
Generalized Lee Bounds

Vira Semenova*

November 24, 2021

Abstract

Lee (2009) is a common approach to bound the average causal effect in the presence of

selection bias, assuming the treatment effect on selection has the same sign for all subjects.

This paper generalizes Lee bounds to allow the sign of this effect to be identified by pre-

treatment covariates, relaxing the standard (unconditional) monotonicity to its conditional

analog. Asymptotic theory for generalized Lee bounds is proposed in low-dimensional

smooth and high-dimensional sparse designs. The paper also generalizes Lee bounds to ac-

commodate multiple outcomes and non-compliance. The estimated bounds achieve nearly

point-identification in JobCorps (Lee (2009)), where unconditional monotonicity is shown

to fail, and Oregon Health Insurance Experiment (Finkelstein et al. (2012)) empirical appli-

cations.
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1 Introduction

Randomized controlled trials are often complicated by endogenous sample selection and non-

response. This problem occurs when treatment affects the researcher’s ability to observe an

outcome (a selection effect) in addition to the outcome itself (the causal effect of interest). For

example, being randomized into a job training program affects both an individual’s wage and

employment status. Since wages exist only for employed individuals, treatment-control wage

difference is contaminated by selection bias. A common way to proceed is to bound the average

causal effect from above and below, focusing on subjects whose outcomes are observed regard-

less of treatment receipt (the always-observed principal strata, Frangakis and Rubin (2002) or

the always-takers, Lee (2009)).

Seminal work by Lee (2009) proposes nonparametric bounds assuming the selection effect

is non-negative for all subjects (monotonicity). For example, if JobCorps cannot deter employ-

ment, basic Lee lower bound is the treatment-control difference in wages, where the top wages

in the treated group are trimmed until treated and control employment rates are equal. Further-

more, Lee (2009) shows that the covariate density-weighted conditional Lee bound is weakly

tighter than the basic bound that does not involve any covariates. However, only a handful of

discrete covariates can be utilized to tighten the bound, since each covariate cell is required to

have a positive number of treated and control outcomes.

This paper begins by quantifying the importance of covariates under the same (uncondi-

tional) monotonicity assumption as in Lee (2009). Assuming the outcome shock is homoscedas-

tic, I show that the bounds’ width is proportional to the shock’s standard deviation. If covariates

perfectly explain the outcome, the upper and the lower bounds collapse into a point. Further-

more, in a special case, the bounds are inversely proportional to the variance of conditional

probability of selection in the control state. The link between the sharp width and the first-

stage predictive power motivates selecting covariates based on their out-of-sample predictive

fit, and, therefore, employing modern regularized and machine learning tools (Athey (2015),

Mullainathan and Spiess (2017), Athey and Imbens (2019)).

Next, the paper generalizes Lee bounds to accommodate subjects with differential selection

response, relaxing unconditional monotonicity to its conditional analog. This step gives rise to
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covariate spaces of positive and negative selection response. I show that the sharp conditional

Lee bound has continuous transition through the boundary, determined by zero values of condi-

tional treatment effect on selection. If the boundary is continuously distributed with a bounded

density, the misclassification bias is negligible under plausible smoothness and/or sparsity as-

sumptions. This property holds only for the sharp version of conditional Lee bound, where the

same set of covariates is used to classify subjects and to define the Lee bound on each sub-space.

The link between sharpness and misclassification robustness appears to be new.

Overcoming classification challenge, the paper represents the generalized Lee bound via a

semiparametric moment equation. The moment-based estimator no longer requires covariates to

be discrete. Furthermore, it no longer requires the propensity score (i.e., the probability of treat-

ment) to be known, overcoming a key historical limitation to the widespread adoption of Lee

bounds in quasi-experiments. If the conditional selection probability and conditional outcome

quantile are smooth functions of covariates, they can be estimated by logistic series regression

of Hirano et al. (2003) and quantile series of Belloni et al. (2019), respectively. Alternatively, if

these functions have a sparse representation with respect to some basis, one could employ their

`1-penalized analogs proposed in Belloni et al. (2016) and Belloni and Chernozhukov (2011),

Belloni et al. (2017) to Neyman-orthogonal (Neyman (1959), Neyman (1979), Ai and Chen

(2003), Newey (1994), Chernozhukov et al. (2018), Chernozhukov et al. (2016)) moments, de-

rived in Supplementary Appendix (Semenova (2020)). The paper’s theoretical contribution is to

establish the validity of the orthogonal moment-based estimator in the presence of classification

step.

In the final part of the paper, I generalize Lee bounds to accommodate multiple outcomes

and non-compliance. I show that Lee’s Identified set is compact and convex and derive its sup-

port function q→ σ(q) describing its boundary (Rockafellar (1997), Beresteanu and Molinari

(2008), Beresteanu et al. (2011), Bontemps et al. (2012), Chandrasekhar et al. (2012)). Standard-

ized treatment effect (STE) of multiple outcomes in a related domain is an important special case.

Indeed, since the standardization vector (i.e., the support function’s argument q) is an unknown

population parameter, inference using σ̂(q̂) calls for uniform Gaussian approximation for the

support function. Finally, I generalize Lee’s trimming strategy to handle non-compliance (Im-
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bens and Angrist (1994), Angrist and Imbens (1995)), which gives bounds for the always-takers’

local ATE.

I estimate Lee bounds in two empirical applications. First, I study the effect of the JobCorps

training program on wages and wage growth, using data from Schochet et al. (2008). The paper’s

major finding is to show that the unconditional monotonicity fails for JobCorps program. After

accounting for the differential JobCorps effect on employment, I find that the average JobCorps

effect on the always-takers’ week 90 wages is 4.0–4.6%, which is slightly smaller than Lee’s

replicated estimate of 4.9%. Furthermore, the average JobCorps effect on wage growth from

week 104 to week 208 ranges between −11% and 11%. Thus, the average growth rate is 15%

in the control status and ranges between 4% and 26% in the treated status. Finally, I provide

evidence of mean reversion of the expected log wage for the always-takers in the control status.

This mean reversion corroborates Ashenfelter (1978) pattern and shows that earnings would

have recovered even without JobCorps training. Therefore, evaluating JobCorps would have

been very difficult without a randomized experiment, as one would need to explicitly model

mean reversion in the potential wage in the control status.

In the next application, I study the effect of a Medicaid lottery on applicants’ self-reported

healthcare utilization and health, as in Finkelstein et al. (2012). After accounting for non-

response bias, I find that Medicaid exposure and insurance has had a positive effect on all mea-

sures of health, confirming Finkelstein et al. (2012)’s baseline results. The proposed Lee bounds

attain nearly point-identification in all applications. In contrast, conventional Lee bounds are

too wide to determine the direction of the treatment effect. The proposed bounds are straight-

forward to compute using the R software package leebounds, available at https://github.

com/vsemenova/leebounds.

This paper combines ideas from various branches of economics and statistics, including

bounds on causal effects (Manski (1989), Manski (1990), Horowitz and Manski (1995), Fran-

gakis and Rubin (2002), Angrist et al. (2002), Angrist et al. (2006), Feller et al. (2016), Angrist

et al. (2013), Abdulkadiroglu et al. (2020), Honore and Hu (2020), Mogstad et al. (2020a),

Mogstad et al. (2020b), Kamat (2021)), partial identification (Chernozhukov et al. (2010), Stoye

(2009), Stoye (2010), Kaido et al. (2019), Gafarov (2019), Kaido et al. (2021)), monotonicity
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and latent index models (Vytlacil (2002), Kline and Walters (2019), Kamat (2019), Sloczyn-

ski (2021)), inference on moment inequalities (Andrews and Shi (2017), Andrews and Shi

(2013), Bugni et al. (2017), Shi et al. (2018), Chernozhukov et al. (2019), Hsu et al. (2019),

Bai et al. (2019), Shi et al. (2021)), and machine learning approaches for heterogenous treat-

ment effects (Athey and Imbens (2016), Wager and Athey (2018), Chernozhukov et al. (2017),

Oprescu et al. (2018), Syrgkanis et al. (2019), Nie and Wager (2020), Farrell et al. (2021a),

Athey and Wager (2021), Farrell et al. (2021b)). Merging the ideas from classification analysis,

debiased/orthogonal inference and bounds literatures, this paper shows how pre-randomization

covariates can make Lee bounds more robust and informative at the same time.

The paper is organized as follows. Section 2 reviews basic Lee bounds and Lee’s estimator

under the standard monotonicity assumption. Section 3 establishes the link between the sharp

width – the width of the sharp bounds – and the first-stage covariate predictive power. Section

4 generalizes Lee bounds under conditional monotonicity and provides inference results for this

parameter. Section 5 allows for multiple outcomes and endogenous treatment receipt. Section 6

gives a finite-sample evidence of robustness to misclassification bias and importance of orthog-

onality. Section 7 presents empirical applications. The Supplementary Appendix (Semenova

(2020)) contains proofs (Appendix A) and supplementary results (Appendix B).

2 Lee (2009) bounds

In this section, I review the Lee (2009) sample selection model. Let D = 1 be an indicator for

treatment receipt. Let Y (1) and Y (0) denote the potential outcomes if an individual is treated or

not, respectively. Likewise, let S(1) = 1 and S(0) = 1 be dummies for whether an individual’s

outcome is observed with and without treatment. The data vector W = (D,X ,S,S ·Y ) consists of

the treatment status D, a baseline covariate vector X , the selection status S = D ·S(1)+(1−D) ·

S(0) and the outcome S ·Y = S · (D ·Y (1)+(1−D) ·Y (0)) for selected individuals. Lee (2009)

focuses on the average treatment effect (ATE)

β0 = E[Y (1)−Y (0) | S(1) = 1,S(0) = 1] (2.1)
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for subjects who are selected into the sample regardless of treatment receipt—the always-takers.

ASSUMPTION 1 (Assumptions of Lee (2009)). The following statements hold.

(1) (Complete Independence). The potential outcomes vector (Y (1),Y (0),S(1),S(0),X) is in-

dependent of D.

(2) (Monotonicity). S(1)≥ S(0) a.s.

The independence assumption holds by random assignment. In addition, it requires all sub-

jects to have the same probability of being treated. The monotonicity requires all subjects to

have the same direction of selection response. In particular, a subject that is selected into the

sample when untreated must remain selected if treated:

S(0) = 1 ⇒ S(1) = 1.

As a result,

E[Y (0) | S(1) = 1,S(0) = 1] = E[Y (0) | S(0) = 1].

By complete independence,

E[Y (0) | S(0) = 1] = E[Y | S = 1,D = 0],

and E[Y (0) | S(1) = 1,S(0) = 1] is point-identified.

In contrast to the control group, a treated outcome can be either an always-taker’s outcome

or a complier’s outcome. The always-takers’ share among the treated is

p0 = Pr[S(1) = 1,S(0) = 1 | S(1) = 1] = Pr[S(0) = 1 | S(1) = 1] =
Pr[S = 1 | D = 0]
Pr[S = 1 | D = 1]

. (2.2)

In the best case, the always-takers comprise the top p0 quantile of the treated outcomes. The

largest possible value of β0 is

β
basic
U = E[Y | Y ≥ QY |S=1,D=1(1− p0),D = 1,S = 1]−E[Y | S = 1,D = 0], (2.3)

where QY |S=1,D=1(u) is the u-quantile of the treated outcomes and p0 in (2.2) is the trimming
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threshold. Likewise, the smallest possible one is

β
basic
L = E[Y | Y ≤ QY |S=1,D=1(p0),D = 1,S = 1]−E[Y | D = 0,S = 1].

Lee’s identification strategy can be implemented conditional on covariates. Denote the con-

ditional trimming threshold p0(x) as

p0(x) =
Pr[S = 1 | D = 0,X = x]
Pr[S = 1 | D = 1,X = x]

=
s(0,x)
s(1,x)

x ∈ X (2.4)

and the conditional upper bound β basic
U (x) as

β
basic
U (x) = E[Y | D = 1,S = 1,Y ≥ Q1(1− p0(x),x),X = x]−E[Y | D = 1,S = 0,X = x] (2.5)

where Q1(u,x) := QY |S=1,D=1,X=x(u,x) is the conditional u-quantile of Y in S = 1,D = 1,X = x

group. The sharp upper bound is

βU =
∫

x∈X
β

basic
U (x) fX(x | S = 1,D = 0)dx, (2.6)

which, as Lee has shown, obeys βU ≤ β basic
U .

3 Sharp width

In this section, I link the sharp width – the width of sharp Lee bounds – to covariate predictive

power in outcome and selection equations. The sharp width is

∆ =
∫
X
(β basic

U (x)−β
basic
L (x)) fX(x | S = 1,D = 0)dx, (3.1)

where fX(x | S = 1,D = 0) is the always-takers’ covariate density.

Suppose Assumption 1 holds. In addition, suppose the treated potential outcome’s shock is
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homoscedastic, that is

Var(Y (1)−E[Y (1) | X = x]) = Var(σε · ε) = σ
2
ε ∀x. (3.2)

For example, if the additive outcome shock in Heckman (1976, 1979) is independent of covari-

ates, (3.2) holds (see Remark A.1 in Appendix) for i.i.d data. I show that ∆ is proportional to

σε .

Conditional on X , trimming an outcome Y is equivalent to trimming the unobserved shock ε

Y ≥ QY |S=1,D=1,X(1− p0(X),X)⇔ ε ≥ Qε|S=1,D=1,X(1− p0(X),X).

For each x, the conditional bound β basic
U (x) is linear in σε

β
basic
U (x) = E[Y (1) | X = x]−E[Y (0) | S(0) = 1,X = x]

+σε(E[ε | ε ≥ Qε|S(1)=1,X=x(1− p0(x),x),S(1) = 1,X = x]).

As a result, the conditional width

β
basic
U (x)−β

basic
L (x)

is proportional to σε , and so is the sharp width ∆. If σε = 0, the width ∆ = 0, and the bounds

collapse into a point. The stronger the predictive power of X in the outcome equation, the smaller

σε , and the smaller the sharp width ∆.

To quantify the role of selection equation, I assume that ε | S = 1,D = 1,X is independent of

X

Pr(ε < t | S(1) = 1,X = x) = Pr(ε < t | S(1) = 1) ∀t ∈ R. (3.3)

For one example, (3.3) holds if (ε,S(1)) is independent of X , which would imply s(1,x) is a con-

stant. Indeed, (3.3) holds if there is no selection in the treated group: S(1)= 1 a.s. and ε ⊥X . For

another example, (3.3) holds in Heckman (1976, 1979) where ε and (S(1),X) are independent.
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In both cases, the always-takers’ ATE remains partially identified.

Define the integrated quantile function K(p) as

K(p) =
∫ 1

1−p
Qε|S(1)=1(u)du. (3.4)

Since p→ Qε|S(1)=1(1− p) is non-increasing, K(p) is globally concave, and K′′(p) < 0 for all

p ∈ (0,1). Consider a Taylor expansion of K(p0(x)) around p0

K(p0(x))≈ K(p0)+K′(p0)(p0(x)− p0)+0.5K′′(p0)(p0(x)− p0)
2 +o((p0(x)− p0)

2). (3.5)

By construction, the first-order term integrates out to zero:

∫
X
(p0(x)− p0) fX(x | S = 1,D = 1)dx = p0− p0 = 0.

