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Abstract

Modern machine learning approaches to classification, including AdaBoost, sup-
port vector machines, and deep neural networks, utilize the surrogate-loss techniques
to circumvent computational complexity in minimizing the empirical classification
risk. These techniques are useful also for causal policy learning problems as estima-
tion of individualized treatment rules can be cast as weighted (cost-sensitive) clas-
sification. Consistency of these surrogate-loss approaches studied in Zhang (2004)
and Bartlett et al. (2006) crucially relies on the assumption of correct specification,
meaning that the specified class of policies is rich enough to contain a first-best.
This assumption is, however, less credible when the class of policies is constrained
by interpretability and/or fairness, leaving applicability of the surrogate-loss based
algorithms unknown in such second-best scenarios. This paper studies consistency
of the surrogate-loss procedures under a constrained set of policies without assuming
correct specification. We show that in the setting where the constraint restricts clas-
sifier’s prediction set only, the hinge losses (i.e., `1-support vector machines) are the
only surrogate losses that preserve consistency in the second-best scenarios. If the
constraint additionally restricts a functional form of the classifiers, consistency of
the surrogate loss approach is not guaranteed even with the hinge loss. We therefore
characterize conditions for the constrained set of classifiers that can guarantee con-
sistency of the hinge-risk minimizing classifiers. We illustrate implications and uses
of our theoretical results in monotone classification by proposing computationally
attractive hinge-loss based procedures that are robust to misspecification.
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1 Introduction

Binary classification, a prediction problem for binary dependent variable Y ∈ {−1,+1}
based on covariate information X ∈ X , is one of the fundamental problems in statis-

tics and econometrics. Many modern machine learning algorithms build on statistically

and computationally efficient classification algorithms, and their applications have been

generating large impacts on various fields of study and our society in general, e.g., pat-

tern recognition, credit approval systems, personalized recommendation systems, to list a

few. Contributions to classification are also instrumental to causal problems of designing

individualized treatment assignment policies, since estimation of an optimal treatment as-

signment policy can be cast to a weighted (cost-sensitive) classification problem (Zadrozny

(2003)). As the allocations of the resources in both business and public policy settings

become more evidence-based and dependent on algorithms, there have been increasingly

active debates on how to make the allocation algorithms respect interpretability and

fairness as desired by the society (Dwork et al. (2012)). Understanding theoretical per-

formance guarantee and efficient implementation of classification algorithms under the

interpretability or fairness constraints is therefore a problem of fundamental importance

with tight connections to our real life.

In the supervised binary classification problem, a common objective is to learn a

classification rule that minimizes the probability of false prediction. We denote the dis-

tribution of (Y,X) by P and a (non-randomized) classifier by f : X → R that predicts

Y ∈ {−1,+1} based on sign(f(X)) where sign(α) = 1{α ≥ 0} − 1{α < 0}. We denote

the 0-level set of f by Gf ≡ {x ∈ X : f(x) ≥ 0} ⊂ X , and refer to Gf as the prediction

set of f . The goal is to learn a classifier that minimizes classification risk :

R(f) ≡ P (sign(f(X)) 6= Y ) = EP [1{Y · sign(f(X)) ≤ 0}]. (1)

Given a training sample {(Yi, Xi) ∼iid P : i = 1, . . . , n}, the empirical risk minimization

principle of Vapnik (1998) recommends to estimate an optimal classifier by minimizing

the empirical classification risk,

f̂ ∈ arg inf
f∈F

R̂(f), (2)

R̂(f) ≡ 1

n

n∑
i=1

1{Yi · sign(f(Xi)) ≤ 0}, (3)

over a class of classifiers F = {f : X → R}. If complexity of F is properly constrained,

the empirical risk minimizing (ERM) classifier f̂ has statistically attractive properties

including risk consistency and minimax rate optimality. See, e.g., Devroye et al. (1996)

and Lugosi (2002).

2



Despite the desirable performance guarantee of the ERM classifer, computational com-

plexity to solve optimization in (2) becomes a serious hurdle for practical implementation

especially when the dimension of covariates is moderate to large. To get around this

bottleneck, the literature has offered various alternatives to the ERM classifier, including

support vector machines (Cortes and Vapnik (1995)), AdaBoost (Freund and Schapire

(1997)), and neural networks. From the optimization point of view, each of these algo-

rithms can be viewed as targeting to minimize a surrogate risk,

Rφ(f) ≡ EP [φ(Y f(X))], (4)

where φ : R → R is called a surrogate loss function, a different specification of which

corresponds to a different learning algorithm. A desirable choice of the surrogate loss is a

convex function since combined with some functional form specification for f , the mini-

mization problem for an empirical analogue of the surrogate risk (4) can becomes convex

optimization. This is the major computational benefit that has been instrumental for

these learning algorithms to handle large scale problems with high-dimensional features.

Can surrogate risk minimization lead to an optimal classifier in terms of the original

classification risk? The seminal works of Zhang (2004) and Bartlett et al. (2006) provide

theoretical justification for the uses of surrogate losses by clarifying the conditions that

surrogate risk minimization also minimizes the original classification risk. A crucial as-

sumption for this important result is correct specification of the classifiers, requiring that

the class of classifiers F over which the surrogate risk is minimized contains a classifier

that globally minimizes the original classification risk, i.e., a classifier that is identical to

or performs as good as the Bayes classifier f ∗Bayes(x) ≡ 2P (Y = 1|X = x)− 1 in terms of

the classification risk.

Credibility of the correct specification assumption is, however, limited if the set of

implementable classifiers is constrained exogenously, independent of any belief concerning

the underlying data generating process. Such situation is becoming more prevalent due

to the increasing needs for interpretability and/or fairness of classification algorithms.

Given that f determines the classification rule only through Gf , those constraints can be

represented in terms of the shape restrictions on the prediction set of f , i.e., the class of

feasible f ’s is represented by FG ≡ {f ∈ F : Gf ∈ G}, where G is a restricted class of

sets in X satisfying requirements for interpretability and/or fairness. To the best of our

knowledge, it is not known how validity of the surrogate loss approaches can be affected

if FG misses the first-best classifier.

The main contribution of this paper is to establish the conditions for the validity of

surrogate loss approaches without assuming correct specification. We first characterize

the condition for the surrogate loss such that minimization of the surrogate risk can lead
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to a second-best rule (i.e., constrained optimum) in terms of the original classification

risk. Specifically, we show that hinge losses φh(α) = cmax{0, 1 − α}, c > 0, are the

only surrogate losses that guarantee consistency of the surrogate risk minimization to the

second-best classifier. An important implication of this result is that `1-support vector

machines are the only surrogate-loss based methods that are robust to misspecification.

Computational attractiveness of the surrogate loss approaches hinges not only on

the convexity of the surrogate loss φ(·) but also on functional form restrictions on the

classifer f that lead to convex F . We hence investigate how additional constraints on

f on top of Gf ∈ G can affect the consistency of the hinge risk minimization. As the

second contribution of this paper, we characterize a simple-to-check sufficient condition

for consistency of the hinge risk minimization in terms of the additional functional form

restrictions we can impose on FG. We call a subclass of classifiers of FG satisfying the

sufficient condition as a classification-preserving reduction of FG.
Exploiting our main theoretical results, we develop novel procedures for monotone

classification. In monotone classification, the prediction sets are constrained to

GM ≡ {G ⊂ X : x ∈ G⇒ x′ ∈ G ∀x′ ≤ x},

where x′ ≤ x is element-wise weak inequality. Since GM agrees with the class of prediction

sets spanned by the class of monotonically decreasing bounded functions FM ≡ {f :

f decreasing in x, −1 ≤ f ≤ 1}, hinge-loss based estimation for monotone classification

can be performed by solving

f̂M ∈ arg inf
f∈FM

R̂φh(f), (5)

R̂φh(f) ≡ 1

n

n∑
i=1

φh(yif(xi)).

We show that the class of monotone classifiers FM is a constrained-classification-preserving

reduction of FGM , guaranteeing consistency of the hinge-risk minimizing classifier f̂M . Fur-

thermore, we show that convexity of FM reduces optimization of (5) to finite dimensional

linear programming and hence delivers significant computational gains relative to mini-

mization of the original empirical classification risk. We also consider approximating FM
by a sieve of Bernstein polynomials and estimating a monotone classifier by solving (5)

over the Bernstein polynomials. In either approach, an application of our main theorems

guarantees

R(f̂M)− inf
f∈FM

R(f)→p 0,

as n → 0, and this convergence is valid no matter whether FM attains first-best, i.e.,

inff∈FM R(f) = inff∈F̄ R(f), or not, where F̄ is the class of measurable functions f :
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X → R. We also derive the uniform upper bound of the mean of R(f̂M)− inff∈FM R(f)

to characterize the regret convergence rate attained by f̂M .

1.1 Connection and contributions to causal policy learning

For simplicity of exposition, this paper mainly focuses on the prototypical setting of binary

classification. The main theoretical results can be extended straightforwardly to weighted

(cost-sensitive) classification, where the canonical representation of the population risk

criterion is given by

Rw(f) ≡ EP [ω · 1{Y · sign(f(X)) ≤ 0}]. (6)

Here, ω ∈ R is a random variable defining the cost of misclassifying Y that typically

depends on (Y,X). The cost of misclassification ω may represent the decision maker’s

economic cost (Lieli and White (2010)) or welfare weights over the individuals to be

classified as considered in Rambachan et al. (2020) and Babii et al. (2020). Similarly to

(4), the surrogate risk for weighted classification can be defined similarly,

Rw
φ (f) = EP [ω · φ(Y f(X))]. (7)

As discussed in Kitagawa and Tetenov (2018), the prediction problem of classification

and the causal problem of treatment choice have fundamental conceptual differences.

Nevertheless, if the training sample is obtained from a randomized control trial (RCT)

study or an observational study satisfying unconfoundedness (selection on observables),

we can view minimization of the weighted classification risk (6) as being equivalent to

maximizing the additive welfare criterion commonly specified in the treatment choice

problems. To see this equivalence, let {(Zi, Di, Xi) : i = 1, . . . , n} be an iid RCT sample

of n experimental subjects, where Zi ∈ R is subject i’s observed outcome, Di ∈ {−1,+1} is

an indicator for his assigned treatment, and Xi ∈ X is a vector of pretreatment covariates,

and (Zi(d) : d ∈ {−1,+1}) be i’s potential outcomes satisfying Zi = Zi(+1) · 1{Di =

+1} + Zi(−1) · 1{Di = −1}. We denote the propensity score in the RCT sample by

e(x) ≡ P (D = +1|X = x) and assume that e(x) is bounded away from 0 and 1 for all

x ∈ X . We denote the joint distribution of (Zi(+1), Zi(−1), Di, Xi) by P and assume P

satisfies unconfoundedness, (Z(+1), Z(−1)) ⊥ D|X.

Similarly to classification, we represent (non-randomized) treatment assignment rule

by the sign of f : X → R, i.e., the 0-level set Gf = {x ∈ X : f(x) ≥ 0} ⊂ X specifies

the subgroup of population assigned to treatment +1. Following Manski (2004), con-

sider evaluating the welfare performance of assignment policy f by the average outcomes
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attained by the assignment policy:

W (f) ≡ EP [Z(+1) · 1{X ∈ Gf}+ Z(−1) · 1{X /∈ Gf}]

Relying on unconfoundedness of the experimental data and employing the inverse propen-

sity score weighting technique, we can express this welfare in terms of observable variables:

W (f) = E

[
Z

De(X) + (1−D)/2
· 1{D = sign(f(X))}

]
= EP [ωp]− EP [ωp · 1{D · sign(f(X)) ≤ 0}] , where

ωp =
Z

De(X) + (1−D)/2
.

Provided that ωp has the finite moment, maximizing W (f) is therefore equivalent to

minimizing the weighted classification risk Rω(f) defined in (6) with ω = ωp. As a result,

optimal treatment assignment rules can be viewed as optimal classifiers for D in terms of

the weighted classification risk. This equivalence implication holds also for other methods

of policy learning, such as offset-tree learning of Beygelzimer and Langford (2009) and the

doubly robust approaches of Swaminathan and Joachims (2015) and Athey and Wager

(2021), as they correspond to different ways to construct or estimate the weighting term

ωp.

By such equivalence to weighted classification, the surrogate loss approach to policy

learning proceeds by minimizing the empirical analogue of (7) with ω = ωp. Section 7

of this paper shows that our main theoretical results established for constrained binary

classification carry over to the setting of policy learning where the feasible treatment

assignment policies are constrained exogenously due to fairness and legislative considera-

tions. This paper therefore offers valuable and novel contributions to the current research

and public debates on how to make use of machine learning algorithms for designing

individualized policies. If the treatment assignment rules are constrained to monotone

ones, our concrete proposals of monotone classification algorithms can be applied to pol-

icy learning and we gain significantly in terms of computational efficiency relative to the

mixed integer programming approaches considered in Kitagawa and Tetenov (2018) and

Mbakop and Tabord-Meehan (2021).

1.2 Related literature

This paper is closely related to the literature of consistency and performance guarantees

for the surrogate risk minimization. It includes Mannor et al. (2003), Jiang (2004), Lugosi

and Vayatis (2004) , Zhang (2004), Steinwart (2005, 2007), Bartlett et al. (2006), Nguyen

et al. (2009), Scott (2012). Assuming the correct specification, Zhang (2004) and Bartlett
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et al. (2006) derive quantitative relationships between excess classification risk and excess

surrogate risk, and then provide general conditions for surrogate risk minimization to

achieve the risk consistency. Bartlett et al. (2006) show that the classification-calibration

property of the surrogate loss, defined in Section 3 below, guarantees the risk consistency.

