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We develop a segmented markets model which rationalizes the effects of mon-

etary policy on the term structure of interest rates. As in the preferred habitat

tradition, habitat investors and arbitrageurs trade bonds of various maturities.

As in the intermediary asset pricing tradition, the wealth of arbitrageurs is a

state variable which affects equilibrium term premia. When arbitrageurs’ port-

folio features positive duration, an unexpected fall in the short rate revalues

wealth in their favor and compresses term premia. A calibration to the U.S.

economy accounts for the effects of monetary shocks along the yield curve while

simultaneously rationalizing classic evidence on bond return predictability which

does not condition on identified shocks.
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1 Introduction

The effect of a change in short rates on long rates is central to the monetary trans-

mission mechanism. It determines how monetary policy affects mortgage rates, corpo-

rate borrowing rates, and other determinants of aggregate demand. Long rates reflect

the expected path of short rates plus term premia. There is accumulating empirical

evidence that expansionary monetary policy lowers long rates by more than can be

accounted for by the change in the expected path of short rates.1 This implies that

expansionary monetary policy operates in part by lowering term premia.

This evidence poses a challenge to existing models of monetary transmission and

the term structure. Representative agent models typically imply that monetary policy

shocks have negligible effects on the price and quantity of interest rate and inflation

risks. Market segmentation opens the door for transitory shocks to have more substan-

tial effects on term premia if they have relatively large effects on the subset of agents

pricing long-term bonds. However, existing models of this kind, most notably those in

the preferred habitat tradition, counterfactually imply that a monetary easing raises

term premia, as the associated decline in long yields causes habitat investors to borrow

more long-term and thus expose arbitrageurs to more risk.

In this paper, we propose a model which rationalizes the effects of monetary policy

shocks on the term structure of interest rates. We build on the preferred habitat tra-

dition by studying an environment in which habitat investors and arbitrageurs trade

bonds of various maturities. We integrate this with the intermediary asset pricing tra-

dition by studying an environment in which arbitrageur wealth is an endogenous state

variable relevant for equilibrium term premia. When arbitrageurs’ portfolio features

positive duration, an unexpected fall in the short rate revalues wealth in their favor and

lowers term premia. Quantitatively, this mechanism jointly rationalizes the financial

sector’s exposure to interest rate risk and the responses of the yield curve to monetary

shocks in the data. While monetary shocks induce a negative relationship between the

slope of the yield curve and expected excess returns on long-term bonds, shocks to

the demand of habitat investors in the model induce a positive relationship. Because

demand shocks are sufficiently volatile relative to monetary shocks, the model thus

also matches the classic evidence of Fama and Bliss (1987) and Campbell and Shiller

(1991) on bond return predictability which does not condition on identified shocks.

The model integrates elements of the preferred habitat and intermediary asset pric-

1See, e.g., Cochrane and Piazzesi (2002), Gertler and Karadi (2015), and Hanson and Stein (2015).
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ing traditions. As in existing preferred habitat models, time is continuous. A contin-

uum of preferred habitat investors elastically demand bonds of each maturity. Over-

lapping generations of arbitrageurs trade with the central bank at the short rate and

with habitat investors at each maturity. There are two risk factors: the short rate and

the demand of habitat investors across maturities. Unlike existing preferred habitat

models, arbitrageurs have log (rather than CARA) preferences, and are characterized

by perpetual youth (rather than living only instantaneously). These two changes imply

that the wealth of arbitrageurs is an endogenous state variable relevant for risk pricing,

as in the intermediary asset pricing tradition.

We first study a simplified version of this environment which allows us to analyt-

ically characterize each of our main results. In the simplified environment, time is

discrete and only one- and two-period bonds are traded. We first show that, when

arbitrageurs die after one period and thus their endowment is exogenous, we recover

the existing result from preferred habitat models that an unexpected fall in the short

rate raises the term premium on two-period bonds: the associated decline in the two-

period yield causes habitat investors to borrow more at this maturity and thus exposes

arbitrageurs to more interest rate risk. We next allow arbitrageurs to live for more

than one period, in which case the revaluation of arbitrageurs’ wealth also determines

the response of the term premium to a short rate shock. In particular, if arbitrageurs’

portfolio features positive duration — in this simple setting, if they are long two-period

bonds — an unexpected fall in the short rate raises their wealth. If this force is suffi-

ciently strong relative to the demand elasticity of habitat investors, the term premium

falls. We finally characterize the Fama and Bliss (1987) and Campbell and Shiller

(1991) coefficients which would be obtained if the model was the true data-generating

process. We show that these coefficients must be positive and negative, respectively,

if the volatility of demand shocks is high enough relative to monetary shocks. This is

because demand shocks imply that all changes in the slope of the yield curve are due

to changes in term premia, unlike monetary shocks.

We then numerically study and quantify these mechanisms in the full, continuous-

time model. When arbitrageur wealth is endogenous in the ways described above,

bond prices no longer take an exponentially affine structure, and the model does not

admit a closed form solution. We can nonetheless describe the equilibrium in terms

of a system of four partial differential equations: equilibrium in the bond market

implied by arbitrageurs’ optimization and market clearing; the endogenous evolution of
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arbitrageur wealth; and the exogenous evolutions of the short rate and habitat demand.

We solve this system numerically using finite difference methods and collocation.

We confront our model with evidence on the effects of monetary policy shocks.

We focus on the response of intermediary wealth and the yield curve around Federal

Open Market Committee (FOMC) announcements. We isolate monetary shocks from

information shocks by focusing on the subset of announcements during which bond

yields and the S&P 500 move in opposite directions, building on Jarocinski and Karadi

(2020). We further isolate monetary policy shocks from other shocks by studying tight

intraday windows around FOMC announcements. Our baseline estimate is that a fall

in the one-year real yield by 1pp on these announcement days raises the equity prices

of primary dealers by 8.8pp. This is consistent with arbitrageurs’ portfolio having

positive duration. Our baseline estimates further imply that a fall in the one-year

real yield by 1pp lowers the 20-year real forward rate by 0.39pp; more generally, the

shock lowers long-dated real forward rates by statistically and economically significant

amounts. This is consistent with a decrease in term premia, as any reasonable estimate

of nominal rigidity implies that the expected real interest rate is essentially unchanged

several years after a monetary shock.

Our core quantitative result is that the model can jointly match these responses of

intermediary wealth and the yield curve to monetary shocks. We simulate a monetary

easing as a negative innovation to the real short rate. Such a shock lowers forward

rates at all maturities by more than the expectations hypothesis would imply, owing

to the positive revaluation of arbitrageur wealth. The overreaction of the forward rate

is reversed in a counterfactual economy with exogenous arbitrageur wealth, consistent

with our analytical results. Quantitatively, a shock which lowers the one-year real yield

by 1pp generates effects on arbitrageur wealth and real forward rates which lie within

the confidence intervals estimated in the data. In the counterfactual economy with

exogenous arbitrageur wealth, the same shock undershoots the observed response of

long-dated forward rates.

At the same time, the model also rationalizes the bond return predictability ev-

idence of Fama and Bliss (1987) and Campbell and Shiller (1991) which does not

condition on identified shocks. Consistent with the analytical results, the effects of

a shock to the short rate are in tension with this evidence because they imply that

when the yield curve steepens, future excess returns on long-term bonds are low. An

increase in the borrowing of habitat investors, however, implies that a steep yield curve
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is followed by high excess returns on long-term bonds. Our final quantitative result is

that demand shocks calibrated to match moments on the volatility in yields allow us to

match empirical estimates of bond return predictability using model-generated data.

Related literature Our paper builds on preferred habitat models of the term struc-

ture of interest rates. The preferred habitat view was proposed by Culbertson (1957)

and Modigliani and Sutch (1966) and formalized by the seminal work of Vayanos and

Vila (2021). A growing theoretical literature has used this framework to study the im-

plications for corporate finance (Greenwood, Hanson, and Stein (2010)), government

debt policy (Guibaud, Nosbusch, and Vayanos (2013)), exchange rates (Gourinchas,

Ray, and Vayanos (2021) and Greenwood, Hanson, Stein, and Sunderam (2020)), and

the real economy (Ray (2021)). An enormous empirical literature has drawn on this

framework to inform analyses of unconventional monetary policies. In the existing

framework, the effects of the key driving force (the short rate) are counterfactual. We

enrich this framework to match evidence on the response to such shocks by allowing

the wealth of arbitrageurs to be an endogenous state variable relevant for risk pricing.

In doing so, our paper builds on the literature linking changes in intermediary net

worth with asset prices. This is at the core of the intermediary asset pricing tradition

in finance (He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014)) as

well as the financial accelerator tradition in macroeconomics (Bernanke, Gertler, and

Gilchrist (1999)). Our contribution is to embed this insight into a leading model of the

term structure of interest rates.2 Our focus on intermediaries’ risk-bearing capacity

contrasts with an alternative explanation for the term premium effects of monetary

shocks focused on habitat investors’ demand (Hanson and Stein (2015), Hanson, Lucca,

and Wright (2021)). These papers propose models in which habitat investors save more

(or borrow less) at long maturities after a monetary easing, perhaps due to “reaching for

yield” behavior. Our paper instead maintains the standard assumption that investors

borrow more when yields fall, and accounts for the term premium effects of monetary

policy via a change in the endogenous price of risk.

In this respect, our paper is part of a broader agenda studying links between macroe-

conomic shocks and the price of risk in heterogeneous agent models. Alvarez, Atkeson,

2In their empirical analysis of government bond supply and excess returns, Greenwood and
Vayanos (2014) anticipate that if arbitrageurs’ coefficient of absolute risk aversion is a declining func-
tion of their wealth, changes in their wealth will have effects on term premia. Our paper formalizes
this idea and traces out its theoretical and quantitative implications.
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and Kehoe (2002, 2009) study monetary economies with segmented financial markets

in which monetary shocks change the price of risk. Kekre and Lenel (2021a,b) build

on these insights in conventional New Keynesian models enriched with agents having

heterogeneous risk-bearing capacity. They find that a monetary easing lowers the risk

premium on capital by redistributing wealth to agents who wish to invest more of their

marginal wealth in capital. The present paper shows that a similar mechanism is at

work in the bond market in a preferred habitat environment.3 While we do not extend

the model to feature a New Keynesian production block, we expect that the effects of

policy shocks on the term premium would imply that monetary policy is more potent

in stimulating the real economy to the extent that aggregate demand is rising in the

amount habitat investors borrow long-term.4

Outline In section 2 we outline the model environment. In section 3 we characterize

our main results analytically in a simple version of this environment. In section 4 we

estimate the effects of policy shocks on the yield curve and intermediary wealth in

the data. In section 5 we calibrate the full model, study its impulse responses, and

demonstrate its ability to rationalize the data. Finally, in section 6 we conclude.

