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Abstract

We consider the estimation of the effect of a policy or treatment, using panel data
where different groups of units are exposed to the treatment at different times. We focus
on parameters aggregating instantaneous and dynamic treatment effects, as a way to eval-
uate the welfare effects of the policies that occurred over the duration of the panel. We
show that under common trends conditions, these parameters can be unbiasedly estimated
by weighted sums of differences-in-differences, provided that at least one group is always
untreated, and another group is always treated. Our estimators are valid if the treatment
effect is heterogeneous, contrary to the commonly-used event-study regression. We also
propose estimators of a dynamic linear model, with group-specific but time-invariant ef-
fects of the current and lagged treatments, which may be used to evaluate ex-ante the effect
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1 Introduction

We consider the estimation of the effect of a policy or treatment on an outcome. To do so, we
use a panel of groups, indexed by g, that are exposed to the policy at different time periods,
indexed by t. The treatment of group g at period ¢t may have an effect on that group’s period-t

outcome, but it may also have an effect on its future outcomes.

To estimate the treatment’s instantaneous and dynamic effects, a commonly-used method is
to regress the outcome on group fixed effects, time fixed effects, the contemporaneous value
of the treatment, and lags of the treatment. Intuitively, the coefficient of the contemporaneous
treatment should estimate its instantaneous effect, while the coefficients of the lagged treatments
should estimate its dynamic effects. In staggered adoption designs where groups can switch in
but not out of the treatment, researchers have estimated a slightly different regression, where the
treatments are replaced by indicators for the number of time periods since a group has started
receiving the treatment. Hereafter, we refer to those regressions as event-study regressions.
Sun and Abraham (2020) have shown that the coefficients in the second regression are not
robust to heterogeneous treatment effects across groups and over timeﬂ and could be misleading
even under an additive dynamic treatment effect model with constant effects. [Schmidheiny and
Siegloch (2020) have shown that the two event-study regressions are numerically identical up to
a linear bijection. Together with the result in |Sun and Abraham| (2020), this implies that the
first event-study regression is also not robust to heterogeneous or dynamic effects. Instead, we
propose to use differences-in-differences (DID) estimators. As the event-study regressions, our
estimators rely on the standard common trends assumption, but unlike them they are robust to

heterogeneous and dynamic effects.

In our panel data setting, there is a wealth of instantaneous and dynamic treatment effects one
could estimate, and some aggregation is in order to improve power. Welfare analysis is a natural
guide to perform said aggregation (see Manski, 2005). We assume that units’ utility is additively
separable in the outcome, and that the cost of each treatment period is constant over time and
across units. We adopt the perspective of a utilitarian planner interested in assessing whether
groups’ actual treatments led to a welfare increase, relative to the status quo scenario were they
would have kept all along the same treatment as in the first period of the panel. In other words,
the planner seeks to assess whether the treatment changes that occurred over the period under

consideration increased welfare.

In groups untreated at period 1, the status quo treatment is to never be treated. Let ¢ denote
the cost of treatment. The welfare of those groups is larger than under the status quo if and

only if Ay > ¢, where A, is the discounted sum of the difference between those groups’ actual

I This result is a generalization of that in|de Chaisemartin and D Haultfeeuille| (2020), who show that a similar

result holds for the static two-way fixed effects regression without the lagged treatments.



outcome and their outcome if they had never been treated, divided by the discounted sum of
treatments received. Our parameter of interest for those groups is then d. = E[A.]. We define
similarly 0_ for groups treated at period 1 and refer to , and d_ as the actual-versus-status-quo
parameters. On top of their welfare interpretation, those parameters also tell us the average
increase in outcome produced by a one-unit increase in the treatment, over the duration of the
panel. Specifically, d is equal to the ratio of two quantities. Its numerator is the average effect
of not having remained untreated throughout the panel, across all observations in (g,t) cells
such that group g was initially untreated but became treated at least once at or before t. As
we allow for dynamic effects, the outcome of all those observations may be affected by that first
switch from untreated to treated, and may differ from their never treated outcome. Then, this
numerator is scaled by the average treatment of the same observations. By scaling the average
“intention-to-treat” effect of first switches on the outcome by their average “first-stage” effect
on the treatment, §, measures the average increase in outcome produced by a one-unit increase

in the treatment. 0" has a similar interpretation.

We then build unbiased estimators of these parameters. The logic is similar for both, so let us
focus on 6. For every ¢ and ¢, we form a DID estimator comparing the ¢ — ¢ — 1 to ¢t outcome
evolution, in groups treated for the first time in £ — ¢ and in groups untreated from period 1 to t.
Under our common trends assumption, this DID estimator is unbiased for the effect of that first
treatment switch, ¢ periods after it took place. Our estimator of d is a weighted sum of those
estimators, across t and £. If at least one group is untreated from period 1 to T', our estimator
is unbiased for 0. Otherwise, it is unbiased for a truncated version of ¢, , where the truncation
happens at the last period ¢ where at least one group has been untreated from period 1 to t.
Similarly, we propose an estimator of d_, and show that it is unbiased if at least one group is

treated from period 1 to T'. If not, our estimator is unbiased for a truncated version of J_.

We also propose placebo estimators of the common trends assumption, that compare the out-
come evolution between the same groups as above, before groups switching treatment do so.
Contrary to the standard common trends test in event-study regressions, our test is robust to

heterogeneous and dynamic effects.

Finally, the approach proposed so far evaluates ex-post the effects of the policies that took place
during the panel. Instead, one may be interested in using the panel to evaluate and compare ex-
ante future policies. Such an exercise must rely on the assumption that treatment effects do not
vary over time. Otherwise, the panel cannot inform us on future treatment effects. Accordingly,
we assume that potential outcomes follow an additive dynamic effect model with time-invariant
but group-specific coefficients of the current and lagged treatments, and show that many of those
coefficients can be unbiasedly estimated by linear combinations of DID estimators, comparing
again the first-time switchers to the not-yet switchers. We then discuss how estimators of those

coefficients can be used for ex-ante policy evaluation.



Related literature, and outline of the paper

In de Chaisemartin and D’Haultfeeuille (2020), we considered the estimation of the instantaneous
treatment effect, with a group-level panel data set, ruling out dynamic effects. In staggered
designs, the DID,; estimator we proposed therein is robust to dynamic effects, and it is in fact
equal to DID, o, one of the instantaneous treatment effect estimators we propose in this paper.
Outside of staggered designs, the DID,; estimator is not robust to dynamic effects. Thus, we
improve on our earlier work, by proposing an estimator of the instantaneous treatment effect
robust to dynamic effects, estimators of dynamic effects, and a principled method to aggregate
all those effects.

Sun and Abraham)| (2020) and |Callaway and Sant’Anna| (2020)) have also proposed DID estima-
tors robust to heterogeneous effects in panel data sets. Our paper differs from those on three
important dimensions. First and foremost, those papers focus on binary treatments, and on
staggered designs where groups can switch in but not out of the treatment. Our results, on
the other hand, apply to any design, and to non-binary treatments. Of all the papers using
regressions with group and time fixed effects published by the AER between 2010 and 2012, we
found in de Chaisemartin and D’Haultfeeuille| (2020)) that less than 10% have a binary treatment

and staggered design. Thus, our estimators can be used in a larger set of empirical applications.

Second, our paper uses welfare analysis to guide the aggregation of instantaneous and dynamic
treatment effects. We thus complement |Callaway and Sant’Anna; (2020)), who propose several
other interesting aggregation methods. Aggregation is especially important outside of staggered
designs. With T periods and a binary treatment, there are only 7'+ 1 possible treatment
trajectories in a staggered design, against 27 in general designs. Hence, estimators of the effect

produced by every trajectory observed will be much noisier in general designs.

Third, in staggered designs, the control group used by our DID estimators differs from that in
Sun and Abraham| (2020)). To estimate the treatment effect at date ¢ in groups treated at date
t — ¢, we use as controls all groups not yet treated at ¢, while they use the never treated groups
or the groups treated last if there are no never treated groups. Our control group is larger, so
our estimators ought to be more precise. (Callaway and Sant’Anna/ (2020) propose to use either
the never treated or the not yet treated. In|de Chaisemartin and D’Haultfeeuille (2020), we also

proposed to use the not yet treated as controls to estimate the instantaneous treatment effect.

Finally, another related paper is Bojinov et al.| (2020), who propose estimators of instantaneous
and dynamic treatment effects, in panel experiments. Their approach is applicable when the

treatment is randomized, while ours is applicable when it is not.

The paper is organized as follows. Section 2 introduces the notation, our assumptions, and our

parameters of interest. Section 3 presents our estimators, and shows that they are unbiased. It



also presents the placebo estimators. We study the additive dynamic effect model in Section
4. Finally, in our Web Appendix we consider several extensions of the estimators proposed in

Section 3.

2 Set-up and parameters of interest
2.1 Notation and assumptions

One considers observations that can be divided into G groups and 7" periods. Time periods are
indexed by t € {1,...,T'}. Groups are indexed by g € {1, ..., G}. There are N,; > 0 observations
in group g at period t. The data may be an individual-level panel or repeated cross-section data
set where groups are, say, individuals’ county of birth. The data could also be a cross-section
where cohort of birth plays the role of time. It is also possible that for all (g,t), N, =1, e.g. a

group is one individual or firm.

One is interested in measuring the effect of a treatment on some outcome. We start by assuming
that treatment is binary, but show in Section 1.3 of the Web Appendix that our results can be
generalized to ordered treatments. For every (i,g,t) € {1,..., Ny} x {1,...,G} x {1,..., T}, let
D; ,+ denote the treatment status of observation 7 in group g at period ¢, and for all d € {0, 1}7,
let Y; ,..(d) denote the potential outcome of observation i in group g at period ¢, if her treatments
from period 1 to T are equal to d. This dynamic potential outcome framework is similar to that
in [Robins| (1986). It allows for the possibility that observations’ outcome at time ¢ be affected
by their past and future treatments. Some observations may have already been treated prior
to period 1, the first period in the data, and those treatments may still affect some of their
period-1-to-T" outcomes. However, we cannot estimate such dynamic effects, as treatments and
outcomes are not observed for those periods, so we do not account for this potential dependency

in our notation.

We focus on sharp designs, where the treatment does not vary within (g, t) cells.
Assumption 1 (Sharp design) V(i,g,t) € {1,..., Ng;} x {1,...,G} x {1,..., T}, Digr = Dy [

Assumption [I]is for instance satisfied when the treatment is a group-level variable, as a county- or
a state-law, or when N, = 1. Then, let Dy = (Dy1, ..., D, 1) be a 1 xT vector stacking the treat-
ments of group g from period 1 to T'. For all d € {0,1}7, let also Y, ,(d) = 1/N, YN Y gi(d)
denote the average potential outcome of group g at period ¢, if the treatments of group g from
period 1 to T" are equal to d. Finally, we let Y, =Y, ;,(D,) denote the observed average outcome

in group ¢ at period t.

