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Abstract

In this paper we model imperfect contracting ‘from the ground up,” as arising en-
dogenously from the costs of writing contracts. We model these costs by making explicit
the language used to describe the environment and the parties’ behavior. The optimal
contract may exhibit two forms of incompleteness: discretion, meaning that the contract
does not specify the parties’ behavior with sufficient detail; and rigidity, meaning that
the parties’ obligations are not sufficiently contingent on the external state. The model
sheds light on the determinants of rigidity and discretion in contracts, and yields rich
predictions regarding the impact of changes in the exogenous parameters on the degree
and form of contract incompleteness. A simple extension of the model offers a theoretical
explanation for the existence of legal default rules (as in the U.S. Uniform Commercial
Code) that are meant to “fill the gaps” of private contracts.
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1. Introduction

It is often argued that contracts are incomplete because it is too costly to describe all the
relevant contingencies and the exact behavior of the contracting parties. In his discussion of
the causes of contract incompleteness, Jean Tirole (1999) classifies them in three categories: (i)
unforeseen contingencies; (ii) costs of writing contracts; and (iii) costs of enforcing contracts.
This paper focuses on point (ii) of this list, which according to Tirole is a weak point in the

“... many have argued that contingencies are missing because of substantial

existing literature:
costs of writing them. While there is no arguing that writing down detailed contracts is very

costly, we have no good paradigm in which to apprehend such costs.” (Tirole, 1999, p.772).

In a similar spirit, Richard Posner (1992, p. 92) emphasizes the relevance of the costs of

“...some contingencies, even though foreseeable in the strong sense that both

writing contracts:
parties are fully aware that they may occur, are so unlikely to occur that the costs of careful
drafting to deal with them might exceed the benefits, when those benefits are discounted by the

(low) probability that the contingency will actually occur.”

Just what types of costs are incurred in writing contracts is open to debate. For the purposes
of this paper, we have in mind costs that are, broadly speaking, proportional to the amount of
detail in the contract, such as the cost of figuring out the relevant contingencies and obligations,
the cost of thinking how to describe them, the cost of time needed to write the contract, and

the cost of lawyers.

We have in mind not only written contracts but also informal (oral) contracts. For example,
the relationship between a baby-sitter and the child’s parents is typically regulated by an
informal contract, in which a set of instructions is communicated orally to the baby sitter (and
enforced by the threat of firing her). This set of instructions is typically very incomplete. We
believe an important reason for this is that oral communication suffers from similar costs of
complexity as written contracts. To keep the terminology lean, however, in the remainder of

the paper we will simply talk about “writing costs”.

Even though the above quotes by Jean Tirole and Richard Posner emphasize the notion of

“missing contingencies,” it is clear at a moment’s reflection that contract incompleteness can



take two distinct forms: (excessive) discretion, meaning that the contract does not specify the
parties’ behavior with sufficient precision; and rigidity, meaning that the parties’ obligations
are not sufficiently contingent on the external state. For example, a construction contract is
characterized by discretion if it does not specify the materials with sufficient precision (and this
results in the contractor choosing low-quality materials); and is characterized by rigidity if the
completion time for the project is fixed, when it would be more efficient to make it contingent

on certain exogenous events.

The presence of writing costs can explain both of these forms of incompleteness. Intuitively,
if it is costly to describe the external contingencies and the parties’ behavior, then there is a
potential role for both rigidity and discretion. In this paper we explore this intuition more
rigorously. We will present a model that sheds light on the implications of writing costs for
the optimal degrees of rigidity and discretion in contracts, and is tractable enough to generate

potentially testable predictions about the impact of changes in the fundamental parameters.

We now sketch the structure of the model and our main results. In section 2, we develop a
framework that makes explicit the language used to describe the environment and the parties’
behavior. In particular, the language is made of (i) primitive sentences describing elementary
events and elementary actions, and (ii) logical connectives (such as “not”, “and”, “or”). This
language can be used to describe state-dependent constraints on behavior. Each primitive
sentence has a cost (logical connectives have zero cost), and the total cost of writing the
contract is a function (e.g. a summation) of the costs of its primitive sentences. It should
be emphasized that our simple language is best suited to describe qualitative aspects of the

environment and behavior.

We consider a simple principal-agent framework with symmetric information, where parties
are risk neutral and contracts are perfectly enforceable. A contract may specify contingent
obligations for the agent and a fixed transfer from the principal to the agent. After the contract
is signed, the principal makes the agreed-upon transfer to the agent, then the state is realized

and observed, then the agent takes the relevant actions.

In section 3, we impose more structure on our framework, in order to obtain more tractability

and sharper predictions. We consider a model in which the agent can take a set of dichotomous



elementary actions (such as “feed the baby” versus “do not feed the baby”) and the state is
described by a set of dichotomous elementary events (such as “the baby cries” versus “the baby
does not cry”), with a one-to-one correspondence between the two (so that, for example, it is
efficient to feed the baby if he cries, and not feed the baby if he does not cry). We label this a
“match-the-state” setting. We characterize the structure of the optimal contract and analyze
how this changes with the parameters. In the optimal contract, the most important actions are
regulated by contingent clauses; a set of less important actions is regulated by rigid rules; and
the least important actions are left to the agent’s discretion (i.e. they are not regulated at all).

Any of these sets may be empty, depending on the parameters.

A key parameter is the writing cost. For moderate levels of the writing cost, the optimal
contract displays some rigidity; for higher levels of the writing cost the optimal contract is
characterized by both rigidity and discretion; and for very high levels of the writing cost the
empty contract is optimal. The same is true if we increase the complexity of the contractual
relationship (as measured by the number of elementary actions/events). We also find that
the length of the contract is nonmonotonic in the complexity of the contractual relationship,

reaching a maximum for intermediate levels of complexity.

Another interesting comparative-statics result concerns the impact of uncertainty. The
model predicts that in more uncertain environments contracts should contain more contingent
clauses and fewer rigid clauses, and should leave more discretion to the agent. It is interesting
to note that, as uncertainty increases, the optimal contract may become simpler, in the sense

of a lower total complexity cost.

The tractability of our basic model depends on a number of assumptions on the payoff
structure, on the form of contracts and on the language used to write contracts. In section 4
we discuss the robustness of our qualitative results to changes in these assumptions. In section

5 we discuss how results are likely to change in the presence of unforeseen events.

In section 6 we argue that a simple extension of our model can provide a theoretical expla-
nation for the existence of legal default rules (as in the U.S. Uniform Commercial Code), whose
purpose is to “fill the gaps” of private contracts. The key idea is that legal default rules can

save on complexity costs. This explanation of legal defaults has been proposed by several law-
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and-economics scholars, though at an informal level. Some of these scholars have also expressed
the view that the optimal legal default rules are the ones that the majority of contracting pairs
would agree to in the absence of transaction costs (this is the so-called “majoritarian” theory
of legal defaults).! We will not attempt a thorough examination of this issue in this paper, but

will suggest that our framework is a natural one to address this type of question.

At this point, the skeptical reader may still ask: how important are writing costs in reality?
This is ultimately an empirical question, that we will not be able to settle here, but we will offer
a few remarks and casual observations. A preliminary consideration is that the cost of including
one additional clause in a contract may well be small, but for most contracting situations the
number of events and actions that are potentially relevant is arguably astronomical, so that the
cost of writing a complete contract would be extremely large. The following example should
strengthen this point. Consider a principal who delegates the writing of a document to an
agent (this could be a lawyer delegating the writing of a letter to an assistant, or a professor
delegating the writing of a survey to a research assistant). Of course there is an astronomical
number of possible documents that can be written. A complete contract would describe ezactly
the document that the principal wants to see, but this would involve nothing short of writing
the whole document, thus defeating the whole purpose of the trade. Instead, it may be optimal
to give the assistant an incomplete set of instructions, specifying some general characteristics
that the document should have, the number of pages, etc.? In this type of situation, writing
costs are relevant almost by logical necessity; more generally, the example suggests that, even
if the ‘unit’ writing cost is very small, the total cost of a complete contract is easily blown up

by the dimensionality of the contracting problem.

The example we just gave concerns the costs of describing behavior. As for the costs of

IFor example, Easterbrook and Fischel (1982) propose that “corporate law should contain the defaults most
people would have negotiated, were the costs of negotiating at arms’ length for every contingency sufficiently
low”. Goetz and Scott (1983) propose that the state should set default rules by asking “what arrangements
would most bargainers prefer?” Similar statements of this theory can be found in Posner (1986) and Baird and
Jackson (1985). It must be emphasized that several scholars, for example Ayres and Gertner (1989, 1992), have
expressed reservations about this majoritarian view of legal defaults. More on this in section 6.

’In this example, the agent does not have better information than the principal, so the incompleteness
of instructiond is caused solely by communication costs. Of course, if the agent had superior information
there would be an additional reason for giving incomplete instructions. We are abstracting from this type of
consideration here.



describing contingencies, it is not hard to find examples of contracts where relevant contingencies
are missing even though they are foreseeable and verifiable, thereby suggesting the presence
of writing costs. An example is provided by Meihuizen and Wiggins (2000), who examine the
evolution of supply contracts in the natural gas industry between 1946 and 1985 in the United
States. Around 1975, most of these contracts were amended to include a new clause that
provided for renegotiation of the price in case of deregulation of the industry. Our interpretation
is that, before it was introduced, this was a classic “missing contingency.” Since the industry
was regulated, the contracting parties were almost by definition aware of the possibility of
deregulation. We are therefore inclined to think that this contingency was missing because
it was considered very unlikely, and was later introduced because its likelihood was revised
upwards (possibly because of the 1973-74 oil crisis), or more generally because the expected

benefit of writing this clause came to exceed its cost.?

This is not the first paper that explicitly models the complexity of writing contracts as a
source of contractual incompleteness. The pioneering paper in this literature is Dye (1985), and
more recent papers include Anderlini and Felli (1994, 1998, 1999), Krasa and Williams (1999)
and Al Najjar et al. (2001). Before discussing these papers in more detail, we highlight in
general terms what we think is our main contribution to this literature. The above-mentioned
papers model contracts as functions mapping external states into an outcome (typically a
monetary transfer). As a consequence, in these models, contractual incompleteness can only
take the form of rigidity. In our framework we consider other contractual obligations besides
monetary transfers, and we assume that a detailed description of such contractual obligations
is costly; therefore our model is capable of explaining both rigidity and discretion. A related
innovation of our model is that it makes explicit the language used to write contracts; this allows

a simple and intuitive formalization of the costs of describing the environment and behavior.

3 Another example of missing contingencies can be found in the area of environmental insurance contracts.
Many insurance companies have recently introduced a new contingent clause in their pollution-insurance con-
tracts. This clause excludes injuries caused by (spores released by) certain strains of mold that grow in buildings.
In the past, insurance companies had received some claims related to this type of injury, but the frequency of
these claims was very low. The frequency of claims for some reason increased substantially in recent times, and
as a consequence the new exclusion clause was added to the contracts. We view this anecdote as suggestive of
nonnegligible writing costs. If writing additional clauses were costless, probably the exclusion clause on mold
would have been introduced from the beginning.



Dye (1985) explains the presence of rigidity by assuming that the cost of writing a contract
is increasing in the number of its contingencies, that is, the number of cells in the partition of
the state space induced by the contractual function. Our model differs from Dye’s in several
dimensions. First, we view the complexity of a contract in a very different way. For example,
two contracts with the same number of mutually exclusive contingencies have the same cost
according to Dye, but could have very different costs in our model.* This is because, in our
framework, the cost of a contract is not a function of the number of contingencies specified in the
contract, but of how hard it is to describe those contingencies in the given language. Second,
the two models yield different comparative-statics predictions, as we will discuss in section
2.8. Finally, as already mentioned, our model is able to explain the presence of discretion in

contracts, while Dye’s model is not (more on this in section 4.5).

Anderlini and Felli (1994) capture the difficulty of describing contingencies in a different
way: in a co-insurance model with a continuum of states, they require that contracts correspond
to computable functions, i.e., algorithms that for every input (state) produce an outcome in a
finite number of steps. They show that the computability constraint per se does not preclude an
approximate first best. But if the decision process used to select the contract is also constrained
to be algorithmic, the resulting contract is incomplete.” Krasa and Williams (1999) consider
a similar constraint on the complexity of a contract: they assume that the number of relevant
contingencies (elementary dummy variables) is countably infinite, but the contractual outcome
can depend only on a finite number of contingencies. They explore the conditions under which
the optimal contract can be approximated (in a payoff metric) by contracts satisfying this
finiteness constraint. Anderlini and Felli (1999) is closer to our work. They consider a large
class of complexity measures for computable functions satisfying a few plausible axioms, and
show that for any complexity measure in the given class one can find a contracting problem such
that the optimal contract is incomplete. Broadly speaking, our approach differs from theirs in

that we impose more structure on the problem and in return we get sharper predictions from

*Consider the following two contracts: contract A specifies behavior #° if the exogenous event E occurs and
behavior b! otherwise; contract B specifies behavior 8° if the exogenous events F and F' occur and behavior b
otherwise. These contracts have the same complexity cost according to Dye’s assumption, whereas contract B
is more costly according to our model.

5 Anderlini and Felli (1998) show that the approximation result of Anderlini and Felli (1994) fails when the
parties’ utilities are discontinuous. Al Najjar et al. (2001) present a model with a countable state space, finitely
additive probabilities, and continuous utilities, where the approximation result also fails.



the model.%

Before plunging into the analysis, we need to comment briefly on the well-known irrelevance
result by Maskin and Tirole (1999). They show that the possibility of unforeseen contingencies
and the costs of describing contingencies need not imply inefficiencies in contracting, provided
a message-based mechanism can be played after the state is observed and before actions are
taken. We think our approach is useful in spite of the Maskin-Tirole result. First, in many
situations it is not feasible to play games after the state is realized and before actions are taken.”
Second, even if it is feasible to play a mechanism a’ la Maskin-Tirole, it is still necessary to
describe behavior, which can be quite complicated. Third, a Maskin-Tirole mechanism can itself
be quite complex, and the costs of describing and implementing the mechanism might not be
lower than those of describing the relevant contingencies. Fourth, as shown in Battigalli and
Maggi (2000b), if parties interact repeatedly and can contract at any point in time, writing

costs can lead to inefficiencies even if mechanisms a’ la Maskin-Tirole are available.?

