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Abstract

We consider an agent who represents uncertainty about the environment via a possibly

misspecified model. Each period, the agent takes an action, observes a consequence, and

uses Bayes’ rule to update her belief about the environment. This framework has become

increasingly popular in economics to study behavior driven by incorrect or biased beliefs.

By first showing that the key element to predict the agent’s behavior is the frequency of her

past actions, we are able to characterize asymptotic behavior in general settings in terms

of the solutions of a differential inclusion that describes the evolution of the frequency of

actions. We then present a series of implications that can be readily applied to economic

applications, thus providing off-the-shelf tools that can be used to characterize behavior

under misspecified learning.
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1 Introduction

Over the last few decades, evidence of systematic mistakes and biases in beliefs has been col-

lected in a large range of economic environments. Moreover, the evidence indicates that many

of these mistakes persist with experience.1 One approach to incorporating these findings in our

theories is to simply postulate that economic agents have fixed, wrong beliefs about aspects of

their environment, and never learn about these aspects. A different approach that has gained

popularity over the last few years is to postulate that agents do learn about their environment,

but they do so in the context of a misspecified model that misses some important aspects of

reality. The researcher who follows this approach is forced to specify the agent’s misspecifi-

cation, and the direction of biases is often not ex-ante obvious without further analysis.

Examples of misspecified learning in economics date back to the 1970s: A firm estimates

demand but wrongly excludes competitors’ prices (Arrow and Green (1973), Kirman (1975));

a teacher assesses how praise and criticism affect student performance, but does not understand

regression to the mean (Tversky and Kahneman (1973), Esponda and Pouzo (2016)); a person

faces an increasing marginal income tax rate but behaves as if facing a constant marginal tax

(Sobel (1984), Liebman and Zeckhauser (2004), Esponda and Pouzo (2016)); when learning

the value of assets, policies, or investment projects, traders, voters, and investors fail to account

for sample selection (Esponda (2008), Esponda and Pouzo (2017, 2019a), Jehiel (2018)); a

seller estimates a constant-elasticity demand function, but elasticity is not constant (Nyarko

(1991), Fudenberg, Romanyuk and Strack (2017)); a person inverts causal relationships and

incorrectly believes that dieting affects health (Spiegler (2016)); overconfidence biases an

agent’s learning of a fundamental (Heidhues, Kőszegi and Strack (2018a)).

In these examples, the agent processes information through the lens of a simple model that

misses some aspect of reality. The direction of the bias is often not obvious because the agent’s

behavior affects the feedback she observes, this feedback is in turn processed via the agent’s

misspecified model, and this processing leads to updated beliefs and subsequent changes in

behavior, which in turn lead to changes in beliefs, and so on.

Despite these examples, we have not yet fully understood how model misspecification af-

fects long-run learning outcomes. Indeed, most existing papers consider somewhat specialized

setups, and we do not know whether the learning process converges beyond these particular

cases. This paper develops a unified theory on Bayesian learning with model misspecifica-

tion, which hopefully shapes our understanding of why different models in the literature lead

1For discussions of the evidence, see, for example, Camerer and Johnson (1997) and Section 3.D in Rabin

(1998)
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to different conclusions and allows behavior to be characterized in a wider range of settings.

We consider the following environment, which includes the examples above and many

other situations of interest. Time is discrete and there is a single, infinitely-lived agent who

discounts the future and must take an action in each period. The action potentially affects

the distribution of an observable variable, which we call a consequence. The agent’s per-

period payoff depends on her action and the realized consequence. The true distribution over

consequences as a function of an action x ∈ X is given by Q(· | x) ∈ ∆(Y ), where Y is the set

of consequences. The agent, however, does not know Q. She has a parametric model of it,

given by (Qθ (· | x))x∈X , where parameter values, such as θ , belong to a parameter space Θ.

The agent is Bayesian, so she has a prior over Θ and updates her prior in each period after

observing the realized consequence. The agent’s model is misspecified if the support of her

prior does not include the true distribution Q, and it is correctly specified otherwise.2

Our key point of departure from previous literature is that we begin by focusing on the

evolution of the frequency of actions rather than on actions alone or on the agent’s belief. The

frequency of actions at time t +1 can be written recursively as a function of the frequency at

time t plus some innovation term that depends on the agent’s action at time t +1. The action

at time t +1, however, depends on the agent’s belief at time t, and one challenge is to be able

to write this belief as a function of frequencies of actions so as to make this recursion depend

exclusively on frequencies, not beliefs.

Extending results by Berk (1966) and Esponda and Pouzo (2016), we show that eventu-

ally the posterior at time t roughly concentrates on the set of parameter values that minimize

Kullback-Leibler divergence given the frequency of actions up to time t. This result allows us

to write the evolution of the action frequency recursively as a function of the past frequency

alone, excluding the belief. We then apply techniques from stochastic approximation devel-

oped by Benaïm, Hofbauer and Sorin (2005) to show that the continuous-time approximation

of the frequency of actions can be essentially characterized as a solution to a generalization of

a differential equation.3 Finally, we present a series of implications that can be readily applied

to economic applications. For the special case of one-dimensional models that are identified–a

2The correctly-specified version of this environment was originally studied by Easley and Kiefer (1988) and

Aghion, Bolton, Harris and Jullien (1991). We focus on the case where Θ is finite dimensional because, in the

infinite dimensional case, Bayesian updating need not converge to the truth for most priors and parameter values

even if the model is correctly specified (Freedman (1963), Diaconis and Freedman (1986)).
3The generalization, called a differential inclusion, allows the derivative to take multiple values, and it has

proven useful in previous work in economics (e.g., Gilboa and Matsui (1991)). In our environment, multiplicity

arises whenever multiple actions are optimal for the agent, and the evolution of beliefs and subsequent actions

depends on which action is followed. Multiple optimal actions arise naturally when the agent is indifferent given

her belief, but they can also arise in a misspecified setting due to multiplicity of beliefs.
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case that includes many of the applications in the literature–our results imply that convergence

and stability can be characterized by examining a simple, two-dimensional figure.

Our results pertain to the agent’s long-run behavior and benefit from previous work on mis-

specified learning.4 Our environment is the single-agent version of the environment studied

by Esponda and Pouzo, 2016; henceforth EP2016. They introduce the notion of Berk-Nash

equilibrium and show that, under some conditions, if behavior converges then it must converge

to a Berk-Nash equilibrium.5 But they do not study convergence in general.6

We know from Nyarko (1991)’s example that the agent’s action need not converge if she

learns using a misspecified model, but until recently we knew little about convergence in

general. Over the last few years, there has been substantial progress. The first papers to make

general progress restricted attention to specific environments. Fudenberg, Romanyuk and

Strack (2017) consider a model where the agent has a finite number of actions but still updates

between two possible models (i.e., Θ has two elements). They provide a full characterization

of asymptotic actions and beliefs, including cases where the action converges and cases where

it does not. Their model is in continuous time and they exploit the fact that the belief over

Θ follows a one-dimensional stochastic differential equation. Heidhues, Kőszegi and Strack

(2018a) study a model of an agent whose overconfidence biases his learning of a fundamental

that is relevant for determining the optimal action. They are able to establish convergence by

exploiting the monotone structure of their environment. Heidhues, Koszegi and Strack (2018b)

consider a setting where action spaces are continuous, the state has a unidirectional effect on

output, and the prior and noise are normal. These assumptions imply that the posterior admits

a one-dimensional summary statistic, to which they apply tools from stochastic approximation

theory to establish convergence. He (2018) establishes convergence results in an environment

where agents suffer from the gambler’s fallacy and mislearn from endogenously censored data.

Two recent papers have made progress in more general environments. Frick, Iijima and

Ishii (2019b) provide conditions for convergence of the agent’s beliefs when the set of models

Θ is finite, but they do not explicitly model actions. They also identify environments where

vanishing amounts of misspecification can lead to extreme failures of learning the truth. Fu-

4We focus on the systematic patterns that tend to arise as time goes by, as opposed to initial behavior which

tends to be more dependent on random draws.
5There are many examples of boundedly-rational equilibrium concepts that abstract away from the question

of dynamics and convergence, including (Jehiel, 2005, 1995), Osborne and Rubinstein (1998), Eyster and Rabin

(2005), Esponda (2008), Jehiel and Koessler (2008), and (Spiegler, 2016, 2017).
6EP2016 tackle the issue of convergence in Theorem 3, where they use an idea from Fudenberg and Kreps

(1993) to show that, if agents are allowed to make possibly large but vanishing mistakes, then behavior can

converge to any equilibrium. Here, as in the rest of the literature on misspecified learning, we consider the case

where agents don’t make these types of mistakes.
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denberg, Lanzani and Strack (2020) focus on convergence of actions. They show that if the

agent’s action converges, then it converges to what they call a uniform Berk-Nash equilibrium,

which is a refinement of (pure-action) Berk-Nash equilibrium. They also establish partial con-

verses; for example, all uniformly strict Berk-Nash equilibria have an arbitrarily high proba-

bility of being the long-run outcome for some initial beliefs. They do not, however, establish

general conditions under which the action converges.

These recent results provide a much more complete picture of action and belief conver-

gence under model misspecification. By focusing on the frequency of actions, rather than the

action itself or the belief, we are able to obtain a general asymptotic characterization of the

agent’s behavior, whether it converges or not. As we show, there are examples where neither

the action nor the belief of the agent converges, but the frequency of actions does converge

(to a mixed-action equilibrium). In particular, this result provides a new interpretation of a

mixed-action equilibrium. We also present an example where not even the action frequency

converges, but we can still characterize asymptotic behavior.

Tools from stochastic approximation have been previously applied in economics, includ-

ing the literature on learning in games (e.g., Fudenberg and Kreps (1993), Benaim and Hirsch

(1999), and Hofbauer and Sandholm (2002)) and learning in macroeconomics (e.g., Sargent

(1993)). Our approach is inspired by Fudenberg and Kreps (1993)’s model of stochastic fic-

titious play. In that environment, the frequency of past actions exactly represents the agents’

beliefs about other agents’ strategies. In our environment, we characterize beliefs to be a func-

tion of the frequency of actions. We focus on the problem of a single agent for concreteness,

though our tools can be applied to games by assuming that players believe that other players

follow stationary strategies, as in Fudenberg and Kreps (1993) and EP2016.

Misspecified learning has also been studied in other environments. Rabin and Vayanos

(2010) study a case where shocks are i.i.d. but agents believe them to be autoregressive.

Esponda and Pouzo (2019b) extend Berk-Nash equilibrium to Markov decision problems,

where a state variable, other than a belief, affects continuation values. Molavi (2018) studies

a general-equilibrium framework that nests a class of macroeconomic models where agents

learn with misspecified models. Bohren and Hauser (2018) and Frick, Iijima and Ishii (2019a)

characterize asymptotic behavior in social learning environments with model misspecifica-

tion.7 Finally, Frick, Iijima and Ishii (2019b) focus on convergence and robustness of the

stability of equilibrium in both single-agent and social learning environments. Our results can

probably be directly extended to some of these setting (such as Markov decision processes)

7See also Eyster and Rabin (2010), Bohren (2016), and Gagnon-Bartsch and Rabin (2017).
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but perhaps not others (such as social learning, where, unlike our environment, the exact order

of action sequences matters for belief updating).

Finally, we take the misspecification as a primitive and establish results for any fixed mis-

specified model. For work that could help understand which types of misspecified models

agents are more likely to use, see, e.g., Aragones et al. (2005), Al-Najjar (2009), Al-Najjar

and Pai (2013), Schwartzstein (2014), Olea et al. (2019), and Fudenberg and Lanzani (2020).

We present some motivating examples in Section 2 and introduce the model in Section

3. We characterize asymptotic beliefs in Section 4 and asymptotic behavior in Section 5, and

present implications relevant to economic applications in Sections 6 and 7. Finally, we relate

our findings to the notion of a Berk-Nash equilibrium in Section 8.

2 Examples

The main contribution of this paper is to develop new tools to study learning in misspecified

settings. While we do not focus on any particular application, the tools we provide can be

useful in a wide range of environments. To illustrate, we discuss two examples where our ap-

proach allows us to make progress in areas that were previously outside the scope of analysis.

2.1 Cyclic behavior

Cyclic behavior is prevalent in human behavior, such as in addiction, dieting, and interper-

sonal relations, where behavior fluctuates between different actions, such as substance abuse

and abstention. In economics, cyclic behavior typically appears as a response to changing

endogenous variables, such as the real business cycle or periods of high inflation followed

by low inflation. It might appear implausible, however, to explain cyclical behavior in single-

agent decision environments that remain unchanged, at least using the standard expected utility

framework, and without incorporating additional, fluctuating variables.

But, in fact, we show that a standard belief-based theory of behavior can explain cycles

provided that the agent learns with a misspecified model. To illustrate, consider Spiegler’s

(2016) dieter’s dilemma.8 An agent decides in each period whether or not to follow a specific

diet, in this case to drink a leafy green juice. The agent believes that the green juice (G) po-

8Spiegler (2016) interprets a mixed action equilibrium to be the proportion of subjects who take each action

in the steady state of a dynamic environment where a sequence of short-lived agents face this problem and learn

from a database that contains past realizations. In contrast, we consider the case of a single agent and directly

tackle the cyclic behavior of this one agent who learns from her own past experience.
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tentially affects her blood pressure (B), which in turn affects her propensity to have headaches

(H). We can conveniently depict the agent’s model using the graph G→ B→ H.9 The agent

learns the strength of these relationships over time from experience. The truth, however, is

that there is no connection between drinking the green juice and headaches; instead, both the

green juice and headaches affect blood pressure: G→ B←H. More specifically, suppose that

blood pressure is low if and only if the agent drinks green juice or has no headache.

Suppose that the agent’s behavior were to converge to drinking the green juice every pe-

riod. Then her blood pressure would remain low irrespective of her health, and the probability

of headaches conditional on low blood pressure would equal the unconditional probability.

Due to model misspecification, the agent will incorrectly associate this unconditional prob-

ability with the causal effect of blood pressure on headaches, and, if this probability is low

relative to the cost of drinking the green juice every day, she will decide to stop drinking it.

Now suppose this is the case and the agent stops drinking the juice. If her behavior were

to converge to never drinking the juice, then her blood pressure would be determined only

by whether or not she has a headache. In particular, the probability that she has a headache

conditional on high blood pressure would be equal to one, so she would believe that there is

a perfect association between blood pressure and headaches, and, if the cost of drinking the

green juice is not too high, she would decide it is worth drinking it to lower her blood pressure.

In this example, using existing tools, all we can say is that the agent’s action cycles forever

between drinking and not drinking the juice. In this paper, we will develop tools that allow us

to characterize the frequency of times that the agent spends cycling between different actions,

which also allows us to determine, for example, the agent’s limiting welfare. Interestingly,

cycling can occur both in cases where the agent has a coarse model (for example, she believes

that the effect of blood pressure on headaches is either high or low) or a finer model where

any strength of the relationship is a priori conceivable. With a coarse model, the agent’s belief

will also diverge, and there will be periods of time where she will be almost convinced of a

strong causal relationship and decide to drink the juice, and also periods where she will be

almost convinced of a weak relationship and not drink the juice. With a finer model, the agent

will eventually be close to indifferent between drinking or not drinking the green juice, but

asymptotic behavior will still be characterized by cycles.

In Example 1, we formally study the dieter’s dilemma, which belongs to a family of

misspecified learning examples where actions are negatively reinforcing: The more an agent

chooses a specific action, the more the evidence (interpreted through her misspecified model)

9This corresponds to a directed acyclic graph (DAG), a concept used by Spiegler (2016) to study model mis-

specification in economics. In this paper, we do not rely on DAGs, but use it here for pedagogical convenience.
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indicates that it was not a good action to take.

2.2 Misdirected learning

The tools we develop can also be applied to generalize conclusions in previous work and to

highlight the economic conditions that drive a result as opposed to technical, non-essential

restrictions. To illustrate, we consider the model of Heidhues, Kőszegi and Strack (2018a)

(henceforth, HKS). A single agent chooses an action in each period to maximize output. Out-

put depends on his action, his own ability, and an external fundamental. The agent does not

know the fundamental and will over time use output observations to update his beliefs about it.

HKS study this learning problem under the assumption that the agent is overconfident about

his own ability, and they show how overconfidence systematically biases the agent away from

the correct belief and towards lower output.

Formally, output is given by y = Q(θ ,x,a)+ε , where x is the agent’s action (for example,

effort), θ ∈ [θ̄ , θ̄ ] ⊂ R is an unknown fundamental, a ∈ R is the agent’s ability, and ε is a

random noise, which follows a log-concave distribution.10 The agent is overconfident about

his ability a, and thinks that output is given by y=Q(θ ,x,A)+ε , where A> a. As discussed by

HKS, this model captures several applications, including delegation, control in organizations,

assertiveness vs. deference in relationships, and public policy choices.

HKS focus on the case where Q has increasing differences in both (−x,a) and (x,θ),

so that the incremental gain from choosing a higher action is lower when ability a is higher

and it is higher when the fundamental θ is higher. HKS show that this assumption leads

to misdirected learning: Even an agent who starts on average with correct beliefs about the

fundamentals becomes too pessimistic about it. As the agent changes his action in response to

this pessimism, he lowers outcomes and therefore becomes even more pessimistic about the

fundamental, a process that is perpetuated over time.

To reach this conclusion, HKS make a number of other assumptions, including that there

is a unique equilibrium belief (this is guaranteed by restrictions on the Q function) and that the

agent is myopic. They are able to extend this result to the non-myopic case by further assuming

that Q is linear in the fundamental θ . Their intuition, however, suggests that the result is more

general, and, as we discuss in Section 7, the tools developed in this paper can be used to show

that these additional assumptions are not required. Moreover, for the case of an underconfident

agent, i.e., A < a, they are able to show that misinference regarding the fundamental is self-

10To apply our results, we assume that the agent chooses an action from a finite set of actions, while HKS

assume that the agent chooses an action from a bounded real-valued interval.

7



correcting in the steady state, but their methods for establishing convergence do not apply. As

we discuss in Section 7, we can show that the agent’s belief indeed converges to the steady

state provided that an identification property holds. This convergence result is more generally

true in a large set of environments where the agent’s parameterized model is one-dimensional.

3 The environment

Objective environment. A single agent faces the following infinitely repeated problem. Each

period t = 1,2, ..., the agent chooses an action from a finite set X .11 She then receives a conse-

quence according to the consequence function Q : X→ ∆Y , where Y is the set of consequences

and ∆Y is the set of all (Borel) probability measures over it. Finally, the payoff function

π : X ×Y → R determines the agent’s current payoff. In particular, if xt ∈ X is the agent’s

action at time t, then yt ∈ Y is drawn according to the probability measure Q(· | xt) ∈ ∆Y , and

the agent’s payoff at time t is π(xt ,yt).

Assumption 1. (i) Y is a Borel subset of Euclidean space; (ii) There exists a Borel probability

measure ν ∈ ∆Y such that, for all x ∈ X, Q(·|x)≪ ν , i.e., Q(·|x) is absolutely continuous

with respect to ν (an implication is the existence of densities q(· | x) ∈ L1(Y,R,ν) such that
´

A
q(y | x)ν(dy) = Q(A|x) for any A⊆ Y Borel).12

Assumption 1 collects standard technical conditions and allows for either a finite or nonfi-

nite space of consequences Y : It includes both the case where the consequence is a continuous

variable ( ν is the Lebesgue measure and q(· | x) is the density function) and the case where it

is discrete ( ν is the counting measure and q(· | x) is the probability mass function).

If the agent knew the primitives and wished to maximize discounted expected utility, she

would choose an action in each period from the set of actions that maximizes

ˆ

Y

π(x,y)Q(dy | x) =

ˆ

Y

π(x,y)q(y|x)ν(dy).

We will study the case where the agent does not know the consequence function Q.

Subjective family of models. The agent is endowed with a parametric family of conse-

quence functions, QΘ = {Qθ : θ ∈ Θ}, where each Qθ : X → ∆Y is indexed by a model

11The assumption of a finite action space is important and it seems challenging to extend many of our results

to a continuum of actions.
12As usual, Lp(Y,R,ν) denotes the space of all functions f : Y →R such that

´

| f (y)|p ν(dy)< ∞.
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θ ∈Θ. We refer to QΘ as the family of models and say that it is correctly specified if Q ∈QΘ

and misspecified otherwise.

Assumption 2. (i) For all θ ∈Θ and x ∈ X, Qθ (·|x)≪ ν , where ν is defined in Assumption 1

(an implication is the existence of densities qθ (· | x)∈ L1(Y,R,ν) such that
´

A
qθ (y | x)ν(dy) =

Qθ (A|x) for any A⊆Y Borel); (ii) Θ is a compact subset of an Euclidean space and, for all x∈

X , θ 7→ qθ (· | x) is continuous Q(· | x)-a.s.; (iii) For all x∈X, there exists gx ∈ L2(Y,R,Q(· | x))

such that, for all θ ∈Θ, |ln(q(· | x)/qθ (· | x))| ≤ gx(·) a.s.-Q(· | x).

Assumption 2(i) guarantees the existence of a density function, and 2(ii) is a standard

parametric assumption on the subjective model. Assumption 2(iii) will be used to establish a

uniform law of large numbers. This condition also implies that, for all θ and x, the support of

Qθ (· | x) contains the support of Q(· | x); in particular, every observation can be generated by

the agent’s model.

Example 1. Consider the dieter’s dilemma discussed in Section 2. Recall that the true model

is given by G→ B← H, where all variables are binary and G = 1 means ‘drink the green

juice’, B = 1 means ‘high blood pressure’, and H = 1 means ‘headache’. The payoff function

is π(H,G) = (1−H)−CG, where C > 0 is the cost of drinking the green juice. Let q be the

probability that the agent has a headache, and recall that B = 0 if and only if either G = 1

or H = 0. A consequence is given by y = (H,B) and the action is binary, x = G ∈ {0,1}.

The consequence function Q(y | G) is given by the left panel of Figure 1. In particular, the

probability of a headache is the same irrespective of G, and since drinking the juice is costly,

C > 0, it is optimal to not drink the juice, G = 0.

In contrast, the agent believes that G→B→H. Let θ H
j be the agent’s perceived probability

that she has a headache, H = 1, whenever her blood pressure is B = j. In addition, let θ B be

the agent’s perceived probability that her blood pressure is high, B = 1, if she does not drink

the juice. For simplicity, we assume that the agent knows that if she drinks the juice then

her blood pressure is low, B = 0, for sure. Then a model is given by θ = (θ H
0 ,θ H

1 ,θ B),

where Θ = {θ ∈ [0,1]3 : θ H
0 ≤ θ H

1 } is the set of models with the restriction that the perceived

probability of a headache is nondecreasing in blood pressure.13 The consequence function

Qθ (y |G) is given by the right panel of Figure 1. For example, the probability that H = 1 and

B = 1 given G = 0 is given by the probability that H = 1 given B = 1, which is θ H
1 , times

13Technically, this set of models does not satisfy Assumption 2(iii), but we can easily replace it with the the

set Θε = {θ ∈ Θ : θ H
0 ≥ ε,θ B ∈ [ε,1− ε]}, which does satisfy the assumption and yields the same solution for

all sufficiently small ε > 0.
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0 0 1−θ H
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1 )θ B (1−θ H
0 )(1−θ B)
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Qθ (H,B | G)

Figure 1: Dieter’s dilemma consequence functions. The left panel described the true consequence

function, Q, while the right panel describes the consequence function parameterized by θ .

the probability that B = 1 given G = 0, which is θ B. Clearly, the agent’s family of models is

misspecified. �

Bayesian learning. The agent is Bayesian and starts with a prior µ0 over the space of

models Θ. She observes past actions and consequences and uses this information to update her

belief about Θ in every period. The timing is as follows: At each time t, the agent holds some

belief µt . Given µt , she chooses an action xt . Then the consequence yt is drawn according

to Q(· | xt). The agent observes yt , receives an immediate payoff of π(xt,yt), and updates

her belief to µt+1 = B(xt ,yt ,µt), where B is the Bayesian operator.14 The next assumption

guarantees that the prior has full support.