2 Model

In this section we outline our model of the term structure of interest rates. The model

integrates features of the preferred habitat and intermediary asset pricing traditions.

Timing and assets Time t is continuous. At time t there is a continuum of zero

coupon bonds with maturities τ ∈ (0,∞). A bond trading at t with maturity τ pays

1 unit of the numeraire at t + τ and its price is P
(τ)
t . The instantaneous return on

3We conjecture that introducing heterogeneity in risk aversion into representative agent models in
which aggregate comovements deliver a positive term premium, as in Piazzesi and Schneider (2007),
Rudebusch and Swanson (2012), and Campbell, Pflueger, and Viceira (2020), would lead to similar
results. With a positive price on term risk, relatively risk tolerant agents would endogenously be more
exposed to it, implying a redistribution of wealth which affects the price of risk on impact of policy
shocks. One important difference in the preferred habitat environment is that it does not rely on
aggregate comovements generating a positive term premium, and thus implies that this mechanism
remains operative even if, as in recent years, aggregate comovements may have flipped signs.

4See Caballero and Simsek (2020) for recent work linking risk premia, aggregate demand, and
output in the New Keynesian environment. See Caramp and Silva (2020) for recent work linking term
premia and aggregate demand in such an environment in particular.
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holding such a bond is dP
(τ)
t /P

(τ)
t . The yield of the bond is given by

y
(τ)
t = −

log
(
P

(τ)
t

)
τ

and the short rate rt is limit of the yield as τ goes to zero.

Decision problems There are two types of agents: habitat investors and arbi-

trageurs.

Habitat investors are indexed by τ and, at time t, are uniformly distributed over

τ ∈ (t,∞). An investor with habitat τ at time t holds a position

Z
(τ)
t = −α(τ) log

(
P

(τ)
t

)
− θt(τ) (1)

in bonds with maturity τ (and zero bonds of all other maturities), where a positive

position implies that the investor is saving in this security. The parameter α(τ) ≥ 0

controls the elasticity of demand to price. θt(τ) controls the level of habitat demand

and is given by

θt(τ) = θ0(τ) + θ1(τ)βt, (2)

where βt is a demand factor, the parameter θ1(τ) controls the loading of demand on

that factor, and the parameter θ0(τ) controls the time-invariant level of demand.

Arbitrageurs can trade at all maturities as well as at the short rate rt with the

central bank. Arbitrageurs are born and die at rate ξ and have separable log preferences

over consumption upon death.5 Here (and only here) we depart from typical preferred

habitat models which assume arbitrageurs are alive instantaneously and have CARA

preferences over consumption. Using lower case to denote the endowment and choices

of an individual arbitrageur with wealth wt, this arbitrageur chooses its sequence of

financial portfolios to maximize

vt(wt) = max
{{x(τ)t+s}τ∈(0,∞)}

Et

∫ ∞
0

exp(−ξs) logwt+sds (3)

5Preferences with a constant coefficient of relative risk aversion are key for our results. A coefficient
of one (log utility) is convenient because it implies myopic portfolio choice, but the precise value is not
essential for our results. Finally, we assume that arbitrageurs consume only upon death for parsimony.
Our results generalize easily to the case in which they intertemporally smooth consumption, since they
will optimally consume at a constant rate out of wealth given their unitary elasticity of substitution.
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subject to the budget constraint

dwt = rtwtdt+

∫ ∞
0

x
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− rtdt

)
dτ. (4)

where x
(τ)
t denotes its position in bonds with maturity τ . Using upper case to denote

aggregates across arbitrageurs, aggregate arbitrageur wealth thus follows

dWt = Wtrtdt+

∫ ∞
0

X
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− rtdt

)
dτ + ξ

(
W̄ −Wt

)
dt, (5)

where W̄ is the exogenous endowment of newborn arbitrageurs (perhaps zero). When

ξ →∞, this converges to the constant endowment process in Vayanos and Vila (2021).

For finite ξ, Wt will be an endogenous state variable of the model as in intermediary

asset pricing models such as He and Krishnamurthy (2013) and Brunnermeier and

Sannikov (2014).

Driving forces There are two driving forces in this economy: the short rate set by

the central bank rt, and the demand factor βt. These follow the exogenous processes

drt = κr(r̄ − rt)dt+ σrdBr,t, (6)

dβt = −κββtdt+ σβdBβ,t, (7)

where the Brownian motions dBr,t and dBβ,t are independent and κr, κβ > 0. We

assume independent shocks and a single-factor demand structure since our calibration

will, for simplicity, focus on this case. We expect our main insights would generalize

to correlated shocks and multiple demand factors and leave this for future work.

Market clearing and equilibrium The bond market must clear for each maturity

τ

Z
(τ)
t +X

(τ)
t = 0 (8)

at each point in time t. The definition of an equilibrium is standard.

Interpretation We interpret the model in fully real terms. We do this for two

reasons. First, focusing on real bonds allows us to study our mechanism focused on
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interest rate risk in a more parsimonious setting which can abstract away from inflation

risk. Second, focusing on the real term structure allows us to uncover the effects

of monetary shocks on term premia purged from any effects on long-run inflation.

In particular, monetary policy shocks may contain news about the long-run inflation

target, which in turn will affect long-dated nominal forwards (Gurkaynak, Sack, and

Swanson (2005b)). Long-dated real forwards are immune from this issue, and moreover

monetary neutrality in the long run implies that expected real interest rates in the

distant future should be unaffected by monetary shocks. In both model and data, this

allows a tight analysis of the effects of a monetary shock on term premia by studying

the response of real forwards on impact of the shock.

There is a related nuance in how we should understand monetary shocks in the

model. Conventional macroeconomic models imply that the real short rate largely re-

flects the natural rate of interest, which in turn reflects productivity, demographics, and

other driving forces which are independent of monetary policy (and can be expected to

have a more persistent effect on the real interest rate than will monetary shocks). With

this in mind, our approach to simulating a monetary shock is to study an unexpected,

one-time shock to the real short rate with mean reversion κm which need not equal κr

(in particular, most natural is that κm > κr). Since the mean reversion of the shock

is only important for quantitative purposes, we will use the terms “monetary shock”

and “short rate shock” interchangeably until we quantify the model.

3 Analytical insights

We now study a simplified version of the model which allows us to analytically char-

acterize our main results. When arbitrageur wealth is endogenous and their portfolio

features positive duration, an unexpected fall in the short rate revalues wealth in their

favor and compresses term premia. While this induces a negative relationship between

the slope of the yield curve and expected excess bond returns, habitat demand shocks

induce a positive relationship and thus still allow the model to rationalize classic evi-

dence on bond return predictability which does not condition on identified shocks.

3.1 Simplified environment

In this section we assume time is discrete and only two bonds are traded: maturities

one and two periods. Together, this environment captures the essential forces at play
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in our full model with much simpler mathematics.

We now spell out the details. Arbitrageurs trade in one-period bonds with the

central bank at price exp(−rt) and with habitat investors in two-period bonds at price

Pt, where we now dispense with the notation for maturity τ since it is unambiguous.

Habitat investors hold a position

Zt = −α logPt − θt

in two-period bonds with α ≥ 0, as in (1). An arbitrageur with wealth wt chooses its

position in two-period bonds xt to maximize

max
{xt+s}

Et

∞∑
s=1

exp(−ξs) logwt+s

subject to the evolution of wealth

wt+1 = wt exp(rt) + xt

(
exp(−rt+1)

Pt
− exp(rt)

)
,

the discrete time counterparts to (3)-(4). Aggregate arbitrageur wealth follows

Wt+1 = exp(−ξ)
[
Wt exp(rt) +Xt

(
exp(−rt+1)

Pt
− exp(rt)

)]
+ (1− exp(−ξ))W̄ ,

the discrete time counterpart to (5). The short rate and habitat demand follow the

AR(1) processes

rt+1 − r̄ = (1− κr) (rt − r̄) + σrεr,t+1,

θt+1 − θ̄ = (1− κθ)
(
θt − θ̄

)
+ σθεθ,t+1,

where εr,t+1 and εθ,t+1 are independent standard Normal innovations. κr ∈ (0, 1) and

κθ ∈ (0, 1) can be interpreted as the degree of mean reversion in these driving forces,

as in (6) and (7). We dispense with βt in this section because it is isomorphic to θt

since there is only one long-term bond. Finally, bond market clearing requires

Xt + Zt = 0,

as in (8).

9



3.2 Equilibrium

Following standard arguments, each arbitrageur’s value function is characterized by

vt(wt) = logwt + vt,

where vt is common to arbitrageurs and invariant to their individual level of wealth.

Arbitrageurs’ optimality condition with respect to xt implies

Et

(
exp(rt) +

xt
wt

(
exp(−rt+1)

Pt
− exp(rt)

))−1 [
exp(−rt+1)

Pt
− exp(rt)

]
= 0, (9)

clarifying that their portfolio share xt
wt

is also invariant to wealth. Defining the log

one-period holding return on a two-period bond

r
(2)
t+1 ≡ −rt+1 − logPt

and making use of
xt
wt

=
Xt

Wt

(10)

by aggregation, a second-order Taylor approximation of (9) around r
(2)
t+1 = rt implies

Etr
(2)
t+1 − rt +

1

2
σ2
r ≈

Xt

Wt

σ2
r . (11)

This has an intuitive interpretation. Arbitrageurs require non-zero expected excess

returns to compensate them for bearing interest rate risk on two-period bonds. In

particular, when Xt > 0, arbitrageurs are long two-period bonds and thus expected

excess returns on two-period bonds must be positive; the opposite is true if Xt < 0. The

higher is arbitrageur wealth Wt, the smaller (in absolute value) expected excess returns

must be, because two-period bonds are a smaller share of their wealth and arbitrageurs

have CRRA preferences. In the limit Wt →∞, arbitrageurs are effectively risk neutral

and thus the (local) expectations hypothesis holds.6

The above condition is the only approximation we use in the rest of this section;

all other conditions hold exactly. Combining the above condition with market clearing

6The standard Jensen’s inequality term 1
2σ

2
r implies that the expectations hypothesis does not

hold. See Piazzesi (2010) for further discussion of this point.
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in two-periods bonds and habitat investors’ demand yields

Etr
(2)
t+1 − rt +

1

2
σ2
r =

1

Wt

(α logPt + θt)σ
2
r . (12)

Recall that holding period returns are given by

r
(2)
t+1 = −rt+1 − logPt. (13)

and the evolution of the short rate and habitat demand are given by

rt+1 − r̄ = (1− κr) (rt − r̄) + σrεr,t+1, (14)

θt+1 − θ̄ = (1− κθ)
(
θt − θ̄

)
+ σθεθ,t+1. (15)

Finally, combining the evolution of aggregate arbitrageur wealth with market clearing

in two-period bonds and habitat investors’ demand yields

Wt+1 = exp(−ξ)
[
Wt exp(rt) + (α logPt + θt) (exp(r

(2)
t+1)− exp(rt))

]
+ (1− exp(−ξ))W̄ . (16)

The dynamical system (12)-(16) is thus five equations in five unknowns r
(2)
t+1, rt+1, θt+1,

Pt, and Wt+1, given rt, θt, and Wt. The rest of this section proceeds through four main

results characterizing the equilibrium.