Since K′′(p0)< 0, the second-order term has a negative effect on width. Plugging (3.5) into (3.1)

gives (see Remark A.2) a local (in x) approximation of sharp width

∆≈ σε p−1
0

(
K(p0)+K(1− p0)−K(1)+0.5(K′′(p0)+K′′(1− p0))E(p0(X)− p0)

2 s(1,X)

Es(1,X)

)
.

(3.6)

In particular, the larger the weighted variance of p0(X), the smaller the sharp width ∆.

4 Generalized Lee Bounds

4.1 Definitions and Assumptions

In this section, I generalize Lee bounds under conditional monotonicity. Define the conditional

average treatment effect on selection as

τ(x) := s(1,x)− s(0,x) (4.1)
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and the following sets

Xhelp := {x : τ(x)> 0}, Xhurt := {x : τ(x)< 0} (4.2)

ASSUMPTION 2 (Conditional monotonicity). The covariate set X= XhelptXhurt can be par-

titioned into Xhelp and Xhurt so that

X ∈ Xhelp⇒ S(1)≥ S(0) a.s. , X ∈ Xhurt⇒ S(1)≤ S(0) a.s. .

Assumption 2 requires the direction of treatment effect on selection to be identified by co-

variate vector X . However, the sign of the effect can vary along with covariates. When there

are no covariates, Assumption 2 reduces to Assumption 1 (2). The larger the covariate set, the

weaker Assumption 2 is. The weakest form of Assumption 2, based on the full vector of X , is

untestable.

Define the conditional upper bound βU(x) as

βU(x) :=


β

help
U (x) x ∈ Xhelp

β hurt
U (x) x ∈ Xhurt,

(4.3)

where β
help
U (x)= β basic

U (x) in (2.5) for x∈Xhelp and β hurt
U (x) is its analog on Xhurt. For a boundary

point x : τ(x) = 0,

βU(x) = β
help
U (x) = β

hurt
U (x).

Define the aggregate bound

βU =

∫
X βU(x)min(s(0,x),s(1,x)) fX(x)dx∫

X min(s(0,x),s(1,x)) fX(x)dx
. (4.4)

Lemma 1 (Generalized Lee bound). Under Assumptions 1(1) and 2, the bound βU in (4.4) is a

sharp upper bound on β0 in (2.1).

ASSUMPTION 3 (Regularity Conditions). (BO) Bounded Outcome: There exists M <∞ so that

|Y | ≤M a.s. (SO) Strict Overlap: There exists κ ∈ (0,1/2) so that s(d,x) ∈ (κ,1−κ) ∀d,x
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and µ1(x) := Pr(D = 1 | X = x) ∈ (κ,1−κ) for any x. (MA) Margin Assumption: There exist

absolute constants 1/2 < α < ∞ and 0 < η ≤ 1 so that

PrX(|τ(X)| ≤ t)≤ (t/η)α , 0≤ t ≤ η .

(REG) : For d ∈{1,0}, the conditions hold. (i) The conditional density f d(y | x) := fY |S=1,D=d,X=x(y |

x) is bounded from above uniformly over y ∈ Yx by B f ; (ii) infx∈X infy∈Yx f d(y | x) is bounded

away from zero. (iii) The derivative of y→ f d(y | x) is continuous and bounded in absolute value

from above uniformly over y ∈ Yx.

Assumption 3 states regularity conditions. Strict overlap (SO) is a standard condition in

treatment effects literature. I impose it both for the conditional probability of selection s(d,x)

and the propensity score µ1(x). The Margin Assumption (MA) has been considered in the litera-

ture on classification analysis (Mammen and Tsybakov (1999), Tsybakov (2004)) and empirical

welfare maximization (Kitagawa and Tetenov (2018), Mbakop and Tabord-Meehan (2021), Sun

(2021)). The parameters η and α characterize the size of population when τ(X) is close to

the margin τ(X) = 0. For example, if τ(X) is continuously distributed with a bounded density,

(MA) holds with α = 1 and some η > 0. The fourth condition (REG) requires the outcome to be

continuously distributed without point masses, and is routinely imposed for quantile estimation

(e.g., Belloni and Chernozhukov (2011) and Belloni et al. (2019)).

Definition 1 (Selection Rate). There exist a sequence of numbers εN = o(1) and a sequence of

sets Sd
N ,d ∈ {1,0} such that the first-stage estimates ŝ(d,x) of the true function s0(d,x) belong

to Sd
N with probability at least 1− εN . The sets Sd

N shrink at the following rate

sup
d∈{1,0}

sup
s∈Sd

N

(
EX |s(d,X)− s0(d,X)|p

)1/p

≤ sp
N , 1≤ p≤ ∞

and the functions in Sd
N obey infx∈X infd∈{1,0} s(d,x) > κ/2 > 0. Let sN and s∞

N be the mean

square rate and the sup-norm rate, respectively.

Definition 2 (Uniform Quantile Rate). There exist a sequence of numbers ξN = o(1) and a se-

quence of sets Qd
N so that the first-stage estimate Q̂d(u,x) of Qd

0(u,x) shrinks at the rate uniformly
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over UN = [ξN ,1−ξN ]

sup
d∈{1,0}

sup
Q∈Qd

N

sup
UN

(E|Qd(u,X)−Q0(u,X)|p)1/p ≤ qp
N , 1≤ p≤ ∞,

where the sets Qd
N consist of a.s. M-bounded functions. Let qN and q∞

N be mean square and

sup-norm rates, respectively.

ASSUMPTION 4 (First-Stage Rates). (1) For α in Assumption 3(MA), the sequences ρN :=

max(2s∞
N/κ,ξN) and q∞

N obey the following bounds:

(ρN)
α+1 = o(N−1/2), (ρN)

αq∞
N = o(N−1/2). (4.5)

(2) The mean square rates obey max(sN ,qN) = o(N−1/4).

Remark 1 (Plausibility of Assumption 4(1)). Suppose s∞
N = o(N−5/16). If Assumption 3(MA)

holds with α = 1, ξN can be taken to ξN := ρN := N−5/16. For the quantile functions, a

standard practice (e.g., Belloni and Chernozhukov (2011)) is to establish the rates in a com-

pact set U ∈ (0,1) that does not change with N. I conjecture that on [ξN ,1− ξN ], the rate

q∞
N = O(

√
s2

Q log pQ/NξN) = O(N−11/32
√

sQ log pQ) = o(N−8/32) = o(N−1/4), where sQ and

pQ are the sparsity index and the total number of covariates, respectively. Then, Assumption 4

(1) holds.

Assumption 4 is stated in a high-level form in order to accommodate various classic nonpara-

metric and modern regularized estimators. Mean square and `∞ rates are available for logistic

series regression (Hirano et al. (2003)) under smoothness and its `1-penalized analog under spar-

sity (Belloni et al. (2016)), respectively. Likewise, mean square and `∞ rates are available for

quantile series regression (Belloni et al. (2019)) and its `1-penalized analog (Belloni and Cher-

nozhukov (2011)). Adaptive choices of `1-penalty that guard against overfitting are provided in

Belloni and Chernozhukov (2011) and Belloni et al. (2017), respectively.
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4.2 The estimator

The moment equation. I represent (4.4) as a ratio of two moments. For the sake of brevity,

suppose the propensity score µ1(x) = Pr(D = 1 | X = x) = 1/2 ∀x. Define the numerator’s

moment

mhelp
U (W,ξ ) = D ·S ·Y ·1{Y ≥ Q1(1− p(X),X)}− (1−D) ·S ·Y (4.6)

and let mhurt
U (W,ξ ) is its counterpart on Xhurt in (A.46). Here, W = (D,X ,S,S ·Y ) is the data

vector and the nuisance parameter ξ0

ξ0(x) := {s(0,x),s(1,x),Q1(u,x),Q0(u,x)}, (4.7)

where Qd(u,x) is the u-quantile of Y | S = 1,D = d,X for d ∈ {1,0}. Taking

mU(W,ξ ) = 1{X ∈ Xhelp(τ)}mhelp
U (W,ξ )+1{X ∈ Xhurt(τ)}mhurt

U (W,ξ ) (4.8)

gives a moment-based representation of βU

βU =
EmU(W,ξ0)

Emin(s(0,X),s(1,X))
. (4.9)

Lemma 2 (Small misclassification bias). Under Assumption 3 (BO, SO, MA),

sup
s(d,x)∈Sd

N

E1{|τ0(X)| ≤ ρN}(mU(W ;Q0;s)−mU(W ;Q0;s0)) = O(ρα+1
N ). (4.10)

Lemma 2 is an important intermediate result. If the true quantile function Qd
0(u,x) is known,

the numerator’s moment is robust to the misclassification mistakes. Indeed, for a covariate X to

be misclassified, the τ(X) must be within ρN-distance from the margin. By the margin assump-

tion (MA), this event occurs with probability (ρN)
α . For example, if α = 1 and s∞

N = o(N−5/16),

the misclassification bias o(N−1/2) is negligible. A similar result holds for the denominator’s

moment (Lemma A.2).
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Orthogonal moment equation. To enable data-driven covariate selection, for example, via

`1-penalized logistic and quantile estimators, the moment equation mU(W,ξ ) must be replaced

by its orthogonal counterpart gU(W,ξ ). A moment function gU(W,ξ ) is orthogonal (Neyman

(1959), Newey (1994), Chernozhukov et al. (2018), Chernozhukov et al. (2016) etc.) if it obeys

the zero-derivative property

∂rEgU(W,r(ξ −ξ0)+ξ0)[ξ (X)−ξ0(X)]|r=0 = 0, (4.11)

which makes it insensitive with respect to the first-order biased estimation error of ξ̂ − ξ0. Fo-

cusing on Xhelp, define

ghelp
U (W,ξ ) := mhelp

U (W,ξ )+ corhelp
U (W,ξ ), (4.12)

where the correction term is

corhelp
U (W,ξ ) = Q1(1− p0(X),X)

(
2(1−D) ·S−2 ·D ·Sp0(X)

+(2D ·S ·1{Y ≤ Q1(1− p0(X),X)}− s(1,X)+ s(0,X))

)
. (4.13)

Let ghurt
U (W,ξ0) be as in (A.49). The orthogonal moments are

gU(W,ξ ) : = 1{X ∈ Xhelp(τ)}ghelp
U (W,ξ )+1{X ∈ Xhurt(τ)}ghurt

U (W,ξ )

gD(W,τ) : = 1{X ∈ Xhelp(τ)}2(1−D) ·S+1{X ∈ Xhurt(τ)}2D ·S. (4.14)

Definition 3 (Generalized Lee Bounds). Estimate:

1. The conditional selection probabilities x→ ŝ(d,x) for d ∈ {1,0} and sets

Xhelp(τ̂) := {x : ŝ(1,x)− ŝ(0,x)> 0}, Xhurt(τ̂) := {x : ŝ(1,x)− ŝ(0,x)< 0},
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2. Given p̂(x) = ŝ(0,x)/ŝ(1,x), define the rounded conditional trimming threshold

p̂trim(x) :=


p̂(x) p̂(x) ∈ [ξN ,1−ξN ],

ξN p̂(x)≤ ξN ,

1−ξN p̂(x)≥ 1−ξN

(4.15)

and ξ̂ := {ŝ(0,x), ŝ(1,x), Q̂1(1− p̂trim(x),x), Q̂0(1/p̂trim(x),x)}.

3. The lower and the upper bound as

β̂L =
ENgL(Wi, ξ̂i)

ENgD(Wi, τ̂i)
, β̂U =

ENgU(Wi, ξ̂i)

ENgD(Wi, τ̂i)
. (4.16)

Definition 3 introduces generalized Lee bounds. The first step is to classify subjects into the

regions of positive and negative selection response. The second one is to round the estimated

quantile level p̂(x) to the closest point of [ζN ,1− ζN ] where the estimated quantile function

converges. The third one is to compute sample averages of orthogonal moments. Similar to

Chernozhukov et al. (2018), the first and the second stages are performed on different samples,

in order to facilitate regularized methods.

Theorem 1 (Generalized Lee bounds). Suppose Assumptions 2, 3, and 4 hold. Then, the esti-

mator (4.16) is consistent and asymptotically normal,

√
N

 β̂L−βL

β̂U −βU

⇒ N (0,Ω) .

Theorem 1 is my main result. It establishes consistency and asymptotic normality of gener-

alized Lee bounds.
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4.3 Discussion

Remark 2 (Sorted Bounds). The bounds β̂L, β̂U in Definition 3 are not ordered by construction.

Likewise, the endpoints of the (1− γ)-confidence region for the identified set

[β̂L + cγ/2Ω̂
1/2
LL N−1/2, β̂U + c1−γ/2Ω̂

1/2
UU N−1/2],

where c1−γ/2 is the (1− γ/2)-quantile of N(0,1), are not ordered either. Chernozhukov et al.

(2013) shows that sorting the estimated bounds and the confidence region

β̃L = min(β̂L, β̂U), β̃U = max(β̂L, β̂U)

weakly improves the convergence rate and coverage, respectively. However, (β̃L, β̃U) may not

obey the local super-efficiency assumption of Imbens and Manski (2004) and calls for the Stoye

(2009)’s confidence interval instead. If the preliminary bounds cross (i.e., the width β̂U − β̂L

is negative), the Stoye (2009)’s confidence interval may be empty, indicating the violation of

Assumptions 3 or 4.

Remark 3 (Strong1 separation). Given fixed ε > 0, a separation condition

inf
x∈X
|τ(x)|= inf

x∈X
|s(1,x)− s(0,x)|> ε (4.17)

may be plausible in settings with discrete covariates. If s∞
N = o(1), the subjects are correctly

classified into Xhelp and Xhurt w.p. approaching one. Then, the statement of Theorem 1 holds

under Assumptions 3 (SO) and (REG) and Assumption 4 (2).

Remark 4 (Sharpness ⇔ Robustness to misclassification). When X is high-dimensional, the

quantile function Q1(u,x) requires non-trivial regularization assumptions, such as sparsity, to be

estimated consistently. In contrast, the unconditional quantile u→ Q1help
Y |S=1,D=1(u) is straightfor-

ward to estimate by a sample analog. Sacrificing sharpness, one may work with the no-covariate

1The first version of the manuscript was based on this condition. The author thanks two discussants who pointed
out its weaknesses.
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bound

β̄U(x) =


β̄

help
U x ∈ Xhelp

β̄ hurt
U x ∈ Xhurt,

(4.18)

where β̄
help
U and β̄ hurt

U are basic Lee bounds of Section 2, defined on Xhelp and Xhurt, respectively.

Let β̄U is the analog of (4.4) based on β̄U(x). Unless β̄
help
U = β̄ hurt

U , switching from Xhelp to Xhurt

involves a discontinuous jump. Thus, a strong separation condition (4.17) is required for the

existing analysis to apply.

Remark 5 (Agnostic approach). Consider an intermediate bound

β
A
U (x) :==


β̄

help
U (xA) x ∈ Xhelp

β̄ hurt
U (xA) x ∈ Xhurt,

(4.19)

where β̄
help
U (xA) and β̄ hurt

U (xA) are defined conditional on subvector XA ⊂ X . Section 3 motivates

selecting XA by minimizing the amount of unexplained variance in the outcome equation. This

problem becomes conceptually similar to selecting XA for modeling heterogeneous treatment

effects, e.g. Athey and Imbens (2016) and Chernozhukov et al. (2017). Conditional inference on

β A
U is facilitated by selecting XA on an auxiliary sample.