Assumption 3. µ0(A)> 0 for any A open and non-empty.

Policy and probability distribution over histories. A policy f is a function f : ∆Θ→ X

specifying the action f (µ) ∈ X that the agent takes at any moment in time in which her belief

is µ .15 A history is a sequence h = (x0,y0, ...,xt,yt , ...) ∈ H ≡ (X ×Y )∞. Together with the

primitives of the problem, a policy f induces a probability distribution over the set of histories,

which we will denote by P f .

Policy correspondence. A policy correspondence is a mapping F : ∆Θ⇒X , where F(µ)⊆

X denotes the set of actions that the agent might choose any time her belief is µ ∈ ∆Θ. We

sometimes abuse notation and, for a set of probability measures A⊆∆Θ, we let F(A) represent

the set of actions x such that x ∈ F(µ) for some µ ∈ A. Let Sel(F) denote the set of all

policies f that constitute a selection from the correspondence F , i.e., with the property that

f (µ) ∈ F(µ) for all µ .

14The Bayesian operator B : X ×Y ×∆Θ→ ∆Θ satisfies, for all A⊆ Θ Borel, for any x ∈ X , and a.s.-Q(· | x),
B(x,y,µ)(A) =

´

A
qθ (y | x)µ(dθ )/

´

Θ qθ (y | x)µ(dθ ).
15We do not allow the agent to mix to simplify the exposition and to highlight the fact that a mixed distribution

over actions may describe limiting behavior despite the fact that the agent never actually mixes. In the more gen-

eral case where f maps into ∆X , our main result (Theorem 2) holds exactly as stated but some of the statements

in Section 6 need to be modified accordingly.
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Assumption 4. The policy correspondence F is upper hemi-continuous (uhc).16

An important special case is one where the agent maximizes discounted expected utility

with discount factor β ∈ [0,1). This problem can be cast recursively as

W (µ) = max
x∈X

ˆ

Y

{
π(x,y)+βW(µ ′)

}
Q̄µ(dy|x)

where µ ′ = B(x,y,µ) is the Bayesian posterior, and Q̄µ ≡
´

Θ Qθ µ(dθ). In this case, the cor-

respondence mapping beliefs to optimal actions is uhc provided that µ 7→
´

Y
π(x,y)Q̄µ(dy|x)

is continuous and bounded.17

In this paper, we characterize behavior for a given set of policies and not for a single

policy. The reason is that our method works for behavior that is continuous in beliefs, and this

condition is formally achieved by assuming the policy correspondence to be uhc. Continuity

is important because we approximate the agent’s belief, and we need to know what actions

can be chosen at nearby beliefs, and continuity allows us to do so. A single policy, on the

other hand, may not be continuous (e.g. the optimal policy is discontinuous at beliefs where

the agent is indifferent between multiple actions). Note that expanding beyond a single policy

to a policy correspondence is not much of a limitation in most applications since the objective

is often to characterize behavior for all policies that share a particular characteristic (e.g., the

set of all optimal policies).18

Action frequency. Our main objective is to study regularities in asymptotic behavior. Pre-

vious work has focused on characterizing the limit of the sequence of actions, whenever it

exists. But there are cases where actions do not converge (e.g., Nyarko (1991)), and in those

cases previous work has not much else to say about asymptotic behavior. We make progress

by studying the action frequency. We do so for two reasons. First, from a practical perspec-

tive, even if actions do not converge, it is possible for the frequency of actions to converge.

Thus, studying frequencies can help uncover additional regularities in behavior, with impor-

tant implications regarding, for example, limiting average payoffs (welfare). Second, as we

will show, asymptotic beliefs depend crucially on the action frequency. Because actions in

turn depend on beliefs, future actions depend crucially on the frequency of past actions.

16As usual, ∆(Θ) is endowed with the weak topology.
17Given our assumption that θ 7→ qθ is continuous, a sufficient condition is that, for all x ∈ X , there exists

hx ∈ L1(Y,R,ν) such that, for all θ ∈Θ, |π(x, ·)qθ (· | x)| ≤ h(·) a.s.-Q(· | x). For example, this is satisfied if Y is

compact and π(x, ·) is continuous.
18An alternative approach would be to focus on a single, continuous policy function (for example, a smooth

approximation of the optimal correspondence, where mixed actions are feasible). Theorem 2 holds exactly as

stated under this alternative approach since all that it requires about behavior is that it be continuous in beliefs.
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For every t, we define the action frequency at time t to be a function σt : H→ ∆X defined

such that, for all h ∈H and x ∈ X ,

σt(h)(x) =
1

t

t

∑
τ=1

1(x)(xτ(h))

is the fraction of times that action x occurs in history h by time period t.

4 Asymptotic characterization of beliefs

In this section, we take as given the sequence of action frequencies, (σt)t , and we characterize

the agent’s asymptotic beliefs. In subsequent sections, we will use the characterization of

beliefs to characterize the sequence (σt)t , which is ultimately an endogenous object. The key

object in our characterization is the notion of Kullback-Leibler divergence.19

Definition 1. The Kullback-Leibler divergence (KLD) is a function K : Θ×∆X → R such

that, for any θ ∈ Θ and σ ∈ ∆X ,

K(θ ,σ) = ∑
x∈X

EQ(·|x)

[

ln
q(Y | x)

qθ (Y | x)

]

σ(x)

= ∑
x∈X

ˆ

Y

ln
q(y | x)

qθ (y | x)
q(y | x)ν(dy)σ(x).

The set of closest models given σ is the set Θ(σ)≡ argminθ∈Θ K(θ ,σ) and the minimized

KLD given σ is K∗(σ)≡minθ∈Θ K(θ ,σ).

Lemma 1. (i) (θ ,σ) 7→ K(θ ,σ)−K∗(σ) is continuous; (ii) Θ(·) is uhc, nonempty-, and

compact-valued.

Proof. The proof of this lemma and all other results in the paper appear in the appendix.

If the actions were drawn from an i.i.d. distribution σ ∈ ∆X , we could apply Berk’s (1966)

result to conclude that the posterior eventually concentrates on the set of closest models given

σ (i.e., for all open sets U ⊇ Θ(σ), limt→∞ µt(U) = 1 P f -a.s.).20 EP2016 showed that this

conclusion extends to non-i.i.d. actions, provided that the distribution over actions at time t

19Formally, what we call KLD is the Kullback-Leibler divergence between the distributions q ·σ and qθ ·σ
defined over the space X×Y .

20See also Bunke and Milhaud (1998). Relatedly, White (1982) shows that the Kullback-Leibler divergence

characterizes the limiting behavior of the maximum quasi-likelihood estimator.
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converges to a distribution σ . This result is useful to characterize behavior under the assump-

tion that it stabilizes, but it is insufficient to determine whether or not behavior stabilizes.

We next provide a characterization of beliefs without assuming that behavior stabilizes.

Roughly speaking, we will show that the distance between the agent’s belief at time t, µt , and

the set of probability measures with support in Θ(σt) goes to zero as time goes to infinity,

irrespective of whether or not (σt)t converges. We will establish this result in several steps,

which we now discuss informally and then address formally in the proofs. First, we note that

for any Borel set A⊆ Θ, the posterior belief over A can be written as

µt+1(A) =

´

A ∏t
τ=1 qθ (yτ | xτ)µ0(dθ)

´

Θ ∏t
τ=1 qθ (yτ | xτ)µ0(dθ)

=

´

A
e−tLt(θ )µ0(dθ)

´

Θ e−tLt(θ )µ0(dθ)
, (1)

where Lt(θ) ≡ t−1 ∑t
τ=1 ln

q(yτ |xτ )
qθ (yτ |xτ)

is the sample average of the log-likelihood ratios, and

where we omitted the history for simplicity. Naturally, we might expect the sample aver-

age to converge to its expectation for each θ . The next result strengthens this intuition and

establishes that the difference between Lt(·) and K(·,σt) converges uniformly to zero as t→∞.

Lemma 2. Under Assumptions 1-2, for any policy f , limt→∞ supθ∈Θ |Lt(θ)−K(θ ,σt)| = 0

P f -a.s.

The next step is to replace Lt(·) in (1) with K(·,σt). By Lemma 2, for sufficiently large t,

we obtain

µt+1(A)≈

´

A
e−tK(θ ,σt)µ0(dθ)

´

Θ e−tK(θ ,σt)µ0(dθ)
. (2)

As t→∞, the posterior concentrates on models where K(θ ,σt) is close to its minimized value,

K∗(σt). This statement is seen most easily for the case where Θ has only two elements, θ1 and

θ2. In this case, (2) becomes

µt+1(θ1)≈ 1/(1+
µ0(θ2)e

−tK(θ2,σt)

µ0(θ1)e−tK(θ1,σt)
). (3)

Suppose, for example, that (σt)t converges to σ and that KLD is uniquely minimized at θ1

given σ . Then there exists ε > 0 such that, for all sufficiently large t, K(θ2,σt)−K(θ1,σt)> ε .

It follows from (3) that µt+1(θ1) converges to 1, so the posterior concentrates on the model

that minimizes KLD given σ . When (σt)t does not converge, however, we have to account for

the possibility that K(θ2,σt)−K(θ1,σt)> 0 for all t but K(θ2,σt)−K(θ1,σt)→ 0 as t→ ∞.

In this case, we cannot say that the posterior eventually puts probability 1 on θ1, even though

13



θ1 always minimizes KLD. This is why the next result says that the posterior concentrates on

models where K(θ ,σt) is close to its minimized value, K∗(σt), as opposed to saying that the

posterior asymptotically concentrates on the minimizers of KLD given σt .

Theorem 1. Under Assumptions 1-3, for any policy f ,

lim
t→∞

ˆ

Θ
(K(θ ,σt)−K∗(σt))µt+1(dθ) = 0 P f -a.s. (4)

In Section 5, we use Theorem 1 to approximate the agent’s belief, µt , with the set of prob-

ability measures with support in {θ ∈ Θ : K(θ ,σt)−K∗(σt)≤ δt}, where δt → 0. Therefore,

we will be able to study the asymptotic behavior of (σt)t via a stochastic difference equation

that only depends on σt and a vanishing approximation error, and not on µt .

5 Asymptotic characterization of action frequencies

In this section, we propose a method to study the asymptotic behavior of the action frequency.

Among other benefits, one can use the method to determine if behavior converges or not. The

key departure from previous approaches in the literature is to focus on the evolution of frequen-

cies of actions. Using the characterization of beliefs in Theorem 1, we write this evolution as a

stochastic difference equation expressed exclusively in terms of the action frequency. We then

use tools from stochastic approximation developed by Benaïm, Hofbauer and Sorin (2005)

(henceforth, BHS2005) to characterize the solutions of this difference equation in terms of the

solution to a generalization of a differential equation.

We first provide a heuristic description of our approach. The sequence of frequencies of

actions, (σt)t , can be written recursively as follows:

σt+1 = σt +
1

t +1
(1(xt+1)−σt) , (5)

where 1(xt+1) = (1x(xt+1))x∈X and 1x(xt+1) is the indicator function that takes the value 1 if

xt+1 = x and 0 otherwise.

By adding and subtracting the conditional expectation of 1(xt+1) (i.e., the probability that

each action is played at time t +1 given the belief at time t +1), we obtain

σt+1 = σt +
1

t +1
(E [1(xt+1) | µt+1]−σt)+

1

t +1

(

1(xt+1)−E [1(xt+1) | µt+1]
︸ ︷︷ ︸

)

=0

. (6)
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The last term in equation (6) is exactly equal to zero because the agent chooses pure

actions.21 The reason it is hard to characterize (σt)t using (6) is that its evolution depends

on the agent’s belief. If we could somehow write the belief µt+1 as a function of σt , then

we would have a recursion where σt+1 depends only on σt . This is where Theorem 1 from

Section 4 is useful. This theorem will allow us to approximate µt+1 with a set of probability

measures that depends on σt .

The objective is not to approximate µt+1 but rather the conditional expectation E [1(xt+1) | µt+1]

in equation (6). The conditional expectation, however, is typically discontinuous in the belief

(e.g., if the agent is indifferent between two actions). Thus, replacing µt+1 with a good ap-

proximation does not necessarily yield a good approximation for the conditional expectation.

We tackle this discontinuity issue by replacing the function µ 7→ E [1(xt+1) | µ] with a corre-

spondence that contains this function and is well behaved.

To see how this approach works, note that E[1(xt+1) | µ] ∈ ∆F(µ) for all µ . Therefore,

we can view equation (6) as a particular case of the following stochastic difference inclusion:

σt+1 = σt +
1

t +1
(rt+1−σt) , (7)

where rt+1 ∈ ∆F(µt+1). It is called a difference inclusion because rt+1 can take multiple val-

ues. Importantly, we use Theorem 1 to approximate µt+1 with the set of probability measures

µ satisfying
´

Θ(K(θ ,σt)−K∗(σt))µ(dθ) ≤ δt , where δt → 0 is a vanishing approximation

error. In particular, if the error were exactly zero, the set would be equal to ∆Θ(σt). More

generally, equation (7) can be written entirely in terms of (σt)t and approximation errors.

A key insight from the theory of stochastic approximation is that, in order to characterize

a discrete-time process such as (σt)t , it is convenient to work with its continuous-time inter-

polation. Because of the multiplicity inherent in equation (7), we apply the specific methods

developed by BHS2005, who extend Benaim (1996)’s ordinary-differential equation method

to the case of differential inclusions.22

Set τ0 = 0 and τt = ∑t
i=1 1/i for t ≥ 1. The continuous-time interpolation of (σt)t is the

21With mixed actions, this last term would be a Martingale difference sequence, essentially adding a noise

term that can be controlled asymptotically in a standard manner. Theorem 2 would hold as stated, where now

∆F(µ) would be a set of compound lotteries, i.e., the set of all distributions over actions σ̂ that are induced by

some compound lottery z chosen from ∆F(µ), that is, σ̂(x) =
´

σ∈F(µ) z(σ)σ(x)dσ for each x.
22See Borkar (2009) for a textbook treatment of the ODE method in stochastic approximation.
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Figure 2: Example of a continuous-time interpolation.

function w : R+→ ∆X defined as

w(τt + s) = σt + s
σt+1−σt

τt+1− τt

, s ∈ [0,
1

t +1
). (8)

Figure 2 illustrates this simple interpolation for a specific value of x ∈ X . A convenient prop-

erty of the interpolation is that it preserves the accumulation points of the discrete process.

Equations (7) and (8) can be combined to show that the derivate of w with respect to (a

re-indexing of) time, which we denote by ẇ, is approximately given by rt+1−σt . As argued

earlier, rt+1 belongs to a set that depends on σt and an approximation error, and this set is equal

to ∆F(∆Θ(σt)). Thus, the derivate approximately takes values in ∆F(∆Θ(σt))−σt . The next

step is to replace σt in this last expression by its interpolation w(t). This replacement adds

yet another vanishing approximation error, and we therefore obtain, ignoring the approxima-

tion error, that ẇ(t) ∈ ∆F(∆Θ(w(t)))−w(t). Thus, we can show that the continuous-time

interpolation of (σt)t is well approximated by solutions to the following differential inclusion:

σ̇(t) ∈ ∆F(∆Θ(σ(t)))−σ(t). (9)

In the special case where the agent is correctly specified and the KLD minimizer is unique

for all action frequencies (i.e., Θ(σ) = θ∗ for all σ ), the right-hand side of (9) reduces to

δx∗ −σ(t), where δx∗ is the degenerate distribution at x∗ and x∗ is the unique optimal action
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given the correct model θ∗.23 In this case, all solutions to the differential inclusion converge

to this optimal action δx∗ regardless of the initial prior. However, if the model is misspecified,

the KLD minimizer Θ(σ(t)) depends on the action frequency σ(t), and so does the first-

term of the right-hand side of (9). Hence solutions to the differential inclusions show more

complicated dynamics in general.

To state the main result formally, we first define what we mean by a solution to the dif-

ferential inclusion. A solution to the differential inclusion (9) with initial point σ ∈ ∆X is a

mapping σ : R→ ∆X that is absolutely continuous over compact intervals with the properties

that σ(0) = σ and that (9) is satisfied for almost every t. Let ST
σ denote the set of solutions to

(9) over [0,T ] with initial point σ . The assumption that F is uhc implies that, for every initial

point, there exists a (possibly nonunique) solution to (9); see, e.g., Aubin and Cellina (2012).

We now state the main characterization result.

Theorem 2. Suppose that Assumptions 1-3 hold and let F be an uhc policy correspondence.

For any policy f ∈ Sel(F), the following holds P f -a.s.: For all T > 0,

lim
t→∞

inf
σ∈ST

w(t)

sup
0≤s≤T

‖w(t + s)−σ(s)‖= 0. (10)

Theorem 2 says that, for any T > 0, the curve w(t + ·) : [0,T ] → ∆X defined by the

continuous-time interpolation of (σt)t approximates some solution to the differential inclu-

sion (9) with initial condition w(t) over the interval [0,T ] with arbitrary accuracy for suffi-

ciently large t. As we will show, this result is convenient because it allows us to characterize

asymptotic properties of (σt)t by solving the differential inclusion in (9).

BHS2005 refer to a function w satisfying (10) as an asymptotic pseudotrajectory of the

differential inclusion. They show that the limit set of a (bounded) asymptotic pseudotrajectory

is internally chain transitive.24 Thus, one corollary of Theorem 2 is that the frequency of

actions converges almost surely to an internally chain transitive set of the differential inclusion.

Because the notion of internally chain transitive is fairly complex, in the next two sections we

provide a series of results that help characterize behavior in economic applications.

The differential inclusion (9) becomes a differential equation in the special case in which

∆F(∆Θ(σ)) is a singleton for all σ . This is not true if F is the correspondence of optimal

actions because there are typically beliefs at which multiple actions are optimal. But even if

we smoothed the best response function (as in Fudenberg and Kreps, 1993) and turned F into

23For this particular statement, we assume a unique optimal action given the true parameter value θ ∗.
24For a definition of an internally chain transitive set, see BHS2005, Section 3.3, Definition VI.
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a function, ∆Θ(σ) could still be multivalued. This is typically the case, for example, in bandit

problems, but it is also true when the space of models is coarse.

6 Convergence results

We now present a series of implications of Theorem 2 that can be readily applied to economic

applications. In the next two sections, we assume that the agent chooses a policy f that is a

selection from F and that Assumptions 1-4 are satisfied. All probabilistic statements are with

respect to the corresponding probability measure P f .

6.1 Equilibrium

We define an equilibrium to be a stationary point of the differential inclusion.

Definition 2. σ ∈ ∆X is an equilibrium if σ ∈ ∆F(∆Θ(σ)).

If σ is an equilibrium, then there is a solution of the differential inclusion that starts at σ

and forever remains at σ . The next result shows that, if the action frequency converges with

positive probability, then it must converge to an equilibrium.

Proposition 1. Let H∗ be the set of all sample paths which satisfy the property stated in

Theorem 1; note that P f (H∗) = 1. If there is a sample path h ∈ H∗ such that σt(h) converges

to σ∗, then σ∗ must be an equilibrium.

6.2 Attracting sets and unstable equilibrium

Proposition 1 applies only to the case in which the action frequency converges. It does not tell

us what happens when the action frequency does not converge, and also it is not clear when

the action frequency converges. Also, even when the action frequency converges, if there are

multiple equilibria, the proposition does not tell us which one will arise as a long-run outcome.

In this section, we introduce two concepts, attracting sets and unstable equilibria, which are

useful to make better predictions about the asymptotic behavior of the action frequency.

Let d(σ ,A) denote the distance from a point σ to a set A, that is, let d(σ ,A)= infσ̃∈A ‖σ − σ̃‖.

The following definition is standard in the stochastic approximation literature (e.g. BHS2005).

Definition 3. A set A ⊆ △X is attracting if there is a set U such that A ⊂ intU and such

that for any ε > 0, there is T such that d(σσσ(t),A)< ε for any initial value σσσ(0) ∈U , for any

solution σσσ ∈ S∞
σσσ(0) to the differential inclusion, and for any t > T .
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In this definition, we require uniform convergence, in that as long as the initial value is

chosen from U , σσσ(t) is in the ε-neighborhood of A for all periods t > T . Intuitively, this

implies that once σσσ(t) enters the ε-neighborhood of A, it will never leave it. The largest set

U which satisfies the property in this definition is the basin of attraction of A, and we will

denote it by UA. A set A is globally attracting if it is attracting and its basin of attraction is

the whole space△X . An equilibrium σ∗ is attracting if the set A = {σ∗} is attracting.

The following proposition shows that an attracting set appears as a long-run outcome in

some sense. Let E denote the set of all equilibria.

Proposition 2. The following results hold:

(i) If A is globally attracting, then the action frequency σt approaches this set A almost

surely: limt→∞ d(σt ,A) = 0. In particular, if A is a globally attracting equilibrium, σt

converges to that equilibrium almost surely.

(ii) Suppose that there are finitely many attracting sets (A1, · · · ,AN) such that △X is the

union of the basins (UA1
, · · · ,UAN

) of these attractors and of the equilibrium set E.

Then almost surely, σt approaches the equilibrium set E or one of these attractors:

limt→∞ d(σt ,E) = 0 or limt→∞ d(σt ,An) = 0 for some n.

The property of uniform convergence required in the definition of attracting sets is crucial

to obtain Proposition 2. To see this, let www(t) denote the current action frequency. Theorem

2 implies that the motion of the action frequency in the future is approximated by a solution

σσσ ∈ S∞
www(t) to the differential inclusion for some (long but) finite time T ; but it does not guarantee

that the action frequency www is approximated by σσσ forever. So even if all solutions σσσ ∈ S∞
www(t)

starting from the current value www(t) converge to some equilibrium σ∗, the action frequency www

may not converge there.25 Formally, Theorem 2 implies that, for any T and ε > 0, if t is large

enough, then ‖www(t +T )−σσσ(T )‖< ε for some σσσ ∈ S∞
www(t), so the action frequency www(t +T ) in

time t +T is close to the equilibrium σ∗. However, after time t +T , the action frequency www

can be quite different from σσσ , and it may move away from the equilibrium σ∗.

This suggests that in order to guarantee convergence to σ∗, we need a stronger assumption,

and uniform convergence is precisely the property we want. To see how it works, note that

Theorem 2 can be applied iteratively, so that the action frequency www from time t +T to t +2T

is approximated by a solution σσσ ′ ∈ S∞
www(t+T ) starting from www(t +T ). As mentioned earlier, this

value www(t + T ) is close to the equilibrium σ∗. So if the equilibrium σ∗ is attracting, then

25This is the “shadowing” problem in the stochastic approximation literature (e.g., Benaim (1999), section 8).
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www(t +T ) is in the basin of σ∗, and the solution σσσ ′ starting from this point stays around the

equilibrium σ∗. This in turn implies that the action frequency www(t + 2T ) in time t + 2T is

also close to σ∗. A similar argument shows that www(t + nT ) in time t + nT is close to σ∗ for

every n = 1,2, · · · . The proof of Proposition 2 generalizes this idea and shows convergence to

attracting sets.26

Next, we apply the result to an example where the action diverges but the frequency con-

verges.