Zhang (2004) and Bartlett et al. (2006) show that many commonly used surrogate loss

functions, including the hinge loss, exponential loss, and truncated quadratic loss, satisfy

his/their conditions. In a classification problem different from ours, where a pair of a

quantizer and classifier is chosen, Nguyen et al. (2009) study sufficient and necessary

conditions for surrogate risk minimization to yield risk consistency. They show that only

the hinge loss functions satisfy the conditions for the consistency in their problem. The

correct specification of the class of classifiers is an essential condition for consistency

in all of the surrogate risk minimization approaches studied in the literature. The key

contribution of our paper is to relax the correct specification assumption and clarifies

conditions for the surrogate loss function to yield a consistent surrogate risk minimization

procedure.

Relaxing the correct specification connects this paper to classification problems with

exogenous constraints. Such problems are studied in several literatures of machine learn-

ing and statistics, such as interpretable classification (e.g., Zeng et al. (2017); Zhang et al.

(2018)), fair classification (e.g., Dwork et al. (2012)), and monotone classification (e.g.,

Cano et al. (2019)). Some works in these literatures apply the surrogate loss approach.

Donini et al. (2018) use `1-support vector machine in fair classification where the hinge

risk minimization is subject to a statistical fairness constraint. Chen and Li (2014) apply

`1-support vector machine with a monotonicity constraint, which constrains the class of

feasible classifiers to a class of certain monotone functions. However, neither paper shows

the consistency of their hinge risk minimization procedures.

From the optimization point of view, the empirical risk minimizing classification and

the maximum score estimation (Manski (1975), Manski and Thompson (1989)) share the

same objective function. Horowitz (1992) proposes smooth maximum score estimation

where kernel smoothing is performed for the 1-0 loss to obtain a differentiable objective

function. However, the smoothed objective function remains non-convex and does not

offer computational gains that the surrogate risk minimization approach with convex

surrogates could deliver.

This paper also contributes to a growing literature on statistical treatment rule in

econometrics, including Manski (2004), Dehejia (2005), Hirano and Porter (2009), Stoye

(2009, 2012), Chamberlain (2011), Bhattacharya and Dupas (2012), Tetenov (2012), Kasy

(2018), Kitagawa and Tetenov (2018, 2021), Viviano (2019), Athey and Wager (2021), and

Mbakop and Tabord-Meehan (2021), among others. As discussed above, the policy learn-

ing methods of Kitagawa and Tetenov (2018), Athey and Wager (2021), and Mbakop and
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Tabord-Meehan (2021) build on similarity between empirical welfare maximizing treat-

ment choice and empirical risk minimizing classification. Mbakop and Tabord-Meehan

(2021) propose penalization methods to control complexity of treatment choice model,

and derive relevant finite sample upper bounds for regret of the estimated treatment

rules. Athey and Wager (2021) apply doubly-robust estimators to estimate the weight

ω in (7), and show that 1/
√
n-upper bound of the regret can be achieved also in the

observational study setting. These works optimize the empirical welfare objective involv-

ing the indicator loss function. Hence, the computation of their methods are sometimes

discouraging, especially when the sample size or number of the covariates is moderate to

large.

Estimation of individualized treatment rules is a topic of active research in other fields

including medical statistics, machine learning, and computer science; Zadrozny (2003),

Beygelzimer and Langford (2009), Qian and Murphy (2011), Zhao et al. (2012), Swami-

nathan and Joachims (2015), Zhao et al. (2015), and Kallus (2020), among others. Zhao

et al. (2012) propose to use `1-support vector machine to solve the weighted classification

for individualized treatment choice problem, and show the risk consistency. They use

a rich class of treatment choice models expressed by reproducing kernel Hilbert space,

which certainly satisfies the correct specification. Zhao et al. (2015) extend this approach

to estimate optimal dynamic treatment regimes.

2 Constrained classification with surrogate loss

Consider a binary classification problem for binary label Y ∈ {−1,+1} based on covariate

X ∈ X , which have the joint distribution P . We let X be dx-dimensional vector, dx <∞,

and denote its marginal distribution by PX . Let η(x) ≡ P (Y = +1|X = x) denote the

conditional probability of Y = +1 given X = x. We maintain the notations introduced

in Introduction and set the ultimate objective to minimizing the classification risk of (1).

We study constrained classification problems where an optimal classifier is searched

over a restricted class of functions. Section 2.1 first studies the consistency of surrogate

risk minimization in a special case that the pre-specified class of classifiers contains a

classifier whose prediction set agrees with the prediction set of the Bayes classifier. Section

2.2 introduces a classification problem with constraint on the prediction sets, which is a

central problem throughout the paper.
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2.1 Misspecification in constrained classification

Let F be a constrained class of classifiers f : X → R. If the set of classifiers were

unconstrained, it is well known that the Bayes classifier defined by

f ∗Bayes = 2η(x)− 1

minimizes the classification risk. Due to the constraints on the class of classifiers, however,

the minimized classification risk on F can be strictly larger than the first-best minimal

risk R(f ∗Bayes). We refer to this situation as R-misspecification of F as we state formally

in the next definition.

Definition 2.1 (R-misspecification). F is R-misspecified if

inf
f∈F

R(f) > R(f ∗Bayes).

If the equality holds instead of the strict inequality, we say that F is R-correctly specified.

Because the 0-1 loss function is neither convex nor continuous, minimizing the empir-

ical analog of R(f) is computationally challenging and often infeasible in practical scale

problems. Commonly used classification algorithms, such as boosting and support vec-

tor machines, alter the 0-1 loss with a surrogate loss function, φ : R → R, and aim to

minimize the surrogate risk Rφ(f) ≡ EP [φ(Y f(X))]. Table 1 below lists some commonly

used surrogate loss functions including the hinge loss φh(α) = max{0, 1− α}, which cor-

responds to `1-support vector machines, and the exponential loss φe(α) = exp(−α), which

corresponds to AdaBoost.

We also introduce the concept of misspecification of F in terms of the surrogate risk

as follows:

Definition 2.2 (Rφ-misspecification). Let f ∗φ,FB be a minimizer of Rφ over the uncon-

strained class of classifiers, i.e., the class of all measurable functions f : X → R. A

constrained class F is Rφ-misspecified if

inf
f∈F

Rφ(f) > Rφ(f ∗φ,FB).

If the equality holds instead of the strict inequality, we say that F is Rφ-correctly specified.

The seminal theoretical results that guarantee consistency of surrogate-risk classifi-

cation (Zhang (2004); Bartlett et al. (2006); Nguyen et al. (2009)) crucially rely on the
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assumption that F is both R-correctly specified and Rφ-correctly specified in the sense of

Definitions 2.1 and 2.2, respectively. The central question that this paper analyzes is what

happens to the surrogate loss approaches if F is R-misspecified or Rφ-misspecified. This

misspecification is a quite likely scenario especially when the origins of the constraints

have nothing to do with assumptions on P , as is the case in the examples shown at the

next subsection.

Throughout the paper, we limit our analysis to the class of classification-calibrated

loss functions defined in Bartlett et al. (2006).

Definition 2.3 (Classification-calibrated loss functions). For a ∈ R and 0 ≤ b ≤ 1, define

Cφ(a, b) ≡ φ(a)b + φ(−a)(1 − b). A loss function φ is classification-calibrated if for any

b ∈ [0, 1],

inf
{a∈R|a(2b−1)<0}

Cφ(a, b) > inf
{a∈R|a(2b−1)≥0}

Cφ(a, b)

Noting that the surrogate risk can be expressed as

EP [φ(Y f(X))] = EPX [Cφ(f(X), η(X))], (8)

the definition of classification-calibrated loss functions implies that at every x ∈ X , a

minimizer of Cφ(f(x), η(x)) in f(x) has the same sign as the Bayes classifier, sign(2η(x)−
1)). Bartlett et al. (2006) shows that many commonly used surrogate loss functions

including those listed in Table 1 are classification-calibrated.1

Having introduced the concepts of misspecification, we first clarify the relationship

between R-misspecification and Rφ-misspecification.

Proposition 2.1. Let F be a constrained class of classifiers and f ∗φ ∈ F be a minimizer

of Rφ over F . Suppose φ is a classification-calibrated loss function.

(i) For any distribution P on {−1, 1} × X , if F is Rφ-correctly specified, then F is R-

correctly specified and R(f ∗φ) = R(f ∗Bayes) holds;

(ii) If φ is in addition convex, there exist a distribution P on {−1, 1} × X and a class

of classifiers F under which F is R-correctly specified but Rφ-misspecified, and R(f ∗φ) >

R(f ∗Bayes) holds.

Proof. (i) follows from claim 3 of Theorem 1 in Bartlett et al. (2006). To prove (ii), let

z1, z2 ∈ R+ be such that φ(z2) < φ(z1). Such a pair of (z1, z2) exists in a neighborhood

1Bartlett et al. (2006) also show that any convex loss function φ is classification-calibrated if and only
if it is differentiable at 0 and φ′(0) < 0.
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of zero because from Theorem 2 of Bartlett et al. (2006), φ(·) is differentiable at 0 and

φ′(0) < 0 if φ is classification-calibrated and convex. Then the pair (z1, z2) satisfies

arg min
(b1,b2)∈{(−1,0),(0,1)}

φ(−b1z1) + φ(b2z2) = (0, 1).

Suppose that F is a constrained class such that F = F1 ∪ F2 with F1 = {f(x) =

xT b : (b1, b2) = (−1, 0), b ∈ Rdx} and F2 = {f(x) = xT b : (b1, b2) = (0, 1), b ∈ Rdx},
where bj denotes the j-th element of b. Let x1 = (z1, 0, . . . , 0) and x2 = (0, z2, 0, . . . , 0)

be two points in X , and let P be a distribution such that η(x1) = 0, η(x2) = 1, and

PX(x1) = PX(x2) = 1/2. Under this pair of (P,F), any classifier f1 in F1 has the same

sign as the Bayes classifier, PX-almost everywhere, because f1(x1) < 0 and f1(x2) = 0

while η(x1) < 1/2 and η(x2) ≥ 1/2. This means that F , as well as F1, is R-correctly

specified for such P . On the other hand, any classifier f2 in F2 does not have the same

sign as the Bayes classifier at x1 because f2(x1) = 0 while η(x1) < 1/2. f ∗φ must be in

F2 because for any f1 ∈ F1 and f2 ∈ F2, Rφ(f2) = φ(z2)/2 < φ(z1)/2 = Rφ(f1). Hence

R(f ∗φ) > R(f ∗bayes) holds. F is also Rφ-misspecified because any classifier that minimizes

Rφ over all measurable functions takes a negative value at x1 whereas f ∗φ(x1) > 0.

Proposition 2.1 (i), which rephrases claim 3 of Theorem 1 in Bartlett et al. (2006),

implies that the surrogate risk minimization on Rφ-correctly specified class F leads to

the (first-best) optimal classification in terms of the classification risk. An equivalent

statement following Theorem 1 in Bartlett et al. (2006) is that for any P and every

sequence of measurable functions {fi : X → R},

Rφ(fi)→ inf
f∈F

Rφ(f) implies that R(fi)→ inf
f∈F

R(f). (9)

This result justifies the approach of surrogate risk minimization when we can introduce a

sufficiently rich class of classifiers F (e.g., the reproducing kernel Hilbert space of functions

with a large number of features as used in support vector machines), as Rφ-correct speci-

fication which is a credible assumption to make with the rich class of classifiers guarantees

R-correct specification.

Proposition 2.1 (ii), in contrast, shows that R-correct specification of F does not guar-

antee Rφ-correct specification.2 Since Rφ-misspecification of F can lead to a suboptimal

2Given a convex classification-calibrated loss function φ, our proof of Proposition 2.1 (ii) constructs a
pair of a R-correctly specified class of classifiers F and distribution P that leads to Rφ-misspecification.
In the construction, we assume x1 6= x2 ∈ X supported by PX on which φ(f(x1)) < φ(−f(x2))) holds
for all f ∈ F and f(x1) < 0 ≤ f(x2) holds for some f ∈ F , and consider P that assigns a large positive
value of η(x2) in (0, 1] and slightly negative value of η(x1). Such construction of P is not pathological or
limited to the specific class of classifiers considered in the proof.

11



classifier in F in terms of the classification risk, this result shows the cost of the sur-

rogate loss approach with constrained classifiers. Even when we are confident that the

constrained class F is R-correctly specified, we cannot justify a use of F in the surrogate

risk minimization.

2.2 G-constrained classification

In this section, we consider restricting the class of classifiers by requiring that their pre-

diction sets belong to a prespecified class of sets, G ⊂ 2X . See Examples 2.4–2.6 below

for motivating examples.

We denote by

FG ≡ {f : Gf ∈ G, f(·) ∈ [−1, 1]}

the class of classifiers whose prediction sets are constrained to G. In this definition, we

restrict f to being bounded and, without loss of generality, normalize its range to [−1, 1].

Other than the shape of 0-level set and range, FG does not impose any constraints on

the functional form of f ∈ FG. The goal of the constrained classification problem is

then to find a best classifier that minimizes the classification risk R (·) over FG. We refer

to FG as G-constrained class of classifiers and to the classification problem over FG as

G-constrained classification.

The specification of the class of prediction sets G represents interpretability, fairness,

and other exogenous requirements desired for classification rules. Some examples follow.

Example 2.4 (Interpretbale classification). Decision makers may prefer simple decision

or classification rules that are easily understandable or explainable even at the cost of

harming prediction accuracy. This concept, often refereed to as interpretable machine

learning, has been pursued, for instance, in the prediction analysis of recidivism (Zeng

et al. (2017)) and the decision on medical intervention protocol (Zhang et al. (2018))).

