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Abstract

The price of a safe asset reflects not only the expected discounted future cash

flows but also future service flows, since retrading allows partial insurance of id-

iosyncratic risk in an incomplete markets setting. This lowers the issuers’ inter-

est burden. As idiosyncratic risk rises during recessions, so does the value of the

service flows bestowing the safe asset with a negative β. The resulting exorbitant

priviledge resolves government debt valuation puzzles and allows the government

to run a permanent (primary) deficit without ever paying back its debt. Neverthe-

less, the government faces a “Debt Laffer Curve”. The paper also has important

implications for fiscal debt sustainability.
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1 Introduction

What is a safe asset? What are its features? Why does it have a negative β? How
much government debt can the market absorb? At what interest rate? Does it enjoy
an exorbitant privilege? Is there a debt valuation puzzle for governments of advanced
countries like the US and Japan? Is there a limit, a “Debt Laffer Curve”? When can
governments run a permanent (primary) deficit without ever paying back its debt, like
a Ponzi scheme, and nevertheless individual citizens’ transversality conditions hold?
When does one lose the safe asset status? How do we have to modify representative
agent asset pricing and the government debt valuation equation? This paper presents
a theory of safe assets that shed light on these questions

We define a safe asset by its key characteristic, the Good Friend Analogy. A safe asset
is like a good friend, it is around; that is, it is (i) valuable and (ii) liquid when one needs
it. We illustrate this within a setting in which citizens face uninsurable idiosyncratic
risks and save for precautionary reasons. Each citizen adjusts her portfolio consisting
of risky physical capital and the safe asset, a government bond. Idiosyncratic shocks
that cannot be diversified away (as well as aggregate shocks) make capital risky. This
makes the safe asset attractive since it can be sold after an adverse shock. From an
individual citizen’s perspective it is this ability to retrade which makes the government
bond a desirable hedging instrument. Her planned dynamic trading strategy generates
a payoff stream that is a good hedge.

Since it is the retrading after idiosyncratic shocks that creates this extra service flow,
a safe asset should not be plagued by trading frictions. Hence, low risk debt that is
informationally insensitive is better suited as a safe asset. Asymmetric information and
other trading frictions are not conducive for retrading.1

Since a safe asset generates this extra service flow in the form of self-insurance, it
is attractive even at a lower real interest rate, r, its cash flow return. It is instructive to
consider a new asset pricing formula which nicely separates the two benefits of the safe
asset: cash flows, possibly negative, and a service flow that results from the ability to

1Hence, it makes sense for central banks to act as market maker of last resort to ensure that bid-ask
spreads remain low. Viewed this way John Law’s big achievement was to create a safe asset status for
English and French government debt early in the 18th century.
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self-insure through retrading. The real value of a safe asset (or any tradable asset) is

pricet = Et[PVr∗∗ [cash f lows]] + Et[PVr∗∗ [service f lows]].

While the traditional asset pricing formula prices the cash flow of a buy and hold
strategy of the safe asset, the above stated pricing formula prices the cash flow of a dy-
namic (equilibrium) strategy whose cash flow is positive when the asset is sold (after
a negative shock) and negative when additional safe assets are bought (after a positive
shock). Valuing individual dynamic trading cash flow streams and aggregating them
leads to the above pricing equation, where a different discount rate, r∗∗, arises naturally.
Interestingly, r∗∗ can be viewed as the “representative agent interest rate” in an incom-
plete market setting. It is the risk-free rate that excludes the component that is due to
precautionary demand driven by the exposure to uninsurable idiosyncratic risk. Note
that the rate r∗∗ still reflects the time-preference rate, expected consumption growth
rate as well as precautionary demand due to aggregate risk but not due to uninsurable
idiosyncratic risk.

A safe asset is really like a good friend if it not only allows citizens to self-insure
against idiosyncratic adverse shocks, but also serves as a safe haven after adverse ag-
gregate shock. That is, if it appreciates in recessions due to flight-to-safety capital flows.
To see why a safe asset has a non-positive β consider an economy in which idiosyncratic
risk rises when entering a recession and aggregate output declines. A drop in output
reduces payoffs and increases the marginal utility, leading to the traditional positive β

in the asset pricing equation for the cash flow term. The second term, the service flow
term, behaves very differently. As idiosyncratic risk rises in recessions, citizens pre-
fer to shift their portfolio away from capital towards the safe asset, resulting in a force
that pushes up the real value of safe assets. It is due to the second term capturing the
discounted stream of service flows that the safe asset has a non-positive β.

Our model has also interesting stock market asset pricing implications due to "flight-
to safety" phenomena. During recessions, idiosyncratic risk is assumed to rise. While
for outside equity, idiosyncratic risk can be diversified away, the residual claimant to
each firm is an insider who remains exposed to the idiosyncratic risk via her inside eq-
uity holdings. During recessions, these insiders demand a higher insider risk premium
which depresses payouts to outside equity holders. As a consequence, the (outside)
equity stock index depreciates relative to the safe asset.
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Both the service flow and non-positive β boost the value of the safe asset, or equiv-
alently, depress its required cash flow return r. Any entity that issues a safe asset, be
it the government or private corporations, benefits from the low required cash flow re-
turn. Since there is no large difference between government safe assets and asset with
service flow issued by corporations, traditional measures of convenience yields, like
the BAA-Treasury interest rate spread used in Krishnamurthy and Vissing-Jorgensen
(2012), do not capture the full service flow from trading safe assets.

However, not any entity that issues a safe asset with service flows can run a Ponzi
scheme. When precautionary savings due to idiosyncratic risk depresses the required
real cash flow return r below the economic growth rate g sustainable Ponzi schemes
become feasible. One can pay off the maturing bonds with newly issued debt and issue
more to fund additional expenditures. Viewed differently, in this case one can issue
a “bubbly” safe asset.2 In our model with uninsurable idiosyncratic risk, bubbles are
possible even though individual citizens’ transversality conditions hold. Strictly speak-
ing, which entity can run a Ponzi scheme depends on which equilibrium is selected. In
other words, the selected “bubble equilibrium” determines who is subject to a no-Ponzi
constraint. Brunnermeier et al. (2021a) argue that the government’s ability to tax and
impose regulations on the private sector puts it in a unique position to defend a bubble
on its debt. According to this view, the government enjoys an exorbitant privilege as
a safe asset issuer that sets it apart from private entities. While the latter may also be
able to issue a safe asset with service flows, they can – unlike governments – not run a
Ponzi scheme.

Note that safe assets do not need to be bubbly. Safe assets can also arise in the
absence of bubbles. However, a bubble component can make an asset “saver”, since
the value of the service flow is proportional to the market value of the (bubbly) asset –
and the service flow is highly priced, not least because it carries a negative β, its value
of appreciates in times of downturns. Indeed, under certain circumstances, the same
asset without a bubble can have a positive β (driven by discounted cash flows), while
when the bubble is associated with the asset, its β becomes negative. In that case, the
asset is only a safe asset if the bubble is attached to the asset. This leads us to a second
concept, the “safe asset tautology” that holds for bubbly safe assets: A safe asset is
safe because it is perceived to be safe. In this case, the safe asset status can be easily
lost, when the bubble pops. Brunnermeier et al. (2021a) describes policy measures and

2A standard asset pricing equation carries then a bubble term.
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necessary fiscal space to defend the bubble and with it the safe asset status.

Finally, the government can generate seigniorage revenues by “mining the bubble”
(expanding the Ponzi scheme to fund deficits). One contribution of this paper is to
document quantitatively that “bubble mining” only raises sizable government revenue
if safe public debt has a negative β. A government can generate revenue by issuing
bonds at a faster pace, create higher inflation, and thereby reduce the real return on
holding the government bond. “Printing” bonds at a faster rate acts like a tax on bond
holdings or, better said, on partial self-insurance through holding and retrading the
safe asset. It is a form of “financial repression.” Increasing the tax rate increases the
“tax revenue”, but erodes the “tax base”, the value of the bonds. A “Debt Laffer Curve”
emerges. When the tax exceeds a certain level, overall tax revenue from bubble mining
declines. Our calibration quantifies the Laffer Curve and estabilishes that the negative
β is crucial to generate quantitatively significant revenue from “bubble mining”.

Literature. This paper touches upon many strands of classic and recent economic lit-
erature. We follow the safe asset definition outlined in Brunnermeier and Haddad
(2012). Dang et al. (2015) emphasize the information insensitivity of safe assets. In
Gorton and Pennachi (1990), Dang et al. (2017), and Greenwood et al. (2016) intermedi-
aries create information insensitive assets. He et al. (2019) model a safe asset tautology
within a generalized global games setting. Caballero et al. (2017) stress the importance
of safe asset shortage. Brunnermeier et al. (2017, 2016) propose the creation of a safe as-
set via securitization and argue that the main problem is the asymmetric supply of safe
assets leading to eruptive cross-border capital flows. Brunnermeier et al. (2021b) dis-
cuss the loss of safe asset status in the context of an international framework for emerg-
ing market economies. Emerging market government bonds’ safe asset status competes
with advanced economies safe assets and hence are deeply affected by spillovers from
US monetary policy.

This paper resolves the “Public Debt Valuation Puzzle” proposed in Jiang et al.
(2019), which argues that government debt appears overvalued not least because pri-
mary surpluses, the total payments to all bond holders, are procyclical and should thus
be discounted at a higher rate. In our setting, the price of debt is countercyclical since
the bubble-term rises in bad times, resulting in a negative β asset. Second, it also re-
solves the “Government Debt Risk Premium Puzzle” (Jiang et al., 2020), the puzzle
that government debt appears to insure simultaneously bond holders and taxpayers
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whereas in standard models, it can insure only one of the two groups. Our analysis
shows that the bubble term can make the bond a negative β-asset, a good hedge for
bond holders, while primary surpluses are procyclical at the same time, thus providing
insurance for taxpayers.

The value of government debt is inherently linked with fiscal debt sustainability. In
deterministic models, debt is sustainable and a Ponzi scheme is feasible if the risk free
interest rate r is lower than the economic growth rate g. Bohn (1995) questions the sim-
ple r vs. g comparison for economies with aggregate risk. Papers generating r < g with
Overlapping Generations (OLG) include Samuelson (1958), Diamond (1965) with cap-
ital, Tirole (1985) with a bubble and, most recently, Blanchard (2019). Models in which
the risk-free rate is depressed due to uninsurable idiosyncratic risk go back to Bewley
(1980). Aiyagari and McGrattan (1998) calibrate the optimal debt level in an Aiyagari
(1994)-type model without aggregate risk. In these models no bubble can exist. Angele-
tos (2007) studies idiosyncratic investment risks. Brunnermeier and Sannikov (2016a,b)
include a ‘bubbly’ safe asset in the form of government debt or money and allow for
aggregate risk.Bassetto and Cui (2018) and Brunnermeier et al. (2021a) study the fiscal
theory of the price level (FTPL) in low-interest rate environments. Brunnermeier et al.
(2021a) show that the resulting bubble on government debt represents a fiscal resource
that can be mined. Reis (2021) studies fiscal debt capacity in a related framework with
a bubble on government debt.3 To avoid an opposite infinity problem in the debt val-
uation equation when r < g, Reis (2021) discounts at the higher marginal product of
capital m > g. Unlike our r∗∗-discounting, this does not have a simple economic inter-
pretation. In Di Tella (2020) and Merkel (2020) the safe asset is money and yields ad-
ditional utility so that r > g. In Kiyotaki and Moore (2008) citizens self-insure against
investment opportunity shocks. There is an extensive literature on rational bubbles.
Survey papers include Miao (2014) and Martin and Ventura (2018).

Like us, Constantinides and Duffie (1996) show how variation in idiosyncratic risk
exposures in an incomplete markets setting can resolve several asset pricing puzzles.
Unlike our paper, they focus exclusively on the no-bubble equilibrium. ? are prominent
papers that In our analysis traded equity exhibits excess volatility and predictability
as in recessions idiosyncratic risk rises the risk compensation for inside equity rises
leaving less for outside (publicly traded) equity holders.

3Reis (2021) also derives the maximum deficit-debt ratios which represent the right end point of our
Debt Laffer Curve where the debt value becomes zero.
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2 Model

2.1 Model Setup

The model is set in continuous time with an infinite horizon.

There is a continuum of households indexed by i ∈ [0, 1]. All households have
identical logarithmic preferences

Vi
0 := E

[∫ ∞

0
e−ρt log ci

tdt
]

with discount rate ρ.4

Each agent operates one firm that produces an output flow atki
tdt, where ki

t is the
capital input chosen by the firm and at is an exogenous productivity process that is
common for all agents. Capital of firm i evolves according to

dki
t

ki
t
=

(
Φ
(

ιit

)
− δ

)
dt + σ̃tdZ̃i

t + d∆k,i
t ,

where d∆k,i
t represents firm i’s market transactions in physical capital, ιitk

i
tdt are the

firm’s physical investment expenditures (in output goods), Φ is a concave function that
captures adjustment costs in capital accumulation, δ is the depreciation rate, and Z̃i

is an agent-specific Brownian motion that is i.i.d. across agents i. Z̃i introduces firm-
specific idiosyncratic risk. σ̃t is an exogenous process that governs the magnitude of
idiosyncratic risk faced by agents. To obtain simple closed-form expressions, we choose
the functional form Φ (ι) = 1

φ log
(
1 + φι

)
with adjustment cost parameter φ ≥ 0 for the

investment technology.

Each agent i can sell off some of the risky cash flows generated by capital ki to
capital markets as outside equity. Outside equity claims on i’s capital have the same
aggregate and idiosyncratic risk as capital itself, but may pay a lower expected return,
reflecting an insider premium that i earns for managing the capital stock. Agents can
hold a diversified equity portfolio and thereby eliminate idiosyncratic risk.

4In Appendix A.3, we present a generalization with Duffie and Epstein (1992) preferences (continuous
time Epstein and Zin (1989) preferences).
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The key friction in the model is that agents are unable to share idiosyncratic risk
perfectly. Specifically, we assume that agents face a skin-in-the-game constraint and
must retain at least a fraction χ̄ ∈ (0, 1] of their capital in undiversified form, i.e. they
can sell off at most a fraction 1− χ̄ of the cash flows generated by capital ki as outside
equity. As a consequence, agents have to bear the residual idiosyncratic risk χ̄σ̃tdZ̃i

inherent in their physical capital holdings.

Besides this limit on idiosyncratic risk sharing, there are no further financial fric-
tions. Agents are allowed to trade physical capital and any type of claim contingent on
aggregate risk subject to standard no Ponzi conditions.

In addition to households, there is a government that funds government spending,
imposes taxes on firms, and issues nominal government bonds. The government has
an exogenous need for real spending gtKtdt, where Kt :=

∫
ki

tdi is the aggregate capital
stock and gt is an exogenous process. The government imposes a proportional output
tax (subsidy, if negative) τt on firms. Outstanding nominal government debt has a face
value of Bt and pays nominal interest it. Bt follows a continuous process dBt = µBt Btdt,
where the growth rate µBt is a policy choice of the government. In short, the government
chooses the policy instruments τt, it, µBt contingent on histories of prices taking gt as
given and subject to the nominal budget constraint

itBt + PtgtKt = µBt Bt + PtτtatKt, (1)

where Pt denotes the price level.

We assume that the exogenous processes at, σ̃t, gt follow a joint Markov diffusion
process that is driven by some Brownian motion Zt, which captures aggregate risk and
is independent of all idiosyncratic Brownian motions Z̃i

t.

The model is closed by the aggregate resource constraint

Ct + gtKt + ιtKt = atKt, (2)

where Ct :=
∫

ci
tdi is aggregate consumption and ιt =

∫
ιitk

i
t/Ktdi is the average invest-

ment rate.
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2.2 Model Solution

Price Processes and Returns. Let qK
t be the market price of a single unit of physical

capital. Then, qK
t Kt is private capital wealth. Let further qB

t := Bt/Pt
Kt

be the ratio of the
real value of government debt to total capital in the economy.5 Then, the real value of
the total stock of government bonds is qB

t Kt and the real value of a single government

bond is qB
t Kt
Bt

. It is convenient to define the share of total wealth in the economy that is
due to bond wealth,

ϑt :=
qB

t Kt(
qB

t + qK
t

)
Kt

.

We postulate that qB
t and qK

t have a generic Ito evolution

dqB
t = µ

q,B
t qB

t dt + σ
q,B
t qB

t dZt, dqK
t = µ

q,K
t qK

t dt + σ
q,K
t qK

t dZt.

Whenever qB
t , qK

t 6= 0, the unknown (geometric) drifts µ
q,B
t , µ

q,K
t and volatilities σ

q,B
t , σ

q,K
t

are uniquely determined by the local behavior of qB
t and qK

t , respectively. In the follow-
ing, we also use the notation µϑ

t and σϑ
t for the (geometric) drift and volatility of ϑt.6

Households can trade two assets in positive net supply (if qB
t 6= 0), bonds and capi-

tal. Assume that in equilibrium ιt = ιit for all i (to be verified below) such that aggregate
capital grows locally deterministically at rate Φ(ιt)− δ. Then, the return on bonds is

drBt = itdt +
d
(

qB
t Kt/Bt

)
qB

t Kt/Bt
=

d
(

qB
t Kt

)
qB

t Kt
−

=:µ̆Bt︷ ︸︸ ︷(
µBt − it

)
dt

=
(

Φ(ιt)− δ + µ
q,B
t − µ̆Bt

)
dt + σ

q,B
t dZt. (3)

The return on agent i’s capital is

drK,i
t

(
ιit

)
=

(1− τt) at − ιit
qK

t
+

d(qK
t ki

t)

qK
t ki

t

=

(
(1− τt) at − ιit

qK
t

+ Φ
(

ιit

)
− δ + µ

q,K
t

)
dt + σ

q,K
t dZt + σ̃tdZ̃i

t.

5It is convenient to work with this normalized version of the inverse price level 1/Pt, because the lat-
ter depends on the scale of the economy and the nominal quantity of outstanding bonds in equilibrium,
whereas qB

t does not.
6This means, dϑt = µϑ

t ϑtdt + σϑ
t ϑtdZt.
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Using the government budget constraint (1) to substitute out τta yields

drK,i
t

(
ιit

)
=

 at − gt − ιit
qK

t
+

qB
t

qK
t

µ̆Bt + Φ
(

ιit

)
− δ + µ

q,K
t

dt + σ
q,K
t dZt + σ̃tdZ̃i

t.