Example 1 (Dieter’s dilemma, continued) Using the consequence functions Q and Qθ

depicted in Figure 1, the KLD function in this example is

K(σ ,θ)=σ(1)

(

q ln
q

θ H
0

+(1−q) ln
1−q

1−θ H
0

)

+σ(0)

(

q ln
q

θ H
1 θ B

+(1−q) ln
1−q

(1−θ H
0 )(1−θ B)

)

,

where σ(1) is the probability of drinking the juice, i.e., G = 1. Assuming σ(1)< 1, there is a

unique minimizer given by θ H
1 = 1, θ B = q, and θ H

0 = qσ(1)/(qσ(1)+1−q)< q. Intuitively,

if blood pressure is high, B = 1, it must be that the agent did not drink the juice, G = 0, and

that she had a headache, H = 1. Therefore, there is a perfect correlation between B and H, thus

explaining the belief that the probability of a headache conditional on high blood pressure is

one, θ H
1 = 1. In order to fit the true joint probability of H = 1 and B = 1 when G = 0, which is

q, the agent believes that the probability of having high blood pressure conditional on G = 0 is

θ B = q, since, as mentioned above, she believes that conditional on high blood pressure, she

will have a headache for sure. Finally, the agent believes that the probability of a headache

conditional on low blood pressure is lower than the unconditional probability of a headache,

since low blood pressure is indicative of good health. This is particularly true when G = 0,

which is why θ H
0 is lowest, and equal to zero, when σ(1) = 0, and it is increasing in the

probability that the agent takes the green juice, σ(1).

If, however, σ(1) = 1, so that the agent takes the green juice with probability one, then

there are multiple minimizers of KLD, all satisfying: θ H
1 ≥ θ H

0 , θ B ∈ [0,1], and θ H
0 = q.

Intuitively, there is no information to identify θ H
1 and θ B (these parameters only enter the

second term of the KLD function, but this term is now multiplied by zero). Moreover, because

the agent always drinks the juice, then B = 0 occurs irrespective of the realization of H, and

so the probability of H conditional on B = 0 is given by the unconditional probability, q.

Next, we turn to the optimal decision and suppose, for simplicity, that the agent is myopic.

26Formally, the whole path of www is approximated by a chain of trajectories (σσσ1,σσσ2, · · · ) where ‖σσσn(T )−
σσσn+1(0)|< ε , and uniform convergence ensures that this chain of trajectories converges to σ∗.
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Figure 3: The dieter’s dilemma. The left panel plots the difference in expected payoff from dieting vs. not

dieting as a function of the probability of dieting. The right hand side plots the mapping σ 7→ ∆F(∆Θ(σ)) that

characterizes the the asymptotic dynamics of the action frequency.

The expected payoff is (1− θ H
0 )−C if G = 1 and (1− θ H

0 )(1− θ B)+ (1− θ H
1 )θ B if G =

0. Using the minimized values of the parameter values discussed above, the difference in

expected payoff is a function of σ(1) and given by Di f f (σ(1)) = q(1− q)/(qσ(1)+ 1−

q)−C for σ(1) < 1. This expression is decreasing in σ(1). Intuitively, as the probability of

drinking the green juice increases, the perceived probability that low blood pressure causes

headaches increases, which decreases the relative benefit of drinking green juice in order to

lower blood pressure.

In the case σ(1) = 1, where there are multiple minimizers of KLD, the fact that θ H
1 ≥

θ H
0 implies that (1− θ H

0 ) is an upper bound for the expected payoff under G = 0. Thus,

Di f f (σ(1)) ∈ [−C,1−q−C].

The left hand side of Figure 3 plots the difference in expected payoff between G = 1 and

G = 0 as a function of the probability of G = 1, i.e., Di f f (σ(1)), under the assumption that

1−q <C < q. This assumption says that the cost is large enough that the agent would not find

it profitable to take the juice in order to lower the probability of a headache from one to q, but

that the cost is small enough that the agent would find it profitable to take the juice in order

to lower the probability of a headache from q to zero. As shown in the figure, the assumption

implies that Di f f (0) > 0 and Di f f (1) < 0. Since Di f f (·) is decreasing, there is a unique

σ∗(1), depicted in Figure 3, such that Di f f (σ∗(1)) = 0.

From the expression Di f f , we can characterize the correspondence F(∆Θ(σ)). In partic-

ular, F(∆Θ(σ)) = {1} if σ(1) < σ∗(1), F(∆Θ(σ)) = {0} if σ > σ∗(1), and F(∆Θ(σ)) =
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{0,1} if σ = σ∗(1). Actions are negatively reinforcing in the sense that doing more of one

action makes the agent want to do less of it. This feature can be seen in Figure 3, where we

have plotted σ 7→ ∆F(∆Θ(σ)). For example, if the agent chooses pure action G = 0, i.e.,

σ(1) = 0, then the KLD minimizer is such that it is optimal to choose the opposite action,

G = 1. Similarly, if the agent takes pure action G = 1, she then prefers to take action G = 0.

This feature of negatively reinforcing actions is present in several examples in the litera-

ture, and previous work has shown that the action does not converge in those examples (e.g.,

Nyarko (1991), Esponda and Pouzo (2016), Fudenberg, Romanyuk and Strack (2017)).27 We

can use our differential inclusion to go beyond this result and show that the action frequency

does converge. In the example, σ∗(1) is the unique equilibrium point: Given σ∗(1), the closest

model is θ∗ = (qσ∗(1)/(qσ∗(1)+1−q),1,q), and, given the belief δθ ∗ , the agent is indiffer-

ent between each of the actions in the support of σ∗. Moreover, as Figure 3 shows, for any

initial condition, the solutions to the differential inclusion converge to σ∗(1), and so {σ∗(1)}

is a globally attracting set. Proposition 2(i) implies that the frequency of action G = 1 almost

surely converges to σ∗(1).

In this example, the action diverges, but the action frequency converges to σ∗ and the

belief converges to a belief degenerate at θ∗. Consider next a modified example with only two

models in the support of the prior, Θ= {(θ̄ H
0 ,1,q),(θ̂ H

0 ,1,q)}, where we pick θ̄ H
0 and θ̂ H

0 such

that K(σ∗, θ̄ H
0 ) = K(σ∗, θ̂ H

0 ); in particular, we can think of a low and high perceived value of

the probability of a headache conditional on low blood pressure (note that the unrestricted

KLD minimizer that we found above is between these two values). Then the frequency of

actions converges to the mixed action σ∗, though now the agent’s belief does not converge.28

So the action frequency may converge even if both the action and the belief diverge. �

In the next example, we show that the attracting set need not be an equilibrium.

Example 2. The consequence space is Y = R3. There are three actions, x1, x2, and x3. Given

an action xk, the consequence y follows the normal distribution N(ek, I) where ek ∈ R3 is the

unit vector whose kth component is one, and I is the identity matrix. However, the agent

does not recognize that the action influences the consequence. Formally, the model space is

the probability simplex Θ = {θ = (θ1,θ2,θ3)|∑
3
k=1 θk = 1, θk ≥ 0 ∀k}, and for each model

θ = (θ1,θ2,θ3), the agent believes that y follows the normal distribution N(θ , I). Assume

that for each degenerate belief δθ , the policy F(δθ ) is given as in Figure 4, where the triangle

27Negative reinforcement is also present in other examples in Spiegler (2016) as well as in voting (Esponda

and Pouzo (2017, 2019a); Esponda and Vespa (2018)) and investment (Jehiel (2018)) environments.
28The argument is identical to Berk’s (1966) example of a fair coin that is believed to be biased.
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represents the model space Θ. For example, if the current belief puts probability one on the

model θ = e1, then the policy F selects the action x2.

e1

(0.9,0,0.1)

e2

e3

(0.1,0.9,0)

(0,0.1,0.9)

x2

x3

x1

Figure 4: Policy F(δθ ) for each model θ

x1

x2

x3

Figure 5: Differential Inclusion

Simple algebra shows that, for each mixed action σ , the KLD minimizer is θ = σ . Intu-

itively, the agent’s subjective model cannot explain the correlation between the action and the

consequence anyway, so the best model is the one which explains the marginal distribution

of the consequence y. Accordingly, a solution to the differential inclusion is described as in

Figure 5, where the triangle represents the whole action space △X and each arrow points to

the corresponding vertex in the large triangle.

This example has a unique equilibrium, σ∗ = (1
3
, 1

3
, 1

3
). This equilibrium is not attracting.

Indeed, starting from any nearby point σ 6= σ∗, a solution to the differential inclusion moves

away from the equilibrium, as described in Figure 6.

On the other hand, the cycle described by the arrows in Figure 7 is attracting. The basin of

attraction is the whole space △X except the equilibrium point σ∗ = (1
3
, 1

3
, 1

3
). That is, given

any initial value σ 6= σ∗, any solution to the differential inclusion will eventually follow this

cycle. (The proof is straightforward and hence omitted. ) �

Proposition 2(ii) implies that in Example 2, the action frequency σt must converge to the

(non-attracting) equilibrium σ = (1
3
, 1

3
, 1

3
) or follow the limit cycle described in Figure 7. But

which one is more likely to occur? It turns out that the equilibrium σ∗ in the example above is

unstable, in that the action frequency never converges there. So the action frequency follows

the limit cycle almost surely.

To see why the equilibrium σ∗ is unstable, suppose that the current action frequency is

exactly this equilibrium, i.e., σt = σ∗. Suppose also that the agent chooses some action today,

say x1. This changes the action frequency in the next period, and we have σt+1 = 1
t+1

1x1
+
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x1

x2

x3

Figure 6: Instability of the equilibrium

x1

x2

x3

Figure 7: Limit cycle.

t
t+1

σ∗. Note that this new action frequency is slightly different from the equilibrium σ∗. Then

starting from this action frequency, a solution to the differential inclusion moves away from the

equilibrium (See Figure 6), which implies instability of σ∗. More formally, this equilibrium

σ∗ is unstable in the following sense:

Definition 4. An equilibrium σ∗ is unstable if there is a number T > 0 and an open neighbor-

hood U of σ∗ such that for any σ ∈U , for any x ∈ F(△Θ(σ∗)), and for any β ∈ (0,1), there

is β ∈ (β ,1) such that for any σσσ ∈ S∞
βσ+(1−β )δx

, we have σσσ(t) /∈U for some t ∈ [0,T ].

In Example 2, starting from any nearby point σ 6= σ∗ of the equilibrium σ∗, the solution to

the differential inclusion moves away from the equilibrium σ∗. In such a case, the condition

stated in the definition is satisfied, so this equilibrium σ∗ is unstable.

But our definition of unstable equilibrium is a bit more general. Roughly, an equilibrium

σ∗ is unstable if starting from almost all nearby points σ 6= σ∗ of the equilibrium σ∗, all the

solutions to the differential inclusion eventually leave its neighborhood. This is illustrated in

the following example:

Example 3. We add one more action x′3 to Example 2. This new action x′3 is redundant, and is

identical to the action x3. Formally, the signal distribution given the action x′3 is N(e3, I), and

the policy F(µ) contains x′3 for all µ such that F(µ) contains x3 in Example 2. The agent still

believes that the action does not influence the signal distribution.

This example has a continuum of equilibria; any mixed action σ with σ(x1) = σ(x2) =

σ(x3)+σ(x′3)=
1
3

is an equilibrium. Pick one equilibrium σ∗, and pick an open neighborhood

U . This neighborhood U contains equilibrium points and non-equilibrium points. The set

of equilibrium points is continuous, but has measure zero; so almost all the points in U are
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non-equilibrium points. Starting from these non-equilibrium points, all the solutions to the

differential inclusion leave the neighborhood U , as described in Figure 6. However, starting

from the equilibrium points, a solution to the differential inclusion can stay there forever. So

U contains some points from which the solution to the differential inclusion does not leave

U . Still, this equilibrium σ∗ is unstable. Indeed, given any point σ ∈ U and given any

action x, if we choose β sufficiently close to one, the perturbed point βσ +(1−β )δx is not

an equilibrium; so starting from this perturbed point, the solution to the differential inclusion

eventually leaves U . �

The following proposition asserts that unstable equilibria do not arise as long-run out-

comes.

Proposition 3. If σ∗ is an unstable equilibrium, then the action frequency σt converges to σ∗

with probability zero.

6.3 Convergence to attracting sets for some prior

Proposition 2 provides useful conditions under which the action frequency converges to an

attracting set, such as the set of equilibria. Moreover, Proposition 3 shows that the frequency

cannot converge to unstable equilibria. These propositions, however, do not imply that the

action frequency converges to any one specific attracting set or equilibrium (unless it is glob-

ally attracting). We will show that if an attracting set A satisfies some additional property,

then the action frequency converges to it with positive probability for some initial prior.29

Throughout this section, let Bε(A) denote the ε-neighborhood of A, i.e., the set of all σ such

that d(σ ,A)< ε .

We first introduce the idea of a “perturbed differential inclusion.” Given an initial value

σσσ(0), let SSS
∞,ε
σσσ(0)

denote the set of all solutions to the following differential inclusion:

σ̇σσ(t) ∈
⋃

σ̃∈Bε(σσσ(t))

△F(△Θ(σ̃))−σσσ(t). (11)

29Theorem 7.3 of Benaim (1999) gives a sufficient condition for convergence to an attracting set for some

prior. This result, however, relies on a technical assumption ((24) in his paper), which roughly requires that if

we take sufficiently large t, then regardless of the past history ht , the motion of w in the continuation problem is

approximated by a solution to the differential inclusion. This assumption is not satisfied in our model, because

there are histories in which the posterior belief µt+1 is not concentrated on Θ(σ t) (note that this happens when

realized signals are very different from ex-ante expectation), and after such histories, the motion of w could be

very different from any solution to the differential inclusion.
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Recall that in the original differential inclusion, the agent chooses an action from F(△Θ(σσσ(t))).

In (11), this choice set is expanded, so that the agent chooses an action from F(△Θ(σ̃)), where

σ̃ is a perturbation of the current action frequency σσσ(t).

Definition 5. A set A is robustly attracting if it is attracting and there is ζ > 0 and ε > 0 such

that for any initial value σσσ (0) ∈ Bζ (A), any solution σσσ ∈ SSS
∞,ε
σσσ (0)

to the perturbed differential

inclusion never leaves the basin UA; i.e., σσσ(t) ∈UA for all t ≥ 0.

In some special cases, attracting sets and robustly attracting sets are equivalent. For exam-

ple, as will be explained in Proposition 7, attracting sets are robustly attracting when Θ is the

one-dimensional interval [0,1]. The same result holds when there are only two actions. (The

proof is straightforward and hence omitted.) However, in general, attracting sets need not be

robustly attracting.30

A sufficient condition for a set A to be robustly attracting is that the (non-perturbed) dif-

ferential inclusion has a contraction property in a neighborhood of A. Formally, let V (σ) =

d(σ ,A), and suppose that there is an open neighborhood U of A such that (σ̃−σ) ·∇V(σ)< 0

for all σ ∈U \A and σ̃ ∈△F(△Θ(σ)).31 Then this A is robustly attracting.32 Note that this

contraction property is satisfied by any strict equilibrium; a pure action δx is a strict equilib-

rium if there is an open neighborhood U of δx such that F(△Θ(σ̃)) = {x} for all σ̃ ∈U . So

any strict equilibrium is robustly attracting.

We will show that the action frequency converges to a robustly attracting set with positive

probability, at least for some initial prior.

Proposition 4. For each robustly attracting set A, there is an initial prior µ∗0 with full support

such that limt→∞ d(σt ,A) = 0 with positive probability.

The following chain of set inclusions summarizes the relationships between several of the

30We provide such an example in the Online Appendix.
31More generally, A is robustly attracting if there is an open neighborhood U of A and a function V : U → RRR+

such that (i) V (σ) = 0 if and only if σ ∈ A, (ii) (σ̃−σ) ·∇V(σ)< 0 for all σ ∈U \A and σ̃ ∈△F(△Θ(σ)), and

(iii) ∇V is Lipchitz-continuous. Note that condition (ii) here is a bit more demanding than Lyapunov stability,

which requires V (σσσ(t))<V (σσσ(0)) for all σσσ(0) and σσσ ∈ S∞
σσσ(0).

32The proof is provided in the Online Appendix.
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concepts considered above:

strict equilibrium⊂ contraction property in a neighborhood

⊂ robustly attracting singleton set

⊂ attracting singleton set

⊂ equilibrium.

7 One-dimensional models

In this section, we focus on the special case where the model space is one-dimensional: Θ =

[0,1]. This case includes many of the current applications in the literature and it allows us to

provide a more powerful characterization of the action frequency and the belief.

We will first discuss the case where the model is identified, in the sense that, for any mixed

action σ , there is a unique minimizer of Kullback-Leibler divergence, θ(σ).33 In this case,

our differential inclusion reduces to a one-dimensional problem; this reduction considerably

simplifies our analysis, because in general the action frequency σ is multi-dimensional and

solving the differential inclusion can be a difficult task. We will show that the belief con-

verges to an equilibrium belief almost surely, and we will provide a simple characterization of

attracting/unstable equilibria.

In some applications, identification does not hold for all mixed actions, but it naturally

holds for all pure actions. We will show in Section 7.2 how to obtain convergence results in

this case provided we make other assumptions about the structure of the environment.

7.1 Identification for all mixed actions

Throughout this subsection, we will impose the following identifiability assumption:

Assumption 5. The following two conditions hold:

(i) For each σ , there is a unique minimizer of K(σ ,θ) which we denote by θ(σ) ∈ [0,1],

that is, Θ(σ) = {θ(σ)}.

(ii) For each σ with θ(σ) ∈ (0,1), we have
∂ 2K(σ ,θ )

∂θ 2

∣
∣
∣
θ=θ (σ)

> 0.

33This assumption rules out bandit problems as well as cases where the model is coarse, such as the version of

Example 1 where Θ contains only two elements.
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Part (i) is what we call the identifiability condition, which asserts that for each mixed action

σ , there is a unique model which best fits the true world. EP2016 provide a more detailed

discussion about this identifiability condition. Note that the best model θ(σ) is continuous in

σ , because Θ(σ) is upper hemi-continuous in σ ,

Part (ii) requires that whenever θ(σ) is an interior solution (so that the first-order condition

is satisfied at the minimum), it satisfies the second-order condition. This assumption is crucial

for the strict monotonicity result (Proposition 5(iii)), which is needed to prove instability of

unstable models (Proposition 8). But all other results remain true without it.

We will show that the agent’s belief converges almost surely under Assumption 5. This

result strengthens that of Heidhues et al. (2018b), who show a similar convergence result under

the assumptions that (i) the model space Θ is one-dimensional, (ii) both the initial prior and a

noise term in the consequence y are normally distributed, (iii) the agent’s utility is concave in

action x, so that there is a unique optimal action for each belief, and (iv) the mean value of the

(both objective and subjective) output is monotone in model θ . Our Assumption 5 is weaker

than their assumption (ii), and we drop their assumptions (iii) and (iv) and consider general

payoff functions. In particular, in our setup, the agent can be indifferent given some beliefs,

and there may be a mixed-action equilibrium. Also, we characterize (robustly) attracting and

unstable equilibria in this one-dimensional environment. This allows us to identify which

equilibrium is more likely to arise asymptotically, when there are multiple equilibria.

The following proposition shows that the closest model θ(σ) is monotone with respect to

the action σ . In the proof, we first show that the KLD function K(σ ,θ) has the increasing

differences property. Then the result follows from the monotone selection theorem of Topkis

(1998) and Edlin and Shannon (1998).

Proposition 5. Suppose that Assumption 5 holds. Pick any σ and σ̃ , and for each β ∈ [0,1],

let σβ = βσ +(1−β )σ̃ . Then the following results are true:

(i) If θ(σ) = θ(σ̃), then θ(σβ ) = θ(σ) for all β ∈ [0,1].

(ii) If θ(σ̃)< θ(σ), then θ(σβ ) is weakly increasing with respect to β .

(iii) If θ(σ̃)< θ(σ), then θ(σβ1
)< θ(σβ2

) for any β1 and β2 such that β1 < β2 and θ(σβ1
)∈

(0,1).

The monotonicity result above ensures that the motion of the closest model θ(σ) is character-

ized by a simple, one-dimensional problem. Note that when Θ = [0,1], the best model θ(σ)
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can move in only three directions; it can go up, down, or stay the same. In particular, since the

motion of the action frequency is approximated by

σ̇σσ = σ −σσσ(t)

for some σ ∈△F(δθ (σσσ(t))), the result in Proposition 5 implies that, at each time t,

• θ(σσσ(t)) moves up if θ(σ)> θ(σσσ(t)) for all σ ∈△F(δθ (σσσ(t))).

• θ(σσσ(t)) moves down if θ(σ)< θ(σσσ(t)) for all σ ∈△F(δθ (σσσ(t))).

To better understand the motion of θ(σσσ(t)), consider the following example:

Example 4. The consequence space is Y =R, and the agent has two actions, x0 and x1. Given

an action xk, the consequence y follows the normal distribution N(k,1). The agent does not

recognize that the action influences the consequence, and she believes that given a model

θ ∈ [0,1], y follows the normal distribution N(θ ,1) regardless of the chosen action. Consider

an upper hemi-continuous policy F which satisfies

F(δθ ) =







{x0} if θ ∈ [0, 1
3
)∪ (2

3
,1]

{x1} if θ ∈ (1
3
, 2

3
)

{x0,x1} if θ ∈ {1
3
, 2

3
}

.

Given a mixed action σ , the consequence follows the normal distribution N(σ(x1),1),

so the closest model is θ(σ) = σ(x1). Hence the motion of θ(σσσ(t)) can be described by

the arrows in Figure 8: θ(σσσ(t)) will move up in the middle region (i.e., θ(σσσ(t)) ∈ (1
3
, 2

3
)),

because the agent chooses the action x1 and the corresponding model is θ(δx1
) = 1. For

the other region, θ(σσσ(t)) will move down because the agent chooses the action x0 and the

corresponding model is θ(δx0
) = 0. �

x0 x1

θ(σ) = 0 1
3

θ(σ) = 1

x0

2
3

Figure 8: Motion of θ(σσσ(t))

Using the fact that the closest model θ(σ) follows the simple rule above, we will now

show that it converges almost surely. This convergence result is not a corollary of Proposition

2 because the equilibrium set is not globally attracting in general. The key feature that we use
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to establish convergence in this case is that, if the model space is Θ = [0,1] and θ(σ) follows

a recursive rule as in Figure 8, then it cannot be cyclic. This implies that θ(σ) cannot oscillate

forever and it must converge.

A model θ∗ is an equilibrium model if there is an equilibrium σ∗ such that θ(σ∗) = θ∗.

In Example 4, there are three equilibrium models, 0, 1/3, and 2/3. Let Θ∗ ⊆Θ denote the set

of all equilibrium models.

Proposition 6. Suppose that Assumption 5 holds, and that Θ∗ is finite. Then almost surely,

limt→∞ θ(σt) exists and limt→∞ θ(σt) ∈Θ∗.

This proposition, together with Theorem 1, implies that the posterior belief µt converges

almost surely, and the limit belief is a degenerate belief on some equilibrium model.

Example 5. (HKS, 2018) Each period, the agent chooses effort x and observes stochastic

output y = Q(θ ,x,a)+ ε , where θ is an unknown fundamental, a is the agent’s ability, and ε

is a random noise, which follows a log-concave distribution. The agent thinks that the signal

is given by y = Q(θ ,x,A)+ε , where A > a means the agent is overconfident and A < a means

she is underconfident. An implication of Proposition 6 is that beliefs converge provided that

the identification condition holds. Identification depends on the shape of the function Q. For

example, if Q is linear in θ , then K(θ ,δx) is convex for each pure action x, which in turn

implies that K(θ ,σ) is convex for all mixed actions σ .34 As we show in the next subsection,

we can relax the identification assumption to study the overconfident case, A > a. �

When there are multiple equilibrium models, Proposition 6 does not tell us which one will

arise as a long-run outcome. To address this concern, we define attracting models as follows.

Definition 6. A model θ∗ ∈ [0,1] is attracting if there is ε > 0 such that

• θ(δx)≥ θ∗ for any θ ∈ (θ∗− ε,θ∗) and for any x ∈ F(δθ ).