3.3 Short rate shock with constant arbitrageur wealth

Our first result characterizes the effects of a short rate shock εr,t assuming ξ → ∞,

and thus Wt = W̄ for all t. We focus on the impact response of the one-period ahead

forward rate

ft ≡ − logPt − rt (17)

since this contains the essential economics, though it is straightforward to characterize

the full impulse response of the forward rate or transformations such as bond yields.

We obtain:7

Proposition 1. If ξ → ∞, then the response of the one-period ahead forward rate to

7The proof of this result, together with the proof of all results in this section, is in appendix A.
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a conventional monetary shock is

dft =
1− κr − 1

W̄
ασ2

r

1 + 1
W̄
ασ2

r

σrdεr,t.

Thus, there is underreaction of the forward rate relative to the expected short rate

dft < (1− κr)σrdεr,t = dEtrt+1

if ασ2
r > 0.

Thus, when ξ →∞ we recover the effects of short rate shocks in existing preferred

habitat models.8 Intuitively, consider an unexpected fall in the short rate. Holding

fixed habitat investor borrowing, this lowers the two-period bond yield. If habitat

investors are price elastic (α > 0), this causes them to borrow more in two-period

bonds. If arbitrageurs face price risk in these bonds (σr > 0), this raises the term

premium, reflected in underreaction of the forward rate. To summarize: a fall in the

short rate raises the term premium because arbitrageurs must bear more risk.

3.4 Short rate shock with endogenous arbitrageur wealth

In the remainder of this section, we focus on the case with finite ξ and thus allow ar-

bitrageurs’ endowment to evolve endogenously over time. We study impulse responses

and comovements around the model’s stochastic steady-state, which we denote without

time subscripts.

In this setting, our first result characterizes the impact effect of a short rate shock

εr,t on arbitrageur wealth Wt:

Proposition 2. In response to a conventional monetary shock starting from the stochas-

tic steady-state,

d logWt = − exp(−ξ)ωσrdεr,t,

where ω is the duration of arbitrageurs’ wealth and satisfies

ω ∝ X

W
.

8See for instance Proposition 2 in Vayanos and Vila (2021).
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Intuitively, consider an unexpected fall in the short rate. When arbitrageurs’ en-

dowment is endogenous, their wealth will be revalued upwards if and only if their

portfolio has positive duration at the stochastic steady-state, which amounts in this

environment to a positive position in two-period bonds X.

Given the revaluation of arbitrageur wealth, our next result revisits the impact

effect of a short rate shock on the forward rate:

Proposition 3. The response of the one-period ahead forward rate to a conventional

monetary shock is

dft =

[
1− κr − 1

W
ασ2

r

1 + 1
W
ασ2

r

+
1
W
Xσ2

r

1 + 1
W
ασ2

r

exp(−ξ)ω
]
σrdεr,t.

Thus, assuming σ2
r > 0, there is overreaction of the forward rate relative to the expected

short rate

dft > (1− κr)σrdεr,t = dEtrt+1

if exp(−ξ)|ω| is sufficiently high relative to α.

Thus, when arbitrageurs’ wealth is a relevant state variable for risk pricing, we

can reverse the effects of a short rate shock on the term premium. In particular, if

arbitrageurs have positive duration ω ∝ X
W

, we know from (12) that the steady-state

term premium is positive. A rise in their wealth lowers their price of bearing interest

rate risk. If this force is sufficiently strong relative to the increase in the quantity of risk

they bear — characterized in Proposition 1, and controlled by α — the term premium

will fall. This is reflected in overreaction of the forward rate.

3.5 Slope of yield curve and bond return predictability

We finally characterize the model-implied relationship between the slope of the yield

curve and bond return predictability.

In the data, a steep yield curve predicts high excess returns on long-term bonds

(Fama and Bliss (1987), Campbell and Shiller (1991)). The overreaction of the forward

rate on impact of a short rate shock in Proposition 3 is in tension with this evidence:

it implies that a fall in the short rate which steepens the yield curve should predict

subsequently low excess bond returns because the term premium has fallen.

Our final result is that the model can nonetheless be consistent with the classic

bond return predictability evidence in the literature if shocks to the demand of habitat
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investors εθ,t are sufficiently large relative to shocks to the short rate εr,t. Intuitively,

the only effect of demand shocks on the yield curve are via their induced effects on the

term premium. Thus, a demand shock which steepens the yield curve must necessarily

be raising the term premium, and vice-versa.9

We summarize these results by characterizing the coefficients on Fama and Bliss

(1987) and Campbell and Shiller (1991) regressions estimated on model-generated data.

In the present simplified environment, the Fama and Bliss (1987) regression would

estimate

r
(2)
t+1 − rt = αFB + βFB (ft − rt) + εFB,t+1,

while the Campbell and Shiller (1991) regression would estimate

rt+1 − yt = αCS + βCS (yt − rt) + εCS,t+1,

given the yield on the two-period bond

yt ≡ −
logPt

2
. (18)

While the expectations hypothesis predicts βFB = 0 and βCS = 1, the empirical ev-

idence suggests these coefficients are positive and less than one (in fact negative).

Treating our model as the data-generating process, we obtain:

Proposition 4. If ξ is finite, the Fama-Bliss coefficient βFB can be above or below

zero, and the Campbell-Shiller coefficient βCS can be above or below one. However, as

σθ →∞, βFB → 1 and βCS → −1.

Thus, even if a fall in the short rate lowers the term premium, our model will still

be consistent with the classic evidence on bond return predictability which does not

condition on identified shocks when demand shocks are sufficiently important.

3.6 Taking stock

In this simplified environment, we have obtained four main results. First, when arbi-

trageurs’ endowment is constant as in existing preferred habitat models, an unexpected

fall in the short rate raises the term premium because habitat investors seek to bor-

row more long-term. Second, when arbitrageurs’ endowment is endogenous, the same

9The importance of demand shocks in rationalizing evidence on bond return predictability echoes
previous results in the literature. See for instance Proposition 6 in Vayanos and Vila (2021).
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shock revalues arbitrageur wealth upwards if their portfolio features positive duration.

Third, the latter mechanism implies that the term premium will fall if the duration of

arbitrageurs’ portfolio is sufficiently high relative to the price elasticity of habitat in-

vestors. Finally, habitat demand shocks always induce a positive relationship between

the slope of the yield curve and expected excess bond returns, unlike short rate shocks.

Thus, when the volatility of demand shocks is sufficiently high, the Fama and Bliss

(1987) and Campbell and Shiller (1991) regressions yield coefficients above and below

zero, respectively.

4 Identified effects of monetary shocks

Before quantitatively studying these mechanisms in the full model, we provide two key

pieces of empirical evidence used to discipline and validate it: the effects of monetary

policy shocks on the yield curve and intermediary wealth.

4.1 Empirical strategy

We study the response of the yield curve and intermediary equity prices around an-

nouncements of the Federal Open Market Committee (FOMC). Given an outcome

variable xt (a forward rate or measure of intermediary wealth) and one-year yield y
(1)
t

measured at the end of day t, we estimate the effect of a change in y
(1)
t on the change

in xt, instrumenting the former with the high-frequency change in Fed funds futures in

a 30 minute window around the FOMC announcement. By focusing on variation in-

duced by the high-frequency change in Fed funds futures, we address the point made by

Nakamura and Steinsson (2018) that even on days with FOMC announcements, there

are many other sources of news orthogonal to monetary policy which simultaneously

affect yields and other outcome variables. By nonetheless summarizing our results in

terms of the effect of a daily change in the one-year yield on outcome variables, we

provide estimates which are easy to interpret and compare to the model.

A long-standing challenge in the identification of monetary policy shocks is that,

even using intraday data, it is difficult to decouple them from “information shocks”:

information about the state of the economy revealed at the time of FOMC announce-

ments which is distinct from a shock to the Federal Reserve’s monetary policy rule.

In the spirit of Jarocinski and Karadi (2020), we seek to identify the effects of mon-

etary shocks alone by focusing only on FOMC announcement days in which the high
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frequency change in the S&P 500 and one-year bond yield have opposite signs. Intu-

itively, if an increase in the one-year bond yield is due to good news about the state

of the economy, it should be reflected in an increase in the S&P 500. Instead, if an

increase in the one-year bond yield is due to a monetary policy shock, it should be

reflected in a fall in the S&P 500 (due to the higher discount rate and, consistent with

Kekre and Lenel (2021a,b) as well as the present paper, a higher price of risk). We

discuss the robustness to using all FOMC announcement days, as well as a number of

other alternative robustness exercises, later in this section.

4.2 Data

For high-frequency measures of monetary policy surprises and changes in the S&P 500,

we the data constructed by Jarocinski and Karadi (2020). They measure the monetary

surprise in particular using the three-month ahead Fed funds futures contract. As they

argue, this horizon combines information about near term policy shocks and forward

guidance, useful during times when the zero lower bound was binding.

For data on the yield curve, we use Gurkaynak, Sack, and Wright (2008)’s inter-

polation interpolated yield curve on each day to compute yields and forwards at all

maturities and horizons at a daily frequency. We use in particular the updated data

maintained by the Federal Reserve. As previously noted, we focus on the real yield

curve since our model is silent about inflation. For completeness, we present empirical

estimates using the nominal yield curve in appendix B.

