rule is minimax optimal in terms of
mean regret (Figure 5.3), but its excessive variance (Figure 5.4) in those states where mean
regret is high implies that it is not optimal in terms of mean square regret.
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Figure 5.1: Optimal rules in the Gaussian limit experiment with unit variance. Solid line:
minimax optimal rule for mean square regret; Dotted line: Bayes optimal rule for mean
square regret; Dot-dashed line: posterior probability matching rule with respect to a flat
prior; Dashed line: Empirical success (ES) rule.
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Figure 5.2: Mean square regret in the Gaussian limit experiment with unit variance. Solid
line: minimax optimal rule; Dotted line: Bayes optimal rule with respect to a flat prior;
Dashed line: ES rule.
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Figure 5.3: Mean regret in the Gaussian limit experiment with unit variance. Solid line:
minimax optimal rule; Dotted line: Bayes optimal rule with respect to a flat prior; Dashed
line: ES rule.
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Figure 5.4: Standard deviation of regret in the Gaussian limit experiment with unit variance.
Solid line: minimax optimal rule; Dotted line: Bayes optimal rule with respect to a flat prior;
Dashed line: ES rule.
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Ȳ1
Minimax Bayes Posterior probability ES ruleoptimal rule optimal rule matching rule (flat prior)

0 0.5 0.5 0.5 [0, 1]
0.2533 0.6507 0.6920 0.6 1
0.5244 0.7838 0.8430 0.7 1
0.8416 0.8877 0.9379 0.8 1
1.2816 0.9588 0.9851 0.9 1
1.6449 0.9827 0.9958 0.95 1
2.3263 0.9967 0.9997 0.99 1

Table 1: Treatment assignment probabilities in the Gaussian limit experiment with unit
variance

6 Sample size calculations

In practice, the planner often has a preference for deterministic rules like the empirical
success (ES) rule or the hypothesis testing (HT) rule, and calculates what is a sufficient
sample size based on these deterministic rules. In this section we discuss the implications
for the efficiency loss in terms of mean square regret if deterministic rules were implemented
instead of our proposed minimax optimal rules. Compared to our minimax optimal rule,
these deterministic rules often require significantly more data and thus are much less efficient.
For instance, to guarantee the same mean square regret with our minimax optimal rule, ES
rule and HT rule demand around 40% and 1100% more observations, respectively. A similar
discussion can be had for the Bayes optimal rule, but we omit this for brevity.

Consider the Gaussian experiment in Example 4.1, but suppose now Ȳ1 ∼ N(τ, σ
2

n
) is

the sample average calculated from experimental data with a sample size of n and known
variance σ2 > 0. In this case the minimax optimal rule in terms of mean square regret is

δ̂∗(Ȳ1) =
exp(2τ ∗

√
n
σ
Ȳ1)

exp(2τ ∗
√
n
σ
Ȳ1) + 1

,

where τ ∗ solves (4.6). Given each ε > 0, we can select n such that√
sup

τ∈[0,∞)

Rsq(δ̂∗, Pτ ) ≤ ε,

i.e., the square root of the worst case mean square regret does not exceed ε. The worst case
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mean square regret can be calculated as

sup
τ∈[0,∞)

Rsq(δ̂
∗, Pτ ) =

(
σ2

n

)
R∗sq(1),

where R∗sq(1) ≈ 0.1199 is the worst case mean square regret of the minimax optimal rule in
Example 4.1. Thus, the worst case mean square regret shrinks to zero at a rate of 1

n
. In

practice, we can choose ε to be proportional to σ, e.g., 0.01σ, so that the square root of the
worst case mean square regret does not exceed 1% of the standard deviation.

Comparison with the ES rule

Manski and Tetenov (2016) choose a sufficient sample size for the ES rule via the ε−optimal
approach: a policy δ̂ is ε−optimal if, for all states of the world,

W (δ∗)− EPn [W (δ̂)] ≤ ε,

where δ∗ is the infeasible optimal treatment rule or, equivalently,

EPn [Reg(δ̂)] ≤ ε, (6.1)

for all states of the world. Given our Gaussian experiment Ȳ1 ∼ N(τ, σ
2

n
), the worst case

mean regret of the ES rule δ̂ES = 1{Ȳ1 ≥ 0} can be calculated exactly as

sup
τ∈[0,∞)

τ

(
1− Φ

(√
nτ

σ

))
=

σ√
n

sup
τ∈[0,∞)

τ (1− Φ (τ)) = 0.1700
σ√
n
.

If the planner has a preference for the ES rule and decides to choose the sample size so that
(6.1) holds with some ε > 0, then the sample size should be at least

nES = 0.0289
σ2

ε2
.

The worst case mean square regret of the ES rule, however, is

sup
τ∈[0,∞)

Rsq(δ̂ES, Pτ ) =
σ2

n
RES
sq (1),

where RES
sq (1) = supτ∈[0,∞) τ

2EȲ1∼N(τ,1)

[(
1− 1{Ȳ1 ≥ 0}

)2
]
≈ 0.1657. Hence, at nES, the
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worst case mean square regret of δ̂ES is σ2

nES
0.1657 = 5.7355 ε

2

σ2 . If, instead, the planner uses
our minimax optimal rule, she only needs a sample size of n∗ = 0.0209σ

2

ε2
for the worst case

mean square regret not to exceed 5.7355 ε
2

σ2 . Thus, to guarantee the same worst case mean
square regret, the ES rule requires nearly 40% more observations than our minimax optimal
rule.

Comparison with the HT rule

Practitioners who prefer the HT rule often select sample size by balancing Type I and II
errors. In the Gaussian experiment Ȳ1 ∼ N(τ, σ

2

n
), if the planner uses a size α HT rule

δ̂HT = 1

{√
nȲ1

σ
≥ z(1−α)

}
,

where z(1−α) is the (1−α) quantile of a standard normal, then it is common for her to select
sample size so that the power of the test is at least β, i.e., under the alternative τ > 0, the
probability of rejection is

Pr

{
Ȳ1 − τ

σ√
n

> z(1−α) −
τ
σ√
n

}
= β.

Then the sample size should be at least

nHT =
σ2

τ 2
(z(1−α) − z(1−β))

2.