• θ(δx)≤ θ∗ for any θ ∈ (θ∗,θ∗+ ε) and for any x ∈ F(δθ ).

Intuitively, a model θ∗ is attracting if it is locally absorbing, in that θ(σσσ(t)) moves toward

θ∗ in its neighborhood. Indeed, the first bullet point in the definition asserts that if θ(σσσ(t))

is slightly lower than θ∗ in the current period t, then it will go up, and hence be closer to θ∗

at the next instant. Similarly, the second bullet point in the definition ensures that if θ(σσσ(t))

34Identification may hold even if K(θ ,δx) is not convex for each pure action x. For example, if there is a

function f increasing in θ such that Q(θ ,x,a) = f (θ ,a)(a+ x)− c(x), then identification holds, though if, say,

f (θ ,a) = tan−1(θ ), then the KLD function is not convex for pure actions.
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is slightly higher than θ∗ in the current period t, then it will go down. In Example 4, the

equilibrium models 0 and 2/3 are attracting, while 1/3 is not.

Given an attracting model θ∗, let A = {σ ∈△F(δθ ∗)|θ(σ) = θ∗} be the set of equilibria

σ in which the agent has a degenerate belief on θ∗.35 The following proposition shows that

this set A is robustly attracting, which means that these equilibria should arise as a long-run

outcome for some initial prior. Also the proposition shows that the converse is true, i.e., if a

set A = {σ ∈△F(δθ ∗)|θ(σ) = θ∗} is robustly attracting, then θ∗ is an attracting model.

Proposition 7. Under Assumption 5, for each θ∗, the following properties are equivalent:

(a) θ∗ is attracting.

(b) The set A = {σ ∈△F(δθ ∗)|θ(σ) = θ∗} is attracting.

(c) The set A is robustly attracting.

In the same spirit, we define unstable models as follows:

Definition 7. A model θ∗ ∈ (0,1) is unstable if θ∗ 6= θ(δx) for each pure action x ∈ F(δθ ∗)

and there is ε > 0 such that

• θ(δx)≤ θ∗− ε for any θ ∈ (θ∗− ε,θ∗) and for any x ∈ F(δθ ).

• θ(δx)≥ θ∗+ ε for any θ ∈ (θ∗,θ∗+ ε) and for any x ∈ F(δθ ).

In words, a model θ∗ is unstable if θ(σσσ (t)) moves away from θ∗ in its neighborhood. Indeed,

the first bullet point implies that if θ(σσσ(t)) is slightly below θ∗, it will move down further

at the next instant. The second bullet point implies that if θ(σσσ (t)) is slightly above θ∗, it

will go up at the next instant. In Example 4, the equilibrium model θ = 1
3

is unstable. In the

definition above, we consider only interior models θ ∈ (0,1). This is so because whenever an

extreme point θ = 0,1 is supported by some equilibrium (i.e., there is an equilibrium σ such

that θ(σ) = θ ), there is a pure-strategy equilibrium δx supporting it.

The following proposition shows that if θ∗ is unstable, then any equilibrium in which the

agent has a degenerate belief on this model θ∗ is unstable; hence these equilibria do not arise

as long-run outcomes.

35Upper hemi-continuity of F ensures that this set A is non-empty, which in turn implies that any attracting

model is an equilibrium model. For the special case in which F(δθ∗) contains only one component, this set A

is a singleton. Similarly, even when F(δθ∗) contains only two components, the set A is a singleton for generic

parameters. On the other hand, when F(δθ∗) contains three or more actions, the set A is typically continuous.
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Proposition 8. Under Assumption 5, θ∗ ∈ (0,1) is unstable if and only if it is not supported

by a pure equilibrium, there is at least one mixed equilibrium σ∗ with θ(σ∗) = θ∗, and all

mixed equilibria σ∗ with θ(σ∗) = θ∗ are unstable.

7.2 Identification for all pure actions

There are economic environments where identification holds for all pure, but not mixed, ac-

tions. One prominent example is the environment of Heidhues, Kőszegi and Strack (2018a).

Example 5 (HKS, continued) In Example 5, without specific restrictions on Q, there may

exist more than one minimizer for some mixed action, in which case identification fails. But it

is nevertheless the case that, given a pure action x, the Kullbuck-Leibler divergence is single-

peaked, and hence has a unique minimizer. So identification holds for pure actions. If, in

addition, we assume that Q has increasing differences in both (−x,a) and (x,θ) and that the

agent is overconfident (A > a), then the monotone properties discussed in Section 2 hold, and,

as we show next, the action converges to a pure-action equilibrium. �

We will show that, even if identifiability fails, as in the environment of HKS, the belief still

converges, provided that the payoffs and the information structure are “monotone” in some

sense. Compared to HKS’s environment, our monotonicity assumption is more general, we

allow multiple (and possibly mixed action) equilibria, and we do not place further restrictions

on Q or the discount factor. Specifically, we will consider the following environment.36

• Θ = [0,1]. X = {x1,x2, · · · ,xN}.

• For each pure action x, the KLD function K(θ ,δx) is single-peaked, in the sense that

for each x, there is θ(x) such that
∂K(θ ,δx)

∂θ < 0 for all θ < θ(x) and
∂K(θ ,δx)

∂θ > 0 for all

θ > θ(x).

• Higher action induces higher KLD minimizer: θ(x1)< θ(x2)< · · ·< θ(xN).

• Higher beliefs induce higher actions: There are 0 = θ0 < θ1 < · · · < θN = 1 such that

xn /∈ F(µ) for each n and µ such that [θn−1,θn]∩co(suppµ) = /0, where coB denotes the

convex hull of a set B.

In this environment, xn is a pure-action equilibrium if θ(xn) ∈ [θn−1,θn].

36One difference with HKS is that they consider a continuum of actions, while we assume a finite number of

actions. The conditions below are also satisfied in other environments (e.g., adverse selection, Esponda (2008)).
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Proposition 9. Let H∗ be the set of all sample paths which satisfy the property stated in

Theorem 1; note that P f (H∗) = 1. For any sample path h ∈ H∗, the action frequency σt(h)

converges to a degenerate distribution on a pure-action equilibrium.

This proposition shows that the action frequency converges. If an equilibrium is strict, we

can strengthen the result and show that the action converges.37

8 Relationship to Berk-Nash equilibrium

In this section, we relate the notion of equilibrium from the differential inclusion approach

to EP2016’s definition of Berk-Nash equilibrium. To facilitate comparisons, we assume that

the agent maximizes discounted expected utility, where Fβ is the correspondence of optimal

actions and β ∈ [0,1) is the discount factor (β = 0 is the case of a myopic agent).

The definition of equilibrium that emerges from the differential inclusion approach is that

of a probability distribution over actions satisfying σ ∈ ∆Fβ (∆Θ(σ)) = ∆∪µ∈∆Θ(σ) Fβ (µ)

(see Definition 2). Equivalently, σ is an equilibrium if and only if for every action x in the

support of σ there exists a belief µx ∈ ∆Θ(σ) such that x ∈ Fβ (µx). In contrast, EP2016

define a Berk-Nash equilibrium to be a probability distribution over actions satisfying σ ∈

∪µ∈∆Θ(σ)∆F0(µ).
38 Note that σ is a Berk-Nash equilibrium if and only if there exists a belief

µ ∈ ∆Θ(σ) such that, for every x in the support of σ , x ∈ F0(µ).

There are two differences between the definition of equilibrium in this paper and a Berk-

Nash equilibrium: The latter concept (1) restricts actions to be supported by the same belief;

and (2) requires actions to be myopically optimal. These two properties are common in most

other standard equilibrium concepts, such as Nash equilibrium. Following Fudenberg and

Levine (1993), the first property is known as the unitary-belief property, and puts restrictions

on the set of mixed actions that can constitute an equilibrium.39 The second property is con-

venient because myopic optimality is easier to characterize than general optimality.

These differences can be relevant. In particular, it is possible for the action frequency to

37Formally, suppose that an action x is a strict pure-action equilibrium, in that it is uniquely optimal given

the equilibrium belief (i.e. F(δθ(x)) = x). Then for any sample path h in H∗ (the set of histories satisfying the

condition of Theorem 1) with lim σt(h) = δx, the action converges and we have lim xt(h) = x. This result follows

from the fact that if the action frequency converges to δx for some sample path in H∗, then after some time, the

belief stays in a neighborhood of δθ(x) forever, and the action x is uniquely optimal given such beliefs.
38This is the definition for the single agent case; EP2016 also consider the case of multiple agents.
39Fudenberg and Levine (1993) showed that non-unitary equilibria make sense in a game where there are

multiple players and, for each player, there is an underlying population of agents in the role of that player, and

different agents may have different experiences (hence, beliefs) about other players.
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converge to an equilibrium with a non-unitary belief, which is not a Berk-Nash equilibrium.40

We now provide, however, a sufficient condition under which the two properties of equilibrium

highlighted above hold, and so limiting action frequencies are always Berk-Nash equilibria.

Definition 8. The family of models is weakly identified given σ ∈ ∆X if θ ,θ ′ ∈Θ(σ) implies

that Qθ (· | x) = Qθ ′(· | x) for all x such that σ(x)> 0.

The definition of weak identification was introduced by EP2016. It says that the belief is

uniquely determined along the equilibrium path, but leaves open the possibility of multiple

beliefs for actions that are not in the support of σ . Weak identification is immediately satisfied

if the agent’s family of models is correctly specified, but it is also satisfied in many of the

applications of misspecified learning in the literature; see EP2016 for further discussion.

Proposition 10. Suppose that the family of models is weakly identified given σ . Then ∆∪µ∈∆Θ(σ)

Fβ (µ)⊆ ∆∪µ∈∆Θ(σ) F0(µ) =∪µ∈∆Θ(σ)∆F0(µ). Moreover, if there is a unique KLD minimizer

θ(σ), then the previous inclusion is an equality.

Proposition 10 says that when the agent is myopic, the set of equilibria coincides with

the set of Berk-Nash equilibria; here, weak identification guarantees that any mixed action

supported by a non-unitary belief is supported by a unitary belief. It also shows that, when the

agent is non-myopic, the set of equilibria is contained in the set of Berk-Nash equilibria under

weak identification, and the two sets coincide under the stronger property of identification

(i.e., unique KLD minimizer for all σ ). Intuitively, under identification, the agent’s belief is

degenerate at θ(σ), so the optimal action coincides with the myopically optimal action.

Similarly, Proposition 10 implies that the set of solutions to the differential inclusion for a

non-myopic agent is a subset of that for a myopic agent under weak identification. So under

weak identification, if a set A is (globally or robustly) attracting for a myopic agent, the same

is true for a non-myopic agent. If σ is an unstable equilibrium for a myopic agent, the action

frequency does not converge there regardless of the discount factor.41 These results are useful,

as the optimal policy for a myopic agent has a simpler structure than that of non-myopic agent.

Moreover, Proposition 10 implies that, under identifiability (i.e., unique minimizer), the set of

solutions to the differential inclusion does not depend on the discount factor. For example, if

the action frequency converges to some mixed Berk-Nash equilibrium for a myopic agent, the

same is true for a patient, forward-looking agent. An implication is that the long-run welfare

for a patient agent is simply the expected payoff in the mixed equilibrium.

40We provide such an example in the Online Appendix.
41Indeed, when the agent is non-myopic, σ is an unstable equilibrium or not an equilibrium.

34



We now relate Proposition 1 in Section 6 to EP2016’s result that if the sequence of dis-

tributions over actions converges, then it converges to a Berk-Nash equilibrium. They study

distributions of actions because payoff perturbations give agents a motive to mix. In our en-

vironment there is no motive for mixing, so convergence of the sequence of distributions over

actions implies that the actions converge. Propositions 1 and 10 strengthen EP2016’s conclu-

sion by showing that, under weak identification, even though actions may not converge, if the

action frequency converges, then it converges to a Berk-Nash equilibrium.

We conclude by discussing the relationship to Fudenberg, Lanzani and Strack (2020);

henceforth FLS. As mentioned in the introduction, FLS provide conditions under which the

action converges with arbitrarily high probability (specifically, if the action is a uniformly

strict Berk-Nash equilibrium). In contrast, our differential inclusion describes the evolution of

the action frequency, not the action itself. In particular, it is possible that the action frequency

converges to a degenerate action but that the action itself diverges. So to see if the action itself

converges, one could use FLS’s approach and check whether the limiting point is a uniformly

strict Berk-Nash equilibrium. On the other hand, if one is interested in convergence of action

frequency only, then requiring the uniformity condition of FLS is not necessary.42

42For an example where the action frequency converges but the action diverges, consider the two-model version

of Example 1 (the dieter’s dilemma). Suppose that q(1− q) =C, so that σ∗(1) = 1, and pick θ̄ H
0 and θ̂ H

0 such

that K(σ∗, θ̄ H
0 ) = K(σ∗, θ̂ H

0 ). Because the action G = 1 is a non-uniform Berk-Nash equilibrium, then Theorem

1 in FLS implies the action does not converge to G = 1. The analysis using the differential inclusion, however,

looks exactly like Figure 3, except with σ∗(1) = 1. Thus, the action frequency converges to σ∗(1) = 1, even

though the action diverges because G = 0 is chosen infinitely often.
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A Appendix: Proofs

In this appendix, we present the proofs omitted from the text. In some places, we use the fact

that θ 7→ log
q(Y |x)

qθ (Y |x)
is finite and continuous Q(·|x)−a.s. for all x ∈ X . This fact follows from

Assumptions 1-2.

Proof of Lemma 1. Continuity of K: For any (θ ,σ) ∈ Θ×∆X take a sequence (θn,σn)n

in Θ×∆X that converges to this point. By the triangle inequality and the fact that K is fi-

nite under Assumption 2(iii) it follows that |K(θn,σn)−K(θ ,σ)| ≤ |K(θn,σ)−K(θ ,σ)|+

|K(θn,σn)−K(θn,σ)|.

It suffices to show that both terms on the RHS vanish as n→ ∞. Regarding the first term

in the RHS, observe that for any σ ∈ ∆X , θ 7→ log
q(Y |X)

qθ (Y |X) is finite and continuous Q ·σ −a.s.

Under Assumption 2(iii), by the DCT this implies that θ 7→ K(θ ,σ) is continuous for any

σ ∈ ∆X . Thus limn→∞ |K(θn,σ)−K(θ ,σ)|= 0. Regarding the other term in the RHS of the

display, observe that under Assumption 2(iii)

|K(θn,σn)−K(θn,σ)| ≤ ∑
x∈X

ˆ

gx(y)Q(dy | x)|σn(x)−σ(x)|

and the RHS vanishes as
´

gx(y)Q(dy | x)< ∞ for all x ∈ X .

40



Finally, continuity of K, compactness of Θ (Assumption 2(ii)) and the Theorem of the

Maximum imply that σ 7→ Θ(σ) is compact-valued, uhc, and that σ 7→ K∗(σ) is continuous.

�

Proof of Lemma 2. Let (θ ,z) 7→ g(θ ,z) ≡ log
q(y|x)

qθ (y|x)
, where z = (y,x) ∈ Y ×X . For any

θ ∈ Θ and any ε > 0, let O(θ ,ε)≡ {θ ′ : ||θ ′−θ ||< ε}.

STEP 1. Pointwise convergence. Fix any ε > 0 and any θ ∈ Θ. For any τ ≥ 0 and history

h, let

ζτ(h)≡ sup
θ ′∈O(θ ,ε)

g(θ ′,zτ(h))−EQ(·|xτ(h))

[

sup
θ ′∈O(θ ,ε)

g(θ ′,Y,xτ(h))

]

.

The process (ζt)t is a Martingale difference under P f and the filtration generated by

{ht ≡ (x0(h),y0(h),x1(h),y1(h), ...,xt(h)) : t ≥ 0}, because EP f (·|ht) [ζt(h)] = 0 for all t. De-

fine h 7→ ζ t(h) ≡ ∑t
τ=0 (1+ τ)−1 ζτ(h) for any t ≥ 0. Since (ζt)t is a Martingale difference

sequence, then (ζ t)t is also a Martingale difference.

By the Martingale Convergence Theorem, there exist a H ⊆ H (potentially depending

on θ ∈ Θ) and ζ ∈ L2(H,R,P f ) such that P f (H ) = 1 and, for any h ∈H , ζ t(h)→ ζ (h),

provided supt EP f

[

(ζ t)2
]

< ∞. This condition is satisfied because

EP f

[(
ζ t
)2
]

= EP f

[
t

∑
τ=0

(1+ τ)−2 (ζτ)
2

]

+2EP f

[

∑
τ>τ ′

(1+ τ)−1
(
1+ τ ′

)−1
ζτζτ ′

]

=
t

∑
τ=0

(1+ τ)−2
EP f

[

(ζτ)
2
]

≤
t

∑
τ=0

(1+ τ)−2
EP f





ˆ

(

sup
θ ′∈O(θ ,ε)

g(θ ′,y,Xτ)

)2

Q(dy | Xτ)





≤C max
x∈X

ˆ

sup
θ ′∈O(θ ,ε)

(
g(θ ′,y,x)

)2
Q(dy | x) ,

where the second line follows from the fact that, for any τ > τ ′, EP f [ζτζτ ′ ] =EP f

[

EP f (·|hτ) [ζτ ]ζτ ′

]

=

0, and where the last line follows from the fact that C ≡ limt→∞ ∑t
τ=0 (1+ τ)−2 < ∞. By As-

sumption 2(iii), for any (x,y)∈X×Y , supθ ′∈O(θ ,ε) (g(θ
′,y,x))2≤ (gx(y))

2
with
´

(gx(y))
2

Q(dy |

x)<∞. Thus, supt EP f

[

(ζ t)2
]

<∞. By invoking Kronecker Lemma it follows that limt→∞ (1+ t)−1
∑t

τ=0 ζ t =
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0 P f -a.s. Therefore, we have established that, for all θ ∈Θ,

lim
t→∞

(1+ t)−1
t

∑
τ=0

(

sup
θ ′∈O(θ ,ε)

g(θ ′,zτ)−EQ(·|xτ)

[

sup
θ ′∈O(θ ,ε)

g(θ ′,Y,xτ)

])

= 0 P f -a.s.

STEP 2. Uniform convergence. Observe that, for any ε > 0 and any θ ∈ Θ, there exists

δ (θ ,ε) such that

EQ(·|x)

[

sup
θ ′∈O(θ ,δ (θ ,ε))

g(θ ′,Y,x)−g(θ ,Y,x)

]

< 0.25ε (12)

for all x ∈ X . To see this claim, note that, since θ 7→ g(θ ,Y,x) is continuous Q(·|x)−a.s. for

all x ∈ X , limδ→0 supθ ′∈O(θ ,δ ) |g(θ
′,Y,x)−g(θ ,Y,x)| = 0 a.s.−Q(· | x) for all x ∈ X . Also,

by Assumption 2(iii), supθ ′∈O(θ ,δ ) |g(θ
′,y,x)−g(θ ,y,x)| ≤ 2gx(y) and

´

gx(y)Q(dy|x) < ∞,

Thus, by the DCT, limδ→0 EQ(·|x)

[

supθ ′∈O(θ ,δ ) |g(θ
′,Y,x)−g(θ ,Y,x)|

]

= 0 for all x ∈ X .

Observe that (O(θ ,δ (θ ,ε)))θ∈Θ is an open cover of Θ. By compactness of Θ, there exists

a finite sub-cover (O(θ j,δ (θ j,ε))) j=1,...J(ε). Thus, for all ε > 0,

sup
θ∈Θ

∣
∣
∣
∣
∣
(1+ t)−1

t

∑
τ=0

(
g(θ ,zτ)−EQ(·|xτ) [g(θ ,Y,xτ)]

)

∣
∣
∣
∣
∣

≤max
j

sup
θ∈O(θ j,δ (θ j,ε))

∣
∣
∣
∣
∣
(1+ t)−1

t

∑
τ=0

(
g(θ ,zτ)−EQ(·|xτ) [g(θ ,Y,xτ)]

)

∣
∣
∣
∣
∣

≤max
j

(1+ t)−1
t

∑
τ=0

(

sup
θ∈O(θ j,δ (θ j,ε))

∣
∣g(θ ,zτ)−EQ(·|xτ) [g(θ ,Y,xτ)]

∣
∣

)

≤max
j

(1+ t)−1
t

∑
τ=0

(∣
∣
∣
∣
∣

sup
θ∈O(θ j,δ (θ j,ε))

g(θ ,zτ)−EQ(·|xτ)

[

inf
θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)

]∣∣
∣
∣
∣

)

≤max
j

(1+ t)−1
t

∑
τ=0

(∣
∣
∣
∣
∣

sup
θ∈O(θ j,δ (θ j,ε))

g(θ ,zτ)−EQ(·|xτ)

[

sup
θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)

]∣
∣
∣
∣
∣

)

+max
j

(1+ t)−1
t

∑
τ=0

(

EQ(·|xτ)

[

sup
θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)− inf
θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)

])

=I + II.

By Step 1 and the fact that we are adding over a finite number of θ j’s, the limit as t → ∞

42



of the term I is equal to zero P f -a.s. For the second term, note that (12) implies that

II ≤ 2max
x∈X

ˆ

sup
θ∈O(θ j,δ (θ j,ε))

∣
∣g(θ ,y,x)−g(θ j,y,x)

∣
∣Q(dy | x)≤ 0.5ε.

Since 0≤ II ≤ 0.5ε holds for all ε > 0, it follows that II = 0. Therefore, using the definition

of g, we have established that

lim
t→∞

sup
θ∈Θ

(1+ t)−1
t

∑
τ=0

(

log
q(yτ | xτ)

qθ (yτ | xτ)
−EQ(·|xτ)

[

log
q(Y | xτ)

qθ (Y | xτ)

])

= 0

P f -a.s. The statement in the lemma then follows by noting that

K(θ ,σt) = ∑
x∈X

EQ(·|x)

[

log
q(Y | x)

qθ (Y | x)

]

σt(x) = (1+ t)−1
t

∑
τ=0

EQ(·|xτ)

[

log
q(Y | xτ)

qθ (Y | xτ)

]

.�

Proof of Theorem 1. Fix a history h such that the condition of uniform convergence

in Lemma 2 holds, and note that the set of histories with this property has probability one

(henceforth, we omit the history from the notation). In particular, for all η > 0, there exists tη

such that, for all t ≥ tη ,

|Lt(θ)−K(θ ,σt)|< η (13)

for all θ ∈ Θ.

Let K̄(θ ,σ) ≡ K(θ ,σ)−K∗(σ). Fix any ε > 0. Using (1) and the facts that 0 ≤ K∗(σ)

(the proof is standard) and K∗(σ)< ∞ for all σ (follows from Assumption 2(iii)), we obtain

ˆ

K̄(θ ,σt)µt+1(dθ) =

´

Θ K̄(θ ,σt)e
−tLt(θ )µ0(dθ)

´

Θ e−tLt(θ )µ0(dθ)

=

´

Θ K̄(θ ,σt)e
−t(Lt(θ )−K∗(σt))µ0(dθ)

´

Θ e−t(Lt(θ )−K∗(σt))µ0(dθ)

≤ ε +

´

{θ :K̄(θ ,σt)≥ε} K̄(θ ,σt)e
−t(Lt(θ )−K∗(σt))µ0(dθ)

´

{θ :K̄(θ ,σt)≤ε/2} e−t(Lt(θ )−K∗(σt))µ0(dθ)

=: ε +
Aε

t

Bε
t

.

The proof concludes by showing that limt→∞ Aε
t /Bε

t = 0.
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By (13), there exists tη such that, for all t ≥ tη ,

Aε
t

Bε
t

≤

´

{θ :K̄(θ ,σt)≥ε} K̄(θ ,σt)e
−t(K̄(θ ,σt)−η)µ0(dθ)

´

{θ :K̄(θ ,σt)≤ε/2} e−t(K̄(θ ,σt)+η)µ0(dθ)

= e2tη

´

{θ :K̄(θ ,σt)≥ε} K̄(θ ,σt)e
−tK̄(θ ,σt)µ0(dθ)

´

{θ :K̄(θ ,σt)≤ε/2} e−tK̄(θ ,σt)µ0(dθ)
.

