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Abstract

Regression discontinuity designs are used to estimate causal effects in settings where
treatment is determined by whether an observed running variable crosses a pre-specified
threshold. While the resulting sampling design is sometimes described as akin to a lo-
cally randomized experiment in a neighborhood of the threshold, standard formal anal-
yses do not make reference to probabilistic treatment assignment and instead identify
treatment effects via continuity arguments. Here we propose a new approach to iden-
tification, estimation, and inference in regression discontinuity designs that exploits
measurement error in the running variable. Under an assumption that the measure-
ment error is exogenous, we show how to consistently estimate causal effects using a
class of linear estimators that weight treated and control units so as to balance a latent
variable of which the running variable is a noisy measure. We find this approach to
facilitate identification of both familiar estimands from the literature, as well as policy-
relevant estimands that correspond to the effects of realistic changes to the existing
treatment assignment rule. We demonstrate the method with a study of retention
of HIV patients and evaluate its performance using simulated data and a regression
discontinuity design artificially constructed from test scores in early childhood.

1 Introduction

Regression discontinuity designs are a popular approach to causal inference that rely on
known, discontinuous treatment assignment mechanisms to identify causal effects [Hahn,
Todd, and van der Klaauw, 2001, Imbens and Lemieux, 2008, Thistlethwaite and Campbell,
1960]. More specifically, we assume existence of a running variable Z; € R such that unit 4
gets assigned treatment W; € {0, 1} whenever the running variable exceeds a cutoff ¢ € R,
ie, W; =1({Z; > ¢}). For example, in an educational setting where admission to a program
hinges on a test score exceeding some cutoff, we could evaluate the effect of the program on
marginal admits by comparing outcomes for students whose test scores fell right above and
below the cutoff.

* Authors are listed in alphabetical order. We thank Alex D’Amour, Jan Gleixner, Michal Kolesar, David
Hirshberg, Guido Imbens, Fabrizia Mealli, Johan Ugander, and José Zubizarreta for helpful discussions.



Recent explanations and qualitative justifications of identification in regression discon-
tinuity designs typically appeal to implicit, local randomization: There are many factors
outside of the control of decision-makers that determine the running variable Z; such that
if some unit barely clears the eligibility cutoff for the intervention then the same unit could
also plausibly have failed to clear the cutoff with a different realization of these chance fac-
tors [Lee and Lemieux, 2010]. This is sometimes illustrated by reference to sampling error or
other errors in measurement that cause units to have a measured running variable just above
or just below the threshold. For example, again in our educational setting, there may be a
group of marginal students who might barely pass or fail pass the test due to unpredictable
variation in their test score, thus resulting in an effectively exogenous treatment assignment
rule. Likewise, medical assays frequently involve a degree of random measurement error,
whether because of sampling techniques or other sources of random variation [Bor et al.,
2014].

Most formal and practical approaches approaches to identification, estimation, and infer-
ence for treatment effects in regression discontinuity designs, however, do not use exogenous
noise in the running variable to drive inference. Instead, following Hahn, Todd, and van der
Klaauw [2001], the dominant approach relies on a continuity argument. As in Imbens and
Lemieux [2008], assume potential outcomes {Y;(0), Y;(1)} such that ¥; = Y;(W;). Then, we
can identify a weighted causal effect 7. = E [Y;(1) — ¥;(0) | Z; = ¢] via

nzh?EDjzzﬂ—h?EDﬂZ:4, (1)

provided that the conditional response functions p(,)(z) = E [Y(w) | Z = z] are continu-
ous. Furthermore, if we are willing to posit quantitative smoothness bounds on fi(,)(2),
e.g., we could assume fi(,)(2) to have a uniformly bounded second derivative, we can use
this continuity-based argument to derive confidence intervals for 7. with well understood
asymptotics [Armstrong and Kolesér, 2018, Calonico, Cattaneo, and Farrell, 2018, Calonico,
Cattaneo, and Titiunik, 2014, Cheng, Fan, and Marron, 1997, Imbens and Kalyanaraman,
2012, Imbens and Wager, 2019, Kolesér and Rothe, 2018].

Despite its simplicity and interpretability, the continuity-based approach to regression
discontinuity inference does not satisfy the criteria for rigorous design-based causal inference
as outlined by Rubin [2008]. According to the design-based paradigm, even in observational
studies, a treatment effect estimator should be justifiable based on randomness in the treat-
ment assignment mechanism alone; the leading example of this paradigm is the analysis of
randomized controlled trials following Neyman [1923] and Rubin [1974]. In contrast, the
formal guarantees provided by the continuity-based regression discontinuity analysis often
take smoothness of ji(,)(z) as a primitive. While continuous measurement error in (or
“imprecise control” of) the running variable by units implies continuity of the conditional
expectation function [Lee, 2008], this result is not used in estimation and inference and, as
we show, only makes limited use of the identifying power of measurement error, perhaps
most notably for discrete running variables.

Here we propose a new approach to regression discontinuity inference—one that goes
back to the qualitative argument above used to justify regression discontinuity designs and
directly exploits noise in the running variable Z; for inference. Formally, we assume the
existence of a latent variable U; such that E [Zi ’ Ui] = U;, and that any variation in the
running variable Z; around Uj; is exogenous. For example, again revisiting our educational
setting, we can take U; to be a measure of the student’s true ability; then the test score
Z; is a noisy measurement of U; with well-documented psychometric properties. Likewise,



in a medical setting, the running variable Z; may be a measurement of an underlying
condition U; (e.g., CD4 counts); such diagnostic measurements often have well-studied test-
retest reliability. In both cases, it is plausible that the measurements Z; are independent of
relevant potential outcomes conditional on the underlying quantity Us;.

Our main result is that, if the measurement error in Z; has a known distribution and the
measurement error is conditionally independent of potential outcomes, then we can estimate
a weighted marginal treatment effect by solving an integral equation. We then propose a
practical approach to estimation and inference in regression discontinuity designs that builds
on this result. Unlike in the classical regression discontinuity design, our inference is design-
based because it can be—at least in the case of bounded outcomes—purely driven by random
treatment assignment induced by noise in Z;.

1.1 Motivating application: Treatment Eligibility and Retention

In this section, we motivate the applicability of our approach by considering a medical
application. Bor et al. [2017] study 11, 306 patients in South Africa (in 2011-2012) who were
diagnosed with HIV, and seek to understand whether immediately initiating antiretroviral
therapy (ART) helps retain patients in the medical system. According to health guidelines
used in South Africa at the time, an HIV-positive patient would receive immediate ART if
their measured CD4 count! was below 350 cells/uL. This setting can naturally be analyzed
as a regression discontinuity design, with running variable Z; corresponding to the log of
the CD4 count (in cells/uL) and a treatment cutoff ¢ = log(350).2 Figure 1(a) shows a
histogram of Z; from Bor et al. [2017], with treatment cutoff ¢ denoted by a dashed line.
Given this setting, Bor et al. [2017] proceed to estimate the effect of ART on retention
via local linear regression. We implement local linear regression in our setting as follows:?
We start by choosing a bandwidth h, and then estimate the treatment effect parameter by
regressing Y; on a fully interacted linear model* in terms of W; and Z; — ¢ on all observations
i for which |Z; — ¢| < h. Here, W; = 1({Z; < ¢}) denotes treatment assignment and Y; is
a binary indicator of retention of the i-th patient at 12 months measured by the presence
of a clinic visit, lab test, or ART initiation 6 to 18 months after the initial HIV diagnosis.
We choose the bandwidth h using the approach of Armstrong and Kolesér [2020]° and, also
following that paper, use an inflated critical value when building confidence intervals for the

1CD4 cells are specialized immune system cells, and low CD4 count is indicative of poor immune function.

2We discard the patients with zero CD4 count.

3The local linear regression approach used by Bor et al. [2017] differs from ours in two respects: First, they
did not use an approach to inference that formally accounts for misspecification of the local linear regression
due to curvature effects near the boundary; and, second, they used CD4 count itself (as opposed to log CD4
count) as the running variable. Regarding the first point, we here prefer to discuss the local linear regression
approach of Armstrong and Kolesar [2020] as a baseline, as this approach formally accounts for curvature
effects and so gives an honest assessment of the power of local linear regression (in contrast, confidence
intervals that do not account for curvature will be over-optimistically short). We note that Bor et al. [2017]
do address this question qualitatively: They start with standard (as opposed to bias-adjusted) inference
for the treatment effect parameter using the bandwidth choice recommended in Imbens and Kalyanaraman
[2012], but then conduct a sensitivity analysis to potential bias by varying the bandwidth. Meanwhile, the
use of CD4 versus log CD4 count as the running variable appeared to have little qualitative impact on the
performance of local linear regression so here, for consistency, we chose to use log CD4 count as the running
variable in all our analyses.

4Like in Bor et al. [2017], we use a uniform kernel, i.e., use K(x) = 1 ({|z| < 1}) in (2).

5This approach assumes that the conditional response functions Mw)(x) have a bounded second deriva-
tive. One then proceeds to estimate the worst-case curvature via polynomial regression, and picking a
bandwidth A that minimizes the worst-case mean-squared error of the local linear regression treatment
effect estimator given this curvature bound.
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Figure 1: Illustration of a regression discontinuity analysis for estimating the effect of ART
on patient retention. (a) Histogram of the running variable Z; in the dataset of Bor et al.
[2017]. (b) Ilustration of a local linear regression for treatment effect estimation. (c)
Differences (Z; — Z!)/\/2 between repeated measurements in the dataset of Venter et al.
[2018], overlaid with a Gaussian probability density function. (d) Empirical Bayes estimates
of P[Z! < c| Z; = z] on the dataset of Bor et al. [2017], with bias-aware 95% confidence
intervals obtained using the method of Ignatiadis and Wager [2019].

treatment effect parameter that accounts for potential curvature effects.® Figure 1(b) shows
the raw data for the subset of analyzed individuals, as well as the fitted regression. We get
a point estimate of 0.16 and a 95% confidence interval of (0.08, 0.25).

A potential criticism of this analysis is that it hinges on approximate well-specification
of the fitted linear model for Y; within the selected bandwidth around ¢ and this condition is
not satisfied “by design” in the sense of Rubin [2008].” Now, Bor et al. [2017] do emphasize

6Specifically, for 95% confidence intervals, we use a critical value of 2.18 as opposed to 1.96. Armstrong
and Kolesar [2020] show that this approach provides honest inference provided we can accurately upper-
bound the second derivative of pi(,)(z) -

"Noise in the running variable does imply certain continuity properties for the functions u(w)(x)7 which



that CD4 count measurements are noisy; causes of this noise include instrument imprecision
and variability in the blood sample taken [see, e.g., Glencross et al., 2008, Hughes et al.,
1994, Wade et al., 2014]. They then use the existence of such noise to qualitatively argue that
treatment W; = 1 ({Z; < ¢}) is effectively random close to the cutoff ¢, thus strengthening
the credibility of the regression discontinuity analysis. However, the local linear regression
strategy above doesn’t directly rely on this noise to justify the resulting inference.

Here, in contrast, we seek an explicitly design-based approach to estimating the effect of
ART on retention that is purely driven by measurement error in Z;. To this end, we need
to start by modeling this measurement error. Venter et al. [2018] provide pairs of repeated
measurements Z;, Z! of the log CD4 count on 553 individuals (with measurements taken
in the same laboratory). Figure 1(c) compares a histogram of the normalized differences
(Z; — Z!)/v/2 on the data of Venter et al. [2018] to a fitted Gaussian probability density
function with noise ¥ = 0.19.® Based on this observation, we revisit the analysis of Bor
et al. [2017] under the assumption the measurement error in the log CD4 counts can be
modeled as Z; | U; ~ N'(U;, v?), where U; is the true underlying log CD4 count of patient
1. Importantly, we find that the noise in Z; is large enough, so that treatment is essentially
random for patients close to the 350 cells/uL cutoff.

