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Abstract When doing causal inference on networks, there is interference among
the units. In a social network setting, such interference among individuals is known
as peer-influence. Estimating the causal effect of peer-influence under the presence
of homophily presents various challenges. In this paper, we present results quantify-
ing the error incurred from ignoring homophily when estimating peer-influence on
networks. We then present randomized treatment strategies on networks which can
help disentangle homophily from the estimation of peer-influence.

1 Introduction

When doing causal inference there is often interference among the units of interest.
Interference is when the response to treatment of a unit is affected by the treatments
assigned to its neighbors. In a social network setting, where a unit corresponds to an
individual and an individual’s neighborhood corresponds to their peers, such inter-
ference among individuals is known as peer-influence. With the increased usage of
social media and availability of network data, understanding the casual effects of
peer-influence has garnered much interest. The research area yields a wide range
of applications. For example, in advertising Bakshy [5] examined the impact of
friends’ product affiliation on advertisements via randomized experiments on Face-
book users; Aral [3] used randomized experiments on Facebook to examine how
firms can design social media marketing campaigns to create peer-influence. In pol-
itics, Bond [6] assessed voting behavior results from randomized experiments on
Facebook (where political mobilization messages were delivered to Facebook users
via a randomized control trial during the 2010 US congressional elections) to find
that effect of peer-influence on voting turnout was greater than the effect of the direct
messages themselves.
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There is recent work on methodology for estimation of causal peer-influence
effects (e.g., Toulis and Kao [10], Athey et al. [4]). However, identifying and estimat-
ing peer-influence under the presence of homophily have long remained a challenging
problem [2, 8, 9]. This is the problem of identifying to what extent the response of
an individual is attributable to the treatments given to its neighbors (peer-influence)
or attributable to a latent, intrinsic similarity between peers (homophily). This paper
makes several contributions toward tackling this problem. In particular, we: (i) Intro-
duce a framework for modeling peer-influence and homophily; (ii) under different
models of peer-influence and homophily, quantify the error incurred from ignoring
homophily in the estimation of the peer-influence effect; (iii) under a stochastic block
model framework for the network, devise randomized treatment strategies which can
help disentangle latent homophily from the estimation of peer-influence. Our ran-
domized treatment strategies can also be applied in amore general setting, for general
inference of network features in the presence of latent homophily.

2 Peer-Influence Under Homophily: Results and Inference
Strategies

2.1 A General Framework for Modeling Peer-Influence
and Homophily

Peer-influence is used to denotewhen the response of one individual is affected by the
treatments assigned to its neighbors (e.g., friends in a social network). For individual
i , this can be represented by peer((Z j ) j∈Ni ), where (Z j ) j∈Ni are the treatments
assigned to the neighbors of i and peer(·) is a function taking values in the space of
responses.

Homophily represents the latent, intrinsic similarity between close individuals in a
network. For j = 1, . . . , N , let X j be independent and identically distributed random
variables corresponding to the latent variable associated with individual j in the
network. Then, for individual i , homophily can be represented by hom((X j ) j∈Ni ),
where (X j ) j∈Ni are the latent variables in the neighborhood of i and hom(·) is a
function taking values in the space of responses.

We now introduce the general framework used in our analysis of peer-influence
and homophily. Suppose we are interested in the responses of N units in a network.
This is represented by the random variables Yi for i = 1, . . . , n. The response Yi of
the i th unit depends on its treatment, peer-influence, and latent homophily. Our full
model is given by:

Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) = α + β0peer((Z j ) j∈Ni ) + h0hom((X j ) j∈Ni ) + εi (0,σ
2
Y )

(1)
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Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) =τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni )

+ β1peer((Z j ) j∈Ni ) + h1hom((X j ) j∈Ni ) (2)

εi (0,σ2
Y ) for i = 1, . . . , N are the noise terms in the network, indepedent and identi-

cally distributed according to an unknown distribution with zero mean and variance
σ2
Y . β0,β1 are the unknown peer-influence parameters, and h0, h1 are the unknown

homophily parameters. Latent effects due to homophily in the model are represented
by indepedent and identically distributed random variables (Xi )

N
i=1 with mean 1 and

variance σ2
X . Z are the assigned treatments.

Under different models of the peer-influence peer(·) and homophily hom(·), we
will focus on estimating peer-influence and homophily parameters β0 and h0, respec-
tively, assuming the variances are known. Note that our analysis here is focussed on
inference concerning the untreated individuals (1 above), but all the methodology
can be easily applied to the treated individuals in the network (2 above). In our
analysis, we consider the significance of the following factors in the inference of
peer-influence under the presence of homophily, their consequences for the design
of experiments:

1. Modeling of peer-influence: as a binary (peer((Z j ) j∈Ni ) = 1∑
j∈Ni

Z j>0) or a lin-
ear (peer((Z j ) j∈Ni ) = ∑

j∈Ni
Z j ) effect.

2. Modeling of homophily: as an unnormalized (hom((X j ) j∈Ni ) = ∑
j∈Ni

X j )
or normalized (hom((X j ) j∈Ni ) = ∑

j∈Ni
X j/|Ni |) latent factor. Unnormalized

homophily corresponds to when dense regions of the network have a stronger
homophily effect compared to more sparse regions. Normalized homophily cor-
responds to when the homophily effect is not affected by the density of different
regions in the network.

3. Choice of peer-influence estimate: as a difference of means estimate (for binary
peer-influence) or as the average of stratified estimates (for linear peer-influence).

4. Allocation of treatments: fixed optimal treatment allocation or randomized treat-
ment.

In this short paper, we only discuss results and strategies for the case of binary peer-
influence under unnormalized homophily. Discussion of the other cases is included
in the appendix.