For data on intermediary wealth, we construct value-weighted indices of stock re-

turns for publicly traded primary dealers. We use the list of primary dealers provided

by the Federal Reserve and obtain daily closing prices and market capitalizations from

CRSP, and intraday quotes using TAQ. Our focus on primary dealers follows He, Kelly,

and Manela (2017), who more broadly study the relevance of their balance sheet health

for prices in many different asset classes.

We use the January 2004 through December 2016 period for our analysis. While

TIPS have been traded since the late 1990s, two- and three-year maturities were only

included in Gurkaynak, Sack, and Wright (2006)’s interpolated real yield curve since

2004. We thus begin our sample at this point since we will express the effects on all

outcome variables relative to a 1pp change in the one-year yield.10 We end our sample

10None of our findings would meaningfully change if we expressed effects relative to a 1pp change
in the two-year yield instead. We prefer using the one-year yield (which requires extrapolating from
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in 2016 as this is the last year in Jarocinski and Karadi (2020)’s sample.

In robustness exercises described further below, we also use the classification of

FOMC announcements of Cieslak and Schrimpf (2019) and the measure of monetary

policy surprises constructed by Nakamura and Steinsson (2018).

4.3 Response of yield curve to monetary shocks

We first characterize the response of the yield curve to monetary shocks. Our outcome

variables of interest are the changes in one-year real forward rates paying between 2

and 20 years from each date t.

Figure 1 plots the regression coefficients and associated 90% confidence intervals.

There is a striking U -shaped pattern in these effects, consistent with two effects which

move in opposite directions as the maturity rises. First, there is the standard effect of

monetary policy on the real interest rate arising from nominal rigidity. Given nominal

rigidity, a persistent rise in the nominal interest rate will induce an immediate rise in

the real interest rate which dissipates over time. At long horizons, the real interest

rate should be unchanged because nominal prices will have adjusted to the shock. This

mechanism is consistent with the fall in the estimated coefficients through ten years

maturity. Second, there can be an effect of monetary policy on term premia. To the

extent a monetary tightening raises term premia, this will be reflected in a rise in

forward rates (overreaction of the forward rate, following section 3). This mechanism

is consistent with the rise in the estimated coefficients from 10 to 20 years maturity,

since longer maturity bonds are exposed to more risk.

This evidence rationalizes competing findings in the literature. Hanson and Stein

(2015) estimate that in two-day windows around FOMC announcements, a 1pp in-

crease in the two-year nominal yield is associated with a 0.42pp increase in the 10-year

instantaneous real forward and 0.30pp increase in the 20-year instantaneous real for-

ward, both of which are statistically significantly different from zero at all conventional

levels (their Table 1). Since estimates of nominal rigidity cannot account for changes

in real interest rates this far in the future, they conclude that a monetary tightening

raises term premia. Nakamura and Steinsson (2018) argue that using two- or even

one-day changes in yields as a measure of monetary policy surprises is misleading, be-

cause even on FOMC announcement days most of the variation in yields is induced by

the interpolated yield curve) simply because this is also what we use in our bond return predictability
regressions, as is standard.
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Figure 1: ∆f
(τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise

Notes: at each integer between 2 and 20 on the x-axis, we plot coefficients and 90% confidence interval

using ∆f
(τ)
t as the outcome variable. Confidence interval based on robust standard errors.

non-monetary shocks. Using high-frequency intraday measures of monetary surprises,

they estimate that a surprise associated with a 1pp increase in the one-year nominal

yield induces only a 0.12pp increase in the 10-year instantaneous real forward, and this

is statistically indistinguishable from zero (their Table 1). We follow Nakamura and

Steinsson (2018) in using intraday measures of monetary policy surprises. Our results

verify their finding that at the 10-year maturity, a monetary tightening has only a small

effect on forward rates. We then demonstrate that when considering longer maturity

forward rates, which were not studied in Nakamura and Steinsson (2018), a monetary

tightening economically and statistically significantly raises forward rates.11 This is

consistent with the findings of Hanson and Stein (2015).

Figure 2 visually depicts the second-stage in our IV estimation for the 20-year

forward rate. The scatterplots make evident that the positive slope is not driven by

any one observation. At the same time, these figures make clear that the distribution

of monetary policy surprises is leptokurtic, with large observations in absolute value

11We note that the response of the yield curve at maturities as high as 20 years is not based on
any extrapolation. Gurkaynak et al. (2008) demonstrate that TIPS with time to maturity exceeding
20 years have been outstanding since 1998. For instance, there were four such issues outstanding in
2004 at the beginning of our sample period.
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Figure 2: ∆f
(19,20)
t on ∆̂y

(1)
t

Notes: ∆̂y
(1)
t is estimated based on first-stage projection on high-frequency monetary surprise esti-

mated by Jarocinski and Karadi (2020).

particularly concentrated around the global financial crisis. One may be worried, then,

that our results are entirely driven by anomalies during the most acute phase of this

crisis, or reflect news other than conventional monetary policy such as to QE.

Table 1 demonstrates that this is in fact not the case, and that our results are robust

to a wide variety of alternative specifications. Proceeding from top to bottom, the first

panel summarizes the baseline estimates of a monetary tightening on the 5-, 10-, 15-,

and 20-year forwards (the same as the relevant points in Figure 1). The next three

panels consider alternative samples: we first consider all FOMC announcements rather

than only on those in which the one-year yield and S&P 500 move in opposite directions;

we drop all announcements between July 2008 and June 2009 to eliminate the most

acute phase of the financial crisis; and we finally drop all announcements involving

any news about asset purchases or non-standard credit operations, as classified by

Cieslak and Schrimpf (2019). The next panel considers an alternative measure of

monetary surprises as an instrument: we use the first principal component of five

futures contracts in a 30 minute window around policy announcements as estimated by

Nakamura and Steinsson (2018). The final panel uses the latter instrument and drops

all announcements between July 2008 and June 2009, corresponding most closely to

the benchmark specification in Nakamura and Steinsson (2018). In all five alternative

specifications, we estimate a U -shape as in our baseline. In all cases, the response of

the 20-year forward is economically significant, ranging between 0.27pp and 0.50pp for
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Specification ∆f
(5)
t ∆f

(10)
t ∆f

(15)
t ∆f

(20)
t

Baseline 0.40 0.11 0.25 0.39
(0.10) (0.14) (0.15) (0.14)

All FOMC announcements 0.38 0.11 0.13 0.27
(0.10) (0.11) (0.15) (0.13)

Excluding 7/08-6/09 0.46 -0.26 0.21 0.50
(0.22) (0.30) (0.21) (0.29)

Excluding announcements with LSAP news 0.28 -0.12 0.07 0.30
(0.12) (0.17) (0.14) (0.19)

Nakamura and Steinsson (2018) IV 0.72 -0.07 0.13 0.29
(0.32) (0.26) (0.19) (0.26)

Nakamura and Steinsson (2018) IV, ex. 7/08-6/09 0.64 0.27 0.35 0.40
(0.15) (0.13) (0.11) (0.13)

Table 1: ∆f
(τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise

Notes: robust standard errors provided in parenthesis.

a 1pp increase in the one-year yield. And in three of these five specifications, the effect

is statistically significantly different from zero at a 90% level.

4.4 Response of arbitrageur wealth to monetary shocks

We next characterize the response of intermediary wealth to monetary shocks. We

focus on the change in the equity prices of primary dealers around FOMC announce-

ments. By definition, primary dealers are the trading counterparties of the New York

Fed in its implementation of monetary policy, and thus market-makers in Treasury se-

curities. They thus correspond most closely to arbitrageurs in our model. The balance

sheet capacity of primary dealers has been more broadly central in the literature on

intermediary asset pricing (He et al. (2017)), so that our results may also be of interest

for asset classes beyond government bonds.

We measure the response of primary dealer equity prices in 30 minute windows

around FOMC announcements. For each publicly traded and active dealer around an

FOMC announcement, we measure the closest prices of transactions 10 minutes prior

to the FOMC announcement and 20 minutes after the FOMC announcement.12 We

then aggregate the change in dealer prices in this 30 minute window, weighting by

12For FOMC announcements occurring outside NYSE trading hours, we use the preceding closing
price and following opening price.

20



Figure 3: change in dealer equity prices on ∆̂y
(1)
t

Notes: ∆̂y
(1)
t is estimated based on first-stage projection on high-frequency monetary surprise esti-

mated by Jarocinski and Karadi (2020).

dealers’ market capitalizations at the end of the previous trading day.

A surprise monetary tightening generates an economically and statistically signif-

icant fall in dealer equity prices in this 30 minute window. The first panel of Figure

3 depicts the tight negative relationship between the high-frequency change in dealer

prices and the change in the one-year yield induced by the high-frequency monetary

surprise.13 A 1pp increase in the one-year yield induced by a monetary tightening

causes a 8.8pp decline in dealer equity prices, as summarized in the first row and col-

umn of Table 2. The fall the dealer equity prices is in fact 2.8pp more than the fall

in the broader S&P 500, though we only mention this for additional context;14 the

absolute change in dealer wealth, not the relative change, is relevant for our model.

We find that it is important to focus on the 30 minute window around FOMC

announcements to have enough power to detect these effects. The right panel of Figure

3 depicts the one day change in dealer prices on the y-axis rather than the 30 minute

change. As is evident, the positive relationship is less apparent. The second column of

the first row in Table 2 confirms that while the magnitude of the estimated response

is comparable to that obtained in the 30 minute window, it is no longer statistically

significantly different from zero. This was not the case for our estimated effects on the

13The change in the one-year yield is still the one-day change, as throughout this section.
14The relative response of dealer equity prices is consistent with their daily market beta, which we

estimate to be 1.5 over this sample period.
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yield curve, which detected statistically significant effects even on one day changes in

forward rates. This makes sense because equity prices are much more volatile than

forward rates and thus the signal to noise ratio is lower. The literature has generally

found it difficult to detect any meaningful effect of monetary shocks on bank equity

prices (Drechsler, Savov, and Schabl (2021), Haddad and Sraer (2020)), even though

bank portfolios appear to exhibit positive duration (Begenau, Piazzesi, and Schneider

(2015)) and bank exposures forecast bond returns (Haddad and Sraer (2020)). We

focus on a subset of intermediaries particularly relevant for risk pricing — primary

dealers — and demonstrate that using tight windows around FOMC announcements,

the effects of monetary shocks on their equity prices are evident.15

Table 2 demonstrates that our estimated effects on dealer equity prices are again ro-

bust to alternative specifications. We again consider all FOMC announcements rather

than the subset in which the one-year yield and S&P 500 move in opposite directions;

drop all announcements between July 2008 and June 2009; drop all announcements

involving any news about asset purchases or non-standard credit operations; use the

Nakamura and Steinsson (2018) measure of monetary surprises; and use the latter

measure and drop all announcements between July 2008 and June 2009. Across speci-

fications, we find that dealer equity prices fall by 3.1pp−24.1pp in response to a 1pp rise

in the one-year yield. In all but the first case, the response is statistically significantly

different from zero at a 90% level. In contrast, the results using one-day changes in

dealer equity prices are sometimes negative and sometimes positive, and in all but one

case not statistically significantly different from zero. This reinforces the importance

of using tight event windows to have enough power to detect these effects.