At this nHT , we can also calculate the worst case mean square regret of the HT rule, which
is approximately τ2

(z(1−α)−z(1−β))2
1.4458. However, at this nHT , the worst case mean square

regret of our minimax rule is only 0.1199 σ2

nHT
= 0.1199 τ2

(z(1−α)−z(1−β))2
. That is to say, with

the same sample size nHT , our minimax optimal rule guarantees that the worst case mean
square regret is only around 8.3% of the corresponding value for the HT rule. Equivalently,
to guarantee the same worst case mean square regret, the HT rule requires around 11 times
more observations than our minimax optimal rule.
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7 Conclusions

Our paper proposes a novel approach to measure the performance of statistical decision
rules by considering a nonlinear transformation of regret. Such a shift of criterion can
incorporate other features of the regret distribution (e.g., second- and higher-order moments)
into the decision-making process, and yields optimal rules that are drastically different from
the existing literature. For a large class of nonlinear transformations, optimal rules are
randomized, allocating only a fraction of the population to the treatment. For the mean
square regret criterion, we also derive Bayes optimal and minimax optimal rules both for
finite Gaussian samples and in asymptotic limit experiments. These rules have a simple
and insightful form, and can be calculated easily by practitioners. Since our rules are
always fractional, they naturally provide a degree of confidence in the performance of the
treatment. Implementing our rules has the additional benefit of getting more data from
randomized experiments that can be helpful for the inference of treatment effect, which
would not be possible if deterministic rules were implemented. In future research, we intend
to extend our approach to individualized treatment choice problems for which covariates
include both continuous and discrete random variables. It would also be interesting to
evaluate theoretically how our proposed treatment rules perform in a dynamic environment
with multiple phases of experimental data.

A Comparison with Manski and Tetenov (2007)

In this section we clarify that our approach of treatment choice with nonlinear regret
criteria fundamentally differs from the approach of risk averse welfare criteria taken by
Manski and Tetenov (2007). To elaborate, let f(· ) : R → R be a concave function. A
concave transformation of W (δ̂) is f(W (δ̂)). For the concave transformation f , the regret of
treatment rule δ̂ defined in terms of nonlinear welfare is

Regf (δ̂) = f(W (δ∗))− f(W (δ̂)) = f(µ0 + δ∗τ)− f(µ0 + δ̂τ).

In contrast, our paper considers a nonlinear (possibly convex) transformation of regret
measured in terms of the original welfare:

g(Reg(δ̂)) = g
(

(µ0 + δ∗τ)− (µ0 + δ̂τ)
)
,
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where g : R+ → R is a nonlinear function that does not depend on δ̂, µ0 or µ1. In other
words, the loss function in Manski and Tetenov (2007) is Regf (δ̂) while in our paper the loss
function is g(Reg(δ̂)).

Proposition A.1. Consider the following statement

EPn [Regf (δ̂)] = EPn [g(Reg(δ̂))], for all δ̂, µ0 and µ1. (A.1)

Then (A.1) holds for some concave function f(· ) : R→ R and some function g(· ) : R+ → R
if and only if f(x) = ax+ b and g(x) = ax for some constants a and b.

Proof. The if part is straightforward to show. We focus on the only if part. Let F(· ) :=

EPn [f(· )] and G(· ) := EPn [g(· )]. Since convexity and concavity are preserved under the
expectation operator, it holds that F(· ) is concave too. Then, by assumption,

F(µ0 + δ∗τ)− F(µ0 + δ̂τ) = G((µ0 + δ∗τ)− (µ0 + δ̂τ)) (A.2)

for all µ0, µ1 and δ̂, implying

F(x)− F(y) = G (x− y) ,∀x ≥ y. (A.3)

Fixing y = 0, (A.3) implies
F(x)− F(0) = G(x), ∀x ≥ 0. (A.4)

Since F is concave, (A.4) implies G(x) is concave as well for all x ≥ 0. Conversely, fixing
x = 0, (A.3) implies

F(0)− F(y) = G (−y) ,∀y ≤ 0, (A.5)

or, equivalently,
F(0)− F(−x) = G(x),∀x ≥ 0. (A.6)

Since F is concave, (A.6) implies G(x) is convex for all x ≥ 0. Thus, G(x) must be both
concave and convex for x ≥ 0, implying G(x) is an affine function for all x ≥ 0. This implies
g is affine and admits g(x) = ax + t for some constants a and t. Since G(x) is affine, (A.4)
implies that F(x) is affine for x ≥ 0 and f(x) = ax + t + F(0) for x ≥ 0. Furthermore,
for all y ≤ 0, (A.5) implies F(y) = F(0) − G(−y), i.e., F(y) is affine for y ≤ 0 as well, and
f(y) = ay − t + F(0) for y ≤ 0. At x = 0, t + F(0) = −t + F(0) must hold, implying t = 0.
Thus, g(x) = ax and f(x) = ax + F(0) must hold or, equivalently, f(x) = ax + b for some
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constants a and b.

Given a concave transformation f of the welfare considered in Manski and Tetenov (2007),
Proposition A.1 shows that we cannot find a nonlinear transformation g of the original regret
such that the regret of nonlinear welfare defined in Manski and Tetenov (2007) equals our
nonlinear regret risk for all rules and all states of the world. The results of Proposition A.1
can be extended in several ways. Firstly, Proposition A.2 shows that even if we consider
either f or g to be convex, or we restrict the domain of f to be positive, the results of
Proposition A.1 continue to hold. For instance, suppose g(r) = r2 and a nonlinear welfare
transformation f were to exist so that

EPn [f(W (δ∗))− f(W (δ̂))] = EPn [(W (δ∗)−W (δ̂))2],∀δ̂, µ0, and µ1. (A.7)

Proposition A.2 shows that such an f does not exist. Secondly, one might argue that even
though (A.1) does not hold, the risks of the two approaches could be affine transformations
of each other, so that the optimal rules are the same. In Proposition A.3, we show that
even in such a scenario, both f and g also have to be affine. Our approach in introducing
nonlinear g(·) is inherently different from that of Manski and Tetenov (2007).

Proposition A.2. (i) (A.1) holds for some convex function f(· ) : R → R and some
function g(· ) : R+ → R if and only if f(x) = ax+ b and g(x) = ax for some constants
a and b.

(ii) (A.1) holds for some function f(· ) : R→ R and some convex function g(· ) : R+ → R
if and only if f(x) = ax+ b and g(x) = ax for some constants a and b.

(iii) (A.1) holds for some concave function f(· ) : C → R, where C ⊆ R+ is a compact
interval, and some function g(· ) : R+ → R if and only if f(x) = ax+ b and g(x) = ax

for some constants a and b.

Proof. Statement (i): the proof is the same as that of Proposition A.1.

Statement (ii): We only show the only if part. Note (A.3) still holds. Fix T ∈ R. It
holds that

F(T )− F(y) = G(T − y),∀y ≤ T,

or, equivalently, that
F(y) = F(T )−G(T − y),∀y ≤ T. (A.8)
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Since G is convex, (A.8) implies F(y) is concave for all ∀y ≤ T . Letting T →∞ implies F(y)

is a concave function in R. The rest of the proof then follows that of Proposition A.1.