2 Assumptions @ have equalities and inequalities involving random variables. Implicitly, these equalities
and inequalities are assumed to hold with probability one.



Assumption 2 (No Anticipation) For all g, for all d € {0,1}7, Y, (d) = Y, .(d1, ..., dy).

Assumption [2| requires that a group’s current outcome do not depend on her future treatments,
the so-called no-anticipation hypothesis. |[Abbring and Van den Berg| (2003)) have discussed that
assumption in the context duration models, and Malani and Reif (2015, Botosaru and Gutierrez
(2018)), and [Sun and Abraham| (2020)) have discussed it in the context of DID models.

In Assumption [3] below, we require that there is at least one group going from untreated to
treated at a date where another group has been untreated all along, or at least one group going
from treated to untreated at a date where another group has been treated all along. This
only rules out pathological applications, where groups untreated at period 1 either all remain
untreated till period T" or all get treated for the first time at the same date, and groups treated
at period 1 either all remain treated till period T or all get untreated for the first time at the
same date. For any g € {1,...,G}, let F,; = min{t : D;; = 1} denote the first date at which
group g is treated, with the convention that Fj,; = T'+1 if group g is never treated. Similarly, let
F,o=min{t: D,, = 0} denote the first date at which group g is untreated, with the convention

that F, o = T+ 1 if group g is always treated.
Assumption 3 (Non-pathological design) At least one of the two following statements hold:
1. There exists (g,9') € {1,...,G}* such that 1 < F,; < F ;.

2. There exists (g9,9") € {1,..., G}* such that 1 < F,g < Fy 0.

We consider the treatment and potential outcomes of each (g,t) cell as random variables. For
instance, aggregate random shocks may affect the potential outcomes of group ¢ at period t,
and that cell’s treatment may also be random. The expectations below are taken with respect

to the distribution of those random variables.

Finally, we let 0 and 1 respectively denote 1 x T" vectors of zeros and ones. Hereafer, we refer to
Y,+(0) and Y, (1) as group g¢’s never- and always-treated potential outcomes at period t. Our

estimators rely on the following assumptions on Y, ;(0) and Y, ,(1).

Assumption 4 (Independent groups and strong exogeneity) Vt > 2 and ¥g € {1, ..., G},
1. B(Yy(0) = Yy 1(0)| Dy, oo, D) = E(Yy4(0) = Yy 1(0)| D).
2. E(Y4(0) = Yy 1(0)|D,) = E(Y;4(0) — Yy-1(0)).

Point 1 of Assumption [4] requires that conditional on group g¢’s treatment, the shocks affecting
its never-treated outcome be mean independent of other groups’ treatments. This holds if
the potential outcomes and treatments of different groups are independent, a commonly-made

assumption in DID analysis, where standard errors are usually clustered at the group level (see

6



Bertrand et al.;[2004). Point 2 is related to the strong exogeneity condition in panel data models.
It requires that the shocks affecting group ¢’s never-treated outcome be mean independent of
group ¢’s treatments. For instance, this rules out cases where a group gets treated because it

experiences negative shocks, the so-called Ashenfelter’s dip (see Ashenfelter, 1978).
Assumption 5 (Common trends) Vt > 2, E(Y,;,(0) — Y, ,-1(0)) does not vary across g.

Assumption [p| requires that in every group, the expectation of the never-treated outcome follow
the same evolution over time. It is a generalization of the standard common trends assumption
in DID models (see, e.g., Abadie, [2005)) to our set-up allowing for dynamic effects. |Sun and
Abraham| (2020)), Athey and Imbens| (2018)), and Callaway and Sant’Anna| (2020) also consider

that assumption.

Assumption 6 (Independent groups and strong exogeneity for the always treated outcome) Wt >
2 and Vg € {1, ..., G},

1. BE(Yy:(1) =Yy 1(1)| Dy, ..., Dg) = E(Yy (1) — Yy -1(1)|Dy).
2. BE(Yy4(1) = Y,-1(1)|Dy) = E(Yy (1) — Ygu-1(1)).

Assumption 7 (Common trends for the always treated outcome) ¥Vt > 2, E(Y, (1) —Y,;-1(1))

does not vary across g.

Assumptions [6| and [7] are the equivalent of Assumptions[dand [5] for the always-treated potential

outcome.

2.2 Parameters of interest

Our parameters of interest are benefit-to-cost ratios, that a planner may use for treatment choice
(see [Manski, 2005). Assume that the instantaneous utility for observation i in group g at period

t with treatment vector d, = (dg1, ..., dgr) is
Uiga(dg) = Yiga(dg) — cdgy + wigy,

where c is the instantaneous cost of treatment, assumed to be constant across groups and over
time. With treatments d = (dy, ..., dg) in groups 1 to g, the utilitarian social welfare in any set

of groups G is

W(d,G) =Y NgiBYyu(dy) —c > NyiBldgs+ > gy, (1)

geG,t geg,t 1,9€G,t

where 3 € (0, 1] is the planner’s discount factor.



Let D = (Dy,...,Dg) be a vector stacking the treatments received by groups 1 to G from
periods 1 to T'. The planner may want to compare D to the scenario where each observation
keeps her period 1 treatment till period T, the status-quo scenario. Thus, she can determine
if the treatment changes that occurred over the period increased welfare or not. This analysis
can be conducted separately for groups untreated and treated at period 1, whose status quo
treatment differs. In groups untreated at period 1 (F,; > 1), the status quo treatment is to

never be treated. The actual treatment D is beneficial compared to never being treated if and
only if W((Dhy,...,D¢),g: Fy1 > 1) > W((0,...,0),g : F,1 > 1), i.e. if and only if

A, — Z(g,t):Fg,1>1 Ng,tﬁt(Yg,t(Dg) B Yg,t(o))
+ = ; > C.
Z(g,t)'F 1>1 Ng,tﬁ Dg,t

9

Accordingly, the planner may be interested in learning 6, = E (A4) [

In groups treated at period 1 (Fj > 1), the status quo treatment is to always be treated. The

actual treatment D is beneficial compared to always being treated if and only if

A ZlgtiFaet N B (Yya(Dy) — Yu(1)) “e

Z(gmf):Fg,o>1 Ng»tﬂ%Dg,t - 1)

where the inequality goes in the opposite direction than above because the actual treatments

of the initially treated groups represent a decrease in exposure with respect to always being

treated. Accordingly, the planner may be interested in learning §_ = E (A_).

It may not always be possible to estimate .. To see why, let us start by simplifying the
expression of that parameter. For never treated groups (F,; = T + 1), Y,(D,) = Y,;.(0)
for every t. For groups initially untreated but treated at least once, (2 < F,; < T'), under
Assumption 2| Y, ,(D,) = Y,,(0) for t < F, ;. Accordingly,

5. — E Zg:QSFg,lST ZtT:Fg,l Ng,tﬁt(yg,t<D9) B Yg,t(o))
i Zg:QSFgJST Z?:FgJ Ng,tﬂthvt

Thus, estimating 0, requires estimating the never-treated outcome Y, ,(0) of all the (g,t)s en-
tering the previous equation. For that purpose, the DID estimator we propose below uses the
fact that Y, ,(0) = Yy r, ,-1(0) + Y:(0) = Yy i, ,~1(0), and estimates Y, ,(0) — Yy £, ,~1(0) by the
outcome evolution from F,; — 1 to t in groups never treated from period 1 to ¢. If there is no
group never treated from period 1 to T, this strategy is not feasible at every t. Then, estimating
04 is not feasible under the common trends condition we introduced above, and would require

imposing supplementary assumptions.

3Strictly speaking, the planner may rather be interested in learning E (A |D), because E(W ((Ds1, ..., Dg), g :
F,1 > 1)|D) > E(W((0,...,0),g9 : Fy1 > 1)|D) if and only if E(A4|D) > ¢, while we do not have that
EW((Dhz,....Dg),g : Fg1 > 1)) > E(W((0,...,0),g9 : Fy1 > 1)) if and only if 64 > c. It turns out that the
estimator gfﬁ“ we propose below is also unbiased conditional on D, so it may also be used to learn E (A4|D).



In that case, we consider a truncated version of 4. Let NT' = maxgec(i,.. ¢ Fg1 — 1 denote the

last period where there is still a group that has been untreated since period 1, and let

st — | (Zg 2<Fg1<NT Zt Fg1 gvtﬁt( gﬂf(DQ) - ngﬂf(o)))
b=

Zg :22<F,1<NT Zt Fga g,tﬁth,t

denote the truncated-at-NT version of d,, that only takes into account the effects and costs of
treatment until period NT. 61" includes all the treatment effects that can be estimated under

our DID assumptions. Let

t
Zg :22<F,1<NT Zt Fgq gvtﬁ Dgﬂf
ZQ:QSFQJST Zt:Fg’l g,t/Bth,t

denote the proportion of treatment effects in 0, that are also in 6{". When A" is close to 1,

Ny = )

64 and 0y are unlikely to differ by much. Formally, assume that for all (g,t), y < Y;.(0) <7,

where y and 7 are two real numbers. Then, 0, € [d,,0,], with

T t —
) )\trué‘tru 1— )\tru Zg:QSFg,IST Zt:NT-i—l Ng,tﬁ (qu,t(Dg) - y) 3
Zg:QﬁFgJST Zt:FgJ Ng,tﬂ Dg,t
T t
g —E )\truétru 1— )\tru Zgi?ﬁFg,IST Zt:NT-i—l Ng,tﬁ (qu,t(Dg) - g) 4
= P+ ( +) T , (4)
Zg:QSFg,lST Zt=Fg,1 Ngtf3*Dyg,

Similarly, if there is no group treated at all periods, J_ cannot be estimated under the common
trends condition we consider below. Then, let AT = maxeq1,..ay Fyo — 1 denote the last period

where there is still a group that has been treated since period 1, and let
st — B Zg 2<Fy 0<AT Zt Fg0 gtﬁt(%i(Dg) - Yg,t(l))
B Zg 2<Fy 0<AT Zt Fg0 g,tﬁt(Dgyt - 1)
denote the truncated-at-AT version of d_. Let also
Zg :22<Fy 0<AT Zt Fyo g,tﬁt(Dg,t - 1)
Zg:QSngogT Zt:Fg,O g,tﬁt(Dg,t - 1)

denote the proportion of treatment effects in d_ that are also in d"". As above, _ and §"" are

A = (5)
likely to be close when A™" is close to 1.