The paper is structured as follows. In section 2 we present our framework. In section 3 we
analyze the basic model with conflict of interests and derive the main results. In section 4 we
discuss the implications of more general payoffs, of more general contract forms and of richer
languages. Section 5 offers some comments on unforeseen events. Section 6 addresses the issue

of legal default ruels. Section 7 offers concluding remarks about an extension of our framework.

6The literature has pointed out a number of other potential causes of contract incompleteness beside the
costs of writing contracts. Allen and Gale (1992), Spier (1992) and Dewatripont and Maskin (1995) argue
that the presence of asymmetric information can be a source of contract incompleteness. Boot et al. (1993)
argue that an optimal contract may exhibit discretion when some contingencies are not verifiable. The reason is
that, if contingencies are not verifiable, a contract that completely specifies behavior would force non-contingent
actions, while a contract leaving some discretion may induce the agent to respond efficiently to contingencies.
A similar argument is made in Bernheim and Whinston (1998). In their model, the parties take actions in
sequence. If the first-mover’s actions are not verifiable, the optimal contract may leave some discretion in
the second-mover’s choice of actions. Mukerji (1998) argues that, if parties are ambiguity-averse rather than
expected-utility maximizers, the equilibrium contract may be excessively rigid.

"Consider the baby-sitting example: the baby sitter must react quickly to contingencies, and playing a
mechanism with the baby’s parents before taking action is out of the question.

SFurther qualifications to the Maskin-Tirole result have been pointed out by Segal (1999) and Hart and
Moore (1999). Segal (1999) considers a hold-up problem in which contingencies cannot be described ex-ante,
parties cannot commit not to renegotiate, and only a finite number of actions can be described ex-post. He
shows that, even if message-contingent mechanisms a’ la Maskin-Tirole are available, the first-best outcome
cannot be achieved. Moreover, as the size of the action space grows, the benefit from any message-contingent
mechanism shrinks (see also Segal, 1995). Hart and Moore (1999) consider a hold-up problem similar to Segal’s,
and show that the first-best outcome may be unattainable even if states can be costlessly described ex-ante.



All the proofs are contained in the appendix.

2. The Framework

2.1. Language

Our starting point is a simple formalization of the language used to write a contract.

II° = {e1,e9,e3...} is a finite collection of primitive sentences, each of which describes
an elementary event. These are the exogenous aspects of the world that are relevant to the
contracting problem, for example, eq: “the baby cries”, es: “the baby smells”, e3: “it rains”.
With a slight abuse of terminology, we will use the notation e; to indicate both an elementary

event and the primitive sentence that describes it.

I1* = {a1, as, as, ..} is a finite collection of primitive sentences describing elementary actions
(or tasks), for example, a; : “feed the baby”, as : “change diapers”, as : “take baby for a
walk”. The set of all primitive sentences is denoted II = I1¢ UII*. The simple language that we

formalize here is best suited to describe qualitative aspects of the environment and behavior.

Using the primitive sentences, the logical connectives = (“not”), A (“and”), vV (“or”), —
(“if... then”), the parentheses and the logical constant T (“tautology”) we can derive well-
formed formulae about the exogenous environment and/or about behavior.” A formula about
the environment describes a contingency, for example (e; Vez) A (—es3) (“it does not rain and the
baby cries or smells”). A formula about behavior describes a set of instructions, for example
(a1 V a3) (“feed the baby or take him for a walk”). We will use interchangeably the expressions
“formula about the environment” and “contingency”, and likewise for expressions “formula
about behavior” and “set of instructions”. The logical constant T in our setting will be used
only in two ways: as a formula about the environment it will mean “whatever happens,” and

as a formula about behavior it will mean “anything.”

The set of well-formed formulae about the environment is denoted A€, the set of well-formed

9A formula is “well-formed” if it is constructed according to the rules of the language, which are quite similar
to those used in algebra. See, e.g., Hamilton (1988) for details.



formulae about behavior is denoted A¢.

An important assumption is that the language just described is the (only) common-knowledge
language for the parties and the courts. This ensures that there are no problems of ambiguous

interpretation of the contract.

2.2. Contracts

We consider formal contracts between a principal and an agent. A contract stipulates a number
of clauses of the form “if contingency 1, occurs then the agent must follow the instruction 3,,”
and a monetary transfer from the principal to the agent. We will represent a nonmonetary
clause as a formula 7, — (3, and we will call “job description” a conjunction of such clauses.
We could allow transfers to be contingent on the external environment and/or behavior, but
there would be no gains from doing so, due to the assumptions (to be introduced shortly) of

verifiable states and behavior, risk neutrality and conflict of interests (see section 4.5).

Definition 1. A contract is a job description, g = /\le(nk — 06;) (. € A%, B, € A?), and a
transfer t € R.

Examples of contract clauses are: (1) —es — ag, “if it does not rain, take baby for a walk”;
(2) (e1 V e2) — (a1 A ag), “if baby cries or smells, feed him and change his diapers”’; (3)
T — (aq V as), “always talk to the baby or sing to the baby”.

Note that the different contingencies n,, & = 1,..., K, will in general not be mutually
exclusive, as a contract with mutually exclusive contingencies may be more complex than an
equivalent contract with non exclusive contingencies. Similarly, a contingency 7, will in general
not be a complete description of the environment and an instruction 3, will in general not be

a complete specification of behavior.

Since the transfer will be determined so as to make the agent indifferent between accepting
and rejecting the contract, it will play no interesting role in the analysis. For this reason, with
a slight abuse of our terminology, we will often refer to the job description g simply as the

“contract”.

10



2.3. Costs of Writing Contracts

We assume that all primitive sentences have the same writing cost ¢. To obtain the cost of
contract g we assume that one has to pay the cost of each primitive sentence occurring in the
contract plus the cost r of “recalling” a primitive sentence for each occurrence after the first
one. We assume that the recalling cost is (weakly) smaller than the cost of writing a primitive

sentence: 0 < r <.

We also assume that writing the logical connectives, the logical constant and the transfer
has no cost. Let n? be the number of distinct primitive sentences occurring in contract g, and
nY the total number of primitive sentences contained in contract g. Then the cost of writing ¢
is:10

C(g) = cen? +r(n? —n?). (2.1)
For example, if g consists of clauses (1)-(3) in the previous subsection, the cost of writing

contract g is 8c.

2.4. States and Behavior

A state of the environment (or simply a state) is a complete description of the exogenous
environment, represented by a valuation function s : II¢* — {0,1} (that is, s € {0,1}').
s(er) = 1 means that primitive sentence ey, is true at state s and s(ex) = 0 means that primitive
sentence ey is false at state s. In other words, s(ey) is a dummy variable that takes value one if
elementary event e, occurs and zero otherwise; and a state can be thought of as a realization

of the vector of dummy variables (s(eq), s(es), ....).

A simple example can illustrate the relationship between elementary events and states.

Suppose the only relevant elementary events are e; (“the baby cries”) and e, (“the baby smells”).

10Note that our language does not allow for a simple way to express a clause of the form “if none of the contin-
gencies described in the rest of the contract applies, then (3;.” This kind of clause can be expressed in our language

only by recalling all contingencies 7, described in the rest of the contract, namely as <—| (\/k £ nk) — ﬂj). If

the recalling cost r is zero, then our cost formula captures the fact that a clause of this kind can be written
at low cost. If » > 0, then our cost formula does not properly take this into account. While extending our
language to allow for expressions of the kind “if none of the above applies” is conceptually straightforward, it
is also notationally cumbersome and it would not alter the qualitative features of the analysis.
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Then there are four relevant states, as in the following table:

€1 €1
es | baby cries and smells baby smells and does not cry
—ey | baby cries and does not smell | baby does not cry and does not smell

Function s is extended on A€ in the following inductive way:

o 5(T)=1,

s(-m) = 1 if and only if s(n) = 0,
e s(nVe) =max(s(n),s(e)),

e s(nAe)=min(s(n),s(e)).

Similarly, a behavior is a complete description of what the agent does, represented by a
valuation function b : TI* — {0,1} (that is, b € {0,1}™). b(ax) = 1 means that elementary
activity ay is executed, and b(ag) = 0 that ay is not executed. The function b is extended on
A® analogously as function s. To illustrate the relationship between elementary actions and
behaviors, suppose the only elementary actions are a; (“feed the baby”) and ay (“change the

baby’s diapers”). Then there are four relevant behaviors:!!

a1 —ay
as | feed and change diapers change diapers and do not feed
—ay | feed and do not change diapers | do not feed and do not change diapers

2.5. The behavioral correspondence

Some states of the environment may be impossible because they contradict the factual knowl-

edge of the parties (e.g. the laws of mechanics) and/or the meaning of the primitive sentences.

Tn principle the parties could construct a new language, for example by attaching a number to each state and
to each behavior, and write a contract with the new, possibly simpler language. However, given the assumption
that our propositional language is the only common-knowledge language for the parties and the courts, writing
the contract in a new language will not help. The reason is that the parties will have to attach a vocabulary
that translates the new language in terms of the original, common-knowledge language, in order for the courts
to interpret the new language, and doing so is at least as costly as writing the contract in the original language.
We thank Leonardo Felli for bringing this issue to our attention.
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We let S C {0, 1} denote the set of possible states. Likewise, for each state, some behaviors
may be impossible. We let B(s) C {0, 1} denote the set of possible behaviors for any given
state s € S.

A contract g = Abr_,(n, — ;) imposes state-dependent constraints on the behavior of
the agent. These constraints, together with the feasibility constraints, constitute what we call
the behavioral correspondence induced by the contract. This behavioral correspondence can be

derived logically from the contract ¢ in the following way.

For every contingency 7, define the truth set of n,, denoted by ||, , as the set of possible

states where contingency 7, is true, i.e.

[l = {s € S:s(n) =1}

and define analogously the truth set of 3., denoted by ||3,]|, as the set of behaviors b such that

the instructions [, are satisfied. The behavioral correspondence induced by g is

B =Bsn| 16
{k:selimell}
In words, (Viy.ecyy. 3 184l is the set of behaviors allowed by the contract at state s, namely
those behaviors that satisfy the instructions specified in all the clauses that apply to state s.
The set BY(s) is then the set of behaviors that are feasible and allowed by the contract at state

s. Once the contract is signed, the agent has to choose his behavior in set B9(s).

To simplify the analysis, we assume that a contract is enforceable only if it specifies feasible
(hence, non-contradictory) obligations for all states. This is by no means the only reasonable
assumption. An alternative assumption would be that courts enforce the contract in all states
for which the contract specifies feasible obligations, and enforce no obligations in all other
states. Under this alternative assumption, it is possible that the optimal contract will stipulate
infeasible obligations (i.e. will contain contradictory prescriptions) in some states, as this may

potentially economize on writing costs.

We say that contract g is feasible if B7(s) # () for all s € S. We denote the set of feasible
contracts by F.

13



2.6. Equivalent Contracts and Efficiently Written Contracts

An important element of our logical construct is the definition of an efficiently written contract.

For this, however, we first need appropriate notions of equivalence between contracts.

Definition 2. Two contracts g and h are behaviorally equivalent if they specify the same
constraints on behavior at each state, that is, B(s) = B"(s) for all s € S. Two contracts g and

h are equivalent if they are behaviorally equivalent and they have the same cost (C(g) = C(h)).

The following is our notion of efficiency in writing a contract:

Definition 3. A contract g is efficiently written if C(g) < C(h) for every behaviorally equiv-
alent contract h.
Consider, in the babysitting example, the contract
g=(e1 Nez) = (a1 Aa2)) A ((e1 A —es) — ar) A ((—er Aey) — as).
If r > 0, contract g is not efficiently written. Consider the alternative contract
h=(e; — a1) A (ea — asg).

Both contracts instruct the babysitter to feed the baby if he cries and to change diapers if he
smells, but h has a lower writing cost: C'(g) = C(h) + 6r. This also shows how contracts with

non-mutually exclusive contingencies can save on writing costs.

2.7. The Game

We consider a game where the principal proposes a feasible contract (g,t) (job description and
transfer) to the agent, who can either accept or reject. If the contract is signed, after observing
the realized state s the agent is supposed to behave according to some b € BY(s). Implicit in

this timing is the assumption that it is not feasible for parties to negotiate or communicate after
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the state is realized and before the agent takes action.'? This kind of setting is realistic in a
variety of situations, for example when the agent must react quickly to contingencies, especially

if the principal is not around at that time (think of the babysitting case).!?

The principal and the agent are risk neutral. For every (s,b), the principal gets gross
benefit 7(s, b) and pays t+C(g). Note that we assume that only the principal — who has all the
bargaining power — pays the writing costs.!* In case of disagreement the principal pays C(g)

and the agent gets utility U.

The agent’s preferences are represented by the utility function
U(s,b,t) =t —6(s,b),
where 6(s,b) is the disutility of behavior b in state s. Given contract g and state s, we let

BR(s) = arg bgrg%r(ls) 6(s,b)

denote the set of best responses of the agent at state s.

We assume that the state and the agent’s behavior are verifiable in court, but preferences
and realized payoff levels are not. If preferences were verifiable, the first-best outcome could
trivially be achieved by a contract of the form “The agent’s behavior b must maximize the
sum of the parties’ utilities.”!® On the other hand, if realized payoff levels were verifiable, the
first-best outcome could be achieved by offering the agent a transfer that increases one-for-one
with the principal’s realized payoff level. We also assume that the principal cannot “sell the
activity” to the agent (i.e. the agent cannot be made the recipient of the gross payoff 7); this

would be essentially equivalent to specifying a contingent transfer as in the previous point.

12Note that this assumption rules out message-based mechanisms a’ la Maskin-Tirole (1999).

13See Battigalli and Maggi (2000) for an extension of this analysis to a setting where spot contracting is
feasible and parties interact repeatedly.

14This assumption is not entirely innocuous. Anderlini and Felli (1997) show that, if both parties must incur
a transaction cost before the negotiation takes place, it is possible that in equilibrium no contract will be signed
even though it would be efficient to do so.