Outside equity claims issued by household i have the same risk characteristics as
the capital return drK,i

t but may have a different expected return. The return on outside
equity issued by agent i is therefore

drE,i
t = Et[drE,i

t ] + σ
q,K
t dZt + σ̃tdZ̃i

t,

where the expected return component Et[drE,i
t ] is determined in equilibrium. In equi-

librium, all agents optimally hold a perfectly diversified equity portfolio. The return
on that portfolio is

dr̄E
t =

∫
drE,i

t di = Et[dr̄E
t ] + σ

q,K
t dZt.

Because all individual varieties of outside equity drE,i
t generate the same aggregate

risk contribution to the overall equity portfolio, it will be the case in equilibrium that
Et[drE,i

t ] = Et[dr̄E
t ] for all i.

Household Problem and Equilibrium. We formulate the household problem as a
standard consumption-portfolio-choice problem that does not make explicit reference
to the capital trading process d∆k,i

t as a choice variable. For this purpose, denote by ni
t

the net worth of household i and let θk,i
t , θE,i

t , θĒ,i
t be the fraction of net worth invested

into capital, own outside equity, and the diversified portfolio of equity, respectively.7

Net worth evolves according to

dni
t

ni
t
= − ci

t

ni
t
dt + drBt + θK,i

t

(
drK,i

t

(
ιit

)
− drBt

)
+ θE,i

t

(
drE,i

t − drBt
)
+ θĒ,i

t

(
dr̄E

t − drBt
)

. (4)

The household chooses consumption ci
t, real investment ιit, and the portfolio shares

θk,i
t , θE,i

t , and θĒ,i
t in capital, own outside equity and the diversified equity portfolio,

respectively, to maximize utility Vi
0 subject to (4), the return expressions stated earlier,

7The own outside equity share θE,i
t is negative as this asset is issued by the household.
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the skin-in-the-game constraint

−θE,i
t ≤ (1− χ̄)θK,i

t , (5)

and a constraint that rules out Ponzi schemes.8

We solve this problem in Appendix A.1 using the stochastic maximum principle.
Here, we merely report the main conclusions.

The optimal consumption and investment choice are determined by the two condi-
tions

ci
t = ρni

t,

qK
t = 1

Φ′(ιit)
= 1 + φιit.

The first line is the familiar permanent income consumption equation for log prefer-
ences. The second line is a Tobin’s q condition for physical investment in the presence
of capital adjustment costs. The second equality in that line follows from the functional
form assumption Φ (ι) = 1

φ log
(
1 + φι

)
. Because all households face the same capital

price qK
t , they all choose the same investment rate ιit, so that we drop the i superscript

from now on.

Aggregating the first condition across all agents i and combining the two equations
with goods market clearing (2) and the definition of ϑt implies

ιt =
(1− ϑt) (at − gt)− ρ

1− ϑt + φρ
, (6)

qB
t = ϑt

1 + φ (at − gt)

1− ϑt + φρ
, (7)

qK
t = (1− ϑt)

1 + φ (at − gt)

1− ϑt + φρ
. (8)

These equations determine the equilibrium uniquely as a function of the exogenous
processes at and gt and the (endogenous) bond wealth share ϑt. To fully characterize
the equilibrium, we thus only need to determine ϑt.

ϑt can be thought of as a relative price between capital assets (including equity

8Formally, the no Ponzi constraint is lim infT→∞ E[ξ i
Tni

T ] ≥ 0, where ξ i
t is the stochastic discount

factor defined below in Section 3.
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which is a claim to capital) and government bonds and is determined by households’
portfolio choice and asset market clearing. Households’ portfolio choice conditions
for the three choices θk,i

t , θE,i
t , θĒ,i

t take the form of standard Merton-type choice con-
ditions that ensure that for the optimal portfolio, each asset’s expected excess return

over
Et[drBt ]

dt is equalized to the risk premium the agent requires to be willing to hold
the aggregate and idiosyncratic risk associated with the asset.9 We present the formal
equations in Appendix A.1.

There, we also show that by combining these portfolio choice conditions and using
asset market clearing to eliminate the individual portfolio weights θk,i

t , θE,i
t , θĒ,i

t , we can
reduce them to a single equation for the expected change in ϑt:

Et [dϑt] =
(

ρ + µ̆Bt − (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt (9)

This is a backward stochastic differential equation (BSDE) for ϑt. It characterizes
all possible stochastic processes for the bond wealth share ϑt (≈ relative price between
bonds and capital) that are consistent with household portfolio choice and market clear-
ing. Together with a specification for the evolution of the exogenous states σ̃t, at, and gt

and for policy µ̆Bt , equation (9) determines the equilibrium process for ϑt. Equations (6),
(7), (8) and goods market clearing (2) can then be used to back out the remaining quan-
tities of interest.

Remark: Equilibrium Selection and Bubbles. Depending on the precise assump-
tions on parameters and government policy, the model environment may allow for the
emergence of rational bubbles. A competitive equilibrium is therefore not necessarily
unique. Our model solution procedure incorporates some implicit assumptions that
affect equilibrium selection if the equilibrium is non-unique. We highlight these as-
sumptions here and maintain them throughout with the exception of Section 8, where
we discuss alternative equilibria.10

First, by assuming that private households face standard no Ponzi conditions and
that government debt is the only asset in positive net supply that is free of idiosyncratic

9In the case of capital and outside equity, there is also a Lagrange multiplier term related to the skin-
in-the-game constraint (5). In the problem considered here, the constraint is always binding, so that
households issue the maximum amount of outside equity consistent with it.

10Our selected equilibrium can be made unique with the fiscal policy arrangements discussed in Brun-
nermeier et al. (2021a).
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risk, we have effectively ruled out bubbles on any asset other than government debt.

Second, even under these assumptions, there may be multiple equilibria correspond-
ing to multiple solutions to equation (9). However, one can show that there is a unique
stationary equilibrium in which nominal bonds are valued (“stationary monetary equi-
librium”). By considering a Markov equilibrium in which ϑ can be written as a function
of the exogenous state variables, as we do from Section 4 onward, we effectively select
this unique stationary monetary equilibrium. Note that under conditions that ensure
equilibrium uniqueness, this is the only competitive equilibrium. Otherwise, this equi-
librium implies the existence of a bubble on government debt.

2.3 Closed-Form Steady State

We provide a brief characterization of the model’s steady state.11 To do so, we as-
sume that productivity a, idiosyncratic risk σ̃, and government spending per unit of
capital g are constant. We also restrict attention to government policies that hold taxes
τ constant over time and to equilibria with constant qB and qK and a positive value
of government bonds, qB > 0 (in line with our equilibrium selection choice). These
assumptions immediately imply that also ϑ and µ̆B must be constant in a steady state.

Any such equilibrium must solve equation (9) with dϑt = 0. The right-hand side
is a third-order polynomial, so there are three solutions to this equation, ϑ = 0, ϑ =
χ̄σ̃+
√

ρ+µ̆B

χ̄σ̃ , and ϑ =
χ̄σ̃−
√

ρ+µ̆B

χ̄σ̃ . Among these solutions, only the third can be consistent
with qB, qK > 0 and thus a valid steady state equilibrium in which bonds have a positive
value.12 It is consistent with such an equilibrium if in addition the condition

χ̄σ̃ ≥
√

ρ + µ̆B

is satisfied. Effectively, this inequality imposes a constraint on bond growth in excess
of interest payments µ̆B, a measure of dilution of existing bond holds. Dilution µ̆B

cannot be too large for the private sector to remain willing to hold government bonds.
The higher is the residual idiosyncratic risk χ̄σ̃ that agents have to bear after optimal

11The “steady state” is in fact a balanced growth path. In our AK-type model, there is always a growth
trend in the capital stock Kt.

12The second solution never corresponds to a valid equilibrium, while the first is only consistent with
equilibrium if government primary surpluses are zero, see Brunnermeier et al. (2021a) for details.
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outside equity issuance, the less restrictive is this constraint.

If this condition is satisfied, investment is

ι =

√
ρ + µ̆B (a− g)− ρχ̄σ̃√

ρ + µ̆B + φρχ̄σ̃

and the (scaled) real asset values are

qB =

(
χ̄σ̃−

√
ρ + µ̆B

) (
1 + φ (a− g)

)√
ρ + µ̆B + φρχ̄σ̃

, qK =

√
ρ + µ̆B

(
1 + φ (a− g)

)√
ρ + µ̆B + φρχ̄σ̃

.

These closed-form solutions yield straightforward conclusions regarding the impact
of parameter changes on equilibrium outcomes. We emphasize here explicitly that cap-
ital valuations and investment are strictly decreasing while bond valuation are strictly
increasing in idiosyncratic risk σ̃. This is because an increase in idiosyncratic risk leads
to a portfolio reallocation from capital assets to government bonds as can be readily
seen from equation (9). This same force also plays an important role in the flight-to-
safety dynamics we emphasize in Sections 4 and 5.

3 Safe Asset Debt Valuation Equation: Two Perspectives

The value of government debt has to satisfy a debt valuation equation that re-
lates the real value of debt to the present value of future primary surpluses. There
are two ways to derive such an equation: (1) by iterating the government’s flow bud-
get constraint forward in time and pricing the total stock of government bonds with
any marginal agent’s stochastic discount factor (SDF) or (2) by valuing each individual
households’ bond portfolio and then aggregating over all households. Both procedures
imply the same valuation formula with complete markets, but, with incomplete mar-
kets, lead to two distinct equations that differ in the effective discount rate applied to
government surpluses. These equations provide two different perspectives for pricing
government debt.

The first procedure leads to a “buy and hold perspective” of government debt pric-
ing. The value of government debt must equal the marginal valuation of an individual
agent that buys and holds a (small) constant fraction of the total stock of outstand-
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ing bonds.13 The cash flow stream associated with this strategy is proportional to the
stream of primary surpluses. Hence, in a setting without aggregate risk the bond is
risk-free and future payoffs are discounted at the risk-free rate. In a setting with ag-
gregate risk, only the aggregate component of the stochastic discount factor enters the
debt valuation equation.

The second procedure leads to a “dynamic trading perspective” of government debt
pricing. It recognizes that individual citizens do not intend to buy and hold the gov-
ernment bond, but plan to retrade it whenever they face a shock. After a negative
shock, they raise cash flow by selling the bond, while after a positive shock they buy
additional bonds. The cash flow stream associated with this optimal trading strategy is
(idiosyncratically) stochastic. When valuing this cash flow stream, the resulting equa-
tion contains a “service flow” term from retrading that is absent in the buy and hold
perspective.

Dynamic programming implies that a transversality condition has to hold only from
the dynamic trading perspective, for each individual agent. Optimality does not imply
a transversality condition from the buy and hold perspective (where discounting hap-
pens at a lower effective rate). For that reason, a gap may appear between the value of
debt and the present value of surpluses from the buy and hold perspective. This gap is
closed by an additional bubble term.

Unfortunately, it can even happen that both the bubble term and the present value
of primary surpluses are infinite with opposite sign, yet their sum still converges as
the time horizon approaches infinity. In contrast, the terms in the dynamic trading
perspective are always well-defined and finite.

Buy and Hold Perspective. We denote the individual SDF process of citizen i by ξ i
t.

This process satisfies ξ i
0 = 1 and dξ i

t/ξ i
t = −r f

t dt − ςtdZt − ς̃i
tdZ̃i

t, with a negative
drift term equal to the risk-free rate and aggregate and idiosyncratic prices of risk, ςt,
ς̃i

t respectively.14 From the buy and hold perspective, individual uninsurable risk does
not enter the valuation equation directly, so that only the aggregate component ξ̄t of the

13This may require the agent to trade despite the label “buy and hold”, but only directly with the
issuer, the government, in order to absorb new debt issuance, not with other agents.

14In integral form the individual SDF is

ξ i
t = exp

(
−
∫ t

0
r f

τdτ

)
︸ ︷︷ ︸

time discounting

· exp
(
−
∫ t

0
ςtdZτ −

1
2

∫ t

0
ς2

τdτ

)
︸ ︷︷ ︸

aggregate risk

· exp
(
−
∫ t

0
ς̃τdZ̃i

τ −
1
2

∫ t

0
ς̃2

τdτ

)
︸ ︷︷ ︸

idiosyncratic risk

,
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processes ξ i
t matters, i.e. dξt/ξt = −r f

t dt− ςtdZt.15 Absent aggregate shocks (including
inflation shocks), the government bond is a risk-free asset and the relevant discount
factor is simply ξt = exp(−

∫ t
0 r f

τdτ).

The government debt valuation equation from the buy and hold perspective at t = 0
is

B0

P0
= lim

T→∞

E

[∫ T

0
ξtstKtdt

]
+ E

[
ξT
BT

PT

]. (10)

This equation consists of two terms: a discounted stream of primary surpluses plus
(the limit of) a discounted terminal value. The latter can be positive even in the limit,
giving rise to a possible bubble on government debt.16 The reason is that in our model
no private citizen’s transversality condition necessary implies E

[
ξT
BT
PT

]
→ 0 because

agents do not buy and hold a fixed fraction of the government debt stock but constantly
trade bonds. If the discount factor is small enough so that the terminal condition does
converge to zero, we obtain the traditional debt valuation equation that says that the
value of debt must equal the present value of primary surpluses.

To derive equation (10), we start by using dBt = µBt Btdt to rewrite the government
flow budget constraint (1) as

− (dBt − itBtdt) = Pt (τat − gt)︸ ︷︷ ︸
=st

Ktdt,

where st denotes again the government primary surplus normalized by the aggregate
capital stock.

We now multiply both sides by the nominal SDF ξ i
t/Pt of agent i and use Ito’s

product rule to replace ξ i
t/PtdBt with d

(
ξ i

t/PtBt

)
−Btd(ξ i

t/Pt):17

−d
(

ξ i
tBt/Pt

)
+ Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)
= ξ i

tstKtdt.

where the second and third factors are martingales.
15The aggregate discount factor is the projection of any individual citizen’s SDF onto a common fil-

tration generated by the aggregate Brownian {Zt}∞
t=0. Put differently, ξt := E

[
ξ i

t | Zτ : τ ≤ t
]
, takes

conditional expectations with respect to the history of aggregate shocks dZτ up to time t but without any
knowledge of idiosyncratic shocks. Equivalently, ξt =

∫
ξ i

tdi is the unweighted average of individual
SDFs.

16The bubble term on government debt is discussed in detail in Brunnermeier et al. (2021a).
17There is no quadratic covariation term because dBt is absolutely continuous.
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Integrating this equation from t = 0 to t = T, taking expectations, and solving for
ξ i

0B0/P0 yields

ξ i
0
B0

P0
= E

[∫ T

0
ξ i

tstKtdt

]
−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
+ E

[
ξ i

T
BT

PT

]
. (11)

Equation (11) is simply an accounting identity, an integrated version of the government
flow budget constraint (1). We add economic content by noting that the individual SDF
ξ i

t must price the bond because agent i is marginal in the bond market. This implies
that the associated nominal SDF ξ i

t/Pt must decay on average at the nominal market
interest rate, so that the second term in equation (11) vanishes. In addition, we can
replace the individual SDF ξ i

t with the average SDF ξ̄t because equation (11) holds for
all individuals i and stKt and BT/PT are free of idiosyncratic risk. When taking the
limit T → ∞, we obtain equation (10)

Dynamic Trading Perspective. Let ηi
t := ni

t/Nt be citizen i’s net worth share and
denote again i’s SDF process by ξ i

t. Pricing individual bond portfolios and aggregating
over agents i yields our main valuation equation from the dynamic trading perspective,

B0

P0
=
∫ (

E

[∫ ∞

0
ξ i

t · ηi
tstKtdt

]
+ E

[∫ ∞

0
ξ i

t · ηi
t (1− ϑt)

2 χ̄2σ̃2
t
Bt

Pt
dt
])

di. (12)

The real value of all outstanding public debt B0/P0 is the integral of the valuations
of individual debt holdings. Each of these valuations consists of two terms, the dis-
counted value of the share of future primary surpluses, ηi

tstKt := ηi
t(τta− gt)Kt, paid

out to agent i plus the discounted value of future service flows, ηi
t (1− ϑt)

2 χ̄2σ̃2
t
Bt
Pt

, that
agent i derives from trading bonds. The safe asset service flow is due to partial in-
surance, which increases in the value of public debt, and the amount of idiosyncratic
risk the citizen is exposed to, which in turn depends on his portfolio share on physi-
cal capital (1− ϑt) and undiversified risk χ̄σ̃t. Government bonds provide a positive
service flow because the agent sells bonds precisely when she experiences a negative
idiosyncratic shock, so that the bond portfolio generates a positive payout in times of
high marginal utility ξ i

t.

Equation (12) emphasizes that the total value is obtained by aggregating individual
portfolio valuations. Mathematically, it is more convenient to interchange the order of
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integration and write the equation as

B0

P0
= E

[ ∫ ∞

0

(∫
ξ i

tη
i
tdi
)

︸ ︷︷ ︸
=:ξ∗∗t

stKtdt

]
+ E

[ ∫ ∞

0

(∫
ξ i

tη
i
tdi
)

︸ ︷︷ ︸
=:ξ∗∗t

(1− ϑt)
2 χ̄2σ̃2

t
Bt

Pt
dt

]
. (13)

This equation discounts aggregate cash flows (surpluses and service flows) free of id-
iosyncratic risk like equation (10) obtained from the buy and hold perspective. But im-
portantly, the “stochastic discount factor” ξ∗∗t in this equation is a net-worth-weighted
average of individual stochastic discount factors. Since a single citizen’s individual net
worth weight ηi

t co-moves negatively with her SDF ξ i
t, the discount factor is lower (dis-

count rate is higher) than the usual unweighted average discount factor (used in the
buy and hold perspective above). It turns out this weighted average SDF is not a mere
mathematical artifact from swapping integrals but has an economic interpretation. It
is the correct marginal rate of intertemporal substitution of aggregate cash flows for
a pseudo-representative agent who is forced to distribute aggregate consumption to
individuals according to the equilibrium consumption shares ci

t/Ct in our model. We
discuss this interpretation in more detail below.