Given these preliminaries, we can now proceed with inference. The approach developed
in this paper relies on both on an estimate of the noise level v of Z; and a bound M on
the range of the expectation of Y; given the true CD4 count U;. Here, however, we know
that ¥; € {0, 1} and so can without loss of generality use M = 1, resulting in inference
that only relies on measurement error. As discussed further in Section 5, an application of
our method to the dataset of Bor et al. [2017] assuming a noise model Z; | U; ~ N(U;, v?)
with v = 0.19 results in a point estimate of 0.11, along with a 95% confidence interval
of (0.01, 0.21). While this confidence interval is wider than that obtained by local linear
regression it is still statistically significant and—unlike the latter—is directly justified by
the sampling design.? In Section 5, we also consider how our intervals can be tightened by
making further assumptions on the data-generating distribution, and compare our approach
to several continuity-based alternatives.

Remark 1. To illustrate the noise-induced randomization present in this design, one can
consider the following hypothetical question. Suppose patient ¢ has measured log CD4 count
Z;. If we were to re-measure their CD4 counts, what is the probability that they would be
assigned to treatment, i.e., what is 7(z) = P[Z] < ¢ | Z; = z] where Z! is an independent
measurement of log CD4 counts? Ignatiadis and Wager [2019] develop methods for both

can then be used to argue for approximate well-specification of the local linear regression model. Existing
approaches to local linear regression, however, do not use bounds on the curvature implied by the noise in
Z; to build confidence intervals for the treatment effect; rather, they rely on curvature estimates obtained by
fitting the data via polynomial regression, and the success of this approach cannot be guaranteed by design.
As discussed further in Sections 2.3 and 5, it is also possible to build on our results to derive confidence
intervals for local linear regression that are justified by design; however, these will be much longer than the
ones discussed here (and will also be longer than the ones obtained via our preferred approach).

8We estimated the noise level v = 0.19 using a robust method that ignores outliers by Winsorizing the
smallest and largest 5% of the normalized differences (Z; — Z/)/+/2 and rescaling so as to be unbiased under
Gaussian noise. In practice, this conservative approach may cause us to underestimate the noise level. As
discussed in Remark 2, however, underestimating the noise level in Z; will not in general compromise the
validity of our inference.

9 As observed in the simulation study from Section 7, depending on the design, our approach may yield
shorter or longer confidence intervals than continuity-based approaches like local linear regression. The
fact that the local linear regression confidence intervals are shorter than ours here reflects the fact that the
conditional response functions fi(,,)(z) are estimated to be smoother here than can be justified via the noise
process alone.



point estimation and inference in problems of this type, and we display resulting estimates
of m(2) in Figure 1(d). As expected, treatment is essentially a coin-flip close to the cutoff.'’

1.2 Related Work

As discussed above, the dominant approach to inference in regression discontinuity designs
is via continuity-based arguments that build on (1). Perhaps the most popular continuity-
based approach is to use local linear regression, and to estimate the treatment effect at
Z; = ¢ via [Hahn, Todd, and van der Klaauw, 2001, Imbens and Lemieux, 2008]

n
Fo = arginin {ZK (|ZZhnC|> (Yi—a—7W; = B_(Zi —c)_ — B4+ (Z; — C)+)2} . (2
i=1

where K(-) is a weighting function, h, — 0 is a bandwidth, and a and S1 are nuisance
parameters. In general, this approach can be used for valid estimation and inference of 7,
provided the function fi(,)(2) is smooth and that h, decays at an appropriate rate; the
rate of convergence of 7. and appropriate choice of h,, depend on the degree of smoothness
assumed. Notable results in this line of work, including robust confidence intervals and
data-adaptive choices for h,, include Armstrong and Kolesar [2020], Calonico, Cattaneo,
and Farrell [2018], Calonico, Cattaneo, and Titiunik [2014], Cheng, Fan, and Marron [1997],
Imbens and Kalyanaraman [2012] and Kolesdr and Rothe [2018].

More recently, extensions have been considered to the continuity-based approaches to
regression discontinuity inference that improve over local linear regression (2) by directly
exploiting the assumed smoothness properties of f(,,)(2). Under the assumption that zi(,) (2)
belongs to a convex class, e.g., |u(,,(2)| < B for all z € R, Armstrong and Kolesdr [2018]
and Imbens and Wager [2019] use numerical convex optimization to derive minimax linear
estimators of 7.. This optimization-based approach also directly extends to more complex
regression discontinuity designs, e.g., where Z; is multivariate and the treatment assignment
is determined by a set A, i.e., W; = 1({Z; € A}).

One alternative approach to inference in regression discontinuity designs, which Catta-
neo, Frandsen, and Titiunik [2015], Li, Mattei, and Mealli [2015] and Mattei and Mealli
[2016] refer to as randomization inference, starts by positing a non-trivial interval Z with
¢ € Z, such that

2 L {¥:(0), Y(O)}] |1 ({Z € T}). (3)

They then focus on the subset of units with Z; € Z, and perform classical randomized study
inference on this subset. Unlike the continuity-based analysis, this approach is design-based
in the sense of Rubin [2008].

In practice, however, the assumption (3) is often unrealistic and limits the applicability
of methods relying on it. One testable implication of (3) is that s (,)(2) should be constant
over Z for both w = 0 and 1, but this structure rarely plays out in the data.'’ Furthermore,

10We emphasize that, although 7(z) qualitatively captures the extent to which the treatment assignment
is randomized here, it is not a propensity score in the sense of Rosenbaum and Rubin [1983], and in
particular cannot be used for inverse-propensity weighting. The relevant propensity score here would be
e(u) =P [Z; < ¢|U; = u], but this depends on the unobserved U; and is thus inaccessible. Our approach
to inference will not involve weighting by a transformation of 7 (z); rather, we need to implicitly solve an
integral equation in order to account for confounding.

HSome authors, e.g. Sales and Hansen [2020], have argued that one can fix this issue by first de-trending
outcomes, and then assuming (3) on the residuals. Any such approach, however, relies on well specification
of the trend removal, and is thus no longer justified by randomization.



it is not clear how to choose the interval Z used in (3) via the types of methods typically
used for regression discontinuity inference. There’s no data-driven way of discovering an
interval Z over which (3) holds that is itself justified by randomization; conversely, if the
interval Z is known a-priori, then the problem collapses to a basic randomized controlled
trial where the regression discontinuity structure ends up not being used for inference.!?

Some work has generalized this randomization inference approach to regression discon-
tinuity designs, where the independence assumption (3) is only made after conditioning
on a set of observed covariates X; [Angrist and Rokkanen, 2015, Diaz and Zubizarreta,
2020]. Considering the role of such additional covariates is beyond the scope of the present
manuscript; however, it is plausible that our identification strategy powered by noise in
the running variable could also be extended to allow for additional, observed confounding
variables.

While knowledge of the presence of measurement error (or other noise) in running vari-
ables is often mentioned [Bor et al., 2014, 2017, Harlow et al., 2020, Lee, 2008], we do not
know of any work that exploits side information about measurement error for inference.'
Perhaps closest to our work, Rokkanen [2015] posits a latent-factor model for the running
variable and uses this for identification and estimation. Rather than using, as we do, e.g.,
biomedical knowledge, test—retest data, or prior modeling of item-level responses to tests,
Rokkanen [2015] uses a particular factor model for scores on at least three, somewhat similar
tests, which are assumed observed for the same units observed in the regression disconti-
nuity design. Moreover, while his identification argument is nonparametric, estimation and
inference relies on a parametric factor model.

We also contrast our setup with another design-based approach in which the cutoff, rather
than the running variable, has an exogenous random component. Ganong and Jager [2018]
posit that the cutoff is randomly drawn according to a known distribution. This may be
plausible when the cutoff is set based on, e.g., aggregate statistics for a past year’s data when
there are random year-to-year fluctuations. In contrast to our approach, this hypothetical
experiment involves highly correlated treatment assignments for units with similar values
of the running variable, which should typically substantially decrease precision, as has been
observed in the context of spatial boundaries [Kelly, 2019]. In cases where there is both
known measurement error in the running variable (as we study) and the cutoff is plausibly
random, we can think of our approach as simply conditioning on the observed cutoff, as is
also common in other approaches to regression discontinuity designs.

Finally, we also note a related, but distinct line of work that considers regression discon-
tinuity design with latent variables U; and noisy measurements Z; thereof: Bartalotti, Brum-
met, and Dieterle [2020], Davezies and Le Barbanchon [2017], Pei and Shen [2016], Yanagi
[2014], Yu [2012] assume that treatment is assigned according to U;, i.e., W; = 1 ({U; > ¢});
however only Z; is observed. Identification becomes subtle and estimation difficult because
of the perils of nonparametric estimation with measurement error [Meister, 2009]. Instead,
we use measurement error as our identifying assumption.

12Campbell and Stanley [1963] considered an analogy to an imagined “tie-breaking” experiment, where
treatment assignment is explicitly randomized for units whose running variable Z; is close to a cutoff,
and argued that such tie-breaking experiments should be conducted (see also Owen and Varian [2018]). A
regression discontinuity design then “attempts to substitute” for such an experiment [Campbell and Stanley,
1963]. However, such tie-breaking designs do not fall under (3), because the running variable is not taken
to be randomized—rather the treatment assignment rule is randomized after seeing Z; for a subset of units.

13Some early work has studied such measurement error under an assumed (e.g., linear) outcome model,
simply showing that its presence does not induce bias [Trochim, Cappelleri, and Reichardt, 1991].



2 Identification via Noisy Running Variables

Our goal is to develop an approach to identification and inference of causal effects in re-
gression discontinuity designs that exploits noise in the running variable. We start with the
classical regression discontinuity design with potential outcomes as described below, and
then add an assumption about how the running variable is generated.

Assumption 1 (Regression discontinuity design). There are i = 1, ..., n independent and
identically distributed samples {Y;(0), Yi(1), Z;} € R? and a cutoff ¢ € R such that units
are assigned treatment according to W; = 1 ({Z; > ¢}). For each sample, we observe pairs
(i, Z;} with Y; = Y;(W,).

Assumption 2 (Noisy running variable). There is a latent variable U; with (unknown)
distribution G such that Z; |U; ~ p(- ‘ U;) for a known conditional density p(- | -) with
respect to a measure A, such that E [Z; | U; = u] = u.'* We denote the implied marginal
distribution of Z by F and its dA-density by f, i.e., f(z) = dF(z)/d\ = [ p(z | u)dG (u).

Qualitatively, we interpret the latent variable U; in Assumption 2 as a true measure of
the property we want to use for treatment assignment, e.g., U; could capture ability in an
educational setting or health in a medical one. The actual observed running variable Z; is
then a noisy realization of U;. One common example of measurement error we consider in
this paper is Gaussian measurement error, i.e.,

ZZ‘UZNN(UZ, V2), v > 0; (4)

however the assumption also accommodates discrete running variables, such as Z; ’ U; ~
Binomial(N, U;)/N for some N € N.

Finally, in order to use the noise in Z; to identify treatment effects, we need for this
noise to be exogenous. The assumption below formalizes this requirement in terms of an
unconfoundedness condition following Rosenbaum and Rubin [1983].

Assumption 3 (Exogeneity). The noise in Z; is exogenous, i.e., [{Y;(0), Y;(1)} L Z] | U;.
An implication of Assumption 3 is that
E Y |Ui, Zi] = agwy(w), o) (u) =E [Yi(w) | U; =], (5)

where the a(,)(u) are the response function for the potential outcomes conditionally on the
latent variable u. Then, following Frangakis and Rubin [2002] we can think of u as indexing
over unobserved principal strata, such that

r(u) = E [Yi(1) ~ ¥(0) | Uy = u] (6)

is the conditional average treatment effect of the stratum with U; = u; see also Heckman
and Vytlacil [2005]. Given Assumptions 1-3, we know that the treatment assignment W; =
1({Z; > c¢}) is exogenous conditionally on U;. The remaining difficulty is that we do not
know U;, and so we cannot directly estimate the (heterogeneous) treatment assignment
probabilities P [VV2 =1 | Ui]. However, as shown below, we can get around this difficulty by

' The mean-parametrization condition E [Zi { U; = u} = u is not strictly necessary, but we use it through-
out for interpretability.



solving an integral equation that lets us balance out confounding due to the latent variable
U;.

Our main result is that, given our 3 assumptions, we can use noise in Z; to identify
weighted average of causal effects over principal strata (6). To this end, consider any aver-
aging treatment effect estimator of the form

= S vZ)Y: = > v (Z)Yi |, (7)

Zi>c Z;<c

with a weighting function satisfying E [v4+(Z;); Z; > ¢] = 1 and E [v_(Z;); Z; < ¢] = 1; we
will later also consider ratio-form estimators that do not require this moment assumption
on the weights. Our first result characterizes the expectation of this estimator under our
sampling model.