Binary peer-influence effect with unnormalized homophily. Consider the binary
peer-influence model with unnormalized homophily. For the untreated individuals,
we have

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j + εi (0,σ
2
Y ) (3)

where εi (0,σ2
Y ) are independent and identically distributed with zero mean and σ2

Y
variance.
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Consider estimating the peer-influence parameter βo using a difference in means
estimator. Partition the set of untreated individuals into sets M (0)

0 := {i : Zi =
0,

∑
j∈Ni

Z j = 0} (the set of untreated individuals with no treated neighbors) and

M (1)
0 := {i : Zi = 0,

∑
j∈Ni

Z j > 0} (the set of untreated individuals with at least
one treated neighbors). Then, the difference in means estimator for β0 is given by:

β̂0 = avg
i∈M (1)

0

Yi − avg
i∈M (0)

0

Yi (4)

Under the negligence of latent homophily in the model, this difference of means
estimator for peer-influence would appear unbiased. However, the presence of latent
homophily actually interferes and introduces bias to the estimation of peer-influence,
as highlighted in Theorem 1 below.

Theorem 1 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of unnormalized homophily in our model (3), the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(

h0

(

avg
i∈M (1)

0

|Ni | − avg
i∈M (0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M (0)

0

|Ni ∩ N j | + avg
i, j∈M (1)

0

|Ni ∩ N j | − 2 avg
i∈M (0)

0 , j∈M (1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 | + 1

|M (1)
0 |

)

(5)

We can interpret (5) to understand the optimal treatment allocation with respect
to minimizing the bias and variance. For binary peer-influence effect with unnormal-
ized homophily, the bias of β̂0 is minimized through an assignment of treatments Z
which manages to balance the average homophily effect (corresponding to average
vertex degrees) between individuals inM (1)

0 andM (0)
0 . Under such balanced treatment

assignment, unbiasedness is achieved when

avg
i∈M (1)

0

|Ni | = avg
i∈M (1)

1

|Ni | = avg
i∈M (0)

0 ∪M (1)
0

|Ni |,

where M (0)
0 ∪ M (1)

0 is the set of all (untreated) individuals. For binary peer-influence
effect with unnormalized homophily, the variance of β̂0 is minimized through treat-
ments Z which:
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Fig. 1 Optimal treatment allocation

1. Ensure |M (1)
0 | = |M (0)

0 |, such that there is balance between the number of indi-
viduals which are affected and not affected by peer-influence (in set M (1)

0 and
M (0)

0 , respectively).
2. Ensure that the individuals in M (1)

0 are mixed with individuals in M (0)
0 as well

as possible. In particular, this corresponds to choosing Z such that elements
in M (0)

0 have minimal shared neighborhoods between themselves (minimiz-
ing avg

i, j∈M (0)
0

|Ni ∩ N j |), elements in M (1)
0 have minimal shared neighborhoods

between themselves (minimizing avg
i, j∈M (1)

0

|Ni ∩ N j |), and shared neighborhoods

between elements of M (0)
0 and M (1)

0 are maximal, respectively (maximizing
avg

i∈M (0)
0 , j∈M (1)

0

|Ni ∩ N j |). This is illustrated through Fig. 1.

Having developed conceptual insights into what treatment assignments are opti-
mal for inferring peer-influence in the presence of homophily, we can further extend
our analysis to consider the cases of randomized treatment. In particular, by con-
sidering randomized treatment under a stochastic block model framework (e.g., see
Holland [7], Airoldi [1]), we can take advantage of symmetries and exchangeabil-
ity to gain insight into the optimal design of randomized experiments under such
framework. This is explored in Sect. 2.2 where randomized treatment designs which
disentangle homophily from the estimation of peer-influence are considered.
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2.2 Disentangling Homophily from Estimation of
Peer-Influence: Randomized Treatment Strategies

We now propose a general strategy for reducing bias in the inference of binary peer-
influence under the presence of homophily. It is applicable to weighted, directed
graphs which are clustered. Furthermore, our strategy does not assume any model
for homophily hom(·), which can remain unknown.

Suppose we have a graph G of N vertices which is clustered into r clusters.
Assume that given clustering of the graph captures the covariates of the individuals
in the network, such that individuals with same or similar covariates are members
of the same cluster. Under such a clustering, we fit a corresponding stochastic block
model onto the network of N individuals in r communities. Note that by fitting such
a stochastic block model, we are implicitly assuming that individuals in the same
cluster are exchangeable (hence the need to have a good cluster for this assumption to
be justified). Denote the communities of the fitted stochastic block model by the sets
B1, . . . , Br , which are of respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N ).
Let P be the r × r adjacency probability matrix between the r communities. Values
A1, . . . , Ar directly are obtained from the cluster sizes, and the entries of the matrix
P can be estimated using MLEs (e.g., in the unweighted graph case, we can choose
[P]i, j = number of edges from cluster i to j

|Ai ||A j | ).Within each community Bs , different individuals
are affected by different levels of peer-influence. For example, in the binary peer-
influence case, untreated individuals are either in setM (0)

0 (no treated neighbors—not
affected by peer-influence) or in set M (1)

0 (at least one treated neighbors—affected
by peer-influence); in the linear peer-influence case, untreated individuals in M (k)

0
are affected by the k-levels of peer-influence.

When estimating peer-influence, the bias due to homophily arises from imbal-
ances in the homophily effect between the sets of individuals with different levels
of peer-influence. This motivates the key idea in our design of randomized treat-
ments to remove bias from homophily: We want to design experiments such that in
every community Bs , an equal number of individuals are affected and not affected
by peer-influence. By the construction of the cluster, every community Bs has a sim-
ilar effect due to latent homophily. Therefore by designing randomized experiments
which ensure that every such cluster Bs has an equal (expected) number of indi-
viduals with different levels of peer-influence, we reduce the bias in the estimation
of peer-influence arising from latent homophily. For randomized treatments where
individuals in cluster s are treated independently with probability θs , our strategy
described leads to constrained optimization problems for θs . This can then be solved
to obtain optimal θopts values as required for reducing bias in the estimation of peer-
influence under the presence of latent, unknown homophily. We now highlight our
strategy in detail for the estimation of binary peer-influence under the presence of
homophily (linear peer-influence case in appendix).
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An algorithm for inference of binary peer-influence. For a weighted, directed
graph G of N vertices which is clustered into r clusters, consider a corresponding
stochastic block model of N individuals in r communities. Denote the communities
of the SBM (clusters of G) by the sets B1, . . . , Br , which are of respective sizes
A1, . . . , Ar (where A1 + · · · + Ar = N ). Let P be the r × r adjacency probability
matrix between the r communities.Weassign treatments independently to individuals
such that individuals in Bs are treated with probability θs for s = 1, . . . , r . We want
to choose θs with the aim of reducing bias, such that homophily does not interfere
with the estimation of peer-influence. Note that the general bias of the binary peer-
influence estimator β̂0 is

avg
i∈M (1)

0

EX [hom((X) j∈Ni )] − avg
i∈M (0)

0

EX [hom((X) j∈Ni )].