Remark 6 (Unknown propensity score). Assumption 1(1) requires the propensity score µ1(X) =

Pr(D = 1 | X) = Pr(D = 1) to be a constant. Appendix A establishes the statement of Theorem

1 under conditional independence assumption

(Y (1),Y (0),S(1),S(0))⊥ D | X . (4.20)

To invoke Section 4 results, replace D and 1−D by D/µ1(X) and (1−D)/(1−µ1(X)) in (4.6),

respectively. If the propensity score needs to be estimated by regularized methods, the correc-

tion term (4.13) must include a 4th summand correcting the propensity scores’s regularization

bias. Unlike other correction terms, this term depends on a truncated conditional mean (a.k.a.

conditional value-at-risk) E[Y | Y ≥ Q1(1− p0(X),X),D = 1,S = 1,X ].
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Detecting unconditional monotonicity failure raises the question of the validity of its condi-

tional analog, especially with few covariates. Nevertheless, assigning a monotonicity direction

implied by the data gives a wider bound than forcing the same direction for each value of x. Forc-

ing Assumption 1(2) means that the trimming threshold p0(x) := min(s(0,x)/s(1,x),1) must be

capped at one. Since such a bound is always tighter, and, therefore, less robust, than the gener-

alized one, I recommend against this practice.

5 Extensions

In this section, I generalize Lee bounds to handle practical difficulties encountered in empirical

applications. Section 5.1 generalizes one-dimensional bounds to a set for a multi-dimensional

treatment effect. Section 5.2 introduces fuzzy Lee bounds in the presence of endogenous non-

compliance.

5.1 Multiple outcomes

Consider a setup with a multi-valued outcome Y. As before, the observed sample (Di,Xi,Si,SiYi)
N
i=1

consists of the realized treatment D, the vector of baseline covariates X , the selection outcome

S = D ·S(1)+(1−D) ·S(0),

and outcomes for the selected subjects S ·Y = S · (D ·Y(1)+(1−D) ·Y(0)), where S ∈ Rd and

Y ∈ Rd are d-vectors. The parameter of interest is the average treatment effect

β0 = E[Y(1)−Y(0) | S(1) = S(0) = 1] (5.1)

for a group of subjects who are selected into the sample for each scalar outcome regardless of

treatment status.

I reduce the problem to the one-dimensional case. Let Sd−1 = {q ∈ Rd ,‖q‖ = 1} be a unit

sphere. For every q∈ Sd−1, denote the selection variable S = 1{S = 1} and the outcome variable
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Yq := q′Y . The sharp upper bound on q′β0 is

σ(q) =
EmU(Wq,ξ0(q))

Emin(s(0,X),s(1,X))
(5.2)

and the sharp identified set B for β0 is

B= ∩q∈Rd :‖q‖=1{b ∈ Rd : q′b≤ σ(q)}. (5.3)

Theorem 2 (Lee’s Identified Set). Under Assumption 2, the set B in (5.3) is a convex and

compact set whose support function is (5.2). It is a sharp identified set for β0 in (5.1).

Example 1. Wage Growth Let S=(St1 ,St2) be a vector of employment outcomes for t ∈{t1, t2},

Y=(Yt1 ,Yt2) be a vector of log wages, and β0 =(βt1 ,βt2) be the effect on log wage in time periods

t1 and t2. The sharp upper and lower bounds on the average wage growth effect from t1 to t2,

βt2−βt1 , are given by

[−
√

2σ(−q),
√

2σ(q)], q = (1/
√

2,−1/
√

2). (5.4)

Example 1 demonstrates the use of support function when q = (1/
√

2,−1/
√

2) is a known

vector. To conduct inference on σ(q), invoke Theorem 1 with Wq = (D,X ,S,S ·Yq).

Example 2. Standardized Treatment Effect Let Y be a vector of related outcomes and β0

be a vector of average effects. A common approach for summarizing findings is to consider the

standardized treatment effect

STE =
1
d

d

∑
j=1

β j

ζ j
, (5.5)

where ζ j is the standard deviation of the outcome j in the control group. The sharp lower and

upper bounds on STE are given by

[−Cζ σ(−q), Cζ σ(q)], (5.6)

where q = ζ/‖ζ‖ and Cζ = ‖ζ‖/d. Example 2 demonstrates the use of support functions when
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q = ζ/‖ζ‖ is a population parameter. In contrast to Example 1, the direction q = ζ/‖ζ‖ is

unknown and needs to be estimated. Therefore, it is important for the support function σ(q) to

be approximated in some neighborhood of q in addition to the point q itself.

5.2 Fuzzy Lee Bounds

This section generalizes Lee (2009)’s results to accommodate endogenous treatment receipt. Let

Z ∈ {1,0} be a binary instrument, such as an offer of participation, that is randomly assigned

conditional on X . Let D(1) and D(0) be the binary potential treatment outcomes for D if subject

is treated and not treated, respectively, and D = Z ·D(1)+(1−Z) ·D(0). Likewise, let S(1) and

S(0) be dummies for whether an individual’s outcome is observed with and without instrument,

and let S = Z ·S(1)+(1−Z) ·S(0). The observed data vector W = (Z,X ,D,S,S ·Y (D)) consists

of the pre-randomization covariates X , instrument Z, and post-randomization data (D,S,S ·Y )

where Y = D ·Y (1) + (1−D) ·Y (0). The object of interest is the ATE for subjects who are

always-takers (with respect to selection) and compliers (with respect to the treatment choice).

β0 = E[Y (1)−Y (0) | S(1) = S(0) = 1,D(1)> D(0)]. (5.7)

ASSUMPTION 5 (Fuzzy Lee Bounds). The following statements hold.

(1) (Independence). The potential outcomes vector is independent of Z

(Y (1),Y (0),S(1),S(0),D(1),D(0))⊥ Z | X

(2) (Monotonicity of Choice). D(1)≥ D(0) a.s. with Pr(D(1)> D(0))> 0.

(3) (Independence of Selection and Choice) (S(1),S(0))⊥ (D(1),D(0)) | X.

To accommodate endogenous treatment receipt, the outcomes should be trimmed separately

for (Z = 1,D = 1) and (Z = 1,D = 0) groups at equal proportions p0(X) = s(0,X)/s(1,X) =

Pr(S = 1 | Z = 0,X)/Pr(S = 1 | Z = 1,X), a distinction that does not exist in the perfect compli-

ance case. Define the new quantile function Q(u,d,x) as

Q(u,d,x) : Pr(Y ≤ Q(u,d,x) | S = 1,Z = 1,D = d,X = x) = u, u ∈ [0,1]. (5.8)
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For the sake of exposition, suppose S(1)≥ S(0)a.s.. Then, the upper-truncated subjects are

ΛU(W ) =

{
W : (Z = 1∩S = 1∩Y ≥ Q(1− p0(X),D,X))∪ (Z = 0∩S = 1)

}
. (5.9)

Theorem 3 (Fuzzy Lee Bounds). Under Assumptions 1(2) and 5, a sharp upper bound βU on

β0 is the Wald estimand

βU =
EΛU [Y | Z = 1]−EΛU [Y | Z = 0]

PrΛU [D = 1 | Z = 1]−PrΛU [D = 1 | Z = 0]
. (5.10)

6 Simulation Evidence

I build a simulation exercise on the JobCorps data set. The vector X = (1,X1,X2) consists of a

constant and two binary indicators, one for female gender (X1) and one for getting away from

home being a very important motivation for joining JobCorps (X2), taken from the JobCorps

data. An artificial treatment variable D is determined by an unbiased coin flip. A binary employ-

ment indicator S is

S = 1{X ′α0 +D ·X ′γ0 +U > 0}, (6.1)

where U is an independently drawn logistic shock. Likewise, log wages are generated according

to the model

Y = (1,X1)
′
κ0 + ε, ε ∼ N(0, σ̃2), (6.2)

where ε is an independent normal random variable. The parameter vector (α0,γ0,κ0, σ̃
2) is taken

to be the estimates of (6.1) and (6.2), where S and Y are week 90 employment and log wages. The

sets Xhelp = {X1 = 0 and X2 = 0} and Xhurt = {X1 6= 0 or X2 6= 0}, as determined by the sign of the

parameter γ . The population data set is taken to be 9,145 observations of baseline covariates X

and the artificial variables D,S,S ·Y , generated for each observation. By construction, the average

treatment effect on the always-takers β0 is zero. The true generalized Lee bound βU = 0.018.

The true no-covariate bound β̄U is 0.035. Because of differential selection response on Xhelp
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Table 1: Finite-sample performance of oracle, basic, naive and ortho methods

Bias St. Dev. Coverage Rate
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

N Oracle Basic Naive Ortho Oracle Basic Naive Ortho Oracle Basic Naive Ortho

3,000 0.00 0.05 0.04 0.00 0.01 0.02 0.03 0.02 0.94 0.21 0.64 0.93
5,000 0.00 0.04 0.03 -0.00 0.01 0.01 0.02 0.01 0.95 0.25 0.63 0.95
9,000 -0.00 0.03 0.02 0.00 0.01 0.01 0.01 0.01 0.95 0.28 0.65 0.97
10,000 -0.00 0.03 0.02 -0.00 0.01 0.01 0.01 0.01 0.95 0.29 0.64 0.97
15,000 -0.00 0.02 0.01 -0.00 0.00 0.01 0.01 0.01 0.94 0.28 0.64 0.97

Notes. Results are based on 10,000 simulation runs. The true parameter value is 0.035 for the basic
method, and 0.018 for all other methods. Bias is the difference between the true parameter and the
estimate, averaged across simulation runs. St. Dev. is the standard deviation of the estimate. Coverage
Rate is the fraction of times a two-sided symmetric CI with critical values cα/2 and c1−α/2 covers the true
parameter, where α = 0.95. N is the sample size in each simulation run. The naive method estimates the
first-stage functions (2.4) and Q(u,x) by logistic and quantile regression on all 28 covariates.

and Xhurt, neither βU nor β̄U coincide with original Lee bound defined under unconditional

monotonicity.

I compare the performance of four estimators—oracle, basic, naive and ortho methods—

by drawing random samples with replacement from the population data set. To mimic the re-

searcher’s covariate selection problem, I augment this data set with 28 covariates selected by Lee.

Although these variables are absent from equations (6.1) and (6.2), they are strongly correlated

with X1 and X2, making covariate selection an interesting problem. The oracle method estimates

βU based on the known first-stage parameter. In contrast, all other methods need to learn Xhelp

and Xhurt from the available sample. The basic method estimates Xhelp by logistic and quantile

regression on 28 raw covariates. It targets the no-covariate upper bound 0.035. Both the naive

and the ortho methods target the generalized Lee bound βU , where the same covariate set is used

to classify subjects into Xhelp and Xhurt and to define the bound. The naive method estimates

the first-stage functions (2.4) and Q(u,x) by standard regression methods on all 28 covariates

and uses a non-orthogonal moment equation. In contrast, the ortho method selects covariates

by post-lasso-logistic of Belloni et al. (2016) for the employment equation and by post-lasso of

Belloni et al. (2017) for the wage equation and uses an orthogonal moment.

Table 1 reports the finite-sample performance for the oracle, basic, naive and ortho methods.

The basic method, which focuses on the no-covariate bound, exhibits substantial coverage dis-
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tortion (Column 10), supporting the conclusion of Remark 4. In contrast, the generalized Lee

bound (4.4) (Columns 11 and 12) is a more robust target. Switching from a non-orthogonal to

an orthogonal moment equation (i.e., from the naive to the ortho method) gives an extra boost of

the coverage rate from 64% to 93%.

7 Empirical application

7.1 JobCorps

In this section, I review the basics of JobCorps training program. I then discuss how the direction

of JobCorps’ effect on employment differs with observed characteristics.

Lee (2009) studies the effect of winning a lottery to attend JobCorps, a federal vocational and

training program, on applicants’ wages. In the mid-1990s, JobCorps used lottery-based admis-

sion to assess its effectiveness. The control group of 5,977 applicants was essentially embargoed

from the program for three years, while the remaining applicants (the treated group) could enroll

in JobCorps as usual. The sample consists of 9,145 JobCorps applicants and has data on lottery

outcome, hours worked and wages for 208 consecutive weeks after random assignment. In ad-

dition, the data contain educational attainment, employment, recruiting experiences, household

composition, income, drug use, arrest records, and applicants’ background information. These

data were collected as part of a baseline interview, conducted by Mathematica Policy Research

(MPR) shortly after randomization (Schochet et al. (2008)). After converting applicants’ answers

to binary vectors and adding numeric demographic characteristics, I obtain a total of 5,177 raw

baseline covariates, which are summarized in Supplementary Appendix.

7.2 Testing framework

Having access to baseline covariates X means that the monotonicity assumption can be tested.

Using the notation of Section 2, let S correspond to employment and Y correspond to log wages.

If monotonicity holds, the treatment-control difference in employment rates (4.1) must be either
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non-positive or non-negative for all covariate values. Consequently, it cannot be the case that

Prob(Xhelp)> 0 and Prob(Xhurt)> 0. (7.1)

My first exercise is to estimate s(1,x) and s(0,x) by a week-specific cross-sectional logistic

regression

s(D,X) = Λ(X ′α0 +D ·X ′γ0), (7.2)

where Λ(·) = exp(·)
1+ exp(·)

is the logistic CDF, X is a vector of baseline covariates that includes a

constant, D ·X is a vector of covariates interacted with treatment, and α and γ are fixed vectors.

Figure 1 reports the share of subjects with positive employment response.

The second exercise is to test monotonicity without relying on logistic approximation. For

each week, I select a small number of discrete covariates and partition the sample into discrete

cells C j, j ∈ {1,2, . . . ,J}, determined by covariate values. For example, one binary covariate

corresponds to J = 2 two cells. By monotonicity, the vector of cell-specific treatment-control

differences in employment rates, µ = (E[∆(X)|X ∈C j])
J
j=1, must be non-negative:

H0 : (−1) ·µ ≤ 0. (7.3)

The test statistic for the hypothesis in equation (7.3) is

T = max
1≤ j≤J

(−1) · µ̂ j

σ̂ j
, (7.4)

and the critical value is the self-normalized critical value of Chernozhukov et al. (2019). The

critical values as in Hsu et al. (2019) and Bai et al. (2019) imply qualitatively similar results.

Figure 1 plots the fraction of subjects with a positive JobCorps effect on employment in each

week. In the first weeks after random assignment, there is no evidence of a positive JobCorps

effect on employment for any group. By the end of the second year (week 104), JobCorps

increases employment for nearly half of the individuals, and this fraction rises to 0.75 by the end

of the study period (week 208). This pattern is consistent with the JobCorps program description.
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While being enrolled in JobCorps, participants cannot hold a job, which is known as the lock-in

effect (e.g., Blanco et al. (2013)). After finishing the program, JobCorps graduates may have

gained employment skills that help them outperform the control group.

Figure 1 shows the results of testing the inequality in (7.3) for each week. The direction

of the employment effect varies with socio-economic factors. For example, the applicants who

received AFDC benefits during the 8 months before RA or who belonged to median income

and yearly earnings groups experience a significantly positive (p ≤ 0.05) employment effect at

weeks 60–89, although the average effect is significantly negative. As another example, the

applicants who answered “1: Very important” to the question “How important was getting away

from community on the scale from 1 (very important) to 3 (not important)?” and who smoke

marijuana or hashish a few times each months experience a significantly negative (p ≤ 0.05)

employment effect at week 117–152 despite the average effect being positive. Finally, at week

153–186, the average JobCorps effect is significantly negative for subjects whose most recent

arrest occurred less than 12 months ago, despite the average effect being positive.
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Figure 1: Fraction of JobCorps applicants with positive conditional employment effect by week.