To derive valuation equations (12) and (13), we start valuing citizen i’s bond port-
folio at time t = 0. Denote by bi

t := (1− θK,i
t − θE,i

t − θĒ,i
t )ni

t the value of agent i’s bond
portfolio at time t and let bi

td∆b,i
t be the stochastic bond trading process, where

d∆b,i
t = µ∆,i

t dt + σ∆,i
t dZt + σ̃∆,i

t dZ̃i
t

denotes the proportional appreciation of bi
t due to trading between t and t + dt. Under

the optimal trading policy, the initial bond wealth bi
0 must equal the discounted value

of future payouts (=outflows) from the bond portfolio,18

bi
0 = −E

[∫ ∞

0
ξ i

tb
i
t

(
µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt
]

. (14)

As all agents hold the same constant fraction of their net worth in bonds (θi
t = ϑt), the

value of the individual bond portfolio is simply the product of the agent’s net worth
share and aggregate bond wealth, bi

t = ηi
tq

B
t Kt. In Appendix A.2, we show that the

18A transversality condition always ensures that there is no additional nonvanishing terminal wealth
term. We provide a formal derivation of this equation in Appendix A.2.
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bond trading process satisfies

µ∆,i
t = −st/qB

t , σ∆,i
t = 0, σ̃∆,i

t = (1− ϑt)χ̄σ̃t. (15)

The proportional reduction in the value of all agents’ bond portfolios due to trading
with the government equals the surplus-debt ratio st/qB

t , agents do not trade in re-
sponse to aggregate shocks as they are symmetrically affected, but agents do trade in
response to idiosyncratic shocks: they sell capital and buy bonds when they receive a
positive shock and vice versa. We also show in the appendix that the price of idiosyn-
cratic risk satisfies ς̃i

t = (1 − ϑt)χ̄σ̃t, where the right-hand expression is the residual
(proportional) idiosyncratic wealth risk that agents have to bear in equilibrium.

Combining all these equations and using qB
t Kt = Bt/Pt leads to the individual

valuation equation

ηi
0
B0

P0
= E

[∫ ∞

0
ξ i

tη
i
tstKtdt

]
+ E

[∫ ∞

0
ξ i

tη
i
t (1− ϑt)

2 χ̄2σ̃2
t
Bt

Pt
dt
]

. (16)

Finally, integrating over individuals i yields equation (12).

Comparison of the Two Approaches. The SDFs used in equations (10) and (13) are
both free of idiosyncratic risk and imply the same aggregate risk premium, but they
differ with respect to their average rate of decay, the “risk-free rate” they imply. The
average SDF ξ̄ decays at the equilibrium risk-free rate r f

t . It is thus a proper SDF in
this model that prices all assets free of idiosyncratic risk. The same is not true for the
weighted average SDF ξ∗∗t . The latter decays at a rate r f

t + ς̃tσ̃
n
t , where σ̃n

t is the idiosyn-
cratic net worth volatility of agents (which is identical for all agents in equilibrium). The
weighted average SDF ξ∗∗t therefore discounts safe cash flows at a higher rate than the
risk-free rate that contains a risk premium for idiosyncratic wealth risk. The reason for
this is apparent from equation (12) which inverts the order of integration: while aggre-
gate cash flows from bonds are free of idiosyncratic risk, each agent holds a stochastic
share ηi

t of the aggregate bond portfolio so that individual bond portfolios do contain
priced idiosyncratic risk.

These considerations imply that only equation (10) is a standard asset pricing for-
mula, a discounted present value formula using a SDF that prices all assets (at least
those free of idiosyncratic risk). But equation (10) can have a bubble and infinities with
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opposite sign. It can be more informative to work with equation (13) instead, as this
equation makes the source of trading gains more transparent. However, we need to
keep in mind that this equation uses a SDF that does (in general) not price the assets in
the economy correctly without additional service flow terms.

Relating the Dynamic Trading Perspective to a Representative Agent. The weighted-
average SDF may not be a proper SDF that prices assets in the competitive equilibrium
of our incomplete markets economy. Yet, it turns out to be the correct SDF of a represen-
tative agent in a Lucas-type asset pricing economy that generates the same allocation
as our competitive equilibrium. In addition, if we interpret aggregate capital and ag-
gregate bonds as two “trees” in this representative agent economy, then equation (13) is
precisely the valuation equation for the bond tree from the perspective of the represen-
tative agent. The dynamic trading perspective is therefore equivalent to the perspective
of a hypothetical representative agent.

More precisely, consider a representative agent that maximizes a weighted welfare
functionW0 =

∫
λiVi

0di with some (positive) welfare weights (λi)i∈[0,1]. If we denote by
ηi

t := ci
t/Ct the consumption share of agent i, we can write utility of this representative

agent as

W0 = E

[∫ ∞

0
e−ρt

∫
λi log

(
ηi

tCt

)
didt

]
, (17)

which resembles standard time-separable utility in aggregate consumption Ct with pe-
riod utility function Ct 7→

∫
λiu(ηi

tCt)di. The consumption shares ηi
t in this utility

function evolve according to dηi
t = σ̃

η
t dZ̃i

t with volatility process σ̃
η
t specified below in

equation (19). We show in Appendix A.4 thatW0 can also be written as

W0 = w0 + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt

 (18)

with some constant w0. Equation (18) eliminates the direct dependence on i and gives
us the alternative interpretation that two “goods” enter the representative agent’s util-
ity function, the aggregate consumption good and a “volatility reduction good” which

is captured by the term − 1
2ρ

(
σ̃

η
t

)2
.19

19The representative agent’s objective is akin to a money in utility (MIU) model. Holding the derivative
asset introduced below reduces volatility σ̃

η
t in a similar way as holding money in a MIU model generates

utility services.
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We assume that the representative agent has access to two assets, capital Kt, which
produces a certain bundle of the aggregate consumption good and volatility σ̃

η
t , and

“derivatives” Xt, which mimic the cash flows to individuals i generated by bond trades
in our incomplete markets model and thereby reduce volatility. Capital grows at rate
gt := Φ(ιt)− δ over time and generates consumption goods at rate

(
(1− τt)at − ιt

)
Ktdt.20

The face value Xt of derivatives evolves according to

dXt/Xt =
(

gt + µ
q,B
t

)
dt + σ

q,B
t dZt,

where µ
q,B
t , σ

q,B
t are the drift and volatility processes of qB

t implied by the competitive
equilibrium of the incomplete markets model. Derivatives generate a cash flow −µ̆Bt Xt

and reduce fluctuations in consumption shares ηi
t. Specifically, the volatility loading σ̃

η
t

satisfies the equation (
qK

t Kt + Xt

)
σ̃

η
t = qK

t Ktχ̄σ̃t, (19)

where qK
t is the capital price process from the incomplete markets economy. We can

interpret the product Xtσ̃
η
t as the aggregate gross trading cash flows from bond trades

in response to idiosyncratic shocks in the incomplete markets economy.21

Let QK
t be the capital price that the representative agent faces, PX

t the price per unit
(face value) of derivatives, and let Nt := QK

t Kt + PX
t Xt be the representative agent’s

total net worth. The budget constraint of the representative agent is

dNt = −Ctdt + QK
t KtdrK

t + PX
t XtdrX

t (20)

with return processes

drK
t =

(
(1− τt)at − ιt

QK
t

+ µQ,K
t + gt

)
dt + σQ,K

t dZt,

drX
t =

(
µP,X

t + gt − µ̆Bt + σ
q,B
t σP,X

t

)
dt +

(
σ

q,B
t + σP,X

t

)
dZt.

20For the purpose of this representative agent economy, gt, τt, at, ιt are exogenous processes. But,
of course, we choose for them the stochastic processes implied by the competitive equilibrium of our
incomplete markets model. The same remark holds for other lower-case variables qB

t , qK
t , µ̆Bt used below.

21qK
t ki

tχ̄σ̃t is sensitivity of an agent i’s capital wealth to shocks dZ̃i
t before portfolio rebalancing and

qK
t ki

tσ̃
η
t is the shock sensitivity after rebalancing. The difference, qK

t ki
t

(
χ̄σ̃t − σ̃

η
t

)
measures trading cash

flows per unit of dZ̃i
t and aggregating over all agents yields Xtσ̃

η
t .
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The representative agent chooses Ct, σ̃
η
t , Kt, Xt to maximize utility W0 subject to the

budget constraint (20) and the risk constraint (19) taking the prices QK
t , PX

t and the re-
turn processes as given. The representative agent model is closed by time-zero supplies
of capital (K0) and derivatives (X0). We impose the additional relationship X0 = qB

0 K0,
where qB

0 is the initial value of qB
t in the incomplete markets model. While this sup-

ply restriction for X0 may appear ad hoc, it can be micro-founded in an environment
with information frictions in which idiosyncratic shocks are private information and
agents have access to hidden trade and savings.22 In such an environment, incentive
compatibility requires that any insurance transfer to an agent must be precisely offset
by a reduction in the present value of that agent’s future consumption. Otherwise, the
agent would have incentives to misreport the size of the shock and secretly trade cap-
ital. Incentive compatibility thus limits the amount of insurance that can be provided,
i.e. the quantity X of derivatives.

We show in Appendix A.4 that the competitive equilibrium of this representative
agent economy features prices QK

t = qK
t and PX

t = 1 (and thus PX
t Xt = qB

t Kt), so that
asset prices are the same as in the incomplete markets economy.23 Using the utility
representation (17), we see immediately that the representative agent’s SDF process is

Ξt = e−ρt
∫

λiηi
tu
′(ηi

tCt)di∫
λiηi

0u′(ηi
0C0)di

=

∫
λiu′(ci

0)ξ
i
tη

i
tdi∫

λiu′(ci
0)di

.

We also show in the appendix that Ξt is independent of welfare weights λi and thus
we can assume w.l.o.g. that λiu′(ci

0) is a constant independent of i.24 This implies
Ξt =

∫
ξ i

tη
i
tdi = ξ∗∗t , the representative agent’s SDF equals the weighted-average SDF. The

valuation equation for derivatives from the perspective of the representative agent is

PX
0 X0 = E

[∫ ∞

0
Ξt ·

(
−µ̆Bt Xt

)
dt
]
+ E

[∫ ∞

0
Ξt · (1− ϑt)

2 χ̄2σ̃2
t Xtdt

]
. (21)

Here, the first term represents the discounted present value of cash flows −µ̆Bt Xt and
the second term represents the discounted volatility reduction service flows that deriva-

22Details on this micro-foundation can be found in Brunnermeier et al. (2020). This information envi-
ronment has also been employed by Di Tella (2020) in a closely related model.

23Also aggregate consumption Ct and the consumption shares ηi
t are as in the incomplete markets

economy. The representative agent economy therefore leads to the same allocation.
24λiu′(ci

0) would also be independent of i if we allowed the representative agent to choose the initial
consumption allocation.
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tives provide by lowering σ̃η in the utility function (18). As derivatives in the represen-
tative agent economy play the same role as bonds in the incomplete markets economy,
we can make the identification Xt = qB

t Kt and −µ̆Bt Xt = stKt. With these replacements
(and PX

0 = 1), equation (21) becomes equation (13), the debt valuation equation from
the dynamic trading perspective.

4 Quantitative Model: Counter-cyclical Safe Asset and Two

Betas

4.1 Setup with Stochastic Idiosyncratic Risk and Recursive Utility

In this section, we solve a calibrated version of our model with aggregate risk nu-
merically. We introduce aggregate risk as shocks to idiosyncratic risk σ̃t. We interpret
periods of high idiosyncratic risk as recessions and want them to be associated with
lower consumption and higher marginal utility. Rather than microfounding this rela-
tionship explicitly, we simply impose exogenous relationships at = a(σ̃t) and gt = g(σ̃t)

that are consistent with the desired correlation structure.25

For idiosyncratic risk σ̃t, we specify a Heston (1993) model of stochastic volatility,
i.e. we assume that the idiosyncratic variance σ̃2

t follows a Cox–Ingersoll–Ross process
(Cox et al., 1985) process,

dσ̃2
t = −ψ

(
σ̃2

t −
(

σ̃0
)2
)

dt− σσ̃tdZt (22)

with parameters ψ, σ, σ̃0 > 0.

For the functional relationship between σ̃t and at, we impose the parsimonious lin-
ear relationship

a(σ̃t) = a0 − αa(σ̃t − σ̃0).

A sufficiently large coefficient αa > 0 ensures that both output and consumption fall in
equilibrium when idiosyncratic risk rises.

25For models similar to ours in which output and consumption naturally react negatively to risk
shocks, see DiTella and Hall (2020) and Li and Merkel (2020).
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For government spending gt, we choose an even simpler specification gt = g that
holds spending constant relative to capital. The reason for this choice is that, in the US
data, government spending has not been consistently pro-cyclical or counter-cyclical.26

Our simple model with a single state variable cannot account for this fact so that we
opted for the more parsimonious constant specification. We remark that, while this
means government spending is substantially smoother in our model than in the data,
this does not matter for debt valuation. Our model is still able to match the empirical
properties of primary surpluses and only these are relevant for debt valuation. Un-
like government spending, primary surpluses have been consistently pro-cyclical in
US data (at least since 1970).

For government policy, summarized by debt growth net of interest payments, µ̆Bt ,27

we assume, again, a simple linear relationship

µ̆Bt = µ̆B,0 + αB(σ̃t − σ̃0) (23)

with parameters µ̆B,0 and αB > 0. Provided αB is sufficiently large, this implies that
surpluses st = −µ̆Bt qB

t are positive for low idiosyncratic risk (in expansions) and neg-
ative for high idiosyncratic risk (in recessions). Primary surpluses therefore correlate
negatively with marginal utility and any agent in the economy would require a positive
risk premium for holding a (hypothetical) claim to primary surpluses, a feature that is
empirically plausible (see, e.g., Jiang et al. (2019) for the US).

Finally, in order to match certain aspects of the data better, we make two small
modifications to the model itself. First, in order for our model to generate quantita-
tively realistic aggregate risk premia, we replace logarithmic preferences of households
with stochastic differential utility (Duffie and Epstein, 1992) with unit elasticity of in-
tertemporal substitution (EIS) and arbitrary relative risk aversion γ > 0: household i
maximizes Vi

0, where Vi
t is recursively defined by

Vi
t = Et

[∫ ∞

t
(1− γ)ρVi

s

(
log(ci

s)−
1

1− γ
log
(
(1− γ)Vi

s

))
ds

]
.

26While variation in government spending has been strongly counter-cyclical over the last three
decades, it was (mostly) pro-cyclical prior to that in the post-war sample.

27To be precise, the government also chooses the nominal interest rate it. However, in our flexible
price model, this policy choice merely affects the equilibrium inflation rate but no real allocations or
asset prices.
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In the special case γ = 1, this specification collapses to our baseline specification with
logarithmic utility discussed in Section 2.28 Second, to separate the level of investment
from the adjustment cost parameter φ, which governs fluctuations in investment and
capital prices, we consider the slightly more general capital adjustment cost function

Φ̂(ι) = ι0 + Φ(ι− ι0)

with the additional parameter ι0. All solution formulas for the baseline model remain
valid for this more general specification if we replace at with at − ι0 and ιt with ιt − ι0.

4.2 Calibration and Model Fit

We calibrate our model such that, when we feed in a quantitatively realistic process
for idiosyncratic risk, the model generates variation in macro aggregates and aggregate
risk premia that are broadly consistent with US data. For our mapping from the model
to the data, one time period in the model corresponds to one year. We briefly sum-
marize our calibration choices here. Additional details as well as a description of the
underlying data sources can be found in Appendix A.7.

With regard to the parameters σ̃0, ψ, σ of the exogenous risk process σ̃t, we tie our
hands by estimating them externally. Specifically, we choose these parameters such
that σ̃2

t closely matches, in a maximum likelihood sense, the common idiosyncratic
volatility (CIV) factor proposed by Herskovic et al. (2016). As that paper shows, CIV
is a priced risk factor that is correlated with idiosyncratic risk exposures of both firms
and households. In Appendix A.7.2, we argue that CIV is a model-consistent data
counterpart of σ̃2

t .29

[χ̄ calibration to be added]

We choose the nine parameters γ, ρ, a0, g, µ̆B,0, αa, αB, φ, ι0 such that the model
generates values for a number of moments that are broadly in line with the empirical
evidence.30 These moments are the average ratios of consumption, government spend-

28Qualitatively, the two models behave identically. However, with γ = 1, the model does not generate
a sufficiently large aggregate price of risk to capture the empirically observable equity premium.

29We have also considered alternative measures for idiosyncratic uncertainty (Bloom et al., 2018; Has-
san et al., 2019) but ultimately chosen CIV both due to the quality and length of the available data series
and because of the theoretical link between σ̃2

t in the model and CIV.
30We do not employ a formal simulated method of moments estimation but merely adjust parameters
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Table 1: Parameter Choice

parameter description value

σ̃0 σ̃2
t stoch. steady state 0.54

ψ σ̃2
t mean reversion 0.67

σ σ̃2
t volatility 0.4

χ̄ undiversifiable idio. risk 0.3
γ risk aversion 6
ρ time preference 0.138
a0 productivity (a) stoch. steady state 0.63
g government spending 0.138

µ̆B,0 policy (µ̆B) stoch. steady state 0.0023
αa productivity (a) slope 0.071
αB policy (µ̆B) slope 0.12
φ capital adjustment cost 8.5
ι0 capital adjustment intercept -0.015
δ capital depreciation rate 0.055

ing, surpluses, capital, and debt to output, the average investment rate, the volatilities
of output, consumption, investment, and the surplus-output ratio, and the equity pre-
mium and equity sharpe ratio. Our empirical moments are based on a sample from
1970 to 2019 just prior to the start of the covid pandemic with two exceptions. The first
is the debt-output ratio. Over the largest part of our sample period, this ratio has exhib-
ited a clear upward trend. For this reason, we target the average over the last decade in
the sample (0.71) instead of the average over the full sample (0.37). The second excep-
tion is the average investment rate, E[I/K], which we do not compute ourselves but
take directly from Cooper and Haltiwanger (2006), who report a value estimated from
micro data.

As we explain in Appendix A.7.3, matching the average ratios is directly informa-
tive for the average value of the endogenous variable ϑt and the parameters ρ, a0, g,
µ̆B,0, and ι0. Requiring the model to match the macro volatilities is standard in the
business cycle literature and also ensures that the model generates a broadly realis-
tic amount of aggregate macro risk.31 While including the surplus volatility is less
standard, this moment is important to discipline the (cyclical) variation in primary sur-

manually to achieve a good visual fit.
31These moments also discipline the model parameter αa and φ.
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pluses, a key ingredient into the valuation of government debt.32 Finally, requiring the
model to match the equity premium and equity sharpe ratio ensures that this aggregate
macro volatility is realistically priced in capital markets.