15Sometimes we do observe general “first-best” clauses of this kind, for example when a contract requires
an employee to “act in the company’s best interest.” This kind of clause makes sense if the company’s payoff
function can, at least imperfectly and at a cost, be verified in court. A more general model would allow for
imperfect and costly verification of payoff functions. In this case, it is conceivable that an optimal contract
might include both a general “first-best” clause as well as specific behavioral clauses.
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The principal and agent’s prior beliefs about the exogenous state are given by a common
probability measure p € A(S). (With a slight abuse of notation we also write sentences and

formulae as an argument of u, as in u(n) = p({s: s(n) =1}).)

We also assume that there are gains from trade gross of writing costs:

Assumption 1. (Gains from trade.) There is some behavioral function b : S — {0, 1}
such that
b(s) € B(s), forall s € S,
> uls) (s, b(s)) = 8(s,b(s))] > T.

seS
2.8. Optimal Contracts

We say a feasible contract (g, t) is a subgame perfect equilibrium contract if there is a subgame
perfect equilibrium where the agent accepts (g,t).!° For definiteness, we focus on subgame

perfect equilibria whereby the agent breaks ties in favor of the principal.

Clearly, a subgame perfect equilibrium contract (g, t) must satisfy the agent’s participation
constraint with equality, that is, ¢ = U + Y, s p(s) (minyeps(s) 6(s,b)). Therefore from now
on we will omit the transfer ¢ from the notation, and identify the contract simply with its job

description.

A contract glis a first best contract if it solves

e {Z 409 |, .0 = i, 900 } |

A contract ¢? is an optimal contract if it solves

max {Z () Le%l%ﬁs) m(s,0) = min o(s, b)} - C(g)}

seS

Our assumptions and definitions have three immediate implications:

16Note that in general there may be a difference between the no-contract situation (status quo) and a contract
specifying only a zero transfer (which we call ‘empty’ contract), because an empty contract gives the agent the
right to affect the principal’s payoff with his unrestricted behavior. However, in the applications we will consider
the empty contract is equivalent to the status quo.
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Remark 1. (i) There are at least one optimal contract and one efficiently written first best
contract. (ii) By Assumption 1, optimal contracts are subgame perfect equilibrium contracts
and first best contracts are subgame perfect equilibrium contracts of the game where writing

costs are zero. (iii) Every optimal contract is necessarily an efficiently written contract.

The proof of remark 1, along with those of all the following results, are in Appendix. The
following intuitive proposition says that if writing costs are very small, an optimal contract

must be an efficiently-written first best.

Remark 2. There is some ¢ > 0 such that, if 0 < ¢ < ¢, then every optimal contract is an

efficiently-written first best.

This result is similar to one derived by Anderlini and Felli (1999, Proposition 6), though in

a different setting.

2.9. Incompleteness of Contracts

We can distinguish between two basic forms of incompleteness: (1) We say that a contract g
is rigid if there are two distinct states s, s’ € S such that B9(s) = BY(s’). (2) We say that a
contract g exhibits discretion at s if #B9(s) > 1 (#X denotes the cardinality of set X).

In words, a contract exhibits discretion if the behavioral correspondence BY is not single-
valued, and is rigid if BY is not one-to-one. Rigidity is a lack of sensitivity of the contractual
obligations to the external state. Our notion of discretion includes as a special case a notion of
incompleteness that is fairly common in the literature, namely that the contract is “silent” (it

specifies no obligations) at a given state.

Rigidity and discretion are two ways of saving on writing costs. Omitting from the contract
an elementary sentence e,, saves on the cost of describing contingencies, but makes the contract
rigid. Omitting from the contract an elementary sentences a,, saves on the cost of describing
behavior, but gives discretion to the agent. A key objective of the analysis will be to examine

under what conditions the optimal contract displays one or the other form of incompleteness.
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Note that, in our main application, any rigidity or discretion implies a divergence from the
first-best outcome. In a more general model this need not be true, as a contract exhibiting

rigidity or discretion might implement the first-best outcome.

3. Application: a “Match-the-State” Setting

In this section we impose more structure on the framework. This will enable us to characterize

the optimal contract and derive interesting comparative-statics predictions.

We assume that there is a one-to-one correspondence between elementary events and ele-
mentary activities. The principal wants elementary activity a, to be carried out if and only
if elementary event e, occurs. For example, in our baby-sitting situation, if it is sunny the
babysitter should take the baby for a walk (and if it is not sunny she should keep him at home),
if the baby cries she should feed him (and if he does not cry she should not feed him), and so

o1.

The principal gets incremental benefit 7, from “matching” e, with a, (or —e, with —a,),
while he gets zero incremental benefit if there is a “mismatch”. 7, may depend on n but is

independent of other contingencies and activities.

Let 11¢ = {e1,...,en}, I1* = {ai,...,an}. We let N also denote the index set {1,..., N}.17
The principal’s gross benefit function is:

N

7(s,b) = Ayn an[s(en)b(an) + (1 — s(en))(1 = b(an))]- (3.1)

n=1

where {7, }2°, is a fixed sequence of distinct, positive real numbers and Ay = The

1
Z'r]y:l Tn

reason we normalize gross benefits by Ay is that in this way, when we perform comparative
statics with respect to IV, we compare situations with the same potential gross benefit. We
adopt the convention that elementary events and activities are ordered in terms of decreasing
weight, that is,

T > M1 >0, Vn > 1. (3.2)

"Note that we could equivalently assume II° = {ay,d1,..an,@n..,an,an} and B(s) =
{b:b(ay) =1 if and only if b(a,) = 0,Vn € N}
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The agent’s interests are always in conflict with the principal’s, in the sense that her pre-
ferred actions are always opposite the principal’s preferred actions. This assumption is conve-
nient because it implies that any first best contract is neither rigid nor loose, as we will see
shortly. Therefore, any rigidity or looseness that arises in a contract is “excessive” (it implies

an inefficiency). The agent’s utility function is:

U(s,b,t) =t—06m(s,b), (0<6<1),U=0. (3.3)

The parameter ¢ captures the strength of the conflict of interests between principal and
agent; (1 — ) is a measure of the potential gain from contracting, or in other words the

efficiency loss from noncooperative behavior.

The elementary events e,,, n = 1, ..., N, are i.i.d. with marginal probability p. By convention
we assume p > 1/2 (we do not consider the knife-edge case p = 1/2 to avoid ties that would

make the analysis more tedious). Formally we are assuming:

p (m/e\K em) (ne{v\\K —en) | =pH(L—p)NTFE, (p> %), VK C N. (3.4)

We can think of p as capturing the degree of uncertainty in the environment: the higher p, the

lower the uncertainty (notice that the variance of the random variable s(e,) is decreasing in p).

We also assume that the parameters satisfy a genericity condition, to avoid ties:

1 c 1 c+2r

mEN T ™ A Ay 1=6

(3.5)
In this model, the efficiently-written first best contract takes a very simple form:

Remark 3. Under (3.1), (3.2) and (3.3), every efficiently-written first best contract is equiva-

lent to:

/\ ((ex — ax) A (e — —ay)) .

Notice that the efficiently-written first best contract is neither rigid nor loose. We will first
characterize the structure of the optimal contract, then examine how it is affected by changes

in the key parameters.

19



Proposition 1. Under (3.1), (3.2), (3.3), (3.4) and (3.5), every optimal contract is equivalent

to:

(/\ ((ex — ag) A (—ep — ﬁak))) A ( A (T— ak)>

k=1 k=K;+1

where K, :max{kze N :m > (1—;)AN61+—26T} and K + K>» :max{k: e N 7w > ]ﬁﬁ} (by

convention we let max() = 0 and /\i:m(-) =T ifm>/{).

The above proposition states that, in general, the optimal contract is characterized both by
rigidity and by discretion. In particular, the set of N actions is partitioned in three groups: a
group of more important actions (i.e. those associated with higher ,,) is regulated by contingent
(double-)clauses of the form (e, — an) A (—e, — —ay); a group of less important actions is
regulated by rigid clauses of the form (T — a,,); and the least important actions are left to the
agent’s discretion (i.e. they are not regulated at all). Any of these three subsets of actions may

be empty, depending on parameters.

Next we sketch the basic intuition for the result. Given that payoffs are separable with
respect to the dimensions (or aspects) n = 1, ..., N, and that elementary events are independent,
we can focus on contracts with a “separable” structure, in the sense that each dimension n is
handled by a clause that depends only on e,, and/or a,. (It must be noticed, however, that this
depends crucially on the assumption of conflict of interest; in section 4.4 we will see that, when
the agent’s interests are partially aligned with those of the principal, it is no longer true that
the optimal contract can be derived by looking separately at each dimension n.) This means

that we only need to choose the optimal clause for each n. There is only a small number of
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candidate clauses for each n. Look at the following table:'®

k*"Clause Label Incremental Net Surplus
€ — Qg C’k p(l — (S)ANﬂ'k — 2c
—ep — Ty o (1 —-p)(1—06)Anmr — 2¢
(ek — Clk) A (ﬁek — _|Cl]€) Ck (1 — 6)AN7Tk - 2(0 + ’I")
T — Qf Rk p(l—(S)ANﬂ'k—C
T — —ag . (1—-p)(1—6)Anmr —c
T—-T D 0
Table 1

We have attached labels to clauses to simplify the notation. Label C stands for “contingent,”
R stands for “rigid”, and D stands for “discretion.” Any other clause about aspect k is clearly
suboptimal, because it prescribes the wrong action. Next we need to select the clause with the
largest incremental net surplus for each aspect k. By inspection of the table, one can verify
that the simple contingent clauses Cj and C},’ and the rigid clause R, cannot be optimal. The
choice is thus narrowed down to clauses Cj, Ry and D, which cost respectively 2(c + ), ¢ and

Zero.

Having narrowed down the choice in this way, the result that the most important tasks are
regulated by contingent clauses and the least important tasks are left to the agent’s discretion
is very intuitive. The reason a task of intermediate importance is regulated by a rigid clause,
on the other hand, is that a rigid clause “gets it right” with probability p > 1/2. The task is
important enough that the expected benefit of a rigid clause outweighs the cost ¢, but is not so
important that the benefit of a contingent clause (which “gets it right” with probability one)
exceeds 2(c + ).

Using Proposition 1, it is easy to examine how changes in the key parameters affect the
optimal contract. To simplify the presentation of the comparative-statics results, we assume
here that the recalling cost is proportional to c: r = r'c, with 0 <7’ < 1. Also, let y = ¢/(1—0)
denote the writing cost relative to the potential gross surplus. The next corollary summarizes
how changes in y, p and NN affect the degrees of rigidity and discretion in the optimal contract.

The degree of rigidity is captured by the number of rigid clauses, while the amount of discretion

I8Note, we use the index n to denote a dimension of the problem, and the index k to denote a clause of the
contract. In this setting, of course, there is a one-to-one correspondence between dimensions and clauses.
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is captured by the number of missing clauses. The corollary also looks at the impact of N on

the length of the contract.

Corollary 1. Suppose that (3.1), (3.2), (3.3), (3.4) and (3.5) hold. Then

(i) As y increases, the number of rigid clauses initially increases and eventually decreases. The
number of missing clauses is nondecreasing in y. If y® (resp. y”) is the minimum level of y for
which there are rigid (resp. missing) clauses in the optimal contract, then y®* < yP. The same
statements are true if y is replaced by N.

(ii) The number of rigid clauses is nondecreasing in p, and the number of missing clauses is

nonincreasing in p.

(iii) Suppose y < pﬂjjf7r2 (or equivalently, that for N = 2 the optimal contract contains two
clauses). Then the total number of clauses in the optimal contract is non-monotonic in N,

reaching a peak for some intermediate level of N.

The optimal contract can respond in two ways to increasing complexity costs (in the sense
of higher writing costs, ¢, and/or a higher dimensionality of the problem, N): it can leave more
discretion to the agent (i.e. clauses are dropped from the contract), or it can be made more
rigid (i.e. clauses are made noncontingent). According to Corollary 1(i), contracts tend to be
more rigid for intermediate levels of complexity costs, and to leave more discretion for higher
levels of complexity costs. In particular, for moderate levels of complexity costs the contract
displays only rigidity, for higher levels of complexity costs it is characterized by both rigidity

and discretion, and for very high levels of complexity costs the empty contract is optimal.

[Insert Figure 1 here]

Figure 1 illustrates the structure of the optimal contract as a function of y and N, for given
p>1/2and 7. The (y, N) space is divided into six regions. In region FB, the first best contract
is optimal; in region NC the empty contract is optimal. In the remaining regions, a letter C
(resp. R and D) means that there are some contingent (resp. rigid and missing) clauses in

the optimal contract. Thus, in regions R and C+R, the optimal contract displays rigidity but
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leaves no discretion; in regions R+D and C4+R+D, the contract is characterized by rigidity as

well as discretion.

Note that an increase in potential gross surplus from the relationship ¢ has identical con-
sequences as a decrease in the writing cost, since these two parameters enter the problem only

through the ratio % = =.

We believe this prediction is potentially testable. At a broad level, we can think of two ways
of going about this. First, one could take a cross-section approach, by looking at the variation
of contracts within an industry. For example, our model predicts that when the value of trade
(o) is relatively small, the contract should be short and contain only a few rigid clauses, leaving
substantial discretion to the parties; when the value of trade is higher, on the other hand, the
contract should be longer and contain both rigid and contingent clauses, leaving less discretion

to the parties.'?

Another possibility would be to observe how contracts change over time in situations where
the value of contracting (captured by o) increases. For example, this might be the case in a
growing industry, to the extent that the size of individual firms (not only the number of firms)
tends to grow. One could then check whether the evolution of contracts is consistent with the

model’s predictions about increases in o.

Part (ii) of the corollary focuses on the impact of uncertainty. When uncertainty decreases
(i.e. when p increases), the amount of rigidity in the optimal contract increases, and the amount
of discretion falls. This is intuitive: when uncertainty is lower the efficiency cost of ignoring
low-probability events and writing rigid clauses is lower, hence the number of rigid clauses

tends to be higher. Moreover, when uncertainty is lower, leaving discretion looks relatively less

19We took a casual look at the area of construction contracts, and what we saw seems consistent with our
model. Hauf (1968) and Douglas and O’Neill (1994), for example, report the most frequent types of construction
contracts used in the United States. Projects of smaller value are generally handled by contracts that are fairly
simple and short. These short contracts typically contain only a limited set of noncontingent instructions,
including a plan of the facility and a specification of the materials to be used, and leave much discretion to
the constructor. On the other hand, bigger projects tend to be handled by longer contracts. These longer
contracts give much less discretion to the constructor: they contain a fair number of noncontingent instructions,
as well as several contingent clauses, describing for example what the contractor is supposed to do if the
site conditions change, or describing the contingencies under which the owner can request a change in the
construction specifications.
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attractive than imposing a rigid rule, and no more attractive than writing a contingent rule,

thus the number of missing clauses tends to be lower.