Theorem 1. Under Assumptions 1, 2 and 3, the estimator (7) has expectation

E[7] = /M(MT(U) dG(u) */(h+(U) — h-(u)) aq) (uv) dG(u), (8)

weighted treatment effect confounding bias

where h_(u) and hy(u) are given by
h(u) = /[ )’Y+(Z)p(z |u)dA(z),  h—(u) = /( )7—(2)17(2 | u) dA(2). 9)
Proof: Conditioning on the latent variable U;, we find that

E [14(Z) i 1({Z0 2 o) | U] © B [y (2) - Y1) - 1({Z 2 o}) | U]
S ENW|U] B (21172 o) U]

a@y(Us) by (Ui)=[, o0y 1+ (2)P(z | Ui) dA(2)

In (4) we used the fact that Y; = Y;(1) for Z; > ¢ by Assumption 1 and in (i) we used exo-
geneity of the noise (Assumption 3). Finally, the expression for E [v4(Z;)1 ({Z; > ¢}) | U]
follows from Assumption 2. Similarly, we find that

E [v-(Z)Yil({Zi < ¢}) |U;] =E [Y;(0)|Ui] E [v-(Zi)1({Z < c}) | Ui]

a@)(Ui)  h_(Ui)=[_, o 7= (2)p(z | Us) dX(z)

Thus, unconditionally,

E[7] = / iy () (u) dG () — / h_ (W) (u) dG(u).

We conclude with (8) by noting that 7(u) = a(1)(u) — oy (u) and rearranging. O

We emphasize that Theorem 1 made no use of any properties of the Z-conditional re-
sponse function fi,,)(2) other than those induced by random noise in the running variable
Z;. We can apply this result to estimate several different causal parameters of interest.



Remark 2. The assumption that we know the noise distribution p(z | u) exactly may ap-
pear restrictive in some applications. We note, however, that all our results remain valid
if we work with a noise distribution p(z ’ u) that under-estimates the true noise level, in
the sense that p(z |u) = [H(z |w)A(v | u) du’ for some distribution function A(u’|u) that
captures the noise left out by p(-).!> For example, if the true noise process involves het-
eroskedastic Gaussian measurement errors Z; | Ui~ N (UZ-, Vf), where U; and v; may be
correlated, then our approach would remain valid if we posit a homoskedastic noise model
Z; | U ~N (Ui, 172) so long as v; > ¥ almost surely. This fact is helpful when choosing
which noise model to use in practice: For example, again with Gaussian errors, one can
estimate the noise scale #° by considering a conservative lower bound on measurement ac-
curacy obtained via repeated measurement, e.g., in education via repeatedly administering
similar tests or in medicine by repeatedly administering the same diagnostic.

2.1 Constant treatment effects

A first interesting special case of the setting considered above is where the stratum-wise
conditional treatment effect function is taken to be constant 7(u) = 7, and our goal is
to estimate this constant treatment effect. In this case, Theorem 1 simplifies as follows,
implying that when we estimate a constant treatment effect, we can guarantee low bias
by using a weighted estimator of the form (19) whose induced h-function from (9) makes
sup {|h+(u) — h_(u)| : w € R} small.

Corollary 2. In the setting of Theorem 1, suppose furthermore that 7(u) = 7 for all u,
and that there are constants M and o for which ’a(o) (u) — 04(0){ < M.'S Then, (8) from
Theorem 1 implies

|E [7] — 7| < Msup {|h+(u) — h_(u)| : v € R}. (10)
Proof. The stated result follows directly from (8) by noting that

/h+(u)dG(u) = /[ )’y+(z)dF(z) =1, /h,(u)dG(u) = /(_ )7,(z)dF(z) =1.

Thus, the constant treatment effect 7 is captured exactly and the contribution of « g gets
canceled out, and so the only remaining leading-order bias term is

[ (@) = @) (a0 ) ~ a0) dG(w) < Msup {Jh(w) — h-(w)] s u € B,
and we recover the bound (10).

Remark 3. Even when the stratum-wise treatment effect function 7(u) is not constant,
using an estimator of the above type that makes sup {|hy(u) — h_(u)| : ©w € R} small may
be desirable. By direct analogy to (10) we immediately see that

(7] = 7hsl < Moup ()~ h-@)]su € B, 7 = [ hs(r(w)dGl), (11

15To check this fact, note that we can generate Z;|U; by first drawing U/ } U; with distribution A(u’ | w),
and then drawing Z;|U/ with distribution p(z ‘ u’). Our analysis then goes through with U; replaced by U/
(provided Assumption 3 still holds with Ul’) In general, under estimating the measurement error will result
in a loss of power (since it reduces the number of units that may plausibly both get treated or not treated
depending on the realization of Z;), but does not cause any conceptual problems (since our results will hold
regardless of the distribution of U;, and in particular also hold for latent states distributed as UZ’)

16The result is identical if instead there exists a1y such that |a(1)(u) - a(1)| <M.
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meaning that 7, always approximates some weighted treatment effect functional—and this
may be of interest if we are not directly interested in treatment heterogeneity [Crump,
Hotz, Imbens, and Mitnik, 2009, Li, Morgan, and Zaslavsky, 2017, Imbens and Wager,
2019, Kallus, 2020].

Remark 4. Formally, Corollary 2 is a partial identification result, as (10) only provides an
upper bound on the bias of our estimator. In general, we will consider sequences of weight
functions in (7) whose induced hy (u) functions make sup {|hy(u) — h_(u)| : w € R}, and
thus the bias bound in (10), progressively smaller. As discussed further in Section 3, the
choice of weighting functions is governed by a bias-variance tradeoff, whereby reducing the
bias bound in (10) entails increasing the variance of the estimator (7). In some settings, e.g.,
when Z;|U; has a Gaussian distribution, we will be able to push the imbalance term to zero,
and so Corollary 2 can also be used for point identification of 7. However, in other settings,
e.g., when Z;|U; has a binomial distribution, it is not possible to get zero bias via (10) and
so we can only achieve partial identification—even asymptotically. For a further discussion
of point versus partial identification in regression discontinuity designs, see Section II.A of
Imbens and Wager [2019].

2.2 Targeted treatment effects

Theorem 1 demonstrates that noisy running variables enable identification of the weighted
treatment effects 7, 1 (11). Depending on the application, an analyst may want to target a
weighted treatment effect 7, of their choice,

Tw = /w(u)r(u) dG(u), w(u) >0, /w(u)dG(u) =1 (12)
This target may be identified as shown in Corollary 3 below. The remainder of this section
provides examples of statistical targets that may be expressed as in (12).
Corollary 3. In the setting of Theorem 1, suppose furthermore that there are constants
M, M', ooy and T for which |a(0)(u) - a(0)| < M and |T(u) — 7| < M’'. Then,
|E [7] = 7w| < M sup{|hi(u) —h_(u)] : u € R} (13)
M sup { [y (u) — w(w)|  u € RY,

where T, and w(-) are defined in (12).

Proof. This result follows by the same argument as used for Corollary 2 along with the
decomposition

/ 7(w)w(w)dG(u) = / 7(wha (u)dG (u) + / (r(w) — 7) (w(u) — ho (u)) dG(u)

Regression discontinuity parameter One statistical target that may be of interest
is the standard regression discontinuity parameter 7, as defined in (1). Interest in this
parameter may not arise directly from first principles; however, it has traditionally been a key
focus of the continuity-based inference literature, and obtaining estimates of this quantity
that rely only on implicit randomization via noise in Z; may be helpful in comparing our
approach to traditional approaches. To write 7, as in (12), note that by Bayes’ rule,

=B [Yi(1) = Yi(0) | Zi = ] =E [r(U:)| Zi = ] = / r(wple|wdG(u)/f(c)  (14)
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Recall here that f(c) is the density of the running variable Z; at the cutoff ¢, defined in
Assumption 2. Thus, the representation from (12) holds with w(u) = p(c|u)/f(c). The
result from Corollary 3 thus implies that we can estimate 7, using weighted estimators that
make the right-hand side bound of (13) small.

Another closely related target is 7 as defined in (14), but for some other value ¢’ # ¢
of the running variable. Formally, this approach again fits withing our setting, with w(u) =
p(c | u)/f(c). Conceptually, estimating 7. away from ¢ involves extrapolating treatment
effects away from cutoff [Angrist and Rokkanen, 2015, Rokkanen, 2015]. Estimating 7., away
from the cutoff is also possible using continuity-based approaches, though the inference can
quickly become uninformative.

Changing the cutoff As argued in Heckman and Vytlacil [2005], in many settings we
may be most interested in evaluating the effect of a policy intervention. One simple case of
a policy intervention involves changing the eligibility threshold, i.e., that standard practice
involves prescribing treatment to subjects whose running variable crosses ¢, but we are now
considering changing this cutoff to a new value ¢’ < ¢.!” For example, in a medical setting,
we may consider lowering the severity threshold at which we intervene on a patient. In this
case, we need to estimate the average treatment effect of patients affected by the treatment
which, in this case, amounts to 7, = E [Yi(l) -Y;(0) | d<Z < c]. The following result
shows how to identify this quantity via a weighted estimator. Corollary 3 is applicable by
noting that effect of this policy change is

=B -0 < z<d= [ [rptelnicwae /[ are). o)

and so by Fubini’s theorem, 7, can be written in the form (12) with weight function w(u) =

Jier oy Pz | WAAE)/ [ o) AF(2),.

Reducing measurement error Another policy intervention of potential interest could
involve switching to a more (or less) accurate device for measuring Z;, thus changing the
noise level v in the running variable. For example, one could imagine that a policy maker has
the option to reduce measurement error by using a new (potentially more expensive) mea-
surement device, and wants to know whether improved outcomes from more reproducible
targeting are worth the cost. Specifically, suppose that we currently assign treatment as
Wi = 1({Z; > ¢}) for Z;|U; ~ N(U;, v*), and are considering a switch to a new treat-
ment rule W/ = 1({Z] > c}) based on a measurement Z | U; ~ N'(Uj, V'?) with a different
noise level v'. Writing ®,,(-) for the standard normal cumulative distribution function with
variance 2, we see that the effect of this policy change is

T = E[(Yi(1) - Y3(0)) (W — Wy)] = /T(U) (@ (¢ —u) =By (¢ —u))dG(u),  (16)
which again is covered by (12) and Corollary 3.

2.3 Noise-induced or continuity-based identification?

As mentioned in the introduction, the traditional approach to inference in regression dis-
continuity designs relies on smoothness assumptions for the conditional response functions

I"We also note that the hypothetical experiment that Thistlethwaite and Campbell [1960] offer as analo-
gous to a regression discontinuity is equivalent to randomizing some units to a different threshold ¢’.
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K(w)(2). Now, one can verify that noise in the running variable as in Assumption 2 implies
smoothness properties on the conditional response function: Under Assumptions 1-3,

pw)(2) =E [Yi(w) | Z; = 2] = /a<w)(U)p(Z|U) dG(U)//p(Z|U) dG(u), — (17)

s0 if ay(y)(u) is bounded and z — p(z ’ u) is continuous, then by the dominated convergence
theorem we can show that pi(,(2) is also continuous (see also Proposition 2 of Lee [2008]).

Given this observation, it is natural to ask whether we can usefully exploit smoothness
induced by measurement error to drive inference using classical continuity-based methods
like local linear regression. Recall that many continuity-based methods, including Armstrong
and Kolesér [2020], Imbens and Kalyanaraman [2012], Imbens and Wager [2019] and Kolesar
and Rothe [2018], rely on g (,)(2) having a bounded second derivative to drive inference.
Thus, to build a formal connection between our setting and this line of work, we need to
derive upper bounds on |u(,,(z)| that are justified by (17).

The following result provides such bounds in the case of Gaussian measurement error,
i.e., with Z; | U; ~ N'(U;, v?). The lower bound for u’(w)(z) below is obtained by considering
a distribution G(u) with two point masses symmetrically positioned around the cutoff, while
the lower bound for 4}, (2) adds a third point mass to G(u) at the cutoff. Meanwhile, the
upper bounds below build on a lemma of Jiang and Zhang [2009].