An example is a linear classification rule, in which G is a class of half-spaces with linear

boundaries in X ,

G = {x ∈ Rdx : xTβ ≥ 0, β ∈ Rdx}.

Note that f ∈ FG is not restricted to a liner function. Any function f including nonlinear

ones is included in FG as long as its prediction set Gf is a hyperplane in X . Another

type of classifier that has merit in terms of interpretability is classification tree. See, e.g.,

Breiman et al. (1984).

Example 2.5 (Monotone classification). The framework we study can accommodate mono-

tonicity constraints on classification. Formally, the monotonicity constraint corresponds
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to a partial order - on X , and any prediction set Gf has to respect this partial order in

the sense that if x1 - x2 and x1 ∈ Gf , then x2 ∈ Gf . The monotonicity constraint have

been utilized in classification of credit rating (Chen and Li (2014)) and assignment of job

training program in the context of policy learning (Mbakop and Tabord-Meehan (2021)).

Example 2.6 (Fair classification). Specification of G can accommodate some fairness

constraints introduced in the literature of fair classification. Let A = {0, 1} be an element

of X indicating a binary protected group variable (e.g., race, gender). The decision maker

wants to ensure fairness of classification, for instance, by equalizing raw positive classifica-

tion rate (known as statistical parity): PX (f (X) ≥ 0 | A = 1) = PX (f (X) ≥ 0 | A = 0).

The classification problem under this constraint is equivalent to the G-constrained classi-

fication with

G =
{
G ∈ 2X : PX (X ∈ G | A = 1) = PX (X ∈ G | A = 0)

}
,

where G depends on PX in this case. This fairness constraint is studied by Calders and

Verwer (2010), Kamishima et al. (2011), Dwork et al. (2012), Feldman et al. (2015),

among others. Some other forms of fairness constraint, such as equalized odds and equal-

ized positive predictive value as reviewed by Chouldechova and Roth (2018), can be accom-

modated in our framework as well through a proper construction of G.

In the G-constrained classification problem, R-correct specification of FG is necessary

and sufficient for the surrogate risk minimizer f ∗φ to achieve the first-best minimum risk.

Proposition 2.2. Suppose φ is a classification-calibrated loss function. Let G ⊆ 2X be

an arbitrary class of prediction sets and f ∗φ ∈ FG be a minimizer of Rφ over FG. Then,

for any distribution P on {−1, 1} × X , R(f ∗φ) = R(f ∗Bayes) holds if and only if FG is

R-correctly specified.

Proof. Assume R-correct specification of FG. Then, FG includes a classifier f ∗ that is

identical to or shares the sign with f ∗Bayes(x) = 2η(x) − 1, PX-almost everywhere. Since

f ∈ FG is unconstrained except forGf ∈ G and−1 ≤ f(·) ≤ 1, the classification-calibrated

property of φ and the representation of the surrogate risk Rφ(f) = EPX [Cφ(f(X), η(X))]

implies

f ∗φ(x) ∈ arg min
a:(2η(x)−1)a≥0,|a|≤1

Cφ(a, η(x)),

PX-almost everywhere, as otherwise f ∗ dominates f ∗φ in terms of the surrogate risk. This

means that f ∗φ(x) has the same sign as f ∗Bayes(x) , PX- almost everywhere, i.e., R(f ∗φ) =

R(f ∗Bayes) holds.
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Assume conversely that FG is R-misspecified. Then, sign(f ∗φ) has to differ from

sign(f ∗Bayes(x)) for some x with a positive measure in terms of PX , as otherwise it contra-

dicts with R-misspecification of FG. This then implies R(f ∗φ) > R(f ∗Bayes).

Proposition 2.2 shows that if φ is classification-calibrated, f ∗φ ∈ FG that minimizes the

surrogate risk over FG leads to a globally optimal classifier in terms of the classification

risk if and only if FG is R-correctly specified. A comparison of Proposition 2.1 (ii) and

Proposition 2.2 clarifies a special feature of the G-constrained class of classifiers, i.e.,

Proposition 2.1 (ii) has shown that in general R-correct specification of a constrained

class of classifiers F does not guarantee R(f ∗φ) = R(f ∗Bayes). In contrast to the seminal

results about surrogate risk consistency shown in Zhang (2004) and Bartlett et al. (2006),

our claim does not require Rφ-correct specification of FG.
If constraints defining G are motivated by some considerations that are independent

of any belief on the underlying data generating process (e.g., Examples 2.4–2.6 above),

the R-correct specification of FG is hard to justify. Therefore, an important question for

our analysis to follow is whether or not the surrogate risk minimization procedures can

yield a classifier achieving inff∈FG R(f) without requiring R-correct specification of FG.

3 Calibration of G-constrained classification

This section investigates consistency of the surrogate risk minimization approach over

FG, where FG is now allowed to be R-misspecified. Let f ∗ be an optimal classifier that

minimizes the classification risk over FG:

f ∗ ∈ arg inf
f∈FG

R(f).

Similarly, we denote a best classifier among FG in terms of the surrogate risk by f ∗φ,

f ∗φ ∈ arg inf
f∈FG

Rφ(f), .

To begin our analysis, let us first perform a simple numerical example to assess influ-

ence of misspecification in constrained classification.

Example 3.1 (Numerical example 1). Let X = {0, 1, 2} and G = {∅, {2}, {2, 1}, {2, 1, 0}}.
Here, G imposes monotonicity of the prediction sets in a way consistent to Example 2.5.

We specify PX to be uniform on X and P (Y = +1 | X = 0) = 0.9, P (Y = +1 | X =

1) = 0.3, and P (Y = +1 | X = 2) = 0.2. The Bayes classifier therefore predicts Y = +1
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at x = 0 and Y = −1 at x = 1 and 2, but such prediction set is excluded from G. That

is, FG is R-misspecified.

Under this specification, we compute the second-best (constrained optimum) classifier

f ∗ and the attained classification risk R(f ∗). Also, for each of hinge loss φh, exponential

loss φe, and truncated quadratic loss φq, we compute the classifier minimizing the surrogate

risk f ∗φ and the classification risk at the surrogate optimal classifier R(f ∗φ). We obtain

R(f ∗) = R(f ∗φh) = 0.47, R(f ∗φe) = R(f ∗φq) = 0.53,

Gf∗ = Gf∗φh
= ∅, Gf∗φe

= Gf∗φq
= {2, 1, 0}.

In this specification, the hinge risk optimal classifier agrees with the second best optimal

classifier, whereas that is not the case for the exponential or truncated quadratic loss.

This example illustrates that the hinge loss is robust to R-misspecification of FG, but

the exponential and truncated quadratic losses are not. To what extent, can we generalize

this finding? What condition do we need for surrogate loss to guarantee consistency to

the second best? We answer these questions below.

At any classifier f , we define the G-constrained excess risk of f as

R(f)− inf
f∈FG

R(f),

which is the regret of f relative to a constrained optimum f ∗ in terms of the classification

risk. Similarly, we define the G-constrained excess φ-risk of f as

Rφ(f)− inf
f∈FG

Rφ(f).

Fix G ∈ G and let

FG ≡ {f : Gf = G, f(·) ∈ [−1, 1]}

be the class of classifiers that share the prediction set G. Then {FG : G ∈ G} form

a partition of FG according to the prediction set, and they satisfy FG = ∪G∈GFG and

FG ∩ FG′ = ∅ for G,G′ ∈ G with G 6= G′. With this definition, choosing a classifier from

FG can be decomposed into two steps: choosing a prediction set G from G and, then,

choosing a classifier f from FG.

Denote the classification risk evaluated at a prediction set G by R(G) ≡ inff∈FG R(f).

Note that any f ∈ FG attains the same level of classification risk, so R(G) = R(f) holds
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for all f ∈ FG. R(G) can be written as

R(G) =

∫
X

[η(x)1{x /∈ G}+ (1− η(x))1{x ∈ G}] dPX(x),

=

∫
X

(1− 2η(x)) · 1{x ∈ G}dPX(x) + P (Y = 1). (10)

Similarly, we define the surrogate risk evaluated at G by Rφ(G) ≡ inff∈FG Rφ(f), which

can be written as

Rφ(G) = inf
f∈FG

∫
X

[η(x)φ(f(x)) + (1− η(x))φ(−f(x))] dPX(x)

=

∫
G

inf
0≤f(x)≤1

Cφ(f(x), η(x))dPX(x) +

∫
Gc

inf
−1≤f(x)<0

Cφ(f(x), η(x))dPX(x), (11)

where the second line follows from the fact that f ∈ FG is unconstrained other than its

prediction set and the minimization over f ∈ FG can be done pointwise at each x. For

x ∈ G and f ∈ FG, f(x) is constrained to [0, 1] and, for x ∈ Gc, f(x) is constrained to

[−1, 0). To simplify the notation, we define

C+
φ (η(x)) ≡ inf

0≤f(x)≤1
Cφ(f(x), η(x)),

C−φ (η(x)) ≡ inf
−1≤f(x)<0

Cφ(f(x), η(x)),

∆Cφ(η(x)) ≡ C+
φ (η(x))− C−φ (η(x)),

where C+
φ (η(x)) and C−φ (η(x)) are the minimized surrogate risk conditional on X = x

under the constraints f(x) ∈ [0, 1] or f(x) ∈ [−1, 0), respectively. Using these, the

surrogate risk at G can be written as

Rφ(G) =

∫
X

[
C+
φ (η(x)) · 1{x ∈ G}+ C−φ (η(x)) · 1{x /∈ G}

]
dPX(x)

=

∫
X

∆Cφ(η(x)) · 1{x ∈ G}dPX(x) +

∫
X
C−φ (η(x))dPX(x). (12)

By comparing the expressions of the risks between (10) and (12), we obtain the first main

theorem that clarifies the condition for the surrogate risk Rφ(G) to calibrate the global

ordering of the classification risk R(G) over G ∈ G.

Theorem 3.2 (Global calibration of the G-constrained excess risk). Let P be an arbitrary

distribution on {−1, 1} × X and G ⊆ 2X be an arbitrary class of prediction sets. For

G,G′ ∈ G, their risk ordering in terms of the classification risk, R(G) ≥ R(G′), is
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equivalent to ∫
G\G′

(1− 2η(x))dPX(x) ≥
∫
G′\G

(1− 2η(x))dPX(x). (13)

Their risk ordering in terms of the surrogate risk, Rφ(G) ≥ Rφ(G′), is equivalent to∫
G\G′

∆Cφ(η(x))dPX(x) ≥
∫
G′\G

∆Cφ(η(x))dPX(x). (14)

Hence, if ∆Cφ(η(x)) is proportional to 1− 2η(x) up to a positive constant, i.e.,

∆Cφ(η(x)) = c(1− 2η(x)) for some c > 0, (15)

the risk ordering over G in terms of the surrogate risk Rφ(G) agrees with the risk ordering

over G in terms of the classification risk R(G).

In particular, when φ is a hinge loss, φh(α) = cmax{0, 1− α}, c > 0,

∆Cφ(η(x)) = c(1− 2η(x))

holds, so the hinge risk preserves the risk ordering of the classification risk.

Proof. By equation (10),

R(G)−R(G′)

=

∫
X

(1− 2η(x)) · [1{x ∈ G} − 1{x ∈ G′}]dPX(x)

=

∫
X

(1− 2η(x)) · [1{x ∈ G \G′} − 1{x ∈ G′ \G}]dPX(x)

=

∫
G\G′

(1− 2η(x))dPX(x)−
∫
G′\G

(1− 2η(x))dPX(x).

This proves (13), the first claim of the theorem.

Given the representation of the surrogate risk shown in (12), a similar argument yields

(14), the second claim of the theorem.

For the hinge loss φh(α) = cmax{0, 1− α} and f ∈ FG, we have

Cφh(f(x), η(x)) = c(1− 2η(x))f(x) + c.

Hence, we obtain

C+
φh

(η) =

c(1− 2η) + c for η > 1/2,

c for η ≤ 1/2,
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C−φh(η) =

c for η > 1/2,

2cη for η ≤ 1/2.

Hence, ∆Cφh(η) = c(1− 2η) holds for all η ∈ [0, 1].

Theorem 3.2 does not exploit the condition that φ is classification-calibrated, but if a

surrogate loss function satisfies condition (15), it is automatically classification-calibrated.

Another remark follows.

Remark 3.3. Many commonly used surrogate loss functions do not satisfy the condition

(15) in Theorem 3.2. Table 1 shows the forms of ∆Cφ(η) for the hinge loss, exponential

loss, logistic loss, quadratic loss, and truncated quadratic loss functions. None of them

except for the hinge loss satisfies condition (15). That is, among the surrogate-loss based

algorithms commonly used in practice, the `1-support vector machine corresponding to the

hinge loss is the only algorithm whose surrogate risk preserves the classification risk.