While our results make clear that primary dealers are in fact exposed to interest rate

risk, they do not speak to the precise mechanism by which they are. It could be that

dealers are exposed because their portfolios have positive duration. But it also could

be that dealers are exposed because, say, they are exposed to credit risk, and credit

risk rises when monetary policy tightens because it affects the ability of borrowers to

repay. In ongoing work, we are studying whether heterogeneity in the responses to

monetary shocks among primary dealers can shed light on the mechanisms by which

a monetary tightening lowers their wealth. This can be used to further discipline the

mechanism operating through portfolio duration which is at the core of our model.

15English, den Heuvel, and Zakrajsek (2018) also use tight intraday windows to study the response
of commercial bank equity prices to monetary shocks. Our analysis complements theirs but focuses
on primary dealers.
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Specification
30 minute

change
One day
change

Baseline -8.8 -8.2
(2.7) (10.0)

All FOMC announcements -3.1 -2.8
(4.1) (8.2)

Excluding 7/08-6/09 -15.5 -3.4
(8.7) (20.2)

Excluding announcements with LSAP news -10.5 3.7
(4.7) (10.3)

Nakamura and Steinsson (2018) IV -24.1 -21.3
(10.0) (17.7)

Nakamura and Steinsson (2018) IV, ex. 7/08-6/09 -12.3 -21.7
(4.0) (6.6)

Table 2: change in dealer prices on ∆y
(1)
t , instrumented by high-frequency surprise

Notes: robust standard errors provided in parenthesis.

5 Quantitative analysis

We now assess the ability of our full model to rationalize the effects of monetary policy

on the yield curve. The impulse responses to monetary policy shocks are quantita-

tively consistent with the yield curve and intermediary wealth responses estimated in

the data. At the same time, the model still rationalizes the classic bond return pre-

dictability evidence of Fama and Bliss (1987) and Campbell and Shiller (1991) which

does not condition on identified shocks.

5.1 Equilibrium and solution

We first summarize the equilibrium conditions of the full model environment described

in section 2 and the computational algorithm we use to solve it.

Equilibrium As derived formally in appendix C, arbitrageurs’ first-order conditions

for the problem (3)-(4) imply that

x
(τ)
t

wt
=
X

(τ)
t

Wt
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natural generalizations of (10) and (11) in the simple model, respectively. As in that

case, the latter optimality condition has an intuitive interpretation. Arbitrageurs re-

quire non-zero expected excess returns to compensate them for bearing interest rate

and demand risk. Their exposure to a bond with maturity τ depends on the covari-

ance of returns on that bond with all other bonds of maturity s ∈ (0,∞) and the

arbitrageurs’ position in those bonds {X(s)
t }∞s=0. As arbitrageurs’ wealth rises to infin-

ity, a given position in these bonds accounts for a smaller share of their wealth and

thus their required risk compensation falls to zero.

Substituting habitat demand (1) and market clearing (8) into the above condition,

we obtain

Et

(
dP

(τ)
t

P
(τ)
t

)
− rtdt =

1

Wt

∫ ∞
0

(
α(τ) log

(
P

(τ)
t

)
+ θ0(τ) + θ1(τ)βt

)
Covt

(
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

)
ds. (19)

Substituting arbitrageurs’ habitat demand and market clearing in arbitrageurs’ aggre-

gate evolution of wealth (5), we obtain

dWt = Wtrtdt+

∫ ∞
0

(
α(τ) log

(
P

(τ)
t

)
+ θ0(τ) + θ1(τ)βt

)[dP (τ)
t

P
(τ)
t

− rtdt

]
dτ

+ ξ(W̄ −Wt)dt. (20)

Together with the driving forces (6)-(7), this characterizes the equilibrium. These

equilibrium conditions parallel (12)-(16) in the simple model.

Solution In a large class of term structure models, including existing models in

the preferred habitat tradition, bond prices are exponentially affine function in the

model’s state variables. The dependence of the price of risk on arbitrageurs’ wealth in

our setting implies that bond prices are no longer exponentially affine in this way.

We therefore characterize bond prices as a general function of the three state vari-
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able rt, βt and Wt

P
(τ)
t ≡ P (τ)(rt, βt,Wt). (21)

Writing the evolution of wealth as

dWt = ω(rt, βt,Wt)dt+ ηr(rt, βt,Wt)dBr, t + ηβ(rt, βt,Wt)dBβ, t (22)

for some functions ω, ηr, and ηβ, we can use (6), (7), (19), and (22) together with Ito’s

Lemma to obtain a system of partial differential equations (PDEs) relating partial

derivatives of {P (τ)}∞τ=0 and the state variables rt, βt, and Wt. Given the boundary

condition

P (0)(rt, βt,Wt) = 1,

we use (forward) finite differences in maturity and collocation in other state variables

to numerically solve this system of PDEs, given conjectures for the functions ω, ηr,

and ηβ. We then repeat this process and iterate over our guesses for the functions ω,

ηr, and ηβ until (22) is consistent with (20). Our code is written in Julia and solves

the model in less than a second on a standard desktop computer. Further details on

the algorithm are in appendix C.

As previously noted, we then simulate a monetary shock as an unexpected, one-

time shock to the short rate with persistence κm 6= κr. The algorithm to solve for an

impulse response to such an unexpected shock is also provided in appendix C

5.2 Calibration

We assume an exponential form for the slope and intercept of habitat demand by

maturity, as in Vayanos and Vila (2021) and facilitating comparison with the literature.

In particular, we assume

α(τ) = α exp−δατ ,

θ0(τ) = θ0

(
exp−δατ − exp−δθτ

)
,

θ1(τ) = θ1

(
exp−δατ − exp−δθτ

)
,

for τ ≤ 20, and α(τ) = θ0(τ) = θ1(τ) = 0 for τ > 20. We focus on trade in bonds out

to 20 years maturity because these are the maximum maturity of TIPS outstanding.

The model admits two normalizations. First, only the product θ1σβ rather than θ1
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Description Value Moment Target Model

Unconditional moments of yields and volumes

r̄ mean short rate 0 y
(1)
t 0.06% 0.21%

κr mean rev. short rate 0.5 σ(y
(1)
t ) 1.66% 1.69%

σr std. dev. short rate 0.022 σ(∆y
(1)
t+1) 1.75% 1.62%

ξ persistence arb. wealth 0.15 y
(20)
t − y(1)

t 1.54% 2.15%

κβ mean rev. demand 0.1 1
20

∑20
τ=1 σ(y

(τ)
t ) 1.01% 1.87%

σβ std. dev. demand 0.65 1
20

∑20
τ=1 σ(∆y

(τ)
t+1) 0.78% 1.41%

α level price elast. 0.87 1
20

∑20
τ=1 ρ(∆y

(1)
t+1,∆y

(τ)
t+1) 0.57 0.66

δα sens. price elast. to τ 0.28
∑2

τ=1 |∆Xτ
t |/
∑20

τ=1 |∆Xτ
t | 0.20 0.18

δθ sens. demand to τ 0.50
∑20

τ=11 |∆Xτ
t |/
∑20

τ=1 |∆Xτ
t | 0.09 0.11

Impact effects of monetary shock

κm mean rev. monetary 0.5 df
(1,2)
t /dy

(1)
t 0.81 0.64

W̄ arb. endowment 0.002 dWt/dy
(1)
t -8.8 -6.6

Table 3: baseline calibration

Notes: ∆ denotes annual change in this table. σ denotes monthly standard deviation, ρ denotes
monthly correlation, and moments without these symbols are simple time-series averages.

and σβ matter for the equilibrium dynamics; we thus set θ1 = 1. Second, {W̄ , θ0, σβ, α}
can each be scaled without changing the state-contingent path of prices or returns. We

thus set θ0 = 1.

The calibration of remaining moments is summarized in Table 3. We calibrate the

model to match two sets of moments: unconditional moments of yields and transaction

volumes, and key (conditional) moments summarizing the effects of monetary shocks.

Unless otherwise specified, all moments in the data are computed over the same Jan-

uary 2004 through December 2016 period studied in section 4. We reiterate that our

calibration focuses on the real yield curve, since our model is silent about inflation.

Finally, we note that the current parameterization is preliminary as it does not tightly

match the desired moments; in ongoing work we are refining the parameterization to

more tightly match the targeted moments.

We first set a subset of parameters to match unconditional moments of yields and

transaction volumes. In this respect we follow the strategy of Vayanos and Vila (2021)

to ease comparison with the literature. We set the average level of the short rate r̄

to match the average one-year yield of 0.06%. We set the mean reversion of the short
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rate process κr to match the monthly volatility of the one-year yield of 1.66%, and the

volatility of shocks σr to match the monthly volatility of annual changes in the one-year

yield of 1.75%. Analogously, we set the mean reversion of the demand process κβ to

match the average monthly volatility of yields at maturities {1, ..., 20} of 1.01%, and

the volatility of shocks σβ to match the average monthly volatility of annual changes

in these same yields of 0.78%. We set ξ, which controls the persistence of arbitrageur

wealth and thus the volatility of bond prices, to match the 20-year/1-year yield spread

of 1.54%. We set the level of the demand elasticity α to match the average correlation

between annual changes in the one-year yield and annual changes in yields at maturities

{1, ..., 20} of 0.57. We set δα to match the share of transactions by primary dealers for

bonds with maturities less than two years, and δθ to match the share of transactions

for bonds with maturities greater than ten years.16

The remaining parameters are set to match our baseline estimates of the effects

of monetary shocks in section 4. We set the mean reversion of a monetary shock κm

to match a 0.81pp increase in the 2-year real forward rate on impact of a monetary

shock which raises the one-year yield by 1pp (Figure 1). For now, we set κm = κr for

simplicity. The parameter W̄ controls the level of arbitrageur wealth and is calibrated

to match the 8.8% by which intermediary wealth falls on impact of the same monetary

shock (Table 2).