Note that, as uncertainty increases, the optimal contract contains fewer clauses, and it may
even be simpler, in the sense of having a lower total complexity cost C(g) (it is easy to show
examples where this occurs). This should be contrasted with the prediction of more traditional
transaction-cost models, such as Dye (1985). In these models, an increase in uncertainty typi-
cally leads to more complex contracts, because contract incompleteness can only take the form
of rigidity. What makes a difference in our model is the interplay of rigidity and discretion,

which is absent from models a la Dye.

Part (iii) of the corollary highlights another interesting prediction of the model: the length
of the contract is maximal for intermediate levels of complexity (intermediate N). This seems
consistent with casual empirical observations. Contracts regulating very simple activities are of
course short, but so too are those that regulate very complex activities (such as, for example,

the job of a university professor).

4. Robustness

In the previous section we made a number of assumptions on the payoff structure, on the form of
contracts and on the language used to write contracts. In this section we discuss the robustness
of our qualitative results to changes in these assumptions. We begin by relaxing the symmetry
assumptions and the one-to-one correspondence between elementary actions and events. Next
we discuss the implications of correlated elementary events, complementary tasks, and partial
alignment of interests. We then consider the possibility of contingent transfers. Finally, we

discuss how results are likely to change in the presence of more general languages.

4.1. More general payoffs with conflict of interests

Here we remove all the symmetry assumptions and the one-to-one correspondence between
elementary actions and events. We retain only a minimum of assumptions to ensure that the

problem is separable in the N tasks, in the sense that we can optimize the contract task by
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task. This requires that expected payoffs are separable in the N tasks and that there is full
conflict of interests between the parties. Characterizing the optimal contract when the problem

is not separable across tasks is a very difficult problem, which we do not know how to solve.

We can drop the assumption that the number of elementary actions equals that of elementary

events, and we can replace the gross benefit function of the basic model with the following

N
0 (b, 3) = Z ann(bm Sn)
n=1

where b,, stands for b(a,,), s, = (Sny) Sngy -y ) = (S(€ny)s S(€ny), .-, ) is the set of elementary ran-
dom variables that are relevant for task a,,, and sy, S, ..., sy do not overlap (i.e., each elementary
event is relevant for at most one task). We can also replace the assumption of i.i.d. elementary
events with the weaker condition that the vectors (si, ss, ..., sy) are mutually independent. For
example, we could have 7 (b, s) = m1g1(b1; S2, 83) + maga(be; S1, S4, S6) + T2ga(b2; S5), where the
vectors (sg, 83), (81, 84, S¢) and (s5) are mutually independent. The task-specific scaling param-
eter 7, captures the ‘importance’ of task n: an increase in 7, (holding all else equal) blows up
the gain from contracting on task n. To avoid tedious ties, we assume that arg maxy g, (by, S,)

is unique for all n.

The agent’s payoff is still given by U = ¢t — ém(b, s), and the reservation utility is still zero
for both players.

We refer to this setting as the generalized match-the-state model. The reason we did not
conduct the whole analysis within this more general model is two-fold. First, as we will see
shortly, the characterization of the optimal contract and the comparative-statics results are not
as crisp as in the simple match-the-state model. Second, in the simpler version of the model
we could capture the degree of uncertainty with a single parameter (p), whereas in this more
general setting there is no simple way to examine the comparative-statics effects of changes in

the degree of uncertainty.

Let us focus on task n. Performing this task (b, = 1) is efficient for a certain subset of
states, say Ef C S. An efficiently-written complete contract will then involve a set of clauses
of the form (0} — a,) A (—-nf — —a,), where 1} is an efficiently-written formula with truth set

E?. Note that the efficiently-written complete contract may be partially rigid.
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Next we examine the optimal contract.?’ Without loss of generality, we label elementary
actions in such a way that the rigid clause (T — a,,) is preferred to the rigid clause (T — —a,,)
for each n. We also assume that this preference is strict for each n, to avoid knife-edge cases. In
the optimal contract, each task is regulated by a clause of one of three types: (1) A contingent
clause of the form (n,, — a,) A (—m,, — —a,). If c is sufficiently low, 7, will coincide with
n;,, and the clause will implement the first best for task n; if c is higher, 7,, may be a simpler
formula than 77, and the clause may not implement the first best. Note that, if 7,, is a simpler
formula than 7}, the clause may, but need not be, more rigid than the first best clause. Note
also that a contingent clause costs at least 2c. (2) A fully rigid clause (T — a,,), which costs c.
In what follows we refer to this clause simply as the rigid clause. (3) A discretionary (empty)

clause, which is costless.

Consider first the robustness of Proposition 1. In this more general setting, tasks may not
only differ in ‘importance’ (7,,), but also in a number of other ways, since we allow the function
gn to vary by task. For this reason, we cannot hope the result of Proposition 1 to hold exactly

as stated. But the result still holds in a ceteris paribus sense:

Remark 4. Consider the generalized match-the-state model. As m, increases, holding ev-
erything else constant, the optimal clause for task n switches from discretionary, to rigid, to

contingent.

Proof: see Appendix.

Broadly speaking, then, we still have the result that tasks of high importance tend to be
regulated by contingent clauses, tasks of intermediate importance tend to be regulated by rigid

clauses, and the least important tasks tend to be discretionary.

As for the impact of changes in ¢ and A on the efficient contract, the result of Proposition

1(i) continues to hold:

20To keep the exposition simple, we continue to refer to the optimal contract, i.e. the contract that maximizes
the net surplus. In this extended setting, the optimal contract need not be a subgame perfect equilibrium,
because it may yield a negative net surplus (in this case, in equilibrium no contract is signed). At any rate, the
comparative-statics results we state for the optimal contract are valid also for any contract signed in a subgame
perfect equilibrium, in the relevant parameter region.
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Remark 5. In the generalized match-the-state model, Proposition 1(i) holds as stated.

Proof: see Appendix.

Intuitively, the reason our comparative-statics results are robust is that the rankings between
a contingent clause, a rigid clause and a discretionary clause in terms of writing costs and in
terms of expected benefits have not changed: a contingent clause costs at least 2¢, a rigid clause
costs ¢, and a discretionary clause costs nothing; on the other hand, the rankning in terms of
expected benefits is reversed (in particular, the assumption of conflict of interests implies that

a rigid clause yields a higher expected benefit than discretion).

Proposition 1(ii) cannot easily be extended to the generalized match-the-state model, be-
cause the impact of uncertainty can no longer be gauged by a single parameter. However, we
believe that the main insight — that redcing uncertainty tends to increase rigidity — should still

hold.

An important question is, to what extent our results hold when the parties’ interests are
partially aligned, when elementary events are correlated, or when payoffs are not separable
across tasks. The following subsections characterize the otpimal contracts in simple examples
with these features, showing that, in general, we cannot optimize the contract task by task. We
do not have techniques to solve the general optimization problem in the non-separable case.
But we conjecture that our qualitative comparative-statics results would survive, at least as
tendencies. This conjecture is motivated by the following intuition. Introducing rigidity in the
contract saves on the cost of describing contingencies, while introducing discretion saves on
the cost of describing contingencies and on the cost of describing actions. This insight is quite

general, and is the main driving force of our comparative-statics results.

4.2. Correlated events

If the assumption of independent elementary events (3.4) is dropped, so that elementary events
are allowed to be correlated, the optimal contract is more likely to be rigid. Consider the special

case N = 2, and let the probability distribution over the possible states be represented by the
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following table

€1 —e1

€9 5 —¢&|€
1

ey | £ 5—8

where 0 < € < 1/2. The entries of the table are the joint probabilities of the four possible
states. Here, if ¢ # 1/4, events e; and ey are correlated (positively if ¢ < 1/4, negatively if

e > 1/4). The remaining assumptions of the model are unchanged.

Consider for example the case of perfect positive correlation (¢ = 0). In this case, if ¢
is sufficiently small, the contract (e; — ay A as) A (—me; — —a; A —asy) is optimal, because it
implements the first best outcome (the same is true for the contract (e; — a3 A az) A (mey —
—a; A —ag)). These contracts are rigid, since they do not discriminate with respect to one of
the two elementary events. Intuitively, if elementary events are perfectly correlated, there is
effectively a single relevant elementary event, hence there is no need to discriminate with respect
to both. If the event “the baby cries” is perfectly correlated with the event “the baby smells”,
you might as well give instructions based only on whether the baby cries. More generally, one
can show that, as the degree of correlation increases (i.e. € moves toward either extreme), the

parameter region where the optimal contract is rigid becomes larger.

This observation is consistent with the result of Corollary 1(ii), that the optimal contract
is more likely to be rigid if uncertainty is lower (in this case, if [¢ — 1| is higher). The general
point is that rigid contracts tend to be a more attractive means of saving on writing costs in the
presence of low-probability states, whether these are due to asymmetric marginal probabilities

or correlation across elementary events.

4.3. Complementary tasks

We have so far assumed that payoffs are separable across tasks. An interesting question is
whether the presence of complementarities among tasks, which many argue to be a pervasive

feature of modern manufacturing jobs,?! makes contracts more or less incomplete.

Intuition might suggest that complementarities make the optimal contract more incomplete,

21See for example Milgrom and Roberts (1990).
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because if some tasks are specified in the contract, the agent may “spontaneously” perform other
tasks that are complementary to the ones pinned down in the contract. This intuition turns
out not to be correct. We will present a simple example in which complementarities make the
optimal contract less incomplete, provided c is relatively low and the marginal effort cost of

each task is positive.

Suppose there is a single relevant state, so that the contract only needs to specify the
agent’s behavior, and only two elementary tasks. Define elementary tasks so that the first-best
behavior is given by b(ay) = 1, k = 1,2. To understand the role of complementarities, it is
useful to distinguish between complementarities in the revenue function and complementarities
in the agent’s utility. For this distinction to be meaningful, we allow for a more general utility
function than in section 3, namely U =t — 6(b), where b = (b(aq),b(az)). Let m(b) denote the

revenue function.

We start by setting up the benchmark case of no complementarities, i.e. of separable revenue
and utility functions. Our separable revenue function is given by 7(b) = m1b(a1)+m2b(as), where

m1 > 7. The separable (dis)utility function is given by §(b)=6b(a1) + 6b(az), where 6 > 0.
Coming to the case of complementarities in the revenue function, we assume

m(b) = g(mib(ay), mab(az))

where ¢(+) is symmetric, increasing and supermodular (note that this implies 7(b) is also su-
permodular). To facilitate the comparison with the no-complementarity case, we also assume
that g(-) is homogenous of degree one and that the potential revenue is the same in the two

cases, g(my,mo) = m + .

Clearly, the only candidates as optimal contracts are, in order of increasing incompleteness
(looseness): (1) (a3 A az), (2) (a1), and (3) the empty contract. Also note that the agent will

perform only the tasks (if any) specified in the contract. The following result obtains:

Proposition 2. There exists a critical level of the writing cost ¢* (function of the other pa-
rameters) such that, if ¢ < c¢*, the optimal contract when m(b) is supermodular is (weakly) less

incomplete than when 7(b) is additively separable. The opposite is true if ¢ > c*.
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The intuition for this result is clearest if tasks are strongly complementary, so that it is
optimal to treat them as a group. In this case, the optimal contract has a bang-bang structure:
if ¢ is lower (higher) than a critical level, both tasks (no tasks) are specified in the contract.
At this critical level of ¢, in the no-complementarity case the contract specifies only task a;.
It follows that task complementarities make the contract less incomplete if ¢ low, and more
incomplete if ¢ is high. If complementarities are slight, the optimal contract may not have a
bang-bang structure, in the sense that there is an interval of ¢ for which the optimal contract

specifies only task aq; but it turns out that the result holds also in this case.

Next we discuss the case in which tasks are complementary in the agent’s utility function.
This may be the case if there are economies of scope, in the sense that performing one task
reduces the effort required to perform the other task. The first remark is that supermodularity
of U(b) (or submodularity of 6(b)) translates into supermodularity of the joint surplus function,
i.e. m(b) — 6(b). For this reason, the implications of effort complementarities are identical to
those of revenue complementarities, unless they are so strong that the marginal effort cost of
a task is negative. For example, this is the case for task ay if §(1,1) < §(1,0). Then, if task
ay is specified in the contract, the agent will perform task a, even if it is not required by the
contract. In this case, the optimal contract will be loose for any ¢ > 0, even if ¢ is very small.
Thus, when effort complementarities are so strong that the marginal effort cost of some task
is negative, the contract is looser than in the separable benchmark for low ¢; for higher ¢, the

comparison is ambiguous.

4.4. Partially aligned interests: a ‘“hold-up” example

In this subsection we present an example where interests are partially aligned. This is a version
of our model that we can interpret as a hold-up model a’ la Grossman-Hart-Moore [see Hart

(1995, Ch. 4) and references therein].

Suppose that the agent can make relationship-specific investments whose optimal specifica-
tion depends on the external state. There are N elementary investment activities a;. Each ag
costs 0 to the agent and yields incremental gross surplus my if event e, occurs and zero oth-

erwise. Thus, the first-best requires undertaking investment a; if and only if event ey occurs,
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provided 7 > 6. For example, efficiency may require the agent to learn German if and only if
Germany becomes a strategic market for the firm. Ex post, the parties bargain over the returns
to the investments. They foresee that the bargaining will lead to a split of the returns where the
agent captures a share equal to 6. Since the agent appropriates only a fraction of the returns to
his investment, in the absence of contracts he would tend to “underinvest”.?? We allow parties

to contract on the investment actions to mitigate or eliminate the hold-up problem.

Again, the difference between this setting and the one of section 3 is that it is no longer true
that we can optimize separately for each dimension n. Now it may be optimal to have clauses
of the form (T — aj V a;). The reason is that now the interests of the parties are partially
aligned, so it may be optimal to constrain the agent to execute some activities and give him
some discretion regarding which ones to carry out, because this may induce him to execute the
right activity under the right contingency. For this reason, solving the general N—dimension
case is fairly complicated. However, the N = 2 example will be sufficient to make our basic

point.