Proposition 4. Suppose that Assumptions 1-3 hold with noise model Z; | Uy ~ N (Ui, V2),
and that ’a(w)(u)| is uniformly bounded. Then, p,)(2) is infinitely differentiable. Further-
more, for any point z € R, given a lower bound p on f(z) = [ ¢, (z — u)dG(u), the density
of Z; at z, and a uniform upper bound M on the variation of a,)(u), the worst-case first
and second derivatives of i) (2) at z can be bounded as follows:

M
— - y/—log(2m12p?)
v

s
Ssup{‘wd)@
A

 f(2) = p, o) (U) — age| < M for allu e R}

< M /= log(2m2p?/25)
) (18)

M
ol (—log(2mvp?))

1) (2)
<ot

: f(z) > p, |a(w)(u) - a(w)} < M for allu e R}

13M
< —5 - (~log(2mp?/25)) ,

where ¢, (+) is the standard Gaussian probability density function with variance v?.

In other words, given a Gaussian noise model and a lower bound p on the density of
the running variable, one can use (18) to obtain quantitative upper bounds on the second
derivative of ,u(w)(z)ls that can then be used in conjunction with, e.g., the estimators of
Imbens and Wager [2019] and Armstrong and Kolesar [2020] that provide uniform inference
for the regression discontinuity parameter given a curvature bound on the response function.

18Instead of (18), we use the sharper (yet more complicated) lower and upper bounds that are derived in
the proof of Proposition 4.
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This result may be of conceptual interest, as adaptively discovering the curvature of fi(,,)(2)
is not possible in general [Armstrong and Kolesér, 2018].

In practice, however, bounds based on (18) appear to be quite wide. For example,
revisiting our example from Section 1.1, one could adapt the approach of Armstrong and
Kolesar [2020] to build local linear based confidence intervals for the regression discontinuity
parameter that only rely on the curvature upper bound provided by (18); however, doing so
would result in a 95% confidence interval of (—0.21, 0.19), which is not particularly useful
here.!® Furthermore, in our simulation experiments, we again find such intervals to be
considerably wider than our proposed ones that directly exploit the noise model on the
running variable. Thus, although measurement error does imply some smoothness in the
running variable ji(,)(z), this connection does not reduce the problem of accurate regression
discontinuity inference with measurement error to one of accurate continuity-based inference.

3 From Identification to Inference

In the previous section, we discussed how weighted estimators of the form (7) can identify
causal effects in regression discontinuity designs using only variation in the running variable.
In order to make use of such an estimator in practice, however, it’s not enough to just bound
its bias; we also need to understand its sampling distribution. In this section, instead of (7),
we study ratio estimators of the form

b=y — i (s = Zzec 1+(Z:)Yi = Zzi<c V-(Z;)Y;
K o v EziZc'Y-i-(Zi) T Ezi<c'Y—(Zi)

The self-normalization accounts for the fact that the constraints, E [y (Z;); Z; > ¢] = 1 and
E [v-(Z;); Z; > ¢] = 1, which we assumed to hold in Section 2, cannot be enforced exactly
unless the distribution of the running variable Z; were known a-priori. The ratio estimator
is more stable in finite samples and invariant to translations of the response Y;.

We first provide a general central limit theorem for (19), then we show how our identifying
assumptions enable the construction of asymptotic confidence intervals for various treatment
effect parameters. In Section 4, we propose a concrete approach to constructing weighting
functions « via quadratic programming that appropriately trades off the bias and variance
of the resulting estimator.

We start by studying the asymptotic distribution of the weighted ratio estimator (19).
We treat the weighting kernels v;,7_ as deterministic but allow them to vary with n,
ie, vy =7 +n and y_ = 7", Our results allow considerable flexibility in choosing v, v_.
In Section 4 we provide concrete guidance for constructing v4, v—; however, the abstract
limiting results given here would hold for other choices of weighting functions also (for
example, they would hold for weights derived from local linear regression as in (2) with
decreasing bandwidth).

Our first formal result is the following central limit theorem. We note that the conditions
on the response noise are mild and similar to commonly made assumptions. The assumption

(19)

9For completeness, we note that an application of the method of Armstrong and Kolesar [2020] to this
problem with curvature controlled by the lower bound from (18) would result in a 95% confidence of
(—0.06, 0.20), which is still larger than ours. This is of course not a rigorous confidence interval (since we
need to use an upper bound on the curvature to justify inference); however, what this argument shows is
that, even though the upper bounds in (18) may be somewhat loose, it is impossible to sharpen Proposition
4 so much as to make local linear regression with design-based curvature bounds competitive with our
approach.
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on regular weighting kernels is also easy to satisfy, and in particular the weights proposed
in Section 4 will satisfy this property.

Theorem 5 (Asymptotic normality of Ratio estimators). Suppose that the pairs (Z;, Y;)
are independent and identically distributed, and that:

1. The sequences of weighting kernels 'y(f) and 'y(f)

B €(0,1/2), C > 0 such that

are deterministic,?® and there exist

P [O < max ‘vgn)(z)

<n’.C-E [mg")(Zi)} , € {—|—,—}} — 1 as n — oo.
2. There exist ¢ > 0 and ,0 > 0 such that the response noise satisfies (¢ € {+,—1})
Var [Y; } Zi=z|> 0%, E [\Yz — u%0|2+q ’ Z; = z} < &% for all z with v,(2) # 0.

Then, 7, is asymptotically normal, i.e.,

\/ﬁ(%v —Ty) /\/‘77:/\/‘((), 1, (20)

where
E 4 (Z)Yi; Zi = ] E[y-(Z)Yi; Zi <]
_ o _ = 21
nE e e T R 2 Zi= E[v-(Zi); Zi <] 2!
E[2Z)0i—p)sZize] E[R2(Z) M- )iZi<e )
T E [+ (Zi): Zi > o] E[y_(Zi); Zi <

3.1 Feasible confidence intervals

Given our result from Theorem 5, we can design confidence intervals for various targets
“77 discussed in Section 2, including a constant treatment parameter 7 as in Corollary 2
or 7 := T, from (12). In doing so, we need to account for both the variance term V., as in
(22), and potential bias |b,| = |7, — 7|. Here, we will not assume that the bias is negligible
(i.e., we do not assume “undersmoothing”). Rather, we will derive an upper bound B, for
the bias [b,[, and then build confidence intervals for 7 that are robust to estimation bias up
to B,: Following Imbens and Manski [2004] and Imbens and Wager [2019], we set

T € TyEla, o= min{( P Hb+n—1/21771/22) < 4 >1—aforall [b] < EW}, (23)
where Z is a standard Gaussian random variable, « is the significance level, and ‘2, is an
estimate of the sampling variance V.

Corollary 6 (Valid confidence intervals). Assume the conditions from (5) are satisfied.
Furthermore, let b, =1, — 7 be the (asymptotz’c)Abias for estimating T and let B, be a
(potentially data-driven) upper bound on |by| and V, an estimate of V., such that

<

Vit (B = 1bs]) [V 2 04 0,(1), T =1+0p(L). (24)

Then, the confidence intervals from (23) satisfy liminf,, o P[r € 7, £ 4,] > 1 — a.

201t suffices for 4, v— to be independent of (U;, Z;, Y;(0),Yi(1)),1 <i < n.
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_ In order to make use of this result, it remains to design data-driven choices for Ev and
V,. We start with the latter, which admits a simple plug-in estimator.

Proposition 7. Under the assumptions of Theorem 5, V. can be consistently estimated
with the following plug-in estimator: V,, / Vo, =1+ op(1) for

o 7Nz EP V= i) | 5 et (Z) (Vi = o)
YT 3 5
(% dizise V+(Zi)) (& dizi<c v-(Zs))

; (25)

where fiy 4, fiy,— are defined in (19).

We next turn to bounding bias. This task is more involved, and our proposed solution
is built around fractional linear programming. Here, we consider bounding the bias for
estimators of a constant treatment effect 7 as in Corollary 2,2! and defer a discussion of bias
for weighted targets 7,, as in Corollary 3 to Section 4.2. To this end, we start by stating a
variant of Corollary 3 that holds for the ratio-form estimator (19).

Corollary 8. Under the conditions of Corollary 2, suppose furthermore that ’a(o) (u) — ,u%_‘
M. Then the limit 7, as defined in (21) satisfies

I — 1| < ME [[hy (Us) = h—(Ui)l] _ | Mlhy(u) — h(u)|dG(u)
! B E [h4(U3)] J 1y (w)dG (u) '

(26)

A challenge in using this result is that we do not know the expectations precisely since
they involve integrals over the latent variable U;. To get around this issue, we instead seek
to bound the worst-case bias over any data-generating distribution that appears consistent
with the observed data. Specifically, let G,, be the class of latent variable distributions that
lead to marginal distributions that lie within the Dvoretzky—Kiefer—Wolfowitz band of
the empirical measure F,,(t) = 1 Y 1(Z; <t), i.e,??

n

Gn = {G distrib. : sup

teR

/(_ t] [ pe1actiae) - R < lgff‘)} (27)

where «,, = min {0.05, ni } Then we solve the following optimization problem to get E,y:

5 M)~ b ()G )
By = o T T (wdG(w)

The above optimization problem is tractable: Both the denominator and numerator of the
objective are linear in G and furthermore G, is a convex class of densities that may be
represented by linear inequality constraints. Thus (28) is a fractional program that may be
solved through linear programming via the Charnes and Cooper [1962] transformation.

(28)

Proposition 9. Under the conditions of Corollary 8, EA, from (28) satisfies P[|b,| < Ew] —1
almost surely as n — oo, and the condition (24) from Corollary 6 is satisfied.

21Following Remark 3, all the following discussion about inference for T also goes through as a discussion
for inference about the weighted target 75, 4 under potential heterogeneity.
22More generally, any class of distributions Gy, such that P [G € G,,] — 1 could be used instead.
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Given any choice of weighting functions v for (19), Propositions 7 and 9 provide a
complete recipe for building valid confidence intervals via Corollary 6 (at least, so far, in the
case of constant treatment effects). As discussed above, at this point, one could already take
weighting functions implied by various regression discontinuity estimators (e.g., local linear
regression), and use these results to build valid confidence intervals for 7 that are directly
justified by noise-induced randomization. Existing weighting functions -y, however, were not
designed for this purpose, and so may not yield particularly short confidence intervals. In
the following section, we discuss how to design estimators 7., of the type (19) with an eye
towards making confidence intervals obtained via Corollary 6 short.

Remark 5. The confidence intervals (23) are not pointwise exact, i.e., there may exist data-
generating distributions for which liminf,, o P [T € 7, £ £,] > 1 — a. However, if our upper
bound on the bias is sharp, i.e., limy o0 v/n(By — |by]) / 1/V; = 0 in probability, then our
intervals are exact in a minimax sense, i.e., there exists some data-generating distribution
for which liminf, , P[r € 7y £1,] =1 —a. Here, our goal is to provide practical and
valid confidence intervals for 7, and a discussion of optimal inference is beyond the scope
of this paper. We note, however, that in many statistical applications confidence intervals
of the type (23), i.e., ones that seek robustness to worst-case bias, have strong optimality
properties: Intervals of this type are effectively the shortest possible intervals that achieve
coverage uniformly over a class of data-generating distributions [Armstrong and Kolesér,
2018, Donoho, 1994]. Whether a phenomenon of this type also plays out here would be an
interesting topic for further investigation.

4 Designing estimators via quadratic programming

We now turn to the problem of deriving weighting functions 4, y_ that make the estimator
discussed in the previous section perform well. We proceed according to the following
roadmap. If we knew the distribution F'(-) of the running variable exactly, then we could
use quadratic programming to derive weights that control the error of the unnormalized
estimator (7), as captured by its variance and the worst-case bias bounds given in Corollaries
2 and 3. In practice, of course, we do not know F(-), so what we do is we obtain a “guess”
F(-) for F(-),2® and then solve for the optimal unnormalized weighted estimator given this
guess F(-).