The remaining parameter δ does not affect anything of interest for the purpose of
this paper.33 We set it to 0.055, a value slightly smaller than but broadly in line with
typical calibrations. With this choice, the average growth rate of our model economy
is 2.2%, close to the empirical counterpart of 2.1% in our sample. Incidentally, because
r f ≈ g in this model when primary surpluses are close to zero, this choice also ensures
that the levels of returns are realistic.

Table 2: Quantitative Model Fit

moment model data
symbol description

σ(Y) output volatility 1.3% 1.3%
σ(C)/σ(Y) relative consumption volatility 0.63 0.64
σ(I)/σ(Y) relative investment volatility 3.31 3.38

σ(S/Y) surplus volatility 1.1% 1.1%
ρ(Y, C) correlation of output and consumption 0.98 0.92
ρ(Y, I) correlation of output and investment 0.98 0.94

ρ(Y, S/Y) correlation of output and surpluses 0.98 0.60
E[C/Y] average consumption-output ratio 0.58 0.56
E[G/Y] average government expenditures-output ratio 0.22 0.22
E[S/Y] average surplus-output ratio -0.0004 -0.0005
E[I/K] average investment rate 0.12 0.12

E[qKK/Y] average capital-output ratio 3.48 3.73
E[qBK/Y] average debt-output ratio 0.74 0.71

E[dr̄E − drB ] average (unlevered) equity premium 3.62% 3.40%
E[drE−drB ]
σ(drE−drB)

equity sharpe ratio 0.31 0.31

Notes: σ(x) denotes the standard deviation of x and ρ(x, y) denotes the correlation of x and y, both at a quarterly frequency.
Inputs x and y are HP-filtered with smoothing parameter 1600. For x, y ∈ {Y, C, I, G}, we take logarithms before filtering. E[x]
denotes expectations over the ergodic model distribution, inputs x are not HP-filtered. Y: (aggregate) output, C: consumption, I:
investment, G: government expenditures, S: primary surplus; K, qK , qB, drB, dr̄E are defined as in Section 2.

Table 1 summarizes our parameter choice and Table 2 summarizes the quantitative
model fit. In addition to our target moments, we report in Table 2 also the correlations
of consumption, investment, and primary surpluses with output.

Table 2 reveals that our model achieves overall an excellent fit to the targets. As we

32That moment also disciplines the parameter αB .
33This is due to the combination of the AK structure of our economy with a unit EIS. The former

implies that δ merely affects the growth rate of the economy and the latter that income and substitution
effects from permanent variations in growth rates cancel out.
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have varied only nine of our parameters to match twelve moments, this is by no means
a trivial observation. Most importantly, our model is consistent with the observed large
equity premium and price of risk (Sharpe ratio) while at the same time matching the
volatility and comovement of macro aggregates. This verifies that our model is capable
of generating realistic aggregate risk premia without requiring excessive real volatil-
ity. Notably, our model achieves quantitatively plausible aggregate risk pricing with a
moderate risk aversion parameter (γ) of just 6.

4.3 Equilibrium Dynamics of Bond and Capital Values

Figure 1 illustrates the equilibrium dynamics of the value of the government bond
stock qB (blue line) and the value of the capital stock qK (red line) per unit of capital
in the economy by plotting these valuations as a function of the state variable σ̃. The
gray shaded area depicts the stationary distribution of σ̃. qB is strictly increasing in
idiosyncratic risk whereas qK is strictly decreasing. Because output comoves negatively
with σ̃ by construction, these monotonicity patterns imply that bond valuations are
counter-cyclical whereas capital valuations are pro-cyclical. It is this counter-cyclical
valuation that makes government bonds a good safe asset. We analyze the source of
the counter-cyclicality in the following subsection.

4.4 Analyzing the Two Bond Asset Pricing Terms Separately

We now consider the two terms in the government debt valuation equation derived
from the dynamic trading perspective (equation (13)). Figure 2 plots the two present
values34

qB,CF(σ̃) := E

[∫ ∞

0

(∫
ξ i

tη
i
tdi
)

stKtdt | σ̃0 = σ̃, K0

]
/K0

qB,SF(σ̃) := E

[∫ ∞

0

(∫
ξ i

tη
i
tdi
)
(1− ϑt)

2 γχ̄2σ̃2
t
Bt

Pt
dt | σ̃0 = σ̃, K0

]
/K0

for our calibrated model. The blue solid line shows the present value of future primary
surpluses (cash flows) qB,CF as a function of the single state variable σ̃. This value is

34Relative to equation (13), here an additional factor γ appears because we no longer assume logarith-
mic preferences.
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Figure 1: Equilibrium asset valuations qB (blue line, left scale) and qK (red line, right
scale) as a function of idiosyncratic risk σ̃. The gray shaded area in the background
depicts the (rescaled) ergodic density of the state variable σ̃.

strictly decreasing in idiosyncratic risk and has a low – and in fact negative – value.
Comparing the present value of surpluses qB,CFK in our model to the market value of
government debt qBK, which is represented by the black dashed line in Figure 2, reveals
a large gap (qB− qB,CF)K, a “debt valuation puzzle”. In addition, when compared with
the present value of surpluses qB,CFK, the total value of government debt qBK has also
the opposite correlation with the aggregate state. Yet, there is no puzzle from the per-
spective of our model: government debt is a safe asset valued for its service flow from
re-trading which is represented by the component qB,SF(σ̃). As the red solid line in
Figure 2 shows, this value is positive, large and positively correlated with σ̃t. This ad-
ditional component dominates the overall dynamics of the value of government debt
and is the reason that qB appreciates in bad times despite the simultaneous drop in
qB,CF. That qB,SF must be positively correlated with σ̃ can also be seen from the present
value equation: for our policy specification, residual net worth risk (1− ϑt)χ̄σ̃t is in-
creasing in σ̃t, so that an increase in idiosyncratic risk increases the value of insurance
service flows from re-trading.35

35This is not an entirely rigorous argument as it ignores changes in the discount rate. The effective
discount rate in the weighted-average SDF

∫
ξ i

tη
i
tdi can both increase or decrease with the aggregate

state σ̃t depending on whether the aggregate risk premium increases or decreases. Note however, that
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Figure 2: Decomposition of the value of government debt as a function of idiosyncratic
risk σ̃. The blue solid line shows the present value of primary surpluses (qB,CF), the red
solid line the present value of service flows (qB,SF) and the black dashed line the total
value of government debt (qB), all normalized by the capital stock.

The correlation structure apparent in Figure 2 implies that, if the two claims qB,CF

and qB,SF could be traded separately, the cash flow claim would be a high-β asset,
while the service flow claim would be a negative-β asset. The presence of this second,
negative-β component makes government debt as a whole a negative β asset. Govern-
ment debt emerges as a “good friend” also with respect to aggregate shocks. Figure 3
depicts this explicitly by plotting (weighted) conditional betas for the two hypothetical
assets.36

the level of idiosyncratic risk does not directly matter for the effective discount rate because the risk
premium on idiosyncratic risk exactly offsets the lower risk-free rate due to a precautionary motive.

36We define β
j
t = σrj

t /ςt, where j ∈ {CF, SF} and drj is the return on the respective component and

σrj
t is the aggregate risk loading of that return. This definition can be interpreted as βt = −

covt(dξt/ξt ,drj
t)

vart(dξt/ξt)
,

where dξt/ξt is the SDF that discounts cash flows from t + dt to time t. In addition, we weight βj by its
share ω j := qB,j/qB of the total government debt claim.
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Figure 3: Conditional betas of hypothetical claims to the surplus and risk-sharing com-
ponents of the government debt value

4.5 The Possibility of Insuring Bond Holders and Tax Payers at the

Same Time

In our simple setting citizens are capital owners and bond holders. In this section,
we conceptually separate each household into two sub-units, a capital owner and a
government debt holder. Surprisingly, it is possible to follow a government policy that
provides insurance against negative aggregate shocks for both tax payers and bond
holders at the same time. By cutting taxes (or even granting subsidizes) for capital
owners in recessions, their tax burden is positively correlated with their income pro-
viding insurance to tax payers. At the same time, the safe asset service flow rises in
recessions, which provides insurance to government bond holders. This finding in our
incomplete market setting with a safe-asset is in sharp contrast to traditional asset pric-
ing in which either tax payers or government bond holders can be insured, as pointed
out in Jiang et al. (2020).
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5 Volatile, Flight-to-Safety Prone Equity Markets

The presence of idiosyncratic risk and government debt as a safe asset also has im-
plications for equity markets. We explain in this section why the diversified equity
portfolio does not emerge as a safe asset and how flight to safety can generate quanti-
tatively large additional equity return volatility.

Why Stocks Are not Safe Assets. In our model, agents can hold a diversified stock
portfolio. Like government bonds, this stock portfolio is free of idiosyncratic risk and
thus allows agents to self-insure against idiosyncratic consumption fluctuations. How-
ever, unlike government bonds, stocks are poor aggregate risk hedges as they are ulti-
mately claims to capital, which looses in value in recessions. This implies that stocks
are positive-β assets in our model.

To understand why stock prices fall in times of high idiosyncratic risk, even though
idiosyncratic equity risk can be diversified away, note that the marginal holder of cap-
ital in our model is always an insider who has to bear the increased idiosyncratic risk.
As a consequence, when idiosyncratic risk goes up, so does the insider premium earned
by the managing households, which is achieved by a reduction in the dividend that is
paid to outside equity holders.37 This makes stock dividends more procyclical than
production cash flows, so that stocks lose value precisely when idiosyncratic risk goes
up.

When evaluating the diversified stock portfolio with regard to the key characteris-
tic of safe assets, the Good Friend Analogy, stocks fail to qualify as safe assets in the
same way as government debt does. Stocks have the good friend property only par-
tially: stocks are valuable and liquid when an agent experiences a negative idiosyncratic
shock, but due to their positive β, they are not in bad aggregate times.

Flight-to-safety Volatility. While the focus of this paper is on government bonds, our
model can match the empirical mean and volatility of the excess return on the stock
market in excess of government bonds. The realistic sharpe ratio is clearly a feature of
recursive preferences with a high risk aversion, but the ability of our simple model to
generate large return volatility in the presence of realistic levels of output variation is

37Formally, the Lagrange multiplier λi
t on the skin-in-the-game constraint (5) that governs the spread

Et[drK,i
t ]−Et[drE,i

t ] increases, compare Appendix A.1.
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quite remarkable38 and directly related to the existence of safe government bonds.

To gain intuition, let’s abstract from the distinction between capital and outside
equity39 and for a moment also switch off both government spending Gt and physical
capital investments It by putting g = 0 and considering the limit φ → ∞, so that
Yt = Ct. Then, aggregating individual households’ intertemporal budget constraints
yields the equation

qK
t Kt + qB

t Kt = Et

[∫ ∞

t

∫
ξ i

sη
i
sdi∫

ξ i
tη

i
tdi

Ysds

]
. (24)

In standard Lucas-type models, government debt does not represent positive net
wealth, qB

t = 0, and thus equation (24) implies for such models that the value of the
capital stock equals the present value of future output. In other words, in a Lucas-
type economy, pricing the aggregate equity claim is equivalent to pricing the aggregate
output claim.40 In the presence of realistic output volatility, large volatility in capital
valuations qK

t Kt is then hard to generate (and requires substantial time variation in the
SDF

∫
ξ i

sη
i
sdi). If we allow for Gt, It 6= 0, the puzzle tends to become even larger because

consumption is smoother than output in the data.

Our model with qB 6= 0 suggests an additional explanation for the high observed
stock market volatility. When idiosyncratic risk σ̃t rises, there is a flight to safety that
increases the value of bonds (qB

t ) and lowers the value of capital (qK
t ). Even in the

absence of changes in the present value on the right-hand side of equation (24), this
portfolio reallocation generates flight-to-safety volatility in capital valuations and thus in
the stock market.

To understand how much flight-to-safety volatility matters quantitatively, we com-
pare the excess stock return volatility in our model to the one generated by a version

38It is remarkable because we work with preferences that feature a unit elasticity of intertemporal
substitution (EIS). It is well-known from the long-run risk literature that recursive preferences can also
generate large return volatility, but only if the EIS is sufficiently larger than 1. In contrast, the mechanism
we describe here works also for EIS ≤ 1.

39As we have discussed previously in this section, a state-dependent insider premium will ensure that
equity values and capital values move in lockstep despite the fact that idiosyncratic equity risk can be
diversified away.

40Because the equation results from aggregating individual intertemporal budget constraints, the SDF
used in this pricing equation is again the weighted-average SDF as in the dynamic trading perspective to
government bond valuation, not any market SDF (i.e. a SDF that prices all tradeable assets). In standard
Lucas-type models there is no idiosyncratic risk so that the two coincide.

33



of the model without government debt (and primary surpluses set to zero). In that al-
ternative version, qB

t = 0 at all times and thus flight-to-safety volatility disappears.41

We find that the average (annualized) excess return volatility in the alternative model
would be 2.4% as opposed to 11.7% in our baseline model.42 We can therefore conclude
that flight-to-safety volatility accounts for more than three quarters of the overall excess
return volatility in our framework.

6 Privately Issued Safe Assets and Convenience Yields

So far, we have emphasized government debt as a safe asset. In this section, we dis-
cuss safe asset issuance by private agents. We also elaborate on the difference between
service flows derived from retrading and convenience yields.43

Privately Issued Safe Assets. We consider a model extension with privately issued
safe assets. We discuss here merely the economic conclusions and relegate the formal
details to Appendix A.5.

We assume that each agent can issue nominally risk-free bonds, just like the govern-
ment. Our safe asset definition, based on the Good Friend Analogy, applies equally also
to such debt instruments issued by private citizens. For any individual asset holder,
government bonds and privately issued safe bonds are perfect substitutes. As a conse-
quence, the equilibrium interest rate ip

t that private agents have to pay on their bonds
equals the government’s, ip

t = it.

In equilibrium, agents are then indifferent as to how many bonds to issue and how
many privately issued bonds of other agents to hold. In Appendix A.5, we consider a
simple example in which the quantity of outstanding private bonds is always propor-
tional to the quantity of government bonds and all agents keep the relative allocation
to private and government bonds in their portfolios constant, so that they must trade
them in constant proportions. Just like government bonds, we can value bonds issued
by some agent j (“j-bonds”) from the dynamic trading perspective by pricing the cash
flows of the portfolios of j-bonds held by all other agents i 6= j. The resulting equa-

41Except for the elimination of primary surpluses (µ̆B,0 = αB = 0) and the selection of the “non-
monetary” equilibrium, we keep all other parameters as in our baseline model.

42As the benchmark asset in the alternative model, we choose a zero net supply risk-free bond, the
most common choice in the literature.

43For the equations presented in this section, we revert back to the logarithmic preference specification.
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tion is in complete analogy to equation (13) for government bonds. In particular, the
service flow that agents derive per real unit of j-bonds outstanding is the same as for
government bonds.

Overall, the model extension in Appendix A.5 highlights that privately issued bonds
are equally suitable as safe assets for their holders. However, private bond issuance also
comes with a short position in the bond for the issuing agent. In the same spirit as be-
fore, we can value the short position by determining the present value of net payouts
that an issuer makes to all bond holders. That valuation exercise reveals that the short
position generates a negative service flow for the issuing agent. This negative service
flow results from the fact that the agent repays outstanding debt after negative idiosyn-
cratic shocks and issues additional debt after positive idiosyncratic shocks. While the
cash flows generated from this contingent bond issuance are zero on average, they are
systematically correlated with marginal utility and thus tend to increase the overall
riskiness of the agent’s portfolio.

Once we aggregate all long and short positions of all privately issued safe bonds, the
service flows “earned” by bond holders and the service flows “paid” by bond issuers
exactly cancel out.44 Therefore, unlike government debt, private safe asset creation
does not generate net service flows for the economy as a whole.

The previous conclusion is ultimately a manifestation of the fact that privately is-
sued bonds do not represent net wealth as they are in zero net supply. This is in contrast
to government bonds which do represent net wealth in our model. If privately issued
bonds also represented net wealth, e.g. because they had a bubble component or be-
cause private agents could run Ponzi schemes, then privately issued safe assets, too,
would generate a positive net service flow in the aggregate. Such a situation is impos-
sible under our maintained assumptions about equilibrium selection, but can occur in
some of the alternative equilibria discussed in Section 8.

Convenience Yields. A conclusion from the previous model extension is that ∆it :=
ip
t − it = 0, the yield spread between privately issued and government debt is zero.

Government debt is not special. In the presence of idiosyncratic risk, a precautionary
motive depresses all asset returns symmetrically. Equivalently, a service flow from
re-trading can be derived from all assets that are both free of idiosyncratic risk and
tradeable on liquid markets.

44This conclusion is generally true, not just in the specific example analyzed in Appendix A.5.
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Such a service flow is conceptually different from a convenience yield. A conve-
nience yield on government debt captures the special role that government bonds play
in certain transactions. It can be measured by a positive yield spread ∆it > 0 between
government debt and safe corporate debt of equal maturity. In contrast, the service
flow from retrading we emphasize in this paper affects also safe corporate debt. It is
therefore unrelated to the spread ∆it.

To illustrate this difference further, we augment our model so that government debt
has a convenience yield. We model the source of the convenience yield by simply
putting government bond holdings in agents’ utility functions. Other mechanisms like
collateral constraints require richer environments but would lead to the same conclu-
sions. We present the formal model equations in Appendix A.6.

In the augmented model, we can again price government debt according to the buy
and hold and the dynamic trading perspectives. We obtain from the buy and hold
perspective:

B0

P0
= lim

T→∞
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and from the dynamic trading perspective:

B0

P0
= E

[∫ ∞

0
ξ∗∗t stKtdt

]
+ E

[∫ ∞

0
ξ∗∗t

(
∆it + (1− ϑt)

2 χ̄2σ̃2
t

) Bt

Pt
dt
]

.

From the latter, dynamic trading perspective, the service flows from bonds in the util-
ity function (captured by ∆it) and from self-insurance through retrading (captured by
(1− ϑt)

2 χ̄2σ̃2
t ) appear symmetrically. However, the buy and hold perspective reveals

an asymmetry. The convenience yield still enters the valuation explicitly as a service
flow term. In contrast, the service flow from retrading is absent in this perspective. In-
stead, it is implicitly contained in the stochastic discount factor ξ̄t and results in a lower
discount rate due to precautionary savings as well as – potentially – a bubble term.