The payoff functions of the principal and the agent are respectively

w(s,b) = (1= 0) ) mus(en)blan), with m > m, 0 <6 < 1. (4.1)
and ) )
U(s,b,t) =t + 0> mas(en)b(an) — Y b(a,) , (6 >0),T =0. (4.2)

Assume that pu(.) is uniform, i.e.,

ulen) ==, n=1,2 (4.3)

As in section 3, A\2_,(ex — a) A (mey — —ag) is a first best contract. Note however that, in

this specification, when —e occurs the agent does not want to execute ay, because it is costly.

22We are implicitly assuming that the realized returns to investments are not verifiable. This is consistent
with the assumption, made in the general framework, that realized payoff levels are not verifiable. If they
were, the hold-up problem could be trivially solved by a contingent transfer that increases one-for-one with the
investment returns. Recall also the assumption that the principal cannot sell the firm to the agent. This would
be equivalent to a contingent transfer of the kind just described.
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Therefore the first best contract with minimum writing costs is \>_, (ex — az).

We will characterize the optimal contract for the symmetric case m; = m9 = 7; we will later
remark on how asymmetries affect the results. Assume 7 > §, so that it is efficient to execute
both investment activities, and m < §/6, so that there is a hold-up problem (meaning that,
in the absence of contract, the agent would not execute either investment activity). Letting

6 = 6/, we are thus assuming

m=m=mnandf <é<1 (4.4)

It is not hard to show that only the following contracts can be optimal

Contract Label Net Surplus
(1 = ay) A (ea —a2) FB T —06—4c
T — a1 A as RR T — 26 — 2¢
T —a; Vas R/D %w—é—Qc
T—-T D 0
Table 2

Label “RR” indicates a fully rigid contract, and “R/D” indicates a contract that displays
rigidity and leaves some discretion as well. Note that the contracts (e; — a1) and (T — ay)
cannot be optimal with p = 1/2 and 7 = 79, but they can be optimal in the asymmetric case,
as we will discuss shortly. Also note that the contract (e; — a; V a2) cannot be optimal, as it

is always dominated by the simple contingent contract (e; — ay).

It is immediate to see that, if there is rigidity in the optimal contract, the agent will overin-
vest in some states. Moreover, if the optimal contract is RR, the agent will overinvest (weakly)
in all states. Having narrowed down the set of candidate contracts, it is a small step to char-
acterize the structure of the optimal contract. Let ¢ = ¢/7 denote the writing cost relative to

the gross surplus.

Remark 6. Suppose that (4.1), (4.2), (4.3) and (4.4) hold.
(i) If 6 < 5 < i, as ¢ increases the optimal contract goes from F'B, to RR, to D.

If max{6, 1} < 5 < 1, as ¢ increases the optimal contract goes from FB, to R/D, to D.
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If max{6, %} <5< 1, as ¢ increases the optimal contract goes from F'B to D.
(ii) If the empty contract is optimal, the agent underinvests (weakly) in all states. If contract
R/D is optimal, the agent underinvests in some states and overinvest in others. If RR is

optimal, the agent overinvests (weakly) in all states.

Our assumptions of uniform g (maximal uncertainty) and 7m; = m make for sharp results,
but the qualitative insights remain valid in the asymmetric case as well. If p is not uniform, the
tendency to have rigidity in the contract is strengthened, since the presence of low-probability
events reduces the cost of rigid rules. If 71 > 5, on the other hand, the main change in results
is that there is a parameter region where the simple contingent contract (e; — a;) is optimal,

and a parameter region where the simple rigid contract (T — a;) is optimal.

Also note the role of the profit-sharing parameter 6. Recall that we assumed 6 < §<1,
for the problem to be interesting. Therefore, if the agent’s share 6 is lower than 1/2, there
is a parameter region where the optimal contract is rigid, hence the agent overinvests; if the
agent’s share is higher than 1/2, the optimal contract is either the first-best contract or the
empty contract. Thus, the possibility of overinvestment arises only when the agent’s share of

the surplus is small.

This result is interesting if contrasted with the approach — fairly standard in the hold-up
literature — of simply assuming away contracts on investments. In the no-contract case, the
prediction of the model is that the agent underinvests. One might have conjectured that, when
writing costs are intermediate, so that it is optimal to write a partially incomplete contract,
the agent will still underinvest, although to a lesser extent than in the no-contract case. As
our result shows, this intuition is not correct. We have seen that, if the agent’s share of the
surplus is less than 1/2, it may be optimal to write a rigid contract, in which case the agent

will overinvest in some states, and for some parameter values in all states.??

23We believe that our qualitative results do not depend on the zero-one nature of the investments. Suppose
the relevant investment is to learn German, and this can be done at two levels of proficiency, a; and as, with
respective effort costs of §; and 82 (level 2 being the more advanced one). Describing the required proficiency
level is costly; this is captured by the writing cost c¢. Suppose e; is the event “Germany becomes an important
market for the firm,” and es is the event “The only other German-speaking employee quits.” If both these
events occur, it is efficient for the agent to do (only) ag; if only one of the two events occur, it is efficient to
do (only) a1, and if neither event occurs it is efficient to do nothing. In this example, one can find a payoff
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4.5. More general contract form

Thus far we have restricted our attention to contracts that specify a fixed transfer and a set
of clauses of the form /\le(ﬁk — (). We can call this a forcing contract. A more general
contract would allow transfers to be contingent on actions and states. In this section we argue
that, given our assumptions of verifiable states and behavior, risk neutrality and conflict of

interests, there is no loss of generality in ignoring contingent transfers.

Consider the generalized match-the-state setting with conflict of interests, where 7 (b, s) =
25:1 TnGn(bn; Sn), With s1, 89, .., sy disjoint and mutually independent sets of elementary ran-
dom variables. We assume that, for each n, g, is generic, i.e. ¢,(0;s8,) # gn(1l;s,) for all

Sp-

An incentive contract is a set of clauses A\r_, (¢, — ti), where t, € R and ¢, is a formula
about the environment, behavior or both.?* We continue to assume that the cost of writing a
contract is proportional to the number of distinct elementary sentences occurring in its clauses,
while writing transfers has per se no cost. Note that an incentive contract is more general than
a forcing contract: a forcing clause expressing a certain instruction can always be written as
a contingent transfer that specifies that the agent gets a stiff penalty if the instruction is not

followed.

Proposition 3. Suppose that there are no recalling costs (r = 0). Then for any incentive
contract, there exists a forcing contract that is not more costly to write and yields at least the

same surplus in every state.

Proof: see Appendix.

The intuition for this result is the following. First note that, due to the assumptions of veri-
fiable state and behavior and of risk neutrality, the only possible benefit of contingent transfers

is to save on writing costs. Now suppose one wants to implement the efficient contingent rule

function 7(s,b) and parameters ¢, 6; and 63 such that the optimal contract is (T — ag), which entails (weak)
overinvestment by the agent in all states.

240ur language can be enriched so as to include countably many elementary sentences of the form “the
principal transfers ¢ dollars to the agent” where ¢ is a rational number.
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for a given task. With a forcing contract, this requires describing both the task and the ex-
ternal events. In principle it might be possible to implement the same rule by specifying a
transfer contingent on the agent’s behavior but not on the external events; this would save on
writing costs. However, due to the conflict of interests, it turns out that it is never possible to
implement an efficient contingent rule without making the transfer directly contingent on the

external events.

Of course we are not suggesting that contingent transfers are not important in reality. They
are indeed used very frequently. Our point here is simply that there is no role for contingent

transfers given the payoff structure structure of our basic model and assuming r = 0.

The assumption that there is no cost in “recalling” a primitive sentence already used in the
contract also plays a role. One can construct examples where a contingent transfer saves on
such “recalling costs,” however this is no longer possible if there is a small cost of specifying

transfers per se, or if the language includes the connective “—” (“if and only if”).

A role for contingent transfers may also appear if we consider a more general payoff structure.

Consider a general “hold-up” model with N tasks, where interests are partially aligned:

w(s,) = (1= 0)>  mns(en)blan), U(s,b,m) =m+6m(s,b) =8> b(ay)

In this case, for some parameters it is optimal to make transfers contingent on elementary ac-
tions. To see this, note that the following contract implements (strictly) the first-best outcome:
g = /\gzl(ak — t1) where § — O, < t, < 6. Indeed, this is the efficiently-written first-best

contract, therefore it is optimal for ¢ sufficiently small.

We conclude this subsection by proving rigorously a claim made in the introduction, namely
that Dye’s (1985) approach to modeling complexity costs cannot explain the presence of dis-

cretion.

As a preliminary remark, note that, in our basic model, a contract g induces a behavioral
correspondence BY : S — 2P (where B = {0,1}"). If we apply Dye’s approach to this
correspondence, in order to compute the cost of writing g we simply have count the number

of distinct values (subsets of B) attained by BY. It does not matter whether these subsets
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are singletons or not. Therefore any contract g with discretion is (weakly) dominated by a
contract h that exhibits no discretion (i.e. such that B" is a function). In other words, Dye’s
approach cannot account for the cost of describing behavior if it is applied to functions (or

correspondences) from S to B.

However, if we consider a more general incentive contract g = /\éil(gpl,€ — 1), we see that
it induces a function 79 : S x B — R that specifies for each pair (s,b) a monetary transfer
T(s,b) = > ki (sb)elig,| te- Therefore we can apply Dye’s hypothesis on writing (or complexity)
costs to T9. In this case, the optimal contract according to Dye can take only two forms: (i) if
the cost of a two-valued function is not extremely high, then the optimal contract is equivalent
to a forcing contract that specifies a high penalty — P if b is not first best given s and a positive
transfer ¢ otherwise, (ii) in the extreme case where the cost of a two-valued function is very

high the optimal contract is empty.

4.6. Alternative languages

A key aspect of our approach is that we model explicitly the language used to write contracts.
A natural question then arises: How robust are the predictions of the theory to changes in the

language, and in particular in the set of primitive sentences?

We postulated a set of primitive sentences that seems natural given the structure of payoffs.
Payoffs depend on a set of binary random variables (si, s2,...) and on a set of binary choice
variables (by, bs, ...), so we have assumed that each of these variables is associated with a prim-
itive sentence (in what follows we refer to this language as the “natural” language, and to its
primitive sentences as “natural” primitive sentences). Still, it is important to think about the

implications of alternative sets of primitive sentences.

We start with a remark that should put things in perspective. Our results cannot hold for
all possible sets of primitive sentences. Consider an extremely rich language which associates a
primitive sentence to each possible complete contract: for example, contract A, contract B, etc.
We denote this language as LB, With language £'5, the parties could always write a complete

contract at the cost of ¢, and we would have no contract incompleteness (if ¢ is not too large).
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However, we believe a language like £? is highly unrealistic. The common-knowledge language
of a society, in the sense of the language understood by the society’s courts, must serve a large
population of heterogenous contracting parties. Thus, language £5? would have to include a
primitive sentence for each conceivable complete contract. The number of conceivable complete
contracts in reality is astronomical. If there is a social cost of having a richer language (because
a richer language is more costly to learn, to teach, to remember, and to codify in vocabularies),

then language £'P will be excessively costly.

Another “salient” language that one might consider is the one that associates a primitive
sentence to each possible contingency (i.e. subset of S) and to each possible set of behaviors
(i.e. subset of B). Also this language, which we denote £", is unreasonably rich. To get an
idea of the dimensionality of languages £Z and £", and how they compare with the natural
language, let us be more explicit about the heterogenous population of contracting pairs that

we have in mind.

There are L potentially relevant binary random variables s, (s, € {0,1}, n =1,..., L) with
joint distribution 1 € A ({0,1}*) and K binary choice variables by, (b, € {0,1}, k = 1,..., K).
There is a continuum of contracting pairs. Each contracting pair m is characterized by a surplus
function o™ : {0,1}* x {0,1}* — R. Unlike the previous sections, here we impose no structure
on payoffs. In fact, we assume that the surplus function ¢™ is distributed with full support
across the population; in other words, any surplus function is possible. We also assume L = K,
to ease computations. A propositional language £ = (I, ||-||) assigns elementary sentences 7,
T, ... to subsets Wy, Wa, ... of W = {0,1} x {0,1}} with the interpretation that W; is the
truth set of 7;, that is, W; = ||7;||.%

Language L£¥P assigns a primitive sentence to each possible first-best mapping. Since any
surplus function ¢™ can occur in the population, the set of possible first-best mappings is simply
the set of all possible behavioral functions by : {0,1}Y — {0,1}£. Then it is not hard to show
that language £F'F includes (2* )2L primitive sentences. The dimensionality of language £V is
lower but still mind-numbing, as it contains L+2" primitive sentences. In contrast, the natural

language contains only 2L primitive sentences. Therefore, if the world is “big”, in the sense that

2SFormulas in £ are obtained from elementary sentences using parentheses and logical connectives and their
truth sets are obtained in the usual way (i.e., ||-¢| = W\ |lell, le A¥| = llell N ]|Y]], ete.).
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L is large, and the cost of a language is proportional to the number of its primitive sentences,
the cost of L and LIP overwhelms that of the natural language. Of course there are benefits
associated with richer languages such as £ and L£¥P, because they allow contracting parties
to save on writing costs, but to the extent that such benefits are bounded as L increases, the

natural language will dominate £% and £¥P.

To conclude this part of the discussion, we think the interesting question is not whether the
theory’s predictions are robust to an arbitrary choice of language, but whether they are robust

to reasonable alternative languages.

To give the reader a sense of direction, we anticipate where we are heading. We are going
to argue that a reasonable class of languages to focus on has the following two-tier structure:
a basis made of natural language, plus a set of additional primitive sentences that denote the

more frequently used formulas.

4.6.1. Two-tier languages

As a first step we argue that the natural language has a desirable efficiency property, which
makes it a reasonable candidate for a general-purpose language, and a basis for further language

enrichments. But first we need a premise.

Since we think of the size of the world (indexed by L) as very large, and we view the cost of
a language as increasing in the number of its primitive sentences, then the language is likely to
be incomplete, in the sense of not being able to describe the whole world. It makes sense, then,
to talk about the expressive power of a language. Formally, we define the expressive power
of a language as the number of subsets of W (we can call these events?®) that the language
can describe. This is a very broad notion of expressive power, that gives the same importance
to all events. In the area of contracting, describing some events may be more important than
describing others, but we have in mind that a language is used not only to write contracts, but

to communicate a wide variety of messages in a wide variety of circumstances.