We emphasize that this approach is heuristic, and may not recover the optimal weights,
i.e., weights that would make the confidence intervals from Corollary 6 as short as possi-
ble. This is because our weights are optimized for the unnormalized estimator of the form
(7) rather than the ratio-form estimator (19) we use in practice,?* and because we rely
on potentially inaccurate guesses F(-) for F(-). However, as evidenced by our numerical
experiments, this heuristic appears to yield weighting functions vy, v— that yield powerful
inference in practice; and, as discussed above, we leave a topic of minimax-optimal inference
under noise-induced randomization to further work.

23This F(-) may represent an actual guess, or may be a pilot estimator derived from either held out or
unsupervised data (i.e., data for which we do not observe the response Y;). In general, using a poor choice of
F(-) would not impact the validity of our inference from Corollary 6, but could result in less accurate point
estimates and longer confidence intervals. We discuss possible constructions for F(-) further in Section 4.3.

24Recall that the construction of the unnormalized estimator (7) requires enforcing constraints of the type
E [v+(Z:); Z; > ] = [v+(2)1(z > ¢)dF(z) = 1 on the weights, and this is only possible if we know F(-).
When F(-) is not known a-priori, we need to use the ratio-form estimator (19) instead.
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4.1 Targeting constant treatment effects

We start our discussion in the same setting as in Section 3.1, i.e., where we target constant
treatment effect parameters. We consider weighted treatment effects in Section 4.2. To this
end, we start by assuming that we have access to a constant ¢ such that Var [Yi ‘ Z; = z] <
o2 for all z, which gives us the following bound for the variance of of the estimator (7):

Var [7,] < o? (/( )vi(z) dF(z) +/[ )ﬁ(z) dF(z)> . (29)

We also assume that we have a guess F(+) for F(-). Given these ingredients, we choose v (-)
by solving the following optimization problem:

2
-) € argmin 7 2(2)dF(z) dz 2(2)dF(2)dz 2 30
() earg {n</(_m)v() @+ [ REECE) )+t} (30)

st. M- <tforallu (31)

/ v (2)p(z | u) dA(2) — / v (2)p(z | w) dA(2)
(—o0,c)

[e;00)

| reare =1 [ edRe -1 (32)
(—o0,c) [e,00)

=), () < C -0 (33)
7-(2) = 74(2) = 0 for = ¢ [£, ul. (34)

Here (31) is the bound for the bias of the estimator given in Corollary 2, while the objective
(30) is the sum of the variance bound (29) and this worst case bias. Thus, the above
optimization problem is trying to minimize a bound on the worst-case mean-squared error
of the estimator (7), but with F(-) replaced with the guess F'(-) in the optimization problem.
Finally, (32) enforces the moment constraint required by weights used in (7), (33) ensures
that no single observation is given excessive influence, and (34) forces the weights v+ to
be zero outside of [¢,u] for numerical stability reasons. The above optimization problem
is a quadratic program, and an appropriately discretized version of it can be solved using
standard convex optimization software.

The following results shows that the resulting weights satisfy the conditions of Theorem
5 and thus enable valid inference.

Proposition 10 (Sufficient condition for regular weighting kernels). Assume we derive 4
by solving optimization problem (30) with potentially random choices for tuning parameters,
e.g., F(:). Furthermore, assume the expectation of vy,vy_ is lower bounded by a strictly
positive number, i.e., there exists 0 > 0 such that

n—oo

lim P [/(OO’C) v—(2)dF(z), /[C,Oo) v+ (2)dF(z) > 51 =1. (35)

Then the weights derived from optimization problem (30) are regular, i.e., satisfy the first
condition from Theorem 5.

4.2 Targeting weighted treatment effects

Our inference strategy can be naturally extended to the setting of estimating weighted
treatment effect of the type discussed in (12), i.e., where we target 7, = [ 7(v)w(u) dG(u).
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To do so, we need to derive a feasible bias bound analogous to that in Corollary 8, and
then incorporate it into the optimization problem used to generate the weights v4(-). One
difficulty, however, is that in many of the applications considered in Section 2.2, we did not
know the weighting function w(u) exactly; rather, we only knew it up to a multiplicative
constant. For example, in order to identify the classical regression discontinuity parameter
at the cutoff ¢, we need to use w(u) = p(c|u)/f(c). Here p(c ’ u) is known given our noise
model (Assumption 2), but f(c), i.e., the density of the running variable at ¢, is not known
a priori. To address this difficulty, we start below by providing a bias bound that does not
need w(u) as input, and instead can be applied with any choice w(u) x w(u).

Corollary 11. Under the conditions of Corollary 3, suppose also that |a(0)(u) — ,u%_| <M.
Furthermore let w(u) any function that satisfies w(u) o< w(u). Then the limit 7, as defined
in (21) satisfies

E{jh+(U) = h-(@)]] _ p Ellh+ () =@ W)]] + [E [hy (U) — 0 (U)]]
E [h(U)] E [h (U)]
Given a choice of w(u) o< w(u), we can turn Corollary 11 into a practical bias bound as

before in (28): Writing G,, for the Dvoretzky—Kiefer—Wolfowitz confidence set for G as in
(27), we set the bias bound B, to?®

sup J (M]hy (u) = h(w)| + M|y (u) — w(u)]) G( )+ M| [ (7 (u) — @(u))dG (u)]

GEGn J by (w)dG(u) ’
(37)

|7y — Tw| <M

(36)

and note that the conclusion of Proposition 9 remains valid in this setting.
Finally, we can solve for v4 () via an optimization problem almost identical to (30), the
only change being that we replace the worst-case bias inequality (31) with

1+t <t

[ reeloae - [ el ae)
(—o0,c) [e,00)

/[ Az |0 axz) — o)

The only remaining ambiguity is in how we choose the weighting function w(u) o< w(u). In
practice, we seek to make w(u) closely match the true weighting function w( ) e g., for the
case of the regression discontinuity parameter discussed above, we use w( } u)/ f
where f(c) is an estimate of f(c). If the constant of proportionality between w( ) and w(u)
is far from 1, the whole derivation above remains valid; however, it may be difficult to make
the bias bound t; in (38) small while enforcing the constraint (32).

M - < t; for all u

(38)

M- < t, for all u.

4.3 Practical considerations

We summarize our approach to inference in Algorithm 1. As emphasized above, valid
inference hinges on correctly modeling the measurement error as in Assumption 2 (or its

25The solution of this optimization problem is still tractable: It suffices to solve two fractional programs,
one taking plus sign for the last term in numerator of (37) and the other one taking a minus sign. Each
individual program can then be solved by linear programming through the Charnes and Cooper [1962]
transformation. Then we take BW as the maximum of the two objective values.
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Algorithm 1: Confidence intervals for treatment effects in regression discontinuity
designs identified via noise-induced randomization (NIR). This algorithm can either
be used for constant treatment effects 7 as specified below, or for targeted treatment
effect estimands 7, using [modified steps in brackets].
Input: Samples Z;,Y;, W;,i =1,..,n and RD cutoff ¢

Bounds M [resp. M, M']

Nominal significance level «

Hyperparameters o2, ¢, u, C, 3 for (30) [resp. (38)]
Form a guess or estimate f = f,, of the marginal Z-density.
Solve the minimax problem (30) [resp. (38)] to get v4,v— and the induced hy, h_.
Form the point estimate 7, as in (19).
Estimate the variance of 7., by V., as in (25).
Estimate the worst case bias B by (28) [resp. (37)]
Form bias-aware confidence intervals at level « as in (23).

(<2201 B NI G

relaxation in Remark 2), and having conservative bounds M and M’ on the range of the
functions ooy (u) and 7(u) respectively. If the measurement error model and M and M’ are
available a-priori, then our inference is valid by design.

In practice, having domain-specific knowledge about the distribution of the running
variable (e.g., from test-retest data or a physical model for the measurement device) is
essentially a pre-requisite for applying our approach. On the other hand, for M and M’,
there may be more flexibility. In some cases, e.g., if we have a binary outcome Y; € {0,1},
then we can use M = M’ = 1 as a purely uninformative choice. In other cases, however, this
may not be desirable: Perhaps our outcomes are not uniformly bounded, or perhaps using
this uniform bound (e.g., M = M’ = 1 for binary data) may seem needlessly conservative. In
such cases, the following heuristic may be helpful: Fit a cubic smoothing spline of Y; ~ Z; in
the control group, with smoothing parameter chosen by generalized cross-validation (GCV)
and finally take M to be one half of the range of fitted values. As a sensitivity analysis,
we also recommend running our procedure with 2M and 4M when using heuristic choices
of M. For M', we try M, % and 2L. The larger the value of M and M’ we use, the more
conservative the resulting inference.

We now discuss the remaining parameters/steps required by our algorithm. These are
not as critical, in the sense that poor parameter choices will not compromise valid inference;
however, making good choices here may enable shorter confidence intervals. Our first task
here is to estimate the noise density f(-). In doing so, we make use of the structure provided
by Assumption 2, and fit f(-) via non-parametric maximum likelihood [Kiefer and Wolfowitz,
1956] as implemented in the R package REBayes [Koenker and Gu, 2017]. We take o2 as
the residual error from running a linear regression of Y; on Z;, W; and their interaction
(recall that, here, 0 only scales the bias-variance tradeoff for learning 4 (), but is not used
for inference). Our final parameters are chosen for practical convenience and numerical
stability. For £, u, in the case of Gaussian running variables, we set ¢, u = ¢ + 3v where c is
the cutoff and v? = Var [Z; | U;] is the noise variance, while for binomial running variables,
we set f,u =c=+3- O.L"')/\/Jv.z6 Finally, we set C' = 400, 8 = 1, i.e., we do not use the
constraint (33) in our experiments, as we found this constraint to hardly ever be active for

26These choices are recommended for either estimating a constant effect 7, or the regression discontinuity
parameter at the cutoff ¢. To estimate targets away from the cutoff, wider intervals may be helpful.
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reasonable choices of C' and £.

5 Revisiting the HIV Example

As a first application of our method, we revisit our motivating example on estimating the
effect of ART on retention among HIV positive patients. We discussed the statistical setting
and existing analyses in Section 1.1. Here, our goal is to flesh-out the application of our
method to this dataset, and also compare our approach to state-of-the-art continuity-based
approaches to regression discontinuity estimation.

To this end, we consider the following broad strategies to the problem. Our first baseline
builds on the identifying assumption used for local linear regression in Section 1.1, i.e.,
that there is a constant B such that [u{,, (2)| < B for all w € {0, 1} and z € R. Many
different approaches of this type have been recently discussed in the literature, including
by Armstrong and Kolesér [2018, 2020], Imbens and Wager [2019] and Kolesar and Rothe
[2018]. Here, we consider the optimized regression discontinuity (optrdd) method of Imbens
and Wager [2019], which uses convex optimization to derive the minimax linear estimator
of 7 under the assumed curvature bound. Relative to the local linear approach from Section
1.1, optrdd does not require centering the confidence interval at a point estimate derived
from local linear regression, thus potentially allowing us to shorten the interval.

The main difficulty in using optrdd is in choosing the curvature bound B. Being able to
choose a good B fundamentally requires further assumptions, because if all we can assume
is that [u{,,(2)| < B for some unknown B, then estimating B in a way that enables valid
yet adaptive inference is impossible [Armstrong and Kolesar, 2018]. Here, we consider two
approaches to choosing B. First, as recommended in Armstrong and Kolesar [2020], we fit
fourth-degree polynomials to p)y(2) and pi(1)(2), and take the largest estimated curvature
obtained anywhere. This approach is heuristic and not justified by design, but appears to
yield reasonable results. Second, we consider a design-based approach: Given values for M
as in Section 4.3, we use Proposition 4 to obtain an upper bound B on curvature. This
bound is rigorously justified given our noise model, but results in much wider confidence
intervals.

Our next baseline relies on higher-order smoothness for inference. This approach, which
has recently become popular in applications, involves first fitting the regression discontinu-
ity parameter via local linear regression as in (2), and then estimating and correcting for
its bias in a way that’s asymptotically justified under higher-order smoothness assumptions
[Calonico, Cattaneo, and Titiunik, 2014]. We implement this approach via the R package
rdrobust of Calonico, Cattaneo, and Titiunik [2015]. Relative to our first baseline, rdrobust
essentially uses higher-order smoothness assumptions to automate discovery of the curva-
ture of fi(,)(2); see Calonico, Cattaneo, and Farrell [2018] for further discussion. A major
advantage of rdrobust is that it does not require any tuning parameters; a potential down-
side, however, is that it may be more heavily reliant on asymptotics (in contrast, for optrdd
and associated methods, choosing B is difficult but once B is given inference is essentially
exact in finite samples).