This highlights that the bias in our estimation arises from an imbalance in the average
homophily effect between the sets M (1)

0 and M (0)
0 (the individuals who are and are

not affected by peer-influence, respectively). This observation motivates the key idea
in our design of randomized treatments to remove bias from homophily: We want to
design experiments such that in every cluster Bs , an equal number of individuals are
affected and not affected by peer-influence. For randomized treatment assignment,
this means we want

∀s = 1, . . . , r, E[|M (1)
0 ∩ Bs |] = E[|M (0)

0 ∩ Bs |]. (6)

Let us now derive a result about M (0)
0 and M (1)

0 under our framework to proceed
further with (6).

Proposition 1 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (0)

0 denote the set of untreated individuals
which have no treated neighbors and let M (1)

0 denote the set of untreated individu-
als which have at least one treated neighbor. For ease of notation, let {s ∈ M (0)

0 },
{s ∈ M (1)

0 } denote the event that a fixed vertex in community s is in the set M (0)
0 ,

M (1)
0 , respectively. Then,

P(s ∈ M (0)
0 ) = (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s , and (7)

P(s ∈ M (1)
0 ) = (1 − θs)

(

1 −
r∏

v=1

(1 − Ps,vθv)
Av−1v=s

)

. (8)
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Using Proposition (1), we can now directly derive an algorithm to reduce the effect of
homophily during inference. Let s denote any vertex in the graph which is in commu-
nity Bs . Note that E[|M (0)

0 ∩ Bs |] = AsP(s ∈ M (0)
0 ) and E[|M (1)

0 ∩ Bs |] = AsP(s ∈
M (1)

0 ) = As(1 − P(s ∈ M (0)
0 )), as all untreated individuals are in eitherM (0)

0 orM (1)
0 .

This gives,

E[|M(1)
0 ∩ Bs |] = E[|M(0)

0 ∩ Bs |] ⇐⇒ P(s ∈ M(0)
0 ) = 1

2
P(Zs = 0)

⇐⇒ (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s = 1

2
(1 − θs)

⇐⇒
r∑

v=1

(Av − 1v=s)log(1 − Ps,vθv) + log(2) = 0

For |Ps,v| ≈ 0, log(1 − Ps,vθv) ≈ −Ps,vθv . This allows us to approximate the
optimal θs values by simply solving a set of linear equations. Our algorithm is given
below.

Algorithm 1: Randomized treatment design for more accurate inference of
peer-influence

1 function optimal_treatment_values (A(G),B(G));
Input : Adjacency matrix A and clustering B (with r clusters) of some graph

G
Output: Treatment probabilities θ ∈ [0, 1]r for Bernoulli assignment on each

cluster
2 Fit an SBM, giving an adjacency matrix P for clusters B1, . . . , Br of sizes

A1, . . . , Ar .
3 Choose treatment probabilities for the clusters θ ∈ [0, 1]r as the solution to:
⎛

⎜
⎜
⎜
⎜
⎜
⎝

P1,1(A1 − 1) P1,2A2 ... ... P1,r Ar
P2,1A1 P2,2(A2 − 1) ... ... P2,r Ar

.

.

.
.
.
.

.

.

. ...
.
.
.

Pr−1,1A1 Pr−1,2A2 ... Pr−1,r−1(Ar−1 − 1) Pr−1,r Ar
Pr,1A1 Pr,2A2 ... Pr,r−1Ar−1 Pr,r (Ar − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ1
θ2
.
.
.

θr−1
θr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= log(2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
.
.
.

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(9)

In practice, if (9) does not have a solution in [0, 1]r , we can solve the constrained
optimization problem of minimizing

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎝

P1,1(A1 − 1) P1,2 A2 ... ... P1,r Ar
P2,1 A1 P2,2(A2 − 1) ... ... P2,r Ar

.

.

.

.

.

.

.

.

. ...

.

.

.
Pr−1,1 A1 Pr−1,2 A2 ... Pr−1,r−1(Ar−1 − 1) Pr−1,r Ar
Pr,1A1 Pr,2 A2 ... Pr,r−1 Ar−1 Pr,r (Ar − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ1
θ2
.
.
.

θr−1
θr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

− log(2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1

.

.

.
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(10)
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for θ ∈ [0, 1]r and for some chosen norm
∥
∥

∥
∥ on R

d (e.g., L2). Note that under the
optimal treatment probabilities θopt obtained from (9), the total expected number of
treated individuals is

∑r
s=1 Asθ

opt
s . In practice, often it is desirable to control the

expected number of individuals treated under randomized treatment. This is can be
done under our framework by considering the constrained optimization problem of
minimizing the norm in (9) subject to θ ∈ [0, 1]r and ∑r

s=1 Asθs = Nx , where x is
our chosen percentage of individuals treated.

Analysis of treatment strategies via simulations. We highlight the performance of our
randomized treatment strategy compared to alternatives via numerical results from
Monte Carlo simulations under a stochastic block model. We consider the bias and
mean squared error of our optimal randomized treatment compared to other common
randomized treatment strategies. Unsuccessful treatment occurs when either one of
the sets M (0)

0 or M (1)
0 is empty, and the difference in means estimator for binary

peer-influence (4) is ill-defined.
We consider the unnormalized sum of latent variables (hom((X) j∈Ni ) =∑
j∈Ni

X j for X j i.i.d. latent random variables with mean 1, variance σX ) as our
homophily function. The baseline simulation model (with binary peer-influence,
unnormalized homophily) here is:

Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j + εi (0,σ
2
Y )

Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) = τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) + β11∑
j∈Ni

Z j>0 + h1
∑

j∈Ni

X j

for α = 3,β0 = 0.1, h0 = 1, τ = 0.2,β1 = 0.05, h1 = 0.5,σY = 1.52,σX = 12.