Statement (iii). We only show the only if part. Without loss of generality, suppose
f(· ) : [0, 1]→ R. Note (A.3) still holds for all 1 ≥ x ≥ y ≥ 0, implying

F(x)− F(0.5) = G(x− 0.5),∀0.5 ≤ x ≤ 1, (A.9)

i.e., G is concave on the interval [0, 0.5]. Conversely, (A.3) also implies

F(0.5)− F(y) = G(0.5− y),∀0 ≤ y ≤ 0.5,

which means G is convex on [0, 0.5]. Thus, G must be affine on [0, 0.5], and g(x) = ax+ t for
some constants a and t, for each 0 ≤ x ≤ 0.5. Further note F(x)−F(0) = G(x),∀0 ≤ x ≤ 1.
Thus, combining this with (A.9), we find

G(x) = F(x)− F(0) = G(x− 0.5) + F(0.5)− F(0),∀0.5 ≤ x ≤ 1.

In particular, at x = 0.5, G(0.5) = G(0) + F(0.5)− F(0). Hence,

G(x) = G(x− 0.5) + G(0.5)−G(0), ∀0.5 ≤ x ≤ 1,

implying G(x) is affine and g(x) = ax+t in [0.5, 1] as well. Thus, g(x) = ax+t for 0 ≤ x ≤ 1.
But then plugging x = 0.5 into (A.9) implies t = 0. Then, it is easy to see that f(x) = ax+b

for some constant b.

Proposition A.3. Let A > 0 and B ∈ R be some constants. Consider the following
statement

EPn [Regf (δ̂)] = AEPn [g(Reg(δ̂))] +B, for all δ̂, µ0 and µ1. (A.10)

Then (A.10) holds for some concave function f(· ) : R → R, some function g(· ) : R+ → R
and some constants A > 0 and B if and only if f(x) = ax+ b and g(x) = a

A
x− B

A
for some

constants a, b, A > 0 and B.

Proof. To see the only if part, let g̃(x) = Ag(x) +B. (A.10) implies

EPn [Regf (δ̂)] = EPn [g̃(Reg(δ̂))], for all δ̂, µ0 and µ1.

Applying the results of Proposition A.1 yields that Ag(x) + B = ax and f(x) = ax + b for
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some constants a, b, A > 0 and B. That is, g(x) = a
A
x− B

A
. The if part is straightforward

to show and omitted.

B Proofs of main results

Proof of Proposition 4.1

The proof is similar to the proof of statement (i) of Theorem 5.2 and thus omitted.

Proof of Theorem 4.2

We split the proof into three steps by adopting the ‘guess-and-verify’ approach.

Step 1 : Guess a least favorable prior. Note the worst case mean square regret of a
minimax optimal rule is

sup
τ∈R

Rsq(δ̂
∗, Pτ ), (B.1)

where

Rsq(δ̂
∗, Pτ ) = τ 2E[1{τ ≥ 0} − δ̂∗(Ȳ1)]2

=


τ 2E

[
1− δ̂∗(Ȳ1)

]2

τ > 0,

0 τ = 0,

τ 2E
[
δ̂∗(Ȳ1)

]2

τ < 0.

By Lemma C.1, the support of the solution of (B.1) never contains zero. In Lemma C.2,
we show that the support of the solution of (B.1) must be symmetric, i.e., if the support of
the solution of (B.1) contains τ for some 0 < τ <∞, it must also contain −τ . Therefore, we
conjecture that the least favorable prior π∗ is two-point supported. Moreover, Lemma C.3
shows that for a symmetric two-point prior to be least favorable, each point is equally likely
to be realised. Thus, our guess for the least favorable prior π∗ is such that

π∗ (τ) =
1

2
, π∗ (−τ) =

1

2
, for some 0 < τ <∞.

Step 2 : Derive the Bayes optimal rule associated with the hypothesized least favorable
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prior. For each 0 < τ <∞, let δ̂π∗τ be the Bayes optimal rule with respect to the two-point
symmetric prior

π∗τ (τ) =
1

2
and π∗τ (−τ) =

1

2
.

Within the above set of candidate least favorable priors, we show: (1) the Bayes optimal

rules admit the form δ̂π∗τ (Ȳ1) =
exp(2τȲ1)

exp(2τȲ1)+1
; (2) rsq(δ̂π∗τ , π

∗
τ ) follows the form in (4.6), and is

equivalent to the form in (4.7). Thus, our guess for the least favorable prior is

π∗ (τ ∗) =
1

2
, π∗ (−τ ∗) =

1

2
,

where τ ∗ solves (4.6) or (4.7).

Indeed, the functional form of δ̂π∗τ is derived by applying Theorem 4.1,

δ̂π∗τ (ȳ1) =

∫
τ 21{τ ≥ 0}dπ∗τ (τ |ȳ1)∫

τ 2dπ∗τ (τ |ȳ1)
,

where π∗τ (τ |ȳ1) is the posterior distribution of π∗τ conditional on Ȳ1 = ȳ1 and admits:

π∗τ{τ |ȳ1} =
1
2
f{ȳ1|τ}
f{ȳ1}

and π∗τ{−τ |ȳ1} =
1
2
f{ȳ1| − τ}
f{ȳ1}

,

where f{ȳ1|τ} is the likelihood of τ , f{ȳ1| − τ} is the likelihood of −τ , and f{ȳ1} is the
marginal density of Ȳ1. Note

f{ȳ1|τ} =

√
1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) > 0,

f{ȳ1| − τ} =

√
1

2π
exp

(
−1

2

[
(ȳ1 + τ)2]) > 0.

It follows that

δ̂π∗τ (ȳ1) =
f{ȳ1|τ}

f{ȳ1|τ}+ f{−τ |ȳ1}

=
exp

(
−1

2

[
(ȳ1 − τ)2])

exp
(
−1

2

[
(ȳ1 − τ)2])+ exp

(
−1

2

[
(ȳ1 + τ)2])

=
exp (2τ ȳ1)

exp (2τ ȳ1) + 1
.
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Therefore, the Bayes mean square regret of δ̂π∗τ admits the form in (4.6):

rsq(δ̂π∗τ , π
∗
τ ) =

1

2
τ 2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ}dȳ1

+
1

2
τ 2

∫ (
f{ȳ1|τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1| − τ}dȳ1

=
1

2
τ 2

∫
f{ȳ1| − τ}f{ȳ1|τ}

[f{ȳ1|τ}+ f{ȳ1| − τ}]
dȳ1

=
1

2
τ 2

∫ √
1

2π
exp

(
−1

2

[
(ȳ1 − τ)2])

[exp (2τ ȳ1) + 1]
dȳ1

=
1

2
τ 2E

[
1

exp
(
2τ Ȳ1

)
+ 1

]
.