Finally, we consider our proposed method identified via noise-induced randomization,
assuming Gaussian noise with standard deviation v = 0.19 as discussed in Section 1.1. In
this application, we focus on estimating a constant treatment effect parameter. For the
bound M from Corollary 2, we consider several choices. First, we estimate M as discussed
in Section 4.3. Next, following our discussion in Section 1.1, we note that our outcome is
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Method Bound

M = 0.08 M = 0.16 M = 0.32 M=1
NIR 0.136 + 0.087 0.122 +0.092 0.116 + 0.097 0.112 + 0.102
optrdd 0.066 + 0.133 0.063 £ 0.135  0.063 &= 0.136  0.062 £ 0.136

B =1.46 B =292 B =584
optrdd 0.153 £ 0.080 0.136 £0.091  0.110 £ 0.102

rdrobust 0.170 + 0.076

Table 1: Estimates and nominally 95% confidence intervals for the effect of ART on re-
tention rate of HIV patients, as given by our noise-induced randomization (NIR) method,
optimized regression discontinuity design (optrdd), robust nonparametric confidence inter-
val (rdrobust). For our method, we consider M = 0.08 as estimated following Section 4.3,
2 and 4 times this value, and the uninformative choice M = 1. For optrdd, we consider
B = 1.46 estimated following Armstrong and Kolesar [2020], as well as 2 and 4 times this
value. We also consider values for B implied by our M bounds following Proposition 4;
quantitatively, this yields B = 51.31, 102.63, 205.26 and 641.43. The function rdrobust is
run using the default specification of Calonico, Cattaneo, and Titiunik [2015]. As discussed
further in the text, estimates most likely to be used in practice are highlighted in bold-face;
other estimates serve as sensitivity analysis.

binary so we can also use an uninformative bound of M = 1. We run our method following
the recommendations in Section 4.3.

We present the results in Table 1. We show results for several different choices of B and
M ; moreover, for each case where we use data-driven choices of B or M, we also conduct
a sensitivity analysis where we multiply these bounds by 2 or 4. For clarity, we display in
bold-face estimates that are most likely to be used in practice, i.e., using the estimate M or
the uninformative M = 1 for our method, taking the worst-case curvature as in Armstrong
and Kolesar [2020], or using rdrobust our of the box.

Overall, at least in this example, we find that when we run our method with the estimated
M = 0.08, we get confidence intervals whose width is roughly in line with those provided by
continuity-based methods that estimate the curvature of y(,,)(2). But unlike the continuity-
based approaches, our method also allows for a purely uninformative choice of M = 1
for which inference becomes purely design based and only relies on the noise in the running
variable Z;; and yet the treatment effect estimate remains significant at the 5% level. Noting
the difficulty of accurately estimating curvature (especially in finite samples), we believe the
ability of our method to deliver reasonably short confidence intervals that are purely justified
by randomization to be potentially useful in practice.

6 Test Scores in Early Childhood

We next consider the behavior of our method in a semi-synthetic experiment built using
data from the Early Childhood Longitudinal Study [Tourangeau et al., 2015]. This dataset

22



1 | et Individual treatment effects

Smoothing spline fit

0 BT 141 |

Z; [Base Score]

Figure 2: Scatterplot of the individual treatment effects Y;(1) — Y;(0) against the running
variable Z;, with data derived from the Early Childhood Longitudinal Study [Tourangeau
et al., 2015] as discussed in Section 6. We fit the ground truth treatment effect function
E [Y;(1) — Y;(0) } Z; = z|, shown as a line, using a smoothing spline.

has scaled test scores for n = 18,174 children from kindergarten to fifth grade. Furthermore,
each test score is accompanied by a noise estimate obtained via item response theory; see
Tourangeau et al. [2015] for further details.

We build a semi-synthetic regression discontinuity experiment using this dataset as fol-
lows, where each sample ¢ = 1, ..., n is built using the sequence of test scores from a single
child. We set the running variable Z; to be child’s kindergarten spring semester test score,
and set treatment as W; = 1 ({Z; > ¢}) for a cutoff ¢ = —0.2. We then set control potential
outcomes Y;(0) € {0, 1} to indicate whether the child’s test scores were above a = 0.5 in
spring semester of their first grade, while Y;(1) € {0, 1} measures the same quantity in
spring semester of their second grade; these are analogous to typically studied outcomes
such as passing subsequent examinations. Thus, the “treatment effect” Y;(1) — ¥;(0) mea-
sures the child’s improvement in passing the test (i.e., clearing the cutoff a = 0.5) between
first and second grades.

As shown in Figure 2, there is considerable heterogeneity in the regression discontinuity
parameter 7, = E [Y;(1) — Y;(0) | Z; = ¢] as we vary ¢ away from the cutoff: For children
with either very good or very bad values of Z; the treatment effect is essentially 0 (since they
will pass or, respectively, fail to pass the cutoff a in both first and second grade with high
probability), while for students with intermediate values of Z; there is a large treatment
effect (we chose the parameters a and ¢ in our experiment specification to accentuate this
type of heterogeneity).

Our main question here is whether our procedure is able to estimate this heterogeneity,
i.e., whether it can accurately recover variation in treatment effects away from the cutoff. To
this end, we consider two statistical targets: First, we consider estimation of the regression
discontinuity parameter (14) at ¢’ away from the cutoff, and second we consider the policy-
relevant parameter (15) quantifying the effect of changing the cutoff from ¢ to ¢’. When
applying our method, we assume Gaussian errors in the running variable as in Assumption 2
and, following Remark 2, set ¥ = 0.2043 to match the lowest noise estimate provided in the
Early Childhood Longitudinal Study dataset [Tourangeau et al., 2015]. We run our method
as discussed in Section 4.3 with a data-driven choice of bounds M = M’ = 0.31; however,
to accommodate values of ¢’ further from the cutoff, we consider non-zero weights on the
slightly wider interval [, u] = ¢ & 4v.

Results for both targets are shown in Figure 3. We see that our method is able to recover
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Figure 3: Regression discontinuity inference using our method (NIR) with data generated
as in Figure 2. The left panel shows estimates of the regression discontinuity parameter
(14), while the right panel shows estimates of the policy relevant parameter (15), both with
95% confidence intervals.

heterogeneity in the regression discontinuity parameter (14) with remarkable accuracy, while
we have some more difficulties in fitting the policy-relevant parameter (15). In both cases,
the confidence intervals provided by our approach cover the ground truth. Furthermore, as
expected, they are narrowest near the cutoff ¢ = —0.2, and get wider as we move ¢’ away
from the cutoff.

7 Simulation Study

In order to complete the picture given by our applications, we consider a simulation study
to more precisely assess the performance of our method in terms of both its accuracy and
coverage. To this end, we compare the following five methods closely related to those
considered in Section 5: An implementation of optrdd with B chosen to match the true
worst-case curvature in the simulation specification (oracle optrdd);?” an implementation
of optrdd with B estimated by polynomial regression as used in Section 5; rdrobust with
default specification (taking the debiased estimate as the point estimate); our method with
M set to the true range of a(,)(u) in the simulation specification (oracle NIR); and our
method with the uninformative choice M = 1 (all simulations have binary outcomes). We
run NIR such as to target a constant treatment parameter and following recommendations
from Section 4.3. The two new baselines, oracle optrdd and oracle NIR, are provided to
illustrate any loss from feasible tuning parameter choice.

We first consider two simulation specifications where the running variable Z; has contin-
uous support and Gaussian measurement error. In our first setting, we generate independent

27In the case of discrete running variables, oracle optrdd sets B to the worst-case curvature of a cubic spline
interpolator to p(,,)(2); see Imbens and Wager [2019] and Kolesar and Rothe [2018] for further discussion.
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setup 1 setup 2
v? 0.25 0.5 1 0.25 0.5 1
oracle optrdd | 97.2% 94.2% 95.8% | 96.6% 97.4% 96.6%
& optrdd 97.4% 94.4% 96.8% | 96.6% 97.0% 97.8%
S
= rdrobust 95.4% 91.8% 94.0% | 94.0% 95.0% 94.6%
§ oracle NIR 98.6% 93.6% 96.0% | 100.0% 96.6% 95.2%
NIR (M =1) | 97.4% 93.0% 96.2% | 99.0% 97.6% 95.4%
- oracle optrdd | 0.202 0.192 0.174 0.273 0.238  0.201
S| = optrdd 0.289  0.280  0.262 0.313 0.306  0.278
_— ED rdrobust 0.248  0.243 0.229 0.279 0.273  0.249
1 oracle NIR 0.338 0.274 0.218 0.361 0.251  0.209
= NIR (M =1) | 0.354 0.289 0.230 0.339 0.288  0.229
oracle optrdd | 0.075 0.076  0.070 0.102 0.084 0.074
M optrdd 0.102 0.110  0.101 0.118 0.112  0.103
< rdrobust 0.098 0.108 0.099 0.118 0.114 0.104
= | oracle NIR 0.115 0.109  0.087 0.088 0.093  0.082
NIR (M =1) | 0.125 0.116 0.091 0.110 0.104  0.090
oracle optrdd | 96.4% 96.4% 97.0% | 97.4% 96.6% 96.4%
52;” optrdd 96.6% 97.6% 97.4% | 97.8% 96.8% 97.0%
5 rdrobust 94.4% 94.4% 96.2% | 95.2% 95.8% 93.2%
§ oracle NIR 96.2% 95.0% 97.2% | 97.4% 96.2% 95.6%
NIR (M =1) | 96.4% 95.0% 97.4% | 96.6% 96.0% 95.8%
- oracle optrdd | 0.107  0.101  0.092 0.141 0.125  0.106
S| = optrdd 0.139 0.131 0.121 0.157 0.147  0.129
w3 ED rdrobust 0.112  0.108 0.102 0.134 0.127  0.110
1 oracle NIR 0.148 0.122 0.101 0.119 0.118  0.098
= NIR (M =1) | 0.153 0.127 0.105 0.133 0.129  0.105
oracle optrdd | 0.040 0.038  0.033 0.052 0.045  0.037
= optrdd 0.052 0.049 0.044 0.058 0.0563  0.045
< rdrobust 0.046  0.045 0.041 0.055 0.0563  0.044
= | oracle NIR 0.058 0.048 0.038 0.044 0.045 0.038
NIR (M =1) | 0.061 0.050 0.040 0.051 0.049  0.040

Table 2: Simulation results in the Gaussian noise settings (39) (setup 1) and (40) (setup 2)
for different choices of sample size n and noise variance v2. We report the actual coverage,
mean length of confidence intervals and mean absolute error (MAE) of the nominal 95%
confidence intervals in simulations by oracle optrdd (with true B), optrdd (adaptively chosen
B), rdrobust, oracle NIR (with true M) and NIR with uninformative M = 1. All numbers
are averaged over 500 simulation replications.
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setup 3 setup 4
K 50 100 200 50 100 200

oracle optrdd | 96.6% 94.4% 95.2% | 97.2% 98.4% 97.4%

%} optrdd 98.2% 96.4% 96.8% | 98.6% 98.2% 97.6%

5 rdrobust 93.8% 91.8% 94.4% | 94.2% 92.2% 92.8%

§ oracle NIR 97.2% 96.2% 97.0% | 97.0% 97.2% 97.2%

NIR (M =1) | 96.6% 96.4% 96.6% | 97.4% 97.2% 97.2%

- oracle optrdd | 0.203  0.221  0.249 0.15 0.144  0.142
S | o optrdd 0.434 0.373 0.368 | 0.303 0.253 0.248
— EO rdrobust 0.378 0.357 0.341 | 0.267 0.243  0.237
< oracle NIR 0.252  0.290 0.346 | 0.204 0.226 0.264
= NIR (M =1) | 0.268 0.304 0361 | 0212 0230 0.270
oracle optrdd | 0.079  0.089  0.101 0.054 0.0561 0.048