SBMGraph Simulation. The following figures display the bias and variance of the
difference in means estimator (y-axis) against the controlled expected percentage
of treated individuals (x-axis) for our strategy in comparison with other common
randomized treatment strategies. The figures highlight that our randomized treatment
strategy leads to improved estimation of peer-influence. We are working with a
directed SBM of 1530 vertices and 7 clusters with

(A1, A2, A3, A4, A5, A6, A7) = (600, 340, 200, 150, 100, 90, 50) , P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

50 10 20 5 5 15 3

10 30 5 15 15 10 5

10 5 40 5 10 13 12

4 5 10 25 15 14 12

14 15 10 5 20 10 10

13 14 5 2 10 35 15

10 14 14 5 5 10 45

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

/

1530.
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2.3 Concluding Remarks

When doing causal inference in networks, neglecting latent homophily can lead to
inaccurate inference of peer-influence. In this paper, we have introduced a general
framework for modeling peer-influence and homophily, quantified the error incurred
from ignoring homophily, and devised randomised treatment strategies which allow
the estimation of peer-influence in the presence of homophily. Simulations highlight
our method’s performance relative to other randomized treatment strategies. This
work is a preliminary insight into a forthcoming project. Our future extensions will
involve further statistical analysis and theoretical guarantees on the performance
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of the randomized treatment strategies, and results from experimentation on large
real-world social networks.

A Appendices

A.1 Peer-Influence Under Homophily: Results and Inference
Strategies

Binary peer-influence effect with normalized homophily: Consider now binary
peer-influence effect with normalized homophily. For the untreated individuals, we
have

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j

|Ni | + εi (0,σ
2
Y ) (11)

where εi (0,σ2
Y ) are idependent and identically distributed with zero mean and σ2

Y
variance.

As before, consider estimating the peer-influence parameter βo using a difference
in means estimator. Partition the set of untreated individuals into sets M (0)

0 := {i :
Zi = 0,

∑
j∈Ni

Z j = 0} (the set of untreated individuals with no treated neighbors)
and M (1)

0 := {i : Zi = 0,
∑

j∈Ni
Z j > 0} (the set of untreated individuals with at

least one treated neighbors). Then, the difference in means estimator for β0 is given
by:

β̂0 = avg
i∈M (1)

0

Yi − avg
i∈M (0)

0

Yi (12)

Unlike in the case with unnormalized homophily, the difference of means esti-
mator for peer-influence remains unbiased in the presence of normalized homophily.
This is further highlighted in Theorem 2 below. Furthermore, for most sparse and
dense models for the underlying graph, Theorem 2 can be used to show that β̂0 is a
consistent estimator of peer-influence under normalized homophily.

Theorem 2 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of normalized homophily in our model (11), the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j |
|Ni ||N j | + avg

i, j∈M(1)
0

|Ni ∩ N j |
|Ni ||N j | − 2 avg

i∈M(0)
0 , j∈M(1)

0

|Ni ∩ N j |
|Ni ||N j |

)

+ σ2
Y

(
1

|M(0)
0 |

+ 1

|M(1)
0 |

)

(13)

Linear peer-influence effect with unnormalized homophily: We now consider
modeling peer-influence as a linear function of the number of treated neighbors
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peer((Z j ) j∈Ni ) = ∑
j∈Ni

Z j . For the untreated individuals under unnormalized
homophily, this gives:

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β0

∑

j∈Ni

Z j + h0
∑

j∈Ni

X j + εi (0,σ
2
Y ) (14)

where εi (0,σ2
Y ) are idependent and identically distributed with zero mean and σ2

Y
variance.

Consider estimating the peer-influence parameter β0. Generalizing our method-
ology from the binary peer-influence case, we now develop a stratified estimator for
β0. Let

M (k)
0 := {i : Zi = 0,

∑

j∈Ni

Z j = k}

be the set of untreated individuals which have k treated neighbors. Then, an average
of difference in means estimator for peer-influence is:

β̂0 =
∑

k β̂(k)
0∑

k 1
f or β̂(k)

0 = 1

k

(∑
i∈M (k)

0
Yi

|M (k)
0 | −

∑
i∈M (0)

0
Yi

|M (0)
0 |

)

= 1

k

(

avg
i∈M (k)

0

Yi − avg
i∈M (0)

0

Yi

)

.

(15)
where we average over all k such that |M (k)

0 | > 0 (so that β̂(k)
0 is well-defined). Note

that here we are averaging over the class of estimators β̂(k)
0 under the assumption

of linear peer-influence. In the case of nonlinearity, we can also consider each β̂(k)
0

separately to understand the kth-level peer-influence effect in the network.
The presence of latent unnormalized homophily interferes and introduces bias to

the estimation of linear peer-influence, as highlighted in Theorem 3 below.

Theorem 3 Consider the estimator β̂0 for linear peer-influence effect β0. Under the
presence of unnormalized homophily in our model (3), the mean squared error of β̂0

(conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(
h0

∑
k>0 1

∑

k>0

1

k

(

avg
i∈M(k)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ 1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(k)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

(16)

Equation (16) highlights that unbiasedness estimation via optimal treatment allo-
cation may be difficult computationally, as now we need to ensure balance across all
the strata (M (k)

0 )k≥0. This motivates an alternative approach of unbiased estimation.
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Linear peer-influence effect with normalized homophily: For the peer-influence
effect on untreated individuals under normalized homophily, we obtain:

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β0

∑

j∈Ni

Z j + h0
∑

j∈Ni

X j

|Ni | + εi (0,σ
2
Y ) (17)

where εi (0,σ2
Y ) are idependent and identically distributed with zero mean and σ2

Y
variance.

To estimate the peer-influence parameter β0, the same stratified estimator as in
the linear peer-influence with unnormalized homophily case can be applied:

β̂0 =
∑

k β̂(k)
0∑

k 1
f or β̂(k)

0 = 1

k

(∑
i∈M (k)

0
Yi

|M (k)
0 | −

∑
i∈M (0)

0
Yi

|M (0)
0 |

)

= 1

k

(

avg
i∈M (k)

0

Yi − avg
i∈M (0)

0

Yi

)

.