Notes. The horizontal axis shows the number of weeks since random assignment. The vertical axis shows
the fraction of applicants whose conditional employment effect τ(x) is positive. Following week 60, a
week is shaded if the test statistic T exceeds the critical value at the p= 0.01 (dark gray) or p∈ [0.05,0.01)
(light gray) significance level. For each week, τ(x) is defined in equation (4.1) and estimated as in
equation (7.2), the null hypothesis is as in equation (7.3), the test statistic T is as in equation (7.4), and
the test cells and critical values are as defined in Table B.9. Computations use design weights.

Table 2 reports generalized Lee bounds on the JobCorps week 90 wage effect on the always-

takers and the confidence region for the identified set. The no-covariate Lee bounds (4.18) cannot

determine the direction of the effect (Column (1)). Neither can the generalized bounds defined

conditional on a subset of the covariates selected by Lee (Column (2)). If few of the covariates

affect week 90 employment and wage, the Column (3) bounds suggest that JobCorps raises week

90 wages by 4.0–4.6% on average, which is slightly smaller than Lee’s original estimate (4.9–

5%). Despite numerical proximity, Lee’s basic estimates (Table B.1, Column 1) and generalized

Lee estimates (Table 2, Column 3) have substantially different reasons for being tight. Lee’s

estimates are tight because one believes JobCorps’s week 90 employment effect is close to zero.

In contrast, the generalized bounds are tight because variation in employment is well-explained

by reasons for joining JobCorps, highest grade completed, and variation in wages is explained

by pre-randomization earnings, household income, gender and other socio-economic factors.
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The sparsity assumption of Column (3) may not be economically plausible. In Column (4),

the target bounds are defined as the generalized Lee bounds given the 15 covariates, selected

for either employment or wage equation in Column (3). The Column (4) are almost the same

as the Column (3) ones, suggesting that the bounds are not too sensitive to sparsity violations.

However, the Column (4) confidence region does not account for the uncertainty in how these

15 covariates are selected.

To properly quantify the uncertainty of the Column (4) bounds, I invoke the conditional

(Column (5)) and variational (Column (6)) agnostic approaches of Chernozhukov et al. (2017).

In Column (5), the auxiliary sample is taken to be 6,241 applicants that Lee excluded from con-

sideration due to missing data in weeks other than week 90. The Column (5) bounds target the

sharp bounds given the covariates selected on this auxiliary sample. The estimates suggest that

JobCorps raises week 90 wages by 4.1–4.3%, which is consistent with the lasso-based findings

(Columns (3) and (4)). Furthermore, the 95% confidence region is almost the same as the Col-

umn (4) one, suggesting that the Column (4) confidence region adequately captures uncertainty

of the Column (4) estimate. Column (6) differs from Column (5) by splitting Lee’s sample into

the auxiliary and the main part. The bounds in Column (6) are slightly wider than the Column

(5) ones. Overall, the results suggest that JobCorps has had a small positive effect on week 90

log wages, but the estimate is significant only under a sparsity assumption.

7.3 Finkelstein et al. (2012)

Finkelstein et al. (2012) studies the effect of access to Medicaid on self-reported healthcare

utilization and measures of health. The data come from the Oregon Health Insurance Experiment

(OHIE), which allowed a subset of uninsured low-income applicants to apply for Medicaid in

2008. OHIE used a lottery to determine who was eligible to apply for Medicaid. One year

after randomization, a subset of N = 58,405 applicants were mailed a survey with questions

about recent changes in their healthcare utilization and general well-being. The sample contains

the lottery outcome, actual Medicaid enrollment, and survey responses. In addition, the sample

has 64 pre-determined characteristics including demographics, enrollment in SNAP and TANF

government programs, and pre-existing health conditions. While the number of raw covariates
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is moderate, the number of their pairwise interactions p = 642 = 4,096 is quite large for classic

nonparametric methods. Since the survey response rate is close to 50% and the control applicants

respond 1.07 more likely than the treated ones, Finkelstein et al. (2012)’s findings are subject to

potential nonresponse bias.

Finkelstein et al. (2012) describes the effect of winning the Medicaid lottery using the intent-

to-treat (ITT) and Local Average Treatment Effect (LATE) parameters. If an applicant wins the

lottery, all members of their household become eligible to enroll. As a result, larger households

are more likely to win the lottery than smaller ones. Furthermore, the control applicants were

oversampled in the earlier survey waves. To account for the correlation between household size

and survey wave fixed effects, the intent-to-treat equation takes the form

Yih = β0 +β1Lotteryh + X̄ihβ2 + εih, (7.5)

where i denotes an individual, h denotes a household, Lotteryh = 1 is a dummy for whether

household h was offered access to Medicaid, and X̄ih is a vector of stratification characteristics

(survey wave and household size fixed effects). The coefficient β1 is the main coefficient of

interest interpreted as the impact of being able to apply for Medicaid through the Oregon lottery.

Finkelstein et al. (2012) also studies the local average treatment effect (LATE) of insurance,

Yih = π0 +π1Insuranceih + X̄ihπ2 +νih, (7.6)

where Insuranceih is an applicant-specific measure of insurance coverage defined as “ever on

Medicaid during study period”, and all other variables are as defined in (7.5). Finkelstein et al.

(2012) estimates (7.6) by two-stage least squares (2SLS), using Lotteryh as an instrument for

Insurance and including X̄ih in both the first and the second stages of 2SLS. The coefficient π1 is

the main coefficient of interest: it shows the impact of insurance coverage on subjects who enroll

in Medicaid if and only if they become eligible. If non-response is exogenous for each household

size and survey wave, Medicaid eligibility and enrollment have a positive and significant effect

on all measures of health and healthcare utilization (Tables 3, 4, B.15, B.16, Columns (1) and

(4)).
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I examine whether the Intent-to-Treat (7.5) and Local Average Treatment Effect (7.6) equa-

tions are robust to non-response bias. Tables 3 and 4 show the results for self-reported health

outcomes. Lee’s density-based approach is very conservative and cannot determine the direc-

tion of the effect for any of the health outcomes. For each household size and survey wave

stratum, the smallest number of the worst-case responses is trimmed in the control group until

treatment-control difference in response rate exceeds zero for each strata. Since incorporating

the additional 48 baseline covariates requires considering more than 248 discrete cells, it is not

possible to incorporate all of them at once. An ad-hoc choice of three demographic indica-

tors: gender, English as preferred language, and urban area residence does not improve standard

estimates.

A logistic single-index assumption on the conditional response probability and the condi-

tional probability of zero outcome drastically changes the result. The findings in Tables 3 and 4,

Columns (3) and (6), suggest that Medicaid eligibility and insurance has had positive effect on

7 out of 7 health outcomes. Furthermore, Medicaid insurance is associated with at least 0.981

(std. error 0.577) more days in good overall health after accounting for non-response bias. This

estimate is 75% of the baseline LATE estimate (1.317 (std. error 0.562)). Likewise, Medicaid

eligibility and insurance have a positive effect on all measures of healthcare utilization (Tables

B.15 and B.16) except emergency room visits. To conclude, Finkelstein et al. (2012)’s baseline

results continue to hold after accounting for non-response bias.

29



Table 2: Estimated bounds on the JobCorps effect on week 90 log wages

(1) (2) (3) (4) (5) (6)

[-0.027, 0.111] [-0.005, 0.091] [0.040, 0.046] [0.041, 0.059] [0.041, 0.043] [0.024, 0.065]

(-0.058, 0.142) (-0.054, 0.135) (0.001, 0.078) (-0.019, 0.112) (-0.023, 0.101) (-0.05, 0.131)

Selection covs 28 28 5 177 15 13 12-13

Post-lasso-log. N/A N/A 9 N/A N/A N/A

Wage covs 0 28 470 15 13 12-13

Post-lasso N/A N/A 6 N/A N/A N/A

Notes. Estimated bounds are in square brackets and the 95% confidence region for the identified set is in parentheses. All subjects are partitioned
into the sets Xhelp = { p̂(X) < 1} and Xhurt = { p̂(X) > 1}, where the trimming threshold p̂(x) = ŝ(0,x)/ŝ(1,x) is estimated as in equation (7.2). (1):
no-covariate bounds given 28 Lee’s covariates. (2): generalized Lee bounds given 28 Lee’s covariates. (3): generalized bounds given all covariates
assuming few of them affect employment and wage. (4): generalized bounds given the union of raw covariates selected for the employment and wage
equations in Column (3). (5): generalized bounds given the covariates selected on the sample that Lee excluded due to missing data in weeks other
than 90. Column (6): variational bounds adapted from Chernozhukov et al. (2017) . Covariates are defined in Section A.3. First-stage estimates are
given in Table B.10 for Columns (1) and (2), Table B.11 for Columns (3) and (7), Table B.14 for Column (4). Computations use design weights.
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Table 3: Estimated lower bound on the effect of access to Medicaid on self-reported binary health outcomes

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard ML None Standard ML

Health good /very good/excellent 0.039 -0.013 0.032 0.133 -0.067 0.077
(0.008) (0.013) (0.017) (0.026) (0.044) (0.058)

Health fair/good/very good/excellent 0.029 -0.052 0.019 0.099 -0.195 0.011
(0.005) (0.012) (0.010) (0.018) (0.038) (0.033)

Health same or gotten better 0.033 -0.033 0.015 0.113 -0.138 0.051
(0.007) (0.014) (0.019) (0.023) (0.049) (0.065)

Did not screen positive for depression 0.023 -0.045 0.002 0.078 -0.183 0.007
(0.007) (0.014) (0.010) (0.025) (0.049) (0.065)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 21 N/A 0 21

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported health outcomes for 3 specifications: no
trimming, standard trimming, and the agnostic ML approach. Columns (1)–(3) report the coefficient and standard error on Lottery from estimating
equation (7.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from estimating equation (7.6) by 2SLS with Lottery as
an instrument for Insurance. All regressions include household size fixed effects, survey wave fixed effects, and their interactions. Trimming methods.
None: exact replicate of Finkelstein et al. (2012), Table IX. Standard: the minimal number of zero outcomes are trimmed in the control group until the
treatment-control difference in response rates switches from negative to non-negative for each strata. Agnostic: Step 1. 21 additional covariates are
selected on an auxiliary sample of 4,000 households as described in Appendix A.5. Step 2. In the main sample of 46,000 households, a zero outcome
with covariate vector x is trimmed in the control group if a flipped coin with success prob. (1− p0(x))/φ0(x) is success, where the trimming threshold
p0(x) is defined in (B.4) and the zero outcome probability φ0(x) is defined in (B.3). Standard errors are estimated by a cluster-robust bootstrap with
B = 1000 repetitions. Both the trimming and regression steps are bootstrapped. Computations (the first and the second stage) use survey weights.
Covariates are described in Table B.17.
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Table 4: Estimated lower bound on the effect of access to Medicaid on self-reported number of days in good health

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard NP None Standard NP
# of days overall health good, past 30 days 0.381 -1.096 0.272 1.317 -4.411 0.981

(0.162) (0.349) (0.166) (0.562) (1.166) (0.577)

# of days phys. health good, past 30 days 0.459 -1.230 0.272 1.585 -4.929 0.627
(0.174) (0.384) (0.170) (0.605) (1.308) (0.592)

# of days mental health good, past 30 days 0.603 -0.862 0.220 2.082 -3.573 0.750
(0.184) (0.374) (0.179) (0.640) (1.298) (0.624)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 9 N/A 0 9

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported health outcomes for 3 specifications: no
trimming, standard trimming, and the classic nonparametric (NP) approach. Columns (1)–(3) report the coefficient and standard error on Lottery from
estimating equation (7.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from estimating equation (7.6) by 2SLS with
Lottery as an instrument for Insurance. All regressions include household size fixed effects, survey wave fixed effects, and their interactions. Trimming
methods. None: exact replicate of Finkelstein et al. (2012), Table IX. Standard: the minimal number of control outcomes are trimmed from below for
each value of fixed effect until the treatment-control difference in response rates switches from negative to non-negative for each strata. NP. Step 1. 9
additional covariates are taken as described in Appendix A.5 based on OHIE documentation. Step 2. An outcome with covariate vector x is trimmed
if it is less than Q(1−1/p0(x),x), where the trimming threshold p0(x) is defined in equation (B.4) and the conditional quantile is defined in equation
(2.4). Standard errors are estimated by a cluster-robust bootstrap with B = 1000 repetitions. Both the trimming and regression steps are bootstrapped.
Computations (the first and the second stage) use survey weights. Covariates are described in Table B.17. See Appendix A.5 for details.
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Appendix A. Proofs

A.1 Proofs for Section 3

Consider a semiparametric version of Heckman (1976, 1979) selection model

S = 1{h(D,X)+η ≥ 0}, (A.7)

Y = ψ(D,X)+σε · ε, (A.8)

where the outcome Y is observed if and only if S = 1. As in Heckman (1976), the shock vector

(ε,η) is independent of D and X , but the functional form of h(d,x) and ψ(d,x) may not be

parametric.

Remark A.1. Equation (A.7) implies Assumption 2. Take

Xhelp := {X : h(1,X)> h(0,X)}, Xhurt := {X : h(1,X)< h(0,X)}.

Then, for any X ∈ Xhelp,

h(0,X)+η ≥ 0⇒ h(1,X)+η ≥ 0⇒ S(1)≥ S(0),

and a similar argument applies to Xhurt. Equation (A.8) implies (3.2):

Y (1)−E[Y (1) | X ] = Y (1)−ψ(1,X) = σε · ε ⊥ X ⇒ Var(Y (1)−E[Y (1) | X ] = σ
2
ε .

Remark A.2 (Approximate sharp width). Assumptions (3.2) and (3.3) imply (3.6).

Proof of Remark A.2 . Bayes rule implies

fX(x | S = 1,D = 0)
fX(x | S = 1,D = 1)

=
s(0,x) fX(x)
s(1,x) fX(x)

p−1
0 = p0(x)/p0. (A.9)
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Plugging (A.9) into the sharp width gives

∆ =
∫
X
(β basic

U (x)−β
basic
L (x)) fX(x | S = 1,D = 0)dx

= p−1
0

∫
X
(β basic

U (x)−β
basic
L (x))p0(x) fX(x | S = 1,D = 1)dx

= σε p−1
0

∫
X

(K(p0(x))+K(1− p0(x))−K(1))
p0(x)

p0(x) f (x | S = 1,D = 1)dx

= σε p−1
0

∫
X
(K(p0(x))+K(1− p0(x))−K(1)) f (x | S = 1,D = 1)dx

where

E[ε | ε ≥ Qε|S(1)=1(1− p),S(1) = 1] = K(p)/p,

E[ε | ε ≤ Qε|S(1)=1(p),S(1) = 1] = (K(1)−K(1− p))/p.

Plugging (3.5) above gives (3.6).

A.2 Proof of Section 4

Proof of Lemma 1. Bayes rule for conditional density gives

Pr(X = x | S(1) = S(0) = 1) = (Pr(S(1) = S(0) = 1))−1


s(0,x) fX(x) x ∈ Xhelp

s(1,x) fX(x) x ∈ Xhurt,

(A.10)

where the denominator is

Pr(S(1) = S(0) = 1) =
∫
Xhelp

s(0,x) fX(x)dx+
∫
Xhurt

s(1,x) fX(x)dx

=
∫
X

min(s(0,x),s(1,x)) fX(x)dx.