The terms arising from the buy and hold perspective are the ones that are typically
measured in empirical asset pricing. The best an empirical researcher can do when
estimating a SDF based on aggregate asset price data is to identify ξ̄t. When looking
at yield differences between safe corporate and government bonds, the empirical re-
searcher identifies an estimate of ∆it. The importance of self-insurance service flows
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can only be determined indirectly, e.g. by finding a bubble component.45

We interpret the empirical findings of Jiang et al. (2019) as evidence in support of
such a bubble component. They conclude that an empirical estimate of the present
value of surpluses and convenience yields falls short of the market value of government
debt. As their empirical analysis is conducted from the buy and hold perspective, the
gap must be explained by a bubble component.

7 Quantifying the Bubble Mining Laffer Curve

When idiosyncratic risk is large, safe asset demand may be sufficient to sustain a
public debt bubble. As Brunnermeier et al. (2021a) point out, such public debt bubbles
represent a fiscal resource that can be “mined” for revenue as a substitute for taxa-
tion. However, the ability to mine a bubble does not imply that a government can
expand spending without limits. Bubble mining affects the sustainability of bubbles
and thereby creates a “debt Laffer curve”.

In this section, we briefly revisit the Laffer curve logic and then use our calibrated
model to quantify the Laffer curve for the US. The main takeaway is that the negative
β property of government debt matters considerably. The (average) maximum perma-
nent deficit is above 2% of GDP in our dynamic model but merely 0.1% if we hold
idiosyncratic risk constant over time.

The Laffer curve logic follows from the following simply formula for primary deficits
per unit of capital46

−st = µ̆Bt qB
t .

The first factor, µ̆Bt , measures revenue raised by bond issuance that is not distributed
to bond holders in the form of interest payments. If it is positive, the claim of old
bond holders is diluted by the issuance of new bonds, i.e., a higher µ̆Bt represents a
tax on existing bond holders. The second factor, qB

t , is the tax base, the real value
of existing debt (per unit of capital). Permanent deficits are possible if this tax base

45The presence of a bubble component in the buy and hold perspective means that even at the low dis-
count rates implied by ξ̄t, cash flows stKt and convenience yield service flows ∆itBt/Pt are insufficient
to explain the total value of government debt. The same always remains true if we discount at the higher
rates implied by ξ∗t ∗, so that the self-insurance service flow must explain the gap.

46This equation, in turn, follows immediately from the government budget constraint.
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Figure 4: Debt Laffer curve for dynamic model and in steady state (constant σ̃t) when there is a
bubble on government debt. E[µ̆B ] is varied by varying parameter µ̆B,0 while keeping all other
parameters as in Table 1.

remains positive even for (permanently) negative primary surpluses. That this is a
possibility can be seen from both perspectives to debt valuation discussed in Section 3:
the value of debt remains positive despite negative surpluses if, in the buy and hold
perspective (equation (13)), a positive bubble term offsets the negative surplus term,
or, equivalently, in the dynamic trading perspective (equation (13)), the service flow
term is sufficiently large. In this case, the tax base is positive, but it nevertheless reacts
negatively to an increase in the rate of bubble mining µ̆Bt .47 This negative reaction
creates a Laffer curve.

The blue line in Figure 4 depicts the debt Laffer curve for our calibrated model.
Specifically, the figure plots the average deficit-GDP ratio that can be sustained for
different debt growth policies of the form (23) with identical αB (identical cyclicality of
debt growth and surpluses) but varying µ̆B,0, i.e. the average level of (interest-adjusted)
debt growth varies across different policies on the x-axis. The implicit assumption
in Figure 4 is that g remains unchanged, so that larger deficits imply smaller output

47We can see analytically that higher µ̆B lowers the equilibrium value of qB in steady state, compare
the formulas in Section 2.3. Outside of the steady state, equation (7) tells us that there is a negative
relationship if an upward shift in µ̆Bt at all dates decreases ϑt. Equation (9) suggests that this is indeed
the case, but additional technical considerations are required to make this a fully rigorous argument.
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taxes.48

In Figure 4, if the bubble is mined too aggressively so that the average µ̆B exceeds
7.3%, the government fails to raise additional real revenues. In particular, there is a
limit to bubble mining and the government still faces a constraint on real spending.
Our calibrated model suggests that the average primary deficit that can be sustained
by bubble mining is bounded above by 2.3% of GDP.

It turns out that the negative β property is very important for the qualitative and
quantitative shape of the Laffer curve depicted in Figure 4. If we abstract from counter-
cyclical idiosyncratic risk and consider a constant level of σ̃t = σ̃0 instead, the resulting
Laffer curve is depicted by the red dashed line in Figure 4. This steady-state Laffer
curve reveals two differences compared to the dynamic model. First, the Laffer curve
is quantitatively tiny. The maximum (average) permanent deficit is merely 0.1% (and it
is reached at a much lower average value of µ̆B). Second, the steady-state Laffer curve
quickly decays to zero, so that the tax base is more quickly eroded as the government
dilutes the claims of existing bond holders at a faster rate. Instead, in the dynamic
model, agents hold on to some bonds even at very large levels of average (interest-
adjusted) debt growth rates of more than 10% despite the high inflation rates that they
imply. The reason is that the insurance against adverse aggregate events makes bonds
attractive for agents even if they pay negative rates of return on average.

8 Alternative Equilibria, Loss of Safe Asset Status, and

Debt Sustainability Analysis

[This section is based on a previous version of this paper and its contents have been
partially moved to the related paper“The Fiscal Theory of the Price Level with a Bub-
ble” (Brunnermeier et al., 2021a) where they fit better. In a future revision, most of this
section will be removed.]

If government debt has a bubble component, our selected equilibrium is not unique.
Some of the alternative equilibria do not feature a bubble on government debt.

The presence of a bubble component matters for two reasons. First, without a bub-

48If instead the increased revenues from bubble mining are used to fund additional government ex-
penditures (higher g), the slope of the Laffer curve is uniformly smaller.
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ble, fiscal space is reduced as the government can no longer engage in bubble mining.
Second, government debt may lose its safe asset status in the absence of a bubble. To
understand this second point, note that in the empirically relevant case of a procyclical
cash flow component (primary surpluses), a sufficiently large (countercyclical) service
flow component is required to generate an overall β that is nonpositive. While this is
possible even in the absence of a bubble, the presence of a bubble increases the relative
size of the service flow component because the latter is proportional to the overall value
of debt. The safe asset status can therefore be bubbly.

Does the existence of other equilibria mean that a bubbly safe asset status is a fragile
arrangement? What ensures that the bubble does not burst and that we do not end
up with the standard bubble-free real debt valuation, wherein the government might
lose both fiscal space and the safe asset status of it debt? In this section we discuss
how other possible equilibria would look like and argue that the government’s taxation
power gives government debt a natural advantage as a safe asset and can preserve the
bubble.49 However, a necessary requirement for this natural advantage to materialize
is that the government has the fiscal capacity and the ability to commit to taxation
to defend the safe asset status whenever it is threatened. An assessment of the fiscal
capacity and commitment ability to defend the bubbly safe asset status should therefore
be an important ingredient in any modern debt sustainability analysis.

8.1 Bubble-free Equilibria and Off-equilibrium Fiscal Capacity

A bubble on government debt in our model can only exist if the terminal value
term E

[
ξ̄T
BT
PT

]
in the debt valuation equation from the buy and hold perspective, equa-

tion (10), does not converges to zero. Because the debt-to-output ratio must be bounded
along any equilibrium path,50 this terminal value is up to a proportionality constant
bounded by E

[
ξ̄TYT

]
, where YT := aTKT is output. The expected decay rate of E

[
ξ̄TYT

]
over a small dt-interval is r f

t + ςtσ
Y
t − gt, where σY

t is the risk loading of output on the
aggregate shock dZt. Consequently, a bubble can clearly not exist if on average the dis-
count rate adjusted for the output risk premium exceeds the growth rate of the econ-

49We keep the analysis largely at a verbal level in this section. Our arguments rest on the formal
analysis of equilibrium multiplicity and uniqueness of Brunnermeier et al. (2021a) in the context of a
steady-state version of our model.

50This is the case because a larger value of government debt generates a consumption demand from a
wealth effect and total consumption is bounded by total available resources (equation (2)).
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omy, r f
t + ςtσ

Y
t > gt. Nothing specific about the nature of government debt was used

in this argument, so that it is immediately clear that under this condition also other
bubbles cannot exist.

Because government policy affects discount rates, the previous considerations im-
ply that regardless of the properties of the environment, there is always a government
policy that can eliminate all bubbles: use taxes to generate primary surpluses that are
a constant fraction x > 0 of output. Then by equation (10) and the fact that the bubble
term must be nonnegative,

B0

P0
≥ xE

[∫ ∞

0
ξ̄tYtdt

]
.

Because the total value of debt must be finite,51 the integral on the right must converge
which implies E

[
ξ̄TYT

]
→ 0 as T → ∞. Economically, this is the case because as

the value of debt becomes large relative to the value of capital, i.e., as ϑ approaches
1, residual idiosyncratic risk in agents’ portfolios disappears which drives up discount
rates beyond the threshold level at which bubbles can still exist. We conclude from
these considerations that there can never be bubbles if the surplus-to-output ratio st/at

is always positive and bounded away from zero. One can show that then indeed the
equilibrium is unique (Brunnermeier et al., 2021a).

In this no bubble equilibrium with positive surpluses, government debt can still be
a safe asset, however. While the bubble term in the buy and hold perspective, equa-
tion (10), disappears, government debt still provides larger service flows in recessions
when σ̃t is high.52 If these counter-cyclical service flows remain sufficiently important,
they can turn government debt into a negative-β asset despite the pro-cyclical nature
of the surplus stream. In other words, such a positive surplus policy would turn gov-
ernment bonds into a fundamentally safe asset whose safe asset status does not require
the continued belief of market participants in its safety. However, this policy would
give up any revenues from bubble mining and it would also provide less insurance to
tax payers in recessions.

If, in the absence of such tight fiscal policy, bubbles can exist, then there is always
also a no bubble equilibrium. This is easiest to see if the government plans to never

51Otherwise there would again be an infinite consumption demand from a wealth effect such that the
goods market does not clear.

52In the buy and hold perspectives, the service flows affect equation (10) through a lower discount
rate.
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generate positive surpluses by choosing a nonnegative µ̆Bt throughout. If agents no
longer believe that they can pass on the debt to someone else in the future, then it be-
comes worthless for them today, qB drops to zero and the government does not collect
any revenue by issuing more bonds.

In addition to this no bubble equilibrium, there are many inflationary equilibria in
between the stationary bubble equilibrium and the no bubble equilibrium. In all of
these, the initial bubble is smaller than in the stationary bubble equilibrium and its
value shrinks over time, so that it disappears asymptotically.

The presence of these alternative equilibria means that whenever government debt
enjoys the benefit of a bubble, private agents could at any time coordinate on one of
these alternative equilibria. Government debt would then (partially) lose its safe asset
status. Does this mean that a bubbly safe asset status is inherently fragile or are there
government policies that could avoid coordination on these other equilibria? There are
such policies:

First, the government could support the current value of its debt by raising taxes
so that it generates a permanently positive surplus stream that grows with total out-
put and backs the current value. This essentially implements the no bubble policy
discussed in the beginning of this section in which government debt becomes a fun-
damentally safe asset. However, this requires that the government has the capacity to
raise taxes and it would also give up revenues from bubble mining.

Second, it is sufficient for the government to provide this tax backing off-equilibrium.
To see this, consider the case in which private investors coordinated on the belief that
the bubble on government debt was smaller than in the stationary bubble equilibrium
and decided to be no longer willing to hold the debt. Then the government could react
by permanently reverting to a positive surplus regime in which debt is fully backed by
future surpluses. Such a policy shift would generate capital gains for government bond
holders and thus make the bonds so attractive ex ante that it would remain optimal for
investors to hold on to their bonds.

How much fiscal capacity is needed to “defend” the bubble on government debt? The
off-equilibrium strategy involves permanently positive primary surpluses that grow at
the same rate as the economy. While the (positive) scale of these surpluses can be ar-
bitrarily small, the fiscal authority needs the capacity and commitment to turn equilib-
rium deficits into surpluses before an inflationary collapse of its currency forces it to do
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so.53

8.2 Bubbles on Private Assets

So far, our discussion does not explain why the bubble is on government debt and
not on any other (private) asset. Indeed, even if we restrict attention to equilibria that
are not asymptotically bubble-free, equilibrium conditions still only determine the ag-
gregate size of the bubble but not how the bubble is distributed across different assets.
In theory, it is possible to have private bubbles, e.g. citizens may be able to issue pieces
of paper that circulate as bubbles. Whether they are is a matter of coordination of mar-
ket beliefs and thus depends on the equilibrium selection.

However, so long as agents do not face the prospects of idiosyncratic bubble cre-
ation opportunities in the future,54 all these bubbly model equilibria lead to the same
positive predictions for model aggregates with the exception that private bubbles trans-
fer bubble mining seigniorage away from the government to private agents. In these
alternative bubbly equilibria, fiscal space is therefore lower than in the equilibrium we
have studied so far. If the government imposes a time 0 lump sum tax whose aggre-
gate value equals the present value of private sector bubble mining revenues, uses the
proceeds to purchase private assets, and holds onto its original plans for spending gt,
taxes τt, and adjusted bond growth µ̆Bt ,55 then the resulting equilibrium looks precisely
like the one in which the aggregate bubble is on government bonds.56

How could private bubble issuance be implemented by agents in the model? Be-
cause rational bubbles cannot exist on assets with a finite maturity, the simplest way
for an agent to issue a private bubble is to issue an infinitely-lived bond, e.g. a console

53Ultimately, a loss of safe asset status would also force the government to give up bubble mining and
reduce the deficit by inflating away the real value of government debt. However, to defend the bubble,
the government must revert to surpluses and back the debt at its old, pre-inflation, value to generate
capital gains for bond holders that rule out this inflationary equilibrium. It is insufficient to merely raise
taxes to stop further inflation once inflation dynamics are already underway.

54Idiosyncratic bubble creation opportunities that cannot be contracted on ex ante introduce an addi-
tional source of uninsurable idiosyncratic risk and thereby affect aggregate safe asset demand.

55The government then has to trade in claims held against the private sector to satisfy its flow budget
constraint.

56The wealth distribution within the private sector may be affected unless individual time 0 lump sum
tax liabilities exactly equal the present value of the individual’s bubble mining revenues. But these effects
on the wealth distribution do not have any impact on model aggregates or the government budget in
our model.
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bond. If other agents are only willing to buy such a bond at a price that does not exceed
the present value of future coupon payments, then bubble creation fails and the agent
has to pay back in present value exactly what he has borrowed. However, when ratio-
nal bubbles are possible, then other agents could coordinate on an equilibrium in which
they are willing to pay more for the bond than the present value of coupon payments
in the expectation that they can pass it on to others at a high price in the future. Such an
expectation can be self-fulfilling because the self-insurance service flows derived from
bond trading are proportional to the bond’s real value, precisely as for government
debt.

Bubbles could in theory also be attached to equity claims. While in our model,
outside equity claims are short-term contracts that are bubble-free, one could easily in-
corporate shares that circulate as bubbles by bundling the outside equity claims with
any other private bubble claim like a console bond without coupon payments. Because
this arrangement does not affect the asset span that agents face, it would not affect the
equilibrium allocation in any way relative to a situation where the equity claim and
the bubble are unbundled and can be held separately.57 Equity bubbles would, how-
ever, affect the pricing of the aggregate stock market. If there was a bubble component
on equity, the counter-cyclical valuation of the bubble would reduce the β of equity
shares and turn them into safe(r) assets. As such a safe asset bubble on stocks is clearly
counterfactual, these equilibria appear to be a mere theoretical curiosity.

While there is a rich set of equilibria with bubbles on private assets, ultimately gov-
ernment policy can eliminate such equilibria in precisely the same way as it can elimi-
nate the no-bubble equilibrium by following an (off-equilibrium) tax policy that makes
its debt a more attractive safe asset than alternative private claims. For example, the
government could make its off-equilibrium primary surplus stream positive and less
pro-cyclical than in equilibrium. The reason why this works is the same as for the elim-
ination of no-bubble equilibria discussed in the previous subsection. Private corpora-
tions do not have such an off-equilibrium threat to eliminate all bubbles and therefore
cannot force the bubble onto their stocks.58

57Here we maintain the assumption that there are no idiosyncratic bubble creation opportunities. If
the ability to create equity bubbles was related to the agent’s capacity to issue equity claims, the agent’s
capital holdings, idiosyncratic capital shocks would affect bubble creation ability and thereby alter id-
iosyncratic risk exposures.

58It is a natural hypothesis that the government would want to select the equilibrium in which gov-
ernment debt contains the aggregate bubble and thus all seigniorage revenues are captured by the gov-
ernment. However, the government does not need to select this specific equilibrium. It could also select
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Even if a private company ever discovered a technology that generated a sufficiently
safe cash flow stream growing at the same rate as the economy, the government would
still have an advantage: it could use countercyclical corporate or capital income taxes to
make the company’s or the company’s investors’ after-tax cash flows more procyclical
and thus the company’s stock or bonds less suitable as safe assets.

8.3 Private Ponzi Schemes

So far, we have discussed bubbles on individual long-lived assets as a situation
in which the market value of the asset exceeds its fundamental value. However, the
economic equivalent of issuing a bubbly asset can also be achieved through a Ponzi
scheme, a chain of debt issuance that is perpetually grown and rolled over such that
the present value of time-T debt liabilities does not converge to zero as the horizon T
approaches infinity. Unlike issuing a long-lived asset with a bubble, each individual
debt claim in this chain can have finite maturity and be priced according to its fun-
damental value and thus not have a bubble component. Yet, when the totality of all
debt claims is considered as a bundle, the Ponzi scheme represents a bubble because
the present value of payouts to debt holders falls short of the total value of debt issued.
An agent able to run a Ponzi schemes can effectively mine this bubble by growing such
“Ponzi debt” at a faster rate.

Formally, the ability of private agents to run Ponzi schemes would require that mar-
kets do not enforce a strict no Ponzi condition on individual agents as we have assumed
so far. If the market does not impose a strict no Ponzi condition on agent i, agent i’s
transversality condition becomes E0ξ i

tn
i
t → −np,i

0 < 0, where np,i
0 is the present value

of bubble mining (“Ponzi wealth”) that the market permits the agent in a given equi-
librium. The equilibrium allocation is then equivalent to the one of a model in which
the agent issues a long-lived bubble asset of value np,i

0 at time 0, so that np,i
0 is included

in the agent’s measured net worth ni
0 and the agent faces a strict no Ponzi condition

lim infT→∞ E0ξ i
Tni

T ≥ 0.