(18)
whereM (k)

0 := {i : Zi = 0,
∑

j∈Ni
Z j = k} andwe are averaging over all k such that

|M (k)
0 | > 0.
In the presence of normalized homophily, β̂0 remains an unbiased estimator of

peer-influence. This is highlighted in Theorem 4 below.

Theorem 4 Consider the estimator β̂0 for linear peer-influence effect β0. Under the
presence of normalized homophily in our model (11), β̂0 is unbiased and the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j |
|Ni ||N j | + avg

i, j∈M(0)
0

|Ni ∩ N j |
|Ni ||N j | − 2 avg

i∈M(0)
0 , j∈M(k)

0

|Ni ∩ N j |
|Ni ||N j |

)

+ σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

(19)

The difference of means estimator for linear peer-influence remains unbiased
in the presence of normalized homophily. Furthermore, for most sparse and dense
models for the underlying graph, Theorem2 can be used to show that β̂0 is a consistent
estimator of linear peer-influence under normalized homophily.

A.2 Disentangling Homophily from Estimation of
Peer-Influence: Randomized Treatment Strategies

An algorithm for inference of linear peer-influence. We now use our general
framework to design randomized treatments for the inference of linear peer-influence
effects under homophily. We proceed to find the optimal treatment probabilities θs
for s = 1, . . . , r under a stochastic block model with r communities as before.

Let M (k)
0 denote the set of untreated individuals which have k neighbors (note

that we are abusing notation here: Now, M (1)
0 represents untreated individuals which
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have exactly 1 neighbor, rather than at least 1 neighbor as before in the binary peer-
influence case). First, we derive a proposition about M (k)

0 under our framework.

Proposition 2 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (k)

0 denote the set of untreated individuals
which have k treated neighbors. For ease of notation, let {s ∈ M (k)

0 } denote the event
that a fixed vertex in community s is in the set M (k)

0 . Then,

P(s ∈ M (k)
0 ) = (1 − θs)

∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

( r∏

v=1

Bin(tv; Av − 1{v=s}, θvPs,v)
)

(20)
where Bin(tv; Av − 1{v=s}, θvPs,v) = (Av−1{v=s}

tv

)(
θvPs,v

)tv(1 − θvPs,v
)Av−1{v=s}−tv .

The main idea behind the homophily disentangling strategy is to ensure that
in every community Bs on our stochastic block model, there are equal (expected)
numbers of individuals being affected by different levels of peer-influence. In the
case of linear peer-influence, this means choosing treatment values such that inside
every community s, each individual has an equal probability of being in sets M (k)

0
for different peer-influence levels k. Under a stochastic block model, values of k
range from 0 to N − 1 (as one individual can have at most N − 1 treated neighbors).
However, in practice, we can choose to consider k = 0, 1, . . . , K where K is the
maximum degree of the actual observed network. Therefore, through an optimal
assignment of treatments, we wish to satisfy

∀s = 1, . . . , r, P(s ∈ M (0)
0 )=P(s ∈ M (1)

0 ) = · · · = P(s ∈ M (K−1)
0 ) = P(s ∈ M (K )

0 ),

where expressions for each P(s ∈ M (k)
0 ) as functions of θs for s = 1, . . . , r are

obtained fromProposition 2 above. This gives Kr conditions to satisfy for r variables
θs ∈ [0, 1] (for s = 1, . . . , r ), so we can approach this as a constrained optimization
problem as considered in the binary peer-influence case before.

B Tables of Main Results

B.1 Analytical Results
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B.2 Randomized Treatment Strategies to Disentangle
Homophily
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C Proofs

C.1 Proof of Theorem 1 (See p. xxx)

Theorem 1 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of unnormalized homophily in our model (3), the mean
squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(

h0

(

avg
i∈M(1)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j | + avg
i, j∈M(1)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M(0)
0 |

+ 1

|M(1)
0 |

)

(5)

Proof Recall the definition of the difference in means estimator for binary peer-
influence (4).

β̂0 = avg
i∈M (1)

0

Yi − avg
i∈M (0)

0

Yi

where M (0)
0 := {i : Zi = 0,

∑
j∈Ni

Z j = 0} (the set of untreated individuals with

no treated neighbors) and M (1)
0 := {i : Zi = 0,

∑
j∈Ni

Z j > 0} (the set of untreated
individuals with at least one treated neighbors). The response variables (Yi )i=1,...,N

are defined by:

Yi (Zi = 0, (Z j ) j∈Ni ) = α + β01∑
j∈Ni

Z j>0 + h0
∑

j∈Ni

X j + εi (0,σ
2
Y )

Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) = τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) + β11∑
j∈Ni

Z j>0 + h1
∑

j∈Ni

X j

εi (0,σ2
Y ) for i = 1, . . . , N are the noise terms in the network, indepedent and identi-

cally distributedwith zeromean and variance σ2
Y . Note that the setsM

(0)
0 andM (1)

0 are
Zmeasurable and that latent homophily variablesX = (X j ) j=1,...,N are independent
of Z = (Z j ) j=1,...,N . Therefore,

E[β̂0|Z] =
∑

i∈M(1)
0

E

[
Yi |Z

]

|M(1)
0 |

−
∑

i∈M(0)
0

E

[
Yi |Z

]

|M(0)
0 |

=
∑

i∈M(1)
0

E

[
β0 + ∑

j∈Ni
X j

]

|M(1)
0 |

−
∑

i∈M(0)
0

E

[ ∑
j∈Ni

X j

]

|M(0)
0 |
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= β0 +
∑

i∈M(1)
0

h0|Ni |

|M(1)
0 |

−
∑

i∈M(0)
0

h0|Ni |

|M(0)
0 |

= β0 + h0

(

avg
i∈M(1)

0

|Ni | − avg
i∈M(1)

0

|Ni |
)

.