In what follows, at the risk of abusing our terminology, we will broaden the meaning of

26Note that we are slightly changing our terminology: “events” now concern both environment and behavior.
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the expression “natural language”: we will call “natural language” any collection of natural

primitive sentences, even if this collection is not complete.

Remark 7. Any natural language has the following property: there is no language with higher
expressive power and the same number of primitive sentences, or with the same expressive power

and fewer primitive sentences.

Proof: See Appendix.

In what follows we refer to the property described in the remark as “minimality.” Note
that the two alternative languages we considered above, namely £ and £7?, are not minimal.
Another example of language that does not satisfy this property is the language that assigns a

primitive sentence to each state and to each behavior.

Intuition for this result can be gained by considering a simple example. Suppose there is
only one elementary event and one elementary action. Then the world W contains only four
states, say wq,...,ws. Suppose we need to choose a language that contains only two primitive
sentences. Intuitively, the way to maximize expressive power is to choose the two primitive
sentences so that (i) each splits the set W in half, and (ii) they are orthogonal (in the sense
that, conditional on the truth value of one primitive sentence, the other primitive sentence
splits the world in half). The natural language satisfies both of these properties. An example
of language that does not satisfy them is the one that assigns the two primitive sentences to

two states of the world (singletons).

We believe that the natural language, by virtue of its minimality, is a plausible candidate
for a general-purpose language. In what follows, we will think of the natural language as
the starting point from which further language enrichments can be developed. Short of a full
theory of language evolution, which is beyond the scope of this paper, we think this is a plausible

approach for the purposes of our discussion.

In reality, not all events need to be described with the same frequency. Suppose that a
particular formula ¢ (which might describe for example an external contingency, or a contract

clause) turns out to be used very frequently. Then it may be efficient to denote ¢ with a new
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primitive sentence; this will save on writing costs (or more generally on communication costs),

and these savings may outweigh the social cost of increasing the size of the language.

For example, if e; : “humid weather” and e, : “hot weather”, and the formula e; A e5 occurs
frequently, this may be denoted by a new primitive sentence, € : “tropical weather.” Or, if a; :
“watch television with the baby” and as : “sing to the baby,” the formula a; V a; can be denoted
by a new primitive sentence, a : “entertain the baby.” Similarly, if a particular contract clause,
say 1, — [y, is frequently used, this can be denoted by a new label. Even a whole contract

may be frequent enough to warrant the addition of a new primitive sentence in the vocabulary.

We can now come back to the question that motivated this section: how robust are the
key predictions of our model to reasonable alternative languages? If language has the two-tier
structure that we have argued for, then our comparative-statics results are valid subject to an
important qualification: they apply more tightly the less standard is the contracting problem.

Next we make this statement a bit more precise.

We believe that our results are robust to the relabeling of standard formulas about the
environment (as in the example of € : “tropical weather” mentioned above) or about behavior
(as in the example of @ : “entertain the baby”). The intuition is the usual one: even with
this relabeling, it is still true that rigidity saves on the cost of describing contingencies, while
discretion saves both on the cost of describing contingencies and on the cost of describing

7 Results may change, however, if the contracting problem features a substantial

actions.?
number of standard clauses, i.e. formulas of the form 1 — 3 that can be replaced by simple
labels, because in this case contingent clauses may not be more costly than rigid clauses.
Broadly speaking, if the parties can use standard clauses for some aspects of the contract, then

our analysis can be applied only to the non-standard part of the contract.?®

2TWe can prove this claim rigorously in a particular case. Consider a contracting problem as in section
4.1. Suppose that, in addition to the natural language, there is an additional set of primitive sentences éy,
k =1,..,n° that can replace more complex formulas ¢; about the environment. Furthermore, suppose that
every replaced formula ¢, involves elementary events that are relevant for only one task. Then the contracting
problem can still be analyzed task by task and the results of section 4.1 hold as stated, because it is still true that
a contingent clause costs at least 2¢ while a rigid clause costs only c. In a more general setting, the introduction
of standard formulas about the environment or behavior may break the separability of the problem. This is the
reason for our rather cautious claim in the text.

28There is a subtle but important distinction to make. We are talking about situations where parties can take
advantage of ezisting standard contract clauses, not about the creation of a standard contract, in the sense for
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We conclude this section with a remark on “private” languages. Consider two contracting
parties that face a non-standard problem, so that they can only use the natural language
to write an enforceable contract. Can they save on writing costs by creating new primitive
sentences? Given our assumption that the cost of writing a contract is proportional to the
number of distinct primitive sentences that appear in the contract, the answer is no. The
reason is that, in order for the courts to understand the contract, any new primitive sentence
needs to be defined within the contract in terms of the common-knowledge language, and doing
so is at least as costly as writing the contract in the common-knowledge language. If we had
a positive cost r of ‘recalling’ primitive sentences within the contract (see footnote ?7), then
the creation of new primitive sentences could save on writing costs, but the comparative-statics

results would be very similar to the ones we presented.

5. Unforeseen events

In this section we discuss how the model can be extended to allow for unforeseen events. We
start with a preliminary consideration. There are two types of unforeseen events: unforeseen
aspects of the environment and unforeseen aspects of behavior. Even though the latter notion
is rarely emphasized in the literature, we would argue that it is quite relevant in contexts where
the complexity of behavior is an important issue. Often, when two parties face a non-standard
contracting situation, they have to think very hard about all the possible ways that each party
can take advantage of the other, so that these actions can be prohibited by the contract. In
what follows we will use the expression “unforeseen events” to encompass both aspects of the

environment and of behavior.

The following is a simple way to extend our framework to allow for unforeseen events.
Suppose that, in addition to the elementary exogenous events (binary random variables) that
the parties have in mind, sq, ..., sy, there is an additional set of “latent” elementary events,
81y ...y S, that the parties do not have in mind because they are normally turned “off.” Ex-

amples of latent elementary events might be the appearance of Internet (for someone living a

example of a company drafting a contract to be offered to multiple customers. Our analysis is broadly applicable
to the latter type of situation, as long as the contract-writer faces a fresh contracting problem.
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few decades ago). Ex post, the parties may become aware of these elementary events if they
are turned “on.” By convention, let us identify the “off” state of a latent elementary event s’
with the value s’ = 0. Similarly, we can suppose that there is a set of latent elementary actions
(binary choice variables), b}, ..., b, that the principal does not have in mind when drafting the
contract, because they are normally “off.”?” A latent elementary action might be “the agent
gets an autotransfusion”?’

the value b;- = 0.

. We identify the “off” state of a latent elementary action b with

If the “true” benefit function is 7(sy, .., Sy, 87, .., Snvi b1, -y bag, B, ., By ), we can think of the
principal as having a “perceived” benefit function at the time of writing the contract, given
by 7(s1, .., Sn; b1y -, bar) = T(81, .y S8, 0, .., 0; b1, .., bn, 0, .., 0). From the point of view of ex-ante
perceived payoffs, the optimal contract will be the same as the one we characterized. From
the point of view of the “true” payoffs, however, the presence of unforeseen events implies an
additional incompleteness of the contract. If an unforeseen event does occur, this additional

incompleteness will be revealed ex-post.

The point we want to stress here concerns the form of the incompleteness that is caused
by unforeseen events: it follows immediately from this setting that the presence of unforeseen
aspects of the environment increases the degree of rigidity of the contract, while the presence

of unforeseen aspects of behavior increases the degree of discretion.

6. Legal default rules

In most societies, contract laws provide a set of default rules that are intended to complement
(“fill the gaps of”) private contracts. For example, in the U.S., many such default rules are
provided in the Uniform Commercial Code. It has been argued by many law-and-economics

scholars that legal default rules allow a society to save on transaction costs. Tightly linked

29Gince the b;-s are actions of the agent, there are two possibilities, both of which are relevant for us: one is
that neither party is aware of these possible actions; the other possibility is that only the principal is not aware
of them. Since we assumed that the contract is drafted by the principal, what matters most is the principal’s
(un)awareness.

30This one is motivated by a well-known case in the world of cyclism. At some point in the history of
this sport, some cyclists started to get autotransfusions (transfusions of blood to themselves) to enhance their
performance. Soon afterwards, the regulations were changed to prohibit this trick.
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to this positive theory of legal defaults is the normative view that the optimal legal default
rules are the ones that the majority (in some sense) of contracting pairs would agree to in the
absence of transaction costs. This is the so-called “majoritarian” theory of legal defaults, which
has gained prominence in the last two decades (see footnote 1). A thorough investigation of
these issues is beyond the scope of this paper. This section has the more limited objective of
suggesting, by means of a simple example, that our framework is a natural one to address this

type of questions.

Consider a population of M > 2 contracting pairs. The contracting problem for each pair is
the same as in our basic model of section 3, with one exception: for each k, a fraction p > 1/2
of the contracting pairs finds the efficient rule to be Cy : (ex — ax) A (—e,, — —ay), while the
remaining fraction 1 — p prefers the opposite rule, Cy, : (e, — —ag) A (mex, — ai). In other
words, for pM pairs the incremental gross profit for k is mx[b(ax)s(ex) + (1 — b(ax)) (1 — s(ex))],
and for (1 — p)M pairs it is m¢[b(ax)(1 — s(ex)) + (1 — b(ax))s(ex)]-*' We also normalize Ay = 1

and assume p = 1/2 (p uniform) and r = 0 (no recalling costs) for simplicity.

The timing is as follows: at time zero, a social planner can write a default contract g,
then each contracting pair j = 1,..., M writes a (possibly empty) bilateral contract g7, then
the state is realized and all agents take actions. The social planner maximizes the aggregate
net surplus minus the cost of writing the default contract. If 77 and C? denote respectively the
gross profit and the cost of the bilateral contract for pair j, and C” is the cost of writing the

default contract, the social planner’s problem is
M ' ' ;
n;%x;[a — &)l — '] - C (6.1)
Again, we focus on separable contracts (both for the planner and for private pairs), i.e. contracts

where each clause deals with a single aspect k.

Next we need to specify in what sense the default contract complements private contracts.
Focus on aspect k for contracting pair j. We assume that the default clause is enforced unless the

private contract contains a clause regulating aspect k, in which case the private clause replaces

31'We do not assume anything about the correlation of preferences across k, so in general there will be 2V
groups, each characterized by a distinct first-best mapping, and any of these groups may be empty.
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the default clause. Finally, we assume that parties cannot save anything from “recalling”
primitive sentences of the default contracts. Recalling economies are possible only internally to

a contract.>?

It is not hard to show that, for each k, there are only three candidate default clauses: (1)
the majoritarian contingent clause Cy : (e — —ax) A (—ex, — ai), (2) the majoritarian rigid
clause Ry: (T — ax),*® and (3) the empty clause. All other default clauses are dominated.
The following proposition describes the structure of the optimal default contract, and the
subsequent behavior by private contracting pairs. Let 7% = min {Qy(% +2(1 - p)), @[ﬁﬁ} ,
where y = ¢/(1 — 9).

Proposition 4. Consider problem (6.1). For each k: If m;, > m*, the social planner writes a
Cy default clause; if ™ > 75 > %, the social planner writes a Ry, default clause; and if m < %
no default clause is written. The “minority” contracting pairs subsequently replace the default

clause if and only if this is C and 7 > 2y.

The above proposition suggests a qualification to the majoritarian theory of legal defaults
as expressed at the beginning of this section. Our results are in line with this theory only for
a subset of high-m; actions. For these actions, the optimal default rules are the ones that the
majority of contracting pairs would agree to in the absence of writing costs. And once the legal
default is in place, the “minority” pairs negotiate around it if the issue is important enough
to them (i.e. if 7y is sufficiently high), otherwise they accept the inefficient default. For less
important actions, the optimal default contract specifies rigid rules, or no rules at all. Note that
the optimal default contract is closer to the “majoritarian” contract the larger is the population

(M): this is because the relevant writing cost for the social planner is the per capita writing

32 A potentially restrictive assumption is that the social planner can offer only a single default contract. A
menu of default contracts will in general do better than a single default contract. However, notice that in general
it will not be optimal to provide each group of citizens with its preferred contract, as there may be up to 2V
such groups, each with a different preferred contract, and it may be very costly to write 2V complete contracts.

$SFor p = % the two rigid clauses R, and R, are payoff-equivalent for every pair. R}, is the majoritarian rigid
clause for p > %
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cost ¢/M; the lower this cost, the more complete the default contract.?!:3?

Notice that the benefit from the default legal system is nonmonotonic in the writing cost
c. If ¢ is equal to zero or prohibitively high, there can be no efficiency gain from legal defaults,

therefore the efficiency gain must be maximum for some intermediate value of c.

Our framework can also capture another qualification to the majoritarian theory, that has
been expressed informally by Ayres and Gertner (1989): if the minority is less likely to negotiate
around the defaults, perhaps because of higher transaction costs, then the optimal default rules
may not be the majority ones. Suppose for example that for a given k the majority prefers
the simple noncontingent rule Ry, whereas the minority prefers the contingent rule C. In this
case, it is more costly for the minority to negotiate around a “bad” default rule than it is for
the majority: a majority pair must pay c to write their preferred rule, while a minority pair
must pay 2c. In this case, one can easily find parameter values for which the optimal default
rule is the minority rule. The same can happen if the writing cost ¢ is heterogeous across the
population. Suppose for example that the population is partitioned in two groups, and the
minority has a higher writing cost c. Then it may well be the case that the optimal default
rule is the minority one. Finally, the majoritarian principle may not apply if the 7, weights
are heterogeous across the population. Suppose that the minority feels more strongly than the
majority about aspect k (i.e. has a higher 7). If ¢ is such that it is optimal to write a default
rule but it is too costly for private pairs to replace it, again it is possible that the optimal

default rule is the minority rule.

34 Note that the optimal default contract as a whole may not be the contract that the majority would agree to
in the absence of writing costs. In fact, it is possible that the default contract does not coincide with any pair’s
first best contract. This is due to the multi-dimensionality of the problem. The “majority” principle applies for
each separate dimension, but it may not apply to the contract as a whole.