64" and 6"" can be interpreted as instrumental variable (IV) estimands measuring some average
of the change in outcome created by a one-unit change in treatment. To simplify, let us first
assume that § = 1. Let

=#{(i,9.t) : 2 < Fyu <t < NT},

1
AiTT N Z (K,w(DQ) - Yi,g,t(o)),
(i,9,t):2<Fy1<t<NT
1
FS
AP =37 2 D

(4,9,1):2<Fg 1 <t<NT



N is the number of observations in (g,t) cells such that group ¢ has switched from untreated
to treated for the first time at or before t. As we allow for dynamic effects, the outcome of all
those observations may be affected by that first switch, and may differ from their never treated
outcome. Accordingly, AT is the average difference between their observed and never-treated
outcome. Ais is the average treatment of the same observations. In staggered designs, Ais =1,
as groups switching from untreated to treated remain treated thereafter. Outside of staggered

designs, Af‘;s < 1 as some groups may revert to being untreated. If g =1,
ITT
6tru — F <A+ )
+ .
ALS

0™ scales the average “intention-to-treat” effect of first switches on the outcome by their average

“first-stage” effect on the treatment, thus ensuring it measures some average of the change in
outcome created by a one-unit change in treatment. If § < 1, 6" has a similar interpretation,
except that every (i, g,t) receives a weight proportional to 8* in the definition of the intention-

to-treat and first-stage effects. 6" has a similar interpretation.

There are also special cases where 07" and 0"" simply reduce to standard average treatment

effects. For instance, if T' = 2,

ra 1

53— =K (N Z (Y;,g,t(ov 1) - Y;}g,t(oa O))) )
* (i,9):Di,g,2>Di g1

where N = #{(i,9) : Dig2 > D;g41}. 04" is the average effect of having been treated rather

than untreated at period 2, among all observations going from untreated to treated from period

1 to 2. Similarly, 6" is the average effect of having been treated rather than untreated at period

2, among all observations going from treated to untreated from period 1 to 2:

1
61311 :E (N Z (Yl,g,t<17 ]') - ngyt(]" 0))) ?
- (i,g)ZDi,g72<Di7g’1

where N_ = #{(t,9) : Dig2 < D;g1}. Then, 07" and 0" are similar to the switcher’s average
treatment effect considered in |de Chaisemartin and D’Haultfoeuille| (2020)). Another special case
where 61" may reduce to a standard average treatment effect are staggered adoption designs,

where groups can switch in but not out of the treatment:
Dyy> Dy for all g and t > 2. (6)

If @ holds, # = 1, no groups are always treated (1 < Fj; for all g), and there are no dynamic
effects (}/;7t(d1, ey dt) = Y;],t(dt>>7 then

ru 1
53_ =F (ZD Z (Yige(1) — Yi,g,t(o))) ,
(’L,g,t) 4,95t (i,g,t):Di’g,til

10



so 0f" is just the average treatment effect on the treated. Thus, 67" and 6" can be seen as
generalizations of standard average treatment effect parameters to settings with multiple periods

and dynamic effects, that aim to guide treatment choice in such settings.

3 Estimators and placebo estimators
3.1 Estimators

We start by proposing an unbiased estimator of 01". Our estimator is a weighted average of
difference-in-difference estimators. First, for any ¢ € {0,...,7 — 2} and ¢t € {{ +2,...,T}, let
Ntl’g = 2 g:F,1—t—t Nyt denote the number of observations in groups treated for the first time at
period t — ¢. Let N/"* =Y. £, 1>t Vgt denote the number of observations in groups untreated

from period 1 to t. We define

N, N,
DIDyee= > 34 (Vor = Yoem) = 2 50t (Vor = Youmrr)
gFg1=t—¢ ~ 'L giFg 1>t * 't

if N}y > 0 and N > 0, and we let DID, ;, = 0 otherwise. DID, ,, is the DID estimator
comparing the outcome evolution from period t — ¢ — 1 to ¢ in groups treated for the first time
in ¢t — ¢ and in groups untreated from period 1 to t. Under Assumptions the latter evolution
is a counterfactual of the evolution that would have taken place in the former set of groups if
it had not switched treatment for the first time ¢ periods ago. Thus, DID, ;, is an unbiased
estimator of the effect of that first switch, ¢ periods after it took place. In staggered designs,
groups treated for the first time in ¢t — ¢ remain treated till ¢, so DID ; , is an unbiased estimator
of the cumulative effect of having been treated for ¢+ 1 periods, in groups reaching ¢+ 1 periods
of treatment at period t. Without staggered adoption, some groups treated for the first time in
t — ¢ may remain treated till ¢, while other groups may immediately go back to being untreated.

Accordingly, DID. ;, may estimate a mixture of different treatment effects.

Then, we define

N, N,

Ngl’; (Dg,t - Dg,t—ﬁ—l) - Z N}jﬁ (Dg,t - Dg,t—@—l)
t:

g:Fg 1>t

DIDY,, = 3

g:Fg 1=t—£

if N}y >0 and N > 0, and let DIDfM = 0 otherwise. DIDEM is a DID estimator similar to
DIDy ; ¢, except that the outcome is replaced by the treatment. Given the definition of F} ;, the

. . . . D Nyt
previous equation simplifies to DIDY , , = > .5, ——¢ ngﬂg.

Next, let L,; = NT — ming.r, ,>2 Fy1 denote the number of time periods between the earliest

date at which a group goes from untreated to treated and the last period at which a group has

11



been untreated all along. Note that L,; > 0 under Point 1 of Assumption (3| For ¢ € {0, ..., L},

we let NT
Zt:€+2 Nt{éﬁtDIDﬁt,z

(7)
Zigﬁ N, tl,KBt
DID, ; is a weighted average of the (DID ; ¢)icqst2,. .n1). We establish in the proof of Theorem

DID, , =

below that with 5 = 1, DID, , is an unbiased estimator of the average effect of having switched

from untreated to treated for the first time ¢ periods ago:

1 NT
EDID, | =E|<5 > Y. Yigi(Dy) = Yigu(0)),

L t=0+2 (i,9):Fg,1=t—¢
with N} = SN, 3.0 L {F,1 = t — (}[] Similarly, let

" ilera Nigh!

be a weighted average of the (DIDEM)te{éH,...,NT}-

Finally, our estimator of 6} is the ratio of weighted averages of the DID, , and DIDE}Z estima-
tors. For every ¢ € {0, ..., L}, let

LN
Zfﬁé Zt]\fe;w N, tl,eﬁt

wy ¢ is proportional to the discounted number of observations DID , and DIny , apply to. Then,

let

Wy ¢

Ttru Z££6 w+7fDID+7€
o = = D -

2262 W, DIDL
Following the interpretation of 61" as an IV estimand outlined in the previous section, Sfﬁu may
be interpreted as an IV estimator: its numerator estimates the average effect of first switches on
the outcome, while its denominator estimates the average effect of first switches on the treatment.
Notice that in staggered designs, DIDE,t,E =1 for all (¢,£). Accordingly, S5t U)_thIDE,Z =1,

SO gﬂf“ is just a weighted average of the DID, , estimators.

Then, we propose an unbiased estimator of 6"". First, for any ¢ € {0,...,T — 2} and t €
{+2,..,T}, let N, = >_g:F, o—t—t Ny denote the number of observations in groups untreated
for the first time at period ¢ — ¢. Let Nj* = F, o>t Vgt denote the number of observations in

groups treated from period 1 to t. We define

N, N,
DID_ o= 3 Vo —Yore) = 30 5 (Vou = Yourn)
¢ t,0

g:Fg 0>t g:Fgo0=t—4

4Notice that for £ < ¢/, DID, , and DID, o do not apply to the same groups, as there may be fewer groups
for which the treatment effect can be estimated ¢ periods after their first switch than £ periods after it. If this

is a concern, one may compute those estimators for the same sets of groups.
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if Nt% > 0 and N > 0, and we let DID_;, = 0 otherwise. DID_,, compares the outcome
evolution from period t — ¢ —1 to t in groups treated from period 1 to t and in groups untreated
for the first time in ¢ — ¢. Under Assumptions[6}[7], the former evolution is a counterfactual of the
evolution that would have taken place in the latter set of groups if it had not switched treatment
for the first time ¢ periods ago. Thus, DID_;, is an unbiased estimator of the effect of that first
switch, ¢ periods after it took place. As that switch corresponds to a decrease in exposure to
treatment, the outcome evolution in the switching groups enters with a negative sign in DID_ ; o,
while that of the control groups enters with a positive sign. This ensures that DID_ ; , estimates

the effect of an increase in exposure. Similarly, we define

N, N,
DID?,, = Ngt(D —Dgie1)— > Nig(f(Dg,t—Dg,t_g_l)

g:Fg 0>t g:Fgo=t—£ " 't,¢

if N, > 0 and Nf* > 0, and we let DID”, , = 0 otherwise.

Next, let Lot = 1 — ming.p, ,>2 Fy o denote the number of time periods between the earliest date
at which a group goes from treated to untreated and the last period at which a group has always
been treated. Note that L, > 0 under Point 2 of Assumption [3| For ¢ € {0, ..., Ly}, we let

DA N,B'DID_
YDA N, Bt

DID_, = (8)

Similarly, let
s N2S'DIDE

DID”, = —
YOI Ny

Finally, for every ¢ € {0, ..., Ly}, let

0 pt

Zt £+2 Nt,Eﬂ
Lq 0 ’
i il ND B

Ww— ¢ =

and
Sretw_DID_,

>t w_ DID?

Stru .

Theorem 1 Suppose that Assumptions 19 hold.
1. If Point 1 of Assumption@ and Assumptions E also hold, E {gim} = o4

2. If Point 2 of AssumptionH and Assumptions @—H also hold, E {St_m} = g,

Theorem (1| shows that Sﬂf“ and 0™ are unbiased estimators of ot and 0™, respectively. It also

follows from Theorem |1/ and — that when potential outcomes are bounded by y and 7, the

13



bounds 0, and d4 on &, (and similarly for 6_) can be unbiasedly estimated by

T —
Y g2< by i< 2t=NT+1 NatB' (Yot — )
T )
Zg:QSFgJST thFg,l Ng,tﬁth,t
T
Zg;2§Fg,1gT D t=NT+1 Ngif' (Ygr — Y)
T
Zg:ZSnglgT Zt:ngl Ng,tﬁth,t

)

=AM (1 — AT

=AY (1 - AT

Finally, it follows from Theorem |[1| that 6, and /_ can sometimes be unbiasedly estimated.
When there is at least one never-treated group (NT = T), d4 = 07", so gfu is unbiased for
d,. Similarly, when there is at least one always-treated group (AT = T), §_ = 0™, so Stu g

unbiased for §_.