Since τ > 0 and Rsq(δ̂π∗τ , Pτ ) = τ 2E[1− δ̂π∗τ (Ȳ1)]2, we see that (4.6) is equivalent to (4.7):

Rsq(δ̂π∗τ , Pτ ) = τ 2

∫ [
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

]2

f(ȳ1|τ)dȳ1

= τ 2

∫ [
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

]2
√

1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) dȳ1

= τ 2

∫ [
1

exp (2τ ȳ1) + 1

]2
√

1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) dȳ1

= τ 2E

[
1

exp
(
2τ Ȳ1

)
+ 1

]2

,

and by a change of variables,

Rsq(δ̂π∗τ , P−τ ) = τ 2

∫ (
f{ȳ1|τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1| − τ}dȳ1

= Rsq(δ̂π∗τ , Pτ ).

Step 3 : For our guess of the least favorable prior, Lemma C.5 further establishes that
Condition 1 holds. Thus, Proposition 4.2 implies that δ̂∗ is indeed a minimax optimal rule
and the two-point prior π∗(τ ∗) = π∗(−τ ∗) = 1

2
is indeed least favorable.
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Proof of Theorem 5.1

Proof of statement (i)

Let δ̂∗ be a minimax optimal rule in the limit experiment. That is, δ̂∗ solves

inf
δ̂

sup
h
R∞sq (δ̂, h) := R∗.

Following Hirano and Porter (2009), consider slicing the parameter space of h in the following
way: define

h1(b, h0) = h0 +
b

τ̇ ′I−1
0 τ̇

I−1
0 τ̇ ,

where h0 is such that τ̇ ′h0 = 0 (without loss of generality) and b ∈ R. Hence,

τ̇ ′h1(b, h0) = b.

Note for each δ̂ ∈ [0, 1], the limit regret Reg∞(δ̂, h) only depends on h through τ̇ ′h. Thus,
we can consider treatment rules of the form

δ̂(∆) = δ̂ (τ̇ ′∆) := δ̂τ (∆τ ),

where ∆τ := τ̇ ′∆ ∼ N(τ̇ ′h, τ̇ ′I−1
0 τ̇). Let δ̂∗τ solve the simpler minimax exercise

inf
δ̂τ

sup
b
R∞sq (δ̂τ , h1(b, 0))

among rules of form δ̂τ (∆τ ). It follows by Lemma D.1 that δ̂∗τ is a minimax optimal rule.
Define

R∞sq (δ̂τ , b) := b2E∆τ∼N(b,τ̇ ′I−1
0 τ̇)

[
1 {b ≥ 0} − δ̂τ (∆τ )

]2

.

Lemma D.2 shows that δ̂∗τ can be found by solving inf δ̂τ supbR
∞
sq (δ̂τ , b), and Lemma D.3

establishes the the form of δ̂∗τ , which is a minimax optimal rule in the limit experiment.
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Proof of statement (ii)

By Hirano and Porter (Lemma 3, 2009),
√
n τ(θ̂)

σ̂τ

h
 N( τ̇

′h
στ
, 1). Furthermore, using the

continuous mapping theorem,

δ̂∗F (Zn)
h
 

exp
(

2τ ∗N( τ̇
′h
στ
, 1)
)

exp
(

2τ ∗N( τ̇
′h
στ
, 1)
)

+ 1
.

Therefore, δ̂∗F is matched with δ̂∗ in the limit experiment in the sense of Proposition 5.1.
The desired conclusion follows via a similar argument to that in Hirano and Porter (Lemma
4, 2009).

Proof of Theorem 5.2

Proof of statement (i)

Applying Theorem 4.1 to the limit Bayes mean square criterion r∞sq yields

δ̂B(∆) =

∫
(τ̇ ′h)2 (1 {τ̇ ′h ≥ 0}) dπ(h|∆)∫

(τ̇ ′h)2 dπ(h|∆)
.

Notice in the limit experiment, h has a flat prior. It follows that the posterior distribution
π(h|∆) is proportional to a normal distribution with mean ∆ and variance I−1

0 . Then

δ̂B(∆) =

∫
(τ̇ ′h)2 (1 {τ̇ ′h ≥ 0}) dN(h|∆, I−1

0 )∫
(τ̇ ′h)2 dN(h|∆, I−1

0 )

=

∫
s2 (1 {s ≥ 0}) dN(s|τ̇ ′∆, τ̇ ′I−1

0 τ̇)∫
s2dN(s|τ̇ ′∆, τ̇ ′I−1

0 τ̇)

=

∫
s≥0

s2dN(s|τ̇ ′∆, σ2
τ )∫

s2dN(s|τ̇ ′∆, σ2
τ )

=

∫
1 {s ≥ 0} dN(s|τ̇ ′∆, σ2

τ )

∫
s2dN(s|τ̇ ′∆, σ2

τ , S ≥ 0)∫
s2dN(s|τ̇ ′∆, σ2

τ )
,

where
∫
s2dN(s|τ̇ ′∆, σ2

τ , S ≥ 0) denotes the conditional expectation of a normal random
variable S with mean τ̇ ′∆ and variance σ2

τ given S ≥ 0. By the properties of the normal
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distribution and truncated normal distribution,∫
1 {s ≥ 0} dN(s|τ̇ ′∆, σ2

τ ) = Φ(
τ̇ ′∆

στ
),∫

s2dN(s|τ̇ ′∆, σ2
τ ) = σ2

τ + (τ̇ ′∆)
2
,∫

s2dN(s|τ̇ ′∆, σ2
τ , S ≥ 0) = σ2

τ

(
1− τ̇ ′∆

στ

φ( τ̇
′∆
στ

)

Φ( τ̇
′∆
στ

)
−
φ2( τ̇

′∆
στ

)

Φ2( τ̇
′∆
στ

)

)
+

(
(τ̇ ′∆) + στ

φ( τ̇
′∆
στ

)

Φ( τ̇
′∆
στ

)

)2

.

Statement (i) follows.

Proof of statement (ii)

Similar to the argument in the proof of statement (ii) of Theorem 5.1, δ̂∗B,F is matched with
δ̂B in the limit experiment in the sense of Proposition 5.1. The conclusion follows via a
similar argument to that in Hirano and Porter (Lemma 1, 2009).

C Lemmas for Section 4

Lemma C.1. τ = 0 is never a solution of (B.1).

Proof. Note at τ = 0, the squared regret is 0. Suppose it is a solution of (B.1), then it must
hold that

E
[
1− δ̂∗(Ȳ1)

]2

= 0 and E
[
δ̂∗(Ȳ1)

]2

= 0. (C.1)

Since δ̂∗(ȳ1) ∈ [0, 1] for all ȳ1, (C.1) implies

1− δ̂∗(ȳ1) = 0 and δ̂∗(ȳ1) = 0, for all ȳ1 a.s.,

which cannot be true. This implies τ = 0 is never a solution of (B.1).