5.3 Forward curve and excess returns on carry trades

We now compare an important set of untargeted moments between model and data:

the forward curve and average excess returns on carry trades. Generating realistic

patterns in both dimensions has important implications for the effects of changes in

arbitrageur wealth on the yield curve, as we show in the next subsection.

The first panel of Figure 4 compares the average one-year forward rates in the model

versus those estimated over our January 2004 through December 2016 sample period.

By construction, the mean forward rate across maturities 2 through 20 in the model

and data will be comparable, given that we calibrate the model to target the 1- and

20-year yields. However, nothing in the calibration explicitly targets the shape of the

16Note that in the data, we compute these ratios for the nominal Treasuries rather than TIPS.
This is because the revaluation of wealth on impact of a change in the short rate would affect both
assets, and the quantities of Treasuries traded is an order of magnitude larger than TIPS. With that
said, the ratios are comparable for TIPS: the fraction of TIPS transacted with maturity less than two
years is 17%, and with maturity greater than ten years is 13%.
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Figure 4: forward curve and average excess returns on carry trades: model vs. data

Notes: moments are time-series averages in both model and data.

forward curve. As the figure makes clear, the shape of the model-generated forward

curve is comparable to the data, though it overshoots at long horizons.

The consistency between model and data in this dimension can be made more

precise by comparing the pattern of carry trade returns between model and data.

Following Cochrane and Piazzesi (2008), standard identities imply that

f
(τ−1,τ)
t − y(1)

t+τ−1 =
[
r

(τ)
t+1 − r

(τ−1)
t+1

]
+
[
r

(τ−1)
t+2 − r(τ−2)

t+2

]
+ . . .+

[
r

(2)
t+τ−1 − y

(1)
t+τ−2

]
, (23)

where r
(τ)
t+1 denotes the log return to purchasing a τ -period bond at t and holding it for

one year:

r
(τ)
t+1 ≡ logP

(τ−1)
t+1 − logP

(τ)
t .

The left-hand side of (23) is the forward-spot spread. The right-hand side of (23)

reflects the cumulative return to a sequence of carry strategies: purchasing a (τ)-year

bond at t financed by a (τ −1)-year bond, then purchasing a (τ −1)-year bond at t+ 1

financed by a (τ − 2)-year bond, and so on.

The right panel of Figure 4 computes the average excess return to each carry trade

strategy r
(τ)
t − r

(τ−1)
t on model-generated data and over the January 2004 through

December 2016 period. In the data these excess returns have been on average positive,

generally declining in maturity τ but non-trivial even at maturities above 10 years.

The model-generated excess returns exhibit similar patterns. These patterns play an
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important role in accounting for the model’s predictions for monetary shocks, to which

we now turn.

5.4 Effects of monetary shock

Figure 5 depicts the impulse responses to an expansionary monetary shock. The shock

is scaled to generate a 100bp fall in the one-year real yield on impact, facilitating

comparison with the empirical results in section 4. Besides the short rate and one-year

real yield shown in the first row, the figure depicts depicts arbitrageur wealth. In the

second row, the figure depicts the 20-year real forward rate; the spread between the

20-year real forward rate and one-year yield; and expected excess returns on the 20-

year bond financed by the one-year bond over a one year holding period. The impulse

responses are contrasted against those in a counterfactual economy in which ξ → ∞
and thus arbitrageurs’ endowment is constant. All impulse responses are computed

beginning from the equilibrium with r = r̄, β = 0, and arbitrageur wealth W equal to

the mean of the ergodic distribution.

The 20-year real forward rate falls in response to the shock, in contrast to the

counterfactual model in which arbitrageurs’ endowment is constant. The difference

in these responses is driven by the upward revaluation of arbitrageurs’ wealth in the

baseline model, which lowers their price of bearing risk and compresses term premia.

Notably, since the fall in the short rate is not permanent, the forward spread rises as

the yield curve steepens. Since term premia have fallen, future excess returns on the

20-year bond are high — persistently so, reflecting the pattern of arbitrageurs’ wealth.

It follows that a monetary shock (and more generally any shock to the short rate)

induces a negative relationship between the slope of the yield curve and subsequent

excess returns on long-term bonds. The opposite is true in the counterfactual model.

All of these results are consistent with the analytical results in section 3.

Figure 6 depicts the impact effect of the monetary shock on the forward rate across

maturities and compares it to the estimates from Figure 1. The model generates a U -

shaped response of the forward rate as in the data, and the model-generated responses

lie within the empirical confidence intervals at most maturities. The counterfactual

model featuring underreaction of the forward rate instead undershoots the data at

most maturities. We emphasize that the response of long-dated forward rates was not

targeted in the calibration. We conclude that the model can successfully account for

the response of the yield curve to monetary shocks in the data, and that accounting for
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Figure 5: impulse responses to monetary shock

Notes: monetary shock is a one-time innovation to short rate with mean reversion κm = 0.5 as
described in main text. Figure depicts responses to infinitesimal shock, scaled to generate 100bp fall
in one-year yield on impact. Impulse responses computed from the equilibrium with r = r̄, β = 0,
and arbitrageur wealth W equal to the mean of the ergodic distribution.

an endogenous price of risk through the revaluation of arbitrageur wealth is essential

to this result.

We can use our model to provide a deeper decomposition of why the forward curve

in the baseline model responds in this way. Evaluating the identity (23) ex-ante instead

of ex-post and taking expectations at t, we have that

f
(τ−1,τ)
t − Ety(1)

t+τ−1 =

Et

[
r

(τ)
t+1 − r

(τ−1)
t+1

]
+ Et

[
r

(τ−1)
t+2 − r(τ−2)

t+2

]
+ . . .+ Et

[
r

(2)
t+τ−1 − y

(1)
t+τ−2

]
. (24)

It follows that the response of the forward rate relative to the expected spot rate —

the difference between the red line and black line in Figure 6 — encodes the response

of expected excess returns on a sequence of carry trades at future dates.
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Figure 6: f
(τ)
t on y

(1)
t given monetary shock: model vs. data

Notes: empirical estimates correspond to those in Figure 1.

Figure 7 depicts the response of each of these expected excess returns for τ =

{5, 10, 15, 20}-year bonds. It contains two main insights. First, the response of even

long-dated forward rates to a monetary shock largely reflects changes in expected

excess returns in the first few years, since wealth eventually returns to steady-state

(though it is still quite persistent in this calibration, with a half-life of roughly 5

years). Second, the response of long-dated forward rates is larger than short-dated

forward rates (relative to expected spot rates at each horizon) because the former

nonetheless cumulates over a longer period of expected excess returns.

5.5 Slope of yield curve and bond return predictability

An implication of the previous section is that monetary shocks, and shocks to the short

rate more generally, induce a negative relationship between the slope of the yield curve

and future excess returns on long-term bonds via their effect on term premia. In this

subsection we demonstrate that shocks to the demand of habitat investors instead imply

that a steep yield curve predicts high excess returns on long-term bonds. These shocks

are sufficiently important in our calibration that the model can rationalize estimates

in classic Fama and Bliss (1987) and Campbell and Shiller (1991) regressions which do
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Figure 7: decomposing d[f
(τ)
t − Ety

(1)
t+τ−1]/dy

(1)
t on impact of monetary shock

Notes: as derived in (24),
∑τ−1
h=1Et

[
r
(τ+1−h)
t+h − r(τ−h)t+h

]
= f

(τ−1,τ)
t − Ety(1)t+τ−1.

not condition on identified shocks.

We first consider the impulse responses to habitat demand shocks. Figure 8 presents

the response to a one standard deviation demand shock εβ,0. The other panels further

depict the same variables as in Figure 5. Figure 8 demonstrates that habitat demand

shocks are effectively term premium shocks. Whether arbitrageurs’ endowment is en-

dogenous or exogenous, forward rates fall when habitat investors seek to borrow less

in long-term bonds (a negative innovation to εβ,0) and thus arbitrageurs must bear

less risk. Since expected short rates are unchanged, this fully reflects a decline in term

premia. The decline in term premia manifests as a fall in the slope of the yield curve, as

well as low subsequent excess returns on long-term bonds. Notably, these comovements

are amplified on impact in the model with endogenous wealth because the decline in

long yields revalues wealth in arbitrageurs’ favor, further compressing term premia.17

The comovements induced by habitat demand shocks allow us to rationalize classic

Fama and Bliss (1987) and Campbell and Shiller (1991) regressions which do not

condition on identified shocks. Using the same sample period studied in section 4, we

17Because the volume of arbitrageurs’ carry trade is smaller and they earn smaller excess returns
in doing so, eventually arbitrageur wealth falls below its initial value and term premia reverse sign.
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Figure 8: impulse responses to habitat demand shock

Notes: figure depicts one standard deviation shock. Impulse responses computed from the equilibrium
with r = r̄, β = 0, and arbitrageur wealth W equal to the mean of the ergodic distribution.

first re-estimate these regressions in the data. The shaded region in Figures 9 and 10

report the 90% confidence intervals for the coefficients β
(τ)
FB and β

(τ)
CS in the regressions

r
(τ)
t+1 − y

(1)
t = α

(τ)
FB + β

(τ)
FB

(
f

(τ−1,τ)
t − y(1)

t

)
+ ε

(τ)
FB,t+1 (25)

and

y
(τ−1)
t+1 − y(τ)

t = α
(τ)
CS + β

(τ)
CS

1

τ − 1

(
y

(τ)
t − y

(1)
t

)
+ ε

(τ)
CS,t+1, (26)

again using the real yield curve as we do throughout the main text. Consistent with

Fama and Bliss (1987) and inconsistent with the expectations hypothesis, these esti-

mates suggest β
(τ)
FB is positive and rising in τ . Consistent with Campbell and Shiller

(1991) and inconsistent with the expectations hypothesis, these estimates suggest β
(τ)
CS

is less than one, in fact negative for most maturities, and falling in τ . Both results

imply that a steep yield curve predicts high excess long-term bond returns.