When =1, both gfﬁ“ and 0" estimate some average of the effect of increasing treatment by one
unit. Then, one may average them, to form a potentially more precise estimator. Accordingly,

we define the following averaged estimator:
gtru :w+(§$u + (1 — W+)g§u,

where

So¢m wy DIDY,
Y wsDIDY  + Yiehw DID?,

w4

is a weight proportional to the “first stage” attached to gf“ Similarly, if one wishes to obtain
a more precise estimator of the effect of having switched treatment for the first time ¢ periods

ago, one can average the DID, , and DID_ , estimators as follows:
DID; =w DID,  + (1 —wf ) DID_,,

where

NT 1
¢ teo2 Nig

w =
+ NT 1 AT 0
Dtoro Neo + 200 Niy

is a weight proportional to the number of observations DID. , applies to.

3.2 Placebo estimators

We first propose placebo estimators of the assumptions underlying gﬁf” First, for any ¢ €
{0,...[552]} and ¢t € {20+ 3, ..., T}, let
N, N,
DIDTM = > Nigl’t(}/g,t—%—Q — Y1) — > Ng,i (Yyi—20-2 — Yyi—0-1)
t0

g:Fg1=t—¢ giFg 1>t * 't

14



if N/, > 0.and N} > 0, and let DIDJr +0 = 0 otherwise. DIDS’F{M compares the outcome evolution
in groups treated for the first time in ¢ —¢ and in groups untreated from period 1 to ¢, as DID, ; 4,
but between periods t —2¢ —2 and t — ¢ —1 instead of t —¢—1 and ¢. Thus, DIDJr +.¢ 18 a placebo

estimator testing if common trends holds for ¢ + 1 periods.

Next, let L2y = max{f : 3g : F,, +{ < NT,F,; —{ —2 > 1}. L, is the largest £ such that
there is a group for which the effect of switching from untreated to treated for the first time ¢
periods ago can be estimated (Fj,; +¢ < NT'), and for which one can form a placebo estimator
comparing that group’s outcome evolution to that of the untreated groups over the £+ 1 periods
before that switch (F,; —¢—2 > 1). Under Point 1 of Assumption , —1< P < [ 22=3]. One
may have Lnt = —1, if all groups that switch from untreated to treated for the first time do so
at period 2. Then, none of the placebos defined below can be computed, as one does not observe
the outcome evolution of any group before it switches from untreated to treated. Outside of

that special case, Lfﬁ: > 0, so one can at least compute one of the DIDE’;K estimators below.

Finally, we let

Zt 2043 leﬂtDID-i- t,l
Siloeps Vi

1
DIDY, =

if £ < Lnt, and we let DIDIj’:?z = (0 otherwise. DIDf&x is a placebo estimator mimicking DID ,.

We then propose placebo estimators of the assumptions underlying sru First, for any ¢ €

{0,...[552]} and ¢t € {20+ 3, ..., T}, let

N, N,
pl g;t gyt
DID—M - Z Nat (Yq,t—%—2 - Y;z,t—f—l) - Z 7N0 (Yg,t—%—Q - Yg,t—z—1)
giFg o>t ©'t giFgo=t—0 " "t,¢

if N?; > 0and Nf* > 0, and let DIDEIM = 0 otherwise. DIDFiM compares the outcome evolution
in groups treated from period 1 to t and in groups going from treated to untreated in period
t —{, as DID_;,, but between periods t —2¢ —2 and ¢t — ¢ — 1 instead of t — ¢ — 1 and ¢.

Next, let LP} = max{¢:3g: Fyo+{ < AT, F,o—{(—2>1}. LP} is the largest ¢ such that there
is a group for which the effect of having switched from treated to untreated for the first time /¢
periods ago can be estimated (F,o+ ¢ < NT'), and for which one can form a placebo estimator
comparing that group’s outcome evolution over the ¢+ 1 periods before it got treated to that of
always treated groups (F,; — ¢ — 2 > 1). Under Point 2 of Assumption |3, —1 < LR < L%J
One may have Lat = —1, if all groups that switch from treated to untreated do so at period 2.
Then, none of the placebos defined below can be computed, as one does not observe the outcome
evolution of any group before it switches from treated to untreated. Outside of that special case,

Lfl’i > 0, so one can at least compute one of the DID?{E estimators below.
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Finally, we let

DIpP . _ idaers Ne#DIDY,
- Sitaers NOuB!

if £ < LP, and we let DIDE{Z = 0 otherwise. DIDEI,Z is a placebo estimator mimicking DID_ ,.

Theorem 2 Suppose that Assumptions 19 hold.

1. If Point 1 of Assumption@ and Assumptions E also hold, for any ¢ € {0, ..., L%J},
E[DID,] = 0.

2. If Point 2 of Assumption@ and Assumptions @-@ also hold, for any ¢ € {0,..., L%J},
E[DID",| =0.

Theorem [2| shows that E [DIDE’:A = 0 (resp. E {DIDF}A = 0) is a testable implication of
Assumptions , , and (resp. Assumptions , |§|, and . If £ [DIDR{Z] = 0 is rejected but

E {DIDTA = 0 is not, that would indicate that the assumptions underlying 5 are violated

tru

while those underlying 0" are not.

The placebo estimators DIDE’:’Z and DIDH{E we consider here do not exhaust all the testable im-
plications of our assumptions. We focus on them, because when we reject [DIDE’:A = 0 (resp.
E {DID?IA = 0), the value of DIDTJ (resp. DIDE{E) may be used to estimate DID, ,’s (resp.
DID_,’s) bias, under a condition stated below. Specifically, fix ¢ € {0,..., min([£52], L)}
Instead of Assumption , assume that for all (g,¢',t) such that t — ¢ > 2, F,; =t —{, and
Fyq1>t,

EYg4(0) = Ygu-0-1(0)] = E[Yy4(0) — Yy 4—-1(0)]

does not depend on (g, ¢’,t), meaning that the differential trend between groups treated for
the first time in ¢t — ¢ and groups untreated from period 1 to t does not vary over time and
across groups. Under Assumption [5 the quantity in the previous display is equal to 0, so the
previous condition is weaker than Assumption 5} Under this weaker condition, one can show
that — F [DIDE’:’A is equal to the bias of DID, 4, so the placebos can be used to estimate the bias
of DID, ; and, in turn, of gfu Similarly, if, for all (g, ¢’,t) such that t —¢ > 2, F,;; =t — { and
Fy . > t, the sign of

E[Yy4(0) =Yy 0-1(0)] = E[Yy+(0) = Yy i—o-1(0)]

does not depend on (g, ¢, t), then the sign of the bias of DID, ; is equal to the sign of —E[DIDTA.

The “long-difference” placebos we propose here differ from the “first-difference” placebos we
proposed in de Chaisemartin and D’Haultfceuillel (2020) and that we extend in the Web Ap-

pendix to allow for dynamic effects. The first-difference placebo estimators of the assumptions
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underlying g:fu compare the t — 1 — k to t — k outcome evolution in groups treated for the first
time at period ¢t and in groups untreated from period 1 to ¢, for £ > 1. The long-difference
placebos test if common trends holds over several periods, while the short-difference ones only
test if it holds over pairs of consecutive periods. If treated and untreated groups follow different
linear trends, differential trends will be larger, and easier to detect, over several periods than
over two consecutive periods. Then, the long-difference placebos may lead to a more powerful
test of common trends. As indicated above, they are also informative on the bias of DID, ,

under weaker conditions than Assumption [5

On the other hand, the first-difference placebos may be useful to specifically test Assumption
[, the no-anticipation assumption. Assume for instance that those placebos are statistically
insignificant for every k£ > 1, but the one for £ = 1 is statistically significant. This indicates
that groups switching and not switching treatment are on common trends, except between the
two last periods before the switching groups switch. This may be interpreted as evidence that
Assumptions and [6}[7] hold, but Assumption [2] fails. Groups are on common trends, but the
statistically significant placebo at k = 1 indicates that groups’ period-t 4+ 1 treatment affects

their period-t outcome. In that case, group g’s actual period-t treatment is Dy, = D41, and

one can just compute the estimators above with Dm instead of D, ;.

3.3 Extensions

We now briefly review some of the extensions in our online Appendix. First, we show how
covariates X,; can be included in the estimation. Then, we replace Assumption [5| by the
requirement that E[Y,,(0) — Y, ,-1(0) — (X, — X,.:-1)'0] does not vary across g, meaning that
groups can experience differential trends provided those differential trends are fully explained
by changes in their covariates. The idea, then, is to estimate 6y by regressing Y,; — Y, -1 on
X

g

Yoo — Youo1 by Yy — Vo1 — (X0 — Xg01) o

+— X1 in the sample of not-yet-treated cells and define our estimators as above, replacing

Second, we show how one can allow for different trends across sets of groups. This mirrors the
common practice of, e.g., allowing for state-specific trends in county-level two-way fixed effect
regressions. Third, we extend our analysis to non-binary treatments. Fourth, we examine the
benefits of ruling out the effect of past treatments beyond k lags, for some £ > 0. Doing so
provides a solution to the initial conditions problem that treatments prior to the start of the
panel (D, ;)i<o may not be known and may affect potential outcomes. Finally, we show that
our results extend to fuzzy designs, provided some groups are fully untreated at the start of the

panel.
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4 Estimating an additive dynamic effect model

The approach proposed so far evaluates ex-post the effects of the policies that took place during
the panel. Instead, one may be interested in using the panel to evaluate ex-ante future policies.
Such an exercise can only be conducted under a restriction on how the treatment effect can vary
over time. Otherwise, the panel cannot inform us on future treatment effects. In this section,
we consider an assumption requiring that treatment effects be constant over time, we show that
various treatment effect parameters can be estimated under that assumption, and we finally

discuss how the corresponding estimators can be used for ex-ante policy evaluation.

We start by considering the following assumption.

Assumption 8 (Additive dynamic effect model with constant effects over time) For all (g,t),
there are real numbers (0 k)kefo,..7—1y such that for all (dy, ..., d;) € {0,1},

t—1

You(d) = Yu(0) + 3 agudis.

k=0

oy represents the effect of group g¢’s treatment k periods ago on her current outcome. Assump-
tion |8 requires that those effects be constant over time, though they can vary across groups.

Assumption [§ also rules out interaction effects between a group’s past and current treatments.