Table 1: Surrogate loss functions and their forms of ∆Cφ
Loss function φ(α) ∆Cφ (η)

0-1 loss 1{α ≤ 0} 1− 2η
Hinge loss cmax{0, 1− α} c(1− 2η)

Exponential loss e−α

{
−2
√
η(1− η) + 1

2
√
η(1− η)− 1

if 0 ≤ η < 1/2

if 1/2 ≤ η ≤ 1

Logistic loss log(1 + e−α)

{
log(2ηη(1− η)1−η)

− log(2ηη(1− η)1−η)

if 0 ≤ η < 1/2

if 1/2 ≤ η ≤ 1

Quadratic loss (1− α)2

{
(1− 2η)2

−(1− 2η)2

if 0 ≤ η < 1/2

if 1/2 ≤ η ≤ 1

Truncated quadratic loss (max{0, 1− α})2

{
(1− 2η)2

−(1− 2η)2

if 0 ≤ η < 1/2

if 1/2 ≤ η ≤ 1

The well known inequality by Zhang (2004) relates the excess surrogate risk to the

excess classification risk under R-correct specification. As a corollary of Theorem 3.2,

if we set φ = φh, we can generalize Zhang’s inequality by allowing R-misspecification

of the classifiers. To formally state it, let G∗ ∈ arg infG∈GR(G), and set G′ = G∗ in

Theorem 3.2. Let f ∈ FG be arbitrary and Gf = {x ∈ X : f(x) ≥ 0} ∈ G. The aligned

risk ordering between the classification and hinge risks implies that the minimizers of

R(·) also minimize Rφh(·), i.e., inff∈FG Rφh(f) = infG∈GRφh(G) = Rφh(G∗). Theorem

3.2 therefore implies that the G-constrained excess classification risk of f satisfies the
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following inequality:

R(f)− inf
f∈FG

R(f) = R(Gf )−R(G∗)

=

∫
Gf\G∗

(1− 2η(x))dPX(x)−
∫
G∗\Gf

(1− 2η(x))dPX(x)

= c−1 [Rφh(Gf )−Rφh(G∗)] = c−1

[
inf

f ′∈FGf
Rφh(f ′)− inf

f∈FG
Rφh(f)

]

≤ c−1

[
Rφh(f)− inf

f∈FG
Rφh(f)

]
, (16)

where the second equality follows by equation (10); the third equality follows by equation

(12) and ∆Cφh(η) = c(1 − 2η). That is, when φ = φh, Zhang’s inequality holds without

requiring the R-correct specification of the classifiers.

Corollary 3.4. For any distribution P on {−1, 1} × X and any constraint G ⊆ 2X ,

if ∆Cφ(η(x)) is proportional to 1 − 2η(x) with a proportionality constant c > 0, i.e.,

∆Cφ(η(x)) = c(1− 2η(x)), then the following inequality holds

c(R(f)− inf
f∈FG

R(f)) ≤ Rφ(f)− inf
f∈FG

Rφ(f)

for any f ∈ FG.

Proof. See equation (16).

Corollary 3.4 shows that if the surrogate loss φ satisfies condition (15), then the

classifier f ∗φ that minimizes the surrogate risk over FG also minimizes the classification

risk over FG. Importantly, this result holds without assuming the R-correct specification

of FG. It justifies the use of hinge loss in the constrained classification problem irrespective

of whether or not FG is correctly R-specified. Note, however, that the result relies on the

fact that at every x ∈ X we can choose any f(x) ∈ [−1, 1] as long as the prediction set

constraint is satisfied: Gf ∈ G. We relax this requirement in the next section.

Further analysis can show that the condition (15) in Theorem 3.2 is not only sufficient

but also necessary. To formally show that, we adopt the concept of universal equivalence

of loss functions introduced by Nguyen et al. (2009) to the current setting.

Definition 3.5 (Universal equivalence). Loss functions φ1 and φ2 are universally equiv-

alent, denoted by φ1
u∼ φ2, if for any distribution P on {−1, 1} × X and any constraint

G ⊆ 2X ,

Rφ1 (G1) ≤ Rφ1 (G2)⇔ Rφ2 (G1) ≤ Rφ2 (G2)
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holds for any G1, G2 ∈ G.

Universally equivalent loss functions φ1 and φ2 lead to the same risk ordering over G.

Hence, if a loss function φ is universally equivalent to the 0-1 loss, the φ-risk shares the

same risk ordering with the classification risk.

The following theorem establishes a necessary and sufficient condition for two classification-

calibrated loss functions to be universally equivalent.

Theorem 3.6. Let φ1 and φ2 be classification-calibrated loss functions. Then, φ1
u∼ φ2

if and only if ∆Cφ2 (η) = c∆Cφ1 (η) for some c > 0 and any η ∈ [0, 1], i.e., ∆Cφ1 is

proportional to ∆Cφ2 up to a positive constant.

The proof is given in Appendix A. The “if” part of the theorem is a generalization of

Theorem 3.2 without assuming either of φ1 or φ2 to be the 0-1 loss function.

When we set φ2 to the 0-1 loss function, Theorem 3.6 yields the class of loss functions

that are universally equivalent to the 0-1 loss functions. It exactly coincides with the

class of loss functions that satisfy the condition (15) in Theorem 3.2. Hence, the following

corollary holds.

Corollary 3.7. A classification-calibrated loss function φ is universally equivalent to the

0-1 loss function if and only if φ satisfies the condition (15) for any η(x) ∈ [0, 1]. That

is, the class of hinge loss functions {φ(α) = amax{0, 1 − α} + b : a > 0, b ≥ 0} agrees

with the class of loss functions that are universally equivalent to the 0-1 loss function.

In the following sections, without loss of generality, we use the definition of the hinge

loss as φh(α) = max{0, 1 − α}, or equivalently suppose c = 1. We conclude this section

with a remark to compare our constrained classification framework to that of Nguyen

et al. (2009).

Remark 3.8. Nguyen et al. (2009) show that, in the classification problem of choosing an

optimal pair of a quantizer and classifier, the hinge loss function is also only a surrogate

loss function that preserves the consistency of surrogate loss classification. In their frame-

work, the quantizer is a stochastic mapping Q ∈ Q : X 7→ Z, where Z is a discrete space

and Q is a possibly constrained class of conditional distributions of Z given X, Q (Z | X).

The classifier is a function γ ∈ Γ : Z 7→ R, where Γ is a set of all measurable functions on

Z. One motivation of using Z as inputs, instead of X, is to reduce the dimension of X,

which might be a high-dimensional vector. They consider to estimate the optimal pair of
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(Q, γ) ∈ Q×Γ that minimizes the risk R (γ,Q) := P (Y 6= sign (γ (Z))), through solving a

surrogate loss classification problem: inf(Q,γ)∈Q×ΓRφ(Q, γ) where Rφ(Q, γ) = Eφ(Y γ(Z)).

They show that, among the commonly used surrogate loss functions, the hinge loss classi-

fication only leads to the optimal pair of (Q, γ).

The framework we study is different from that of Nguyen et al. (2009), and none

nests the other. The framework Nguyen et al. (2009) study constrains the mapping Q :

X 7→ Z, whereas the framework we study constrains prediction sets Gf for all classifiers

f . Furthermore, the class of classifiers Γ considered in Nguyen et al. (2009) contains the

Bayes classifier, whereas the class of classifiers FG we consider may not contain the Bayes

classifier.

4 Consistency of hinge-risk classification with func-

tional form constraints

The previous section considers FG, the class of all functions whose prediction sets are in G.

The generalized Zhang’s inequality shown in Corollary 3.4 heavily relies on such richness

of FG. This richness, however, limits computational attractiveness of the surrogate-loss

approach, since convexity of optimization for an empirical analogue of the surrogate risk

does not directly follow from FG and typically requires additional functional form restric-

tions for f .

Unfortunately, once a functional form restriction on f is imposed on top of the pre-

diction set constraint Gf ∈ G, the global calibration property of the hinge risk as shown

in Theorem 3.2 breaks down. The following example illustrates this phenomenon.

Example 4.1 (Numerical example 2). Maintain X = {0, 1, 2} and G = {∅, {2}, {2, 1}, {2, 1, 0}}
as in Example 3.1. We here consider choosing a classifier from the following class of non-

decreasing linear functions:

FL = {f(x) = c0 + c1x : c0 ∈ R, c1 ∈ R+, f(x) ∈ [−1, 1] for all x ∈ X}.

Note that the class of prediction sets {Gf : f ∈ FL} agrees with G; hence, FL is a subclass

of FG. We set X to be uniformly distributed on X and Y to have conditional probabilities

P (Y = 1 | X = 0) = 0.3, P (Y = 1 | X = 1) = 0.9, and P (Y = 1 | X = 2) = 0.2.

The Bayes classifier predicts positive Y only at x = 1. Hence, no classifier in FL
shares the prediction set with the Bayes classifier, and FL is R-misspecified.

The optimal classification risk R(f ∗) over FL (equivalently, over FG) is R(f ∗) = 0.4

with Gf∗ = {2, 1}, while the classification risk at f ∗φh minimizing the hinge risk over FL is

R(f ∗φh) = 0.47 with Gf∗φh
= ∅. Thus, in contrast to Example 3.1 where f is unconstrained
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other than Gf ∈ G, the linear functional form constraint on FG invalidates the calibration

property of the hinge risk, and the hinge risk minimization is no longer consistent.

This example illustrates that even with the hinge loss, consistency to second best

classifier becomes a fragile property once the functional form of f is constrained in addition

to the prediction set constraint Gf ∈ G. Consequently, it is natural to ask what additional

functional form restriction we can safely introduce to FG without harming the consistency,

i.e., for what subclass F̃G ⊂ FG, minimizing the hinge risk Rφh(f) over f ∈ F̃G leads to a

classifier that minimizes the classification risk R(f) over f ∈ FG?
Formally, we introduce the following definition of classification-preserving reduction of

FG.

Definition 4.2 (Classification-preserving reduction). Let f̃ ∗ ∈ arg inff∈F̃G Rφh(f). A

subclass of classifiers F̃G (⊆ FG) is a classification-preserving reduction of FG if

R(f̃ ∗) = inf
f∈FG

R(f)

holds for any P , distribution on {−1, 1} × X .

To start with the heuristic, consider a simple case where F̃G consists of piecewise

constant functions with at most 2J jumps, J ≥ 1, in the following form:

F̃G,J =

{
f(·) =

J∑
j=1

c+
j 1 {· ∈ Gj} −

J∑
j=1

c−j 1
{
· /∈ G̃j

}
:

Gj, G̃j ∈ G and c+
j , c

−
j ≥ 0 for j = 1, . . . , J ;

GJ ⊆ · · · ⊆ G1 ⊆ G̃1 ⊆ · · · ⊆ G̃J ;
J∑
j=1

c+
j = 1,

J∑
j=1

c−j = 1

}
. (17)

By construction, any function in F̃G,J is a step function bounded in [−1, 1] and its sublevel

sets {x ∈ X : f(x) ≤ t} belong to G for any t ∈ [−1, 1].

Let G∗ ≡ arg infG∈GR(G) be the collection of the best prediction sets, and R∗ ≡
infG∈GR(G) be the optimal classification risk. The following lemma shows that F̃G,J is a

classification-preserving reduction of FG.

Lemma 4.3. Let G ⊆ 2X be an arbitrary class of prediction sets.

(i) F̃G,J is a classification-preserving reduction of FG, and inff∈F̃G,J Rφh(f) = 2R∗ holds.

(ii) For G∗, G̃∗ ∈ G∗ such that G∗ ⊆ G̃∗, f̃ †(·) ≡ 1{· ∈ G∗} − 1{· /∈ G̃∗} is a minimizer of

Rφh(·) over F̃G,J .
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Proof. See Appendix A.

Note that the function f̃ †(x) = 1{x ∈ G∗} − 1{x /∈ G̃∗} takes a value 1 when x ∈ G∗,
a value 0 when x ∈ G̃∗\G∗, and a value -1 when x /∈ G̃∗. When we set G∗ = G̃∗, f̃ † is a

step function indicating G∗ and (G∗)c with values +1 and −1, respectively.

Lemma 4.3 gives an example of a classification-preserving reduced class. Characteristic

features of F̃G,J are (i) sublevel sets of any f ∈ F̃G,J are in G, and (ii) it contains 1{x ∈
G∗} − 1{x /∈ G̃∗} for some G∗, G̃∗ ∈ G∗ with G∗ ⊆ G̃∗.

It turns out that these two are the key features that need to be maintained for F̃G to

generalize Lemma 4.3. The next theorem is the second main theorem of the paper that

extends Lemma 4.3 to a more general class of classifiers that can accommodate continuous

ones.

Theorem 4.4 (Consistency under classification-preserving reduction). Given an arbitrary

class of prediction sets G ⊆ 2X and FG = {f : Gf ∈ G, f(·) ∈ [−1, 1]}, suppose F̃G ⊂ FG
satisfies the following two conditions:

1. For every f ∈ F̃G,

{x ∈ X : f(x) ≤ t} ∈ G (18)

holds for all t ∈ [−1, 1];

2. For some G∗, G̃∗ ∈ G∗ with G∗ ⊆ G̃∗,

f̃ †(·) = 1{· ∈ G∗} − 1{· /∈ G̃∗} ∈ F̃G. (19)

holds.

Then, we the following holds:

(i) F̃G is a classification-preserving reduction of FG, and inff∈F̃G Rφh(f) = 2R∗;
(ii) For G∗, G̃∗ ∈ G∗ such that G∗ ⊆ G̃∗, f̃ †(·) = 1{· ∈ G∗} − 1{· /∈ G̃∗} is a minimizer of

Rφh(·) over F̃G.

Proof. See Appendix A.

This theorem shows that the two conditions (18) and (19) aresufficient for F̃G to be

a classification-preserving reduction of FG. This result holds regardless of whether FG is

correctly R-specified or not. Examples 4.6 and 4.7 in the end of this section show examples

of classification-preserving reductions for linear classification and monotone classification.

The two conditions (18) and (19) are simple to interpret and guarantee the consis-

tency of hinge risk minimization, while they do not imply that the empirical hinge risk
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minimization over F̃G can be reduced to a convex optimization. We do not know a general

way to construct a classification-preserving reduction that makes the empirical hinge risk

minimization a convex programming. For monotone classification analyzed in Section 6,

we propose two constructions of F̃GM , one of which is exactly and another is approxi-

mately classification-preserving reduction of FGM . Furthermore, we show that for both

cases minimization of the empirical hinge risk becomes linear programming.