M optrdd 0.140 0.144 0.141 0.091  0.090 0.090

< rdrobust 0.169 0.169 0.155 | 0.115 0.113 0.107

= oracle NIR 0.097 0.111 0.132 | 0.071  0.080  0.097

NIR (M =1) | 0.103 0.118 0.139 | 0.074 0.084 0.100

oracle optrdd | 95.4% 96.6% 96.0% | 96.6% 98.2% 96.4%

%} optrdd 98.0% 98.0% 95.8% | 99.4% 97.2% 95.6%

) rdrobust 92.2% 95.6% 93.8% | 94.8% 93.8% 92.4%

§ oracle NIR 95.2% 95.4% 94.8% | 96.4% 95.8% 94.0%

NIR (M =1) | 95.6% 95.4% 94.2% | 96.2% 95.6% 94.4%

- oracle optrdd | 0.108 0.117 0.132 | 0.081 0.076  0.075
S | = optrdd 0.200 0.169 0.171 0.141  0.117 0.114
S gﬁ rdrobust 0.162 0.150 0.151 0.117  0.106  0.102
< NIR 0.113 0.128 0.152 | 0.091 0.098 0.112
= NIR (M =1) | 0.119 0.134 0.158 | 0.094 0.100 0.114
oracle optrdd | 0.040 0.043 0.050 | 0.029 0.028 0.028

M optrdd 0.063 0.055 0.063 | 0.043 0.042 0.043

< rdrobust 0.070  0.060 0.064 | 0.0561 0.048 0.046

= oracle NIR 0.042 0.047 0.059 | 0.034 0.038 0.045

NIR (M =1) | 0.045 0.049 0.062 | 0.035 0.039 0.046

Table 3: Simulation results in the binomial noise setting (41), with baseline conditional
response function (42) (setup 3) and (43) (setup 4), for different choices of sample size n and
binomial parameter K. We report the actual coverage, mean length of confidence intervals
and mean absolute error (MAE) of the nominal 95% confidence intervals in simulations by
oracle optrdd (with true B), optrdd (adaptively chosen B), rdrobust, oracle NIR (with true
M) and NIR with uninformative M = 1. All numbers are averaged over 500 simulation
replications.
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samples as below
U; ~ Uniform([-3, 3]),  Z;|U; ~N (U;, v°),

sin(U; 39
W; =1({Z >0}), Yi(w)~ Bernoulli (bm( ) fo3+ 0.25w) : (39)
while in our second setting, we use
1—p l—p 2
Ui ~poo+ —5—0k + ——0_k, Zi|Uj~ Ui,v7),
poo + 3 kT 5 k | N( 1/) (40)

W;=1({Z; >0}), Yi(w)~ Bernoulli (0.3-1({U; =0}) + 0.2+ 0.25w),

with k chosen such that ¢(k) = 0.1 and let p = p(k)/p(0) where ¢ is the standard normal
density. In both settings, the treatment effect is constant 7 = 0.25, so that both our
noise-based approach and the continuity-based approach unambiguously target the same
estimand.

Second, we consider a pair of data-generating distributions wherein Z; has discrete sup-
port, and has a binomial distribution conditionally on the latent U,. In both settings, we
generate

U; ~ Uniform([0.5, 0.9]),  Z; |U; ~ Bin (K, U;),

W, =1({Z; > 0.6K}), Y;(w) ~ Bernoulli (E [Y;(w)|U;]), (41)
but we consider two different choices for E [Y;(w)|U,],

E[Y;(w)|U; =u] =0.25-1({u < 0.6}) +0.75- 1 ({u > 0.6}) , (42)

E [Y;(w)|U; = u] = sin(9u)/3 + 0.4. (43)

In both cases, we use a null treatment effect 7 = 0, and consider various choices of K.

Table 2 shows the results for the simulation settings with a continuous Z;, for different
values of sample size n and measurement error v2. Here, by far the best performing method
is “oracle optrdd”, i.e., the continuity-based approach that gets a-priori access to the exact
worst-case bound on ju(,)(2). In practice, however, oracle optrdd is of course not a feasible
baseline; and the feasible alternatives of optrdd and rdrobust get wider intervals. In this
comparison, our approach is roughly competitive with feasible optrdd and rdrobust, with a
closer comparison depending on the noise level 2. As one might expect, when 2 is large,
our method performs well because there is a lot of measurement error to exploit; meanwhile,
when /2 gets small, our approach has less information to exploit and our intervals get wider.
In contrast, the continuity-based baselines are fairly insensitive to the noise level 2 here.
All methods get reasonable coverage here.

Next, we consider specifications with a binomial running variable in Table 3. Here, the
results are more clearly in favor of NIR. Our method achieves good coverage throughout, and
yields shorter confidence intervals than feasible optrdd (including with the uninformative
choice M = 1). Our method yields confidence intervals of comparable length to those
from rdrobust; however, rdrobust does not achieve nominal coverage here.?® K provides a
natural analogue to the noise level v2: The smaller K is the more effective noise there is in
the running variable, and so the better our method does.

28Rdrobust is justified via asymptotic arguments that do not hold for discrete running variables, so its
failure to achieve coverage here is not in contradiction with formal results backing the method.
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At a high level, this simulation experiment shows that our method, NIR, can flexibly
turn assumptions about exogenous noise in the running variable Z; into a practical, design-
based procedure for regression discontinuity inference in regression discontinuity designs.
We achieve nominal coverage across a wide variety of simulation settings, and are overall
competitive with continuity-based alternatives in terms of power. Thus, these results suggest
that the pursuit of design-based inference in regression discontinuity may be practical in
applications; in other words, concerns about power need not necessarily get in the way of a
statistician who would prefer to rely on design-based inference for conceptual reasons.

Our results also cautiously point to the possibility that NIR may in fact result in im-
proved power in settings where running variables are discrete with binomial noise. This
would not be unreasonable, as continuity-based approaches (especially rdrobust) were not
necessarily designed for this setting,?® whereas NIR can directly exploit structure of the
binomial distribution. However, a detailed study of the power (as opposed to feasibility) of
designed based regression inference across settings of practical interest is beyond the scope
of this paper.

8 Discussion

Informal descriptions of regression discontinuity designs often appeal to an analogy to a
local randomized experiment, whereby units near the cutoff are as if randomly assigned to
treatment. In perhaps the most common version of this analogy, one posits that units near
the cutoff have had their running variable randomized [Cattaneo, Frandsen, and Titiunik,
2015]. However, this analogy is typically undermined by the clear relevance of the running
variable to the outcome—even within a region near the cutoff. Here, we proposed a new
approach to inference in regression discontinuity designs that formalizes measurement error
or other exogenous noise in the running variable Z; to capture the stochastic nature of the
assignment mechanism in regression discontinuity designs. In the presence of measurement
error, units are indeed randomly assigned to treatment—but with unknown, heterogeneous
probabilities determined by a latent variable of which Z; is a noisy measure.

Regression discontinuity designs with known or estimable measurement error in the run-
ning variable arise in many settings. We have already considered applications to educational
and biomedical tests. Public policies that target interventions based on, e.g., proxy means
testing [e.g., Alatas, Banerjee, Hanna, Olken, and Tobias, 2012] may also readily admit
analysis with the noise-induced randomization approach. Furthermore, this approach is ap-
plicable to settings where thresholds for statistical significance are used to make numerous
decisions.

Finally, while this noise-induced randomization approach applies to many settings of
interest, we emphasize that is does not apply to all regression discontinuity designs, as some
running variables are not readily interpretable as having measurement error. For example,
numerous studies have used geographic boundaries as discontinuities [Keele and Titiunik,
2014, Rischard, Branson, Miratrix, and Bornn, 2018], but it would be questionable to model
the location of a household in space as having meaningful measurement error (rather, it
may be more plausible to argue that the location of the boundary itself is random [Ganong
and Jdger, 2018]). Likewise, analyses of close elections—a central example of regression
discontinuity designs in political science and economics [Caughey and Sekhon, 2011, Lee,

29 Although, as discussed in Kolesdr and Rothe [2018] they can rigorously be used in this setting given
appropriate interpretation.
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2008]—may not allow for a natural noise model for Z; that would arise from, e.g., noisy
counting of the number of ballots cast for each candidate. These considerations call attention
to the limits of the proposed approach, but also highlights a difference in the foundational
assumptions required for identification, estimation, and inference in regression discontinuity
designs with a noisy running variable versus the assumptions required when the running
variable is noiseless.
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A Proofs

A.1 Proof of Proposition 4

Proof. For the first result, note that p(,)(z) may in fact be extended to an analytic func-
tion across all of C, cf. Kim [2014]. We proceed with the quantitative claims and first
note that it suffices to consider the Standard Normal case, i.e., v = 1. To see this, take
Z; | Ui ~ N (U;,v?). Then Zi = Z;i/vi ~ N (U; /v, 1) and we may apply the results to Z;.
Concretely, let 7 : R — R be an arbitrary function and m : z — m(z/v) = m(Z). This de-
fines a bijection between functions that enables us to translate results for Z; into results for
Z; and vice versa (by applying the chain rule). It only remains to express the density f(Z)
of Z; at Z = z/v in terms of the density f of Z;; by transformation we have f(2) = v - f(2).
Furthermore, we derive all of our results for the control arm g (2); the arguments for
1y (z) are identical.

Upper bound: First derivative. Fix ¢ > 0. Since the Lipschitz constant remains the
same after shifting the response, we may assume (without 1055 of generality) that a(g)(u) €
[¢,2M + ¢|. Let H < G be the probability measure Wlth 4B (u) = M and write
J a0y (w)dG(u)
= [ (2 —u)dH (u). Then we can write:

o) = E oo (0| 2 = =) = MO L0016

d W (z h(z "(z h(z) (K (z "(z
@u(o)(z) _ /a(o)(u)dG(u)-< f((z)) _ sz; . J}((Z))) _ /a(o)(u)dG(u)-fEZ;(h((z)) - J;((Z))>

We next bound the three terms appearing in the expression above. First, we already saw

that pg)( = [ o0)(w)dG(u) - ?22 and so this term is upper bounded in absolute value by
2M + c. Next, by Lemma A.l. in Jiang and Zhang [2009] it holds that:
!
! (Z) —log(2m f2 " 10g(27rh2( )

It remains to lower bound h(z)/f(z):

[ @e(z — u)dG(u) .
h(z) = Ofa(o)(u)dG(u) z IM + ¢ /QO(Z—u)dG( )= S - f(2)

So putting everything together:

. 2mc?
< ir;g {(QM +e)- ( —log(2mf2(2)) + \/— log (sz(z)>> } (44)

Taking ¢ = 0.5M leads to the stated bound. We can computationally sharpen this bound
by optimizing over c.

d
@ﬂ(o)(z)

Upper bound: Second derivative. Continuing with the notation from the part above,
we can verify by taking the second derivative of yg)(2), that:

it (1) (55} -7
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Applying Lemma A.1. in Jiang and Zhang [2009] again we find that:

(2)
°=7

Using the fact that |0y (2)| < 2M + ¢, that we already bounded WEO)(Z)L ()] f(z) above
and the triangle inequality we conclude (by using ¢ = 0.5M as we did for the first derivative;
better bounds can be obtained computationally by optimizing over c).

Lower bound: First derivative. Take G = % (0_c+ d.), where 6, is a point mass at u,

ay(u) =M-(1(u=c)—1(u=—c)).

1< —lognf(z), 0< )

<30 +1< flog(27rh2(z))

((e=2)¢p(z = ¢) = (2 + )p(z + )

N

£(2) = 5 (ol =) + plz +)), f/(2) =
In particular, f(0) = ¢(c), f/(0) =0 and

M (p(z —¢) = p(z +¢)
p(z =) —p(z+¢)

Hence ,u’(o)(z) = Mec. Now take ¢ such that ¢(c) = f(z), i.e., c = /—log(2mf2(2)) to get:
) (0) = M -/~ Tog(3n /2(2))

Hoy(z) =

Lower bound: Second derivative. In this case we take G = 15% (5 +d¢) +w- o for
parameters w € [0,1], ¢ > 0 which we will specify later and ogy(u) = 2M -1 (u = 0). Then:

f(z):I_Tw'(@(Z_CH%”(Z*C)HW'@(Z), u(o>(2)=2-M-w-<p(Z)

By direct calculation we can verify that

10) = —9. M - PO (0) +9(0)F7(0)
2 (0)_ 2-M fQ(O)

To get a lower bound computationally, we conduct a grid search over ¢ and w and find the
parameter values that maximize | (0)| subject to the constraint that f(0) > p
For the analytic lower bound, we proceed as follows: We choose w = ¢(c), so that

f(0) = (1+¢(0) = o(c))p(c) and

, £7(0) = (1 = w)(c® = 1)p(e) — wp(0)

1 1 " : . CQ
7(0)=—2- M- LP(O)(1(+so(zj)(—))ﬁp(c)ﬁ

We now pick ¢ so that ¢(c) = p. It then holds in particular that f(0) > p and also:

M M
" (0)] = 302 = g(—log(%rpg))
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A.2 Proof of Theorem 5

Proof. Notation: We use E,, [-] to denote empirical averages. We omit dependence on n of
the weighting kernels. Finally, we write v4(2) = v4(2)1 (2 > ¢). We only prove a central
limit theorem for fiy 4. The CLT for fi, _ and 7y = fi, 4+ — fty,— follow similarly.