As shown in Lee (2009), βU(x) in (4.3) is a sharp upper bound on β0(x) for each x

β0(x) = E[Y (1)−Y (0) | S(1) = S(0) = 1,X = x]≤ βU(x) ∀x.
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Integrating the inequality by Pr(X = x | S(1) = S(0) = 1) gives the statement

β0 =

∫
X β0(x)min(s(0,x),s(1,x)) fX(x)dx∫

min(s(0,x),s(1,x)) fX(x)dx
≤ βU .

Lemma A.1 (Negligible First-Stage Error). Let R(W,ξ ) be a known function of the data vector

W and the nuisance parameter ξ0. Let {ΞN : N ≥ 1} be a sequence of sets that contain the

first-stage estimate ξ̂ w.p. approaching one. The sets shrink at the following rates

sup
ξ∈ΞN

|E[R(W,ξ )−R(W,ξ0)]|= O(BN) = o(N−1/2)

sup
ξ∈ΞN

(E(R(W,ξ )−R(W,ξ0))
2)1/2 = O(VN) = o(1).

Then, EN [R(Wi; ξ̂i)−R(Wi,ξ0)] = oP(1).

Lemma A.1 is a restatement of Lemma A.3 in Semenova and Chernozhukov (2021).

Lemma A.2 (Denominator). Under Assumptions 3 and 4, for gD(W,τ) in (4.14)

sup
τ∈S1

N−S0
N

|E[gD(W,τ)−gD(W,τ0)]| ≤ (2s∞
N/η)α+1

sup
τ∈S1

N−S0
N

(E(gD(W,τ)−gD(W,τ0))
2)1/2 = O((2s∞

N/η)α/2).

By Lemma A.1, EN [gD(Wi; τ̂i)−gD(Wi,τ0)] = oP(1).

Proof of Lemma A.2. Define the misclassification events

D
help
τ := {X : τ(X)< 0 < τ0(X)}, Dhurt

τ := {X : τ0(X)< 0 < τ(X)}. (A.11)

The misclassified point must be close to the margin

D
help
τ ∪Dhurt

τ ⇒{0 < |τ0(X)|< |τ(X)− τ0(X)|}=: D2
τ .
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For any τ(x) = s(1,x)− s(0,x) ∈ S1
N−S0

N ,

sup
x∈X
|τ(x)− τ0(x)| ≤ sup

x∈X
(|s(1,x)− s0(1,x)|+ |s(0,x)− s0(0,x)|)≤ 2s∞

N . (A.12)

Thus, the first and second moments are bounded as

|E[gD(W,τ)−gD(W,τ0)]| ≤ E1{X ∈D2
τ}|τ0(X)| ≤ E1{X ∈D2

τ}|τ(X)− τ0(X)|

≤ Pr(X ∈D2
τ)2s∞

N ≤ (2s∞
N/η)α+1.

E(gD(W,τ)−gD(W,τ0))
2 ≤ κ

−2 Pr(X ∈D2
τ)≤ O((2s∞

N/η)α).

For ξ (x) = {s(0,x),s(1,x),Q1(1− p(x),x),Q0(1/p(x),x)}, define

R1(X ,ξ ) =


E[S ·Y 1{Y ≤ Q1(1− p(X),X)} | D = 1,X ], ξ 6= ξ0

E[S ·Y 1{Y ≤ Q1
0(1− p0(X),X)} | D = 1,X ], ξ = ξ0

R0(X ,ξ ) =


E[S ·Y 1{Y ≥ Q0(1/p(X),X)} | D = 0,X ], ξ 6= ξ0

E[S ·Y 1{Y ≥ Q0
0(1/p0(X),X)} | D = 0,X ], ξ = ξ0

and the conditional CDF

Fd
0 (t | x) := Pr(Y ≤ t | S = 1,D = d,X = x), d ∈ {1,0}.

Lemma A.3 (Bound on remainder terms). Under Assumptions 3 and 4,

sup
d∈{1,0}

sup
ξ∈ΞN

|E{|τ0(X)| ≤ ρN}Rd(X ,ξ )|= O((ρN/η)α(ρN ∨q∞
N)). (A.13)

Proof of Lemma A.3. Step 1. Let d = 1. For any ξ , Assumption 3 (BO) implies a bound

|R1(X ,ξ )| ≤M|F1
0 (Q

1(1− p(X),X))|s0(1,X)

≤M|F1
0 (Q

1(1− p(X),X))− (1− p(X))|s0(1,X)+M|(1− p(X))|s0(1,X), (A.14)
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where p(x) = ptrim(x) for ξ 6= ξ0 and p(x) = p0(x) for ξ = ξ0. By construction, ptrim(x) ∈

[ζN ,1−ζN ] for any x. Invoking mean value theorem and Assumption 3 (REG) gives

sup
ξ∈ΞN

|F1
0 (Q

1(1− p(x),x))−F1
0 (Q

1
0(1− p(x),x),x)| (A.15)

≤ sup
ξ∈ΞN

sup
u∈[ζN ,1−ζN ]

sup
t∈Yx

sup
x∈X

f1(t | x)|Q1(u,x)−Q1
0(u,x)|= O(q∞

N). (A.16)

For ξ = ξ0, the first summand in (A.14) reduces to zero

F1
0 (Q

1
0(1− p0(X),X))− (1− p0(X)) = 0.

Step 2. (A.12) implies a bound on the second term

sup
τ∈S1

N−S0
N

sup
x∈X

1{|τ0(x)| ≤ ρN}|(1− ptrim(x))|s0(1,x)

≤ sup
τ∈S1

N−S0
N

sup
x∈X

1{|τ0(x)| ≤ ρN}max(κ−1|τ(x)|,ρN)

≤ sup
τ∈S1

N−S0
N

sup
x∈X

1{|τ0(x)| ≤ ρN}max(κ−1|τ0(x)|+κ
−12s∞

N ,ρN) = O(ρN).

If ξ = ξ0,

sup
x∈X

1{|τ0(x)| ≤ ρN}|R1(x,ξ0)| ≤M sup
x∈X

1{|τ0(x)| ≤ ρN}||τ0(x)|= O(ρN).

Assumption 3 (MA) implies Pr(|τ0(X)| ≤ ρN)≤ (ρN/η)α . A similar argument applies to d = 0,

which implies (A.13).

Proof of Lemma 2. I establish the bound

sup
ξ∈ΞN

|E1{|τ0(X)| ≤ ρN}(mU(W,ξ )−mU(W,ξ0))|= O((ρN/η)α
ρN ∨q∞

N) (A.17)

Lemma 2 is a special case of (A.17) with a known quantile function Q0(u,x), in which case
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q∞
N = 0. Define the function

φ0(x) : = E[S ·Y | D = 1,X = x]−E[S ·Y | D = 0,X = x]

Decompose

1 = 1{Y ≥ Q1(1− p(X),X)}+1{Y ≤ Q1(1− p(X),X)},

and observe that

E[S ·Y | D = 1,X ] = E[S ·Y ·1{Y ≥ Q1(1− p(X),X)} | D = 1,X ]

+E[S ·Y ·1{Y ≤ Q1(1− p(X),X)} | D = 1,X ],

which implies

E[mhelp
U (W,ξ ) | X ]−φ0(X) =−R1(X ,ξ ), E[mhurt

U (W,ξ ) | X ]−φ0(X) = R0(X ,ξ ).

Therefore,

|E[mU(W,ξ )−mU(W,ξ0) | X ]|= |E[mU(W,ξ )±φ0(X)−mU(W,ξ0) | X ]|

≤ 2 sup
d∈{1,0}

|Rd(X ,ξ )|+ |Rd(X ,ξ0)|.

Lemma A.4 (Orthogonal moment at the boundary).

sup
ξ∈ΞN

|E1{|τ0(X)| ≤ ρN}(gU(W,ξ )−gU(W,ξ0))|= O((ρN/η)α
ρN ∨q∞

N) (A.18)

sup
ξ∈ΞN

E1{|τ0(X)| ≤ ρN}(gU(W,ξ )−gU(W,ξ0))
2 = O((ρN/η)α) (A.19)

Proof of Lemma A.4. Step 1. Bound on (A.18) By Lemma 2, it suffices to show (A.18),

replacing gU(W,ξ ) by corU(W,ξ ) in (A.48)-(A.49). Observe that

corhelp
U (W,ξ ) := Λα(X ,ξ )Rα(W,ξ )+Λβ (X ,ξ )Rβ (W,ξ )+Λγ(X ,ξ )Rγ(W,ξ ),
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where

Λα(X ,ξ ) = Q1(1− p(X),X), Rα(W,ξ ) := (1−D)S/µ0(X)− s(0,X)

Λβ (X ,ξ ) =−Q1(1− p(X),X)p(X), Rβ (W,ξ ) := DS/µ1(X)− s(1,X)

Λγ(X ,ξ ) = Q1(1− p(X),X)s(1,X), Rγ(W,ξ ) :=
D ·S ·1{Y ≤ Q1(1− p(X),X)}

s(1,X)µ1(X)
−1+ p(X).

and

E[corU(W,ξ0) | X ] = 0.

By Assumption 4, sup j∈{α,β ,γ} supξ∈ΞN
|Λ j(X ,ξ )| ≤ M a.s. As for residuals Rα(W,ξ ) and

Rβ (W,ξ ),

sup
x∈X

sup
ξ∈ΞN

|E[R j(W,ξ ) | X = x]| ≤ sup
d∈{0,1}

sup
x∈X
|s0(d,x)− s(d,x)| ≤ s∞

N ≤ ρN , j ∈ {α,β}.

Invoking (A.15) for

E[Rγ(W,ξ ) | X = x] = F1
0 (Q

1(1− p(x),x))−F1
0 (Q

1
0(1− p(x),x),x).

gives (A.18). A similar argument holds for corhurt
U (W,ξ ).

Step 2. Bound on (A.19) By Assumptions 3-4, supξ∈ΞN
|gU(W,ξ )| ≤ 8Mκ−1a.s. and

E1{|τ0(X)| ≤ ρN}(gU(W,ξ )−gU(W,ξ0))
2 ≤ (8Mκ

−1)2 Pr(|τ0(X)| ≤ ρN) = O((ρN/η)α).

Lemma A.5 (Moment Bounds). Under Assumptions 3 and 4,

sup
ξ∈ΞN

|E1{|τ0(X)|> ρN}(gU(W,ξ )−gU(W,ξ0))|= O(s2
N +q2

N) (A.20)

sup
ξ∈ΞN

E1{|τ0(X)|> ρN}(gU(W,ξ )−gU(W,ξ0))
2 = O(sN +qN) (A.21)

Proof of Lemma A.5. Step 1. For any X : |τ0(X)| > ρN and ξ ∈ ΞN , the covariate X must be
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classified correctly and p(X) = s(0,X)/s(1,X) ∈ [ξN ,1− ξN ] without trimming. For any such

X , define

φ(r;x,ξ ) := E[ghelp
U (W ;r(ξ −ξ0)+ξ0)−ghelp

U (W,ξ0) | X = x]

and let ∂α ,∂β ,∂γ denote derivatives of E[gU(W,ξ0) | X = x] with respect to the coordinates of

ξ0(x) = {s(0,x),s(1,x),Q1(u,x)}.

The first-order derivative is

φ
′(0;X ,ξ0) = ∂αE[gU(W,ξ0) | X ][s(0,X)− s0(0,X)]

+∂βE[gU(W,ξ0) | X ][s(1,X)− s0(1,X)]

+∂γE[gU(W,ξ0) | X ][Q(1− p0(X),X)−Q0(1− p0(X),X)]

= 0+0+0,

since Λ j(X) := ∂ jE[mU(W,ξ0) | X ] for j ∈ {α,β ,γ} by construction. The second derivative is

|φ ′′(r;X ,ξ0)|= |[ξ (X)−ξ0(X)]′B(r;X)[ξ (X)−ξ0(X)]| ≤ ‖ξ (X)−ξ0(X)‖2 maxeig(B(r;X)),

where B(r;x) := ∇2
ξ 2E[gU(W,r(ξ −ξ0)+ξ0) | X = x] is a 3x3 matrix of second derivatives. Step

4 shows that B(r;x) has bounded entries uniformly over x and r ∈ (0,1). For some r̃ ∈ (0,1),

second-order Taylor expansion at each x

φ(1;x,ξ ) = φ(0;x,ξ0)+φ
′(0;x,ξ0)+0.5φ

′′(r̃;x,ξ0) = 0.5φ
′′(r̃;x,ξ0).

As a result,

sup
ξ∈ΞN

|Eφ(1;X ,ξ )1{|τ0(X)|> ρN}|= O( sup
ξ∈ΞN

E1{|τ0(X)|> ρN}‖ξ (X)−ξ0(X)‖2) = O(s2
N +q2

N).
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Step 3. Observe that

(ghelp
U (W,ξ )−ghelp

U (W,ξ0))
2 ≤ 4[(mhelp

U (W,ξ )−mhelp
U (W,ξ0))

2

+ ∑
j∈{α,β ,γ}

(Λ j(X ,ξ )R j(W,ξ )−Λ j(X ,ξ0)R j(W,ξ0))
2].

The bound on the first term is

E[(mhelp
U (W,ξ )−mhelp

U (W,ξ0))
2 | X ]

≤ κ
−1M2E[(1{Y ≥ Q1(1− p(X),X)}−1{Y ≥ Q1

0(1− p0(X),X)})2 | S = 1,D = 1,X ]

Therefore,

E[(mhelp
U (W,ξ )−mhelp

U (W,ξ0))
21{|τ0(X)|> ρN}

≤ κ
−1M2(E1{|τ0(X)|> ρN}(F1

0 (Q
1(1− p(X),X))− (1− p0(X)))2)1/2 = O(sN +qN).

The bound on the second term’s multiplier Λ j(X ,ξ ) is

sup
ξ∈ΞN

E1{|τ0(X)|> ρN}(Λ j(X ,ξ )−Λ j(X ,ξ0))
2

= sup
ξ∈ΞN

E1{|τ0(X)|> ρN}(Q1(1− p(X),X)−Q1
0(1− p0(X),X))2 = O(s2

N +q2
N),

and a similar bound holds for j ∈ {β ,γ}. For j ∈ {α,β}, the bound on R j(W ;ξ )−R j(W ;ξ0) in

mean square sense is

sup
ξ∈ΞN

E(R j(W,ξ )−R j(W,ξ0))
2 ≤ sup

d∈{1,0}
sup

ξ∈ΞN

E(s(d,X)− s0(d,X))2 ≤ s2
N .

For j = γ , the bound on

sup
ξ∈ΞN

E[(R j(W,ξ )−R j(W,ξ0))
2] = O(sN +qN).
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Step 4. The first partial derivatives of Q(p(x),x) w.r.t. α,β ,γ take the form

∂αQ(p(x),x) = f−1(Q(p0(x),x)|x)s−1(1,x)

∂β Q(p(x),x) = f−1(Q(p0(x),x)|x)s−2(1,x)s(0,x)

∂γQ(p(x),x) = 1.