Although Theorem 4.4 shows the consistency of hinge risk minimization over F̃G, it

does not lead to the generalized Zhang’s (2004) inequality as in Corollary 3.4. Instead,

the following corollary gives proportional equality between the G-constrained excess clas-

sification risk and the FG-constrained excess hinge risk with an extra term added.

Corollary 4.5. Assume F̃G is a subclass of FG satisfying conditions (18) and (19) in

Theorem 4.4. If ∆Cφ(η) = c(1− 2η) holds for some c > 0 and any η ∈ [0, 1], there holds

c(R(f)− inf
f∈FG

R(f)) =
1

2

(
Rφ(f)− inf

f∈F̃G
Rφ(f)

)
+

1

2
(Rφ(1 {· ∈ Gf} − 1 {· /∈ Gf})−Rφ(f)) (20)

for any classifier f : X 7→ [−1, 1]. Moreover, the following holds:

c(R(f)− inf
f∈FG

R(f)) ≤ 1

2

{(
Rφ(f)− inf

f∈F̃G
Rφ(f)

)
+

(
Rφ(f)− inf

f∈FG
Rφ(f)

)}
(21)

for any f ∈ FG.

Proof. See Appendix A.

The extra term in (20) measures the difference of the hinge risks between a classifier f

and a step function indicating the prediction set of f by the values +1 or −1. By the fact

that some best classifiers have the form of f̃ ∗(·) = 1 {· ∈ G∗} − 1 {· /∈ G∗} for G∗ ∈ G∗

(Theorem 4.4 (ii)), if f approximates well such classifier, the extra term gets close to zero.

In the following section, we use equation (20) to derive statistical properties of the hinge

risk minimization in terms of the G-constrained excess classification risk. Equation (21)

implies that the G-constrained excess classification risk is bounded from above by the

average of the two FG-constrained excess hinge risks. One is over F̃G and another is over

FG. We are not aware if we can bound from above the latter excess hinge risk by a term

proportional to the former excess hinge risk, so we do not have Zhang’s inequality in the

form of Corollary 3.4 where constrained-classification-preserving reduction F̃G replaces

FG.
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We conclude this section by presenting examples of classes of classifiers that approxi-

mately or exactly satisfy the conditions for classification-preserving reduction.

Example 4.6 (Linear classification with a class of transformed logistic functions). Sup-

pose that the prediction sets are subject to the linear index rules:

GL = {x ∈ Rdx : xTβ ≥ 0 : β ∈ Rdx},

where X = Rdx. Let π(α, k) ≡ (1− e−kα)/(1 + e−kα) = 2/(1 + e−kα)− 1 be a transformed

logistic function and define a class of classifiers

FLogit = {π(xTβ, k) : β ∈ Rdx and k ∈ R+}, (22)

where k is a tuning parameter that decides the steepness of the logistic curve. FLogit
satisfies condition (18).3 Since FLogit at fixed k <∞ rules out any step function, condition

(19) is not exactly met. Let β∗ be such that {x ∈ X : xTβ∗ ≥ 0} ∈ G∗. As k → ∞,

π(xTβ∗, k) approximates sign(xTβ∗), so condition (19) is met approximately for large k.

Every function in FLogit is smooth and depends on a finite number of parameters. Hence,

the empirical hinge risk becomes a smooth and continuous function with finite number of

parameters, although it is not generally convex.

Example 4.7 (Monotonic classification with a class of monotone functions). The hinge

risk minimization with the monotonicity restriction retains the consistency when we use

a class of monotone functions. Let - be a partial order on X , and let G- be the collection

of all G ∈ 2X that respect the monotonicty (i.e., if x1 - x2 and x1 ∈ G, then x2 ∈ G).

Define F̃G- as a class of functions f : X → [−1, 1] that are weakly monotonic in - (i.e.,

satisfying f(x1) ≤ f(x2) if x1 - x2). Then the prediction set of any f ∈ F̃G- respects the

partial order - (i.e., if x1 - x2 and x1 ∈ Gf , then x2 ∈ Gf). For any t ∈ [−1, 1] and

f ∈ F̃-, {x : f(x) ≤ t} = {x : x - x̃ for any x̃ such that f(x̃) = t} ∈ G- holds, satisfying

the condition (18). In addition, since f̃ †(·) = 1{· ∈ G∗}−1{· /∈ G̃∗}, for some G∗, G̃∗ ∈ G-
with G∗ ⊆ G̃∗, is weakly monotonic in -, f̃ † ∈ G- holds, satisfying condition (19). Hence

F̃G- is a classification-preserving reduction of FG-. Therefore, according to Theorem 4.4,

the hinge risk minimization over F̃- leads to the best classifier. Section 6 focuses on

monotone classification and investigates statistical and computational properties.

3Fix β ∈ Rdx and k ∈ R+. The condition (18) is satisfied as, for any t ∈ [−1, 1], {x : π(xTβ, k) ≤ t} =
{x : xTβ ≤ π−1(t, k)} ∈ G, where π−1(·, k) is an inverse function of π(·, k) with the fixed k.
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5 Statistical property

The analyses presented so far concern consistency of the surrogate loss approach in terms

of the population risk criterion. It is important to note that our results of Theorems

3.2 and 4.4 do not impose any restriction on the underlying distribution of (Y,X). Ac-

cordingly, equivalence of the risk orderings and risk-minimizing classifiers between the

classification and hinge risks remains valid even if we consider empirical analogues of the

risks constructed upon the empirical distribution of the sample. It hence guarantees that

a classifier minimizing the empirical hinge risk over FG or over a classification-preserving

reduction F̃G also minimizes the empirical classification risk.

In this section, we assess the generalization performance of hinge-risk minimizing clas-

sifiers, allowing for general misspecification of the constrained class of classifiers. For that

goal, let G be fixed and consider F̌ a class of classifiers whose members satisfy −1 ≤ f ≤ 1.

F̌ may or may not be a subclass of FG, while in our analysis of monotone classification

below, F̌ corresponds to an approximation of a classification-preserving reduction F̃G.
Let {(Yi, Xi) : i = 1, . . . , n} be a sample of observations that are independently and iden-

tically distributed (i.i.d) as (Y,X). We denote the joint distribution of a size n sample by

P n and the expectation with respect to P n by EPn (·). Define the empirical classification

risk and empirical hinge risk, respectively, by

R̂ (f) ≡ 1

n

n∑
i=1

1 {Yi · sign(f (Xi)) ≤ 0} ,

R̂φh (f) ≡ 1

n

n∑
i=1

max{0, 1− Yif (Xi)} =
1

n

n∑
i=1

(1− Yif (Xi)) ,

where the max operator in the hinge loss is redundant if we constrain f(·) to [−1, 1]. Let

f̂ be a classifier that minimizes R̂φh (·) over F̌ . We evaluate a statistical property of f̂ in

terms of the excess classification risk relative to the minimal risk over FG. In particular,

we will derive a distribution-free upper bound for the mean of the excess classification

risk.

Let F̃G be a subclass of FG and satisfy the conditions (18) and (19) in Theorem 4.4. F̃G
is hence a classification-preserving reduction of FG (Definition 4.2). Following Corollary

4.5, we have

R(f̂)− inf
f∈FG

R(f) =
1

2

(
Rφh(f̂)− inf

f∈F̃G
Rφh(f)

)
+

1

2

(
Rφh

(
1
{
· ∈ Gf̂

}
− 1

{
· /∈ Gf̂

})
−Rφh(f̂)

)
. (23)

When F̌ coincides with F̃G, evaluating each term in the right hand side of (23) gives an
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upper bound for the mean of the G-constrained excess classification risk of f̂ .

Let HB
1 (ε,F , PX) be the L1 (PX)-bracketing entropy of a class of functions F and

HB
1 (ε,G, PX) be that of a class of prediction sets G.4 For these definitions, see Defi-

nition B.1 in Appendix B. When F̌ coincides with F̃G, the following theorem gives a

non-asymptotic distribution-free upper bound for the mean of the G-constrained excess

classification risk in terms of the bracketing entropy.

Theorem 5.1. Let F̃G be a subclass of FG and satisfy the conditions (18) and (19) in

Theorem 4.4. Suppose that P is a class of distributions on {−1, 1} × X such that there

exist positive constants C and r for which

HB
1 (ε,G, PX) ≤ Cε−r (24)

holds for any P ∈ P and ε > 0, or

HB
1

(
ε, F̃G, PX

)
≤ Cε−r (25)

holds for any P ∈ P and ε > 0. Define τn = n−1/2 if r < 1, τn = log (n) /
√
n if r = 1, and

τn = n−1/(r+1) if r ≥ 2. Let qn =
√
nτn. Then, for f̂ ∈ arg inff∈F̃G Rφh(f), the following

holds:

sup
P∈P

EPn

[
R(f̂)− inf

f∈FG
R(f)

]
≤ LC(r, n), (26)

where

LC(r, n) =

 2D1τn + 4D2 exp (−D2
1q

2
n)

2D3τn + 2n−1D4

if r ≥ 1

if r < 1
(27)

for some positive constants D1, D2, D3, D4, which depend only on C and r.

Proof. See Appendix B.

The upper bound for the mean of the G-constrained excess classification risk converges

to zero at the rate of τn, which depends on r in the bracketing entropy condition (24)

or (25). Dudley (1999) shows many examples that satisfy these bracketing entropy con-

ditions. In particular, a class G- ⊆ 2X for the monotone classification, introduced in

Example 4.7, satisfies the condition (24) with r being dx−1 (see Theorem 8.3.2 in Dudley

(1999)).

4With a slight abuse of notation, we notate by HB
1 (ε,G, PX) the bracketing entropy number of the

class of indicator functions, HB
1 (ε,HG , PX), where HG ≡ {1{· ∈ G} : G ∈ G}.
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We next consider the case when F̌ does not coincide with F̃G. This case corresponds

to a scenario that minimizing the empirical hinge risk over F̃G is difficult while minimizing

over F̌ , a class approximating F̃G, is feasible.

A further decomposition of Rφh(f̂)− inff∈F̃G Rφh(f) in (23) leads to

R(f̂)− inf
f∈FG

R(f) =
1

2

(
Rφh

(
f̂
)
− inf

f∈F̌
Rφh(f)

)
+

1

2

(
inf
f∈F̌

Rφh(f)− inf
f∈F̃G

Rφh(f)

)
+

1

2

(
Rφh

(
1
{
· ∈ Gf̂

}
− 1

{
· /∈ Gf̂

})
−Rφh(f̂)

)
. (28)

Hence the G-constrained excess classification risk is decomposed into the three terms.

We call the first term estimation error, the second term approximation error to a best

classifier, and the third term approximation error to a step classifier. Evaluating each

error gives an upper bound for the G-constrained excess classification risk.

The following theorem evaluates the estimation error in terms of the bracketing en-

tropy.

Theorem 5.2. Let F̃G be a subclass of FG and satisfy the conditions (18) and (19) in

Theorem 4.4. Suppose that P is a class of distributions on {−1, 1} × X such that there

exist positive constants C ′ and r′ for which

HB
1

(
ε, F̌ , PX

)
≤ C ′ε−r

′
(29)

holds for any P ∈ P and ε > 0. Let f̂ ∈ arg inff∈F̌ Rφh(f). Then, there holds

sup
P∈P

EPn

[
R(f̂)− inf

f∈FG
R(f)

]
≤ LC′(r

′, n) +
1

2

(
inf
f∈F̌

Rφh(f)− inf
f∈F̃G

Rφh(f)

)
+

1

2

(
Rφh

(
1
{
· ∈ Gf̂

}
− 1

{
· /∈ Gf̂

})
−Rφh(f̂)

)
, (30)

where LC′(r
′, n) is defined as in Theorem 5.1.

Proof. See Appendix B.

Remark 5.3 (Approximation errors). Evaluating each approximation error in (30) de-

pends on the functional form restriction placed for f ∈ F̌ . If F̌ grows and approaches

to F̃G as n → ∞, each approximation error converges to zero. In Section 6.2 below, we

consider the monotone classification problem and set F̌ being a sieve of Bernstein poly-

nomials and characterize convergence of these two approximation errors. We then apply

Theorem 5.2 to obtain the regret convergence rate of the estimated monotone classifier.
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6 Applications to monotone classification

This section applies the general theoretical results shown in Sections 3–5 to monotone

classification problem (Example 2.5). By Theorem 3.2, we limit our analysis to the hinge

loss. We assume that X is compact in Rdx , dx < ∞, and without loss of generality,

we represent it as the dx-dimensional unit hypercube (i.e., X = [0, 1]dx). To be specific,

we consider the class of monotone prediction sets GM such that, for any G ∈ GM and

x, x̃ ∈ X , x ∈ G and x ≤ x̃ implies x̃ ∈ G holds5 (i.e., GM respects the partial order ≤
on X ). Accordingly, we have the class of monotonically increasing classifiers that can be

represented as

FM ≡{f : f (x) ≤ f (x̃) for any x, x̃ ∈ X with x ≤ x̃ ; f(·) ∈ [−1, 1]} .

In this section, we first study the monotone classification problem on FM . Note that

FM is a classification-preserving reduction of FGM (see Example 4.7). As an alterna-

tive to FM , we next consider using a sieve of Bernstein polynomials to approximate an

hinge-risk minimizing classifier on FM . The Bernstein polynomial is known for its ca-

pability to accommodate bound constraints and various shape constraints on functions

(e.g., monotonicity and/or convexity). The class of Bernstein polynomials becomes a

classification-preserving reduction only at the limit with a growing order of polynomials.