For every g : 1 < F,; < NT, and for every t € {Fy1,..., NT}, let

N,
J— g7t
DIDg»t - Yt%t - }/97Fg,1_1 - Z N7t (Y;],t - }/97Fg,1_1)'
g:Fg 1>t t

DID,; compares the outcome evolution from period Fy; — 1 to ¢ in group g and in groups un-
treated from period 1 to t. Then, let DID, = (DIDy f, ., ..., DIDy n7)’, let ay = (agp, .., g NT—F, )’
and let Dy g, , bea (NT — Fy1 4+ 1) x (NT — F,; + 1) lower triangular matrix whose first line
is the vector (D r, ,,0,...,0), whose second line is the vector (Dyr, 41, Dgr,,,0,...,0),..., and

whose last line is the vector (Dy n7, Dg nr—1, ..., Dy, ).
Similarly, for every g : 1 < F, o < AT, and for every ¢t € {Fy,..., AT}, let

Nat g,

—-Y,
at \* gt
N

gaFg,O_l)'

DIDg; = Yo — Yy p, 0-1 — Z
g:Fyo>t
DID,; compares the outcome evolution from period F, o —1 to ¢ in group g and in groups treated
from period 1 to t. Then, let DID, = (DIDy F, ,, ..., DIDg a7)’, let oy = (g0, ..., g a7-F, )" and
let Dy r,, bea (AT — Fyo+ 1) x (AT — Fyo + 1) lower triangular matrix whose first line is the
vector (Dgr,, —1,0,...,0), whose second line is the vector (Dyr, 41 — 1, Dy, , — 1,0, ...,0),...,

and whose last line is the vector (Dg a7 — 1, Dgar—1 —1,...,Dg g, , — 1).
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Theorem 3 Suppose that Assumptions and [§ hold.

1. If Point 1 of Assumption[3 and Assumptions [}{3] also hold, for every g : 1 < Fy; < NT,
oy = E (D, }, DID,).

2. If Point 2 of Assumption [3 and Assumptions [({7 also hold, for every g : 1 < F,o < AT,
oy = E (D, }, DID,).

g)Fg,O

It directly follows from Theorem (3| that averages of the ay ;s can also be unbiasedly estimated.
For all k € {0,...,max(Lys, Lat) }, let Ge={g: 1 < F,1 +k < NT}U{g:1 < F,0+k < AT} be
the set of groups for which a,, can be unbiasedly estimated, let Ng, = 3 g, >1—; Ny be the
number of observations in those groups, let &y, denote the k + 1th coordinate of D;};MDIDQ

(resp. Dg_’};g ,DID,) for groups in G; untreated (resp. treated) at period 1, and let

t=1

1 T
e 3 ()

9k gegr \t=1

As points 1 and 2 in Theorem [3]| also hold conditional on D, one has

The estimators (Q) ¢ (0 y are similar to those empirical researchers routinely compute

yeersmax(Lnt,Lat)
when they regress the outcome on the contemporaneous and lagged treatments, together with
group and time effects (see e.g. |Autor], 2003). A key difference, however, is that the estimators

(O e (0,....max(Lnt, Lat)} 1€ robust to dynamic effects and to heterogeneous effects across groups.

The estimators (k)ye (o, max(Lne.Lo)y MAY be used for ex-ante evaluation of future policies. To
simplify the discussion, let us assume that the number of units in each group does not depend
on t: for every (g,t), Nyt = N, We start by assuming that the planner wants to know if groups
should be treated or untreated at period 7'+ 1. Under Assumption |8, the difference between
the average expected outcome at period T+ 1 of groups belonging to Gy if they are treated in
period T + 1 and if they are untreated is equal to . Accordingly, under , treating those
groups at period 1"+ 1 is welfare improving if and only if oy > c¢. The planner may then use
Qo to estimate if treating those groups at T' + 1 is welfare improving. The planner could also
consider more complicated policy decisions. She may for instance want to know which of the
four policies would lead to the highest welfare in periods 7'+ 1 and T'+2: Dypi1 = Dgpyo = 1,
Dyri1=1,Dgri0=0,Dygri1 =0,Dygpri9=1,0r Dgpy1 =0,D4719 =0. Let

1
29691 9 geGi
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be the average effect of the current treatment across groups for which the effect of the first lag
of the treatment can be estimated. Under Assumption |8 and , treating groups belonging to
Gy at T+ 1 and T + 2 is optimal if and only if

ad™ + Bag™ + ay) — (1 + B)c > max [agal + Bay — ¢, Bapg™ — Be, 0} .
Similarly, treating groups belonging to G; at T'+ 1 but not at 7'+ 2 is optimal if and only if

o8 + Bon — ¢ > max [al! + Baf™ + 1) — (1+ B)e, ok — e, 0]

bal
0

etc. One can estimate of* and oy to estimate the optimal policy, for groups belonging to G .

A few comments on this estimation of the optimal policy are in order. First, notice that the
longer the policy horizon one considers, the smaller the set of groups for which the optimal policy
can be estimated. Second, we have considered homogeneous policies where each group receives
the same treatments. This is because estimating optimal group-level policies would require using
the noisy group-level estimators &y x, which may yield poor results. Finally, performing inference
on, say, the average outcome under the estimated optimal policy may give rise to a winner’s
curse phenomenon similar to that studied by Andrews et al. (2019). The solutions proposed

therein may also apply here, though showing it goes beyond the scope of this paper.

On top of the assumption that treatment effects do not vary over time, which may be hard
to avoid if one wants to use the panel to do ex-ante evaluation, Assumption [§] also rules out
interaction effects between the current and past treatments. The point identification results
in Theorem (3| would break down without that assumption. Specifically, Point 1 (resp. 2) of
Theorem |3| shows that for groups untreated (resp. treated) at period 1, NT' — F,; + 1 (resp.
AT — F,o + 1) causal effects are just identified by a linear system of NT — F,; + 1 (resp.
AT — F, o + 1) equations and unknowns under Assumption . Accordingly, if one were to allow
for interaction effects, one would need to restrict effects heterogeneity across groups, at least

with the DID estimation strategy we consider.
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A Appendix: proofs
A.1 Proof of Theorem [i]

Proof of Point 1

First, by Assumption[5] for all ¢ > 2 there is a real number 1 such that ¢, = E(Y;,(0)—Y;,-1(0))
for all g. Then, for all g and all t > ¢ + 2,

ElYg4(0) = Yyu0-1(0)] = Z Vet (9)

Then, for any £ € {0,...,7 — 2} and t € {¢+2, ..., T} such that N}, > 0 and N;" > 0,

E (DID, ;4| D)

N, N,
= 3 BN YD) = 3 B (Yo~ You | D)
gFg1=t—¢ ~'t,L gFg 1>t 't
Nyt
g:Fg1=t—4 tl
Ng,t
FOY B ((0) ~ Yy s (0)]D)
gFg1=t—€ ~ 't
Ng,t
- > Nm:E(Yg,t(O)—Yg,t—€—1(0)|D)
g:iFg 1>t ° 't
= Not gy (D) — v D 1
- Z N, (Yg.1(Dy) — Y,.(0)| D). (10)
g:Fg1=t— " 't,

The first equality follows from the definition of DID, ;,, and N/, > 0 and N/ > 0. The second
equality follows from Assumption . The third equality follows from Assumption 4| and @

By definition of NT and because there exists (g,¢') € {1,...,G}* such that 1 < F,; < Fy 1,
N >0 for all 2 <t < NT. We adopt the convention that a sum over an empty set is equal to
0. Then, Equation implies

NoE (DIDy o] D) = 37 NooE (Ygu(Dy) — Y, (0)| D).

g:Fg1=t—¢
Moreover, by definition of Ly, we have 3>, B*N}, > 0 for all £ € {0, ..., Ly, }. Then,

E (DID¢|D) = —xr——7rnr Z Y. BN E[Yg(Dy) — Yy(0)|D]. (11)

Bt
t £+2 60 t=042 g:Fg 1=t—¢

Using again that 1 < F,; < F,; for some (g,¢’), we have

NT
Z Z Ny'Dyy > 0.

9:2<Fg1<NTt=Fg:
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As a result,
twy B (DID, 4| D) ZLM iy 042 22giFyq=t—0 NgiB'E (Yyu(Dy) — Y,,(0)| D)
> wy DIDY, S S o Y gy =t—t N3 Dy,
_Zg 2<F41<NT Zt Fg1 g,tBtE (Yg,t(Dg) - Yg,t(0)|D) (12)
Zg:ZSFgJSNT Zig«“g,l Ng,tﬂthvt '
The first equality follows from and the definition of w; 4. The second equality follows after

some algebra.

Finally, Point 1 follows from and the law of iterated expectations.

Proof of Point 2

The proof of Point 2 is similar to that of Point 1 and is therefore omitted.

A.2 Proof of Theorem [2

Following the same steps as those used to obtain (10), we get, whenever N}, > 0, Ny > 0,

N,
B (Ygi-t-1(Dy) = Ygu-0-1(0)|D)

EDIDY, |D] = 3 =%
N

g:Fg1=t—4

:O’
where the second equality follows since Fj; =t — ¢ and Assumption 2| imply that Y, ,_1(D,) =
Y, +—¢-1(0). Then, Point 1 follows using the same reasoning as that used to obtain (11)). Point

2 can be obtained similarly.

A.3 Proof of Theorem [3

We only prove Point 1, the proof of Point 2 is symmetric. Using the same steps as those used
to prove ((10]), one can show that for every g : 1 < F,; < NT, and for every t € {Fy1,..., NT'}

E(DIDy,|D) = E(Yy(D,) = ¥,,(0)|D).

Under Assumption [8] this implies that
t— Fq 1

E(DIDg|D) = Y gDy,
k=0

which in turn implies that
E (DIDy|D) = Dy, ,ay.

The result follows from the fact that D, r, | is a lower triangular matrix with 1s on the diagonal,

so it is invertible, and from the law of iterated expectations.
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Abstract

In this web appendix, we first consider extensions of the estimators described in Sec-
tion 3.1. Second, we discuss first-difference placebo estimators, which differ from those

considered in Section 3.2.