The second partial derivatives of Q(p(x),x) w.r.t. α,β ,γ take the form

∂
2
ααQ(p(x),x) =− f−2(Q(p0(x),x)|x) f ′(Q(p0(x),x)|x)s−2(1,x)

∂
2
ββ

Q(p(x),x) =− f−2(Q(p0(x),x)|x) f ′(Q(p0(x),x)|x)s−4(1,x)s2(0,x)

+2 f−1(Q(p0(x),x)|x)s−3(1,x)s(0,x)

∂
2
αβ

Q(p(x),x) =− f−1(Q(p0(x),x)|x)s−2(1,x)

∂
2
βα

Q(p(x),x) =−s−2(1,x) f−1(Q(p0(x),x)|x)− f−2(Q(p0(x),x)|x)s−2(1,x)s(0,x)

∂
2
γαQ(p(x),x) = f−2(Q(p0(x),x)|x)s−1(1,x) f ′(Q(p0(x),x)|x)

∂
2
γβ

Q(p(x),x) = f−2(Q(p0(x),x)|x)s−2(1,x) f ′(Q(p0(x),x)|x)s(0,x)

∂
2
αγQ(p(x),x) = ∂

2
βγ

Q(p(x),x) = ∂
2
γγQ(p(x),x) = 0.

By Assumption 3 (SO) and (REG), all functions of x above are bounded a.s. in X . By definition

of Sd
N ,Q

d
N in Assumption 4(2), all other elements of B(r;X) are bounded from above a.s. in X

and r ∈ (0,1).

Proof of Theorem 1. By Lemmas A.1 and A.2,

√
N(ENgD(Wi; τ̂i)−gD(Wi,τ0)) = oP(N−1/2).
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By Lemma A.4 and A.5, the first moments are bounded as

sup
ξ∈ΞN

|E(gU(W,ξ )−gU(W,ξ0))|= |E1{|τ0(X)| ≤ ρN}(gU(W,ξ )−gU(W,ξ0))|

+ |E1{|τ0(X)| ≥ ρN}(gU(W,ξ )−gU(W,ξ0))|

≤ O((ρN/η)α(ρN ∨q∞
N)+ s2

N +q2
N).

The second moments are bounded as

sup
ξ∈ΞN

E(gU(W,ξ )−gU(W,ξ0))
2 ≤ O((ρN/η)α + sN +qN).

By Lemma A.1,
√

N(ENgU(Wi; ξ̂i)−ENgU(Wi,ξ0)) = oP(N−1/2). A similar argument applies to

the lower bound, which gives
√

N(ENgL(Wi; ξ̂i)−ENgL(Wi,ξ0)) = oP(N−1/2). Invoking Delta

method for ψ(x,y,z) := (x/z, y/z)′ with x=ENgL(Wi,ξ0);y=ENgU(Wi,ξ0);z=ENgD(Wi,ξ0)

gives the statement of the Theorem.

Proof of Theorem 2. Step 1. I show that σ(q) is (1) convex, (2) positive homogenous of degree

one and (3) lower-semicontinuous function of q. By Corollary 13.2.1 from Rockafellar (1997),

the properties (1)-(3) imply that B in (5.3) is a convex and compact set and σ(q) is its support

function.

Step 2. Verification of (1). Lemma 1 proves that σ(λq1 +(1− λ )q2) is a sharp upper

bound on (λq1 +(1−λ )q2)
′β0. Furthermore, by Lemma 1,

q′1β0 ≤ σ(q1) and q′2β0 ≤ σ(q2).

Therefore, (λq1 +(1−λ )q2)
′β0 ≤ λσ(q1)+(1−λ )σ(q2). By sharpness, σ(λq1 +(1−λ )q2)

is the smallest bound on (λq1 +(1−λ )q2)
′β0. Therefore,

σ(λq1 +(1−λ )q2)≤ λσ(q1)+(1−λ )σ(q2),

which implies that σ(q) is a convex function of q.
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Verification of (2). Let λ > 0. Observe that the event {λYq ≥ QλYq(u,X)} holds if and only

if {Yq ≥ QYq(u,X)}. Since Yq = q′Y is a linear function of q, σ(q) defined in (5.2) is positive

homogenous of degree 1.

Verification of (3). Consider a sequence of vectors qk → q,k→ ∞. Suppose σ(qk) ≤ C.

Then, q′kβ0 ≤ σ(qk) ≤ C, which implies that q′β0 ≤ C must hold. Therefore, C is a bound on

q′β0. By sharpness, σ(q) is the smallest bound on q′β0, which implies σ(q)≤C.

Define the lower-truncated subjects

ΛL(W ) =

{
W : (Z = 1∩S = 1∩Y ≤ Q1(p0(X),D,X))∪ (Z = 0∩S = 1)

}
. (A.22)

and the upper-truncated ones

ΛU(W ) =

{
W : (Z = 1∩S = 1∩Y ≥ Q!(1− p0(X),D,X))∪ (Z = 0∩S = 1)

}
. (A.23)

Bayes rule umplies

Pr(ΛU(W ) | Z = 1,D(1) = d,X) = p0(X)Pr(S = 1 | Z = 1,D(1) = d,X) (A.24)

= p0(X)Pr(S = 1 | Z = 1,X) = p0(X)s(1,X)

= s(0,X) ∀d ∈ {1,0}.

Union bound implies

Pr(ΛU(W ) | Z = 1,X) =
d=1

∑
d=0

p0(X)Pr(S = 1 | Z = 1,D(1) = d,X)Pr(D(1) = d | Z = 1,X)

(A.25)

= s(0,X)
d=1

∑
d=0

Pr(D(1) = d | Z = 1,X) = s(0,X). (A.26)

and

Pr(ΛU(W ) | X) = s(0,X)Pr(Z = 1 | X)+Pr(S = 1 | Z = 0,X)Pr(Z = 0 | X) = s(0,X). (A.27)
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Invoking Bayes rule gives equality of covariate densities

fΛU (x) =
Pr(ΛU(W ) | X = x) f (x)

EPr(ΛU(W ) | X)
=

s(0,x) f (x)
Es(0,X)

. (A.28)

Likewise,

Pr(S(1) = S(0) = 1 | Z = 1,X) = s(0,X)
d=1

∑
d=0

Pr(D(1) = d | Z = 1,X) = s(0,X), (A.29)

which implies f11(x) = fΛU (x). Assumption 5 (3) implies

Pr(D = 1 | Z = 1,X ,S(1) = S(0) = 1) = Pr(D = 1 | Z = 1,X). (A.30)

Proof of Theorem 3. Step 1. As discussed in Lee (2009), for each d ∈ {1,0} and x, the group

Z = 1,D(1) = d,X = x consists of the always-takers and compliers. By Assumption 5 (3), the

share of the always-takers is equal to p0(X)

Pr(S(1) = S(0) = 1 | D(1) = d,Z = 1,X) = Pr(S(1) = S(0) = 1 | Z = 1,X) =
s(0,X)

s(1,X)
. (A.31)

Invoking Corollary 4.1 in Horowitz and Manski (1995) gives an upper bound

EΛU [Y | D(1) = d,Z = 1,X ]≥ EΛ11 [Y | D(1) = d,Z = 1,X ], d = 1,0. (A.32)

Invoking Bayes rule gives

PrΛU (D = 1 | Z = 1,X) =
Pr(ΛU(W ) | Z = 1,D(1) = 1,X)Pr(D = 1 | Z = 1,X)

Pr(ΛU(W ) | Z = 1,X)
(A.33)

=i s(0,X)Pr(D = 1 | Z = 1,X)

s(0,X)
= Pr(D = 1 | Z = 1,X),

where (i) follows from (A.25) and (A.29). Likewise, PrΛU (D = 0 | Z = 1,X) = Pr(D = 0 | Z =

1,X). Invoking bound (A.32) for each d = 1 and d = 0 and (A.33) gives

EΛU [Y | Z = 1,X ]≥ EΛ11 [Y | Z = 1,X ]. (A.34)
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Step 2. The group Z = 0,X = x is not truncated. For each d = 1,0,

EΛU [Y | D(0) = d,Z = 0,X ] = E[Y (d) | S = 1,D(0) = d,Z = 0,X ]

= E[Y (d) | S(0) = 1,D(0) = d,X ] = E[Y (d) | S(1) = S(0) = 1,D(0) = d,X ]

= EΛ11 [Y | D(0) = d,Z = 0,X ].

Summing over d = 1 and d = 0 gives

EΛU [Y | Z = 0,X ] = EΛ11 [Y | Z = 0,X ]. (A.35)

Step 3. (A.34) and (A.35) obey the following inequality for the numerators of βU

EΛU [Y | Z = 1,X ]−EΛU [Y | Z = 0,X ]≥ EΛ11 [Y | Z = 1,X ]−EΛ11 [Y | Z = 0,X ]. (A.36)

(A.30) and (A.33) imply equality of denominators

PrΛU (D = 1 | Z = 1,X) = PrΛ11(D = 1 | Z = 1,X).

Finally, (A.28) implies that the EΛU [Y (1)−Y (0) | S(1)= S(0)= 1,D(1)>D(0),X ] and EΛ11 [Y (1)−

Y (0) | S(1) = S(0) = 1,D(1)> D(0),X ] are integrated with respect to the same covariate densi-

ties. Therefore, the statement (1) of Theorem 3 holds.

General Case Notation. The propensity score is

µ1(X) = Pr(D = 1 | X), µ0(X) = 1−µ1(X) = Pr(D = 0 | X). (A.37)

The conditional quantiles in the selected treated and selected control groups are

Qd(u,x) : Pr(Y ≤ Qd(u,x)|S = 1,D = d,X = x) = u, u ∈ [0,1], d ∈ {1,0}. (A.38)
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Because Q1(u,x) is invoked only for x∈Xhelp and Q0(u,x) is invoked only for x∈Xhurt, it makes

sense to define combined conditional quantile:

Q(u,x) = 1{x ∈ Xhelp}Q1(u,x)+1{x ∈ Xhurt}Q0(u,x). (A.39)

Likewise, the conditional outcome densities in the selected treated and selected control groups

are

f d(t|x) = fY |S=1,D=d,X=x(y | x), d ∈ {1,0}

and combined conditional density is

f (t|x) = 1{x ∈ Xhelp} f 1(t|x)+1{x ∈ Xhurt} f 0(t|x). (A.40)

For x ∈ Xhelp, the conditional upper bound is

β̄
help
U (x) = E[Y |D = 1,S = 1,Y ≥ Q(1− p0(x),x),X = x]−E[Y |D = 0,S = 1,X = x] (A.41)

and the conditional lower bound is

β̄
help
L (x) = E[Y |D = 1,S = 1,Y ≤ Q(p0(x),x),X = x]−E[Y |D = 0,S = 1,X = x]. (A.42)

For x ∈ Xhurt, the conditional upper bound is

β̄
hurt
U (x) = E[Y |D = 1,S = 1,X = x]−E[Y |D = 0,S = 1,Y ≤ Q(1/p0(x),x),X = x] (A.43)

and the conditional lower bound is

β̄
hurt
L (x) = E[Y |D = 1,S = 1,X = x]−E[Y |D = 0,S = 1,Y ≥ Q(1−1/p0(x),x),X = x].

(A.44)
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The sharp Lee bounds βL and βU are:

β? =

∫
X β?(x)min(s(0,x),s(1,x)) fX(x)dx∫

X min(s(0,x),s(1,x)) fX(x)dx
=

Em?(W,ξ0)

Emin(s(0,X),s(1,X))
, ? ∈ {L,U}. (A.45)

The non-orthogonal moment equations for the numerator of βU are

mU(W,ξ0) =


D

µ1(X)
·S ·Y 1{Y ≥ Q(1− p0(X),X)}− (1−D)

µ0(X)
·S ·Y, X ∈ Xhelp

D
µ1(X)

·S ·Y − (1−D)

µ0(X)
·S ·Y 1{Y ≤ Q(1/p0(X),X)}, X ∈ Xhurt

(A.46)

and

mL(W,ξ0) =


D

µ1(X)
·S ·Y 1{Y ≤ Q(p0(X),X)}− (1−D)

µ0(X)
·S ·Y, X ∈ Xhelp

D
µ1(X)

·S ·Y − (1−D)

µ0(X)
·S ·Y 1{Y ≥ Q(1−1/p0(X),X)},X ∈ Xhurt.

(A.47)

The bias correction terms are

corhelp
U (W,ξ0) = Q(1− p0(X),X)

[(
(1−D) ·S

µ0(X)
− s(0,X)

)
− p0(X)

(
D ·S

µ1(X)
− s(1,X)

)
+ s(1,X)

(
D ·S ·1{Y ≤ Q(1− p0(X),X)}

s(1,X)µ1(X)
−1+ p0(X)

)]
,

(A.48)

corhurt
U (W,ξ0) = Q(1/p0(X),X)

[
(1/p0(X))

(
(1−D) ·S

µ0(X)
− s(0,X)

)
+

(
D ·S

µ1(X)
− s(1,X)

)
+ s(0,X)

(
(1−D) ·S ·1{Y ≤ Q(1/p0(X),X)}

s(0,X)µ1(X)
−1/p0(X)

)]
(A.49)
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For the lower bound

corhelp
L (W,ξ0) = Q(p0(X),X)

[(
(1−D) ·S

µ0(X)
− s(0,X)

)
− p0(X)

(
D ·S

µ1(X)
− s(1,X)

)
− s(1,X)

(
D ·S ·1{Y≤Q(p0(X),X)}

s(1,X)µ1(X)
− p0(X)

)]
. (A.50)

corhurt
L (W,ξ0) =−Q(1−1/p0(X),X)

[
(1/p0(X))

(
(1−D) ·S

µ0(X)
− s(0,X)

)
−
(

D ·S
µ1(X)

− s(1,X)

)
−
(
(1−D) ·S ·1{Y≤Q(1−1/p0(X),X)}

µ1(X)
− s(1,X)+ s(0,X)

)]
. (A.51)

Finally, the correction term for the propensity score for the first summand in moment (4.6) is

S1µ :=− 1
µ1(X)

E[Y | Y ≥ Q(1− p0(X),X),D = 1,S = 1,X ] · s(0,X) · (D−µ1(X)) (A.52)

and for the second one is S0µ =
1

(1−µ1(X))
E[Y |D = 0,S = 1,X ] · s(0,X) · (D−µ1(X)), which

gives

S1µ +S0µ =−β̄
help
U (X) · s(0,X) · (D−µ1(X)).

Thus, if the propensity score is estimated, the total bias correction term is corhelp
U (W,ξ0)+S1µ +

S0µ .

Appendix B. Supplementary results

Replication. Table B.1 replicates Lee’s estimates of basic (Column (1)) and covariate-based

(Column (2)) bounds on JobCorps effect on the wages of always-takers. Week 90 is the only

horizon where Lee found JobCorps effect on wages to be statistically significant. However,
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basic Lee bounds do not overlap with the covariate-based ones. Sharpness fails because one of

the five covariate-specific trimming thresholds exceeds 1 and is being capped at 0.999 to impose

unconditional monotonicity. Capping corresponds to the researcher’s belief that the covariate-

specific threshold exceeded 1 due to sampling noise, the only belief consistent with unconditional

monotonicity.

A.3 JobCorps Data description.

In this section, I describe baseline covariates for the JobCorps empirical application. The data

is taken from Schochet et al. (2008), who provides covariate descriptions in Appendix L. All

covariates describe experiences before random assignment (RA). Most of the covariates repre-

sent answers to multiple choice questions; for these covariates I list the question and the list of

possible answers. An answer is highlighted in boldface if is selected by post-lasso-logistic of

Belloni et al. (2016) for one of employment equation specifications, described below. Table B.3

lists the covariates selected by Lee (2009). A full list of numeric covariates, not provided here,

includes p = 5,177 numeric covariates.