Figures 9 and 10 further plot the same regression coefficients estimated on long
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Figure 9: Fama-Bliss regression coefficients: model vs. data

Notes: figure depicts β
(τ)
FB estimated from (25) and, in the case of the data, the 90% confidence interval

obtained using Hansen-Hodrick standard errors with 12 lags.

simulations of model-generated data. The model is largely consistent with the empirical

patterns in β
(τ)
FB and β

(τ)
CS. When habitat demand shocks are shut down (σβ = 0), the

figure finally demonstrates that the model-generated regression coefficients no longer

can rationalize the data. Consistent with the analytical results in section 3, we conclude

that habitat demand shocks are essential to match this classic evidence on bond return

predictability.

6 Conclusion

In this paper, we propose a model which rationalizes the effects of monetary policy

shocks on the term structure of interest rates. As in the preferred habitat tradition,

habitat investors and arbitrageurs trade bonds of various maturities; as in the inter-

mediary asset pricing tradition, arbitrageur wealth is an endogenous state variable

relevant for equilibrium risk pricing. When arbitrageurs’ portfolio features positive

duration, an unexpected fall in the short rate revalues wealth in their favor and low-

ers term premia. A calibration matching the portfolio exposure of the U.S. financial

sector rationalizes the identified effects of policy shocks along the yield curve, while

34



Figure 10: Campbell-Shiller regression coefficients: model vs. data

Notes: figure depicts β
(τ)
CS estimated from (26) and, in the case of the data, the 90% confidence interval

obtained using Hansen-Hodrick standard errors with 12 lags.

simultaneously matching the classic evidence on bond return predictability over time.

Our analysis has stopped short of tracing out the consequences for the real economy

so as to focus on the novel mechanisms in financial markets relative to existing term

structure models. Embedding our model in a New Keynesian production economy, we

expect that the effects of policy on the price of risk will amplify the real effects of

monetary policy, to the extent that aggregate demand is rising in the amount habitat

investors borrow long-term. This seems natural if we interpret long-term borrowers

as mortgagors or non-financial corporates whose marginal propensity to consume or

invest is higher than the owners of financial firms. We view this as among the most

interesting applications of our framework in future work.
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Appendix for Online Publication

A Proofs of analytical results

We first provide proofs of all analytical results in the main text.

A.1 Proposition 1

Proof. When ξ →∞, (16) implies W = W̄ . (13) and (14) imply

Etr
(2)
t+1 = −Etrt+1 − logPt,

= −κrr̄ − (1− κr)rt − logPt

Substituting these into (12) yields

−κrr̄ − (2− κr)rt − logPt +
1

2
σ2
r =

α logPt + θt
W̄

σ2
r .

Re-arranging yields

logPt =
1

1 + 1
W̄
ασ2

r

[
−κrr̄ − (2− κr)rt +

1

2
σ2
r −

1

W̄
θtσ

2
r

]
.

It follows from (17) that

ft = − 1

1 + 1
W̄
ασ2

r

[
−κrr̄ − (2− κr)rt +

1

2
σ2
r −

1

W̄
θtσ

2
r

]
− rt.

The response of the forward rate to a short rate shock follows.

A.2 Proposition 2

Proof. Combining (13) and (16), wealth evolves according to

Wt = (1− exp(−ξ))W̄+

exp(−ξ) exp(rt−1) [Wt−1 + (α logPt−1 + θt−1) (exp(−rt − rt−1 − logPt−1)− 1)] .
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Around the stochastic steady-state, this implies

d logWt =
exp(−ξ) exp(r̄) [W −X]

W
drt−1 + exp(−ξ) exp(r̄)d logWt−1+

exp(−ξ) exp(r̄) (exp(−2r̄ − logP )− 1)

W
dθt−1 −

exp(−ξ)X exp(−r̄ − logP )

W
drt+

exp(−ξ) exp(r̄) [α (exp(−2r̄ − logP )− 1)−X exp(−2r̄ − logP )]

W
d logPt−1. (27)

The impact response of wealth to a short rate shock follows, with

ω ≡ X

W
exp(−r̄ − logP )

summarizing the duration of arbitrageurs’ wealth.

A.3 Proposition 3

Proof. The same steps as in the proof of Proposition 1 imply that around the stochastic

steady-state

d logPt = − 2− κr
1 + 1

W
ασ2

r

drt −
1
W
σ2
r

1 + 1
W
ασ2

r

dθt +
X
W
σ2
r

1 + 1
W
ασ2

r

d logWt. (28)

It follows from (17) that

dft =
1− κr − 1

W
ασ2

r

1 + 1
W
ασ2

r

drt +
1
W
σ2
r

1 + 1
W
ασ2

r

dθt −
X
W
σ2
r

1 + 1
W
ασ2

r

d logWt. (29)

The response of the forward rate to a short rate shock follows from Proposition 2.

A.4 Proposition 4

Proof. A standard Taylor approximation up to first order in the model’s driving forces

around the stochastic steady-state implies that

βFB ≡
Cov(r

(2)
t+1 − rt, ft − rt)
V ar(ft − rt)

≈
Cov(dr

(2)
t+1 − drt, dft − drt)
V ar(dft − drt)

,

βCS ≡
Cov(rt+1 − yt, yt − rt)

V ar(yt − rt)
≈ Cov(drt+1 − dyt, dyt − drt)

V ar(dyt − drt)
.
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Around the stochastic steady-state, (13), (14), (18), (28), and (29) imply

dr2,t+1 − drt = −(2− κr)
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Substituting (28) into (27) and collecting terms, we further have

d logWt = µr,−1drt−1 + µθ,−1dθt−1 + µW,−1d logWt−1 + µrdrt,

where

µP,−1 ≡
exp(−ξ) exp(r̄) [α (exp(−2r̄ − logP )− 1)−X exp(−2r̄ − logP )]

W
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W
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W
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By (14) and (15), we thus have

drt =
∞∑
τ=0

(1− κr)τσrdεr,−τ ,

dθt =
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τ=0

(1− κθ)τσθdεθ,−τ ,

d logWt =
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µrµ

τ
W,−1 + [µr(1− κr) + µr,−1]

(1− κr)τ − µτW,−1
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∞∑
τ=1

[
µθ,−1

(1− κθ)τ − µτW,−1

1− κθ − µW,−1

]
σθdεθ,−τ .

We complete the proof in two steps.

First, we prove that βFB can be above or below zero, and βCS can be above or

below one. Focusing on the useful benchmark when α = 0 and σθ = 0, straightforward

algebra implies

βFB ∝ 1− βCS ∝
∞∑
τ=0

[
− 1
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θσ2

r
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)]
.

Now assume exp(−ξ) is finite but sufficiently small that we can ignore terms of order

two or higher in exp(−ξ). When κr → 1 and θ > 0, the above expression is negative;

when κr → 0, the above expression is positive regardless of θ. The same argument

implies βCS can be above or below one.

Second, we characterize the limits as σθ → ∞. In this case it is clear from the

above results that

βFB →
V ar

(
1
Wt

σ2
r

1+ 1
W
ασ2

r
dθt −

X
W
σ2
r

1+ 1
W
ασ2

r
d logWt

)
V ar

(
1
Wt

σ2
r

1+ 1
W
ασ2

r
dθt −

X
W
σ2
r

1+ 1
W
ασ2

r
d logWt

) = 1,

βCS → −
V ar

(
1
2

1
W
σ2
r

1+ 1
W
ασ2

r
dθt − 1

2

X
W
σ2
r

1+ 1
W
ασ2

r
d logWt

)
V ar

(
1
2

1
W
σ2
r

1+ 1
W
ασ2

r
dθt − 1

2

X
W
σ2
r

1+ 1
W
ασ2

r
d logWt

) = −1,

where we have abused notation (in writing infinity divided by infinity) to clarify the

mechanics of this result.

B Effects of monetary shocks on nominal yield curve

In the empirical analysis in the main text we focus on real yields and forwards given

that our model is silent about inflation. Here we replicate our analysis using the

nominal yield curve. In particular, we regress the change in the one-year nominal yield

on our high-frequency monetary policy surprise measure in the first stage, and then
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Figure 11: ∆f
(τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise (nominal)

Notes: at each integer between 2 and 30 on the x-axis, we plot coefficients and 90% confidence interval

using ∆f
(τ)
t as the outcome variable. Confidence interval based on robust standard errors.

regress the change in one-year nominal forward rate paying between 2 and 30 years on

the predicted change in the one-year nominal yield in the second stage.18

We use Gurkaynak et al. (2006)’s interpolated nominal yield curve to compute yields

and forwards at all maturities and horizons at a daily frequency. We use in particular

the updated data maintained by the Federal Reserve. We focus on the same January

2004 through December 2016 period used in our analysis of the real yield curve only to

maintain comparability with those results. Data for the nominal yield curve is available

earlier and we have validated that we obtain similar results over the broader sample.

Figure 11 plots the regression coefficients and associated 90% confidence intervals.

Unlike in the case of real forwards, the effect of a monetary tightening on nominal for-

wards is monotonically declining. Moreover, the effect is economically and statistically

significantly negative at long maturities. Table 4 presents the same alternative specifi-

cations as in Table 1. As is evident, the same pattern holds across these specifications.

These results are consistent with previous findings in the literature also focused on

the nominal yield curve, such as in Gurkaynak et al. (2005b) and Gurkaynak, Sack, and

18Whether we use the one-year nominal or real yield in the first stage matters little. Both summarize
the stance of monetary policy. What does matter is the outcome variable used in the second stage.
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Specification ∆f
(5)
t ∆f

(10)
t ∆f

(15)
t ∆f

(20)
t

Baseline 0.51 -0.09 -0.31 -0.64
(0.47) (0.41) (0.31) (0.34)

All FOMC announcements 0.42 -0.09 -0.23 -0.42
(0.26) (0.23) (0.17) (0.19)

Excluding 7/08-6/09 0.10 -0.49 -0.59 -0.84
(0.34) (0.33) (0.43) (0.51)

Excluding announcements with LSAP news -0.02 -0.52 -0.51 -0.74
(0.30) (0.27) (0.35) (0.40)

Nakamura and Steinsson (2018) IV 0.27 -0.29 -0.37 -0.66
(0.29) (0.29) (0.32) (0.41)

Nakamura and Steinsson (2018) IV, ex. 7/08-6/09 0.91 0.27 -0.12 -0.48
(0.46) (0.40) (0.28) (0.33)

Table 4: ∆f
(τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise (nominal)

Notes: robust standard errors provided in parenthesis.

Swanson (2005a). As these papers argue, these patterns are consistent with monetary

shocks containing news about the central bank’s long-run inflation target. In particular,

if a monetary tightening is associated with news about a lower long-run inflation target,

it will lower long-run forward rates. Changes in the long-run inflation target will have

no effects on long maturity real forwards, underscoring the importance of focusing on

the real yield curve to uncover the effects of monetary shocks on term premia.