Importantly, like the assignment of bubble creation opportunities, the assignment of
“Ponzi wealth” represents an equilibrium selection choice. In complete markets, only
np,i

0 = 0 for all i is a possible equilibrium, but in (sufficiently) incomplete markets, many

a different equilibrium with private bubbles, e.g. the government could allow certain tech firms or banks
to capture some seigniorage rents.
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possibilities emerge. Again, equilibrium conditions only restrict the aggregate size of
all bubbles (on long-lived assets plus Ponzi schemes) through wealth effects.

Because equilibria with private Ponzi schemes and private bubble issuance are equiv-
alent, policies that rule out bubbles on private assets, such as (off-equilibrium) tax pol-
icy, also eliminate equilibria featuring private Ponzi schemes. In addition, institutional
rules such as bankruptcy laws and solvency requirements can effectively impose no
Ponzi conditions on private agents through the legal system and thereby facilitate the
equilibrium selection.59

9 Conclusion

In this paper we have developed a safe asset theory of government debt based on
time-varying idiosyncratic insurance service flows generated by trading government
bonds. Our model matches properties of US government debt qualitative and quanti-
tatively and can resolve the empirical puzzles emphasized by Jiang et al. (2019, 2020).
The theory also features a novel explanation for the large equity return volatility based
on flight to safety into government bonds.

Throughout this paper we have assumed that government bonds are traded on liq-
uid markets. The bubbly safe asset status rests on this assumption because the service
flow that citizens derive from government debt is directly tied to their ability to trade
it as they experience adverse shocks. The government through its central bank can
engage as market maker of last resort so that citizens can trade the asset facing only
small bid-ask spreads. This ensures that government debt retains the safe asset status.
Private assets do not enjoy this privilege.
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A Appendix

A.1 Omitted Steps in the Derivation of the Model Solution

Hamiltonian of the Household Problem. We use the stochastic maximum principle
to derive optimal choice conditions for the household problem. The Hamiltonian for
the problem is (using the return expressions stated in the main text)

Hi
t = e−ρt log ci

t + ξ i
t

−ci
t + ni

t

Et[drBt ]
dt + θK,i

t

(
Et

[
drK,i

t (ιit)
]

dt − Et[drBt ]
dt

)

+ θE,i
t

(
Et [drE,i

t ]
dt − Et[drBt ]

dt

)
+ θĒ,i
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t −
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) σϑ
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)
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tξ
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(
θK,i

t + θE,i
t

)
σ̃t,

where we have used σ
q,K
t − σ

q,B
t =

σϑ
t

1−ϑt
. Here ξ i

t denotes the costate (“Lagrange multi-
plier”) for the net worth evolution (4), and we write the loadings of ξ i

t with respect to
the Brownian motions dZt and dZ̃i

t as −ςi
tξ

i
t and −ς̃i

tξ
i
t, respectively.60

As this is a standard portfolio choice problem, we conjecture that the value func-
tion of the problem inherits the functional form of the utility function, i.e. Vt

(
ni
)

=

vt +
1
ρ log ni, where vt depends on (aggregate) investment opportunities, but not on

individual net worth ni.61 The usual relationship between the value function and the
costate, ξ i

t = e−ρtV′t (n
i
t) then implies ξ i

t = e−ρt/ni
t, which we can use to eliminate ξ i

t

from the Hamiltonian Hi
t.

By the stochastic maximum principle, the optimal choice (ci
t, ιit, θK,i

t , θE,i
t , θĒ,i

t ) must
maximize the Hamiltonian subject to the skin-in-the-game constraint (5).

Optimal Consumption and Investment Choice. Taking first-order conditions with
respect to ci

t and ιit yields the two equations

ci
t = ρni

t, (25)

60We use the same notation ξ i
t for the costate in the household problem and the SDF in Section 3

because the two in fact coincide.
61The verification argument for this conjecture is entirely standard, see e.g. Brunnermeier et al. (2021a),

Appendix A.2.
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d
dι

Et

[
drK,i

t (ι)
]∣∣∣∣

ι=ιit

= 0.

The first equation is precisely the optimal consumption condition stated in the main
text. The second equation implies the Tobin’s q condition stated in the main text once
we take the derivative in the explicit formula for drK,i

t (ι) stated in Section 2.2. We re-
produce the Tobin’s q condition here for the convenience of the reader:62

qK
t = 1 + φιt. (26)

Derivation of Equations (6), (7), and (8). Integrating the optimal consumption condi-
tion (25) across all households i yields

Ct =
∫

ci
tdi = ρ

∫
ni

tdi = ρ(qB
t + qK

t )Kt,

where the last equality follows from the fact that aggregate net worth consists precisely
of all capital and bond wealth combined.63

We next use qB
t + qK

t = qK
t /(1− ϑt) by the definition of ϑt to replace the right-hand

side of the previous equation.
Ct =

ρ

1− ϑt
qK

t Kt.

Substituting this into goods market clearing (2), canceling Kt, and using equation (26)
to eliminate qK

t yields the equation

ρ

1− ϑt

(
1 + φιt

)
+ gt + ιt = at.

This is a simple linear equation for ιt. Solving it implies equation (6) as stated in the
main text. Equation (8) can then be recovered by substituting the resulting expression
for ι back into equation (26). Finally, equation (7) follows by exploiting the relationship
qB

t = ϑt
1−ϑt

qK
t , which is a direct consequence of the definition of ϑt.

62We have already dropped the i superscript on ι because all households choose the same investment
rate as argued in the main text.

63Note that in our formulation, taxes are effectively imposed on capital holdings such that the present
value of tax liabilities of households is implicitly capitalized in capital valuations. Also note that outside
equity claims are in zero net supply and thus do not contribute to aggregate net worth.
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Optimal Portfolio Choice. The first-order conditions for maximizing the Hamilto-
nian with respect to the portfolio shares θK,i

t , θE,i
t , and θĒ,i

t yields three Merton portfolio
choice equations

Et

[
drK,i

t (ιit)
]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tσ̃t − λi

t (1− χ̄) ,

Et

[
drE,i

t

]
dt − Et[drBt ]

dt = −ςi
t

σϑ
t

1− ϑt
+ ς̃i

tσ̃t − λi
t,

Et[dr̄E
t ]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

.

Here, λi
t is a scaled Lagrange multiplier on the constraint (5) (skin-in-the-game con-

straint). Combining the last two equations and using
Et[dr̄E

t ]
dt =

Et

[
drE,i

t

]
dt in equilibrium,

we obtain a simple characterization of λi
t:

λi
t = ς̃i

tσ̃t.

As we will show below, ς̃i
t is always positive and so the constraint (5) must always

be binding – households issue the maximum possible amount of outside equity. In
particular,

θK,i
t + θE,i

t = θK,i
t χ̄. (27)

We now perform two substitutions in the first portfolio choice condition stated
above. First, we eliminate λi

t on the right-hand side using the previously derived
equation. Second, we plug in the expected return expressions implies by the return
equations stated in Section 2.2. The condition then becomes

at − gt − ιt

qK
t

− µϑ
t − µ̆Bt
1− ϑt

−

(
σ

q,B
t − σϑ

t

)
σϑ

t

1− ϑt
= −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tχ̄σ̃t. (28)

Characterizing the Costate Volatility Loadings ςi
t and ς̃i

t. To determine the values of
ϑi

t and ς̃i
t in the previous equations, recall that, by definition, −ςi

tξ
i
t and −ς̃i

tξ
i
t are the

loadings of dξ i
t with respect to dZt and dZ̃i

t, respectively. We can use ξ i
t = e−ρt/ni

t to
conclude that

ςi
t = σn,i

t , ς̃i
t = σ̃n,i

t ,
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where σn,i
t and σ̃n,i

t are the (geometric) volatility loading of net worth ni
t for aggregate

and idiosyncratic risk, respectively. The net worth evolution (4) combined with the
return expressions stated in Section 2.2 furthermore implies64

σn,i
t = σ

q,B
t −

(
θK,i

t + θE,i
t + θĒ,i

t

) σϑ
t

1− ϑt
, σ̃n,i

t =
(

θK,i
t + θE,i

t

)
σ̃t.

We now eliminate the equity portfolio weights. For the idiosyncratic volatility, we can
use equation (27) to eliminate θE,i

t . For the aggregate volatility, we use that in equi-
librium all agents face the same portfolio conditions (27) and (28) and thus optimally
choose the same portfolio allocation θK,i

t , θE,i
t , θĒ,i

t (i.e., these quantities do not depend
on i). Market clearing in the outside equity market then implies θE,i

t = −θĒ,i
t , which

allows us to eliminate the sum θE,i
t + θĒ,i

t in the aggregate risk loading.

By combining all equations, we obtain

ςi
t = σ

q,B
t − θK,i

t
σϑ

t
1− ϑt

, ς̃i
t = θK,i

t χ̄σ̃t. (29)

Derivation of Equation (9). We start from the portfolio choice condition (28), substi-
tute in the costate voatility loadings as stated in equation (29), use that all households
choose identical portfolios together with capital market clearing θK,i

t = 1− ϑt as well as
the fact that qK

t = (1− ϑt)(qB
t + qK

t ), and rearrange:

1
1− ϑt

at − gt − ιt

qB
t + qK

t
− µϑ

t − µ̆Bt
1− ϑt

= (1− ϑt)χ̄
2σ̃2

t .

By goods market clearing, the second factor in the first term on the left equals ρ. Solving
the resulting equation for µϑ

t yields

µϑ
t = ρ + µ̆Bt − (1− ϑt)

2 χ̄2σ̃2
t .

Equation (9) follows from this equation by multiplying both sides by ϑt and using
Et[dϑt] = µϑ

t ϑt.

We remark that the previous derivation has implicitly assumed that government

64Compare also the Hamiltonian stated in the beginning of this Appendix. There, the same expressions
enter because ni

t is a controlled state variable.
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bonds have a positive value (ϑt > 0).65 However, equation (9) remains valid even if
bonds do not have positive value: if ϑt = 0, then by no arbitrage, agents must expect
also dϑt = 0, as otherwise they could earn an infinite risk-free return from investing
into government bonds. Consequently, equation (9) must hold along any equilibrium
path, regardless of whether bonds have positive value or not.

A.2 Omitted Steps in the Derivation of Equation (13)

We present here the missing steps in the derivation of equation (13) left out in the
main text. There, we have used without proof equation (14), which expresses the value
of the bond portfolio as the present value of trading cash flows, and equation (15),
which characterizes the bond trading process. In addition, we have used that the price
of idiosyncratic risk is given by

ς̃i
t = (1− ϑt)χ̄σ̃t.

This equation has already been derived in Appendix A.1 (compare equation (29) and
the market clearing equation for θK,i

t stated in the subsequent paragraph).66 We thus
only derive equations (14) and (15) here.

Derivation of equation (14). We can write the evolution of the bond portfolio as

dbi
t

bi
t
= drBt + d∆b,i

t . (30)

Absent trading, the bond portfolio grows at the (stochastic) bond return drBt , but the
actual portfolio value has to be adjusted for cash inflows bi

td∆b,i
t due to trading. Writing

drBt = µrB
t dt + σrB

t dZt, d∆b,i
t = µ∆,i

t dt + σ∆,i
t dZt + σ̃∆,i

t dZ̃i
t

65Otherwise, µϑ
t is not well-defined and the return expression for drBt used in the formulation of the

household problem is no longer valid.
66Note that we have defined ξ i

t in Appendix A.1 as the costate in the household’s problem whereas we
use the same notation for the individual SDF in Section 3. The two are the same (up to scaling) because
both measure the marginal utility of an additional unit of wealth at time t in a given state.
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and using Ito’s product rule, we obtain for the discounted bond wealth

d(ξ i
tb

i
t)

ξ i
tb

i
t

=

(
µrB

t − r f
t − ςtσ

rB
t︸ ︷︷ ︸

=0

+µ∆,i
t − ςtσ

∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt

+
(

σrB
t + σ∆,i

t − ςt

)
dZt +

(
σ̃∆,i

t − ς̃t

)
dZ̃i

t. (31)

Here, the first part of the drift is zero by standard asset pricing logic because agent i
is marginal in the market for government bonds. Integrating over t ∈ [0, T], taking
expectations, and rearranging yields

ξ i
0bi

0 = −E0

∫ T

0
ξ i

tb
i
t

(
µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)+ E0

[
ξ i

Tbi
T

]
.

Optimal behavior implies a transversality condition limT→∞ E
[
ξ i

Tni
T

]
= 0 on total

wealth ni
T of agent i as a necessary choice condition. Because total wealth consists of

bond wealth and capital wealth and the latter cannot become negative, a transversal-
ity condition for bond wealth bi

T immediately follows. Consequently, the second term
converges to zero as T → ∞ and we obtain equation (14) in the limit.

Derivation of equation (15). To characterize the trading process d∆b,i
t , start from (30):

d∆b,i
t =

dbi
t

bi
t
− drBt . (32)

Because all agents hold the same fraction θi
t = ϑt of their net worth in bonds, we have

bi
t = ηi

tq
B
t Kt. As ηi

t loads only on the idiosyncratic Brownian and qB
t Kt only on the

aggregate Brownian, their quadratic covariation vanishes and thus Ito’s product rule
simply implies

dbi
t

bi
t
=

d(qB
t Kt)

qB
t Kt

+
dηi

t

ηi
t

.

Furthermore, the return on bonds can be written as (compare equation (3))

drBt =
d(qB

t Kt)

qB
t Kt

− µ̆Bt dt.
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Substituting the previous two equations into (32) yields

d∆b,i
t = µ̆Bt dt +

dηi
t

ηi
t
= µ̆Bt dt + σ

η,i
t dZ̃i

t,

which implies
µ∆,i

t = µ̆Bt , σ∆,i
t = 0, σ̃∆,i

t = σ
η,i
t .

The equations in formula (15) follow, if we can show that

µ̆Bt = −st/qB
t , (33)

σ
η,i
t = (1− ϑt) χ̄σ̃t. (34)

Equation (33) follows immediately from the government budget constraint (1) and the
definition of st. For the proof of equation (34), note that individual net worth ni

t and
total net worth Nt := (qK

t + qB
t )Kt have identical drifts and volatility loadings on the

aggregate Brownian dZt, so that simply

dηi
t

ηi
t
=

d(ni
t/Nt)

ni
t/Nt

= σ̃n,i
t dZ̃i

t

because ni
t loads on the idiosyncratic Brownian dZ̃i

t, but Nt does not. Combining the
net worth evolution (4) with the equilibrium portfolio weights, we obtain

σ̃n,i
t = (1− ϑt)χ̄σ̃t (35)

which completes the proof of (34).

A.3 Model Solution with Stochastic Differential Utility

The model setup is identical to the one described in Section 2, except that logarith-
mic preferences are replaced with the utility recursion

Vi
t = Et

[∫ ∞

t
f (ci

s, Vi
s )ds

]
,
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where the aggregator f is defined by

f (c, V) = (1− γ)ρV
(

log(c)− 1
1− γ

log
(
(1− γ)V

))

We can solve this augmented model as we have solved the baseline model in Sec-
tion 2.2 (compare also Appendix A.1). The Hamiltonian of the household problem is
precisely as stated in Appendix A.1, except that the very first term e−ρt log ci

t must be
replaced with f (ci, Vt(ni)).67

We use again a standard guess for the value function to eliminate the costate vari-
able from the Hamiltonian. The guess here is Vt(ni) = vt

(ni)1−γ

1−γ , where vt is, again, a
variable that does not depend on individual net worth. The relationship between the
value function and the costate requires ξ i

t = V′t (n
i
t) = vt(ni

t)
−γ.68 We write µv

t and σv
t

for the (geometric) drift and aggregate volatility of vt. Note that vt does not load on the
idiosyncratic Brownian because it merely depends on aggregate conditions.

The model solution procedure follows the same steps as for the baseline model.
Here, we merely highlight the differences that occur on the way.

The first difference is that the first-order condition for optimal consumption is not
immediately equation (25), but instead of the more complicated form

vt(ni
t)
−γ = ∂c f (ct, Vt) = (1− γ)ρ

Vt

ct
.

However, once the value function Vt = vt
(ni

t)
1−γ

1−γ is plugged in, the condition reduces
again to the familiar form of equation (25).

The second difference is in the characterization of the costate volatility loadings ςi
t

and ς̃i
t. Because the costate is now ξ i

t = vt(ni
t)
−γ, Ito’s lemma implies

ςi
t = γσn,i

t − σv
t , ς̃i

t = γσ̃n,i
t . (36)

The net worth volatilities σn,i
t and σ̃n,i

t take the same form as before such that we simply

67On a small technical note, the resulting Hamiltonian here is a “current value Hamiltonian” whereas
the one used in Appendix A.1 is a “present value Hamiltonian”. The costate must thus be discounted
differently here. Otherwise, this does not affect the solution procedure.

68It is here that the difference between “present value” and “current value” matters. For this reason,
there is no time discounting term (such as e−ρt) in this equation, unlike in Appendix A.1.
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need to replace the final equation (29) with the slightly more complicated form

ςi
t = γ

(
σ

q,B
t − θK,i

t
σϑ

t
1− ϑt

)
− σv

t , ς̃i
t = γθK,i

t χ̄σ̃t.

The third difference is that the modified expressions for ςi
t and ς̃i

t affect the deriva-
tion and final result of equation (9). Following the same steps as in Appendix A.1, we
obtain the slightly modified equation

Et [dϑt] =

(
ρ + µ̆Bt −

(
σv

t − (γ− 1) σ
q̄
t

)
σϑ

t − γ (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt,

where σ
q̄
t is the volatility of q̄t := qB

t + qK
t .