6.1 Nonparametric monotone classification

We first consider the hinge risk minimization with the class of monotonically increasing

classifiers FM . Let f̂M be a minimizer of R̂φh (·) over FM . Since the hinge risk for classifiers

constrained to −1 ≤ f(x) ≤ 1 gives the linear loss φh(yf(x)) = 1− yf(x), minimization

of the empirical hinge risk can be formulated as the following linear programming:

max
f1,...,fn

n∑
i=1

Yifi (31)

s.t. fi ≥ fj for any Xi 6= Xj with Xi ≥ Xj for 1 ≤ i ≤ j ≤ n;

− 1 ≤ fi ≤ 1 for 1 ≤ i ≤ n,

where the first inequality constraints correspond to the monotononicity constraint on FM ,

and the second inequality constraints correspond to the range constraint for f ∈ FM . Solv-

ing this linear programming yields the values of f̂M at the values of x observed in the

training sample. Let
(
f̂M (X1) , . . . , f̂M (Xn)

)
be the solution of (31). Then any func-

5We define the partial order ≤ on X as follows. For any x = (x1, . . . , xd)
T

and x̃ = (x̃1, . . . , x̃d)
T

,
we say x ≤ x̃ if xj ≤ x̃j for every j = 1, . . . , d. We further say x < x̃ if x ≤ x̃ holds and for some
j ∈ {1, . . . , d}, xj < x̃j holds.
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tion in FM that passes the points
((
X1, f̂M (X1)

)
, . . . ,

(
X1, f̂M (Xn)

))
minimizes the

empirical hinge risk over FM .6 Since FM is a classification-preserving reduction of FGM ,

Theorem 4.4 with P replaced by P n shows that any solution to (31) exactly minimizes

R̂φh(·) over FGM .

We investigate a statistical property of this procedure. Since FM is a classification-

preserving reduction of FGM , we can apply Theorem 5.1. For this goal, we first characterize

an upper bound of the bracketing entropy number of the class of monotone prediction

sets. The next lemma, which we borrow from Theorem 8.3.2 in Dudley (1999), gives an

upper bound for the the L1 (PX)-bracketing entropy of GM . Here, we assume that X is

continuously distributed with the bounded density.

Lemma 6.1. Suppose that PX is absolutely continuous with respect to the Lebesgue mea-

sure on X and has a density that is bounded from above by a finite constant A > 0. Then

there exists a constant C, which depends only on A, such that

HB
1 (ε,GM , PX) ≤ Cε1−dx .

holds for all ε > 0.

Proof. See Appendix C.

With this lemma, setting r = 1 − dx in Theorem 5.1 yields a finite sample uniform

upper bound for the G-constrained excess classification risk of f̂M . It shows that the

excess risk convergence rate of f̂M obtained by linear programming (31) attains the same

convergence rate as the welfare regret of monotone treatment rules shown by by Mbakop

and Tabord-Meehan (2021).

Theorem 6.2. Let P be a class of distributions on {−1, 1} × X such that the marginal

distribution PX is absolutely continuous with respect to the Lebesgue measure on X and

has a density that is bounded from above by some finite constant A > 0. Define τn = n−1/2

if dx = 1, τn = log (n) /
√
n if dx = 2, and τn = n−1/dx if dx ≥ 3. Let qn =

√
nτn. Then,

6All classifiers obtained from this procedure predict a unique label at each point of x observed in
the training sample, whereas they may not give a unique prediction at a point of x not observed in
the training sample. One possible way to predict a label at an unobserved point of x without violating
the monotonicity constraint is to predict its label by the largest label among those predicted by all
classifiers in arg inff∈FM

R̂φh
(f). Let X̃ be a set of x observed in the training sample. Given any

f̂M ∈ arg inff∈FM
R̂φh

(f), this way is equivalent to predict a label of x ∈ X\X̃ by the sign of min{f̂M (x̃) :

x̃ ∈ X̃ , x̃ ≥ x} if there exists x̃ ∈ X̃ such that x̃ ≥ x, and predict by 1 otherwise .
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for f̂M ∈ arg inff∈FM R̂φh (f), there holds

sup
P∈P

EPn

[
R(f̂M)− inf

f∈FGM
R(f)

]
≤

 2D1τn + 4D2 exp (−D2
1q

2
n)

2D3τn + 2n−1D4

if dx ≥ 2

if dx = 1

for some positive constants D1, D2, D3, D4, which depend only on dx and A.

Proof. Since FM satisfies the conditions (18) and (19) in Theorem 4.4 with G being GM
(Example 4.7), the result follows from Theorem 5.1 and Lemma 6.1.

This theorem guarantees the consistency of the monotone classification using the hinge

loss and the class of monotone classifiers FM . The rate of convergence corresponds to τn.

6.2 Monotone classification with Bernstein polynomial

To illustrate our theoretical results in monotone classification, the second approach we

consider is to use multivariate Bernstein polynomials to approximate a best classifier in

FM .

Let bkj (x) =

(
k

j

)
xj (1− x)k−j be the Bernstein basis. The Bernstein polynomial

for a dx-dimensional function takes the following form:

Bk (θ, x) =

k1∑
j1=0

· · ·
kdx∑
jdx=0

θj1...jd ·
(
bk1j1 (x1)× · · · × bkdxjdx (xdx)

)
,

where k = (k1, . . . , kdx)
T is a vector collecting the orders of the Bernstein polynomial bases

specified by the analyst, θ ≡
{
θj1...jdx

}
j1=0,...,k1;··· ;jdx=0,...,kdx

is a (k1 + 1)× · · · × (kdx + 1)-

dimensional vector of the parameters to be estimated, and xj denotes the j-th element

of the dx-dimensional vector x. If −1 ≤ θj1...jdx ≤ 1 for all (j1, . . . , jdx), the range of the

function Bk (θ, ·) is bounded in [−1, 1]. Moreover, if θj1...jdx ≥ θj̃1...j̃dx for all (j1, . . . , jdx) ≥(
j̃1, . . . , j̃dx

)
, Bk (θ, ·) is non-decreasing in x.7 Hence, to preserve the bound and non-

decreasing constraints on FM , the class of Bernstein polynomials should be constrained

on

Bk =
{
Bk (θ, ·) : θ ∈ Θ̃

}
,

7On the contrary, if θj1...jdx ≤ θj̃1...j̃dx for all (j1, . . . , jdx) ≥
(
j̃1, . . . , j̃dx

)
, Bk (θ, ·) is non-increasing in

x. See, e.g., Wang and Ghosh (2012) for the bound and shape preserving properties of the multivariate
Bernstein polynomials.
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where Θ̃ is a class of θ such that θj1...jdx ∈ [−1, 1] for all (j1, . . . , jdx) and θj1...jdx ≥ θj̃1...j̃dx
for all (j1, . . . , jdx) ≥

(
j̃1, . . . , j̃dx

)
. 8

We propose to estimate the best classifier by a classifier f̂B that minimizes R̂φh (·)
over Bk. A proper choice of k will be discussed later. This minimization problem is a

convex optimization as the objective function R̂φ (·) is linear in θ with the linear inequality

constraints on Θ̃, and hence can be formulated as a linear programming (see Remark 6.6

below).

Note that Bk ⊆ FM . Setting F̌ to Bk in the framework of Section 5, the excess

classification risk of f̂B is decomposed into three errors: estimation error ( Rφh

(
f̂B

)
−

inff∈Bk Rφh(f)), approximation error to the best classifier (inff∈Bk Rφh(f)−inff∈FM Rφ(f)),

and approximation error to the step function (Rφ(1
{
· ∈ Gf̂B

}
− 1

{
· /∈ Gf̂B

}
)−Rφ(f̂B)).

We evaluate each error below.

The following lemma gives finite upper bounds for the two approximation errors.

Lemma 6.3. Let kj ≥ 1, for j = 1, . . . , dx, be fixed. Suppose that the density of PX is

bounded from above by some finite constant A > 0 .

(i) The following holds for the approximation error to the best classifier:

inf
f∈Bk

Rφh (f)− inf
f∈FM

Rφh (f) ≤ 2A
dx∑
j=1

√
log kj
kj

+
dx∑
j=1

4√
kj
.

(ii) For f̂B ∈ arg inff∈Bk
R̂φh (f) such that its coefficients of the Bernstein bases take

values in {−1, 1}, the following holds for the approximation error to the step function:

Rφh

(
1
{
· ∈ Gf̂B

}
− 1

{
· /∈ Gf̂B

})
−Rφh(f̂B) ≤ 2A

dx∑
j=1

√
log kj
kj

+
dx∑
j=1

4√
kj
.

Proof. See Appendix C.

The two approximation errors have the same upper bound which converges to zero as

kj (j = 1, . . . , dx) increase. The convergence rate is maxj=1,...,dx

√
(log kj)/kj. Note also

that the upper bound for the approximation error to the step function does not depend on

the sample size n. As for the coefficient restriction in (ii), Remark 6.5 introduces two-step

procedure to compute f̂B that minimizes R̂φh while satisfying the coefficient restriction.

The estimation error can be bounded by using Theorem 5.2 with Lemma C.1 in Ap-

pendix C. The following theorem shows a finite sample upper bound for the mean of the

G-constrained excess classification risk of f̂B.

8If GM respects the opposite partial order ≥ on X , Θ̃ should be replaced with a collection of θ such
that θj1...jdx ∈ [−1, 1] for all (j1, . . . , jdx) and θj1...jdx ≤ θj̃1...j̃dx for all (j1, . . . , jdx) ≥

(
j̃1, . . . , j̃dx

)
.
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Theorem 6.4. Let P be a class of distributions on {−1, 1} × X that satisfy the same

conditions as in Theorem 6.2. Let τ̃n = log (n) /
√
n if dx = 1 and τ̃n = n−1/dx if dx ≥ 2.

Define q̃n =
√
nτ̃n. Then, for f̂B ∈ arg inff∈BkR̂φh (f) such that its coefficients of the

Bernstein bases take values in {−1, 1}, the following holds:

sup
P∈P

EPn

[
R(f̂B)− inf

f∈FGM
R(f)

]
≤ 2D1τ̃n + 4D2 exp

(
−D2

1 q̃
2
n

)
+ 4A

dx∑
j=1

√
log kj
kj

+
dx∑
j=1

8√
kj
, (32)

where D1 and D2 are some positive constants, which depend only on dx and A.

Proof. From the fact that Bk ⊆ FM and Lemma C.1 in Appendix C, we haveHB
1 (ε,Bk, PX) ≤

Cε−dx for some positive constant C, which depends only on A, and all ε > 0 . Then the

result follows by combining Theorem 5.2 and Lemma 6.3.

The upper bound in (32) converge to zero as the sample size n and the number of

the Bernstein bases kj (j = 1, . . . , dx) increase. Note that the rate of convergence for the

estimation error in this theorem, τ̃n, is slower than that in Theorem 6.2, τn. The difference

comes from the different orders in the upper bounds of HB
1 (ε,GM , PX) and HB

1 (ε,FM , PX)

in Lemmas 6.1 and C.1. To achieve the convergence rate of τ̃n for the mean of the excess

risk, the theorem suggests to set the tuning parameters kj, j = 1, . . . , dx, sufficiently large

so that
√

log kj/kj = O (τ̃n).

In practice, one may want to select the complexity of the Bernstein polynomials by

minimizing penalized empirical surrogate risk. Classification and treatment choice lit-

eratures (Koltchinskii (2006), Mbakop and Tabord-Meehan (2021), and the references

therein) analyze the regret properties and oracle inequalities for the penalized risk mini-

mizing classifiers. We leave for future research theoretical investigation for applicability

of penalization methods to the current hinge risk minimization with the Bernstein poly-

nomials.

Several other remarks follow.

Remark 6.5 (Coefficient restriction). Theorem 6.4 requires that the estimated Bernstein

polynomial classifier has binary coefficients taking values in {−1, 1}. This restriction is

needed to make the approximation error to the step function converge to zero. Actually,

this restriction is not very strict.

Fix f̂B ∈ arg inff∈Bk
R̂φh (f), and let {θ̂j1...jdx}j1=0,...,k1;··· ;jdx=0,...,kdx

be the vector of the
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coefficients in f̂B. We make a modified classifier

f̂ †B (x) ≡
k1∑
j1=1

· · ·
kdx∑
jdx=1

sign
(
θ̂j1...jdx

)
·
(
bk1j1 (x1)× · · · × bkdxjdx (xdx)

)
,

which converts each estimated coefficient θ̂j1...jdx to either −1 or 1 depending on its sign.

Then Lemma C.2 in Appendix C shows that f̂ †B minimizes Rφh(·) over Bk as well. We

can hence apply Theorem 6.4 to the modified estimator f̂ †B and obtain the result (32). We

therefore recommend using the modification f̂ †B, instead of f̂B, if some coefficients in f̂B

are not equal to −1 or 1.

Remark 6.6 (Linear programming). Denote f̂B ∈ arg inff∈Bk
R̂φh (f) by

f̂B (x) =

k1∑
j1=1

· · ·
kdx∑
jdx=1

θ̂j1...jdx ·
(
bk1j1 (x1)× · · · × bkdxjdx (xdx)

)
.

The vector of the coefficients θ̂ :=
{
θ̂j1...jdx

}
j1=0,...,k1;··· ;jdx=0,...,kdx

can be obtained by solving

the following linear programming:

max
θ

n∑
i=1

Yi ·

 k1∑
j1=0

· · ·
kdx∑
j1=dx

θj1...jdx ·
(
bk1j1 (Xi1)× · · · × bkdxjdx (Xidx)

) (33)

s.t. θj1...jdx ≥ θj̃1...j̃dx for any (j1, . . . , jdx) ≥
(
j̃1, . . . , j̃dx

)
;

− 1 ≤ θj1...jdx ≤ 1 for all (j1, . . . , jdx) ,

where Xij denotes the j-th element of Xi. The first inequality constraints restrict feasible

classifiers on a class of non-decreasing functions. The second inequality constraints bound

feasible classifiers on [−1, 1].