Lemma C.2. The solution of (B.1) is symmetric, i.e., if some τ ∈ (0,∞) solves (B.1), then
it also holds that −τ solves (B.1).

Proof. Suppose τ ∈ (0,∞) solves (B.1) but −τ does not. Note the mean square regret of δ̂∗
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at τ is

Rsq(δ̂
∗, Pτ ) = τ 2E

[
1− δ̂∗(Ȳ1)

]2

= τ 2

∫ [
1− δ̂∗(ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) dȳ1,

while the mean square regret at −τ is

Rsq(δ̂
∗, P−τ ) =τ 2E

[
δ̂∗(Ȳ1)

]2

=τ 2

∫ [
δ̂∗(ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(ȳ1 + τ)2]) dȳ1

=τ 2

∫ [
δ̂∗(−ỹ1)

]2
√

1

2π
exp

(
−1

2

[
(τ − ỹ1)2]) dỹ1

=τ 2

∫ [
δ̂∗(−ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(τ − ȳ1)2]) dȳ1,

where the third equality uses the change of variable ỹ1 = −ȳ1, and the fourth equality
changes the variable of integration from ỹ1 to ȳ1.

If τ solves (B.1) but −τ does not, then there must exist some ȳ1 ∈ R such that 1−δ̂∗(ȳ1) 6=
δ̂∗(−ȳ1). Let

S =
{
ȳ1 ∈ R : 1− δ̂∗(ȳ1) 6= δ̂∗(−ȳ1)

}
be the collection of all ȳ1 such that 1− δ̂∗(ȳ1) 6= δ̂∗(−ȳ1).1 The contribution of the elements
of S to the mean square regret at τ is

τ 2

∫
S

[
1− δ̂∗(ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) dȳ1

while the contribution of the elements in S to the mean square regret at −τ is

τ 2

∫
S

[
δ̂∗(−ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(τ − ȳ1)2]) dȳ1.

1Notice the set S must be symmetric, that is, if

1− δ̂∗(ȳ1) 6= δ̂∗(−ȳ1)

holds then
1− δ̂∗(−ȳ1) 6= δ̂∗(ȳ1)

also holds.
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Since τ solves (B.1) but not −τ , it holds that

τ 2

∫
S

[
1− δ̂∗(ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(ȳ1 − τ)2]) dȳ1

>τ 2

∫
S

[
δ̂∗(−ȳ1)

]2
√

1

2π
exp

(
−1

2

[
(τ − ȳ1)2]) dȳ1. (C.2)

If (C.2) holds though, we can strictly reduce the mean square regret for τ by switching to
an alternative policy δ̄, where

δ̄(ȳ1) =

δ̂∗(ȳ1) if ȳ1 /∈ S,

1− δ̂∗(−ȳ1) if ȳ1 ∈ S.

This contradicts the assumption that δ̂∗ is a minimax optimal rule, i.e.,

Rsq(δ̂
∗, Pτ ) = inf

δ̂∈D
Rsq(δ̂, Pτ ).

Lemma C.3. A least favorable prior distribution π∗ is such that

π∗ (τ) =
1

2
, π∗ (−τ) =

1

2
,

for some τ ∈ (0,∞).

Proof. For each τ ∈ (0,∞), consider the symmetric prior

π∗(τ) = pτ , π
∗(−τ) = 1− pτ , where pτ ∈ [0, 1]. (C.3)

If (C.3) is indeed the least favorable prior, then δ̂∗(ȳ1) = (1−pτ )f{ȳ1|−τ}
pτf{ȳ1|τ}+(1−pτ )f{ȳ1|−τ} , and the mean

square regret of δ̂∗ at Pτ is

Rsq(δ̂
∗, Pτ ) = τ 2

∫
(1− pτ )2f 2{ȳ1| − τ}f{ȳ1|τ}

[pτf{ȳ1|τ}+ (1− pτ )f{ȳ1| − τ}]2
dȳ1. (C.4)

The mean square regret of δ̂∗ at P−τ is

Rsq(δ̂
∗, P−τ ) = τ 2

∫
p2
τf

2{ȳ1|τ}f{ȳ1| − τ}
[pτf{ȳ1|τ}+ (1− pτ )f{ȳ1| − τ}]2

dȳ1. (C.5)
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By Lemma C.2, τ and −τ yield the same mean square regret at δ̂∗, so pτ must be such that

(C.4) = (C.5).

For each ȳ1, the numerator of the integrand in (C.4) is

(1− pτ )2f 2{ȳ1| − τ}f{ȳ1|τ}

=(1− pτ )2

(
1

2π

) 3
2

exp

(
−
[
(ȳ1 + τ)2]− 1

2

[
(ȳ1 − τ)2])

while for each ȳ1, the numerator of the integrand in (C.5) is

p2
τ

(
1

2π

) 3
2

exp

(
−
[
(ȳ1 − τ)2]− 1

2

[
(ȳ1 + τ)2]) .

Therefore, (C.5) can be written as

Rsq(δ̂
∗, P−τ )

=τ 2

∫
p2
τ

(
1

2π

) 3
2 exp

(
−
[
(ȳ1 − τ)2]− 1

2

[
(ȳ1 + τ)2])

[pτf{ȳ1|τ}+ (1− pτ )f{ȳ1| − τ}]2
dȳ1

=τ 2

∫
p2
τ

(
1

2π

) 3
2 exp

(
−
[
(ȳ1 + τ)2]− 1

2

[
(ȳ1 − τ)2])

[pτf{−ȳ1|τ}+ (1− pτ )f{−ȳ1| − τ}]2
dȳ1, (C.6)

where the second equality follows from a change of variable. (C.4) admits

Rsq(δ̂
∗, Pτ ) = τ 2

∫
(1− pτ )2

(
1

2π

) 3
2 exp

(
−
[
(ȳ1 + τ)2]− 1

2

[
(ȳ1 − τ)2])

[pτf{ȳ1|τ}+ (1− pτ )f{ȳ1| − τ}]2
dȳ1. (C.7)

Hence, pτ must be such that
(C.6) = (C.7),

which is satisfied if pτ = 1
2
. Indeed, when pτ = 1

2
, (C.6) and (C.7) only differ in their

denominators. Furthermore, for (C.7), the denominator of the integrand can be written as[
1

2
f{ȳ1|τ}+

1

2
f{ȳ1| − τ}

]2

=

[
1

2

√
1

2π
exp

(
−1

2
(ȳ1 − τ)2

)
+

1

2

√
1

2π
exp

(
−1

2
(ȳ1 + τ)2

)]2
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while for (C.6), the corresponding restatement is[
1

2
f{−ȳ1|τ}+

1

2
f{−ȳ1| − τ}

]2

=

[
1

2

√
1

2π
exp

(
−1

2
(−ȳ1 − τ)2

)
+

1

2

√
1

2π
exp

(
−1

2
(−ȳ1 + τ)2

)]2

=

[
1

2

√
1

2π
exp

(
−1

2
(ȳ1 + τ)2

)
+

1

2

√
1

2π
exp

(
−1

2
(ȳ1 − τ)2

)]2

which is equivalent.