This gives the bias of β̂0: E
[
β̂0 − β0|Z

]
= h0

(

avg
i∈M (1)

0

|Ni | − avg
i∈M (1)

0

|Ni |
)

. Similarly,

var [β̂0|Z] = var

(
∑

i∈M(1)
0

Yi

|M(1)
0 |

−
∑

j∈M(0)
0

Y j

|M(0)
0 |

∣
∣
∣
∣ Z

)

=
var(

∑

i∈M(1)
0

Yi
∣
∣ Z)

|M(1)
0 |2

+
var(

∑

j∈M(0)
0

Y j
∣
∣ Z)

|M(0)
0 |2

−
2cov(

∑

i∈M(1)
0

Yi ,
∑

j∈M(0)
0

Y j
∣
∣ Z)

|M(0)
0 ||M(1)

0 |

=
∑

i∈M(1)
0

∑

k∈M(1)
0

cov(Yi , Yk
∣
∣ Z)

|M(1)
0 |2

+
∑

j∈M(0)
0

∑

l∈M(0)
0

cov(Y j , Yl
∣
∣ Z)

|M(0)
0 |2

−
2

∑

i∈M(1)
0

∑

j∈M(0)
0

cov(Yi , Y j
∣
∣ Z)

|M(0)
0 ||M(1)

0 |
= avg

i,k∈M(1)
0

cov(Yi , Yk
∣
∣ Z) + avg

j,l∈M(0)
0

cov(Yi , Yk
∣
∣ Z) − 2 avg

i∈M(0)
0 , j∈M(1)

0

cov(Yi , Y j
∣
∣ Z).

For i ∈ M (1)
0 and k ∈ M (1)

0 , by the law of total covariance and as X are i.i.d.,

cov(Yi ,Yk
∣
∣ Z) = E[cov(Yi ,Yk

∣
∣ X,Z)

∣
∣
∣ Z] + cov

(
E[Yi

∣
∣X,Z],E[Yk

∣
∣X,Z]

∣
∣
∣ Z

)

= σ2
Y1{i=k} + cov

(
α + β0 + h0

∑

a∈Ni

Xa,α + β0 + h0
∑

b∈Nk

Xb

)

= σ2
Y1{i=k} + h20 cov

( ∑

a∈Ni

Xa,
∑

b∈Nk

Xb

)

= σ2
Y1{i=k} + h20σ

2
X |Ni ∩ N j |

Similarly for j ∈ M (0)
0 and l ∈ M (0)

0 ,

cov(Y j ,Yl
∣
∣ Z) = σ2

Y1{ j=l} + cov
(
α + h0

∑

a∈N j

Xa,α + h0
∑

b∈Nl

Xb

∣
∣
∣ Z

)

= σ2
Y1{ j=l} + h20σ

2
X |N j ∩ Nl |

For i ∈ M (1)
0 and j ∈ M (0)

0 , by the law of total covariance and as X are i.i.d.,
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cov(Yi ,Y j

∣
∣ Z) = E[cov(Yi ,Y j

∣
∣ X,Z)

∣
∣
∣ Z] + cov

(
E[Yi

∣
∣X,Z],E[Yk

∣
∣X,Z]

∣
∣
∣ Z

)

= 0 + cov
(
α + β0 + h0

∑

a∈Ni

Xa,α + h0
∑

b∈Nk

Xb

)

= h20 cov
( ∑

a∈Ni

Xa,
∑

b∈Nk

Xb

)

= h20σ
2
X |Ni ∩ N j |.

Therefore,

var [β̂0|Z] = avg
i,k∈M(1)

0

cov(Yi , Yk
∣
∣ Z) + avg

j,l∈M(0)
0

cov(Yi , Yk
∣
∣ Z) − 2 avg

i∈M(0)
0 , j∈M(1)

0

cov(Yi , Y j
∣
∣ Z)

= avg
i,k∈M(1)

0

(

σ2
Y1{i=k} + h20σ

2
X |Ni ∩ Nk |

)

+ avg
j,l∈M(0)

0

(

σ2
Y1{ j=l} + h20σ

2
X |N j ∩ Nl |

)

− 2 avg
i∈M(0)

0 , j∈M(1)
0

(

h20σ
2
X |N j ∩ Nl |

)

= h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j | + avg
i, j∈M(1)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 |

+ 1

|M (1)
0 |

)

Now we can recall the bias–variance decomposition of the MSE to obtain

E[(β̂0 − β0)
2|Z] =

(
E[β̂0 − β0|Z]

)2 + var [β̂0|Z]

=
(

h0

(

avg
i∈M (1)

0

|Ni | − avg
i∈M (0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M (0)

0

|Ni ∩ N j | + avg
i, j∈M (1)

0

|Ni ∩ N j | − 2 avg
i∈M (0)

0 , j∈M (1)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 | + 1

|M (1)
0 |

)

as required. �

C.2 Proof of Theorem 3 (See p. xxx)

Theorem 3 Consider the difference in means estimator β̂0 for binary peer-influence
effect β0. Under the presence of unnormalized homophily in our model (3), the mean
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squared error of β̂0 (conditional on the treatment Z) is:

E[(β̂0 − β0)
2|Z] =

(

h0

(

avg
i∈M(1)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ h20σ
2
X

(

avg
i, j∈M(0)

0

|Ni ∩ N j | + avg
i, j∈M(1)

0

|Ni ∩ N j | − 2 avg
i∈M(0)

0 , j∈M(1)
0

|Ni ∩ N j |
)

+ σ2Y

(
1

|M(0)
0 |

+ 1

|M(1)
0 |

)

(16)

Proof We proceed as similar to the binary peer-influence estimator case. Recall the
definition of the estimator for linear peer-influence (21):

β̂0 =
∑

k β̂(k)
0∑

k 1
f or β̂(k)

0 = 1

k

(∑
i∈M (k)

0
Yi

|M (k)
0 | −

∑
i∈M (0)

0
Yi

|M (0)
0 |

)

= 1

k

(

avg
i∈M (k)

0

Yi − avg
i∈M (0)

0

Yi

)

,

(21)
where M (k)

0 := {i : Zi = 0,
∑

j∈Ni
Z j = k} (the set of untreated individuals with k

treated neighbors). The response variables (Yi )i=1,...,N are defined by:

Yi (Zi = 0, (Z j ) j∈Ni )= α + β0

∑

j∈Ni

Z j + h0
∑

j∈Ni

X j + εi (0,σ
2
Y )