Observe that the function x 7→ xexp{−tx} is decreasing for all x > 1/t. Thus, for any t ≥

max{tη ,1/ε} it follows that K̄(θ ,σt)e
−tK̄(θ ,σt) ≤ εe−tε over {θ : K̄(θ ,σt)≥ ε}. Thus for all

t ≥max{tη ,1/ε},

Aε
t

Bε
t

≤ et2η e−tε/2

µ0 ({θ : K̄(θ ,σt)≤ ε/2})
. (14)

At the end of this proof, we establish that continuity of K̄ and compactness of ∆X imply

that

κε ≡ inf
σ∈∆X

µ0 ({θ : K̄(θ ,σ)≤ ε/2})> 0 (15)

for all ε > 0. Thus, setting η = ε/8 > 0, (14) implies that, for all t ≥max{tη ,1/ε},

Aε
t

Bε
t

≤
e−tε/4

κε
,

which goes to zero as t→ ∞. �

Proof of equation (15): For simplicity, set k≡ ε/2 > 0. Continuity of (θ ,σ) 7→ K̄(θ ,σ)≡

K(θ ,σ)−K∗(σ) (see Lemma 1(i)) and compactness of Θ×∆X imply that K̄ is uniformly

continuous. For any σ , take some θσ ∈Θ(σ) (this is possible because Θ(σ) is nonempty; see

Lemma 1(ii)). By uniform continuity of K̄, there exists δk > 0 such that ‖θσ −θ ′‖ < δk and

‖σ −σ ′‖ < δk imply K̄(θ ′,σ ′) < K̄(θσ ,σ)+ k = k, where the last equality follows because

K̄(θσ ,σ) = 0. This implies that for all σ , {θ ′ : ‖θσ −θ ′‖< δk} ⊆ {θ : K̄(θ ,σ ′) ≤ k} for all

σ ′ ∈ B(σ ,δk) ≡ {σ
′ : ‖σ −σ ′‖ < δk}. Thus, for all σ , µ0({θ : K̄(θ ,σ ′) ≤ k}) ≥ µ0({θ

′ :

‖θσ −θ ′‖ < δk}) for all σ ′ ∈ B(σ ,δk). The balls {B(σ ,δk)}σ form an open cover for ∆X .

Since ∆X is compact, there exists a finite subcover {B(σ i,δk)}
n
i=1. Let r≡mini∈{1,...,n}µ0({θ

′ :

‖θσ i−θ ′‖< δk}) which is strictly positive by Assumption 3. Take any σ ′, there exists i such

that σ ′ ∈ B(σ i,δk); by the previous argument µ0({θ : K̄(θ ,σ ′)≤ k})≥ µ0({θ
′ : ‖θσ i−θ ′‖<

δk})≥ r > 0. �

Proof of Theorem 2. The proof of Theorem 2 consists of three parts. Part 1 defines an

enlargement of the set of actions that allows us to adopt the methods developed by BHS2005.
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Parts 2 and 3 correspond to the arguments in the proofs of Proposition 1.3 and Theorem 4.2 in

BHS2005, respectively, and we provide them here for completeness. Throughout the proof we

fix a history from the set of histories with probability 1 defined by the statement of Theorem

1; we omit the history from the notation.

Part 1. Enlargement of the set ∆F(µ). Let S= {a−b | a,b∈∆X} and let Ξ :R+×∆X ⇒ S

be defined such that, for all (δ ,σ) ∈ R+×∆X ,

Ξ(δ ,σ) =

{

y ∈ S :
∃σ ′ ∈ ∆X ,µ ′ ∈ ∆Θ s.t. y ∈ ∆F(µ ′)−σ ′,

µ ′ ∈M(δ ,σ ′),‖σ ′−σ‖ ≤ δ

}

,

where M : R+×∆X ⇒ ∆Θ is defined such that, for all (δ ,σ ′) ∈ R+×∆X ,

M(δ ,σ ′)≡ {µ ′ ∈ ∆Θ :

ˆ

Θ
K̄(θ ,σ ′)µ ′(dθ)≤ δ},

where K̄(θ ,σ ′)≡K(θ ,σ ′)−K∗(σ ′). Note that M(0,σ)=Θ(σ) and so Ξ(0,σ)=∪µ∈∆Θ(σ)∆F(µ)−

σ . We will establish two properties in this part:

(1a) (δ ,σ) 7→ Ξ(δ ,σ) is uhc: Because S is compact, it suffices to show that Ξ has the

closed graph property. For this purpose, we will first show that (δ ,σ ′) 7→M(δ ,σ ′) is uhc. To

establish this claim, note that ∆Θ is compact because of the assumption that Θ is compact.

Hence, we will show that M has the closed graph property. Take (µ ′n)n converging to µ ′

(in the weak topology), (δn)n converging to δ , and (σ ′n)n converging to σ ′. Suppose that

µ ′n ∈M(δn,σ
′
n) for all n. We will show that µ ′ ∈M(δ ,σ ′). Since (µ ′n)n converges (weakly) to

µ ′ and K̄(θ , ·) is continuous (see Lemma 1), it follows that

lim
n

(
ˆ

Θ
K̄(θ ,σ ′n)µ

′
n(dθ)−

ˆ

Θ
K̄(θ ,σ ′)µ ′(dθ)

)

= lim
n

(
ˆ

Θ
K̄(θ ,σ ′n)µ

′
n(dθ)−

ˆ

Θ
K̄(θ ,σ ′)µ ′n(dθ)

)

+ lim
n

(
ˆ

Θ
K̄(θ ,σ ′)µ ′n(dθ)−

ˆ

Θ
K̄(θ ,σ ′)µ ′(dθ)

)

= 0.

Also, since µ ′n ∈M(δn,σ
′
n), then

´

Θ K̄(θ ,σ ′n)µ
′
n(dθ)≤ δn. Taking limits of this last expression

on both sides, we obtain
´

Θ K̄(θ ,σ ′)µ ′(dθ)≤ δ , implying that µ ′ ∈M(δ ,σ ′).

Next, to show that Ξ has the closed graph property, take (yn)n converging to y, (δn)n

converging to δ , and (σn)n converging to σ . Suppose that yn ∈ Ξ(δn,σn) for all n. We will

show that y ∈ Ξ(δ ,σ). Since yn ∈ Ξ(δn,σn) for all n, there exists a sequence (µ ′n,σ
′
n)n such

that yn ∈ ∆F(µ ′n)−σ ′n, ‖σ ′n−σn‖ ≤ δn, and µ ′n ∈M(δn,σ
′
n). Because the sequence (µn,σ

′
n)n
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lives in a compact set, ∆Θ×∆X , there exists a subsequence, (µ ′
n(k),σ

′
n(k))k that converges to

(µ ′,σ ′). By uhc of M and of µ 7→ ∆F(µ) (due to the assumption that F is uhc), it follows that

y ∈ ∆F(µ ′)−σ ′,‖σ ′−σ‖ ≤ δ , and µ ′ ∈M(δ ,σ ′). Thus, y ∈ Ξ(δ ,σ).

(1b) There exists a sequence (δt)t with limt→∞ δt = 0 such that, for all t, σt+1 − σt ∈
1

t+1
Ξ(δt ,σt): By equation (7) in the text, σt+1−σt ∈

1
t+1

(∆F(µt+1)−σt) for all t. By Theorem

1, there exists a sequence (δt)t with limt→∞ δt = 0 such that, for all t,
´

Θ K̄(θ ,σt)µt+1(dθ) ≤

δt . Thus, ∆F(µt+1)−σt ⊆ Ξ(δt ,σt) for all t, and the claim follows.

Part 2. The interpolation of (σt)t is what BHS2005 call a perturbed solution of the differ-

ential inclusion. Define m(t) ≡ sup{k ≥ 0 : t ≥ τk}, where τ0 = 0 and τk = ∑k
i=1 1/i. Let w

be the continuous-time interpolation of (σt)t , as defined in equation (8) in the text. By prop-

erty (1b), for any t, w(t) ∈ σm(t)+(t− τm(t))Ξ(δm(t),σm(t)); hence, ẇ(t) ∈ Ξ(δm(t),σm(t)) for

almost every t. Let γ(t)≡ δm(t)+
∥
∥w(t)−σm(t)

∥
∥. Then ẇ(t) ∈ Ξ(γ(t),w(t)) for almost every

t. In addition, note that limt→∞ γ(t) = 0 because (δt)t goes to zero, m(t) goes to infinity, and

w is the interpolation of (σt)t .

Part 3. A perturbed solution is an asymptotic pseudotrajectory (i.e., it satisfies equation

(10) in the text). Let v(t)≡ ẇ(t) ∈ Ξ(γ(t),w(t)) for almost every t. Then

w(t + s)−w(t) =

ˆ s

0

v(t + τ)dτ. (16)

Since S is a bounded set, v is uniformly bounded; therefore, w is uniformly continuous. Hence,

the family of functions {s 7→ St(w)(s) : t ∈ R}— where for each (t,s) St(w)(s) = w(s+ t) —

is equicontinuous and, therefore, relatively compact with respect to L∞(R,∆X ,Leb), where

Leb is the Lebesgue measure; all Lp spaces in the proof are with respect to Lebesgue, so

we drop it from subsequent notation. Therefore, there exists a subsequence (tn)n and a w∗ ∈

L∞(R,∆X) such that w∗ = limtn→∞ Stn(w).

Set t = tn in (16) and define vn(s) = v(tn+ s). Then

w∗(s)−w∗(0) = lim
n→∞

ˆ s

0

vn(τ)dτ.

Since vn ∈ L∞(R,S) for all n, then vn ∈ L2([0,T ],S). By the Banach-Alaoglu Theorem, there

exists a subsequence, which we still denote as (tn)n, and a v∗ ∈ L2([0,T ],S) such that (vn)n

converges in the weak topology to v∗; therefore,

lim
n→∞

ˆ s

0

vn(τ)dτ =

ˆ s

0

v∗(τ)dτ (17)
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pointwise in s∈ [0,T ]. Indeed, convergence is uniform because the family
{

s 7→
´ s

0
vn(τ)dτ : n ∈ N

}

is equicontinuous and [0,T ] is compact. In addition, v∗ ∈ L2([0,T ],S), then w∗ is absolutely

continuous in [0,T ].

The proof concludes by showing the claim that v∗(τ)∈∆F(∆Θ(w∗(τ)))−w∗(τ) Lebesgue-

a.s. in τ ∈ [0,T ]. We will prove it by showing that v∗(τ) ∈Co(Ξ(0,w∗(τ))) Lebesgue-a.s. in

τ ∈ [0,T ], where Co denotes the convex hull; the desired claim then follows because the facts

that ∆F(∆Θ(σ))−σ is a convex set and contains Ξ(0,σ) and, by definition, Co(Ξ(0,σ)) is

the smallest convex set that contains Ξ(0,σ), imply that Co(Ξ(0,σ))⊆ ∆F(∆Θ(σ))−σ .

We will prove v∗(τ) ∈ Co(Ξ(0,w∗(τ))) Lebesgue-a.s., in several steps. First, we show

that weak convergence of (vn)n to v∗ implies almost sure convergence of a weighted average

of (vn)n to v∗. Formally, by Mazur’s Lemma, for each n ∈ N, there exists a N(n) ∈ N and a

non-negative vector, (αn, ...,αN(n)), such that ∑
N(n)
i=n αi = 1, and limn→∞‖v̄n−v∗‖L2([0,T ],S)= 0

where v̄n≡∑
N(n)
k=n αkvn. Therefore, as limn→∞ ‖v̄n−v∗‖L2([0,T ],S)= 0, it follows that limn→∞ v̄n =

v∗ a.s.-Lebesgue.

Fix τ ∈ [0,T ] such that the previous claim holds. Define γn(τ) ≡ γ(tn + τ) and wn(τ) ≡

w(tn + τ). By uhc of Ξ at (0,σ) for all σ (see property (1a)) and the facts that γn(τ)→ 0

and wn(τ)→ w∗(τ), it follows that, for any ε > 0, there exists Nε such that, for all n ≥ Nε ,

Ξ(γn(τ),wn(τ))⊆Ξε(0,w∗(τ)), where Ξε(0,w∗(τ))≡{y′∈ S : ‖y′− y‖≤ ε,y∈Ξ(0,w∗(τ))}.

Recall that vn(τ) ∈ Ξ(γn(τ),wn(τ)) for all n; therefore, v̄n(τ) ∈ Co(Ξε(0,w∗(τ))) for all

n ≥ Nε . Since Co(Ξε(0,w∗(τ))) is closed and lim j→∞ v̄n(τ) = v∗(τ), it follows that v∗(τ) ∈

Co(Ξε(0,w∗(τ))). Since this is true for all ε > 0, it follows that v∗(τ) ∈Co(Ξ(0,w∗(τ))). �

Proof of Proposition 1. Let σ∗ be an arbitrary non-equilibrium point. Then there is a

pure action x such that σ∗(x) > 0 and x /∈ F(△Θ(σ∗)). Choose such x. By upper hemi-

continuity of F (Assumption 4) and Θ(·) (Lemma 1) it follows that there exists a ε > 0 such

that x /∈ F(△Θ(σ)) for all σ ∈ Bε(σ
∗) and such that infσ∈Bε(σ∗)σ(x) > 0. Pick such ε > 0.

Then there is some T > 0 such that for any initial value in this ε-neighborhood, σσσ(0)∈Bε(σ
∗)

and any solution σσσ ∈ S∞
σσσ (0) to the differential inclusion leaves this neighborhood within time

T , i.e., we have

‖σσσ(τ)−σ∗‖ ≥ ε (18)

for some τ < T . Such T exists, because the share of the action x decreases whenever σσσ(τ) is

in the set Bε(σ
∗).

Now, pick a sample path h such that the property stated in Theorem 2 holds. We will show

that σt cannot stay in the ε
2
-neighborhood of σ∗ forever. This completes the proof, because it
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implies that almost surely, σt cannot converge to any non-equilibrium point σ∗.

Pick T̃ such that for any time t > T̃ ,

inf
σσσ∈ST

www(t)

‖www(t + s)−σσσ(s)‖<
ε

2
∀s ∈ [0,T ] (19)

Suppose there exists a t > T̃ such that www(t) ∈ B ε
2
(σ∗) (if no such t exists, then the proof is

finished because it follows that σt is outside a ε/2 neighborhood of σ∗ for all t > T̃ ). Then

from (18) and (19), there is s ∈ [0,T ] such that ‖www(t + s)−σ∗‖ ≥ ε/2. So σt cannot stay in

the (ε/2)-neighborhood forever. �

Proof of Proposition 2. Part (i) directly follows from part (ii). Proof of part (ii): Pick a

history from the set of histories with probability one defined by the statement of Theorem 2,

and let www denote the interpolation of the action frequency σt given this path. If there is t∗ such

that www(t) ∈ E for all t > t∗, the result follows. So we will focus on the case in which for any

t∗, there is t > t∗ such that www(t) /∈ E.

Pick attracting sets (A1, · · · ,AN) as stated. Pick an arbitrarily small ε > 0. Without loss of

generality, we assume that for each attracting set An, the ε-neighborhood of An is in the basin

of attraction UAn
.

Pick T large enough that for any attracting set An, for any initial value σσσ(0)∈UAn
, for any

σσσ 2T
σσσ(0), and for any s ∈ [T,2T ],

d(σσσ(s),An)<
ε

2
. (20)

Also, pick T̃ large enough that for any t > T̃ and for any s ∈ [0,2T ]

inf
σσσ∈S2T

www(t)

‖www(t + s)−σσσ(s)‖<
ε

2
. (21)

Recall that for any t∗, there is t > t∗ such that www(t) /∈ E. This implies that there is t > T̃

and an attracting set An such that www(t) ∈ UAn
. Pick such t and An. From (20) and (21), we

have d(www(t+s),An)< ε for all s ∈ [T,2T ]. This implies that www(t+s) ∈UAn
for all s ∈ [T,2T ],

so applying the same argument iteratively, we have d(www(t + s),An) < ε for all s ≥ T , which

means that www will stay in the ε-neighborhood of the attracting set An forever. Since ε can be

arbitrarily small, d(www(t)−An) converges to zero as t→∞. (Note that choosing smaller ε does

not influence An.) �

Proof of Proposition 3. Let σ∗ be an unstable equilibrium, and pick U and T as in the
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definition of unstable equilibrium. Pick a history from the set of histories with probability one

defined by the statements of Theorems 1 and 2. Let www denote the interpolation of the action

frequency σt given this path. It suffices to show that www(t) does not converge to σ∗ given this

history.

Pick a sufficiently small ε > 0, so that 2ε-neighborhood of σ∗ is a subset of U . Without

loss of generality, we can assume that there is η > 0 such that F(µ) ⊆ F(△Θ(σ∗)) for any µ

such that
´

(K(θ ,σ)−K∗(σ))µ(dθ)< η for some σ ∈ Bε(σ
∗). (If necessary, take ε small.)

Pick such η > 0.

From Theorems 1 and 2, there is T ∗ and τ∗ such that T ∗ = ∑τ∗

i=1
1
i
,

ˆ

(K(θ ,στ)−K∗(στ))µτ+1(dθ)< η (22)

for all τ ≥ τ∗, and

inf
σσσ∈ST

www(t)

sup
0≤s≤T

‖www(t + s)−σσσ(s)‖< ε (23)

for all t ≥ T ∗.

Suppose that www(t) is in the ε-neighborhood of σ∗ for some t > T ∗ such that t = ∑τ
i=1

1
i

for

some τ . We will show that there is t ′ > 0 such that www(t + t ′) is not in the ε-neighborhood of

σ∗. This completes the proof, because it implies that www cannot stay around σ∗ forever. Let

σ = www(t) satisfy the condition in the definition of unstable equilibrium. From (22) and the

definition of η , the agent chooses some action x ∈ F(△Θ(σ∗)) in the current period. This

means that www(t̃) moves toward δx during the time t̃ ∈ [t, t + 1
τ+1

]. Then from the condition in

the definition of unstable equilibrium, there is t̃ ∈ [t, t + 1
τ+1

] such that for any σσσ ∈ S∞
www(t̃), we

have σσσ(t) /∈ U for some t ∈ [0,T ]. Then as in the previous case, we can show that there is

t ′ ≤ T such that ‖www(t̃ + t ′)−σ‖> ε , as desired. �

Proof of Proposition 4. We will first present a few preliminary results. We have seen in

Lemma 2 that given any initial prior µ0 and given any policy f , there is T such that with pos-

itive probability, the consequence frequency is close to the mean (more formally, the sample

average of the likelihood Lt is close to the mean) for all periods after T . The following lemma

shows that this T can be chosen independently of µ0 and f . The proof can be found in the

online appendix.

Lemma 1. For any η > 0, there is T and q > 0 such that for any initial prior µ0 with full
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support and for any f ,

P f (∀t ≥ T∀θ |Lt(θ)−K(θ ,σt)|< η)> q. (24)

The next claim just summarizes what we have seen in the proof of Theorem 1: It shows that

if the past consequence frequency is close to the mean as stated in the above claim, and if the

initial prior µ0 satisfies some technical condition, then the posterior belief µt+1 concentrates

on the states which approximately minimize K(θ ,σt) for large t. The proof directly follows

from the proof of Theorem 1.

Claim 1. For any η > 0 and for any κ > 0, there is T such that for any initial prior µ0 and

for any t > T such that |Lt(θ)−K(θ ,σt)|<
η
16

and µ0({θ : K(θ ,σt)−K∗(σt)≤
η
4
})≥ κ ,

ˆ

(K(θ ,σt)−K∗(σt))µt+1(dθ)< η.

The next claim shows that if the posterior belief µt+1 is concentrated as stated in the above

claim then the motion of the action frequency σt is described by the perturbed differential

inclusion. A difference from Theorem 2 is that here the motion of the action frequency www

exactly matches a solution to the perturbed differential inclusion. In contrast, in Theorem 2,

we take the limit as t → ∞, so a solution to the differential inclusion is an approximation of

the action frequency www.

Claim 2. Let F be an uhc policy correspondence. Then for any ε > 0, there is η > 0 such

that given a sample path h, for any t > 1
ε such that

´

(K(θ ,σt)−K∗(σt))µt(dθ)< η , there is

σσσ ∈ SSS
∞,ε
www(T ) such that www(T + s) = σσσ(s) for all s ∈ [0, 1

t+1
], where T = ∑t

τ=1
1
τ .

Proof. Pick ε > 0 arbitrarily. It is sufficient to show that there is η > 0 such that for any

σ and for any µ such that
´

(K(θ ,σ)−K∗(σ))µ(dθ) < η , there is σ̃ ∈ B ε
2
(σ) such that

F(µ) ⊆ F(△Θ(σ̃)).

Note that for each σ , there is εσ < ε and ησ such that F(µ) ⊆ F(△Θ(σ)) for all µ such

that
´

(K(θ , σ̃)−K∗(σ̃))µ(dθ) < ησ for some σ̃ ∈ Bεσ (σ). Since △X is compact, there

is a finite subcover {Bεσ1
(σ1), · · · ,BεσM

(σM)}. Let η = minm ησm
> 0. This η satisfies the

property we want. Indeed, for any σ and µ such that
´

(K(θ ,σ)−K∗(σ))µ(dθ) < η , if we

set σ̃ = σm such that σ ∈ Bεσm
(σm), we have F(µ)⊆ F(△Θ(σ̃)).

The next claim shows that to prove convergence to an attracting set A, it suffices to show

that σt visits the basin of A infinitely often with positive probability.
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Claim 3. Suppose that given an initial prior µ0 and a policy f , σt visits the basin of A infinitely

often with positive probability, i.e., P f (∀T∃t > T σt ∈UA)> 0. Then P f (limt→∞ d(σt ,A) =

0)> 0.

Proof. Let H be the set of all h which satisfies the property stated in Theorem 1. Note

that P f (H ) = 1. Also, let H̃ be the set of all h such that σt visits the basin of A infinitely

often, i.e., it is the set of all h such that for any T , there is t > T such that σt ∈ UA. Let

H ∗ = H ∩H̃ . By the assumption, we have P f (H ∗) = P f (H̃ )> 0.

Pick a sample path h∈H ∗. To prove the claim, it suffices to show that limt→∞ d(σt ,A)= 0

given this path. Pick an arbitrary ε > 0. Without loss of generality, we assume that Bε(A) is

in the basin of attraction UA.

Pick T large enough that (20) holds for any initial value σσσ(0) ∈ UA, for any σσσ ∈ S2T
σσσ (0),

and for any s ∈ [T,2T ]. Also, pick T̃ large enough that (21) holds for any t > T̃ and for any

s ∈ [0,2T ].

Since σt visits UA infinitely often, there is t > T̃ such that www(t) ∈UA. Pick such t. Then

as in the proof of Proposition 2(ii), we can show that www will stay in the ε-neighborhood of the

set A forever. Since ε can be arbitrarily small, limt→∞ d(www(t),A) = 0.

Now we will prove the proposition. Let A be a robustly attracting set, and let ζ > 0 be

such that B
ζ
(A)⊂UA. Let ζ and ε be as in the definition of robustly attracting set. Then pick

η as in Claim 2, pick an arbitrary κ > 0, and pick T as stated in Claim 1.

Pick t∗ large enough that 1
t∗
< ε and

t∗

t∗+T
σ +

T

t∗+T
σ̃ ∈ Bζ (A) (25)

for all σ ∈ B ζ
2

(A) and σ̃ ∈△X . Now, consider the following hypothetical situation:

(a) The initial prior is µ0 such that µ0({θ : K(θ ,σ)−K∗(σ) ≤ η
4
}) > κ for all σ . The

current period is t∗+1.