35We assumed p = 1/2, i.e. maximal uncertainty. If uncertainty is lower (p > 1/2), results tend to change
in the direction of more rigidity in both the legal defaults and the bilateral contracts. If M is large enough, or
y is small enough, the “majoritarian” result still obtains, with the only difference that, for a given k, minority
pairs may replace the default rule with a rigid rule, if 7 is in some intermediate range.
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7. Concluding remarks

We developed a multi-task, principal-agent model of contract incompleteness where rigidity
and discretion arise endogenously from the costs of describing the external environment and
the agent’s behavior. In this concluding section we briefly discuss another potential application

of our way of modeling complexity costs.

Although we chose to focus mainly on a setting characterized by conflict of interests between
principal and agent, our approach is potentially useful also for a different type of setting,
where the key problem is not one of incentives, but rather one of efficient communication of
information. This could be the case in situations where a scientific authority issues directives
for practitioners (e.g., the U.S. Center for Disease Control issuing protocols for doctors and
nurses on how to diagnose or treat a certain disease), or when the head of a large organization
issues protocols for lower-level employees (e.g., the U.S. Postal Service issuing instructions
for local postal offices on how to process and handle mail under various contingencies), or in
employment relationships where the main reason to instruct the agent is that the principal has
better information (this could apply to the baby-sitting case). In situations of this kind, the
presence of complexity costs may lead to rigidity and/or discretion in the set of instructions

communicated by the principal.

To exemplify how this type of setting can be captured with our framework, consider a simple
variant of our basic model of section 2: suppose that the interests of the principal and the agent
are aligned, but the principal is better informed than the agent on the relevant parameters of
the payoff functions. Then, if the principal leaves discretion to the agent, there will be a
positive probability (from the point of view of the principal) that the agent will take “wrong”
actions. If this probability is relatively high, then discretion implies a larger expected loss of
surplus than rigidity, hence the qualitative results are likely to be the same as in our basic
model. We are able to prove this rigorously in the extreme case where the agent chooses at
random within the set of behaviors that do not violate the principal’s instructions. Intuitively,
discretion (for a given task) in this case implies that the agent will take the wrong action with
50% probability, therefore leaving discretion implies a larger expected loss of surplus than giving

a rigid instruction (see the appendix). Extending the analysis to a more general setting with
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asymmetric information is an ambitious task, and will have to await future research.

8. Appendix

Proof of Remark 1:

To prove point (i), define for any fixed contract g

Vi(g) = Zu(s) nggﬁ((s)w(s,b) — min 6(s,b)| —U.

be B9
seS (s)

If there are no writing costs, V9 is the value of any behaviorally equivalent contract satisfying
the participation constraint as an equality. If there are writing costs, V(g) is an upper bound on
the expected profit of the principal if he wants to prescribe behavior according to correspondence
BY(-). Since there are finitely many correspondences from S to {0, 1} the set V = {V(g) :
g € F}is finite. Any contract g € G (i.e., satisfying the participation constraint as an equality)
and such that V(g) = maxV is a first best contract. For any first best contract there is a
behaviorally equivalent, efficiently written contract because the set {C' : C = C(h) for some
h € F behaviorally equivalent to g} has a minimum (the set is infinite, but it is bounded below

by 0 and it is nowhere dense).

The proof that an optimal contract always exists is similar. For every (feasible) behavioral
correspondence B(-) we can find an efficiently written contract ¢ € G such that Vs € S,
B9(s) = B(s). Out of the finite set of contracts obtained in this way we select one that

maximizes the net value V(g) — C(g). This contract is optimal.

Points (ii) and (iii) are straightforward. B

Proof of Remark 2:

Define the finite set V as above. Let V! and V? respectively denote the largest and the

second to largest element of V. Let
C* =sup{C(g) : g € F, g is efficiently written}.
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Note that C* < oo because the set of behavioral correspondences is finite. Since there is at
least one efficiently written first best contract whose expected profit is at least V! — C*, if

V1 — C* > V2 then a second best contract must also be a first best.

We now provide an upper bound on the cost efficiently written contracts. Let #II¢ = E
and #I1* = A. For any s € S, let II¢(s) = {q € II° : s(q) = v}, v = 0,1. II%(b) is similarly
defined (II¢(s) is the set of primitive sentences about the environment satisfied in state s). Take
an efficiently written contract g. Then there is a behaviorally equivalent (possibly inefficient)

contract ¢’ with at most 2¥ clauses of the form

AL A afnt A )= VLA afn A e

ses qETIS (5) gETIE () beBI(s) qeTIg (b) qeTTa (b)

Since r < ¢, cost formula (2.1) implies that
C*<C(g) <2 (E+2" A)c

Define
vi-vy?
2E(F 424 A)
Then, if ¢ < ¢, a second best contract is also a first best contract. B

Cc =

Proof of Proposition 1:

Consider an arbitrary contract ¢'. We will construct a contract that has the features
described in the proposition, yields weakly higher expected gross surplus than ¢° and has a

weakly lower writing cost than g°. We construct this contract in three steps.

1. From ¢° we construct a contract ¢’ which induces a constraint set that is a Cartesian
product for each s: BY (s) = [[._, BY (s), where BY (s) is the n-th projection of BY (s). Define
the following index sets: F(g") = {n € N : e, occurs in ¢'}, A(¢°) = {n € N : a, occurs in
9°}: Ei(s,g°) = {k € E(¢") : s(ex) = 1}, Eo(s,9°) = {€ € E(g") : s(er) = 0}, Ay(b,g°) = {m €
A(g°) : blam) = 1}, Ao(b,¢%) = {n € A(¢") : b(a,) = 0}. The following is a logically equivalent

formulation of ¢° :

A A )il A )=V ([ A @) A

se8 \ \FEEi(5,0°) (€Bo(s,g°) beB(s) \ \meAi(b,g°) né Ao(bg°)
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(as usual, conjunctions ranging over empty sets should be replaced by T). Now consider the

following contract:

g':/\ /\ ex | A /\ e | — /\ Am | N /\ ay,

seS k€E1(s,9°) L€Eo(s,9°) meA;j (s,9°) n€A}(s,9°)

where A%(s,¢°) = {n : e, and a,, occur in ¢" more than once, and s(e,) = 0}, and Ai(s, ¢°) =

A(g°)\A5(s, ).

We argue that contract ¢’ yields a higher expected surplus than ¢°. Since the agent min-
imizes the gross surplus, under both contracts and for each a, not contemplated in ¢°, he
chooses to “mismatch”, i.e. he chooses b(a,) = 1 — s(e,), which yields zero incremental gross
surplus. Therefore we only have to compare the agent’s behavior under ¢° and ¢’ for actions
a,, contemplated in ¢°. If e,, and a,, occur in ¢g° more than once, ¢’ forces the agent to take the
right action (a,, or —a,,) in all states, so the incremental gross surplus for aspect n is maximum.
If e,, or a, occur in ¢° at most once, g forces the agent to take action a, in all states. This
yields expected incremental gross surplus pAym,, which is an upper bound to what can be

achieved by including e,, (or —e,) at most once in the contract.
Therefore we have V(g') > V(¢°).

2. From ¢ we will construct a contract ¢g* that is separable in the N dimensions. But
first we introduce some convenient notation. For each k, s and b, let s, = s(ey), by = b(ay).
Let s, = (S1, .0y Sk_1,Skt1, - Sn) and (sh, S k)=(51, .., Sk_1, Sks Sk+1, ---»Sn). The marginal
probability of s is denoted . (s;). Note that by assumptions (3.1), (3.2) and (3.3), the best

response of the agent to state s given contract g is uniquely determined:

BRY(s) = arg ber%%r(ls) (s, b).

The k'™ coordinate of this function is denoted by BRj(s), that is, BR}(s) = 1 if under contract

g the agent chooses a;, at state s and BRY(s) = 0 if the agent chooses —ay, at state s. Also, let
O'k(Sk, bk) = (1 — 5)AN7Tk[Skbk + (1 - Sk)(l — bk)]

denote the k™ term of the gross surplus.
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Finally, recall the notation: Cy = (e — ax) A(—er, — —ag), Rg =T —arand D =T — T.

For each k =1, ..., N, pick

s*p €argmax | Y py(si)ow(sk BRY (se,5-1))
a s,e{0,1}

We construct ¢* in the following way: ¢* = /\,ZC\[:1 Y, Where

if either (B-,g'(o, st) = {0}, BY(1,s",) = {1})

Ck ’ ’

. or (B (0,57,) = {1}, BY (1,5",) = {0})
D if BY(0,s7,) =B (1,5%,) ={0,1}
Ry otherwise

(Recall that Bg/(s) denotes the k™ projection of the constraint set B (s).) We argue
that ¢* yields a weakly higher expected gross surplus than ¢’. Note that, by definition of ¢*,
BRY"(sk, s—j) is independent of s_i; thus it makes sense to write BRY (s;). By definition of

g*, additive separability, independence and conflict of interests, we have

V(g) =Y T talsn) [Z ox(sk, BRY (s))

s n=l1

Z ZH“H(‘%) Z . (8k)ok(sk, BRY (sk,5-1)) p <

k=1 | s—r n#k s€{0,1}

N
Zargmax Z ,uk(sk)ak(sk,BRZ’(sk,s_k)) <
k=1 o

skE{O,l}

D > mlsk)ow(sk, BRY (%)) = V(g).

k=1 s,€{0,1}

Therefore V(g*) > V(g') > V(g").

Next we argue that C(g*) < C(g"). We show that, for each aspect k € N, the incremental
cost of clause 7} is weakly lower than the incremental cost due to the occurrences of the primitive
sentences e; and ay, in contract ¢°. For each k such that v; = D, the incremental cost for g* is

zero, which is the minimum. For each £ such that v; = Ry, primitive sentence a; must occur
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at least once in ¢’. By definition of ¢, this implies that a; occurs at least once in g°. Therefore
the incremental cost for ¢* is weakly lower than the corresponding one for ¢°. For each k such
that v; = Cj, both a,, and e,, must occur at least twice in ¢’. By definition of ¢', this implies
that they occur at least twice in ¢", so again the incremental cost for g* is weakly lower than
the corresponding one for g°. We can conclude that contract g* is weakly less costly than ¢°.

Therefore V(g*) — C(g*) > V(¢°) — C(¢°).

3. We have thus far shown that there is no loss of generality in restricting attention to
separable contracts where each clause k£ is one of the three candidates: Cy, R, or D. The
last step is to determine which of these is optimal to include in the contract for each k. This

depends on the parameters p, §, ¢ and 7. Since p > %, the threshold values for 7 are ordered

as follows

1 c - 1 c+2r
where D is optimal for 7, < leNl—fé, Ry, is optimal for ]ﬁﬁ <mp < m%, and C}, is
optimal for m > (1_;) vy ot 25” . Taking into account that 7 is decreasing in k we obtain that

the contract stated in the proposition is optimal. Our genericity assumption (3.5) implies that

any optimal contract must be equivalent to this one. B

Proof of Corollary 1: Parts (i) and (ii) are immediate consequences of Proposition 1.

(iii) Suppose that y < p—2—. Let the optimal contract be denoted by g(N). Then Propo-
sition 1 implies that g(1) contains one clause and g(2) contains two clauses. An increase from
N to N + 1 has two effects: on the one hand, there is one more “gross-benefit opportunity”,
on the other hand each “gross benefit opportunity” yields a lower gross benefit (Ay1 < Ay),
because the total potential gross benefit is independent of N. Let K(N) denote the number of

clauses in contract g(N), i.e., K(N) = max{k € N : pAymy > y}. Note that for all £ and N
PAN+1Tk+1 < PAN11TE < PANTE
There are three possibilities (assumption (3.5) rules out knife-edge cases):

(1) if y < pANs1Tg(n)+1, then we have a “corner solution” and K(N +1) = N +1 =
K(N)+1,
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(2) if pANJ’_l/n—K(N)Jrl <y < pAN+17TK(N)7 then K(N) = K(N + ].),
(3) if pAn1mr(nvy < ¥y, then K(N +1) < K(N).

As N increases we go from case (1) to case (2) to case (3). B

Proof of Remark 4

Using techniques similar to parts 1 and 2 of the proof of Proposition 1, one can show that it

is possible to maximize task by task. Then the claim is implied by the following observations:

1. The cost of a contingent clause is at least 2¢, the cost of a rigid clause is ¢ and the cost

of a discretionary clause is zero.

2. The benefit of a contingent clause is at most equal to
T | D gn(1,8)uls) + > gal0,5)u(s) | = maGh",
seEy sckx

where E* is the set of states where it is efficient to execute a,, and E} = S\ E? is its complement.

3. The benefit of a discretionary clause is

T | D 9n(0,8)u(s) + > gall,s)u(s) | = maGy.

scEy scEx

4. The benefit of a rigid clause is

T Max Z gn(1, 8)u(s) + Z gn(1, 8)u(s), Z 9n(0, 8)pu(s) + Z 9n(0, s)pu(s) p = WnGrIz%'

sEEY scEx seby sekx

n

5. GD < GE < GI'P and GE > L(GEP 4+ GP);

6. The critical value of m, for which a rigid clause is equivalent to an empty clause is
R/D
¥ = artap:

/C c

7. For a contingent clause to be preferred to a rigid clause it must be 7, > O = relucmwer®
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R/C R/D

8. Finally note that 7"~ > 7’ , which implies the claim. B

Proof of Remark 5

Let us look at a single task a,. Using observations 1-5 in the previous proof, it is easy to
conclude that, as y increases, the optimal clause for task n switches from contingent, to rigid,

to discretionary. Aggregating over the N tasks, the claim follows immediately. B

Proof of Proposition 2

Solving for the optimal contract boils down to finding the optimal number of tasks to be
included in the contract. Let M € {0,1,2} denote this number. In the additively separable
benchmark case, the optimum is M**® = max{k : 7, —06 > ¢}, that is, we include in the contract
those tasks whose “marginal benefit” at least equals the marginal writing cost. Clearly, the

optimal M is given by

2 Zf CSﬂ'Q—é
M= 1 if my—6<ec<m —6
0 of c>m — 0

In the case of supermodular 7(b), the optimum depends on the marginal benefit function
M By, where
MB, = g(m,0) — 6, MB; = g(mi,m2) — g(m1,0) — 6

M B, may be increasing or decreasing in k. If M By is increasing, the solution is bang-bang,
in the sense that the optimal contract is either complete or empty. In particular, the optimal
number of tasks specified in the contract is depending on whether c¢ is below or above the critical

level &(my + m3) — &:

Ageom — 2 if c<%(7r1+7r2)—6
0 if c¢>g(m +m)—6

It follows that task complementarities make the contract (weakly) less incomplete if ¢ < %(7?1 +

T9) — 6 and (weakly) more incomplete if ¢ > $(m + m2) — 6.