CLT for ), v+ (Z;) (Yi(1) — py,+): We seek to prove the following central limit Theorem:

" Z)(Y;(1) —
S wZG0 - m) | o
7B [ (20 () o
To this end, first note that the numerator has expectation 0, since:

E [y (Z)Yi(1)]

E [v4(Z)(Yi(1) = py, )] = E [v4(Z:)Yi(1)] = E [v+(Z))] Ene(Z)] 0.
Next we will check the condition of Lyapunov’s central limit theorem.
Var [1(2) (Y¥i(1) — )] > E [Var [y (Z0) (Yi(1) — iy 2) | 2]
=E [y4(Z)? Var [Y;(1) = piy,+ | Zi]]
=E [v4+(Z)* Var [Y;(1) | Zi]] (45)
> o”E [v4(Z:)?]
> o°E [+ (%))

E [l (Z) (Vi) = o )] = B [ (ZOPHE [|(%:() = o )| 21
< e [ 29
< max |y (2)|7 - 57 E [14.(2:)°]

So:

nE [ (Z) (G0 = i) P e, e ()7 - 5740 - E [0 (207
(nVar [y (Z:) (Yi(1) = sy )N EFD2 7 na/20200R [y, (2,)2 349/
(o)Hq. max; |4 (2)|*

ni/?E [y, (Z:)?)"*

ag
+
) T max, |y ()]

<

it
Y

n7E [y (Z)]!

Q| Ql

Q| Ql

q
) ( “172)" S5 0asn—

This proves the central limit theorem.
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Estimation of normalization factor: Here we prove that E, [v,(Z;)] /E [v+(Z;)] =
14+ op(1). For any € > 0, by Chebyshev’s inequality:
Var [v4(Z;)]
ne?E [v4(Z:))*
max, v (2)?
~ ne?E [ (Z)

C 2
S(-nﬁ_1/2> —0asn— oo
€

PlEn [v+(2:)] = E [v4(Zi)]] = €E [v+(Z:)]] <

CLT for [i, : Note that

fly 4 = Pyt = Z%r(Zi)(Yé(l) - Mv,+)/ZV+(Zi)
i=1 i=1

The above display, along with our preceding results and Slutsky yield the CLT:

\/’ﬁ(la’YHr - /j"‘/mL) = N(O, 1)
VB (202 0500 = 7] [E (200

A.3 Proof of Corollary 6

First note that by the Assumption of this Corollary on the bias, there exists n,, = op (n_1/2V71/2)
such that:

by = by + 1, |by| < B,

Then, Theorem 5, along with Slutsky (and recalling that b, = 7., — 7) imply that:

\/75(7A',Y—7'—57

7

) = N(0,1)

So, letting Z ~ N (0,1) independent of everything else:

Plresydla] =P ~la—by <7 —7—by <la—b
=P |V 2 (o by ) < VAV (7 =7 = by ) < VAT (L = by )|
Qg {]P) [—\/517;1/2 (éa + BW) < Z <V 2 (éa - Bv) | 177,1%,%7” +o(1)
—E [P |~la by +n VN2 <4, |V, By 3y || + o))
(? E[1—a]+0o(1)
—1—a+o(l)

In (i) we used the fact that the central limit theorem implies that the distribution func-
tion of the (asymptotic) pivot converges to the standard Normal distribution function ®(:)
uniformly. In (4¢) we used the definition of ¢, in (23) and the fact that |b,| < B,.
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A.4 Proof of Proposition 7

Proof. The proof here continues from the argument used for the proof of Theorem 5. As we
did there, we only prove the result for the variance of fi, y, the result for 7., follows in the
same way. Let us start by arguing that:

En [14(Z0% (Y1) = 0,0)°] /B [11(20)% (1) = iy, 0] = 1+ 0p(1),

By the inequality of von Bahr and Esseen [1965], there exists a constant Cy; < oo, such that:

n 14q/2
E (|0 {3 (207 061) — o 0)? — B [ (207 (000 — .0 }

i=1

zn: U%r Yi(1) = iy 4)° —]E[7+(Zi)2(yi(1)_M%JF)QHHq/Q]

< nCeE |14 (2 ><Yi<1>—u%+>|2+q}

In the last step we used Jensen’s inequality and C'q is a finite positive constant. The above
display then is equivalent to:

(| - B) [ 20?0 =) ] 0 [l 0500 - )]
<

2} (2+q)/2 2] (2+q)/2

B [14(2)2 (%(1) = piy.1) - n9l2E [y (202 (%(1) - 1)

This is precisely the expression we already showed converges uniformly to 0 during the
verification of Lyapunov’s condition in the proof of Theorem 5. It remains to show that the
feasible estimator is also asymptotically equivalent. To this end note the decomposition.

Y (Zi)? (Vi) = iy ) = 94 (Z0)* (Vi (1) = iy 1)
=74(Z) iyt — py)? + 274 (Z0)* (Yi(1) = piy4) (gt — iyt
From the CLT of Theorem 5, we know that:
(v = p2,0)” = Op (n7'E [ (20 (1) = piy,4 )] JE 4 (Z0)]) = Op (™42 = 0p(1)
And so:

% E?:1 '7+(Zi)2
E |74 (Z0)? (Yi(1) = 1y 4)?]

(et — 19,1 = 0p(1) -0p(1) = 0p(1)

The fact that the first term is Op(1) follows by arguing with Chebyshev’s inequality. First
note that from (45), we know that E[y, (Z;)? (Yi(1) — u7,+)2] > 02E[y,(Z;)?] and so it suf-
fices to show that E, [v4(Z;)?] /E [v4(Z:)?] is Op(1). Indeed this term is also 1+ op(1),
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since for any € > 0:

Var [7+(Zi)2]
ne?E [y (Z:)%)
maxe 1 () E [14(Z)]
T ne’E [ (2] ED+(Z)7]

2
<O~n31/2) —0asn— oo
€

P [[En [v+(Z)°] —E [v4(2:)*]| 2 <E [v+(Z)°]] <

IN

This proves the first term is negligible. To show that the second term is negligible, our basic
argument is that

n iz 1+(Z)° (Yi(1) — “W;) (fiy4 — Hy) = Op(1) - 0p(1) = 0p(1),
E [’}q_(Zi)Q (Y;(1) - oy, + ) }

and it remains to prove that the first term is indeed Op(1). Now by Cauchy-Schwarz
|Ep [v4+(Z0)* (Yi(1) = py, )] | = B [h4-(Z0) - v4-(Zi) (Yi(1) = g, 4]
1/2 1/2
2)? (Bu [ (202 0(0) = p3.1)?] )

But the above is the product of two Op(E[v(Z;)?(Y;(1
above), so we conclude upon dividing by IE[fy+(Zl)2( i(

< (By [v4(2Z:)?

) = fiy,+)?]Y?) terms (as we showed
1) = piy,+ )2] O

A.5 Proof of Corollary 8 and Corollary 11

Proof. For generality, we here consider the case where 7(u) may not be constant and so,
as discussed in Remark 3, our estimator should be interpreted as targeting 75, . The
asymptotic expectation of the estimator is equal to (letting formally 7, (2) to be 0 for z < ¢
and v_(z) =0 for z > ¢).

E (Z2)Yi()]  Ey-(Z2)Yi(0)]

Ty = Hvt+ Ty = TR [v+(Z3)] E[v-(20)]

T, remains invariant upon translating Y;(w) — Y;(w) — py,— Thus let Y;(w) be the shifted
Yi(w)’s, ie., Yi(w) = Yi(w) — py . Similarly let d,)(u) = E[Y;(w) | U; = u] be the shifted
conditional response surfaces. Then:

E[14(Z)%(0)] E[y-(2)%0)] E[n@)N0)]  E [ (Z)Ti0) -1 (2)7i0)]
Elv+(Z)  Eh-(Z)] —  E@)] E [v4+(Z;)]

It is helpful to note that:

Ty =

= / /[C’OO) v+ (2)p(z | w)dA(2)dG (u) = / Y4 (2) / p(z | u)dG(u)dA(2)

[e,00)

:[)M@wwbEmwm
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Now, following the Proof of Theorem 1 verbatim and noting that 7(u) = d(1)(u) — &) (u),
we get:

E [ (Z)¥i(1) =7~ (Z)¥i(0)]
=K [h-i-(Uz)@(l)( i ] [ ( 04(0 U)]
E [hy (U)7(Ui)] + E [&0) (Us) (h+(U) h—(Uy))]
E [h (U7 (UD)] + E [(a(0)(Us) — s, ) (he (U) = b (U,))]
So we have
B )70 +E (0 U) = iy, ) (s (U) — b (U1)]
! E [h4 (Us)]
and
= Tho| < E H(a(O)(U) - .u’v,—)(h-‘r(Uz) - h—(Uz))H
T E [h+ ()]
(|74 (Us) — h—(U3)]]
B E 74 (Us)]

This proves (26). Further, we have

B 1, (0r(0h)] _ E fu(00r(th)
E [hy(U;)] E [w(Uy)]
(B @)r(U)]  E [aUr(U)
E [h4(Us)] E [w(U;)]
B[ (U (U] - Ea@rU)] - 1 .
== B %EhdU”Ta%”<E[hAUD]Eﬁwahﬂ>‘
Eh(U) - o] |
e R ARl A )
ME (7 (U) — w(U)]) + M’ b (U) — a(U1)]

E [hy(Us)]
Along with the triangle inequality, this proves (36).

A.6 Proof of Proposition 9

Proof. Consider the event {G € G,,}. On this event, in view of Corollary 8, it holds for
by = 7y — 7, that

J Mhy (w) = h(u)|dG(u) _ S Mlhe () = b (w)]|dG(u) _ 5
Thi@dG) o, [hy(wdGw v
This implies that {G € G,,} C {|by| < EA,} and so P [|b7| < BA,} >P[G € G,). It thus suf-

fices to show that the RHS converges to 1 as n — oo. By construction of G,, in (27) and
Massart’s tight constant for the DKW inequality [Massart, 1990], it holds that

by] <

~

PG €G] >P Eg]g (F Fn(t)) < \/log (2/an) /(Qn)} >1—ap
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Since a,, — 0, we conclude with the proof of the first statement of the proposition. The
second statement also follows, since for any £ > 0:

P[\/ﬁ(§77|b7|>/m§ﬂ€] §P[§W<|b,y|}%0asn%oo

A.7 Proof of Proposition 10

Proof. Let us look only at 7., the results for 7_ are analogous. We need to check that there
exists a constant C' > 0 and 3 € (0,1/2) such that the event A,, has asymptotic probability
1, where:

A, = {O < max ”yg_n)(z)’ <nf.C.E [vi")(Zz)]}

We will show that we can use 3 = 8 and C = C/§, where C, 8 are specified in constraint (33)
of the optimization problem and § is defined in (35).

To see this, first note that max, vsrn)(z) > 0 must hold, otherwise constraint (32) of the
optimization problem would not be satisfied. Second, note that on the event

B, = {/[cm) v+ (2)dF(z) > (5},

from (35), indeed it holds that:

max ”yg_")(z)‘ <Cnf<Cnf.5< C’nﬂ/ v+ (2)dF(z)

[¢,00)

Thus P [A,] > P [B,] — 1 as n — co and the weights are regular. O
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