Lemma C.4. If

τ ∗ ∈ arg sup
τ∈[0,∞)

τ 2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ}dȳ1,

then
(
∂
∂τ
Rsq(δ̂

∗, Pτ )
)
|τ=τ∗ = 0.

Proof. Since τ ∗ ∈ arg sup
τ∈[0,∞)

τ 2
∫ ( f{ȳ1|−τ}

f{ȳ1|τ}+f{ȳ1|−τ}

)2

f{ȳ1|τ}dȳ1 and the objective function is

continuously differentiable, it holds that[
∂

∂τ

(
τ 2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ}dȳ1

)]
|τ=τ∗= 0. (C.8)

On the other hand, (
∂

∂τ
Rsq(δ̂

∗, Pτ )

)
=
∂

∂τ

(
τ 2

∫ [
f{ȳ1| − τ ∗}

f{ȳ1|τ ∗}+ f{ȳ1| − τ ∗}

]2

f(ȳ1|τ)dȳ1

)
. (C.9)

Observing the objective function in (C.8) and (C.9),
(
∂
∂τ
Rsq(δ̂

∗, Pτ )
)
|τ=τ∗ = 0 holds if

[
∂

∂τ

(
(τ ∗)2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ ∗}dȳ1

)]
|τ=τ∗= 0. (C.10)
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In what follows, we verify that (C.10) indeed holds. Note

∂

∂τ

(
(τ ∗)2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ ∗}dȳ1

)

=(τ ∗)2

∫
2

(
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)
∂

∂τ

(
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)
f{ȳ1|τ ∗}dȳ1

=2(τ ∗)2

∫ (
f{ȳ1| − τ}f{ȳ1|τ ∗}

[f{ȳ1|τ}+ f{ȳ1| − τ}]3

)(
∂f{ȳ1| − τ}

∂τ
f{ȳ1|τ} − f{ȳ1| − τ}

∂f{ȳ1|τ}
∂τ

)
dȳ1.

Since f{ȳ1|τ} =
√

1
2π

exp
(
−1

2

[
(ȳ1 − τ)2]) and f{ȳ1| − τ} =

√
1

2π
exp

(
−1

2

[
(ȳ1 + τ)2]), we

have that

∂f{ȳ1|τ}
∂τ

= f{ȳ1|τ}(ȳ1 − τ) and
∂f{ȳ1| − τ}

∂τ
= −f{ȳ1| − τ}(ȳ1 + τ).

It follows that

∂

∂τ

(
(τ ∗)2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ ∗}dȳ1

)

=− 4(τ ∗)2

∫ (
f{ȳ1| − τ}f{ȳ1|τ ∗}f{ȳ1| − τ}f{ȳ1|τ}

[f{ȳ1|τ}+ f{ȳ1| − τ}]3

)
ȳ1dȳ1. (C.11)

Evaluating (C.11) at τ = τ ∗ yields[
∂

∂τ

(
(τ ∗)2

∫ (
f{ȳ1| − τ}

f{ȳ1|τ}+ f{ȳ1| − τ}

)2

f{ȳ1|τ ∗}dȳ1

)]
|τ=τ∗

=− 4(τ ∗)2

∫ [
(f{ȳ1| − τ ∗}f{ȳ1|τ ∗})2

[f{ȳ1|τ ∗}+ f{ȳ1| − τ ∗}]3

]
ȳ1dȳ1

=− 4(τ ∗)2

∫
w(ȳ1)ȳ1dȳ1, (C.12)

where w(ȳ1) = (f{ȳ1|−τ∗}f{ȳ1|τ∗})2

[f{ȳ1|τ∗}+f{ȳ1|−τ∗}]3
. However, notice for each ȳ1 ∈ R:

w(ȳ1) =

(√
1

2π
exp

(
−1

2

[
(ȳ1 + τ ∗)2])√ 1

2π
exp

(
−1

2

[
(ȳ1 − τ ∗)2]))2

[√
1

2π
exp

(
−1

2

[
(ȳ1 − τ ∗)2])+

√
1

2π
exp

(
−1

2

[
(ȳ1 + τ ∗)2])]3
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while

w(−ȳ1) =

(√
1

2π
exp

(
−1

2

[
(−ȳ1 + τ ∗)2])√ 1

2π
exp

(
−1

2

[
(−ȳ1 − τ ∗)2]))2

[√
1

2π
exp

(
−1

2

[
(−ȳ1 − τ ∗)2])+

√
1

2π
exp

(
−1

2

[
(−ȳ1 + τ ∗)2])]3

=

(√
1

2π
exp

(
−1

2

[
(ȳ1 − τ ∗)2])√ 1

2π
exp

(
−1

2

[
(ȳ1 + τ ∗)2]))2

[√
1

2π
exp

(
−1

2

[
(ȳ1 + τ ∗)2])+

√
1

2π
exp

(
−1

2

[
(ȳ1 − τ ∗)2])]3

=
(f{ȳ1|τ ∗}f{ȳ1| − τ ∗})2

[f{ȳ1| − τ ∗}+ f{ȳ1|τ ∗}]3

= w(ȳ1).

Therefore
(C.12) = −4(τ ∗)2

∫
w(ȳ1)ȳ1dȳ1 = 0

and the conclusion of the lemma follows.

Lemma C.5. τ ∗ is the unique solution of sup
τ∈[0,∞)

Rsq(δ̂
∗, Pτ ).