With that said, the effects of monetary policy shocks on the nominal yield curve

are still critical for the results in our paper because the majority of Treasury securities

outstanding are nominal, not real. Hence, the revaluation of nominal bonds, not real

bonds, are likely to drive any changes in arbitrageur wealth. In this context, it is

important to note that nominal yields rise on impact of a monetary easing far out

into the yield curve, as shown for our baseline specification in Figure 12, even though

long-dated nominal forward rates fall. Similar results are obtained for the alternative

specifications described above. We conclude that a monetary tightening will lower the

wealth of agents having positive duration in nominal bonds, so long as the duration is

not extremely high (above roughly 20 years).
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Figure 12: ∆y
(τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise (nominal)

Notes: at each integer between 2 and 30 on the x-axis, we plot coefficients and 90% confidence interval

using ∆y
(τ)
t as the outcome variable. Confidence interval based on robust standard errors.

C Equilibrium and solution of full model

We now characterize arbitrageurs’ optimality conditions in the full model and provide

more details on our computational algorithm.

C.1 Arbitrageurs’ optimality

Given a conjectured equilibrium pricing function

P
(τ)
t = P (τ)(rt, βt,Wt),

Ito’s Lemma implies

dP
(τ)
t = ω

(τ)
t P

(τ)
t dt+ η

(τ)
r,t P

(τ)
t dBr,t + η

(τ)
β,tP

(τ)
t dBβ,t (30)
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for some coefficients ω
(τ)
t , η

(τ)
r,t , and η

(τ)
β,t which we have expressed relative to P

(τ)
t without

loss of generality. Defining the portfolio shares

χ
(τ)
t ≡

x
(τ)
t

wt
,

we can thus write the arbitrageur problem (3)-(4) as maximizing

vt(wt) = max
{{χ(τ)

t+s}}
Et

∫ ∞
0

exp(−ξs) logwt+sds

subject to

dwt =

[
rtwt +

∫ ∞
0

χ
(τ)
t wt

(
ω

(τ)
t − rt

)
dτ

]
dt

+

[∫ ∞
0

χ
(τ)
t wtη

(τ)
r,t dτ

]
dBr,t +

[∫ ∞
0

χ
(τ)
t wtη

(τ)
β,tdτ

]
dBβ,t.

The associated Hamilton-Jacobi-Bellman equation is

(ρ+ ξ)vt(wt) =
∂vt(wt)

∂t
+ max
{χ(τ)
t }

logwt +

[
rtwt +

∫ ∞
0

χ
(τ)
t wt

(
ω

(τ)
t − rt

)
dτ

]
∂vt(wt)

∂wt
+

1

2

([∫ ∞
0

χ
(τ)
t wtη

(τ)
r,t dτ

]2

+

[∫ ∞
0

χ
(τ)
t wtη

(τ)
β,tdτ

]2
)
∂2vt(wt)

∂w2
t

. (31)

The first-order conditions are

wt

(
ω

(τ)
t − rt

) ∂vt(wt)
∂wt

= −w2
t

(∫ ∞
0

χ
(s)
t

[
η

(τ)
r,t η

(s)
r,t ds+ η

(τ)
β,tη

(s)
β,t

]
ds

)
∂2vt(wt)

∂w2
t

(32)

for each τ ∈ (0,∞).

Now conjecture that the value function satisfies

vt(wt) =
1

ξ
logwt + vt,

where vt does not depend on the arbitrageur’s level of wealth. It follows that

∂vt(wt)

∂wt
=

1

ξwt
,
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∂2vt(wt)

∂w2
t

= − 1

ξw2
t

.

Substituting into (32), it follows

ω
(τ)
t − rt =

∫ ∞
0

χ
(s)
t

[
η

(τ)
r,t η

(s)
r,t ds+ η

(τ)
β,tη

(s)
β,t

]
ds (33)

for each τ ∈ (0,∞). An implication is that the arbitrageur’s optimal portfolio shares

χ
(τ)
t do not depend on wt. Substituting these into (31), on the left-hand side we have

logwt + ξvt,

and on the right-hand side we have

∂vt
∂t

+ logwt +
1

ξ

[
rt +

∫ ∞
0

χ
(τ)
t

(
ω

(τ)
t − rt

)
dτ

]
− 1

2

1

ξ

([∫ ∞
0

χ
(τ)
t η

(τ)
r,t dτ

]2

+

[∫ ∞
0

χ
(τ)
t η

(τ)
β,tdτ

]2
)
.

Canceling logwt on both sides, (31) becomes

ξvt =
∂vt
∂t

+
1

ξ

[
rt +

∫ ∞
0

χ
(τ)
t

(
ω

(τ)
t − rt

)
dτ

]
− 1

2

1
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([∫ ∞
0

χ
(τ)
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(τ)
r,t dτ

]2

+
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0

χ
(τ)
t η

(τ)
β,tdτ

]2
)
.

Since nothing in this partial differential equation depends on wt, the conjectured form

of the value function is satisfied, with vt solving the above equation.

Finally, since χ
(τ)
t does not depend on arbitrageurs’ individual wealth, aggregation

implies

χ
(τ)
t =

X
(τ)
t

Wt

,

so that (33) can be written

ω
(τ)
t − rt =

1

Wt

∫ ∞
0

X
(s)
t

[
η

(τ)
r,t η

(s)
r,t ds+ η

(τ)
β,tη

(s)
β,t

]
ds.

Given (30) together with the evolution of aggregate arbitrageur wealth (5), this can
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more intuitively be written

Et

(
dP

(τ)
t

P
(τ)
t

)
− rtdt =

1

Wt

∫ ∞
0

X
(s)
t Covt

(
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

)
ds

as in the main text.

C.2 Solution algorithm

We now provide more details on our computational algorithm.

Given (6), (7), (21), and (22), Ito’s Lemma and dτ = −dt implies that

dP
(τ)
t

P
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t
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1
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(τ)
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)
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where we write P
(τ)
x, t and P

(τ)
xx, t to denote the first- and second-order partial derivatives

of P (τ)(rt, βt,Wt) with respect to a generic variable x, and we write ωt = ω(rt, βt,Wt)

and analogously for ηr, t and ηβ, t. It follows that
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(
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)
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Plugging both into (19), we obtain the partial differential equation[
P
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r, t κr (r̄ − rt) + P

(τ)
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=
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(20), (22), and the method of undetermined coefficients imply

ωt = ξ
(
W̄ −Wt

)
+Wtrt +

∫ ∞
0

(
α(τ) log

(
P

(τ)
t

)
+ θ0(τ) + θ1(τ)βt

)(
µ

(τ)
t − rt

)
dτ (35)

ηr, t =

∫ ∞
0

(
α(τ) log

(
P

(τ)
t

)
+ θ0(τ) + θ1(τ)βt

) 1

P
(τ)
t
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(τ)
r, t σr + P

(τ)
W, tηr, t
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dτ (36)

ηβ, t =
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0

(
α(τ) log

(
P
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t
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+ θ0(τ) + θ1(τ)βt

) 1

P
(τ)
t

(
P

(τ)
β, tσβ + P

(τ)
W, tηβ, t

)
dτ. (37)

We numerically solve the system (34)-(37) as follows. For clarity we now drop the

time subscript t and explicitly write all functions as stationary in the state variables r,

β and W . We start with an initial guess ω(r, β,W ) = ηr(r, β,W ) = ηβ(r, β,W ) = 0.

We then solve for P (τ)(r, β,W ) using forward differences in maturity, replacing P
(τ)
τ,t in

equation (34) by its approximation

P
(τ)
τ,t ≈

P (τ+∆τ)(r, β,W )− P (τ)(r, β,W )

∆τ
.

Given that approximation, we rearrange equation (34) to solve for P (τ+∆τ)(r, β,W )

only in terms of P (τ)(r, β,W ) and its non-time derivatives. Starting at the known

boundary τ = 0, we derive those non-time derivatives using collocation and iterate

forward in maturity. We use Chebyshev interpolation on sparse Smolyak grids to

approximate the bond price function at each time step in the three non-time dimensions

(see Judd, Maliar, Maliar, and Valero (2014)). After deriving the initial solution for

P (τ)(r, β,W ) we update our guess on ω(r, β,W ), ηr(r, β,W ) and ηβ(r, β,W ) and iterate

until convergence on (35)-(37).

After solving the model, we can simulate an unanticipated monetary shock by
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introducing a shift mt to the level of the short-term rate, which occurs at time tm and

reverts back by time Tm. Formally

r̃t = rt +mtI{t ∈ [tm, Tm]}

with

dmt = −κmmtdt.

The first order condition of the arbitrageurs is now

Et

(
dP

(τ)
t

P
(τ)
t

)
− r̃tdt =

1

Wt

∫ ∞
0

X
(s)
t Covt

(
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(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

)
ds.

We expand this equation using similar steps as those discussed for the general solution.

The method of undetermined coefficients now implies

ωt = ξ
(
W̄ −Wt

)
+Wtr̃t +

∫ ∞
0

(
α(τ) log

(
P

(τ)
t

)
+ θ0(τ) + θ1(τ)βt

)(
µ
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t − r̃t

)
dτ,

ηr,t =

∫ ∞
0

(
α(τ) log

(
P

(τ)
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) 1

P
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(τ)
W,tηr,t
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dτ,
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(
α(τ) log
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+ θ0(τ) + θ1(τ)βt

) 1
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(τ)
β,t σβ + P

(τ)
W,tηβ,t

)
dτ.

Because the price function is now non-stationary we adopt a variation of the approach

used for the general solution. We start from the terminal date Tm when we know

the price function from the general solution and use forward differences in maturity

(backward differences in time), replacing P
(τ)
τ,t by

P
(τ)
τ,t (rt, βt,Wt,mt) ≈

P
(τ)
t (rt, βt,Wt,mt)− P (τ+∆τ)

t−∆τ (rt, βt,Wt,mt)

∆τ

In each time t, we can then rearrange this equation and solve for P
(τ+∆τ)
t−∆τ (rt, βt,Wt,mt)

as a function of known or previously computed variables. We then update the initial

guess for ωt, ηr,t, and ηβ,t and iterate until convergence. On impact of the monetary

shock at time tm, we isolate the unexpected change in price and use only this unex-

pected component to evaluate the evolution of wealth.
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