The fourth and final difference is that we now also have to characterize the pro-
cess vt as it affects the BSDE for ϑt through the term σv

t .69 To characterize vt, we start
from the costate equation (a necessary optimality condition by the stochastic maximum
principle), which is here given by

Et[dξ i
t] = −

(
∂V f (ci

t, Vi
t )ξ

i
t +

∂Hi
t

∂ni
t

)
dt

= −
(
(1− γ)ρ log(ci

t/ni
t)− ρ log vi

t − ρ + µn,i
t +

ci
t

ni
t
− ςi

tσ
n,i
t − ς̃i

tσ̃
n,i
t

)
ξ i

tdt

= −
(
(1− γ)ρ log ρ− ρ log vi

t + µn,i
t −

(
γσn,i

t − σv
t

)
σn,i

t − γ
(

σ̃n,i
t

)2
)

ξ i
tdt,

(37)

where the last line uses ci
t/ni

t = ρ and the price of risk formulas (36). We also know
ξ i

t = vt(ni
t)
−γ and applying Ito’s lemma to this equation yields for the drift term

Et[dξ i
t] =

(
µv

t − γµn,i
t +

γ (γ + 1)
2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
− γσv

t σn,i
t

)
ξ i

tdt (38)

69There is no need to solve for vt in the baseline model because there it enters the value function
additively and thus only impacts total utility but not optimal choices.
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Combining equations (37) and (38) and solving for µv
t yields

µv
t = γµn,i

t −
γ (γ + 1)

2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
+ γσv

t σn,i
t

−
(
(1− γ)ρ log ρ− ρ log vi

t + µn,i
t −

(
γσn,i

t − σv
t

)
σn,i

t − γ
(

σ̃n,i
t

)2
)

= ρ log vt + (γ− 1)

(
ρ log ρ + µn,i

t −
γ

2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
+ σv

t σn,i
t

)

= ρ log vt + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ− γ

2

((
σ

q̄
t

)2
+ (1− ϑ)2 χ̄2σ̃2

t

)
+ σv

t σ
q̄
t

)
,

where in the last line we use that individual net worth has the same drift and aggregate
volatility as aggregate net worth q̄tKt, while its idiosyncratic volatility is σ̃n,i

t has been
determined previously. The previous equation for µv

t leads to a second BSDE

Et[dvt] = µv
t vtdt

that has to be solved numerically jointly with the BSDE for ϑt stated previously.

Numerical Model Solution. We solve the model numerically using a finite difference
method. This is a standard approach employed in the literature to solve models of this
type. Here, we only briefly outline the procedure. A more comprehensive description
of the method can be found, e.g., in Brunnermeier et al. (2020), Chapter 3 (specifically
Sections 3.2.6 and 3.2.7).

For our numerical solution, we impose the functional relationships ϑt = ϑ(t, σ̃t),
vt = v(t, σ̃t) and use the known forward equation for the state variable σ̃t to transform
the two BSDEs into partial differential equations in time t and the state σ̃t. We choose
suitable terminal guesses for the functions ϑ and v70 at a finite terminal time T and
solve the two PDEs backward in time using a finite difference method. We choose
T sufficiently large such that an increase in T no longer changes the solutions at t =

0, ϑ(0, ·) and v(0, ·), noticeably. These solution functions ϑ(0, ·) and v(0, ·) represent
our numerical approximation to the stationary (Markov) equilibrium functions σ̃ 7→
ϑ(σ̃), v(σ̃).

70Specifically, we use the functions implied by the steady state equilibrium with σ̃t = σ̃0 forever.
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A.4 Omitted Details in the Representative Agent Formulation

Derivation of Utility Representation (18). By Ito’s formula,

log ηi
t = log ηi

0 −
1
2

∫ t

0

(
σ̃

η
s

)2
ds +

∫ t

0
σ̃

η
s dZ̃i

s

and thus∫ ∞

0
e−ρt

∫
λiE

[
log ηi

t

]
didt =

∫ ∞

0
e−ρt

∫
λi log ηi

0didt− 1
2

∫ ∞

0
e−ρt

∫
λi
∫ t

0

(
σ̃

η
s

)2
dsdidt

=
1
ρ

∫
λi log ηi

0di− 1
2

∫
λidi

∫ ∞

0
e−ρt

∫ t

0

(
σ̃

η
s

)2
dsdt

=
1
ρ

∫
λi log ηi

0di− 1
2ρ

∫ ∞

0
e−ρt

(
σ̃

η
t

)2
dt,

where the last line uses that
∫

λidi = 1. Substituting this into equation (17) (with
interchanged order of integration where necessary) implies

W0 =
1
ρ

∫
λi log ηi

0di + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt


With the definition w0 := 1

ρ

∫
λi log ηi

0di, this is precisely equation (18).

Competitive Equilibrium in Representative Agent Economy. As this is a representa-
tive agent economy, we can fully characterize the allocation by determining goods and
asset supplies. The problem of the representative agent only needs to be considered to
determine asset prices.

The assumed growth rate process for capital Kt is the same as in the equilibrium of
the incomplete markets model, so that Kt must follow precisely the same process as in
that equilibrium if we start from the same initial K0 (which we can assume w.l.o.g. as
this only scales the overall size of the economy). Because dXt/Xt = d(qB

t Kt)/(qB
t Kt)

and X0 = qB
0 X0 by the condition on initial supply, we then also have Xt = qB

t Kt for all
t. Total consumption goods produced by the two “trees” in period t are

Ct =
(
(1− τt) at − ιt

)
Kt − µ̆Bt Xt

=
(

at − ιt + τtat − µ̆Bt qB
t

)
Kt
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= (at − gt − ιt)Kt,

where the last line follows from the government budget constraint (1) (in the incom-
plete markets model). The aggregate consumption goods supply is thus the same as
the (endogenous) aggregate consumption process in the incomplete markets economy.

We now turn to the remaining “good”, volatility reduction. Total volatility “supply”
is determined by equation (19),

σ̃
η
t =

qK
t Kt

qK
t Kt + Xt

χ̄σ̃t =
qK

t Kt

qK
t Kt + qB

t Kt
χ̄σ̃t = (1− ϑt) χ̄σ̃t.

This is also the same as the (endogenous) volatility of consumption shares ηi
t in the

incomplete markets economy. The representative agent economy therefore generates
the same allocation as the equilibrium in our incomplete markets model.

We now turn to asset prices. As this is the decision problem of a consumer with
logarithmic utility, the optimal consumption rule is Ct = ρNt, exactly as for the agents
in our incomplete markets economy.71 This fact can be derived using the stochastic
maximum principle in precisely the same way as in Appendix A.1, so that we skip
the details here. Using the definition Nt = QK

t Kt + PX
t Xt and the supplies Xt = qB

t Kt,
Ct = (qB

t + qK
t )Kt derived previously, we obtain

(qB
t + qK

t )Kt =
Ct

ρ
= QK

t Kt + PX
t Xt = (QK

t + PX
t qB

t )Kt.

Therefore, if we can show PX
t = 1, QK

t = qK
t is automatically implied. PX

t = 1 in turn
follows from equation (21) and the remarks following it in the main text. Consequently,
we only need to derive equation (21) to complete the equilibrium characterization.

Valuation Formula (21) for “Derivatives”. We can use standard asset pricing logic.
From the perspective of the representative agent, this is an entirely standard complete
markets economy with two consumption goods. The price of a single unit of an asset
measured in time-zero consumption units must thus equal the sum of the present dis-
counted value of its future marginal consumption flow dividends and the present dis-
counted value the future consumption value of its marginal volatility flow dividends,

71In the utility function here, there is also a second term (σ̃η
t ). But because it is additively separated, it

does not affect the optimal consumption rule.
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both discounted with the SDF Ξt, the marginal rate of substitution between consump-
tion at time t and consumption at time 0.

The consumption flow term is straightforward. One unit of derivatives at time 0
turns into Xt/X0 units of derivatives at time t and each of them produces a consump-
tion flow µ̆Bt dt. The present discounted value of these future consumption flows is
therefore

E

[∫ ∞

0
Ξt

(
−µ̆Bt

Xt

X0

)
dt

]
.

For the volatility flow term, note that the “marginal volatility product of deriva-
tives” at time t is

∂σ̃
η
t

∂Xt
= − qK

t Kt(
qK

t Kt + Xt

)2 χ̄σ̃t = −
σ̃

η
t(

qK
t + qB

t

)
Kt

= − σ̃
η
t

Nt

and the marginal rate of substitution between time-t consumption and time-t volatility
is

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂σ̃
η
t

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂Ct

=
−σ̃

η
t /ρ

1/Ct
= −Ct

ρ
σ̃

η
t .

The consumption value of the marginal volatility reduction of Xt/X0 derivatives at
time t is therefore

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂σ̃
η
t

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂Ct

· ∂σ̃
η
t

∂Xt
· Xt

X0
=

Ct

ρNt

(
σ̃

η
t

)2 Xt

X0
=
(

σ̃
η
t

)2 Xt

X0
,

here the last equation follows from Ct = ρNt. Consequently, the discounted value of
volatility flows generates by one unit of derivatives is

E

[∫ ∞

0
Ξt

(
σ̃

η
t

)2 Xt

X0
ds
]

.

Combining the two present values and using σ̃
η
t = (1− ϑt)χ̄σ̃t (derived previously)
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yields

PX
0 = E

[∫ ∞

0
Ξt

(
−µ̆Bt

Xt

X0

)
dt

]
+ E

[∫ ∞

0
Ξt (1− ϑt)

2 χ̄2σ̃2
t

Xt

X0
ds
]

.

After multiplying both sides by X0, we obtain equation (21).

A.5 Model Extension with Privately Issued Safe Assets

In this appendix, we present the formal details for the model extension with pri-
vately issued safe assets. We restrict attention to the baseline model from Section 2
with logarithmic preferences.

Setup and Model Solution. Each agent i issues nominally risk-free bonds (“i-bonds”)
of total real value Bt(i) ≥ 0 and holds a real quantity bi

t(j) ≥ 0 of j-bonds issued by
other agents j 6= i. The clearing conditions at all times t and for all varieties j are

Bt(j) =
∫

bi
t(j)di.

We denote by ip
t the nominal interest a household has to pay in equilibrium on its pri-

vately issued debt72 and by Bp
t :=

∫
Bt(j)dj the aggregate quantity of privately issued

bonds outstanding. Because privately issued debt is nominally risk-free, its return is

drb
t =

(
ip
t − it

)
dt + drBt ,

where, as before, drBt is the return on government bonds (compare equation (3)). By
no arbitrage, in equilibrium ip

t = it. Thus, the yields on privately issued bonds and
government bonds are identical.

We can solve household i’s problem as in the baseline model. Denote by θB,i
t :=

−Bt(i)/ni
t ≤ 0 the negative of bond issuance as a share of net worth and by θb,i

t (j) :=
bi

t(j)/ni
t ≥ 0 holdings of j-bonds as a fraction of net worth. Relative to the baseline

model, the household has the additional choice variables θB,i
t and (θb,i

t (j))j∈[0,1] subject
to the nonnegativity constraints. However, the Hamiltonian of the household’s prob-
lem does not change relative to Appendix A.1: due to drb

t = drBt , choices of θB,i
t and

72Theoretically, ip
t could depend on the issuing household j. However, as all privately issued bonds

are required to be nominally risk-free, it is obvious that they all have to pay the same nominal rate in
equilibrium.
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(θb,i
t (j))j∈[0,1] do not affect either the expected return or the risk characteristics of the

household’s portfolio, such that the additional terms in the Hamiltonian cancel out.

We can draw two immediate conclusions from the previous observation. First, be-
cause the Hamiltonian remains unaffected, the model solution steps outlined in Ap-
pendix A.1 remain valid in this extended model. Consequently, all equilibria with pri-
vate bond issuance must feature the same real allocation and the same prices of gov-
ernment bond (qB

t ) and capital (qK
t ) as in the baseline model. Second, all households are

indifferent between any choice of private bond issuance and holdings of bonds issued
by other agents as long as these holdings do not interfere with the optimal plans for
capital holdings (θK,i

t ), outside equity issuance (θE,i
t ), and diversified equity holdings

(θĒ,i
t ).

There are thus many different equilibria that all feature the same consumption allo-
cation and valuation of government bonds, equity, and capital, but differ with regard
to the quantities Bt(j) of private bonds in circulation.

A Simple Example. To illustrate how privately issued bonds can serve as safe assets
in precisely the same way as government bonds, we consider an example in which all
agents trade private and government bonds in equal proportions.73 Specifically, we
make the following choices: (a) the aggregate real value of privately issued bonds is
proportional to the value of government bonds, Bp

t ∝ qB
t Kt, (b) the total bonds issued

by each agent j is proportional the agent’s net worth share, Bt(j) = η
j
tB

p
t , and (c) all

agents hold a portfolio of j-bonds for j 6= i and government bonds according to market
capitalization weights.

We now discuss the debt valuation equations verbally referenced in the main text.
We defer a derivation of the following equations to the end of this appendix.

For each agent i, the value of the long position bi
t(j) in j-bonds must equal the

present value of future cash inflows from the portfolio of j-bonds, either due to pay-
ments made by agent j or due to trading of j-bonds. This insight leads to an equation
in full analogy to equations (14) and (16) for government bonds that we have derived

73While valuation equations for individual bond types depend on what we assume about trading of
individual bonds (which is indeterminate due to indifference), none of the economic conclusions from
the example crucially depend on this choice.
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in the context of the dynamic trading perspective:

bi
0(j) = E

[∫ ∞

0
ξ i

txtbi
t(j)dt

]
+ E

[∫ ∞

0
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t bi
t(j)dt

]
. (39)

Here, xt denotes the expected net payouts made by agent j to all holders of j-bonds
per real unit of j-bonds outstanding. Total expected net payouts xtBt(j) made by agent
j are the private debt counterparts of primary surpluses stKt, which represent the net
payouts made by the government to public debt holders.

Equation (39) emphasizes that the valuation of j-bonds for agent i depends on a cash
flow component resulting from payouts made by agent j and a service flow component
resulting from the fact that i trades j-bonds with agents other than j. When aggregating
these equations for all i 6= j, we obtain a debt valuation equation from the dynamic
trading perspective for the aggregate long position in j-bonds:74

B0(j) = E

[∫ ∞

0
ξ∗∗t xtBt(j)dt

]
+ E

[∫ ∞

0
ξ∗∗t (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
. (40)

The key takeaway is that this equation looks precisely like equation (13) for government
bonds. In particular, the service flow component is identical.

Equation (40) emphasizes the similarity between government bonds and privately
issued bonds for their holders. However, private bond issuance also comes with a short
position in the bond for the issuer j. In the same spirit as before, we can value that short
position by determining the present value of all net payouts that j makes to holders of
j-bonds,

−B0(j) = E

[∫ ∞

0
ξ

j
t (−xt) Bt(j)dt

]
+ E

[∫ ∞

0
ξ

j
t

(
− (1− ϑt)

2 χ̄2σ̃2
t

)
Bt(j)dt

]
. (41)

This equation illustrates that issuing bonds according to the specified issuance strat-
egy effectively exposes the agent to negative service flows. Because Bt(j) = η

j
tB

p
t is

proportional to η
j
t , cash flows from debt issuance and repayments are systematically

correlated with marginal utility in a way that increases the riskiness of j’s portfolio.

Once we integrate equations (40) and (41) over all bond types j, the integrated ser-
vice flow terms on the right-hand side become identical in absolute value but have

74Relative to equation (39), the following equation also interchanges integrals and uses bi
t(j) = ηi

tBt(j).
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opposite sign. In other words, in the aggregate the positive service flows derived from
privately issued bonds by their holders exactly cancel with the negative service flows
generated for their issuers. Private safe asset creation does not generate additional net
service flows for the economy.

Derivation of Equations (39), (40), and (41). In precisely the same way as in Ap-
pendix A.2, we can derive a equations in analogy to equation (14) for the portfolios of
j-bonds held by agents i and j:

bi
0(j) = −E0

∫ ∞

0
ξ i

tb
i
t(j)

(
µ∆,i

t (j)− ςtσ
∆,i
t (j)− ς̃tσ̃

∆,i,i
t (j)

) , (42)

−Bj
0 = −E0

∫ ∞

0
ξ i

t(−Bj
t)

(
µ

∆,j
t (j)− ςtσ

∆,j
t (j)− ς̃tσ̃

∆,j
t (j)

) . (43)

Here, d∆b,i(j)t and d∆B,j
t are the trading processes for j-bonds of agents i and j, respec-

tively:

d∆b,i
t (j) = µ∆,i

t (j)dt + σ∆,i
t (j)dZt + σ̃∆,i,i

t (j)dZ̃i
t + σ̃

∆,i,j
t (j)dZ̃j

t,

d∆B,j
t = µ

∆,j
t (j)dt + σ

∆,j
t (j)dZt + σ̃

∆,j
t (j)dZ̃i

t.

As in Section 3 and Appendix A.2, bi
t(j)d∆b,i(j)t represents the real value new j-bonds

purchased by agent i at time t. Similarly, but with opposite sign due to the short po-
sition, −Bj

td∆B,j
t represents the real value of new j-bonds (re-)purchased by agent j. In

other words,−d∆B,j
t corresponds to the payouts that the issuer j makes to bond holders.

To derive equations (39) and (41), we have to characterize the trading processes. In
full analogy to Appendix A.2, these processes must satisfy

d∆b,i
t (j) =

dbi
t(j)

bi
t(j)
− drb

t , (44)

d∆B,j
t =

dBj
t

Bj
t

− drb
t . (45)

We first characterize the second process. By definition, µ
∆,j
t (j) = −xt corresponds to

the negative of the expected net payouts made by agent j to holders of j-bonds per real
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unit of bonds outstanding. To determine the volatility loadings of the trading process,
we use Bj

t = η
j
tB

p
t ∝ η

j
tq

B
t Kt, so that

dBj
t

Bj
t

=
dη

j
t

η
j
t

+
d(qB

t Kt)

qB
t Kt

.

The volatility loadings of drb
t = drBt coincide with the ones of d(qB

t Kt)/(qB
t Kt), compare

equation (3). Thus,
d∆B,j

t = drift terms + σ̃
η
t dZ̃j

t.

In total, we get
µ

∆,j
t (j) = −xt, σ

∆,j
t (j) = 0, σ̃

∆,j
t (j) = σ̃

η
t .

Substituting this into equation (43) and using ς̃t = σ̃
η
t = χ̄(1 − ϑt)σ̃t implies equa-

tion (41).

The previous discussion also implies (using equation (45))

drb
t =

dBt(j)
Bt(j)

− d∆B,j
t = xtdt +

d
(

qB
t Kt

)
qB

t Kt

and substituting this into equation (44) and using bi
t(j) = ηi

tB
j
t = ηi

tη
j
tB

p
t implies

d∆b,i
t (j) =

dηi
t

ηi
t
+

dη
j
t

η
j
t

+
dBp

t

Bp
t
−

xtdt +
d
(

qB
t Kt

)
qB

t Kt


= σ̃

η
t dZ̃i

t + σ̃
η
t dZ̃j

t +
d
(

qB
t Kt

)
qB

t Kt
− xtdt−

d
(

qB
t Kt

)
qB

t Kt

= −xtdt + σ̃
η
t dZ̃i

t + σ̃
η
t dZ̃j

t.