Proof. Write ω∗(ȳ1) := (1− δ̂∗(ȳ1))2. We evaluate the first derivative of

Rsq(δ̂
∗, Pτ ) = τ 2

∫
[ω∗(ȳ1)]2 f{ȳ1|τ}dȳ1

as a function of τ ∈ [0,∞). Notice for each ȳ1 ∈ R and each τ ∈ [0,∞),

∂

∂τ
f{ȳ1|τ} = f{ȳ1|τ} (ȳ − τ) = − ∂

∂ȳ1

f{ȳ1|τ}.
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Therefore, using integration by parts twice yields

R(1)
sq (τ) :=

∂

∂τ
Rsq(δ̂

∗, Pτ )

= 2τ

∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 + τ 2

∫
[ω∗(ȳ1)]2

∂

∂τ
(f(ȳ1|τ)) dȳ1

= 2τ

∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 − τ 2

∫
[ω∗(ȳ1)]2

∂

∂ȳ1

f(ȳ1|τ)dȳ1

= 2τ

∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 − τ 2

∫
[ω∗(ȳ1)]2 df(ȳ1|τ)

= 2τ

∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 + 2τ 2

(∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

f(ȳ1|τ)dȳ1

)
= 2τ

{∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 +

∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

τf(ȳ1|τ)dȳ1

}
= 2τ

{∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 +

∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

(τ − ȳ1) f(ȳ1|τ)dȳ1

+

∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

ȳ1f(ȳ1|τ)dȳ1

}
= 2τ

{∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 +

∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

df(ȳ1|τ)

+

∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

ȳ1f(ȳ1|τ)dȳ1

}
= 2τ

{∫
[ω∗(ȳ1)]2 f(ȳ1|τ)dȳ1 −

∫
∂

∂ȳ1

[
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

]
f(ȳ1|τ)dȳ1

+

∫
ω∗(ȳ1)

∂ (ω∗(ȳ1))

∂ȳ1

ȳ1f(ȳ1|τ)dȳ1

}
= 2τ

{∫ {
[ω∗(ȳ1)]2 −

(
∂ (ω∗(ȳ1))

∂ȳ1

)2

− ω∗(ȳ1)
∂2 (ω∗(ȳ1))

∂ (ȳ1)2

+ ω∗(ȳ1)
∂ (ω∗(ȳ1))

∂ȳ1

ȳ1

}
f(ȳ1|τ)dȳ1

}
.

The sign of R(1)
sq (τ) is determined by

R(τ) :=

∫
w(ȳ1)f{ȳ1|τ}dȳ1,

where

w(ȳ1) = [ω∗(ȳ1)]2 −
(
∂ (ω∗(ȳ1))

∂ȳ1

)2

− ω∗(ȳ1)
∂2 (ω∗(ȳ1))

∂ (ȳ1)2 + ω∗(ȳ1)
∂ (ω∗(ȳ1))

∂ȳ1

ȳ1.
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We aim to show that R(τ) has a unique sign change from + to − at τ ∗, with the conclusion
immediately following.

Step 1 : we show R(τ) has at most one sign change from + to −. Notice ω∗(ȳ1) =
1

exp(2τ∗ȳ1)+1
. Therefore,

∂ (ω∗(ȳ1))

∂ȳ1

= − [ω∗(ȳ1)]2 exp (2τ ∗ȳ1) 2τ ∗,

∂2 (ω∗(ȳ1))

∂ (ȳ1)2 = 2 (exp (2τ ∗ȳ1) 2τ ∗)2 [ω∗(ȳ1)]3 − [ω∗(ȳ1)]2 exp (2τ ∗ȳ1) (2τ ∗)2

Plugging in w(ȳ1) yields

w(ȳ1) = [ω∗(ȳ1)]2
{

1− 3 (ω∗(ȳ1) exp (2τ ∗ȳ1) 2τ ∗)2 + ω∗(ȳ1) exp (2τ ∗ȳ1) (2τ ∗)2

− ω∗(ȳ1) exp (2τ ∗ȳ1) 2τ ∗ȳ1

}
= [ω∗(ȳ1)]2

{
1− 3

(
δ̂∗(ȳ1)2τ ∗

)2

+ δ̂∗(ȳ1) (2τ ∗)2 − δ̂∗2τ ∗ȳ1

}
.

Since [ω∗(ȳ1)]2 > 0 for all ȳ1, the sign of w(ȳ1) is determined by

w̃(ȳ1) = 1− 3
(
δ̂∗(ȳ1)2τ ∗

)2

+ δ̂∗(ȳ1) (2τ ∗)2 − 2τ ∗δ̂∗(ȳ1)ȳ1

Since δ̂∗(ȳ1) > 0, w̃(ȳ1) = 0 if and only if

1

δ̂∗(ȳ1)
− 3 (2τ ∗)2 δ̂∗(ȳ1) + (2τ ∗)2 = 2τ ∗ȳ1. (C.13)

Moreover, it is straightforward to check that ∂
∂ȳ1
δ̂∗(ȳ1) > 0. It follows the first derivative of

the left hand side (LHS) of (C.13) is

∂LHS
∂ȳ1

=

− 1(
δ̂∗(ȳ1)

)2 − 3 (2τ ∗)2

 ∂

∂ȳ1

δ̂∗(ȳ1) < 0,

which implies the LHS of (C.13) is a decreasing function. Also, the right hand side of
(C.13) is an increasing function. Thus, (C.13) has at most one sign change from + to −.
Furthermore, note lim

ȳ1→−∞
w̃(ȳ1) = 1 and lim

ȳ1→∞
w̃(ȳ1) = −∞, implying (C.13) indeed has one
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and only one sign change from + to −. It follows from Theorem C.1 (i) that R(τ) also has
at most one sign change.

Step 2 : we show R(τ) indeed has one sign change. Note it also holds that

R(τ) =

∫
[ω∗(ȳ1)]

2
f(ȳ1|τ)dȳ1 +

1

2
τ

∫
[ω∗(ȳ1)]

2 ∂

∂τ
(f{ȳ1|τ}) dȳ1.

Hence,

∂

∂τ
R(τ) =

3

2
R1(τ) +

1

2
τR2(τ)

where

R1(τ) =

∫
[ω∗(ȳ1)]2

∂

∂τ
(f{ȳ1|τ}) dȳ1,

R2(τ) =

∫
[ω∗(ȳ1)]2

∂2

∂τ 2
(f{ȳ1|τ}) dȳ1.

By Lemma C.4, R(τ ∗) = 0. Since
∫

[ω∗(ȳ1)]2 f(ȳ1|τ ∗)dȳ1 > 0, it holds that R1(τ ∗) < 0.
Moreover, note

∂2

∂τ 2
(f{ȳ1|τ}) = f{ȳ1|τ}(ȳ1 − τ)2 − f{ȳ1|τ}.

Hence,

R2(τ) =

∫
[ω∗(ȳ1)]2 f{ȳ1|τ}(ȳ1 − τ)2dȳ1 −

∫
[ω∗(ȳ1)]2 f{ȳ1|τ}dȳ1

=

∫
[ω∗(t+ τ)]2 f{t|0}t2dt−

∫
[ω∗(t+ τ)]2 f{t|0}dt

=

∫
[ω∗(t+ τ)]2 f{t|0}

(
t2 − 1

)
dt < 0

for all τ > 0 since f{t|0} (t2 − 1) as a function of t is symmetric around zero, and

[ω∗(t+ τ)]2 =

[
1

exp (2τ ∗(t+ τ)) + 1

]2

is a decreasing function of t. Therefore, we conclude that[
∂

∂τ
R(τ)

]
τ=τ∗ =

3

2
R1(τ ∗) +

1

2
τ ∗R2(τ ∗) < 0,

implying τ ∗ is indeed a point of sign change. Thus, R(τ) indeed has one and only one sign
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change by Theorem C.1 (i).