If M By, is decreasing, then M™ = max{k : M By > c}. It is easy to show that, given the
assumptions made on the g function, we have M B; < m; — 6 and M By > my — 6. This implies

that for my — 6 < ¢ < M By the contract is less incomplete under supermodular 7(b) than under
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separable 7(b), for M B; < ¢ < m — 6 the opposite is true, and for all other values of ¢ the

contract is equally incomplete in the two cases. B

Proof of Proposition 3

Again, it can be shown that the optimal contract can be derived by focusing separately on
each elementary action. To simplify notation, we will pretend that there is only one elementary
action, a. The corresponding payoff can then be written as m = ¢(s,b), where s = (81, ..., $) €

{0,1}™ b € {0,1}, sy = 1 means that e, occurs, and b = 1 means that a is chosen.

We identify an incentive contract (p, — t3)5  with the corresponding transfer function
T:S5x{0,1} = R, where T'(s,b) = >, )c |, | ts- For any incentive contract T'(s, b), we can
focus on the difference Ar(s) = T'(s,1) —T'(s,0) which is the monetary incentive to take action
a at state s. The cost of incentive contract T is at least ¢ (1 + n(T")) where n(T) is the number

of elementary events affecting the value of Arp(s):

n(T) = #{k’ . ElS,k, AT(l, S,k) 7é AT(O, S,k)} X
(recall that #X denotes the cardinality of set X).

An incentive contract T' implements a behavioral function by : S — {0,1} if, for all s and

b,36
br(s) = 1< Ar(s) —on(s,1) > —6m(s,0),
br(s) = 0& Agp(s) —om(s,1) < —67(s,0).

Let
E™(T)={s: Ar(s) >0}

be the set of states where T' gives a monetary incentive to choose a. Futhermore, let
K(T)={k:3s_p, Ap(1,5_1) > 0> Ap(0,5_x), or Ap(1l,5_5) <0< Ap(0,s_x)}

be the set of indexes of elementary variables which are relevant to determine whether s € E*(T')

or not. We let sx (7 denote a typical element of the “relevant state space” {0, 1}K(T) and we

36 Note that this is a notion of strict implementation. We restrict our attention to strict implementation only
for the sake of simplicity.
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write s = (sk(r), S_k(r)), where —K(T') is the complementary set of indexes. Clearly E*(T) is

just the product of its projections on {0, 1}K(T) and {0, 1}7K(T) :

E*(T) = E*

—K(T
k) X {0,13 %1,

where

Ef iy = {srer : 3k, sy, s xery) € EX(T)} .

Note that the cardinality of K(7') is not larger than n(7).

Now we can write a conjunctive-disjunctive formula n*(7") whose truth set is E*(T):

7’]Jr (T) = \/ /\ (A3 N /\ €L

sy EET(T) \keK(T):sp=1 ke K(T):s,=0

Clearly, the cost of n™(T) is ¢ - #K(T) (recall that we assumed r = 0).

Let by denote the behavioral function implemented by a forcing contract f, where

by(s) = i b
7(s) argbergg(ls)ﬂ(s,)

We are now ready to prove the result. Formally, our claim is the following. Fix an arbitrary
incentive contract 7" and suppose that 7" implements the behavioral function by : .S — {0, 1}.

Then the forcing contract f = (n*(T) — a) A (- (T") — —a) weakly dominates T', that is,
C(f) =c(1+#K(T)) < c(1+n(T)) < C(T)

and
Vs e S, g(s,br(s)) > g(s,br(s)).

To prove the claim, first note that, since #K(T) < n(T'), we have C(f) < C(T).

Since T" implements by, we have

br(s) = 1 < g(s,0)—g(s,1) > —AI;S(S),
br(s) = 0 < g(s,1) — g(s,0) > AT;S).
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The behavioral function by implemented by the forcing contract f satisfies

bs(s) = 1<:>ATT(S)>O,
bs(s) = m@—Aﬁﬁzo.

Therefore

1 Ar(s
g9(s,1) — g(s,0), if g(s,1) — g(s,0) > §>>0,
9(s,by(s) = gls.br(s)) = § g(5,0) — g(s, 1), if g(s,0) — g(s,1) > 25 > 0
0, otherwise.

The claim follows. B

Proof of Remark 7:

Suppose a language has () primitive sentences, p1, pa, ..., pg. Define an atom of this language

to be a formula of the form ¢; A g2 A ... A gg, where each g; is either p; or the negation of p;.

A language with @ elementary sentences ha 29 atoms. These atoms have disjoint truth sets,
some of which may be empty. Let Ay be the number of atoms with nonempty truth sets. Of
course we have Ay < 2. Now note that the set of of events that this language can describe
consists of all the unions of atoms in Ay. The cardinality of this set — i.e., the expressive power —
is 27 (minus one, if the impossible event is subtracted). A natural language with Q elementary

. : . 02@
sentences has all nonempty atoms, therefore its expressive power is 22~

Let Lr be a language with R elementary sentences and let £, be a natural language with
(@ elementary sentences. If R < () then the expressive power of Ly is at most 22" < 229 If Lg

has the same expressive power as L%, then 22" > 22° {e.. R> Q. W

Proof of Proposition 4:

Let us focus on aspect k. It is not hard to show that only the empty clause D, the rigid
clause Ry, and the (double) contingent clause Cy can be optimal default clauses (the rigid rules
Ry and R, are payoff-equivalent when p = %; without loss of generality we consider only Ry).
Note that, since p = %, it is never optimal for private parties to include a rigid rule in the

contract, but it can be optimal not to contract around a rigid default rule. The following table
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shows when it is optimal for the “majority” to replace the default clause with C. We put

in parentheses in the third column the private incremental payoff when the condition in the

second column is not satisfied and hence the default clause is not replaced. The analysis for

the “minority” is analogous.

Default Clause k | Replaced with Cy if | Private Incremental Payoff for &k
D T > 2y (1 —6)m, — 2¢ (or 0)

Ci never (1= 8)my

Ry, e > 4y (1 —6)my, — 2¢ (or 2(1 — 8)my,)

The next table summarizes the planner’s incremental payoft from each default clause as a

function of the parameters.

Default | 7 < 2y 2y < mp < 4y 4y < g

D 0 M[(1 - 6)my — 2] M[(1—6)m, —2c

Rk %M(l—é)ﬂ'k—c %M(l—é)ﬂ'k—c M(l—(S)Wk—QC—C

C pM(1 —8)m —2¢ | M[(1 —8)m —2(1 — p)c] —2¢ | M[(1—6)mp —2(1 — p)c] — 2¢

Case (i): m, < 2y.

D is preferred to Ry 1ﬂ? > T

Ry, is preferred to Cy, iff —4— > my.

M(2p i)

Note that 2y < W

e D is optimal iff 0 < 7, < 2,

e Ry is optimal 1ff 4 <, <2y mln{l

because 0 < p < 1. Therefore

gl

e ()}, is optimal iff 2y min{1, Tl—l} < < 2.

Case (ii): 2y < 7 < 4y.

We only have to compare R; with Cj.
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Ry, is preferred to Cy, iff 2y [% +2(1 — p)] > .

Note that 2y [+ + 2(1 — p)] < 4y because M > 2 and p > 3. Therefore

e Ry, is optimal iff 2y < m), < 2ymax {1, [5; +2(1 — p)] },

e ()}, is optimal iff 2y max {1, [ﬁ +2(1 - p)}} <7 < 4y.

Case (iii): 7 > 4y.

By inspection of the table above (and taking into account the restrictions on M and p) only

the contingent clause Cj is optimal in this case.

Now note that the threshold values are ordered as follows:

o If M = 35 then 2y = %= = 2y [57 +2(1 — p)],
o if M < 55 then 2y < gty < 2y [57 +2(1 - p)],

o if M > 5 then 2y > gty > 2y [ +2(1 - p)] -
Therefore the above results can be summarized as follows:

e D is optimal iff 0 < 71, < %,
e R, is optimal iff % <7 < 2ymax{m, [% +2(1 — p)]} ,

e () is optimal iff 2y max {m, [% +2(1— p)]} < .

If Ry is the optimal default, neither the “majority” nor the “minority” contracting pairs

replace it. If Cj is the optimal default, the “minority” contracting pairs replace it whenever

T > 2y. A
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Characterization of the Optimal Contract with Random Behavior:

Assume that the agent chooses at random in BY(s). To simplify the analysis also assume

that r = 0. Let Ky = max{n : m, > =}, Ki + K = max(Ky, max{n : m, > —1})

P=3

Proposition 5. : Every optimal contract is equivalent to the following:

K1 K1+K2
/\[(Bk — CLk) A (ﬁek — ﬁak)] A [T — /\ ak]
k=1 k=Ki1+1

Proof. We initially proceed as in the proof of Proposition 1: we start with an arbitrary
contract ¢°, then we construct a contract that has the features described in the proposition,
yields weakly higher expected gross surplus than ¢° and has a weakly lower writing cost than

¢". We construct this contract in three steps.

1. The following is a logically equivalent formulation of ¢° :

A A )il A )=V ([ A @) A

scS kEE1(s,9°) LEFE0(s,9°) beB9° (s) meAi(b,g?) n€Ao(b,g%)

(the proof of Proposition 1). Now consider the following contract:

g':/\ /\ ex | A /\ e | — /\ A | N /\ ay,

seS k€E1(s,9°) L€Eo(s,9°) meA; (s,9°) n€Ay(s,9°)

where A%(s,¢°) = {n: e, and a, occur in ¢° and s(e,) = 0}, and A(s, ¢°) = A(g°)\A}(s, ¢°).

We argue that contract ¢’ yields a (weakly) higher expected surplus than ¢g'. First note that
C(g%) = C(g') because ¢° and ¢ contain the same set of elementary sentences. Next observe
that by additive separability of payoffs we need only compare the expected incremental gross
surplus for each aspect n of the contractual problem. Since the agent chooses at random in
the state-contingent constraint set, under both contracts, for each a, not contemplated in g°
and each state, he chooses a,, with probability 1/2 (which expected incremental gross surplus
1

57n). Therefore we only have to compare the agent’s behavior under ¢" and ¢’ for elementary

actions a,, contemplated in ¢°, that is, actions in A(g%). If e,, and a,, occur in ¢°, then ¢’ forces
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the agent to take the right action (a,, or —a,) in all states, so the incremental gross surplus for
aspect n is maximum. If a,, occurs in ¢° but e, does not, then ¢’ forces the agent to take action
a, in all states (note that in this case a,, € Ai(s,¢")). This yields expected incremental gross
surplus pm,. By the independence assumption, this is an upper bound to what can be achieved
without including e,, in the contract. To see this, note that, even accounting for the agent’s
randomization, if e,, does not appear in ¢°, b(a,) and s(e,) are independent random variables;

therefore the expected incremental surplus from task n in contract ¢° is

Tl [8(8n)b(an) + (1 — s(en) (1 — blan)]
= mE[s(en)|E[b(an)] + {1 — E(s(en)]}H{1 — Elb(an)]}
= mupElb(a,)] + m.(1 - p){1 — E[b(a,)]} < map,

where the first equality holds by independence and the inquality follows from p > % and

0 < E[b(a,) < 1. (Note that the inequality is strict unless ¢° prescribes a,, in every state.)
Therefore we have V(g') > V(g"), where V(g) denotes the net surplus induced by contract g.

2. From ¢’ we will construct a contract g* that is separable in the N dimensions. As in the

proof of Proposition 1, we let s_g = (1, ..., Sk—1, Skt1s -, SN ) AN (S}, S_g)=(S1, -vy Sk—1, Sk Skl ---

The marginal probability of s, is denoted i (sx). Also, let

Ok (Sky b)) = Tr[skbr + (1 — 1) (1 — by)]

denote the k** term of the gross surplus, and let £9 (o4|s) denote its expected value conditional

on s, given contract ¢'.

For each k£ =1, ..., N, pick

st € arg max Z 1 (1) B (01|55, 5—)
" s,e{0,1}
We construct ¢g* in the following way: ¢* = /\/,i\[:1 Y%, Where

Co if  Bf(0,s%,) # Bl (1,5%,),
Yi=< D i BI(0,s*,) =B (1,s,)={0,1},
Ry otherwise.
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(Recall that B,Z'(s) denotes the k™ projection of the constraint set BY (s).) First note that
every elementary sentence contained in g* is also contained in ¢’ (for example, e, occurs in
g* only if 4§ = C%, which implies that B,Z’(s) depends on sg; thus e, must also occur in ¢').
Therefore C(g*) < C(¢'). Next we argue that g* yields a weakly higher expected gross surplus
than ¢’. By definition of g*, additive separability, independence and uniform randomization,

we have

V() ZHun Sn Z " (oxls) =

s n=1 k=1
N
Z ZHMH(«%) Z Mk(sk)Eg/(UkISk,ka) <
k=1 \ s-r n#k 5,€{0,1}

Y omaxd Y u(si)E (onlse, i) § <

—k
k=1 s1E{0,1}

Z T + Z P+ Z —7Tk— g)+C(g"),

kEKc(q ) ICEKR((] ) kGKD )
where Kco(g*) = {k : v, = Ci}, Kr(9*) = {k : 7, = Rk}, Kp(¢9*) = {k : 7, = D}. Since
C(g*) < C(g'), we obtain V(g*) > V(g'). Therefore V(g*) > V(g").

3. We have thus far shown that there is no loss of generality in restricting attention to
separable contracts where each clause k is one of the three candidates: C%, R, or D. The
last step is to determine which of these is optimal to include in the contract for each k. This
depends on the parameters p, ¢ and 7. If p > %, the threshold values for 7, are ordered as

follows
c 1

<
p—% 1-p

where D is optimal for 7, < p—cl, Ry is optimal for pf; < <
2 2

(lfp)7 and C}, is optimal

for m, > Ifp<= the rigid clause cannot be optimal. Taking into account that mj is

(1-p) p)'
decreasing in k£ we obtam the characterization of Proposition 5. B
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