1 Extensions of our main estimators
1.1 Including covariates

Often times, researchers want to control for a vector of covariates X, in their estimation. In this
section, we propose estimators controlling for covariates. To do so, we need to slightly modify
X, ) and X = (X, ..., Xg).

our assumptions. Hereafter, we let X, = (X ,, ...,

Assumption 9 (Independence between groups, strong exogeneity and common trends with co-

variates) There is a vector 6y of same dimension as Xy such that ¥(g,t), t > 2,

1. E(Y,

9,

+(0) =Yy 1(0)|D, X) = E(Yy:(0) — Y, 1(0)| Dy, X,).
2. E(Yy:(0)=Y,:-1(0)—(Xgt—Xgi-1)"00| Dy, Xy) = E(Y£(0) =Yg -1(0) = (Xg 0 —Xgt-1)"00)-

3. E(Y,4(0) —Y,;-1(0) — (Xt — Xy:-1)'60) does not vary across g.

*University of California at Santa Barbara, clementdechaisemartin@ucsb.edu
fCREST-ENSAE, xavier.dhaultfoeuille@ensae.fr



Points 1 and 2 are the same as in Assumption 4, except that they include the covariates in
the conditioning. Point 3 is a common trends condition, on the ‘“residualized” never-treated
potential outcome Yy ;(0) — X] ,0p. In de Chaisemartin and D’Haultfeeuille (2020), we showed
that Assumption 9 underlies two-way fixed effects regressions with covariates. Assumption 9

requires that there exist 6y and \; such that
E (Ygut(o) - Y;J,t—1<0)‘ng Xg) = (Xg,t - Xg,t—l)/90 + s

Then, Assumption 9 allows for the possibility that groups experience different evolutions of their
never-treated outcome over time, but it requires that those differential evolutions be accounted
for by a linear model in X,; — X,;_1, the change in a group’s covariates. An interesting special
case is when the control variables are group-specific linear trends. Then, Assumption 9 requires
that

L (Yg,t(o) - Yg,t—1(0)|ng Xg) = bog + A,

for some constants 0y, and A;. From ¢ — 1 to ¢, the evolution of the never-treated outcome in
group ¢ should deviate from its group-specific linear trend 6y, by an amount \; common to all
groups. Then, Assumption 9 is a “‘common deviation from linear trends” assumption, which may

be more plausible than the standard common trends assumption.

Assumption 10 (Independence between groups, strong exogeneity and common trends with co-
variates for the always treated outcome) There is a vector 01 of same dimension as Xg; such
that ¥(g,t), t > 2,

1. E(Yee(1) = You1(1)|D, X) = E(Yg(1) = Ygu1(1)[ Dy, Xy).
2. BE(Yyu(1) =Yg 1 (1) = (Xgu = Xg11)'01| Dy, Xg) = E(Y1(1) = Yg1(1) = (Xt = Xg-1)'0h),
3. E(Y,:(1) =Y, :-1(1) — (Xt — Xyi-1)'6h) does not vary across g.

Here as well, Assumption 10 allows for the possibility that groups experience different evolutions
of their always-treated outcome over time, but it requires that those differential evolutions be

accounted for by a linear model in X, — X, ;.

Let 50 (resp. 51) denote the coefficient of X, — X, 1 in the OLS regression of Y, ; — Y, ; on

Xyt — X,1-1 and time fixed effects, in the sample of all (g, t) such that F,; >t (resp. Fyo > t).

For any ¢ € {0,...,T —2} and t € {{ +2,..., T}, let

N, ~
DIDY o= >, 1 (Vor = Yoroes — (Xou = Xge-1) %)

g:Fg1=t—L t,L

N .
- Z Ngri (ngt B Yg,t—l—l - (Xg,t - Xg,t_z_1),90).

g:Fg 1>t ¢




if Ntfé > 0 and N > 0, and let DIfo’M = 0 otherwise. DIfo’M is similar to DID ;, except
that instead of the outcome evolution, it uses the part of that evolution that is not due to a

change in covariates.

Similarly, let

N .
DIDY,, = > Ngaf (Yo — Ygu—em1 — (Xgp — Xgpe-1)'0h)
t

g:Fg 0>t
Ngt I
- > NE- (Yo = You—e1 — (Xgp — Xgpe-1)'01)
g:Fg0=t—4

if N/~ > 0and N* > 0, and let DID)_(M = 0 otherwise.
Then, for all ¢ € {0, ..., L, }, we let

N}, ptDID
DID+g: t£+2 tfﬁ t+t£’
Pl e+2 N8

and we let

Lnt X

Atru,X ZE OwJﬁEDID-i-,K
5+ Lt D
S, DIDP,

We define DIsz and 0™ similarly.

Theorem 4 Suppose that Assumptions 1-2 hold.

1. If Point 1 of Assumption 8 and Assumption 9 also hold, [g_t:uX] = o4

2. If Point 2 of Assumption 3 and Assumption 10 also hold, E [gtf"x] = §ire,

Theorem 4 shows that if groups experience different evolutions of their never- and always-treated
outcome over time, one can still estimate 6} and 6™, provided that those differential evolutions
are accounted for by a linear model in X,; — X, ;. With respect to the estimators in Section

3, 67X (resp.

gﬁ'“) by the residuals from a regression of Y, — Y, ;1 on Xy, — X,, 1 and time fixed effects

5% replace the outcome evolution of all the (g, ¢) cells entering in gﬁ:‘l (resp.

among all the (g,t) cells used as controls by gﬁfu (resp. gﬂ”“). One can follow the exact same

steps to include covariates in the placebo estimators proposed in Section 3.2.

1.2 Allowing for different trends across sets of groups

In some cases, controlling for covariates may be insufficient to account for differences in trends

between groups. Then, a common remedy in static or dynamic two-way fixed effect regressions



consists in including interactions between time dummies and dummies for sets of groups. For
instance, if groups are US counties, one can allow for state-specific trends. A similar idea can
be pursued in our context. Let us index sets of groups by s € §. In this set-up, we modify our

assumptions as follows.

Assumption 11 (Non-pathological design, in at least one set of groups) At least one of the two

following statements hold:
1. There is at least one s € S such that there exists (g,9') € s* such that 1 < F,1 < Fy .
2. There is at least one s € S such that there exists (g,g') € s* such that 1 < F o < Fy .

Assumption 11 requires that there is at least one set of groups with at least one group going
from untreated to treated at a date where another group has been untreated all along, or at
least one set of groups with at least one group going from treated to untreated at a date where
another group has been treated all along. Let S, = {s € S : J(g,¢') € s*: 1 < Fy1 < Fy1}
(resp. S_ ={s € S8:3(g,9) € s*:1< Fyo < Fy}) denote the sets of groups satisfying the

first (resp. second) point of Assumption 11.

Assumption 12 (Common trends with set-specific trends) For alls € S, E (Y,:(0) — Y, ,-1(0))

does not vary across g € s.

Assumption 13 (Common trends with set-specific trends for the always treated outcome) For
alls €S, E(Y,(1) —Y,-1(1)) does not vary across g € s.

Assumptions 12 (resp. 13) is a weakening of Assumption 5 (resp. 7), as it only requires that
the never-treated (resp. always-treated) potential outcome of groups in the same set of groups

follow the same evolution over time.

Under those assumptions, the treatment effects one can identify differ from those identified in
Section 3.1, as only groups in the same set of groups can act as controls for each other. For
instance, there may be sets of groups where all the groups switching treatment do so at the same
date, in which case none of the treatment effects in those sets of groups can be identified. There
may also be sets of groups where the last group switching treatment does so early in the panel,
in which case long-run treatment effects cannot be estimated in those sets of groups. We modify
the parameters 0" and 6" accordingly. First, let us define

NT® =max Fy, — 1,

gEs

AT® =max F, o — 1.

ges



t t
Then, we define 6" and 6" as

55 _ (z pesacrnt Licrya Voo (Do) - Yg,t<o>>> |
ZS€S+ deszngg,lgNTs Zt:Fg,l Ng,tBth,t
S _p (ZSES D ges2<F, o< AT f:T;g,o Ny (Yy+(Dy) — Yg,t(1))> .
B Yoees. Dgesacr, ocare Sormr, o NotB(Dge — 1)
Note that if S =S and NT* = NT for all s (resp. S_ =S and AT® = AT for all s), we have
oS = 5t (resp. 6™ = o),

The estimators of 51“1’8 and 6™ follow the same logic as those of 0" and 0™, except that

we first consider difference-in-differences within sets, before aggregating over the different sets

o ¢ t .

s. Because the construction is similar for ¢ Jrru"s and 0" we focus on & ju’s hereafter. Let
l,s nt,s __

Niiy =2 gesr, mt—e Ngp and N7 =37 o N Then, we define

N, N,
DID+ t, ‘= Z N%i (}/g,t - Ytq,t—ﬂ—l) - Z Ng;fs (Y;Lt - Y:%t_g_l)
gEs:Fy1=t—L = " t,L g€s:Fg 1>t
if N > 0and N/'** >0, and we let DID% ,, = 0 if N;}’ = 0 or N/'"* = 0. Hence, DID?, , , is
defined as DID s, but within set s. Then, we let L;, = NT*® — minge.r, ,>2 Fy1. Note that
L:, >0 for all s € S;. Then, for all s € Sy and ¢ € {0, ..., L?,}, we let
NT* "
—tr2 N 5 DID?, ,,
DID’, , = == :

NTS 1,5 ot
t=0+2 Nt,f 5

We define similarly

. N, N
D% = Y Mp, D) Y D),

1,s
geEs:Fy1=t—{ Nté g€s:Fy 1>t t
NTS t
+, 5 o NTS 1,5
N, ,@t
t=0+2 "t L

Finally, we let

gtru,S _ Z$€S+ w* ZE w-i— EDIDJrE
- e, @ S ws DIDY

where the weights are defined as
1,5 ot
W' t £+2 Ny B
+7Z NTS Nl Sﬁt ’
Ze 0 2at=042 4Vt
NT® 1,5 ot
Zz 02 t—tr2 Vi B
NT* Arlspp”
Zses+ Zezo o2 Voo B

s __

We define 0% sumlarly



Theorem 5 Suppose that Assumptions 1-2 hold.

1. If Point 1 of Assumption 11, Assumptions 4 and 12 also hold, E [g_t[“s] = 53:“’3.

2. If Point 2 of Assumption 11, Assumptions 6 and 13 also hold, E [gﬁ”us] = §'mS,

1.3 Non-binary treatments

In this subsection, we consider the case where treatment is not binary but takes values in {0, ..., d}
for d > 1. For every d € {0,...,d}, we let d = d x 1. Y, ;(d) is the potential outcome of group
g at period t if she receives treatment d throughout. We generalize some of our assumptions as

follows.

Assumption 14 (Independent groups and strong evogeneity) Vd € {0, ...,d}, Vt > 2, and Vg €
{1,...,G},

1 E(Yyi(d) = Ygi1(d)| Dy, ..., Dg) = E(Yg(d) — Ygu-1(d)|Dy).
2. E(Yyi(d) = Ygu1(d)|Dy) = E(Yyi(d) = Yy 1-1(d)).
Assumption 15 (Common trends) Vt > 2, E(Y,(d) — Y,:—1(d)) does not vary across g.

Assumptions 14 and 15 generalize Assumptions 4 and 5 to all the Y, ;(d) potential outcomes.