In other words,

µ∆,i
t (j) = −xt, σ∆,i

t (j) = 0, σ̃∆,i,i
t (j) = σ̃

∆,i,j
t (j) = σ̃

η
t .

Substituting these equations into equation (42) implies equation (39).

It is left to derive equation (40). This equation easily follows from the previously

68



derived equation (39) by integrating over all holders i:

B0(j) =
∫

bi
t(j)di

=
∫ (

E

[∫ ∞

0
ξ i

txtbi
t(j)dt

]
+ E

[∫ ∞

0
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t bi
t(j)dt

])
di

= E

[∫ ∞

0

∫
ξ i

txtη
i
tBt(j)didt

]
+ E

[∫ ∞

0

∫
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t ηi
tBt(j)didt

]
= E

[∫ ∞

0

∫
ξ i

tη
i
tdi · xtBt(j)dt

]
+ E

[∫ ∞

0

∫
ξ i

tη
i
tdi · (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
= E

[∫ ∞

0
ξ∗∗t xtBt(j)dt

]
+ E

[∫ ∞

0
ξ∗∗t (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
.

A.6 Model Extension with Convenience Yields

In this appendix, we present the model extension with bonds in the utility function
to generate a convenience yield and derive the two debt valuation equations stated in
Section 6

Setup and Equilibrium Characterization. To keep equations as simple as possible,
we only consider the case of logarithmic consumption preferences and introduce sepa-
rable logarithmic bond utility as in Di Tella (2020). Each agent i maximizes

E

[∫ ∞

0
e−ρt

(
(1− υ) log ci

t + υ log bi
t

)
dt
]

,

where
bi

t = (1− θK,i
t − θE,i

t − θĒ,i
t )ni

t

are real government bond holdings of the agent as in Section 3. υ measures the utility
share derived from bond holdings. For υ = 0, the model collapses to the baseline
model. As in the main text, but unlike in Appendix A.5, we assume here that the gross
holdings or privately issued nominal debt are zero, so that all bonds are government
bonds. So long as privately issued bonds do not provide utility, this assumption is
without loss of generality.

However, as in Appendix A.5, we use the notation ip
t to denote the (shadow) nom-

inal short rate on such privately issued bonds. As these bonds do not enter utility, the
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spread ∆it := ip
t − it can be positive in this augmented model. It captures the conve-

nience yield on government bonds.

This augmented model has almost the same equilibrium solution as our baseline
model. ι, qB, and qK are given by the equations

ιt =
(1− ϑt) (at − gt)− (1− υ) ρ

1− ϑt + φ (1− υ) ρ
, (46)

qB
t = ϑt

1 + φ (at − gt)

1− ϑt + φ (1− υ) ρ
, (47)

qK
t = (1− ϑt)

1 + φ (at − gt)

1− ϑt + φ (1− υ) ρ
(48)

as a function of the bond wealth share ϑt. The latter is determined by the dynamic
equation

Et [dϑt] =
(

ρ + µ̆Bt − ∆it − (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt, (49)

where ∆it = υρ/ϑt is the equilibrium convenience yield on government bonds. This
equation differs from equation (9) only by the presence of the convenience yield term
∆it, which raises the equilibrium level of ϑt.

We present a proof of equations (46)–(48) and (49) at the end of this appendix.

Debt Valuation Equations. We next sketch the derivations of the two debt valuation
equations stated in the main text. The derivation steps are in complete analogy to the
ones presented in Section 3 for the baseline model.

The valuation from the buy and hold perspective starts again from the government
flow budget constraint (1) and follows precisely the same steps as in Section 3 up to the
derivation of equation (11) stated in the main text and restated here for convenience:

ξ i
0
B0

P0
= E

[∫ T

0
ξ i

tstKtdt

]
−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
+ E

[
ξ i

T
BT

PT

]
.

From here on, the derivation departs slightly. Because the nominal SDF ξ i
t/Pt in this

model does not price nominal government debt but nominal private debt, it decays on
average at rate ip

t = it + ∆it, and the second term does not vanish. Instead, we obtain

−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
= E

[∫ T

0
ξ i

t∆it
Bt

Pt
dt

]
,
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which is the present value of convenience yield service flows derived from government
debt between t = 0 and t = T. From here on, the derivation is again analogous to the
one in Section 3. Once we replace ξ i

t with ξ̄t and take the limit T → ∞, we arrive at the
equation stated in Section 6.

The valuation from the dynamic trading perspective proceeds precisely as in Sec-
tion 3. The only difference is that the derivation no longer results in the intermediate
equation (14) but in the slightly modified version

bi
0 = −E

[∫ ∞

0
ξ i

tb
i
t

(
−∆it + µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt
]

,

where the term −∆it is new. After replacing equation (14) with this variant and other-
wise following the steps outlined in Section 3, we obtain the valuation equation from
the dynamic trading perspective stated in Section 6.

To understand where the additional term−∆it comes from, note that also the deriva-
tion steps for equation (14) in Appendix A.2 remain unchanged except for one detail:
in that appendix, we have used in equation (31) that

µrB
t − r f

t − ςtσ
rB
t = 0

by standard asset pricing logic. That argument is valid if the SDF ξ i
t prices the gov-

ernment bond, so that the expected return µrB
t equals the risk-adjusted required return

r f
t + ςtσ

rB
t . Due to the presence of utility services from government bonds, this is not

true anymore in the augmented model. The expected return on a privately issued bond
µrB

t + ∆it still equals the required return, but the expected return on the government
bond is lower by ∆t. Consequently, we must use the modified relationship

µrB
t − r f

t − ςtσ
rB
t = −∆it

in equation (31). This explains the additional term −∆it above.

Model Solution Details. [to be added]
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A.7 Calibration Details

A.7.1 Data Sources and Definitions

The data series for the CIV factor (Herskovic et al., 2016) have been retrieved from
Bernard Herskovic’s website (https://bernardherskovic.com/data/). That series (col-
umn “CIV”) represents an annualized return variance measure of the common idiosyn-
cratic volatility in stock returns.

All other data used in this paper have been retrieved from the FRED database main-
tained by the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/). We
briefly describe next how we map model quantities into FRED data series.

For the macro aggregates Y, C, I, and G, we use quarterly data from 1970Q1 to
2019Q4. Output is defined as Y = C + I + G (in particular, exclusive of net exports)
while we define the three series C, I, and G as follows:

• In line with the business cycle literature, we exclude consumption of durable
goods from our consumption measure. To compute C, we start from real personal
consumption expenditures (FRED code PCECC96) subtract real expenditures for
durable goods. We identify the latter by multiplying total real consumption ex-
penditures by the ratio of nominal expenditures for durable goods (PCDG) and
nominal total consumption expenditures (PCEC).

• We define investment I as the sum of two components: (1) real gross private do-
mestic investment (GPDIC1) net of the change in private inventories (CBIC1) and
(2) real consumption expenditures for durable goods (measured as described pre-
viously). We include durables in investment as we have removed them from con-
sumption but they nevertheless represent an important part of overall private
expenditures.75

• We government spending G as real government consumption expenditures and
gross investment (GCEC1).

The ratios of primary surpluses and government debt to GDP, S/Y and qBK/Y,
respectively, are measured from nominal data. We use again quarterly data series

75Excluding durables altogether from our measures of economic activity does not substantially change
our computed data moments: it lowers the volatility of output somewhat but otherwise only marginally
affects results.

72



from 1970Q1 to 2019Q4. We define the nominal primary surplus as current receipts
(FGRECPT) minus current expenditures (FGEXPND) but add back current interest ex-
penditures (A091RC1Q027SBEA) of the federal government. We define nominal debt as
the market value of marketable treasury debt (MVMTD027MNFRBDAL). We compute
the ratios S/Y and qBK/Y by dividing both nominal primary surpluses and nominal
debt by nominal GDP (GDP).76

Data on the capital stock to compute the capital-output ratio is based on the Penn
World Tables (Feenstra et al., 2015) and only available annually. We again choose the
time period from 1970 to 2019. The capital-output ratio qKK/Y is defined as capital
stock at constant national prices (RKNANPUSA666NRUG) divided by real GDP at con-
stant national prices (RGDPNAUSA666NRUG), both for the US.

For returns on bonds and equity, we use monthly data from February 1970 to De-
cember 2019.77 We first construct monthly log returns from these data sources as fol-
lows:78

• We measure the return on government debt using data on the market yield on
treasury securities at 5-year constant maturity (DGS5). We chose the 5-year ma-
turity as this approximately reflects the average duration of federal debt. We con-
vert the yield data into (holding period) returns using the well-known formula

rT
t+1 = TyT

t − (T − 1)yT−1
t+1

that relates the log holding period return rT
t+1 over the period from t to t + 1

of a bond with time to maturity of T at date t to the log yield yT
t of a T-period

bond at t and the log yT−1
t+1 of a T − 1-period bond at t + 1. To operationalize this

formula, we approximate the unknown 59-month yield yT−1
t+1 with the observed

60-month yield yT
t+1. This procedure generates a series r̂Bt of monthly log returns

for government bonds.

• As a proxy for the total equity market, we take the Wilshire 5000 index. We com-
pute monthly log returns by dividing successive end-of-month values of the to-

76Unlike for our macro aggregate time series, we do not correct the GDP measure for components not
in the model. Doing so would have only a minor impact on the resulting numbers. Not doing so is also
consistent with how we compute the capital-output ratio below.

77February 1970 is the first month at which some of the required series are available on FRED.
78To be precise, the following definitions are for nominal returns while the returns in the model are

real. However, for the purpose of computing return differentials, as we do, this distinction is irrelevant.
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tal market index (Wilshire 5000 Total Market Index, FRED series WILL5000IND),
which includes dividend reinvestments, and then taking natural logarithms. As
market returns are based on leveraged equity returns, this procedure yields a se-
ries r̂E,leverage

t of leveraged monthly log returns for equity.

Based on these data series, we construct the sample estimates for E
[
dr̄E − drB

]
and

σ
(

dr̄E − drB
)

reported in Table 2 as follows. We first define for leveraged returns:

E
[
dr̄E,leverage

]
= 12 · sample mean

(
r̂E,leverage

)
+

12
2
· sample var

(
r̂E,leverage

)
,

E
[
drB
]
= 12 · sample mean

(
r̂B
)
+

12
2
· sample var

(
r̂B
)

,

σ2
(

dr̄E,leverage − drB
)
= 12 · sample var

(
r̂E,leverage

t − r̂Bt
)

.

However, the model counterpart dr̄E of the market equity return is closer to a delevered
equity return. The theoretical relationship between the delevered equity return dr̄E and
the leveraged return dr̄E,leverage is

dr̄E = drB +
1
`

(
dr̄E,leverage − drB

)
,

where ` ≥ 1 is financial leverage as measured by the ratio of total assets to equity. We
therefore define:

E
[
dr̄E − drB

]
=

1
`

(
E
[
dr̄E,leverage

]
−E

[
drB
])

,

σ
(

dr̄E − drB
)
=

1
`

σ
(

dr̄E,leverage − drB
)

.

We use ` = 1.5 to compute delevered equity returns.

A.7.2 Calibration of the Exogenous σ̃t Process

We estimate the coefficients σ̃0, ψ, and σ of the idiosyncratic risk process (22) such
that it matches the observed CIV series. Here, we first describe the details of the esti-
mation procedure and then explain why CIV is a suitable data counterpart for idiosyn-
cratic risk σ̃2

t in the model.

74



Parameters Estimation. We use a maximum likelihood estimation (MLE) to deter-
mine σ̃0, ψ, and σ based on a monthly CIV sample from January 1945 to December
2019. MLE is straightforward here because the conditional density of the CIR process
σ̃2

t has a known closed-form expression (e.g. Aït-Sahalia (1999), equation (20)).

While not directly targeted by MLE, the estimated process generates first and sec-
ond ergodic moments of σ̃t, 0.5078 and 0.1701, respectively, that closely match their
empirical counterparts (based on square roots of the CIV sample), 0.4950 and 0.1817,
respectively.

CIV as a Model-consistent Measure of σ̃2
t . We briefly outline here why CIV indeed

measures σ̃2
t . Herskovic et al. (2016) construct CIV as the cross-sectional mean of the

idiosyncratic return variance of individual stocks in their sample. The idiosyncratic
return variance of an individual stock, in turn, is defined as the variance of the residual
of a factor regression on the market factor.

In our model, this procedure broadly amounts to a (population) regression of the
type

drE,i
t − r f

t dt = αi
t + βi

t

(
dr̄E

t − r f
t dt
)
+ εi

t

for stocks issued by all agents i. Comparing the return expressions for drE,i
t and dr̄E

t

stated in Section 2.2, it is clear that this regression yields αi
t = 0, βi

t = 1 and εi
t = σ̃tdZ̃i

t.
The variance of each individual residual εi

t therefore exactly equals σ̃2
t , and so does the

cross-sectional mean over all residual variances. In other words, if the real-world data
was generated by the model, measured CIV at time t would exactly correspond to σ̃2

t .

A.7.3 Calibration of Remaining Model Parameters

The calibration choices for χ and δ are explained in the main text. The remaining
nine parameters, γ, ρ, a0, g, µ̆B,0, αa, αB, φ, ι0, are chosen to match twelve moments as
described in the main text. We briefly explain here (heuristically) how these moments
identify the model parameters.

First, given the estimated σ̃t process, the capital productivity process

at = a(σ̃t) = a0 − αa(σ̃t − σ̃0)

is exogenous and fully determined by the two parameters a0 and αa. While output
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Yt = atKt still contains an endogenous term Kt, the capital stock is slow-moving such
that most of the variation in HP-filtered output is due to variation in at. Therefore, the
parameter αa is effectively determined by the target moment σ(Y).

Second, because g is constant, the variability of output left for private uses, Y − G,
is also determined by the parameter αa. By the aggregate resource constraint Y − G =

C + I, so that the choice of αa also constrains the variation of the sum of consumption
and investment. The parameter φ effectively controls how much of that variation is
absorbed by the individual components of that sum. While in principle the full details
of the model matter for the dynamics of investment opportunities, φ controls to which
extent changes in investment opportunities change actual physical investment as op-
posed to simply driving up or down capital valuations. For φ → 0, investment reacts
a lot while for φ → ∞, investment is fixed and only prices react. Therefore, the two
relative volatilities σ(C)/σ(Y) and σ(I)/σ(Y) effectively determine φ.79

Third, the ratio of primary surpluses to output is given by

St/Yt = −µ̆Bt
qB

t
at

= −
(

µ̆B,0 + αB(σ̃t − σ̃0)
) qB

t
at

.

While the dynamics of this variable depend on the endogenous price qB
t , the parameter

αB is nevertheless able to control the overall volatility of St/Yt.80 The parameter αB is
therefore determined by the moment σ(S/Y).

Fourth, the six average ratio targets in the calibration effectively determine the five
parameters ρ, a0, g, µ̆B,0, and ι0. To see this, we explain how, in the stochastic steady
state of the model, the five parameters map directly into functions of target ratios and
how this mapping can be inverted to obtain the parameters. While we do not target
the stochastic steady state but the ergodic mean when matching moments, the two are
quantitatively very close.

The identity C + I + G = Y and the level targets for C/Y and G/Y imply I/Y =

1− C/Y − G/Y. We can thus write for capital productivity a0 in the stochastic steady

79This does not imply that we are always able to pick φ in a way that matches both relative volatilities
precisely. It just means that if model dynamics are such that they can be matched at all, then this works
only for one value of φ.

80This is not a rigorous theoretical statement but an empirical one based on observed numerical model
solutions.
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state
a0 =

Y
K

=
I/K
I/Y

=
I/K

1− C/Y− G/Y
.

This determines a0 as a function of targets. Due to G = gK, we obtain immediately also

g = G/Y · a0.

Because G/Y is a target and a0 has already been determined, this equation determines
g.

Next, ρ represents the ratio of consumption to total wealth in the model, that is

ρ =
C

(qB + qK)K
=

C/Y
qBK/Y + qKK/Y

and the right-hand expression is a function of targeted ratios. Hence, the targets also
determine ρ.

By the government budget constraint, the policy variable µ̆B in the stochastic steady
state must satisfy

µ̆B,0 = − s
qB = − S/Y

qBK/Y

and, again, the right-hand expression is a function of targeted ratios.

Finally, the capital price in the stochastic steady state can be related to the capital-
output ratio by the equation qK,0 = qKK/Y · a0. Because a0 is a function of targeted
ratios, so is qK,0. It is easy to show that the investment rate is I/K = ι0 + qK,0−1

φ . This
expression only depends on qK,0 and the parameters ι0 and φ. For any given parameter
φ, ι0 is therefore determined by targets through the equation

ι0 = I/K− qK,0 − 1
φ

.

We remark that the six average ratios do not only identify the five parameters ρ,
a0, g, µ̆B,0, and ι0 (in the stochastic steady state) but also the average value ϑ0 of the
endogenous variable ϑt, namely

ϑ0 =
qB

qB + qK =
qBK/Y

qBK/Y + qKK/Y
.

77



This generates an implicit target that must be somehow matched by varying parameters
other than ρ, a0, g, µ̆B,0, and ι0 in order to match all six average ratios.

Fifth, because ρ, χ̄, and the dynamics of µ̆B and σ̃t are already determined by ex-
ternal calibration choices or the targeted average ratios, the counterpart of equation (9)
in Appendix A.3 implies that this implicit target ϑ0 for the average value of ϑt must be
matched by a sufficient size of the risk premium terms in that equation. The only “free”
variables in these terms are σv

t and γ and the former is effectively also determined by γ

(once ρ, χ̄, and the dynamics of σ̃t are fixed). In fact, the risk premium terms are strictly
increasing in γ given the remaining parameter choices. Therefore, the implicit target ϑ0

is only achieved for a specific value of γ. At the same time, γ affects also the average eq-
uity premium E[dr̄E− drB] and the equity sharpe ratio E[dr̄E− drB]/σ(dr̄E− drB). The
parameter γ is thus certainly identified by the set of target moments, but it is generally
not possible to match all of them.
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