The linear programming (31) for the nonparametric monotone classification has n-

decision variables, whereas that (33) has (k1 +1)×· · ·× (kdx +1)-decision variables. Thus

when the dimension of X is small to moderate relative to the sample size n, the linear

programming for the Bernstein polynomials would be easier to compute. The opposite is

also true.

7 Extension to individualized treatment rules

This section extends the primary results obtained in Sections 3–6 for binary classification

to weighted classification introduced in Section 1.1, and importantly to causal policy
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learning. We follow the same notations and definitions introduced in Section 1.1. We

call Rw and Rw
φ , defined in (6) and (7), weighted classification risk and weighted φ-risk,

respectively.

7.1 Consistency of weighted classification with hinge loss

We first show consistency of the weighted classification with hinge risk by following the line

of analyses in Sections 3 and 4. Given prespecified G, let FG be as in Section 2. Analogues

to R(G) and Rφ(G), we define Rw(G) ≡ inff∈FG R
w(f) the weighted-classification risk

evaluated at G, and Rw
φ (G) ≡ inff∈FG R

w
φ (f) the weighted φ-risk evaluated at G. Note

that Rw(G) = Rw(f) for all f ∈ FG. Let Rw∗ ≡ infG∈GRw(G) = inff∈FG R
w(f) be the

optimal weighted risk, and G∗ ≡ arg infG∈GRw(G) be the collection of the best prediction

sets.

For the weight variable ω, define

ω+ (x) ≡ EP [ω | X = x, Y = +1]

ω− (x) ≡ EP [ω | X = x, Y = −1] .

In the setting of policy learning where ω = ωp, Y = D, and P satisfies unconfoundedness,

ω+ and ω− correspond to the regression equations of the potential outcomes divided by

the propensity score e(x) = η(x) = Pr(Y = +1|X = x),

ω+(x) = EP [Z(+1) | X = x]/e(x)

ω−(x) = EP [Z(−1) | X = x]/(1− e(x)).

Let Cφ (a, b, c, d) ≡ aφ (c) d+ bφ (−c) (1− d), and

Cw+
φ (ω+, ω−, η) ≡ inf

0≤f≤1
Cφ (ω+, ω−, f, η) ,

Cw−
φ (ω+, ω−, η) ≡ inf

−1≤f<0
Cφ (ω+, ω−, f, η) ,

∆Cw
φ (ω+, ω−, η) ≡ Cw+

φ (ω+, ω−, η)− Cw−
φ (ω+, ω−, η) ,

which are analogues to C+
φ , C−φ , and ∆Cφ defined in Section 3. Similarly to (10) and (12),

we have

Rw (G) =

∫
X

(−ω+ (x) η (x) + ω− (x) (1− η (x))) · 1 {x ∈ G} dPX (x)

+

∫
X
ω+ (x) η (x) dPX (x) , (34)

Rw
φ (G) =

∫
X

∆Cw
φ (ω+ (x) , ω− (x) , η (x)) · 1 {x ∈ G} dPX (x)
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+

∫
X
Cw−
φ (ω+ (x) , ω− (x) , η (x)) dPX (x) . (35)

The next theorem generalizes Theorems 3.2, 3.6, and Corollary 3.7 to weighted clas-

sification, giving a necessary and sufficient condition for equivalence of the risk ordering

among surrogate loss functions. In particular, we show that hinge loss functions share the

risk ordering with the 0-1 loss function.

Theorem 7.1. Let φ1 and φ2 be classification-calibrated loss functions in the sense of

Definiton 2.3. Then the following holds for any distribution P of (ω, Y,X) and G1, G2 ∈ G:

Rw
φ1

(G1) ≤ Rw
φ1

(G2)⇔ Rw
φ2

(G1) ≤ Rw
φ2

(G2) (36)

holds if and only if ∆Cw
φ2

(ω+, ω−, η) = c∆Cw
φ1

(ω+, ω−, η) for some c > 0 and any

(ω+, ω−, η) ∈ R × R × [0, 1]. Furthermore, if φ1 is the 0-1 loss function (i.e., φ1(α) =

1{α ≤ 0}), (36) holds if and only if

∆Cw
φ2

(ω+, ω−, η) = c (−ω+η + ω− (1− η)) for some c > 0. (37)

In particular, the hinge loss function φh(α) = cmax{0, 1−α}, c > 0, satisfies the condition

(37).

Proof. See Appendix D.

In causal policy learning, since η(x) corresponds to the propensity score e(x), −ω+(x)η(x)+

ω−(x) (1− η(x)) in (37) coincides with EP [Z(−1)−Z(1) | X = x], the conditional average

causal effect between D = −1 and D = 1.

Theorem 7.1 leads to a generalized Zhang’s (2004) inequality for the weighted classi-

fication as follows.

Corollary 7.2. For any distribution P of (, Y,X) and any φ satisfying the condition (37),

c(Rw(f)− inf
f∈FG

Rw(f)) ≤ Rw
φ (f)− inf

f∈FG
Rw
φ (f) (38)

holds for any f ∈ FG.

Proof. See Appendix D.
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Remark 7.3. Table 2 shows the forms of ∆Cw
φ (ω+, ω−, η) for the hinge loss, exponential

loss, logistic loss, quadratic loss, and truncated quadratic loss functions. We use µ+ ≡ ω+η

and µ− ≡ ω−(1−η). None of them except for the hinge loss satisfies condition (37). That

is, hinge losses have special status also in weighted classification, as they are the only

surrogate losses that preserve the classification risk.

Table 2: Surrogate loss functions and their forms of ∆Cw
φ

Loss function φ(α) ∆Cw
φ (ω+, ω−, η)

0-1 loss 1{α ≤ 0} −µ+ + µ−
Hinge loss cmax{0, 1− α} c (−µ+ + µ−)

Exponential loss e−α

{
(
√
µ+ −

√
µ−)2

−(
√
µ+ −

√
µ−)2

if µ+ ≤ µ−

if µ+ > µ−

Logistic loss log(1 + e−α)

 −µ+ log
(

2µ+
µ++µ−

)
− µ− log

(
2µ−

µ++µ−

)
µ+ log

(
2µ+

µ++µ−

)
+ µ− log

(
2µ−

µ++µ−

) if µ+ ≤ µ−

if µ+ > µ−

Quadratic loss (1− α)2

{
(µ+−µ−)2

µ++µ−

− (µ+−µ−)2

µ++µ−

if µ+ ≤ µ−

if µ+ > µ−

Truncated quadratic loss (max{0, 1− α})2

{
(µ+−µ−)2

µ++µ−

− (µ+−µ−)2

µ++µ−

if µ+ ≤ µ−

if µ+ > µ−

Note: µ+ = ω+η and µ− = ω−(1− η).

Similarly to the analysis in Section 4, we consider adding functional form restrictions

to the class of classifiers FMG. Let F̃G be a subclass of FG, functions in which may be

constrained in form. In what follows, we suppose that the weight variable ω satisfies the

following condition.

Condition 7.4 (Bounded weight variable). There exists M < ∞ such that the support

of the weight variable ω is contained in [−M,M ].

This condition requires a bounded support of ω. In the causal policy learning, Condi-

tion 7.4 holds if the outcome variable Z has a bounded support and the propensity score

e(x) satisfies the strict overlap condition. For example, if the support of Z is contained

in [−M̃, M̃ ], with some M̃ < ∞, and the propensity score satisfies κ < e(x) < 1 − κ for

some κ ∈ (0, 1/2) and all x ∈ X , then the support of the weight variable for the causal

policy learning ωp is contained in [−M̃/κ, M̃/κ].

The following theorem, which is analogous to Theorem 4.4, shows that the two condi-

tions (18) and (19) in Theorem 4.4 remain sufficient for F̃G to guarantee the consistency

of the hinge risk minimization approach to weighted classification.
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Theorem 7.5. Suppose that F̃G ⊂ FG satisfy the conditions (18) and (19) in Theorem

4.4 and that the weight variable ω satisfies condition 7.4.

(i) f̃ ∗ ∈ arg inff∈F̃G R
w
φh

(f) minimizes the weighted-classification risk Rw(·) over FG.

(ii) For G∗, G̃∗ ∈ G∗ such that G∗ ⊆ G̃∗, f̃ †(·) = 1{· ∈ G∗} − 1{· /∈ G̃∗} is a minimizer of

Rw
φh

(·) over F̃G.

Proof. See Appendix D.

Then the similar relationship between the G-constrained excess weighted-classification

risk and FG-constrained excess weighted-hinge risk as in Corollary 4.5 is obtained.

Corollary 7.6. Assume F̃G is a subclass of FG and satisfies the conditions (18) and (19)

in Theorem 4.4. If φ satisfies condition (37) with φ2 replaced with φ, there holds

c(Rw(f)− inf
f∈FG

Rw(f)) =
1

2

(
Rw
φ (f)− inf

f∈F̃G
Rw
φ (f)

)
+

1

2

(
Rw
φ (1 {· ∈ Gf} − 1 {· /∈ Gf})−Rw

φ (f)
)

for any f ∈ FG.

Proof. See Appendix D.

7.2 Statistical property for the weighted classification with hinge

loss

This section extends the analysis of Section 5 to weighted classification with the hinge

losses. Let {(ωi, Yi, Xi) : i = 1, . . . , n} be a sample of observations that are independently

and identically distributed (i.i.d) as (ω, Y,X). Given the sample, the empirical weighted

classification risk and hinge risk for a classifier f are defined as

R̂w(f) ≡ n−1

1∑
i=1

ωi1{Yi · sign(f(Xi)) ≤ 0},

R̂w
φh

(f) ≡ n−1

1∑
i=1

ωi max{0, 1− Yif(Xi)},

respectively. Let F̌ be a subclass of FG, on which we learn a best classifier, and F̃G be a

constrained-classification-preserving reduction of FG.
As an analogue of Theorems 5.1 and 5.2, the following theorem gives general upper

bounds for the mean of the G-constrained excess weighted classification risk.
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Theorem 7.7. Suppose that F̃G is a subclass of FG and satisfy the conditions (18) and

(19) in Theorem 4.4. Let f̂ ∈ arg inff∈F̌R̂
w
φh

(f), and (qn, τn, LC(r, n)) be as in Theorem

5.1.

(i) Let P be a class of distributions of (ω, Y,X) such that, for any distribution P ∈ P,

the condition 7.4 holds and there exist positive constants C and r for which the condition

(24) holds for all ε > 0 or the condition (25) holds for all ε > 0. Then if F̌ coincides with

F̃G, there holds

sup
P∈P

EPn

[
Rw(f̂)− inf

f∈FG
Rw(f)

]
≤MLC(r, n). (39)

(ii) Suppose that P is a class of distributions of (ω, Y,X) such that, for any distribution

P ∈ P, the condition 7.4 holds and there exist positive constants C ′ and r′ for which the

condition (29) holds for all ε > 0. Then the following holds:

sup
P∈P

EPn

[
Rw(f̂)− inf

f∈FG
Rw(f)

]
≤ MLC′(r

′, n) +
1

2

(
inf
f∈F̌

Rw
φh

(f)− inf
f∈F̃G

Rw
φh

(f)

)
+

1

2

(
Rw
φh

(1
{
· ∈ Gf̂

}
− 1

{
· /∈ Gf̂

}
)−Rw

φh
(f̂)
)
.

(40)

Proof. See Appendix D.

Similar comments as in Remark 5.3 apply to Theorem 7.7. The two approximation

errors in (40) are small as F̌ approximates F̃G well. When F̌ coincides with F̃G, they

disappear.

7.3 Monotone weighted classification

Finally, we extend the results for the monotone classification in Section 6 to the weighted

classification. Let FGM , FM , and Bk be as in Section 6, and suppose X = [0, 1]dx . Our

aim is to find a best classifier that minimizes Rw(·) over FGM . We again consider to use

the whole class of monotone classifiers FM and sieve of Bernstein polynomials Bk in the

empirical hinge risk minimization for the weighted classification. The following theorems

show statistical properties of these methods.

Theorem 7.8. Let P be a class of distributions of (ω, Y,X) such that the condition 7.4

holds for any P ∈ P and that for any P ∈ P the marginal distribution PX is absolutely

continuous with respect to the Lebesgue measure on X and has a density that is bounded

from above by some finite constant A > 0. Let qn and τn be as in Theorem 6.2, and let
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f̂M ∈ arg inff∈FM R̂
w
φh

(f). Then the following holds:

sup
P∈P

EPn

[
Rw(f̂M)− inf

f∈FGM
Rw(f)

]
≤

 2MD1τn + 4MD2 exp (−D2
1q

2
n)

2MD3τn + 2Mn−1D4

if dx ≥ 2

if dx = 1

(41)

for some positive constants D1 and D2, which depend only on dx and A.

Proof. Since FM satisfies the conditions (18) and (19) in Theorem 4.4 with G being GM
(Example 4.7), the result follows from Theorem 7.7 (i) and Lemma 6.1.

Theorem 7.9. Let P be a class of distributions of (ω, Y,X) that satisfies the same

conditions as in Theorem 7.8. Let q̃n and τ̃n be as in Theorem 6.4 . Then, for f̂B ∈
arg inff∈Bk

R̂w
φh

(f) such that its coefficients take values in {−1, 1}, the following holds:

sup
P∈P

EPn

[
Rw(f̂B)− inf

f∈FGM
Rw(f)

]
≤ 2MD1τ̃n + 4MD2 exp

(
−D2

1 q̃
2
n

)
+ 4MA

dx∑
j=1

√
log kj
kj

+
dx∑
j=1

8M√
kj
,

where D1 and D2 are the same constants as in Theorem 7.8, which depend only on dx and

A.