In Assumption 16 below, we require that for at least one d € {0,...,d}, there is at least one
group leaving for the first time treatment d at a date where another group has had treatment d
all along. For any d € {0,...,d} and g € {1, ..., G}, let Fy+q=min{t : Dy, # d} denote the first
date at which group g does not receive treatment d, with the convention that F, .4 = T + 1 if
group g always receives treatment d. Let also I, g = 1{>°,_, Ny.8'D,, > 321, N,.8'd} be an
indicator for whether group ¢’s actual treatments were more costly than keeping treatment d
from period 1 to T'. If 8 =1, I, 4 is equal to 1 if group g received on average more than d units

of treatment from period 1 to 7.

Assumption 16 (Non-pathological design) At least one of the two following statements hold:
1. 3d € {0, ...,d} such that 1 < F, 41,4 < Fy _4q for some (g,4') € {1, ..., G}2
2. 3d € {0, ...,d} such that 1 < Fy44(1 — I,4) < Fy 44 for some (g,4') € {1, ..., G}2.

Then, let
Z(gat):Fg,;£d>17Ig,d:1 Ng,t/BtG/:%t(Dg) - }/gﬂf(d))

Z(g,t):Fg,¢d>1,Ig,d:1 Ng,tﬁt(Dg,t - d) ’

A‘Hd -



and let 0.4 = E(Ay4). Under Equation (1), W((Ds,...,D¢g),g + Fyzqa > 1,1, = 1) >
wW((d,..,d),g: Fy:qa > 11,4 =1) if and only if A, 4 > ¢, so the planner may be interested
in learning d4 4, to assess if in groups with treatment d at period 0 and with more costly
treatments than keeping treatment d throughout, the actual treatments they received led to a

welfare increase relative to the status quo. Similarly, let

Z(g t):Fg,2a>1,15 4=0""9 tﬁ ( (Dg) o Yg,t(d))

A_y= :
2(97 ) Fq #d>1 Iq 4=0 g,tﬁ ( g,t — d)

and let 5—,d =F (A_d) .

It may not be possible to estimate 04 4 and 0_ 4. In that case, we consider truncated versions
of those parameters. For every d € {0, ...,3}, let ATy = maxyeqi,.. gy Fy+qa — 1 denote the last

period where there is still a group that has received treatment d since period 1. Let

AT,
Atrud _2922§Fg,¢dSATd7Ig,d:1 Zt:gg,#d Ngvt/@t(y t(D ) - }/jg:t(d))
+,d T AT,
Zg:QSng;ﬁdSATd,Ig’d:l thfc«igﬁéd gat/B ( gt )
AT,
tru _Zg:QSFgﬁgdSATd,Ig,d:O ZtZ;gqu Ngvtﬁt(}/?g t(Dg) - }/jq:t(d))

—d AT,
ZQIQSFg,;&dSATng,d:O Et:g‘gﬁgd g,tﬁ ( gt )

and let 01" = (Ajf“d) and 0" = F (At_er) denote truncated-at-AT, versions of 04 4 and 0_ 4.

Y

When the treatment takes many values, it may be useful to aggregate the 5““ (resp. 531;)
parameters. For every d € {0, ...,d}, let

AT,
ng Fy 2a<ATg,I4 q=1 Zt:zi‘i £d gtﬁ( gt )

Vyd = AT,
Zd 02g2< Fy2a<ATyl4 q= 121& Fy 24 gtﬁ( gt )
AT,
v ZQ:ZSFgﬁedSATd,Igyd:O thggﬁgd 9, t/B ( gt )

T d AT, ’
ZdZO Zg:2§Fg,¢d§ATd,Ig,d:0 thg‘g’?gd g7t/8 ( gt )

and let

5tru B Z v, dAtru
d=0

d
5tru _E Atru
- - v— 7d - 7d
d=0

The planner may be interested in learning 0% (resp. "), to assess if in groups with more (resp.
less) costly treatments than the status-quo ones, the actual treatments they received until period
ATy led to a welfare increase. When = 1, 64" and 0" can also be interpreted as the average

change in outcome created by a one-unit change in treatment in those groups.

7



When d = 1, 6 and 6" above are equal to the 6™ and ' parameters in the previous
section, so they generalize those parameters to settings with non binary-treatments. A difference,
however, is that §{™" and 0" may now aggregate together effects of increases and decreases of
the treatment. To see this, consider the following example. Suppose that d = 2, 8 =1, Nyt =1,
and T' = 4, and assume that all g receiving 1 unit of treatment at period 1, respectively receive

2, 2, and 0 units at period 2, 3, and 4. Suppose also that

n,t(dg) = }/g,t(o) -+ OéQ]l {dgﬂg > O} + aldgﬂf—l + Egt

for any dy = (dg1, ..., dg 7). ap represents the effect of the current treatment, which is assumed to
depend only on whether one receives a strictly positive number of treatment units. a; represents
the effect of the lagged treatment, which is assumed to be linear in the number of units received.
Then, 641 = Ay 1 = 204 — o, which could be strictly negative even if o; and «y are both strictly
positive. More generally, if non-monotonic treatment trajectories are frequent in the data, 01"
and 0" could be of a different sign than the treatment’s instantaneous and dynamic effects, even
if those effects are all of the same sign. To avoid this issue, one can drop, in the definition of
the parameters of interest and in the corresponding estimators, groups whose lowest treatment
is strictly lower than their period-1 treatment, and whose highest treatment is strictly higher.
That said, we keep our focus on 6" and 0™ here, because they have a simpler interpretation

in terms of policy evaluation than those other parameters.

We propose unbiased estimators of 8™ and §'™". First, for any d € {0, ...,d}, £ € {0,...,T — 2},
7£d’+ — #dvf I

a’nd le {g + 27 ] T}’ let Nt,f - Zg:Fngd:th,Ig’d:l Ng:t (resp' Nt,e - Zg:Fgﬁéd:tf@,Ig’d:O Ng»t>

be the number of observations in groups leaving treatment d for the first time at period ¢t — ¢

and with more (resp. less) costly treatments than the status quo treatments d. Let N4 =

Dy F, 4>t Vgt denote the number of observations in groups with treatment d from period 1 to
t. We let

N, N
_ gt 9.t
DID ate = E NFdt (Yo — Ygee-1) — E ﬁ(y};,t — Yyt 01)
9:Fy za=t—0,I, 4=1 " "t,0 g:Fy za>t
N, N,
D _ 2 : gt 2 : gt
DID+,d,t,z - N;Ad7+ (Dg,t - Dg,t%fl) - N=d (Dg,t - Dg,tfffl)
9:Fy za=t—0,I, =1 " "1, g:Fy za>t b

if Ntid’Jr >0 and N7 > 0, and let DID 4,0 = DID? ;, , = 0 otherwise. DID, 4, compares the
outcome evolution from period t—¢—1 to t in groups leaving treatment d for the first time in ¢t —/¢
and with more costly treatments than the status quo treatments d, and in groups with treatment
d from period 1 to t. Under Assumptions 14-15, the latter evolution is a counterfactual of the
evolution that would have taken place in the former set of groups if it had not left treatment

d for the first time ¢ periods ago. DIDidM is similar to DID, 4, except that the outcome is



replaced by the treatment. We let

N, N,
_ 9.t gt
DID_ 410 = =i Yot = Yoi—e-1) = > N (Yo — Ygie-1)
g:Fyza>t 9:Fy 2q=t—0,I 4=0 "' t,0
N, N,
D _ 2 : 9t 2 : gt
DID—,dJ,K - N=d (Dg,t - Dg,t%fl) - N;ﬁd,, (Dg,t - Dg,t%fl)
g:Fgpa>t 9:Fg pa=t—t,15,4=0 " "1t

if szd’f > 0 and N4 > 0, and let DID_ 4, , = DIDQCM’Z = 0 otherwise. DID_ 4, and DIDE),d,t,z
have a similar interpretation as DIDy 4., and DID?dM, but apply to groups with less costly

treatments than the status quo.

Next, let L, 4 = ATy — mingr, L 521, ;=1 Fgza (vesp. L_q = ATy — ming.p, _,>21, ;=0 Fy+a)
denote the number of time periods between the earliest date at which a group with treatments
more (resp. less) costly than d leaves treatment d and the last period at which a group has had
treatment d all along. For ¢ € {0, ..., L, 4}, we let

ATq N?ﬁd+ *DID
DIDJ’,’d?f: t=0+2 6 +,d,t.0l

AT, ¢d T
mia NL B
ATy N?ﬁd + BtDID
t=0+2 +,d,tl
DID+ de =

)
24 Tzd+2 N/ i +Bt
and we let L
gﬁ; Zi:o w—i—,d,ZDID—l-,d,Z’
T Y wyaDIDE
where
ATy #d +,3t
Wge = 12 IV, (13)

Lya~ATy nAdt o
=0 t= £+2N B

Similarly, for ¢ € {0,...,L_ 4}, we let

t=,0+2
DID_ ,d,l AT, N¢d’7ﬁt
t=6+2 1Vt 0

ATy NzégdﬁﬁtDIng,t,Z

D t=~0+2
DID” = T e ,
d N 3 /Bt
t=0+2 1V
and we let .
—.d
ZS\tI"U. _ ZZZO w77d7eDID77d7€
—d L_gq4 D
2y w4, DIDZ 4
where

t=0+2

w_7d,g = L_yd ATd N;ﬁd,—ﬂt ’
£=0 t=C+2 " "L

ATy N?;dﬁﬁt
i,




Finally, we let

Theorem 6 Suppose that Assumptions 1-2 and 14-15 hold.

1. If Point 1 of Assumption 16 also holds, E [gﬁf“} = o4

2. If Point 2 of Assumption 16 also holds, E [gﬁ"“} = §ire,

Finally, one may be interested in computing estimators of the effect of having switched treatment
for the first time ¢ periods ago, irrespective of the baseline value one switched from. For any

€€ {0,...,max;c o gz (max(Ly g, L q))}, we define such estimators as

d
DID, =3t DID, 4 + v DID_ 4, (14)
d=0
where
AT, d,
l t=€d+2 NZAZ +ﬁt

v = —
+.d d AT, #d,+ AT, #d,—
Ddmo 2omine Nig B+ 2y N P

ATd #dvf t
14 t={+2 Nt,Z 5

v_ d - = .
) d AT, d,+ AT, d,—
o Soimivs NI B+ ol NI B

1.4 Ruling out lagged treatment effects

Up to now, we have made no restriction on the effect of past treatment. We now investigate the
benefits of imposing such restrictions. Specifically, we consider the following assumption.
Assumption 17-k (No effect of past treatments beyond k lags)

For all (g,t), allt, and all (dy, ..., d) € {0, 1}, Y, ((dp)v<t) = Yyu(dig, ..., dy).

Assumption 17-k is plausible when the treatment is unlikely to have very long-run effects. It is

commonly made in event-study regressions and extensively discussed in Borusyak and Jaravel

(2017) and in Schmidheiny and Siegloch (2020) as a possible way to identify these regressions.