Covariates selected by Lee (2009). Lee (2009) selected 28 baseline covariates to estimate

parametric specification of the sample selection model. They are given in Table B.3.

Reasons for joining JobCorps (R_X). Applicants were asked a question “How important

was reason X on the scale from 1 (very important) to 3 (not important), or 4 (N/A), for joining

JobCorps?”. Each reason X was asked about in an independent question.

Table B.2: Reasons for joining JobCorps

Name description Name description

R_HOME getting away from home R_COMM getting away from community
R_GETGED getting a GED R_CRGOAL desire to achieve a career goal
R_TRAIN getting job training R_NOWORK not being able to find work

For example, a covariate R_HOME1 is a binary indicator for the reason R_HOME being

ranked as a very important reason for joining JobCorps.
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Table B.1: Estimated bounds on the JobCorps effect on log wages under monotonicity.

Basic Covariate-based
(1) (2)

Week 45 [-0.072, 0.140] [-0.074, 0.127]
(-0.097, 0.170) (-0.096, 0.156)
(-0.096, 0.168) (-0.096, 0.155)

Week 90 [0.048, 0.049] [0.036, 0.048]
(0.011, 0.081) (0.009, 0.075)
(0.012, 0.081) (0.011, 0.073)

Week 104 [0.017, 0.064] [0.017, 0.054]
(-0.020, 0.102) (-0.009, 0.081)
(-0.012, 0.095) (-0.007, 0.079)

Week 135 [-0.007, 0.084] [-0.001, 0.075]
(-0.042, 0.113) (-0.032, 0.103)
(-0.037, 0.109) (-0.028, 0.100)

Week 180 [-0.032, 0.087] [-0.019, 0.080]
(-0.063, 0.112) (-0.048, 0.107)
(-0.060, 0.109) (-0.044, 0.104)

Week 208 [-0.020, 0.095] [-0.014, 0.084]
(-0.050, 0.118) (-0.041, 0.109)
(-0.047, 0.117) (-0.039, 0.107)

Covariates N/A 5

Notes. The sample (N = 9,145) and the time horizons are the same as in Lee (2009). Each panel reports
estimated bounds (first row), the 95% confidence region for the identified set (second row) and the 95%
Imbens and Manski (2004) confidence interval for the true parameter (third row). Column (1) reports basic
Lee bounds. Column (2) reports covariate-based Lee bounds. All bounds assume that JobCorps weakly
hurts employment in week 45 and helps employment following week 90. The covariate in Column (2)
is a linear combination of 28 baseline covariates, selected by Lee, weighted by the coefficients from a
regression of Week 208 wages on all baseline characteristics in the control group. Lee refers to this
combination as predicted wage potential. The five groups are formed according to whether the predicted
wage is within intervals defined by $6.75, $7, $7.50, and $8.50. Week 90 is highlighted in bold as the
only week where Lee found a statistically significant effect on wages. Computations use design weights.
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Table B.3: Baseline covariates selected by Lee (2009).

Name Description

FEMALE female
AGE age

BLACK, HISP, OTHERRAC race categories
MARRIED, TOGETHER, SEPARATED family status categories

HASCHILD has child
NCHILD number of children

EVARRST ever arrested
HGC highest grade completed

HGC_MOTH, HGC_FATH mother’s and father’s HGC
HH_INC1−HH_INC5 five household income groups with cutoffs 3,000,6,000,9,000,18,000

PERS_INC1−PERS_INC4 four personal income groups with cutoffs 3,000,6,000,9,000
WKEARNR weekly earnings at most recent job
HRSWK_JR ususal weekly work hours at most recent job
MOSINJOB the number of months employed in past year
CURRJOB employed at the moment of interview
EARN_YR total yearly earnings
YR_WORK any work in the year before RA

Sources of advice about the decision to enroll in JobCorps (IMP_X). Applicants were

asked a question “How important was advice of X on the scale from 1 (important) to 0 (not

important) ?”. Each source of advice was asked about in an independent question.

Table B.4: Sources of advice about the decision to enroll in JobCorps.

Name description Name description

IMP_PAR parent or legal guardian IMP_FRD friend
IMP_TCH teacher IMP_CW case worker
IMP_PRO probation officer IMP_CHL church leader

Main types of worry about joining JobCorps (TYPEWORR). Applicants were asked to

select one main type of worry about joining JobCorps.

Table B.5: Types of worry about joining JobCorps

# description # description

1 not knowing anybody or not fitting in 2 violence / safety
3 homesickness 4 not knowing what it will be like
5 dealing with other people 6 living arrangements
7 strict rules and highly regimented life 8 racism
9 not doing well in classes 10 none
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Drug use summary (DRUG_SUMP). Applicants were asked to select one of 5 possible

answers best describing their drug use in the past year before RA.

Table B.6: Summary of drug use in the year before RA

# description # description

1 did not use drugs 2 marijuana / hashish only
3 drugs other than marijuana / hashish 4 both marijuana and other drugs

Frequency of marijuana use (FRQ_POT) . Applicants were asked to select one of 5

possible answers best describing their marijuana / hashish use in the past year before RA.

Table B.7: Frequency of marijuana/hashish use in the year before RA

# description # description

1 daily 2 a few times each week
3 a few times each month 4 less often
5 missing 6 N/A

Applicant’s welfare receipt history. Applicants were asked whether they ever received food

stamps (GOTFS), AFDC benefits (GOTAFDC) or other welfare (GOTOTHW) in the year prior to

RA. In case of receipt, they asked about the duration of receipt in months (MOS_ANYW,MOS_AFDC).

For example, GOTAFDC=1 and MOS_AFDC=8 describes an applicant who received AFDC

benefits during 8 months before RA.

Household welfare receipt history (WELF_KID). Applicants were asked about family

welfare receipt history during childhood.

Table B.8: Family was on welfare when growing up

# description # description

1 never 2 occasionally
3 half of the time 4 most or all time
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Table B.9: Figure 1 details: monotonicity test results

Weeks Cell with the largest t-statistic Average Test Statistic

(1) (2) (3)

Weeks 60 – 89 MOS_AFDC=8 or

PERS_INC=3 and EARN_YR ∈ [720,3315]

2.390

Weeks 90 – 116 R_HOME=1 and MARRCAT11=1 or

WELF_KID=4 and TYPEWORR=5

2.536

Weeks 117 – 152 R_COMM=1 and IMP_PRO=1 and FRQ_POT=3 or

DRG_SUMP=2 and TYPEWORR=5 and IMP_PRO=1

2.690

Weeks 153 – 186 IMP_PRO=1 and MARRCAT11 or

REASED_R4 = 1 and R_COMM=1 and DRG_SUMP=2

3.303

Weeks 187 – 208 same as weeks 90–116 2.221

Notes. This table shows the results for the monotonicity test in Figure 1. The test is conducted separately for each week using a week-specific test
statistic and p-value. For each test, I partition N = 9,145 subjects into J = 2 cells C1,C2. Column (2) describes the cell with the largest t-statistic
whose value is compared to the critical value. Column (3) shows the average test-statistic across time period in Column (1). The test statistic is
T = max j∈{1,2} µ̂ j/σ̂ j, where µ̂ j and σ̂ j are sample average and standard deviation of random variable ξ j := E[(2D− 1) · S|X ∈ C j], weighted by
design weights DSGN_WGT. The critical value cα is the self-normalized critical value of Chernozhukov et al. (2019). For α = 0.05, cα = 1.960. For
α = 0.01, cα = 2.577. Covariates are defined in Section A.3.
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A.4 Lee (2009): First-Stage Estimates

The first-stage selection estimates are constructed as in (7.2). Let UN = [ξN ,1−ξN ] be an com-

pact set. Focusing on Q1(u,x), approximate Q1(u,x) by a linear function

Q(u,x) = Z(x)′δ0(u)+R(u,x), (B.1)

where Z(x) ∈ RpQ is a vector of basis functions, δ0(u) is the pseudo-true parameter value, and

R(u,x) is approximation error. Let N11 = ∑
N
i=1 DiSi. The quantile regression estimate

Q̂(u,x) = Z(x)′δ̂ (u),

where δ̂ (u),u ∈ U is

δ̂ (u) : = arg min
δ∈RpQ

1
N11

N

∑
Di=1,Si=1

ρu(Yi−Z(Xi)
′
δ )

= arg min
δ∈RpQ

1
N11

N

∑
Di=1,Si=1

(u−1{Yi−Z(Xi)′δ<0}) · (Yi−Z(Xi)
′
δ ), (B.2)

converges at mean square rate qN =

√
pQ

N
= o(N−1/4) and sup-norm rate q∞

N = o(N−1/4), as

shown in Belloni et al. (2019). Its `1-penalized analog converges at mean square rate qN =√
sQ log pQ

N
= o(N−1/4) and sup-norm rate q∞

N =

√
s2

Q log pQ

N
= o(N−1/4), as shown in Belloni

and Chernozhukov (2011). The quantile is evaluated in the next 4 steps.

1. The parameter δ0(u) is estimated by quantile regression defined in equation (B.2) with

Z(x) = x and u ∈ {0.01,0.02, . . . ,0.99}. Likewise, an analog of δ0(u) is estimated by

quantile regression defined in equation for S = 1,D = 0 group.

2. For each covariate value x and quantile level u ∈ {0.01,0.02, . . . ,0.99}, Q̂(u,x) := x′δ̂ (u)

is evaluated.

3. For each covariate value x, the vector (Q̂(u,x))0.99
u=0.01 is sorted. Furthermore, Q̂(u,x) is

capped at the minimal and maximal outcome values.
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4. For each covariate value x, the trimming threshold p̂(x) = round(p̂(x),2) is rounded to 2

decimal places. Q̂(p̂(x),x) is evaluated.

Table B.11: First-Stage Estimates, Table 2, Columns (4) and (6).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control Treated

(1) (2) (3) (4) (5)

1 (Intercept) -0.518 0.154 2.305 2.561
2 BLACK and R_GETGED=1 -0.200
3 R_COMM=1 and R_GETGED=1 -0.224
4 MOS_ANYW and R_GETGED=1 -0.022
5 HGC : EVWORK 0.044
6 HGC : HRWAGER 0.001
7 HGC : MOSINJOB 0.004
8 HRWAGER : MOSINJOB 0.006
9 EARN_YR 0.000

10 R_HOME = 1 -0.260
11 PAY_RENT = 1 0.054 0.033
12 HRWAGER 0.017 -0.021
13 WKEARNR 0 0.001
14 FEMALE -0.139 -0.036
15 PERS_INC1 0.011 -0.12
16 HH_INC5 0.073 0.133

Notes. Table shows the first-stage logistic and quantile regression estimates that produce Table 2 post-
lasso bounds (Column (4),(6)). Column (2): baseline coefficient α of equation (7.2). Column (3): inter-
action coefficient γ of equation (7.2). Column (4): δ (u) of equation (B.2) on wage 90 u = 0.95-quantile
in the control group (sample size = 1, 660). Column (5): δ (u) of equation (B.2) on wage 90 u = 0.97-
quantile in the treated group (sample size = 2, 564). Covariates are defined in Section A.3. Computations
use design weights.

Health status (HEALTH). Applicants were asked to rate their health at the moment of RA

Table B.12: Health status at RA

# description # description

1 excellent 2 good
3 fair 4 poor

Arrest experience. CPAROLE21=1 is a binary indicator for being on probation or parole

at the moment or RA. In addition, arrested applicants were asked about the time past since most

recent arrest MARRCAT.
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Table B.10: First-Stage Estimates, Table 2, Columns (1)-(2).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control (S = 1,D = 0) Treated (S = 1,D = 1)

(1) (2) (3) (4) (5)

1 (Intercept) -1.047 0.553 2.669 2.197
2 AGE 0.038 -0.037 -0.003 0.014
3 BLACK -0.203 -0.109 -0.135 -0.176
4 CPAROLE21 0.028 -0.547 -0.029 0.023
5 CURRJOB 0.201 -0.044 0.036 0.085
6 DRG_SUMP2 -0.085 0.042 0.03 -0.058
7 EARN_YR 0.000 0.000 0.000 0.000
8 EVARRST -0.123 0.147 -0.024 0.024
9 FEMALE -0.23 -0.058 -0.113 -0.126

10 HASCHLD 0.425 -0.177 -0.012 0.103
11 HGC 0.036 0.026 -0.011 -0.011
12 HGC_FATH 0.013 -0.001 0.003 0.004
13 HGC_MOTH -0.004 0.008 0.003 0.000
14 HH_INC2 0.148 -0.186 -0.032 -0.026
15 HH_INC3 0.142 -0.035 -0.013 -0.01
16 HH_INC4 0.373 -0.23 0.007 0.061
17 HH_INC5 0.276 0.036 0.077 0.151
18 HISP -0.155 0.004 0.095 0.029
19 HRSWK_JR -0.006 0.003 0.000 -0.003
20 IMP_PRO1 -0.009 -0.04 -0.212 0.029
21 MARRCAT11 0.031 -0.284 0.096 0.075
22 MARRIED 0.339 -0.253 -0.034 -0.021
23 MOSINJOB 0.039 0.007 -0.006 0.000
24 NCHLD -0.324 0.137 0.067 0.023
25 OTHERRAC -0.191 -0.284 0.121 0.054
26 PAY_RENT1 -0.137 0.171 0.002 0.013
27 PERS_INC2 0.182 0.007 0.172 -0.059
28 PERS_INC3 0.200 -0.024 0.185 0.044
29 PERS_INC4 0.031 0.419 0.222 -0.14
30 REASED_R4 0.068 -0.226 -0.038 -0.094
31 R_COMM1 -0.136 -0.069 -0.006 0.015
32 R_GETGED1 -0.348 0.032 -0.061 -0.009
33 R_HOME1 -0.214 -0.047 -0.03 0.031
34 SEPARATED -0.149 -0.165 -0.084 -0.105
35 TOGETHER -0.199 0.339 -0.026 0.014
36 TYPEWORR5 0.121 -0.631 0.168 -0.057
37 WKEARNR 0.001 -0.001 0.001 0.001
38 YR_WORK 0.260 0.147 -0.070 -0.042

Notes. Table shows the first-stage logistic and quantile regression estimates that produce bounds in
Columns (1)-(2) of Table 2 . 37 covariates are 28 Lee’s covariates (Table B.3) and 9 covariates im-
portant for differential employment effect. Column (2): baseline coefficient α in equation (7.2). Col-
umn (3):interaction coefficient γ in equation (7.2). Column (4): δ (u) from equation (B.2) on wage 90
u = 0.95-quantile in the control group (sample size = 1, 660). Column (5): δ (u) of equation (B.2) on
wage 90 u = 0.97-quantile in the treated group (sample size = 2, 564). Covariates are defined in Section
A.3. Computations use design weights.

57



Table B.13: Number of months since most recent arrest

# description # description

1 less than 12 2 12 to 24
3 24 or more 4 N/A
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Table B.14: First-Stage Estimates, Table 2, Column (5).