Yi (Zi = 1, (Z j ) j∈Ni , (X j ) j∈Ni ) = τ + Yi (Zi = 0, (Z j ) j∈Ni , (X j ) j∈Ni ) + β1

∑

j∈Ni

Z j + h1
∑

j∈Ni

X j

εi (0,σ2
Y ) for i = 1, . . . , N are the noise terms in the network, indepedent and iden-

tically distributed with zero mean and variance σ2
Y . Note that sets M

(k)
0 are Z mea-

surable and that latent homophily variables X = (X j ) j=1,...,N are independent of
Z = (Z j ) j=1,...,N . Therefore,

E[β̂(k)
0 |Z] = 1

k

(∑
i∈M (k)

0
E

[
Yi |Z

]

|M (k)
0 | −

∑
i∈M (0)

0
E

[
Yi |Z

]

|M (0)
0 |

)

= 1

k

(∑
i∈M (k)

0
E

[
kβ0 + ∑

j∈Ni
X j |Z

]

|M (k)
0 | −

∑
i∈M (0)

0
E

[ ∑
j∈Ni

X j |Z
]

|M (0)
0 |

)

= β0 + 1

k

(∑
i∈M (k)

0
E

[∑
j∈Ni

X j |Z
]

|M (k)
0 | −

∑
i∈M (0)

0
E

[∑
j∈Ni

X j |Z
]

|M (0)
0 |

)

= β0 + 1

k

(∑
i∈M (k)

0
h0|Ni |

|M (k)
0 | −

∑
i∈M (0)

0
h0|Ni |

|M (0)
0 |

)
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= β0 + h0
k

(

avg
i∈M (k)

0

|Ni | − avg
i∈M (1)

0

|Ni |
)

,

which gives the bias of the estimator β̂0 =
∑

k β̂(k)
0∑

k 1
to be:

E[β̂0 − β0|Z] = h0
∑

k>0 1

∑

k>0

1

k

(

avg
i∈M (k)

0

|Ni | − avg
i∈M (0)

0

|Ni |
)

.

Similarly, var [β̂0|Z] = 1
(
∑

k 1)
2

∑
k>0

∑
l>0 cov(β̂

(k)
0 , β̂(l)

0 ), where

cov(β̂(k)
0 , β̂

(l)
0

∣
∣
∣Z) = 1

kl
cov

(
∑

i∈M(k)
0

Yi

|M(k)
0 |

−
∑

j∈M(0)
0

Y j

|M(0)
0 |

,

∑

i∈M(l)
0

Yi

|M(l)
0 |

−
∑

j∈M(0)
0

Y j

|M(0)
0 |

∣
∣
∣
∣ Z

)

= 1

kl

(
∑

i∈M(k)
0 , j∈M(l)

0
cov(Yi , Y j |Z)

|M(k)
0 ||M(l)

0 |
+

∑

i∈M(0)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M(0)
0 |2

−
∑

i∈M(k)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M(k)
0 ||M(0)

0 |
−

∑

i∈M(0)
0 , j∈M(l)

0
cov(Yi , Y j |Z)

|M(0)
0 ||M(l)

0 |

)

.

For i ∈ M (k)
0 and j ∈ M (l)

0 , by the law of total covariance and as X are i.i.d.,

cov(Yi ,Y j

∣
∣ Z) = E[cov(Yi ,Y j

∣
∣ X,Z)

∣
∣
∣ Z] + cov

(
E[Yi

∣
∣X,Z],E[Y j

∣
∣X,Z]

∣
∣
∣ Z

)

= σ2
Y1{i= j} + cov

(
α + kβ0 + h0

∑

a∈Ni

Xa,α + lβ0 + h0
∑

b∈N j

Xb

)

= σ2
Y1{i= j} + h20 cov

( ∑

a∈Ni

Xa,
∑

b∈N j

Xb

)

= σ2
Y1{i= j} + h20σ

2
X |Ni ∩ N j |.

This gives

cov(β̂(k)
0 , β̂

(l)
0

∣
∣
∣Z) = 1

kl

(∑
i∈M(k)

0 , j∈M(l)
0

cov(Yi , Y j |Z)
|M (k)

0 ||M (l)
0 |

+
∑

i∈M(0)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M (0)
0 |2

−
∑

i∈M(k)
0 , j∈M(0)

0
cov(Yi , Y j |Z)

|M (k)
0 ||M (0)

0 |
−

∑
i∈M(0)

0 , j∈M(l)
0
cov(Yi , Y j |Z)

|M (0)
0 ||M (l)

0 |

)

= 1

kl

(∑
i∈M(k)

0 , j∈M(l)
0

σ2
Y1{i= j} + h20σ

2
X |Ni ∩ N j |

|M (k)
0 ||M (l)

0 |

+
∑

i∈M(0)
0 , j∈M(0)

0
σ2
Y1{i= j} + h20σ

2
X |Ni ∩ N j |

|M (0)
0 |2

−
∑

i∈M(k)
0 , j∈M(0)

0
h20σ

2
X |Ni ∩ N j |

|M (k)
0 ||M (0)

0 |
−

∑
i∈M(0)

0 , j∈M(l)
0

h20σ
2
X |Ni ∩ N j |

|M (0)
0 ||M (l)

0 |

)
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= 1

kl

(

σ2
Y
1{l=k}
|M (k)| + h20σ

2
X

∑
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j |
|M (k)

0 ||M (l)
0 |

+ σ2
Y

1

|M (0)| + h20σ
2
X

∑
i∈M(0)

0 , j∈M(0)
0

|Ni ∩ N j |
|M (0)

0 ||M (0)
0 |

− h20σ
2
X

∑
i∈M(k)

0 , j∈M(0)
0

|Ni ∩ N j |
|M (k)

0 ||M (0)
0 |

− h20σ
2
X

∑
i∈M(0)

0 , j∈M(l)
0

|Ni ∩ N j |
|M (0)

0 ||M (l)
0 |

)

= 1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j | − avg
i∈M(k)

0 , j∈M(0)
0

|Ni ∩ N j |

− avg
i∈M(0)

0 , j∈M(l)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M (0)
0 |

+ 1k=l

|M (k)
0 |

)]

.