Step 3 : From Steps 1 and 2, Theorem C.1 (ii) further implies that R(τ) and w̃(ȳ1)

changes sign in the same order. Hence, we conclude that R(τ) only has one sign change at
τ ∗ from + to −, i.e., τ ∗ is indeed a unique maximum of sup

τ∈[0,∞)

Rsq(δ̂
∗, Pτ ).

Theorem C.1 (Theorem 3 and Corollary 2, Karlin (1957)). Let p be strictly Pólya type
∞ and assume that p can be differentiated n times with respect to x for all t. Let F be a
measure on the real line, and let h be a function of t which changes sign n times.

(i) If

g(x) =

∫
p(x, t)h(t)dF (t)

can be differentiated n times with respect to x inside the integral sign, then g changes sign
at most n times and has at most n zeroes counting multiplicities, or is identically zero. The
function g is identically zero if and only if the spectrum of F is contained in the set of zeros
of h.

(ii) If the number of sign changes of g is n, then g and h change signs in the same order.

D Lemmas for Section 5

Lemma D.1. Treatment rule δ̂∗τ is a minimax optimal rule in the limit experiment, i.e.,
suphR

∞
sq (δ̂

∗
τ , h) = R∗.

Proof. The mean square regret of a treatment rule δ̂τ for each h1(b, h0) is

R∞sq (δ̂τ , h1(b, h0)) = [τ̇ ′h1(b, h0)]
2 E∆∼N(h1(b,h0),I−1

0 )

[
1 {τ̇ ′h1(b, h0) ≥ 0} − δ̂ (τ̇ ′∆)

]2

= [τ̇ ′h0 + b]
2 E∆∼N(h1(b,h0),I−1

0 )

[
1 {τ̇ ′h0 + b ≥ 0} − δ̂ (τ̇ ′∆)

]2

= R∞sq (δ̂τ , h1(b, 0)), (D.1)

where the last relation follows from τ̇ ′h1(b, h0) = τ̇ ′h0 + b and τ̇ ′h0 = 0 by construction.
Thus,

R∗ ≤ sup
h1

R∞sq (δ̂
∗
τ , h1) = sup

h0

sup
b
R∞sq (δ̂

∗
τ , h1(b, h0))

= sup
b
R∞sq (δ̂

∗
τ , h1(b, 0)) ≤ sup

b
R∞sq (δ̂

∗, h1(b, 0)) ≤ R∗,

48



where the first relation follows from the definition of R∗, the second relation follows from
definition of h1, the third relation follows from (D.1), the fourth relation follows by definition
of δ̂∗τ , and the final relation follows because R∗ is the worst case mean square regret of δ̂∗

and so must be no smaller than supbR
∞
sq (δ̂

∗, h1(b, 0)).

Lemma D.2. δ̂∗τ can be found by solving

inf
δ̂τ

sup
b
R∞sq (δ̂τ , b), (D.2)

where we recall that

R∞sq (δ̂τ , b) = b2E∆τ∼N(b,τ̇ ′I−1
0 τ̇)

[
1 {b ≥ 0} − δ̂τ (∆τ )

]2

.

Proof. Note for each b ∈ R and δ̂τ = δ̂(τ̇ ′∆),

R∞sq (δ̂τ , h1(b, 0)) = b2E∆∼N(h1(b,h0),I−1
0 )

[
1 {b ≥ 0} − δ̂ (τ̇ ′∆)

]2

= b2E∆τ∼N(b,τ̇ ′I−1
0 τ̇)

[
1 {b ≥ 0} − δ̂τ (∆τ )

]2

= R∞sq (δ̂τ , b)

where the second equality follows from

∆τ = τ̇ ′∆ ∼ N(τ̇ ′h1(b, h0), τ̇ ′I−1
0 τ̇),

τ̇ ′h1(b, h0) = b and we defined δ̂τ (∆τ ) = δ̂ (τ̇ ′∆).

Lemma D.3. Under assumptions of Theorem 5.1, the minimax optimal policy in the limit
experiment is

δ̂∗(∆) =

exp

(
2τ∗√
τ̇ ′I−1

0 τ̇
τ̇ ′∆

)
exp

(
2τ∗√
τ̇ ′I−1

0 τ̇
τ̇ ′∆

)
+ 1

,

where τ ∗ ≈ 1.23 and solves (4.6) or (4.7).
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Proof. By Lemmas D.1 and D.2, it suffices to find δ̂∗τ . Recall σ2
τ = τ̇ ′I−1

0 τ̇ . Thus,

R∞sq (δ̂τ , b) = b2E∆τ∼N(b,σ2
τ )

[
1 {b ≥ 0} − δ̂τ (∆τ )

]2

= b2

∫ [
1 {b ≥ 0} − δ̂τ (∆τ )

]2 1√
2πσ2

τ

exp

(
−(∆τ − b)2

2σ2
τ

)
d∆τ

= b2

∫ [
1 {b ≥ 0} − δ̂τ (στz)

]2 1√
2π

exp

(
−

(z − b
στ

)2

2

)
dz

= σ2
τ (bτ )

2

∫ [
1 {bτ ≥ 0} − δ̂1(z)

]2 1√
2π

exp

(
−(z − bτ )2

2

)
dz

= σ2
τ (bτ )

2 EZ∼N(bτ ,1)

[
1 {bτ ≥ 0} − δ̂1(Z)

]2

where the third line follows from the change of variable z = ∆τ
στ

, and the fourth line follows by
letting bτ := b

στ
and δ̂1(z) := δ̂τ (στz). Therefore, the minimax optimal rule δ̂∗τ (∆τ ) = δ̂∗1(∆τ

στ
),

where δ̂∗1(z) solves
min
δ̂1

sup
bτ

R∞sq (δ̂1, bτ ), (D.3)

and where R∞sq (δ̂1, bτ ) = (bτ )
2EZ∼N(bτ ,1)

[
1 {bτ ≥ 0} − δ̂1(Z)

]2

. By Theorem 4.2, we know

the solution of (D.3) is δ̂1(z) = exp(2τ∗z)
exp(2τ∗z)+1

, where τ ∗ solves (4.6) or (4.7). Hence, δ̂∗τ (∆τ ) =

exp(2τ∗∆τ
στ

)
exp(2τ∗∆τ

στ
)+1

. Finally, note ∆τ = τ̇ ′∆. Thus, the minimax optimal policy in the limit is

δ̂∗(∆) =
exp

(
2τ∗

στ
τ̇ ′∆

)
exp

(
2τ∗

στ
τ̇ ′∆

)
+ 1

.
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