Logistic Quantile
Baseline coef. (α) Interaction coef. (γ) Control Treated

(1) (2) (3) (4) (5)

1 (Intercept) -0.68 0.34 2.28 0.07
2 EARN_YR 0.00 -0.00 0.00 0.00
3 EVWORKB1 -0.40 -0.09 -0.01 -0.03
4 FEMALE -0.21 -0.03 -0.12 0.00
5 HGC 0.07 -0.02 0.01 0.00
6 HH_INC5 0.14 0.15 0.02 0.10
7 HRWAGER 0.16 -0.00 0.00 -0.01
8 MOSINJOB 0.04 0.02 0.00 -0.00
9 MOS_ANYW -0.02 -0.00 0.00 -0.00

10 PAY_RENT1 -0.09 0.14 0.06 0.04
11 PERS_INC1 -0.09 -0.02 -0.01 -0.10
12 RACE_ETH2 -0.15 -0.03 -0.15 0.04
13 R_COMM1 -0.12 -0.06 0.03 -0.07
14 R_GETGED1 -0.27 -0.01 -0.07 0.06
15 R_HOME1 -0.21 -0.06 -0.05 0.05
16 WKEARNR -0.00 0.00 0.00 0.00
17 R_GETGED1:RACE_ETH2 -0.021
18 HGC:EVWORKB1 0.081
19 R_COMM1:R_GETGED1 -0.054
20 R_GETGED1:MOS_ANYW 0.004
21 HRWAGER:HGC -0.014
22 HGC:MOSINJOB 0.000
23 HRWAGER:MOSINJOB 0.003

Notes. Table shows the first-stage logistic and quantile regression estimates that produce bounds in Col-
umn (5) of Table 2. Column (2): baseline coefficient α of equation (7.2). Column (3): interaction
coefficient γ of equation (7.2). Column (4): δ (u) of equation B.2 on wage 90 u = 0.95-quantile in the
control group (sample size = 1, 660). Column (5): δ (u) of equation B.2 on wage 90 u = 0.97-quantile in
the treated group (sample size = 2, 564). Covariates are defined in Section A.3. Computations use design
weights.
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Table B.15: Estimated lower bound on the effect of access to Medicaid on self-reported healthcare utilization: extensive margin

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard ML None Standard ML

Prescription drugs currently 0.025 -0.008 0.017 0.088 -0.036 0.060
(0.008) (0.014) (0.017) (0.029) (0.046) (0.060)

Outpatient visits last six months 0.062 0.005 0.042 0.212 0.001 0.146
(0.007) (0.013) (0.017) (0.025) (0.045) (0.058)

ER visits last six months 0.006 -0.020 -0.004 0.022 -0.076 -0.015
(0.007) (0.008) (0.011) (0.023) (0.030) (0.037)

Hospital admissions last six months 0.002 -0.005 0.002 0.008 -0.020 0.007
(0.004) (0.004) (0.005) (0.014) (0.016) (0.016)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 21 N/A 0 21

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported healthcare utilization outcomes for 3
specifications: no trimming, standard trimming, and the agnostic ML approach. Columns (1)–(3) report the coefficient and standard error on Lottery
from estimating equation (7.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from estimating equation (7.6) by 2SLS
with Lottery as an instrument for Insurance. All regressions include household size fixed effects, survey wave fixed effects, and their interactions.
Trimming methods. None: exact replicate of Finkelstein et al. (2012), Table V. Standard: the minimal number of control outcomes are trimmed from
below for each value of fixed effect until the treatment-control difference in response rates switches from negative to non-negative. Agnostic: Step 1.
21 additional covariates are selected on an auxiliary sample of 4,000 households as described in Appendix A.5. Step 2. In the main sample of 46,000
households, a zero outcome with covariate vector x is trimmed in the control group if a flipped coin with success prob. (1− p0(x))/φ0(x) is success,
where the trimming threshold p0(x) is defined in (B.4) and the zero outcome probability φ0(x) is defined in (B.3). Standard errors are estimated by a
cluster-robust bootstrap with B = 1000 repetitions. Both the trimming and regression steps are bootstrapped. Computations (the first and the second
stage) use survey weights. Covariates are described in Table B.17. See Appendix A.5 for details.
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Table B.16: Estimated lower bound on the effect of access to Medicaid on self-reported healthcare utilization: total utilization

ITT LATE
(1) (2) (3) (4) (5) (6)

None Standard NP None Standard NP
Prescription drugs currently 0.100 -0.024 0.077 0.347 -0.124 0.270

(0.051) (0.066) (0.052) (0.175) (0.225) (0.179)

Outpatient visits last six months 0.314 0.121 0.246 1.083 0.372 0.853
(0.054) (0.065) (0.054) (0.182) (0.228) (0.183)

ER visits last six months 0.007 -0.040 -0.008 0.026 -0.152 -0.027
(0.016) (0.019) (0.016) (0.056) (0.065) (0.056)

Hospital admissions last six months 0.006 -0.004 0.003 0.021 -0.014 0.010
(0.006) (0.007) (0.006) (0.021) (0.024) (0.021)

Compulsory covariates (stratification) N/A 16 16 N/A 16 16
Additional covariates (trimming) N/A 0 9 N/A 0 9

∗ Standard errors in parentheses. This table reports results from a Lee bounding exercise on self-reported health outcomes for 3 specifications: no
trimming, standard trimming, and the classic nonparametric approach. Columns (1)–(3) report the coefficient and standard error on Lottery from
estimating equation (7.5) by OLS. Columns (4)–(6) report the coefficient and standard error on Insurance from estimating equation (7.6) by 2SLS
with Lottery as an instrument for Insurance. All regressions include household size fixed effects, survey wave fixed effects, and their interactions.
Trimming methods. None: exact replicate of Finkelstein et al. (2012), Table V. Standard: the minimal number of control outcomes are trimmed from
below for each value of fixed effect until the treatment-control difference in response rates switches from negative to non-negative. NP. Step 1. 9
additional covariates are taken as described in Appendix A.5 based on OHIE documentation. Step 2. An outcome with covariate vector x is trimmed
if it is less than Q(1−1/p0(x),x), where the trimming threshold p0(x) is defined in equation (B.4) and the conditional quantile is defined in equation
(2.4). Standard errors are estimated by a cluster-robust bootstrap with B = 1000 repetitions. Both the trimming and regression steps are bootstrapped.
Computations (the first and the second stage) use survey weights. Covariates are described in Table B.17. See Appendix A.5 for details.
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A.5 Finkelstein et al. (2012) empirical details

Data source. The data set is the output of OHIE_QJE_Replication_Code/SubPrograms/

prepare_data.do file, one of the subprograms of OHIE replication package of Finkelstein

et al. (2012). It contains N = 58,405 observations, survey wave, household size fixed effects,

and their interactions, and 48 optional baseline covariates, summarized in Table B.17.

Agnostic approach: composition of Xhelp and Xhurt. To estimate the composition of Xhelp

and Xhurt, I invoke post-lasso-logistic of Belloni et al. (2016) with X being equal to 64 baseline

covariates and the penalty λ being equal to recommended choice of penalty, on the full sample

N = 58,405. For each of 15 outcomes in reported in Tables 3, 4, B.15, B.16, the trimming

threshold exceeds 1 for at least 99.43% of subjects. For that reason, Xhelp is taken to be /0 for

each outcome under consideration.

Covariate selection for Tables 3 and B.15: Agnostic approach. The main sample M con-

sists of 46,000 randomly selected households, and the auxiliary sample A is its complement.

On the auxiliary sample A, my selection equation is (7.2), where D = 1 is a binary indicator

for winning Medicaid lottery, X = 1,152 pairwise covariate interactions, and S = 1 is a binary

indicator for a non-missing response about receiving any prescription drugs. (Table B.15, Row

1, rx_any_12m). Invoking logistic lasso of Belloni et al. (2016) with λ = 100 to estimate (7.2),

I select 46 pairwise interactions and break them down to 37 raw covariates. They are listed in

Table B.18, Column (1).

Covariate selection for Tables 4 and B.16. 9 selected covariates are: female_list, english_

list, zip_msa, snap_ever_prenotify_07, tanf_ever_prenotify_07,snap_tot_prenotify_

07, tanf_tot_prenotify_07, num_visit_pre_cens_ed, num_out_pre_cens_ed.

For a binary outcome (e.g., a binary outcome in Finkelstein et al. (2012), the conditional

probability of zero outcome in the treated group

φ0(x) := Pr(Y = 1|X = x) := Λ(x′δ ) (B.3)
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is estimated by logistic regression. An outcome is trimmed if a coin with head probability

(1− p̂(x))/φ̂(x) turns out head. For a non-binary outcome that has a point mass, a combination

of both approaches is applied. In what follows, the quantile regression estimates are reported

only for the modal (i.e., most frequent) quantile value.

First-Stage Estimates: Selection Equation. Selection equation is

S = 1{X ′α+D·Z′γ+U>0}, (B.4)

where Z = 1 is a binary indicator of treatment offer (i.e., “treatment”), X is a vector of covariates,

selected on auxiliary sample, and S= 1 is a binary indicator for non-missing response. Therefore,

ŝ(0,x) := Λ(x′α̂), ŝ(1,x) := Λ(x′(α̂ + γ̂)).

First-Stage Estimates: Outcome Equation for ITT. Outcome equation is

Y = 1{X ′κ0+ξ>0}, S = 1,Z = 0, (B.5)

where Y = 1 is a binary indicator for negative (“No”) answer in Table 3, Row 1. The estimate

of φ0(x) in equation (B.3) is π̂(x) := Λ(x′δ̂ ). To construct a trimmed data set for ITT, a zero

outcome in the control group is trimmed if a coin with success prob. (1− p̂(x))/φ̂(x) turns out

success. For numerical stability, φ̂(x) := max(φ̂(x),0.05).

First-Stage Estimates for Binary Outcomes: Outcome Equation for LATE. Outcome

equation is

Y = 1{X ′δ0+D·X ′ρ0+ξ>0}, S = 1,Z = 0, (B.6)

where D = 1 is a binary indicator of having Medicaid insurance (i.e, “insurance”). Therefore,

π̂(0,x) := Λ(x′δ̂ ) and π̂(1,x) := Λ(x′δ̂ + x′ρ̂). To construct a trimmed data set for LATE, a

zero outcome in the control uninsured (insured) group is trimmed if a coin with success prob.
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(1− p̂(x))/φ̂(0,x) ((1− p̂(x))/φ̂(1,x)) turns out success.

Table B.17: Baseline covariates in Oregon Health Insurance Experiment.

Name Description

female_list female
english_list requested English materials

zip_msa zip code is in MSA

visit_pre_ed ED visit
hosp_pre_ed ED visit resulting in hospital admission
out_pre_ed oupatient ED visit
on_pre_ed ED visit on week-day
off_pre_ed week-end or nighttime ED visit

edcnnp_pre_ed emergent, non-preventable ED visit
edcnpa_pre_ed emergent, preventable ED visit
unclas_pre_ed unclassified ED visit
epct_pre_ed primary care treatable ED visit
ne_pre_ed non-emergent ED visit

acsc_pre_ed ambulatory case sensitive ED visit
chron_pre_ed ED visit for chronic condition

inj_pre_ed ED visit for injury, pre-randomization
skin_pre_ed ED visit for skin condition
abdo_pre_ed abdominal pain visit
back_pre_ed ED visit for back pain

back_ed back pain ED visit
heart_pre_ed chest pain ED visit

depres_pre_ed mood disorders ED visit
psysub_pre_ed psych conditions/substance abuse ED visit

hiun_pre_ed high uninsured volume hospital ED visit
loun_pre_ed low uninsured volume hospital ED visit

charg_tot_pre_ed total charges
ed_charg_tot_pre_ed ED total charges

snap_ever_prenotify_07 ever on SNAP
tanf_ever_prenotify_07 ever on TANF
snap_tot_prenotify_07 total household benefits from SNAP
tanf_tot_prenotify_07 total household benefits from TANF

ddd_numhh_li_j household size fixed effect for j = 1,2,3
ddddraw_sur_k survey wave fixed effect for k = 1,2, . . . ,7

ddddraXnum_k_j interaction of survey wave and household size

Notes. All ED and state program variables summarize events occurring between January, 1, 2007 and
lottery notification date. Each health-related ED visit variable is represented by two measures: extensive
margin (any_X) and total count (num_X). Covariates ddd_X represent fixed effects for household size
and survey waves.
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Table B.18: First-Stage Estimates, Table 3, Columns (3) and (6).

ITT LATE

α γ κ δ ρ

(Intercept) -0.55 0.14 0.08 0.07
any_acsc_pre_ed -0.10 -0.19 0.09 -1.96
any_back_pre_ed 0.13 0.62 0.33 1.25

any_depres_pre_ed 0.02 -0.11 0.15 -1.59
any_head_pre_ed -0.04 0.39 0.02 1.70
any_hiun_pre_ed -0.23 0.28 0.26 0.34
any_hosp_pre_ed 0.09 0.29 0.22 0.38
any_on_pre_ed -0.07 -0.16 -0.11 -0.61

charg_tot_pre_ed 0.00 0.00 0.00 -0.00
english_list 0.23 -0.44 -0.43 -0.20
female_list 0.33 -0.07 -0.02 -0.46

num_epct_pre_ed -0.02 0.18 0.21 -0.13
num_ne_pre_ed -0.04 -0.03 0.13 -0.54

num_on_pre_cens_ed 0.04 0.11 0.21 -0.05
num_out_pre_cens_ed 0.11 0.19 0.27 -0.27
num_skin_pre_cens_ed -0.01 0.16 0.13 0.79
num_visit_pre_cens_ed -0.17 -0.23 -0.44 0.63
snap_ever_prenotify07 -0.04 0.53 0.47 0.43

snap_tot_hh_prenotify07 -0.00 -0.00 0.00 -0.00
tanf_ever_prenotify07 -0.53 -0.95 -1.33 0.83

tanf_tot_hh_prenotify07 -0.00 0.00 0.00 -0.00
zip_msa -0.11 -0.20 -0.15 -0.32

ddddraXnum _2_2 -0.335 -0.009 0.000
ddddraXnum_2_3 0.458 0.147 0.175 -0.694
ddddraXnum_3_2 0.083 0.100 0.065 0.000
ddddraXnum_3_3 0.752 0.274
ddddraXnum_4_2 -0.079 -0.112 -0.009 -0.185 0.606
ddddraXnum_5_2 -0.041 -0.249 -0.271 0.154
ddddraXnum_6_2 -0.057 -0.225 -0.250 0.129
ddddraXnum_7_2 0.162 -0.237 0.553 0.000

ddddraw_sur_2 0.015 0.010 -0.087 -0.104 0.126
ddddraw_sur_3 -0.128 0.133 -0.073 -0.103 0.205
ddddraw_sur_4 -0.040 0.056 0.003 0.024 -0.094
ddddraw_sur_5 -0.053 0.002 0.089 0.093 0.078
ddddraw_sur_6 -0.110 0.047 0.068 0.052 0.213
ddddraw_sur_7 -0.053 0.002 -0.029 -0.021 -0.025
dddnumhh_li_2 0.147 -0.027 -0.105 -0.070 -0.223
dddnumhh_li_3 -1.066 0.649 -11.630 -11.667 0.000

N 53, 646 8, 383 8, 383 8, 383 8, 383

Notes. Table shows the first-stage estimates for the estimated effect of Medicaid exposure (Column (3))
and insurance (Column (6)) in Table 3, Row 1. Column (2) : baseline coefficient α in equation (B.4).
Column (3) : interaction coefficient γ of equation (B.4). Column (4): baseline coefficient κ in equation
(B.5) in S = 1,D = 0 group (sample size = 8, 383) to estimate ITT bounds. Columns (5)-(6): baseline
coefficient δ and interaction coefficient ρ in (B.6) in S = 1,Z = 0 group (sample size = 8, 383) to estimate
LATE bounds. Computations use survey weights.
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