Now, we can recall the bias–variance decomposition of the MSE to obtain

E[(β̂0 − β0)
2|Z] =

(
E[β̂0 − β0|Z]

)2 + var [β̂0|Z]

=
(
E[β̂0 − β0|Z]

)2 + 1

(
∑

k 1)
2

∑

k>0

∑

l>0

cov(β̂(k)
0 , β̂(l)

0 )

=
(

h0
∑

k>0 1

∑

k>0

1

k

(

avg
i∈M(k)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ 1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j |

− avg
i∈M(0)

0 , j∈M(k)
0

|Ni ∩ N j |
)

− avg
i∈M(l)

0 , j∈M(0)
0

|Ni ∩ N j | + σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

=
(

h0
∑

k>0 1

∑

k>0

1

k

(

avg
i∈M(k)

0

|Ni | − avg
i∈M(0)

0

|Ni |
))2

+ 1

(
∑

k>0 1)
2

∑

k,l>0

1

kl

[

h20σ
2
X

(

avg
i∈M(k)

0 , j∈M(l)
0

|Ni ∩ N j | + avg
i, j∈M(0)

0

|Ni ∩ N j |

− 2 avg
i∈M(0)

0 , j∈M(k)
0

|Ni ∩ N j |
)

+ σ2
Y

(
1

|M(0)
0 |

+ 1k=l

|M(k)
0 |

)]

as required. �

C.3 Proof of Theorem 1 (See p. xxx)

Proposition 1 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (0)

0 denote the set of untreated individuals
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which have no treated neighbors and let M (1)
0 denote the set of untreated individu-

als which have at least one treated neighbor. For ease of notation, let {s ∈ M (0)
0 },

{s ∈ M (1)
0 } denote the event that a fixed vertex in community s is in the sets M (0)

0 ,
M (1)

0 respectively. Then,

P(s ∈ M (0)
0 ) = (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s , and (7)

P(s ∈ M (1)
0 ) = (1 − θs)

(

1 −
r∏

v=1

(1 − Ps,vθv)
Av−1v=s

)

. (8)

Proof Note that each vertex in the graph is assigned treatment independently and
that under the stochastic blockmodel the events of any pair of vertices being adjacent
are independent. Therefore,

P(s has 0 treated neighbors | s is untreated) = P(s has 0 treated neighbors)

for all k and s = 1, . . . , r . This gives

P(s ∈ M (0)
0 ) = P(s is untreated)P(s has 0 treated neighbors)

= (1 − θs)P(s has 0 treated neighbors)

= (1 − θs)P
( r⋂

v=1

{s has 0 treated neighbors in Bv}
)

= (1 − θs)

r∏

v=1

P(s has 0 treated neighbors in Bv)

= (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s .

where the Av − 1v=s arises from noting that s can have at most As − 1 neighbors
in Bs (it cannot connect to itself). Note that sets M (0)

0 and M (1)
0 partition the set of

untreated individuals. Therefore,

P(s ∈ M (1)
0 ) = P(Zs = 0) − P(s ∈ M (0)

0 )

= (1 − θs) − (1 − θs)

r∏

v=1

(1 − Ps,vθv)
Av−1v=s

= (1 − θs)
(
1 −

r∏

v=1

(1 − Ps,vθv)
Av−1v=s

)
.

�
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C.4 Proof of Proposition 2 (See p. xxx)

Proposition 2 Consider a stochastic block model (SBM) of N individuals in r com-
munities. Denote the communities of the SBM by the sets B1, . . . , Br , which are of
respective sizes A1, . . . , Ar (where A1 + · · · + Ar = N). Let P be the r × r adja-
cency probability matrix between the r communities. We assign treatments inde-
pendently to individuals such that individuals in Bs are treated with probability θs
for s = 1, . . . , r . Under such setup, let M (k)

0 denote the set of untreated individuals
which have k treated neighbors. For ease of notation, let {s ∈ M (k)

0 } denote the event
that a fixed vertex in community s is in the set M (k)

0 . Then,

P(s ∈ M (k)
0 ) = (1 − θs)

∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

( r∏

v=1

Bin(tv; Av − 1{v=s}, θvPs,v)
)

(20)
where Bin(tv; Av − 1{v=s}, θvPs,v) = (Av−1{v=s}

tv

)(
θvPs,v

)tv(1 − θvPs,v
)Av−1{v=s}−tv .

Proof Note that each vertex in the graph is assigned treatment indpendently. There-
fore,

P(s has k treated neighbors | s is untreated) = P(s has k treated neighbors)

for all k and s = 1, . . . , r . This gives

P(s ∈ M (k)
0 ) = P(s is untreated)P(s has k treated neighbors)

= (1 − θs)P(s has k treated neighbors)

= (1 − θs)
∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

P

( r⋂

v=1

{s has tv treated neighbors in Bv}
)

= (1 − θs)
∑

t1,...,tr :∀v=1,...,r 0≤tv≤Av−1{v=s},
t1+···+tr=k

( r∏

v=1

P(s has tv treated neighbors in Bv)
)
.

We now wish to evaluate P(s has tk treated neighbors in Bv). Let nv be the number
of neighbors s (denoting a fixed individual in community Bs) has in Bv . Under a
stochastic block model setup,

nv ∼ Bin(Av − 1v=s, Ps,v)

tv|nv ∼ Bin(nv, θv)
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where the Av − 1v=s arises from noting that s can have at most As − 1 neighbors in
Bs (it cannot connect to itself). We want the unconditional distribution of tv . Recall
that moment generating function of X ∼ Bin(N , p) is E(zX ) = ((1 − p) + pz)N .
Therefore,

E[ztv ] = E[E[ztv |nv]] = E

[(
(1 − θs) + θs z

)nv ] =
(

(1 − Ps,v) + Ps,v
(
(1 − θs) + θs z

))Av−1v=s

=
(

(1 − θs Ps,v) + Ps,vθs z

)Av

,

giving tv ∼ Bin(Av − 1v=s, θs Ps,v). This gives

P(s has tv treated neighbors in Bv) = Bin(tv; Av − 1{v=s}, θvPs,v)

from which (20) directly follows. �
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