In our context, imposing Assumption 17 can serve two purposes. First, it provides a solution

to the “initial conditions” problem. So far, we have assumed that the treatments prior to the

10



start of the panel (D,;);<o do not affect potential outcomes. There are at least two situations
where this assumption is innocuous. First, such treatments may not exist. Assume for instance
that one seeks to estimate the effect of being unionized on earnings, using the NLSY panel. In
this data set, t = 1 corresponds to the first year on the labor market, so D, is not defined for
t < 0. Second, in staggered adoption designs, our main results still hold if potential outcomes
depend on (Dgy¢)i<o. In groups g untreated at period 1, D,y = 0 for all t < 0, so the first
points of Theorems 1, 2 and 4 still hold. Outside of those designs, our results do not apply when
potential outcomes depend on (Dg;);<o. However, under Assumption 17-k, our results apply to
a restricted panel, including groups with a stable treatment from period 1 to k + 1, and starting
at period k 4 1. Note that a similar idea was already put forward by Schmidheiny and Siegloch
(2020) in the context of event-study regressions, except that in the context of those regressions
one only needs to drop the first k£ + 1 periods of the panel, while we also need to drop groups

whose treatment changes at some point between periods 1 and k + 1.

Second, under Assumption 17-k one may be able to estimate d, (resp. J_) even when there
is no never-treated (resp. always-treated) group. Let ¢y = E[Y,:(0) — Y, :—1(0)] for all ¢ > 1.
In the estimator DID, ;, defined above, we use the set of groups untreated from period 1 to
t to unbiasedly estimate Zﬁ:o Y;—;, the evolution of the never treated outcome from period 1
to t. Under 17-k, it is not necessary to restrict ourselves to groups untreated from period 1
to t. Instead, assume that for each ¢, there are groups untreated from period ¢t to t — k — 1:

Ntnt,k _ Zg;pg,t:...=Dg,max<1,t7k71):0 Ny > 0. Then, we can unbiasedly estimate 1, by

1
N > Nyt (Ygu — Ygu1).
t g:Dgyt:“':Dg,max(l,t—k—l):0
In turn, this allows us to estimate Z?:o Y;_; and, in the end, ;. If Nt”t’k = 0 for some t, we

can at least unbiasedly estimate 01", defined exactly as 0" but with N7 replaced by
NT'=max{t:3g: Dyy = ... = Dy max(1,i—k—1) = 0}.

Because NT" > NT, we have AT > 7", implying that 61" is likely closer to d; than 0%™.

1.5 Fuzzy designs

In this subsection, we briefly discuss some fuzzy designs, where the treatment varies within (g, t)
cells, and where our approach is still applicable. Assume that all groups are fully untreated at

period 1. Then, one can redefine £ ; as the first period at which the proportion of units treated

in group g is strictly positive, and redefine DID, , and gfﬁu accordingly. One can also redefine

+
D;, = (Diga,...,Diyr) is a vector stacking the treatments of observation i in group g. Then,

the actual-versus-status-quo parameter 1", replacing Yy ,(D) by - S N Y gt(Dig4), where
9s
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one can show that under Assumptions 2-5, F <gf“> = 64", as in Point 1 of Theorem 1. In fuzzy
designs where some but not all groups are fully untreated at period 1, a similar result holds, in
the subset of groups fully untreated at period 1. In fuzzy designs where some or all groups are
fully treated at period 1, a similar result holds: one has to redefine £ as the first period at
which the proportion of units untreated in group g is strictly positive, and the result one finally

obtains involves 6% and §'™.

In fuzzy designs where all groups are partly treated at period 1, the estimators proposed in this
paper are not applicable, even to a subset of groups. First, only groups where the proportion of
treated units does not change over time can be used as controls, and such groups may not exist.
Second, even when such groups exist, the outcome evolution of treated and untreated units
has to be estimated separately in those groups, to estimate the outcome evolution that groups
where the proportion of treated units changes would have experienced without that change (see
de Chaisemartin and D’Haultfceuille, 2018). The algebra involved in those “treatment-adjusted”
DID differs from the algebra underlying the estimators in this paper.

2 First-difference placebo estimators
For any k € {1,...,7 — 2} and ¢ such that t — k > 2, let

N, N,
fi b it
DIDY = D> 3 Ve = Yormem) = D i (Youk = Youoso)

g:Fga=t 40 g:Fga>t !

if Ntl,o > 0 and N/ > 0, and let DIDEE}L r = 0 otherwise. “fpl” stands for first-difference placebo.
Let also ngl =max{t:2 <t < NT,dg: F,; =t} denote the last time period at which a group
switches from untreated to treated for the first time while there is still a group that has always
been untreated. We let

K5

1 pt fpl
fpl t=k+2 Nt,Oﬂ DIDt,k
DID,, =
Jr,k Kfpl .
nt
Zt:k+2 g:Fg 1=t Ng,tﬁ Dg,t

if k< K™ 2 and we let DIDfE}k = 0 otherwise.

Similarly, for any k € {1,...,7 — 2} and ¢ such that t — k > 2, let

N, N,
DID®, = > T Vr = Youriot) = 3 3 Yook = Youmion)
t,0 t

g:Fg 0=t ) g:Fg 0>t

if NEO > 0 and N > 0, and let DIDf_p}t’,~C = 0 otherwise. Let also Kfft’l =max{t:2 <t < AT, 3g:

F,o = t} denote the last time period at which a group switches from treated to untreated for

12



the first time while there is still a group that has always been treated. We let

KL
fpl t=k+2
DID?, =
7k Kfpl '
at
t=k+2 Lug:Fg o=t Ngﬂfﬁ Dgﬂf

NgoﬁtDIDﬁf’,i

if k < K2'—2 and we let DID = 0 otherwise.
As with the long-difference placebos, one can show that if Assumptions 1-2, Point 1 of Assump-

tion 3, and Assumptions 4-5 hold,
fpl
E [DIDf’k] —0 Vke{l,..T—2}
Similarly, if Assumptions 1-2, Point 2 of Assumption 3, and Assumptions 6-7 hold,

E [DIDf_P}k] —0 Vkel{l,.,T—2}
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A Appendix: proofs
A.1 Proof of Theorem 4

We only prove Point 1, as the proof of Point 2 is similar. First, let us introduce additional
notation. Let X = (X, ..., Xa), gg4(ds) = Y i(ds) — X 00 and €, = e44(Dy). Let also X
be as gfu’x but replacing b by 0p. Similarly, let ]if)it! be as DIDfM but with 6, replaced by
fo. For any ¢ € {0,...,T — 2} and t € {¢+2,...,T} such that N}, > 0 and N;"* > 0, we have

N
LR Yoy — Yoroo1 — (X1 — Xg1—0-1)'66| D, X)

—— X
E <DID D, X) _ ot
+,t,£ Ntlje

g:Fg1=t—L

N,
o Z Ngr{:E (5g,t - 8g,t—é—1|D, X)
t

g:Fg 1>t

= v Nepy b, - v, 01D, X)

g:Fg1=t—4 bt

N,
+ ) ﬁ{;E(%,t(O)—gg,t—6—1(0)|D>X)

g:Fg1=t—4

N,
= Y HE(E(0) = 2 (0)|D. X)

nt

- Z ZE (Yy:(Dy) — Yy.(0)|D, X) .

X
The first equality follows from the definition of DID, ,,, N}, > 0 and N;* > 0. The second
equality follows from Assumption 2. The third equality follows from Assumption 9. Then,
following the exact same steps as in the proof of Theorem 1, we obtain

E [&mﬂ — gt (15)
Now, note that

£ (PIDY,, - DID. , | D, X) =5 > % (Xor = Xgue1) [60— B (30D, X )|

1
g:Fg1=t—4 t,L

-y % (Xgt — Xgut-1) [90 —E <§°|D’ Xﬂ

g:Fg 1>t

0. (16)

— X
The first equality follows from the definition of DIDfM, DID, ,,, N&K > 0 and N/ > 0. The

second equality stems from F (é\o!D, X ) = 6y, which is due to Assumption 9. The result follows
by combining (15) with (16).
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A.2 Proof of Theorem 5

We only prove Point 1, as Point 2 can be obtained in a similar way. Reasoning as for obtaining
(10), we have, for all s € S and any ¢ € {0,...,T—2} and ¢t € {{+2, ..., T} such that N;f XN >
0,

B(DID D) = Y B (Yu(D,) - Y,u(0)D). (17
g€s:Fy1=t— = 't,L

Point 1 of Assumption 11 ensures that S, is not empty. By definition of N7 and because for all

s € S, there exists (g,¢') € s such that 1 < F,; < F,;, we have N/* > 0 for all 2 <t < NT*.

Consider an arbitrary ¢ € {0,...,L?,}. With the convention that a sum over an empty set is

equal to 0, we get, for all s € §; and £ +2 <t < NT”,

N/JE(DIDS  |D) = Y NyoE (Yyu(D,) — Y,4(0)|D). (18)

gEs:Fy1=t—{

Moreover, by definition of L;,, we have Zi\g;z BN}, > 0forall £ € {0,..., L}, }. Then, summing

over t in (18), we obtain

NT*®

. 1
E (DID% /| D) = S Y Y BNGEY (D) — Yy,(0)|D.
t=0+2 6 tl t=0+2 g:Fg’lzt—E

This equation is the equivalent of (11) in the proof of Theorem 1. The result then follows exactly
as the end of the proof of Theorem 1.

A.3 Proof of Theorem 6

We only prove Point 1, as Point 2 can be obtained in a similar way. Using the same reasoning
as to obtain (10), we obtain, for all (d,¢,¢) such that NZZd’Jr >0 and N4 >0,

N,
E(DID, D)= Y. L E(Y,(D,)-Y,(d)D).

g:Fg,;éd:t—ng’d:l tl
Also, given that Point 1 of Assumption 16 holds, we have

L+,d ATy

Z Z Z Ng:tﬂt(Dg,t - d)

(=0 t=0+2 gIFg7¢d:t—é,Ig,d:1
AT,

— > > NyuB(Dygy —d) > 0.

9:2SFg,#d§ATd7[g,d:1 t:ng¢d
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Then, reasoning as to obtain (12), we get

L AT,
Zj;éd w+,d,eE (DID+,d,e|D) . + ’ t= €d+2 Fy zq=t—L,14 q=1 Ng,tBtE(Yq t(Dg> - Y t(d)|D)
L - L AT
> w+,d,eDID£,d,£ v ed+2 Fypa=t—0I, =119, Nyt (Dgs — d)
:E[A'IMD].
Hence,

d
E[T|D] = vy 4E[ATY| D).
d=0

The result follows from the law of iterated expectations and the previous display.
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