(b) The action frequency in the past is close to A, in that σt∗ ∈ B ζ
2

(A).

(c) The past observation is close to the mean, in that |Lt∗(θ)−K(θ ,σt∗)|<
η
16

for all θ .43

Let ht∗ be a history which satisfies all the properties above. (Given a policy f , the probability

of such a history ht∗ may be zero, but this does not affect the following argument.) Let H be

43Claim 1 ensures that this condition can be satisfied by some consequence sequence.
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the set of histories such that the history during the first t∗ periods is exactly ht∗ and

|Lt∗+1,t(θ)−K(θ ,σt∗+1,t)|<
η

16
(26)

for all t ≥ t∗+T , where Lt∗+1,t is the sample average of the likelihood from period t∗+1 to

period t, and σt∗+1,t is the action frequency from period t∗+1 to period t. From Lemma 1, we

know P f (H |ht∗)> q.

Pick a path h ∈H . We claim that given this path, σt never leaves the basin of A after

period t∗.

Claim 4. For each path h ∈H , σt ∈UA for all t > t∗.

Proof. Pick h as stated. From (b) and (25), we have σt ∈ Bζ (A) ⊆ UA for all t ∈ {t∗+

1, · · · , t∗+ T}, regardless of the agent’s play during these periods. So what remains is to

show that σt ∈UA for all t > t∗+T . From (26), (a), (c), and Claim 1, we have
´

(K(θ ,σt)−

K∗(σt))µt+1(dθ) < η for all t ≥ t∗+T . Then Claim 2 implies that the motion of the action

frequency after period t∗+T is described by some solution to the ε-perturbed differential in-

clusion. Since σt+T ∗ ∈ Bζ (A) and σ∗ is robustly attracting, we have σt ∈ B
ζ
(A)⊆UA for all

t ≥ t∗+T .

Let µ∗ be the posterior belief induced by the initial prior µ0 and the history ht∗ above.

Now, consider a new “game” in which the agent’s initial prior is µ∗. Since the agent’s

action is determined by the belief, her play in this new game is exactly the same as her play in

the continuation game induced by the initial prior µ0 and the history ht∗ . So Claim 4 implies

that in this new game, with positive probability, the action frequency σt will stay in the basin

UA in all periods t > T̃ , where T̃ is a sufficiently large number. (This is so because the action

frequency σt∗ during the first t∗ periods has almost no impact on the action frequency σt for

large t.) Then Claim 3 implies that in this new game, the action frequency σt converges to A

with positive probability. �

Proof of Proposition 5. We will start with a useful lemma, which shows that Assumption

5 essentially requires single-peakedness of the Kullback-Leibler divergence K(θ ,δx). Let

θ = minσ∈△X θ(σ), and let θ = maxσ∈△X θ(σ). The proof of the following lemma can be

found in the online appendix.

Lemma 2. If Assumption 5 holds, then for each action frequency σ , the Kullback-Leibler

divergence K(θ ,σ) is single-peaked with respect to θ in [θ ,θ ], that is, we have K(θ ,σ) >

52



K(θ̃ ,σ) for each θ ∈ [θ ,θ(σ)) and θ̃ ∈ (θ ,θ(σ)], and K(θ ,σ) < K(θ̃ ,σ) for each θ ∈

[θ(σ),θ) and θ̃ ∈ (θ ,θ ].

We now prove each part of the proposition.

Part (i): A standard algebra shows that

K(θ ,σβ ) = βK(θ ,σ)+(1−β )K(θ , σ̃)

for each θ . Then the result follows immediately.

Part (ii): We first show that θ(σβ )≥ θ(σ̃) for all β . Suppose not so that there is β1 ∈ (0,1)

such that θ(σβ1
)< θ(σ̃). Then since θ(σβ ) is continuous in β and θ(σβ1

)< θ(σ̃)< θ(σ1),

there must be some β2 such that β1 < β2 < 1 and θ(σβ2
) = θ(σ̃). But then from part (i), we

have θ(σβ )= θ(σ̃) for all β ∈ [0,β2], and in particular θ(σβ1
)= θ(σ̃). This is a contradiction.

Similarly, we can show that θ(σβ ) ≤ θ(σ) for all β . Taken together, we have θ(σβ ) ∈

[θ(σ̃),θ(σ)] for all β . Now, from Claim 8 in the proof of Lemma 2, K(θ ,σ) has increasing

differences, in that
∂ 2K(θ ,σ)

∂θ∂β
=

∂K(θ ,σ)

∂θ
−

∂K(θ , σ̃)

∂θ
≥ 0.

for all β and θ ∈ [θ(σ̃),θ(σ)]. So the monotone selection theorem of Topkis implies the

result we want.

Part (iii): Pick β1 and β2 as stated. Let θ∗ = θ(σβ1
). This θ∗ is an interior solution, so it

must solve the first-order condition
∂K(θ ∗,σβ1

)

∂θ = 0, which is equivalent to

β1
∂K(θ∗,σ)

∂θ
+(1−β1)

∂K(θ∗, σ̃)

∂θ
= 0. (27)

We claim that each term in the left-hand side is non-zero:

Claim 5.
∂K(θ ∗,σ)

∂θ 6= 0.

Proof. Suppose not so that
∂K(θ ∗,σ)

∂θ = 0. Then from (27), we have
∂K(θ ∗,σ̃)

∂θ = 0, that is, θ∗

satisfies the first-order condition for σ and σ̃ . Then we must have
∂ 2K(θ ∗,σ)

∂θ 2 ≥ 0. Indeed, if

not and
∂ 2K(θ ∗,σ)

∂θ 2 < 0, θ∗ becomes the local maxima for K(θ ,σ), which contradicts with the

single-peakedness of K(θ ,σ). Similarly we have
∂ 2K(θ ∗,σ̃)

∂θ 2 ≥ 0

Also, from Assumption 5, we know that the second-order condition,
∂ 2K(θ ∗,σβ1

)

∂θ 2 > 0, is
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satisfied for σβ1
, which is equivalent to

β1
∂ 2K(θ∗,σ)

∂θ 2
+(1−β1)

∂ 2K(θ∗, σ̃)

∂θ 2
> 0.

This inequality implies
∂ 2K(θ ∗,σ)

∂θ 2 > 0 or
∂ 2K(θ ∗,σ̃)

∂θ 2 > 0. Suppose for now that
∂ 2K(θ ∗,σ)

∂θ 2 > 0.

(The argument for the case with
∂ 2K(θ ∗,σ̃)

∂θ 2 > 0 is symmetric, so we will omit it.) Then since

∂ 2K(θ ∗,σ̃)
∂θ 2 ≥ 0, we have

∂ 2K(θ ∗,σβ )

∂θ 2 > 0 for all β 6= 0. Also, since
∂K(θ ∗,σ)

∂θ = ∂K(θ ∗,σ̃)
∂θ = 0,

we have
∂K(θ ∗,σβ )

∂θ = 0 for all β . So θ∗ satisfies both the first-order and the second-order

conditions, which implies that θ(σβ ) = θ∗ for all β 6= 0. Then since θ(σβ ) is continuous

in β , we have θ(σβ ) = θ∗ for all β ∈ [0,1]. But this is a contradiction, because we have

θ(σ̃)< θ(σ).

The above claim and (27) imply that

∂K(θ∗,σβ2
)

∂θ
= β2

∂K(θ∗,σ)

∂θ
+(1−β2)

∂K(θ∗, σ̃)

∂θ
6= 0,

which means that θ∗ cannot be the optimal solution for β2. (Note that θ∗ is an interior value,

so the first-order condition is necessary for it to be optimal.) Then from part (ii), the result

follows. �

Proof of Proposition 6. Let Θ∗∗ be the union of the equilibrium models and the boundary

points, that is, Θ∗∗=Θ∗∪{0,1}. Since Θ∗ is finite, it can be written as Θ∗∗= {θ0,θ1, · · · ,θN}

where 0 = θ0 < · · ·< θN = 1.

We first show that each interval (θn,θn+1) has a useful property.

Lemma 3. Each interval (θn,θn+1) must satisfy one of the following properties:

(i) For each θ ∈ (θn,θn+1) and for each x ∈ F(δθ ), we have θ(δx)> θ .

(ii) For each θ ∈ (θn,θn+1) and for each x ∈ F(δθ ), we have θ(δx)< θ .

Proof. If there is θ ∈ (θn,θn+1) such that θ(δx) = θ for some x ∈ F(δθ ), then this θ is an

equilibrium model, which is a contradiction. So such θ does not exist. Similarly, if there is

θ ∈ (θn,θn+1) such that θ(δx) < θ < θ(δx̃) for some x, x̃ ∈ F(δθ ), then there is a mixture σ

of x and x̃ such that θ(σ) = θ , which implies that θ is a mixed-strategy equilibrium model.

So again such θ does not exist. Accordingly, (θn,θn+1) must be the union of the two sets, Θ1

and Θ2: Θ1 is the set of all θ ∈ (θn,θn+1) such that θ(δx) > θ for all x ∈ F(δθ ). Θ2 is the
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set of all θ ∈ (θn,θn+1) such that θ(δx)< θ for all x ∈ F(δθ ). However, since F(δθ ) is upper

hemi-continuous in θ , one of these sets must be empty. This implies the result.

Next, we characterize how the KLD minimizer θ(σt) changes over time, when the motion of

σt is determined by the differential inclusion. Consider an interval (θn,θn+1) which satisfies

property (i) in the lemma above. Pick a solution σσσ to the differential inclusion, and suppose

that θ(σσσ(t))∈ (θn,θn+1) in the current period t. Then from property (i), the agent will choose

an action x such that θ(δx) > θ(σσσ(t)), which means that θ(σσσ (t)) should move up and even-

tually reaches (a neighborhood of) θn+1. Also, once θ(σσσ(t)) goes above θn+1, it cannot be

lower than θn+1 in any later period. Formally, we have the following result:

Lemma 4. Suppose that the interval (θn,θn+1) satisfies property (i) stated in Lemma 3. Then

for any ε > 0, there is T > 0 such that given any initial value σσσ(0) with θ(σσσ(0)) > θn and

given any solution σσσ ∈ S∞
σσσ(0) to the differential inclusion, we have θ(σσσ(t))> θn+1− ε for all

t ≥ T .

Proof. Let X∗ = ∪θ∈(θn,θn+1)F(δθ ). We first consider the special case in which θ(δx)≥ θn+1

for all x ∈ X∗. Then we will explain how to extend the proof for a general case.

Case 1: θ(δx)≥ θn+1 for all x ∈ X∗. Let X be the set of all mixed strategies σ such that

θ(σ)≥ θn+1. From Proposition 5(ii), this set is convex. Similarly, the set△X \X is convex.

So there is a hyperplane H which separates these two sets; i.e., there is a vector λ ∈ R|X | and

k ∈ R such that λ ·σ ≥ k for all σ such that θ(σ) ≥ θn+1, and λ ·σ < k for all σ such that

θ(σ) < θn+1. From Proposition 5(ii), for any σ ∈ △X∗, we have θ(σ) ≥ θn+1 and hence

λ ·σ ≥ k.

Pick an arbitrary solution σσσ to the differential inclusion. Pick any time t such that θ(σσσ(t))∈

(θn,θn+1). Then we have

σ̇σσ(t) = σ −σσσ(t) (28)

for some σ ∈△X∗, and also we have

λ · σ̇σσ(t) = λ · (σ−σσσ(t))≥ k−λ ·σσσ(t)> 0. (29)

The first equation (28), together with Proposition 5(ii), implies that θ(σσσ(t)) weakly increases

as time goes for all these t. That is, if θ(σσσ(t))∈ (θn,θn+1) in the current time t, then we have

θ(σσσ(t+η))≥ θ(σσσ(t)) at the next instant t+η . The second equation (29) implies that λ · σ̇σσ(t)

55



strictly increases as time goes. So σσσ(t)moves toward the hyperplane H if θ(σσσ(t))∈ (θn,θn+1)

in the current time t.

These observations immediately imply the result we want. Pick an arbitrary ε > 0, and let

ε̃ > 0 be such that θ(σ)> θn+1−ε for all σ such that λ ·σ > k− ε̃ . Pick T large enough that

ε̃T > k−λ ·σ (30)

for all σ . From (29), if λ ·σσσ(t) > k− ε̃ in the current period t, we have λ · σ̇σσ(t) ≥ ε̃ that

is, λ ·σσσ(t) increases at a rate at least ε̃ . Then from (30), given any initial value σσσ(0) with

θ(σσσ(0)) > θn, there is t < T such that λ ·σσσ(t) > k− ε̃ , which implies θ(σσσ(t)) > θn+1− ε .

Also (28) implies that after this time t, θ(σσσ(t̃)) cannot fall below θn+1−ε , that is, θ(σσσ(t̃))>

θn+1− ε for all t̃ > t. This implies the result, because t < T .

Case 2: θ(δx) < θn+1 for some x ∈ X∗. Let X∗∗ = {x1,x2, · · · ,xM} denote the set of

all x ∈ X∗ such that θ(δx) < θn+1. For each action xm, let ξm denote the maximal value of

θ ∈ (θn,θn+1) such that xm ∈ F(δθ ). Note that the maximum exists, because F is upper

hemi-continuous. Also, by the assumption, we have ξm < θ(δxm
). Without loss of generality,

assume that θn < ξ1 ≤ ξ2 · · · ≤ ξM < θn+1.

Then we can show that there is T1 such that given any initial value σσσ(0) with θ(σσσ(0)) ∈

(θ1,ξ1] and given any solution σσσ to the differential inclusion, we have θ(σσσ(t))> ξ1 for some

time t < T1. The proof is very similar to the argument in the previous case: Let λ1 and k1 be

such that λ1 ·σ ≥ k1 for all θ(σ)≥ θ(δx1
) and λ1 ·σ < k1 for all θ(σ)< θ(δx1

). Then for any

t such that θ(σσσ(t)) ∈ (θn,ξ1], we have σ̇σσ(t) = σ −σσσ(t) for some σ ∈△X∗, and also

λ1 · σ̇σσ(t) = λ1 · (σ −σσσ(t))> k1−λ1 ·σσσ(t)> 0.

Note that k1−λ1 ·σσσ(t) is bounded away from zero uniformly in σσσ(t) with θ(σσσ (t))∈ (θn,ξ1],

because property (i) in Lemma 3 ensures θ(δxm
) > ξm for each m. This immediately implies

the existence of T1.

Similarly, there is T2 such that given any initial value σσσ(0) with θ(σσσ(0)) ∈ (ξ1,ξ2] and

given any solution σσσ to the differential inclusion, we have θ(σσσ(t))> ξ2 for some time t < T2.

Again the proof is very similar to the argument in Case 1; the only difference is that here we

use the fact that the action x1 is never chosen when θ(σσσ (t)) ∈ (ξ1,ξ2].

We iterate this process and define T1, T2, · · · , TM. Also, pick an arbitrarily small ε > 0,

and let TM+1 be such that given any initial value σσσ(0) with θ(σσσ (0)) ∈ (ξM,θn+1) and given

any solution σσσ to the differential inclusion, we have θ(σσσ(t)) > θn+1− ε for some time t <

56



TM+1. Then let T = T1 + · · ·+TM+1. This (ε,T ) obviously satisfies the property stated in the

lemma.

The next lemma relates the result in the previous lemma to the motion of θ(www(t)), where

www(t) is the actual frequency. It shows that if θ(www(t)) visits the interval (θn,θn+1) infinitely

often, then after a long time, θ(www(t)) cannot be less than θn+1. That is, θ(www(t)) cannot move

against the solution to the differential inclusion in the long run.

Lemma 5. Consider an interval (θn,θn+1) which satisfies property (i) in Lemma 3. Pick a

sample path h such that the property stated in Theorem 3 is satisfied and such that θ(www(t))

exceeds θn infinitely often, i.e., for any T > 0, there is t > T such that θ(www(t)) > θn. Then

liminft→∞ θ(www(t))≥ θn+1.

Proof. The proof is very similar to that of Proposition 2(ii) and is provided in the online

appendix.

Now we will show that θ(σt) converges almost surely. Suppose not, so that we have

liminft→∞ θ(σt)< limsupt→∞ θ(σt) with positive probability. Then there is a path h such that

the property stated in Theorem 3 is satisfied and such that liminft→∞ θ(σt)< limsupt→∞ θ(σt).

Pick such h.

Let (θn,θn+1) be an interval such that the intersection of the interval and [liminft→∞ θ(σt),

limsupt→∞ θ(σt)] is non-empty. Assume for now that this interval satisfies property (i) stated

in lemma 3. By the definition of h, θ(www(t)) must exceed θn infinitely often, so Lemma 5

implies liminft→∞ θ(www(t)) ≥ θn+1. But this is a contradiction, because it implies that the

intersection of (θn,θn+1) and [liminft→∞ θ(σt), limsupt→∞ θ(σt)] is empty.

Likewise, if the interval (θn,θn+1) satisfies property (ii) in Lemma 3, there is a contradic-

tion. Hence we must have liminft→∞ θ(σt) = limsupt→∞ θ(σt) almost surely.

Also, Lemma 5 implies that for each interval (θn,θn+1) which satisfies property (i) in

Lemma 3, we have limt→∞ θ(σt) ∈ (θn,θn+1) with zero probability. Obviously the same is

true for each interval (θn,θn+1) which satisfies property (ii). Hence limt→∞ θ(σt)∈Θ∗∗ almost

surely.

So for the case in which the boundary points {0,1} are equilibrium models, we have

limt→∞ θ(σt) ∈ Θ∗. If θ = 0 is not an equilibrium model, then as in Lemma 3, we can show

that θ(δx)> θ for any model θ ∈ [θ0,θ1) and for any x ∈ F(δθ ). Then as in Lemma 5, we can

show that if a sample path h satisfies the property stated in Theorem 3 and θ(www(t)) ∈ [θ0,θ1)

infinitely often, then liminft→∞ θ(www(t))≥ θ1. This immediately implies that σt converges to
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θ0 = 0 with zero probability. Similarly, if θ = 1 is not an equilibrium model, then σt converges

to this model with zero probability. Hence the result follows. �

Proof of Proposition 7. It is obvious that (c) implies (b). So in this proof, we will show

that (a) implies (c), and (b) implies (a).

Proof that (a) implies (c). Pick an attracting model θ∗, and let A = {σ ∈△F(δθ ∗)|θ(σ) =

θ∗}. This set is non-empty, because F is upper hemi-continuous in σ and θ(σ) is continuous.

We will show that this set A is robustly attracting.

The following notation is useful. Let X1 be the set of all mixed strategies σ such that

θ(σ) < θ∗. From Proposition 5, this set is convex. Similarly, the set △X \X1 is convex.

So there is a hyperplane H1 which separates these two sets; i.e., there is a vector λ1 ∈ R|X |

and k1 such that λ1 ·σ < k1 for all σ such that θ(σ) < θ∗, and λ1 ·σ ≥ k1 for all σ such

that θ(σ) ≥ θ∗. Similarly, letting X2 be the set of all σ such that θ(σ) > θ∗, there is a

hyperplane H2 which separates X2 and△X \X2, i.e., there is a vector λ2 ∈ R|X | and k2 such

that λ2 ·σ < k2 for all σ such that θ(σ)> θ∗, and λ2 ·σ ≥ k2 for all σ such that θ(σ) ≤ θ∗.

(These hyperplanes H1 and H2 may or may not coincide.) Let X ∗ be the set of all σ such that

θ(σ) = θ∗.

We first consider the special case in which F(δθ ∗) = X , i.e., the agent is indifferent over

all actions in the model θ∗. In this case, A = X ∗, i.e., the set A is the set of all mixed actions

σ with θ(σ) = θ∗. Later on, we will explain how to extend the proof technique to the case

with F(δθ ∗)⊂ X .

Case 1: F(δθ ∗) = X .

Pick ε > 0 as in the definition of attracting models. Then let Xε be the set of all σ such that

|θ(σ)−θ∗|< ε . We show that this set Xε is (a subset of) the basin of attraction. That is,

given any initial value σσσ(0) ∈Xε , any solution σσσ ∈ S∞
σσσ (0) to the differential inclusion will

enter a neighborhood of the set A = X ∗ in finite time and stay there forever.

So pick any initial value σσσ(0) ∈Xε and any solution σσσ ∈ S∞
σσσ (0). We first show that this

solution σσσ never leaves the set Xε .

Lemma 6. σσσ(t) ∈Xε for all t, that is, |σσσ(t)−θ∗|< ε for all t.

Proof. Suppose that θ(σσσ(t)) ∈ (θ∗− ε,θ∗) for some t. Then we have σ̇σσ(t) = σ −σσσ(t) for

some σ ∈ △F(δθ (σσσ(t))). By the definition of ε , we must have θ(σ) ≥ θ∗; then from Propo-

sition 5, at the next instant t +η , we have θ(σσσ(t +η)) ≥ θ(σσσ(t)), i.e., θ(σσσ(t)) is weakly

increasing in t if σσσ(t) ∈ [θ∗− ε,θ∗). Similarly, if θ(σσσ(t)) ∈ (θ∗,θ∗+ ε), then θ(σσσ(t)) is

weakly decreasing in t. This implies the result we want.
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Next, we show that A is attracting. It suffices to prove the following lemma:

Lemma 7. For any ε > 0, there is T > 0 such that for any initial value σσσ(0) ∈Xε and any

solution σσσ ∈ S∞
σσσ(0), we have d(σσσ(t),X ∗)< ε for all t > T .

Proof. Suppose that θ(σσσ(t)) ∈ (θ∗− ε,θ∗) for some t. Then as shown in the proof of the

previous lemma, we have σ̇σσ(t) = σ −σσσ(t) for some σ such that θ(σ) ≥ θ∗. This in turn

implies that

λ1 · σ̇σσ(t) = λ1 · (σ −σσσ(t))≥ k1−λ1 ·σσσ(t)> 0.

Here the weak inequality follows from θ(σ) ≥ θ∗, and the strict inequality follows from

θ(σ)< θ∗. Note that k1−λ1 ·σσσ(t) measures the current distance from σσσ(t) to the hyperplane

H1, and λ1 · σ̇σσ(t) measures how much σσσ(t) gets closer to the hyperplane H1 at the next instant,

So the equation above implies that σσσ(t) gets closer to H1 as time goes, and the speed of

convergence is bounded away from zero until σσσ(t) enters a neighborhood of H1.

Similarly, if θ(σσσ(t)) ∈ (θ∗,θ∗+ ε) for some t, then σσσ(t) gets closer to the hyperplane

H2 as time goes, and the speed of convergence is bounded away from zero until σσσ (t) enters

a neighborhood of H2. This implies the result we want, because the set A = X ∗ is the space

sandwiched by H1 and H2 (formally, A =△X \ (X1)∪X2)).

As a last step, we show that the set A is robustly attracting:

Lemma 8. The set A is robustly attracting.

Proof. Let H ′1 be the set of all σ with θ(σ) = θ∗− ε
2
, and H ′2 be the set of all σ with θ(σ) =

θ∗+ ε
2
. Take a small ε∗ > 0 such that θ(σ) ∈ (θ∗− ε,θ∗)for all σ with d(σ ,H ′1) < ε∗, and

such that θ(σ) ∈ (θ∗,θ∗+ ε)for all σ with d(σ ,H ′2) < ε∗. Note that such ε∗ exists because

H ′1, H ′2, X ∗, {σ |θ(σ) = θ∗− ε}, and {σ |θ(σ) = θ∗+ ε} are all compact and disjoint.

Consider any solution to the ε∗-perturbed differential inclusion, and suppose that σσσ(t) ∈

H ′1 for some t, i.e., suppose that θ(σσσ(t)) = θ∗− ε
2
. Then by the definition of ε∗, σ̇σσ(t) =

σ −σσσ(t) for some σ such that θ(σ) ≥ θ∗, which implies that θ(σσσ(t)) moves up at the next

instant. Likewise, if θ(σσσ (t)) = θ∗+ ε
2

for some t, then θ(σσσ(t)) moves down at the next

instant. Accordingly, if the initial value is in the set {σ |θ∗− ε
2
≤ θ(σ) ≤ ε

2
}, any solution to

the ε∗-perturbed differential inclusion cannot leave this set. This implies the result.

Case 2: F(δθ ∗)⊂ X .
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Pick small ε > 0 as stated in the the definition of attracting models. Without loss of

generality, we assume that F(δθ̃ ) ⊆ F(δθ ∗) for all θ such that |θ −θ∗|< ε . (Take ε small, if

necessary.)

Let Xε be as in the previous case. We show that this set Xε is (a subset of) the basin of

attraction. That is, given any initial value σσσ (0)∈Xε , any solution σσσ ∈ S∞
σσσ(0) to the differential

inclusion will enter a neighborhood of the set A in finite time and stay there forever. Note that

now the set A is a strict subset of X ∗.

Pick any initial value σσσ(0) ∈Xε and any solution σσσ ∈ S∞
σσσ(0). Then Lemma 6 still holds,

that is, σσσ (t) never leaves the set Xε . Also Lemma 7 still holds, that is, σσσ (t) moves toward to

the set X ∗ as time goes.

Also, by the definition of ε , we have F(△Θ(σ))⊆ F(δθ ∗) for any σ ∈Xε . This implies

that at every time t, we have σ̇σσ(t)[x] = −σσσ (t)[x] for each x /∈ F(δθ ∗). This implies that σσσ(t)

assigns probability zero on any action x /∈ F(δθ ∗) in the limit as t→ ∞, and in particular, for

any ε > 0, there is T such that σ̇σσ(t)[x] = −σσσ (t)[x] for all x /∈ F(δθ ∗) and t > T . This and

Lemma 7 imply that the set A is an attractor.

Also, we can show that the set A is robustly attracting; the proof is very similar to that of

Lemma 8, and hence omitted. �

Proof that (b) implies (a). Pick an arbitrary θ∗, and let A = {σ ∈ △F(δθ ∗)|θ(σ) = θ∗}.

Suppose that A is an attractor. We will show that the model θ∗ is attracting.

Let UA be the basin of the set A, and let σσσ(0) be such that θ(σσσ(0))< θ∗. Then we have

the following lemma:

Lemma 9. For any θ ∈ (θ(σσσ(0)),θ∗) and for any σ ∈ F(δθ ), we have θ(σ)> θ .

Proof. Suppose not, so that there is θ ∈ (θ(σσσ(0),θ∗) and σ ∈ F(δθ ) such that θ(σ) ≤ θ .

Consider a solution to the differential inclusion σσσ ∈ S∞
σσσ(0) such that for any time t such that

θ(σσσ(t)) = θ , we have σ̇σσ (t) = σ −σσσ(t). Then σσσ(t) ≤ θ for all t; by the definition of σ ,

θ(σσσ(t)) must go down whenever it hits θ(σσσ(t)) = θ . This contradicts with the fact that σσσ(0)

is in the basin of attraction.

Since F(δθ ) is upper hemi-continuous in θ , there is ε > 0 such that F(δθ ) = F(δθ̃ ) for all

θ , θ̃ ∈ (θ∗− ε,θ∗). Then the lemma above implies that for any θ ∈ (θ∗− ε,θ∗) and for any

σ ∈ F(δθ ), we have θ(σ)≥ θ∗.

Similarly, we can show that there is ε̃ > 0 such that for any θ ∈ (θ∗,θ∗+ ε̃) and for any

σ ∈ F(δθ ), we have θ(σ)≤ θ∗. Hence θ∗ is attracting. �
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Proof of Proposition 8. Only if: Suppose that a model θ∗ ∈ (0,1) is unstable. Then upper

hemi-continuity of F implies that there are pure actions x and x̃ such that θ(δx)< θ∗ < θ(δx̃)

and and x, x̃ ∈ F(δθ ∗). Then from Proposition 5, there is a mixture σ∗ of these actions x and

x̃ such that θ(σ∗) = θ∗. Obviously this σ∗ is a mixed equilibrium with θ(σ∗) = θ∗. So it

suffices to show that all mixed equilibria with θ(σ∗) = θ∗ are unstable.

Choose ε > 0 as stated in the definition of unstable models. Then as in the proof of

Proposition 7 there is a hyperplane which separates mixed actions σ with θ(σ)≥ θ∗+ε from

others. That is, there is λ1 ∈R
|X | and k1 ∈R such that λ1 ·σ ≥ k1 if and only if θ(σ)≥ θ∗+ε .

Likewise, there is λ2 and k2 such that λ2 ·σ ≥ k2 if and only if θ(σ)≤ θ∗− ε .

Let U be the set of all σ such that θ(σ) ∈ (θ∗− ε
2
,θ∗+ ε

2
). Also, choose T sufficiently

large so that

(k1−λ1 ·σ)T > k1−λ1 · σ̃ (31)

for all σ with θ(σ) ∈ (θ∗,θ∗+ ε
2
) and for all σ̃ with θ(σ̃) ∈ (θ∗,θ∗+ ε

2
), and that

(k2−λ2 ·σ)T > k2−λ2 · σ̃ (32)

for all σ with θ(σ) ∈ (θ∗− ε
2
,θ∗) and for all σ̃ with θ(σ̃) ∈ (θ∗− ε

2
,θ∗).

We will show that these U and T satisfy the property stated in the definition of unstable

equilibria. This completes the proof, because any mixed equilibrium σ∗ with θ(σ∗) = θ∗ is

in the interior of U .

The following result is useful:

Claim 6. For any initial point σ ∈ U with θ(σ) 6= θ∗ and for any solution σσσ ∈ S∞
σ to the

differential inclusion, there is t < T such that σσσ(t) /∈U .

Proof. First, consider the case in which θ(σ) ∈ (θ∗,θ∗+ ε
2
). Pick an arbitrary path σσσ ∈ S∞

σ .

Suppose that θ(σσσ(t)) ∈ (θ∗,θ∗+ ε
2
) in some period t. Then since θ∗ is unstable, σ̇σσ(t) =

σ −σσσ(t) for some σ such that θ(σ)≥ θ∗+ ε . Hence

λ1 · σ̇σσ(t) = λ1 · (σ −σσσ(t))≥ k1−λ1 ·σσσ(t)> 0

where the weak inequality follows from θ(σ)≥ θ∗+ε , and the strict inequality follows from

θ(σσσ(t)) < θ∗+ ε
2
. This implies that λ1 · σ̇σσ(t) increases whenever θ(σσσ(t)) ∈ (θ∗,θ∗+ ε

2
) in

the current period t. Hence there is t < T such that λ1 ·θ(σσσ(t))≥ θ∗+ ε
2
, implying σσσ (t) /∈U .

A similar argument applies to the case in which θ(σ) ∈ (θ∗− ε
2
,θ∗).

61



Now we will show that U and T satisfy the property stated in the definition of unstable

equilibria. Pick an arbitrary σ ∈U . There are two cases to be considered.

Case 1: θ(σ) 6= θ∗. Pick any action x. For β close to one, a perturbed mixture βσ +

(1−β )δx is still in the set U , and θ(βσ +(1−β )δx) 6= θ∗. Hence from the claim above,

starting from this perturbed mixture βσ +(1−β )δx, any solution to the differential inclusion

must leave the set U within time T . So this σ satisfies the property stated in the definition of

unstable equilibria.

Case 2: θ(σ) = θ∗. Pick an arbitrary pure action x ∈ F(δθ ∗). Since θ∗ is unstable,

θ(δx) 6= θ∗. So from Proposition 5(iii), for any β sufficiently close to one, θ(βσ + (1−

β )δx)∈ (θ
∗− ε

2
,θ∗)∪(θ∗,θ∗+ ε

2
). Hence, from the above claim, starting from this perturbed

mixture βσ +(1−β )δx, any solution to the differential inclusion must leave the set U within

time T . So this σ satisfies the property stated in the definition of unstable equilibria. �

If: Let θ∗ ∈ (0,1) be such that θ(δx) 6= θ∗ for each pure action x∈ F(δθ ∗), there is at least

one mixed equilibrium σ∗ with θ(σ∗) = θ∗, and all such mixed equilibria are unstable. We

will show that the model θ∗ is unstable.

Pick an arbitrary unstable equilibrium σ∗ with θ(σ∗) = θ∗, and let T and U be as in the

definition of unstable equilibria. Then each point σ ∈ U satisfies property (i) or (ii) in the

definition of unstable equilibria. In particular, σ = σ∗ satisfies property (ii), i.e., starting from

a perturbed action frequency βσ∗+(1−β )δx, any solution to the differential inclusion must

leave the neighborhood U of σ∗ within time T . This is so because σ∗ is an equilibrium and

never satisfies property (i).

As the following lemma shows, this property implies that θ∗ is indeed unstable.

Lemma 10. θ∗ is unstable.

Proof. We prove by contradiction, so suppose that θ∗ is not unstable. Then from the upper

hemi-continuity of F , there is ε > 0 and a pure action x ∈ F(δθ ∗) such that

(a) θ(δx)> θ∗ and x ∈ F(δθ ) for all θ ∈ (θ∗− ε,θ∗), or

(b) θ(δx)< θ∗ and x ∈ F(δθ ) for all θ ∈ (θ∗,θ∗+ ε).

Pick such ε and x. In what follows, we focus on the case in which this action x satisfies

property (a). (The proof for the other case is symmetric, and hence omitted.)

Since σ∗ is a mixed equilibrium with θ(σ∗) = θ∗ and since there is no pure action x with

θ(δx) = θ∗, there must be two actions x and x̃ such that x, x̃ ∈ F(δθ ∗) and θ(δx)< θ∗ < θ(δx̃).

Pick such x and x̃. Pick β ∈ (0,1) close to one so that θ(βσ∗+(1− β )δx) ∈ (θ∗− ε,θ∗).
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Then consider the following path σσσ which starts from βσ∗+(1−β )δx:

σ̇σσ(t) =

{

δx∗−σσσ(t) if θ(σσσ(t))< θ∗

σ∗−σσσ(t) if θ(σσσ(t)) = θ∗
.

In words, on this path, the share of x∗ increases until θ(σσσ(t)) hits θ∗, and after that σσσ(t)

moves toward the equilibrium σ∗. Clearly this path solves the differential inclusion with the

initial value βσ∗+(1−β )δx, and in particular, if β is sufficiently close to one, this path never

leaves the neighborhood U of σ∗. This implies that σ = σ∗ does not satisfy property (ii) in

the definition of unstable equilibria, which is a contradiction.

Proof of Proposition 9. Let H
∗ be the set of sample paths which satisfy the property

stated in Theorem 1. Pick any sample path h ∈H ∗. We will show that limt→∞ σ t(h) exists,

and this limit is a pure action equilibrium.

Let θ(σ) denote the minimal element of Θ(σ), and let θ(σ) denote the maximal element

of Θ(σ). We divide the proof into two steps.

Step 1. In this step, we will establish the following lemma, which shows that for any

sample path in which the share of the lowest action x1 does not shrink to zero, the share of x1

actually converges to one.

Lemma 3. If there is a sample path h ∈H ∗ satisfying limsupt→∞ σ t(h)[x1]> 0, then

(i) θ(x1) ∈ [θ0,θ1], so x1 is a pure action equilibrium.

(ii) For all sample paths h∈H
∗ satisfying limsupt→∞ σ t(h)[x1]> 0, we have limt→∞ σ t(h)[x1] =

1.

Note that part (i) directly follows from part (ii). (If there is h ∈H ∗ such that σ t converges

to σ∗, then σ∗ must be an equilibrium.) So we will prove only part (ii). We will start with two

preliminary lemmas–the proof of each lemma is provided in the online appendix. The first

lemma partially characterizes the motion of the highest KLD minimizer θ for sample paths in

which the share of the highest action xN does not shrink to zero.

Lemma 4. Pick any sample path h ∈H ∗ such that limsupt→∞ σ t(h)[xN] > 0. Then there is

t∗ such that for any t > t∗ with θ(σ t)< θ(xN), we have θ (σ t)< θ(x) for some x ∈ F(δθ(σ t)).

The next lemma partially characterize the motion of the lowest KLD minimizer θ for

sample paths in which the share of the lowest action x1 does not shrink to zero.

63



Lemma 5. Pick any sample path h ∈H
∗ such that limsupt→∞ σ t(h)[x1] > 0. Then there is

t∗ such that for any t > t∗ such that θ (σ t) < θ(xN) and such that θ (σ t) < θ(x) for some

x ∈ F(δθ (σ t)), we have xt+1 6= xN .

Now we will prove a key result in the proof: It shows that for any sample path in which the

share of the lowest action x1 does not shrink to zero, the share of the highest action xN must

converge to zero.

Lemma 6. For any sample path h∈H ∗ with limsupt→∞ σ t(h)[x1]> 0, we have limt→∞ σ t(h)[xN] =

0.

Proof. Suppose not, so that there is a sample path h such that limsupt→∞ σ t(h)[x1] > 0 and

limsupt→∞ σ t(h)[xN] > 0. Pick such h. From Lemmas 4 and 5, there is t∗ such that for any

t > t∗ with xt+1 = xN , we have θ (σ t) = θ(xN). That is, after a long time, the action xN can

be chosen only in a period in which θ(σ t) = θ(xN). Since limsupt→∞ σ t(h)[x1] > 0, there is

t∗∗ > t∗ such that xt∗∗+1 = x1. Then we must have θ(σ t∗∗+1) < θ(xN), which in turn implies

that xt∗∗+2 6= xN . Iterating this argument shows that xt+1 6= xN for all t ≥ t∗∗, which contradicts

with limsupt→∞ σ t(h)[xN]> 0.

The next lemma shows that the same result holds for the second-highest action xN−1:

Lemma 7. For any sample path h∈H ∗ with limsupt→∞ σ t(h)[x1]> 0, we have limt→∞ σ t(h)[xN−1] =

limt→∞ σ t(h)[xN] = 0.

To prove Lemma 7, we will use the next two lemmas, which are counterparts to Lemmas

4 and 5. The proofs are omitted, as they are similar to those of Lemmas 4 and 5.

Lemma 8. Pick any sample path h ∈H ∗ such that limsupt→∞ σ t(h)[xN−1] > 0. Then there

is t∗ such that for any t > t∗ with θ(σ t) < θ(xN−1), we have θ (σ t) < θ(x) for some x ∈

F(δθ (σ t)).

Lemma 9. Pick any sample path h ∈H ∗ such that limsupt→∞ σ t(h)[x1] > 0. Then there is

t∗ such that for any t > t∗ such that θ(σ t) < θ(xN−1) and such that θ (σ t) < θ(x) for some

x ∈ F(δθ (σ t)), we have xt+1 6= xN−1,xN .

Proof. Now we will prove Lemma 7. Suppose not, so that there is h∈H ∗ with limsupt→∞ σ t(h)[x1]>

0, limsupt→∞ σ t(h)[xN−1]> 0, and limsupt→∞ σ t(h)[xN] = 0. (Note that limsupt→∞ σ t(h)[xN] =

0 follows from Lemma 6.) Pick such h. From Lemmas 8 and 9, there is t∗ > 0 such that

for any t > t∗ with xt+1 = xN−1 or xt+1 = xN , we have θ(σ t) ≥ θ(θN−1). At the same
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time, since limsupt→∞ σ t(h)[x1]> 0 and limsupt→∞ σ t(h)[xN] = 0, there is t∗∗ > t∗ such that

θ(σ t∗∗) < θ(θN−1). Then xt∗∗+1 6= xN−1,xN , which in turn implies θ(σ t∗∗+1) < θ(θN−1). It-

erating this argument, we can show that xt∗∗+1 6= xN−1,xN for all t > t∗∗. But this contradicts

with limsupt→∞ σ t(h)[xN−1]> 0.

Using the argument similar to the proof of Lemma 7, we can show that for any sample path

h ∈H ∗ with limsupt→∞ σ t(h)[x1]> 0, we have limt→∞ σ t(h)[x2] = · · ·= limt→∞ σ t(h)[xN] =

0. This implies the result of Lemma 3.

Step 2. In this step, we will show that a similar result to Lemma 3 holds for other actions

x2, · · · , xN : That is, for any sample path in which the share of xn does not shrink to zero, the

share of xn actually converges to one.

Lemma 10. If there is a sample path h ∈H ∗ satisfying limsupt→∞ σ t(h)[xn]> 0, then

(i) θ(xn) ∈ [θn−1,θn], so xn is a pure action equilibrium.

(ii) For all sample paths h∈H ∗ satisfying limsupt→∞ σ t(h)[xn]> 0, we have limt→∞ σ t(h)[xn] =

1.

This lemma immediately implies the result in Proposition 9, because for any path h, there

must be some n such that limsupt→∞ σ t(h)[xn]> 0.

We will prove Lemma 10 only for n = 2, because the same argument applies to all higher

n > 2. Since part (i) is an immediate consequence of part (ii), we will prove part (ii) only. That

is, we will show that for any sample path in which the share of the second-lowest action does

not shrink to zero, its share actually converges to one.

The following lemma is a counterpart to Lemma 5.

Lemma 11. Pick any sample path h ∈H ∗ such that limsupt→∞ σ t(h)[x2]> 0. Then there is

t∗ such that for any t > t∗ such that θ(x2) ≤ θ(σ t) < θ(xN) and such that θ(σ t) < θ(x) for

some x ∈ F(δθ(σ t)), we have xt+1 6= xN .

Now we show that for any sample path in which the share of the second-lowest action x2

does not shrink to zero, the share of the highest action xN converges to zero.

Lemma 12. For any sample path h∈H ∗ with limsupt→∞ σ t(h)[x2]> 0, we have limt→∞ σ t(h)[xN] =

0.

Proof. Suppose not, so that there is a sample path h such that limsupt→∞ σ t(h)[x2] > 0 and

limsupt→∞ σ t(h)[xN]> 0. Pick such h. From Lemma 3, we have limt→∞ σ t(h)[x1] = 0. From
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Lemmas 4 and 11, there is t∗ such that for any t > t∗ with xt+1 = xN , we have θ(σ t) = θ(xN)

or θ(σ t) < θ(x2). That is, after a long time, the action xN can be chosen only in a period in

which θ(σ t) = θ(xN) or θ(σ t)< θ(x2). Since limsupt→∞ σ t(h)[x2]> 0, there is t∗∗ > t∗ such

that xt∗∗+1 = x2. Obviously we have θ (σ t) < θ(xN) for all t > t∗∗. This means that for any

t > t∗+1 with xt+1 = xN , we have θ(σ t) < θ(x2), i.e., the action xN can be chosen only in a

period in which θ (σ t)< θ(x2).

Pick ε > 0 such that limsupt→∞ σ t(h)[x2] > 2ε . Since limt→∞ σ t(h)[x1] = 0 and θ(x2) <

· · ·< θ(xN), there is t∗∗∗ > t∗∗ such that for any t > t∗∗∗ and for any σ t with θ(σ t) < θ(x2),

we have σ t(x2)> 1− ε . That is, after period t∗∗∗, the highest action xN can be chosen only in

a period in which the past action frequency is concentrated on the second-lowest action x2 and

its share is greater than 1− ε . In other words, the highest action xN can be chosen only in a

period in which its share is extremely low and less than ε . Without loss of generality, assume

that 1
t∗∗∗

< ε . Then for any period t > t∗∗∗, the share σ t(xN) of the highest action xN cannot

exceed 2ε , which is a contradiction.

Likewise, we can show that for any sample path h ∈H ∗ with limsupt→∞ σ t(h)[x2] > 0,

we have limt→∞ σ t(h)[x3] = · · · = limt→∞ σ t(h)[xN] = 0. The proof is very similar to that of

Lemma 9, and hence omitted. �

Proof of Proposition 10. ∆∪µ∈∆Θ(σ) Fβ (µ) ⊆ ∆∪µ∈∆Θ(σ) F0(µ): Let σ ∈ ∆∪µ∈∆Θ(σ)

Fβ (µ). Fix any x such that σ(x) > 0. Since σ ∈ ∆∪µ∈∆Θ(σ) Fβ (µ), there exists µx ∈ ∆Θ(σ)

such that x ∈ Fβ (µx). It suffices to show that x ∈ F0(µx). Since x ∈ Fβ (µx), for any x′ ∈ X ,

ˆ

(π(x,y)+βV (B(x,y,µx))Q̄µx
(dy | x) =

ˆ

π(x,y)Q̄µx
(dy | x)+βV (µx)

≥

ˆ

(
π(x′,y)+βV (B(x′,y,µx))

)
Q̄µx

(dy | x′)

≥

ˆ

(π(x′,y)Q̄µx
(dy | x′)+βV (µx),

where the first line follows from weak identification (which implies B(x,y,µx) = µx for all y in

the support of Q̄µx
(· | x)), the second line follows from x ∈ Fβ (µx), and the third line follows

from the convexity of the value function and the martingale property of Bayesian updating

(which imply, using Jensen’s inequality,
´

V (B(x′,y,µx))Q̄µx
(dy | x′)≥V (

´

B(x′,y,µx)Q̄µx
(dy |

x′)) =V (µx)). Therefore, x is myopically the best action, i.e., x ∈ F0(µx).

∆∪µ∈∆Θ(σ)F0(µ) =∪µ∈∆Θ(σ)∆F0(µ): The direction⊇ holds trivially, so we only establish

⊆. Let σ ∈ ∆∪µ∈∆Θ(σ) F0(µ). Fix any x,x′ such that σ(x)> 0. Since σ ∈ ∆∪µ∈∆Θ(σ) Fβ (µ),

there exist µx,µx′ ∈ ∆Θ(σ) such that x ∈ F0(µx) and x′ ∈ F0(µx′). By weak identification and
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the fact that µx and µx′ both belong to ∆Θ(σ), Q̄µx
(· | x̃) = Q̄µx′

(· | x̃) for all x̃ in the support

of σ . Therefore, for any x′′ ∈ X ,

ˆ

π(x′,y)Q̄µx
(dy|x′) =

ˆ

π(x,y′)Q̄µx
(dy|x)≥

ˆ

π(x′′,y)Q̄µx
(dy|x′′),

and so x′ ∈ F0(µx). Since x′ is an arbitrary element in the support of σ , we have shown that

there is a common belief µx under which any action in the support of σ is optimal.

Finally, if there is a unique KLD minimizer θ(σ), then ∆∪µ∈∆Θ(σ) Fβ (µ) = Fβ (δθ (σ)),

and, using the fact that, for all x, B(x, ·,δθ (σ)) = δθ (σ) Q(· | x)-a.s., it is straightforward to see

that Fβ (δθ (σ)) = F0(δθ (σ)).

B Online Appendix

Proof of additional results in the appendix

Proof of Lemma 1. Let Px denote the probability distribution of the histories h = (xt ,yt)
∞
t=1

when the agent chooses x every period.

Claim 7. For any η > 0, there is T such that for any action x,

Px(∀t ≥ T∀θ |Lt(θ)−K(θ ,x)|< η)> 0

Proof. Pick any η > 0. From Lemma 2, limT→∞ Px(∀t ≥ T∀θ |Lt(θ)−K(θ ,x)| < η) = 1.

This implies the result we want.

Now we will prove Lemma 1. Let Lt(θ ,x) =
1

tσt(x)
∑t

τ=1 1{xτ=x} log
q(yt |xt)

qθ (yt |xt)
be the sample

average of the likelihood ratio, where the sample is taken from the periods in which the agent

chooses x. Note that we have Lt(θ) = ∑x∈X σt(x)Lt(θ ,x).

Pick η > 0 arbitrarily, and pick T as in the above claim. Let H be the set of histories h

such that |Lt(θ ,x)−K(θ ,x)|< η for all x and t such that tσt(x)> T . Then there is q > 0 such

that P f (H )> q for any initial prior µ0 and any policy f .

Pick an arbitrary h ∈H , and let ξ > 0 be such that

∣
∣
∣log

q(y|x)
qθ (y|x)

− log
q(ỹ|x)

qθ (ỹ|x)

∣
∣
∣< ξ for all x,

θ , y, and ỹ. Then we have

|Lt(θ ,x)−K(θ ,x)|<

{

η if tσt(x)> T

ξ otherwise
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for all x, θ , and t. This implies that σt(x)|Lt(θ ,x)−K(θ ,x)| < max{η, T ξ
t
}. So for any

t > T ∗ ≡ T ξ
ε , we have σt(x)|Lt(θ ,x)−K(θ ,x)|< η . Hence for any t > T ∗,

|Lt(θ)−K(θ ,σt)| ≤ ∑
x∈X

σt(x)|Lt(θ ,x)−K(θ ,x)|< η.

Since K and T ∗ are chosen independently of h ∈H , this implies the result we want. �

Proof of Lemma 2: We first prove the following claim:

Claim 8. Under Assumption 5, for each σ and σ̃ such that θ(σ) > θ(σ̃), K(θ ,σ) is strictly

decreasing with respect to θ in [θ(σ̃),θ(σ)], and K(θ , σ̃) is strictly increasing with respect

to θ in [θ(σ̃),θ(σ)].

Proof. Pick σ and σ̃ as stated. For each β ∈ [0,1], let σβ = βσ +(1−β )σ̃ .

We will prove only that K(θ ,σ) is strictly decreasing with respect to θ on [θ(σ̃),θ(σ)].

Suppose not, so that there is θ ′, θ ′′ ∈ [θ(σ̃),θ(σ)] such that θ ′< θ ′′ and K(θ ′,σ)≤K(θ ′′,σ).

We consider the following two cases.

Case 1: K(θ ′, σ̃)≤ K(θ ′′, σ̃). In this case, K(θ ′,σβ )≤ K(θ ′′,σβ ) for all β , so θ ′′ cannot

be the unique minimizer of K(θ ,σβ ), i.e., θ(σβ ) 6= θ ′′ for all β . But this is a contradiction,

because θ(σβ ) is continuous in β and θ(σ0)≤ θ ′′ ≤ θ(σ1).

Case 2: K(θ ′, σ̃)>K(θ ′′, σ̃). Let β ′ be such that θ(σβ ′) = θ ′. Then we have K(θ ′,σβ ′)<

K(θ ′′,σβ ′), which is equivalent to

β ′(K(θ ′,σ)−K(θ ′′,σ))< (1−β ′)(K(θ ′′, σ̃)−K(θ ′, σ̃)).

Then for all β ≥ β ′,

β (K(θ ′,σ)−K(θ ′′,σ))< (1−β )(K(θ ′′, σ̃)−K(θ ′, σ̃)),

which implies K(θ ′,σβ ) < K(θ ′′,σβ ). So θ(σβ ) 6= θ ′′ for all β ≥ β ′. But this is a contradic-

tion, because θ(σβ ) is continuous in β and θ(σβ ′)< θ ′′ < θ(σ1).

Pick an arbitrary σ∗. We will show that the Kullback-Leibler divergence K(θ ,σ∗) is

single-peaked in [θ ,θ ]. First, consider the case in which θ(σ∗) = θ . Let σ̃ = σ∗, and let σ be

such that θ(σ) = θ . Then from the claim above, K(θ ,σ∗) is strictly increasing with respect

to θ in [θ ,θ ], which implies single-peakedness.

Next, consider the case in which θ(σ∗)< θ . Let σ̃ = σ∗, and let σ be such that θ(σ) = θ .

Then from the claim above, K(θ ,σ∗) is strictly increasing with respect to θ in [θ(σ∗),θ ].
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Similarly, letting σ = σ∗ and σ̃ be such that θ(σ̃) = θ , the claim above implies that K(θ ,σ∗)

is strictly decreasing with respect to θ in [θ ,θ(σ∗)]. Hence K(θ ,σ∗) is single-peaked. �

Proof of Lemma 5. The proof is very similar to that of Proposition 2(ii). Pick (θn,θn+1)

and h as stated. Pick an arbitrarily small η > 0. Then pick ε > 0 such that θ(σ) > θn+1−η

for all σ such that ‖σ − σ̃‖< ε for some σ̃ with θ(σ̃)> θn+1−
η
2

.

From Lemma 4, there is T > 0 such that given any initial value σσσ(0) with θ(σσσ(0))> θn

and given any solution σσσ ∈ S∞
σσσ(0) to the differential inclusion,

θ(σσσ (t))> θn+1−
η

2
(33)

for all t ≥ T . Pick such T . Also, pick T̃ large enough that (21) holds for any t > T̃ and for any

s ∈ [0,2T ].

By the assumption, there is t > T̃ such that θ(www(t)) > θn. Pick such t. Then from (21),

(33), and the definition of ε , we have θ(www(t + s)) > θn+1−η for all s ∈ [T,2T ]. Applying

the same argument again, we obtain θ(www(t + s))> θn+1−η for all s≥ T , which implies that

liminft→∞ θ(www(t))≥ θn+1−η . Since η can be arbitrarily small, we obtain the result. �

Proof of Lemmas 4 and 5. To prove these lemmas, we start with the following result,

which partially characterizes the motion of θ and θ when the action frequency σ follows the

differential inclusion.

Lemma 13. The following results hold:

(i) Let σ be such that there is θ∗ such that K(θ∗,σ)< K(θ ,σ) for all θ < θ∗ and such that

θ∗ ≤ θ(x) for all x ∈ F(1θ ∗). Then for any solution σσσ ∈ S∞
σ to the differential inclusion

starting from this σ , θ(σσσ(t))≥ θ∗ for all t > 0.

(ii) Let σ be such that there is θ∗ such that K(θ∗,σ)< K(θ ,σ) for all θ > θ∗ and such that

θ∗ ≥ θ(x) for all x ∈ F(δθ ∗). Then for any solution σσσ ∈ S∞
σ to the differential inclusion

starting from this σ , θ(σσσ(t))≤ θ∗ for all t > 0.

Proof. We will prove only part (i); the proof of part (ii) is symmetric. Pick σ , θ∗, and σσσ as

stated in part (i). Let xn be the smallest action in the set F(δθ ∗).

Step 1: θ (σσσ(t))≥ θ∗ for all small t > 0.

We will first show that the result holds for small t. Since θ (σ)≥ θ∗, we have F(△Θ(σσσ(0)))⊆

{xn, · · · ,xN}. Then from the upper hemi-continuity of Θ(σ), there is t > 0 such that F(△Θ(σσσ(t)))⊆
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{xn, · · · ,xN} for all t ∈ [0, t]. We will show that θ (σσσ(t))≥ θ∗ for all t ∈ (0, t]. Pick t ∈ (0, t].

Then there is σt ∈△{xn, · · · ,xN} such that σσσ(t) = 1
1+t

(σ + tσt). By the assumption, we have

K(θ∗,σ)< K(θ ,σ) ∀θ < θ∗.

Also from the single-peakedness assumption and θ∗ ≤ θ(xn)< · · ·< θ(xN),

K(θ∗,σt)< K(θ ,σt) ∀θ < θ∗.

Taken together,

K(θ∗,σσσ(t))< K(θ ,σσσ(t)) ∀θ < θ∗.

This in turn implies that θ (σσσ(t))≥ θ∗, as desired.

Step 2: θ (σσσ(t))≥ θ∗ for all t > 0.

Now we will show that θ (σσσ(t))≥ θ∗ for all t > 0. Suppose not so that there is t > 0 such

that θ (σσσ(t))< θ∗. Let t∗ be the infimum of such time t. Note that t∗ ≥ t > 0.

Since θ(σσσ(t)) ≥ θ∗ for all t ∈ (0, t∗), we have F(△Θ(σσσ(t))) ∈ {xn, · · · ,xN} for all t ∈

(0, t∗). Hence there is σt∗ ∈△{xn, · · · ,xN} such that σσσ(t∗) = 1
1+t∗

(σ + t∗σt∗). Then as in Step

1, we can show that θ(σσσ(t∗))≥ θ∗. We consider the following two cases:

Case 1: θ(σσσ(t∗)) > θ∗. In this case, from the upper hemi-continuity of Θ(σ), there is t
′

such that θ(σσσ(t∗+ t))> θ∗ for all t ∈ [0, t′). This contradicts with the definition of t∗.

Case 2: θ(σσσ(t∗)) = θ∗. In this case, as in Step 1, we can show that θ(σσσ(t∗+ t))> θ∗ for

all t ∈ [0, t). This contradicts with the definition of t∗.

Proof of Lemma 4: Pick h as stated. Pick ε > 0 such that limsupt→∞ σ t(h)[xN] > 2ε and

such that for each n with θn > θ(xn) and for each σ in the 2ε-neighborhood of△{x1, · · · ,xn},

we have θ(σ)< θn. Pick T > 0 such that 1
T+1

< ε . Pick t∗ such that for any t > t∗,

sup
s∈[0,2T ]

inf
σσσ∈S∞

www(h)[t]

|σσσ(s)−www(t + s)|< ε. (34)

We will show that for any t > t∗ with θ(www(t))< θ(xN), we have θ (www(t))< θ(x) for some

x ∈ F(δθ (www(t))).

Suppose not, so that there is t > t∗ such that θ(www(t)) < θ(xN) and θ(www(t)) ≥ θ(x) for

all x ∈ F(δθ(www(t))). Let xn be the largest action in the set F(δθ(www(t))). Then we have θ(xn) <
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θn. Note also that xn 6= xN , because otherwise θ (www(t)) = θ(xN), which contradicts with the

definition of t.

Pick any solution σσσ to the differential inclusion starting from this www(t). Let θ∗ = θ (σ t).

Then from Lemma 13(ii), we have θ (σσσ(s))≤ θ∗ for all s. This implies that F(△Θ(σσσ(s)))⊆

{x1, · · · ,xn} for all s.

So for each s, there is σs ∈△{x1, · · · ,xn} such that σσσ(s) = 1
1+s

(σσσ(0)+ sσs). Then by the

definition of T , d(σσσ(s),△{x1, · · · ,xn})< ε for all s. Then from (34),

d(www(t + s),△{x1, · · · ,xn})< 2ε ∀s ∈ [T,2T ]. (35)

Now consider a solution σσσ ′ to the differential inclusion starting from www(t +T ). From (35)

and the definition of ε , we have θ(www(t +T )) < θn. Then again from Lemma 13(ii), we have

θ(σσσ ′(s)) ≤ θ(www(t +T )) < θn for all s, which in turn implies F(△Θ(σσσ ′(s))) ⊆ {x1, · · · ,xn}

for all s. Then as in the previous argument, we can show that

d(www(t + s),△{x1, · · · ,xn})< 2ε ∀s ∈ [2T,3T ].

Iterating this argument, it follows that

d(www(t + s),△{x1, · · · ,xn})< 2ε ∀s≥ T.

But this is a contradiction, as limsupt→∞ σ t(h)[xN]> 2ε . �

Proof of Lemma 5: Pick h as stated. Pick ε > 0 such that limsupt→∞ σ t(h)[x1] > 2ε and

such that for any n with θ(xn)> θn−1 and for any σ in the 2ε-neighborhood of△{xn, · · · ,xN},

we have θ(σ)> θn−1. Pick T such that 1
1+T

< ε . Pick t∗ such that (34) holds for all t > t∗.

We will show that for any t > t∗ such that θ(www(t))< θ(xN) and such that θ (www(t))< θ(x)

for some x ∈ F(δθ(www(t))), there is no t > 0 such that www(t + t) = 1
1+t

(www(t)+ tδxN
).

Suppose not, so that there are t > t∗ and t > 0 such that θ(www(t))< θ(xN), θ(www(t))< θ(x)

for some x ∈ F(δθ(www(t))), and www(t + t) = 1
1+t

(www(t)+ tδxN
).

Set θ∗ = θ(www(t)). Then by the definition of the Kl minimizer, we have

K(θ∗,www(t))≤ K(θ ,www(t)) ∀θ < θ∗.

Also, by the single-peakedness assumption and θ∗ < θ(xN),

K(θ∗,δxN
)< K(θ ,δxN

) ∀θ < θ∗.
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Taken together,

K(θ∗,www(t + t))< K(θ ,www(t + t)) ∀θ < θ∗.

We will consider the following two cases separately:

Case 1: θ∗ = θ(www(t))< θ(x) for all x ∈ F(δθ ∗). Consider a solution σσσ to the differential

inclusion starting from www(t+ t). Then Lemma 13(i) implies that θ(σσσ(t))≥ θ∗ for all t, which

in turn implies that F(△Θ(σσσ(t))) ⊆ {xn, · · · ,xN}. where xn is the smallest action in the set

F(δθ ∗). Then as in the proof of the previous lemma, we can show that

d(www(t + t + s),△{xn, · · · ,xN})< 2ε ∀s≥ T.

But this is a contradiction, as limsupt→∞ σ t(h)[x1]> 2ε .

Case 2: θ∗ = θ(www(t))≥ θ(x) for some x ∈ F(δθ ∗) and θ∗ < θ(x) for some x ∈ F(δθ ∗). In

this case, θ∗ = θn−1 for some n, and θ(xn−1)≤ θ∗ < θ(xn). Pick such n.

Recall that

K(θ∗,www(t + t))< K(θ ,www(t + t)) ∀θ < θ∗.

Since
∂K(θ ∗,www(t))

∂θ = 0 and
∂K(θ ∗,δxN

)

∂θ < 0, we have
∂K(θ ∗,www(t+t))

∂θ < 0, which in turn implies that

there is θ∗∗ ∈ (θ∗,min{θn,θ(xn)}) such that

K(θ∗∗,www(t + t))< K(θ ,www(t + t)) ∀θ < θ∗∗.

Consider a solution σσσ to the differential inclusion starting from www(t + t). Then Lemma

13(i) implies that θ (σσσ(t))≥ θ∗∗ for all t, which in turn implies that F(△Θ(σσσ(t)))⊆{xn, · · · ,xN}.

The rest of the proof is the same as that for Step 1. �

Attracting Sets Need Not Be Robustly Attracting

The agent has three actions, x1, x2, and x3. Given an action xk, a consequence y is randomly

drawn from Y = R3 according to the normal distribution N(ek, I), so the action influences the

mean of the consequence y. However, the agent does not recognize that the action influences

the consequence. Her model space is the probability simplex Θ =△X , and for each model θ ,

she believes that the consequence follows the normal distribution N(θ , I). So given a mixture

σ ∈△X , the closest model is θ = σ , i.e., Θ(σ) = {σ} for each σ .

For each degenerate belief δθ , the optimal policy is given as follows. Consider the model

space Θ, and choose the points A = (2
3
,0, 1

3
), B = (1

3
, 2

3
,0), C = (0, 1

3
, 2

3
), and σ∗ = (1

3
, 1

3
, 1

3
)

as in Figure 9. For each model θ in the interior of the triangle ABσ∗, F(δθ ) = {x2}, i.e.,
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the optimal policy is x2 if the belief puts probability one on some model θ in this triangle.

Similarly, the optimal action is x3 for the triangle BCσ∗, and x1 for the triangle CAσ∗. For the

point σ∗ and the models outside the triangle ABC, all actions are optimal, that is, F(δθ ) = X

for these models θ . For all models on the boundary of the triangles, the optimal policy is

chosen in such a way that F(δθ ) is upper hemi-continuous with respect to θ . For example, on

the line Aσ∗, F(δθ ) = {x1,x2}.

e1

A

e2

e3

B

C

x2

x3

x1
σ∗

Figure 9: Policy F(δθ ) for each model θ

x1

A = a1

x2

x3

B

C

b1

c1

a2

b2

Figure 10: Path starting from a1.

In this example, the model θ = σ∗ is an attracting equilibrium, and its basin of attraction

is the interior of the triangle ABC. For example, suppose that the action frequency so far is the

point a1 = A, and the action x2 is chosen today. Then the new action frequency is an interior

point of the triangle ABσ∗, and the agent chooses x2 until the action frequency hits the point

b1 = (1
3
, 1

2
, 1

6
) on the line Bσ∗. After that, the agent chooses the action x3 until the action

frequency hits the point c1 = (2
9
, 1

3
, 4

9
) on the line Cσ∗; then the agent chooses the action x1

until the action frequency hits the point a2 = ( 5
12
, 1

4
, 1

3
). From there on, the solution to the

differential inclusion takes the path a2b2c2a3b3c3 · · · and converges to σ∗, where

an = (a1
n,a

2
n,a

3
n) =

(

1−
1

3
−

1

9c3
n−1

,
1

9c3
n−1

,
1

3

)

bn = (b1
n,b

2
n,b

3
n) =

(
1

3
,1−

1

3
−

1

9a1
n

,
1

9a1
n

)

cn = (c1
n,c

2
n,c

3
n) =

(
1

9b2
n

,
1

3
,1−

1

3
−

1

9b2
n

)

.

See Figure 10. Similarly, starting from any interior points of the triangle ABC, any solution σσσ

to the differential inclusion will eventually converge to σ∗.

Now we will modify this example in such a way that the equilibrium σ∗ is still attracting
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but not robustly attracting. Take the points d0, d1, · · · as in Figure 11, that is, d0 is the inter-

section point of the line AB and the line passing through σ∗ and C, and for each n ≥ 1, dn is

the intersection point of the line anbn and the line passing through σ∗ and C. Then take the

sequence (z0,z1, · · ·) such that z0 = d1, z1 = (d1
1 ,

d2
1+d2

2
2

,1−d1
1 −

d2
1+d2

2
2

), and zk =
zk−2+d2

2
for

each k≥ 2. Intuitively, z0z1 · · · is a “jagged bridge” which connects d1 and d2, whose step size

shrinks as it goes. See Figure 12.

x1

A = a1

x2

x3

B

C

d0

d1 d2

Figure 11: Policy F(δθ ) for each model θ

z0 = d1

d2

z1

z2 z3

z4 z5

z6

Figure 12: Jagged path. It does not reach d2.

Assume that for each model θ on this bridge z0z1z2 · · · , the optimal policy is F(δθ ) =

{x1,x2}. Then starting from any point on this bridge z0z1 · · · , a solution σσσ to the differential

inclusion can move along this bridge and reach the point d1. However, starting from the point

d2, σσσ cannot move to d1; this is so because for every large n, zn is slightly different from

d2, which means that the bridge z0z1 · · · do not reach the point d2 exactly. Accordingly, the

asymptotic motion of σσσ is the same as before, i.e., as long as the starting point is in the interior

of the triangle ABC, σσσ converges to σ∗.

The same is true even if we add more bridges. Suppose that for each n, there is a jagged

path from dn toward dn+1. Even with this change, σ∗ is still attracting, for example, starting

from the point b1, σσσ must follow the path b1c1a2b2c2 · · · and eventually converge to σ∗.

However, adding these bridges significantly changes the solution σ̃σσ to the perturbed dif-

ferential inclusion. Indeed, starting from the point dn, σ̃σσ can move to dn−1 through the jagged

path, because this path is ε-close to the point dn for any small ε . For the same reason, σ̃σσ can

move to dn−2, dn−3, · · · , and can eventually reach the point d0, which is outside of the basin

of σ∗. This implies that σ∗ is not robustly attracting with these bridges.
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Proof of sufficient condition for robustly attracting set

It is obvious that A is attracting, so we will show that the condition stated in the definition of

robustly attracting sets is satisfied. Pick ζ > 0 such that B2ζ (A) is in the set U defined above.

Let C = B2ζ (A) \Bζ (A). Since C is compact, (σ̂ −σ) ·∇V (σ) < 0 is bounded away from

zero uniformly. Then Lipchitz-continuity of ∇V ensures that there is ε > 0 such that (σ̂− σ̃ ) ·

∇V (σ̃) < 0 for all σ ∈C, σ̃ ∈ Bε(σ), and σ̂ ∈ F(△Θ(σ)). This implies that any solution to

the ε-perturbed differential inclusion (11) also has a contraction property in the interior of the

set C; i.e., if the current action frequency σ̃ is an interior point of C and d(σ̃ ,C)≥ ε , then at

the next instant, the action frequency becomes closer to the set A. This immediately implies

that A is robustly attracting.

Example: Action frequency converges to non-unitary equilibrium

The consequence space is Y = {y1,y2,⋄}. We can interpret y1 and y2 as states of the world,

and ⋄ represents a situation where the realization of the state is not observed. There are three

actions, x1, x2, and x⋄. The payoffs are π(x1,y1) = π(x2,y2) = 1, π(x1,y2) = π(x2,y1) = 0,

so this is a problem where the agent wants to match the action xi with the state yi. Action x⋄

is a safe consequence that results in no information about the state, i.e., Q(⋄ | x⋄) = 1, and

yields π(x⋄,⋄) = .55. Action x2 leads to y1 for sure and action x1 leads to y2 for sure, i.e.,

Q(y1 | x2) = Q(y2 | x1) = 1. If the agent knew this information, she would obviously prefer to

choose x⋄. Instead, the agent knows that x⋄ is a safe action, but incorrectly believes that her

choice of x1 or x2 does not affect the state, Qθ (y2 | x1) = Qθ (y2 | x2) = θ . We assume that

θ ∈ Θ = {1/4,3/4}, so that the agent believes that the probability of y2 is either 1/4 or 3/4.

Let µ denote the agent’s subjective probability that θ = 3/4.

For simplicity, we assume the agent is myopic. Therefore, the agent’s optimal policy is

F0(µ) = {x1} if µ < .4, F0(µ) = {x⋄} if µ ∈ (.4, .6), F0(µ) = {x2} if µ > .6, with the agent

being indifferent between {x1,x⋄} at µ = .4 and between {x⋄,x2} at µ = .6. The KLD function

is

K(θ ,σ) = σ(x1) ln
1

θ
+σ(x2) ln

1

1−θ
+σ(x⋄) ln

1

1
.
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Since K(1/4,σ)< (=)> K(3/4,σ) for σ(x1)< (=)> σ(x2), it follows that

Θ(σ) =







{1/4} if σ(x1)< σ(x2)

{1/4,3/4} if σ(x1) = σ(x2)

{3/4} if σ(x1)> σ(x2)

.

In the unique Berk-Nash equilibrium, the agent chooses x⋄ with probability 1, σ(x⋄) = 1.

This corresponds to a situation where the agent stops experimenting with actions x1 and x2

and settles for the safe action. Note that this is a Berk-Nash equilibrium because both θ1 and

θ2 minimize KLD given σ(x⋄) = 1, and x⋄ is optimal given µ ∈ [.4, .6].

There are also a continuum of equilibria that are not Berk-Nash equilibria. These are all the

profiles σ p = (p, p,1−2p), p ∈ (0,1/2]. Note that given σ p, both θ1 and θ2 minimize KLD.

By definition of equilibrium, we are free to choose a different belief with support {θ1,θ2} to

justify each of the actions. The reason is that these equilibria are not Berk-Nash equilibria is

that there is no single belief that supports all three actions.

Starting with initial prior µ0 ∈ (0,1), the fact that the state is deterministic for a given

action implies that the dynamics of this problem can be easily characterized without referring

to the results in this paper. In particular, for some priors, the agent’s action converges to x⋄,

but for other priors it converges to one of the equilibria that are not Berk-Nash equilibria,

σ 1/2 = (1/2,1/2,0).44

44In this case, the agent eventually cycles between choosing x1, observing y2 and moving the posterior to a

region where x2 is optimal, then observing y1 and moving the posterior back to the place where x1 was optimal,

and so on. If we relax the assumption that the state is deterministic, then we can show that there are priors such

that the action frequency converges with positive probability to the set of non Berk-Nash equilibria, rather than

to a single equilibrium.
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