Proof. The result follows by combining Theorem 7.7 (ii), Lemma C.1 in Appendix C, and

Lemma D.4 in Appendix D.

Similar comments apply to Theorems 7.8 and 7.9 as those in Section 6. Using FM
leads to the faster convergence rate than using the Bernstein polynomials Bk. When

using the Bernstein polynomials Bk, to achieve the convergence rate of τ̃n for the excess

risk, Theorem 7.9 suggests to set the tuning parameters kj, j = 1, . . . , dx, sufficiently

large so that
√

log kj/kj = O (τ̃n). Furthermore, for any f̂B ∈ arg inff∈Bk
R̂w
φh

(f), the

modification f̂ †B introduced in Remark 6.5 minimizes the empirical hinge risk R̂w
φh

(·), while

satisfying the coefficient restriction in Theorem 7.9 (see Lemma D.2 (iii) in Appendx D).

The weighted hinge risk minimization problems using FM and Bk can be formulated as

linear programmings similar to those in Section 6.2 and Remark 6.6, respectively.

8 Conclusion

This paper studies consistency of surrogate risk minimization approaches to classification

and weighted classification under a constrained set of classifiers, where the latter includes
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policy learning for individualized treatment assignment rules. Our focus is on how sur-

rogate risk minimizing classifiers behave if the constrained class of classifiers fails the

correct specification assumption. Our first main result shows that when the constraint

restricts classifiers’ prediction sets only, the hinge losses are the only loss functions that

secure consistency of the surrogate-risk minimizing classifier without the correct speci-

fication assumption. When the constraint additionally restricts the functional form of

the classifiers, the surrogate risk minimizing classifier cannot be generally consistent even

with the hinge loss. Our second main result is to show that in this case the condition

of constrained-classification-preserving reduction becomes a sufficient condition for the

consistency of the hinge-risk minimizing classifier.

The paper also investigates statistical properties of the hinge risk minimizing classifiers

in terms of the uniform upper bounds of the excess regret. We illustrate usefulness

and implications of our theoretical results in monotone classification. Exploiting the

hinge loss and the class of monotone classifiers, we show that the empirical surrogate-risk

minimizing classifier can be computed by linear programming. All of the results obtained

in the standard classification setting are naturally extended to the weighted classification

problem, so our contributions carry over to its important application to causal policy

learning.

Appendix

A Proofs of the results in Sections 3 and 4

In this appendix, we provide the proofs of our main results in Sections 3 and 4 with some

auxiliary lemmas. We here let φ be any surrogate loss function. Before proceeding to

the proofs, we note that if φ is classification-calibrated, ∆Cφ has the same sign with the

Bayes classifier:

∆Cφ (η (x))

 > 0

< 0

if η (x) > 1/2

if η (x) < 1/2
, (42)

which will be used in the following proofs.

Proof of Theorem 3.6.

(“if” part)

For any G1, G2 ∈ G, we have shown in Theorem 3.2 that Rφ1 (G2) ≥ Rφ1 (G1) is
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equivalent to ∫
G2\G1

∆Cφ1 (η (x)) dPX (x) ≥
∫
G1\G2

∆Cφ1 (η (x)) dPX (x) .

The inequality does not change if we replace ∆Cφ1 (η (x)) by ∆Cφ2 (η (x)) = c∆Cφ1 (η (x))

with c > 0. Furthermore, the above inequality with ∆Cφ1 (η (x)) replaced by ∆Cφ2 (η (x))

is equivalent toRφ2 (G2) ≥ Rφ2 (G1) from Theorem 3.2. Therefore if ∆Cφ2 (·) = c∆Cφ1 (·)
with c > 0, φ1

u∼ φ2 holds.

(“only if” part)

We prove the “only if” part of the theorem by exploiting a specific class of data generating

processes (DGPs). Suppose X = {1, 2} and G = {∅, G1, G2,X} with G1 = {1} and

G2 = {2}. Let α = P (X = 1) (= 1− P (X = 2)) and (η1, η2) = (η (1) , η (2)). The DGP

varies depending on the values of (α, η1, η2) ∈ [0, 1]3.

In what follows, we will show that

∆Cφ1 (η1)

∆Cφ1 (η2)
=

∆Cφ2 (η1)

∆Cφ2 (η2)

holds for any (η1, η2) ∈ ([0, 1]\{1/2})2. Then, applying Lemma A.1 below proves the

“only if” part of the theorem.

Let G ∈ G. In the current setting, Rφ (G) can be written as

Rφ (G) = P (X = 1) ∆Cφ (η1) 1 {1 ∈ G}+ P (X = 2) ∆Cφ (η2) 1 {2 ∈ G}

+
2∑

x=1

P (X = x)C−φ (η (x))

= α∆Cφ (η1) 1 {1 ∈ G}+ (1− α) ∆Cφ (η2) 1 {2 ∈ G}+ Cα,η1,η2 ,

where Cα,η1,η2 ≡ α∆Cφ (η1) + (1− α) ∆Cφ (η2) which does not depend on G. Thus, we

have

Rφ (∅) = Cα,η1,η2

Rφ (G1) = α∆Cφ (η1) + Cα,η1,η2 ,

Rφ (G2) = (1− α) ∆Cφ (η2) + Cα,η1,η2 ,

Rφ (X ) = α∆Cφ (η1) + (1− α) ∆Cφ (η2) + Cα,η1,η2 .

In what follows, we separately consider four cases: (i) η1 > 1/2 and η2 > 1/2; (ii) η1 < 1/2

and η2 < 1/2; (iii) η1 < 1/2 and η2 > 1/2; (iv) η1 > 1/2 and η2 < 1/2.
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First, we consider the case (i): η1 > 1/2 and η2 > 1/2. Because we assume φ1
u∼ φ2,

Rφ1 (G1) ≤ Rφ1 (G2)⇔ Rφ2 (G1) ≤ Rφ2 (G2) ,

holds for any (α, η1, η2) ∈ (0, 1)× (1/2, 1]2. This is equivalent to

α∆Cφ1 (η1) ≤ (1− α) ∆Cφ1 (η2)⇔ α∆Cφ2 (η1) ≤ (1− α) ∆Cφ2 (η2)

for any (α, η1, η2) ∈ (0, 1) × (1/2, 1]2. Let γ+ ≡ (1− α) /α, which may take any value

in (0,+∞) by varying α on (0, 1). From the classification-calibrated property (42), both

∆Cφ1 (η) and ∆Cφ2 (η) are positive for η ∈ (1/2, 1]. Thus, it follows for any (γ+, η1, η2) ∈
(0,+∞)× (1/2, 1]2 that

∆Cφ1 (η1)

∆Cφ1 (η2)
≤ γ+ ⇔ ∆Cφ2 (η1)

∆Cφ2 (η2)
≤ γ+, (43)

where both ∆Cφ1 (η1) /∆Cφ1 (η2) and ∆Cφ2 (η1) /∆Cφ2 (η2) are positive. Since (43) holds

for any value of η+ ∈ (0,+∞), ∆Cφ1 (η1) /∆Cφ1 (η2) = ∆Cφ2 (η1) /∆Cφ2 (η2) holds for

any (η1, η2) ∈ (1/2, 1]2.

Similarly, in the case (ii): η1 < 1/2 and η < 1/2, the following equivalence holds for

any (γ+, η1, η2) ∈ (0,+∞)× [0, 1/2)2:

∆Cφ1 (η1)

∆Cφ1 (η2)
≥ γ+ ⇔ ∆Cφ2 (η1)

∆Cφ2 (η2)
≥ γ+, (44)

where both ∆Cφ1 (η1) /∆Cφ1 (η2) and ∆Cφ2 (η1) /∆Cφ2 (η2) are positive. Thus, varying the

value of γ+ on (0,+∞) in (44) shows that ∆Cφ1 (η1) /∆Cφ1 (η2) = ∆Cφ2 (η1) /∆Cφ2 (η2)

holds for any (η1, η2) ∈ [0, 1/2)2.

Next, we consider the case (iii): η1 < 1/2 and η2 > 1/2. Because we assume φ1
u∼ φ2,

it follows for any (α, η1, η2) ∈ (0, 1)× [0, 1/2)× (1/2, 1] that

Rφ1 (∅) ≤ Rφ1 (X )⇔ Rφ2 (∅) ≤ Rφ2 (X ) ,

which is equivalent to

0 ≤ α∆Cφ1 (η1) + (1− α) ∆Cφ1 (η2)⇔ 0 ≤ α∆Cφ2 (η1) + (1− α) ∆Cφ2 (η2) .

Let γ− ≡ (α− 1) /α, which takes any value in (−∞, 0) by varying the value of α on (0, 1).

Because ∆Cφ1 (η1) < 0 and ∆Cφ2 (η2) > 0 hold for (η1, η2) ∈ [0, 1/2)× (1/2, 1] due to the
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classification-calibrated property (42), it follows that

∆Cφ1 (η1)

∆Cφ1 (η2)
≥ γ− ⇔ ∆Cφ2 (η1)

∆Cφ2 (η2)
≥ γ− (45)

for any (γ−, η1, η2) ∈ (−∞, 0) × [0, 1/2) × (1/2, 1], where both ∆Cφ1 (η1) /∆Cφ1 (η2) and

∆Cφ2 (η1) /∆Cφ2 (η2) are also negative. Thus, varying the value of γ− on (−∞, 0) in

(45) shows that ∆Cφ1 (η1) /∆Cφ1 (η2) = ∆Cφ2 (η1) /∆Cφ2 (η2) holds for any (η1, η2) ∈
[0, 1/2)× (1/2, 1].

Similarly, in the case (iv): η1 > 1/2 and η2 < 1/2, the following equivalence holds for

any (γ−, η1, η2) ∈ (−∞, 0)× (1/2, 1]× [0, 1/2):

∆Cφ1 (η1)

∆Cφ1 (η2)
≤ γ− ⇔ ∆Cφ2 (η1)

∆Cφ2 (η2)
≤ γ−, (46)

where both ∆Cφ1 (η1) /∆Cφ1 (η2) and ∆Cφ2 (η1) /∆Cφ2 (η2) are negative. Therefore, vary-

ing the value of γ− in (46) shows that ∆Cφ1 (η1) /∆Cφ1 (η2) = ∆Cφ2 (η1) /∆Cφ2 (η2) holds

for any (η1, η2) ∈ (1/2, 1]× [0, 1/2).

Combining these four results, we have ∆Cφ1 (η1) /∆Cφ1 (η2) = ∆Cφ2 (η1) /∆Cφ2 (η2)

for any (η1, η2) ∈ ([0, 1] \ {1/2})2. Then the proof follows from Lemma A.1 below.

Lemma A.1. Let φ1 and φ2 be classification-calibrated loss functions. If ∆Cφ1 (η1) /∆Cφ1 (η2) =

∆Cφ2 (η1) /∆Cφ2 (η2) holds for (η1, η2) ∈ ([0, 1] \ {1/2})2, then there exists some constant

c > 0 such that ∆Cφ2 (η) = c∆Cφ1 (η) for η ∈ [0, 1].

Proof. For η ∈ [0, 1] \ {1/2}, let c (η) be a value such that

∆Cφ2 (η) = c (η) ∆Cφ1 (η) . (47)

Because φ1 and φ2 are classification-calibrated, c (η) must be positive from (42). We will

show that c (η) is constant over η ∈ [0, 1] \ {1/2} by contradiction.

Suppose there exists (η1, η2) ∈ ([0, 1] \ {1/2})2 such that c (η1) 6= c (η2). From the

assumption, the following equations hold

∆Cφ2 (η1) =

(
∆Cφ2 (η2)

∆Cφ1 (η2)

)
∆Cφ1 (η1) ,

∆Cφ2 (η2) =

(
∆Cφ2 (η1)

∆Cφ1 (η1)

)
∆Cφ2 (η2) .

Combining these equations with equation (47), we have ∆Cφ2 (η2) = c (η1) ∆Cφ1 (η2)

and ∆Cφ2 (η2) = c (η2) ∆Cφ1 (η2). However, this contradicts that c (η1) 6= c (η2). There-

44



fore, c (η) must be constant over η ∈ [0, 1] \ {1/2}.
When η = 1/2, ∆Cφ1 (η) = ∆Cφ2 (η) = 0 holds by the definition. In this case,

∆Cφ2 (η) = c∆Cφ1 (η) holds for any c.

For the proofs of Lemma 4.3 and Theorem 4.4, we introduce some algebraic results.

Firstly, the hinge risk Rφh (f) has the following expression:

Rφh (f) =

∫
X

[η(x)(1− f(x)) + (1− η(x))(1 + f(x))] dPX(x)

=

∫
X

(1− 2η(x)) f (x) dPX(x) + 1. (48)

Secondly, for G ∈ G, R (G) can be written as

R (G) =

∫
X

[η(x)1 {x /∈ G}+ (1− η(x))1 {x ∈ G}] dPX(x)

=

∫
X

[η(x)1 {x ∈ Gc}+ (1− η(x)) (1− 1 {x ∈ Gc})] dPX(x)

= −
∫
Gc

(1− 2η(x)) dPX(x) + P (Y = −1) . (49)

Proof of Lemma 4.3. Fix f̃ ∈ F̃G,J . It has the form of

f̃(x) =
J∑
j=1

c+
j 1 {x ∈ Gj} −

J∑
j=1

c−j 1
{
x /∈ G̃j

}
(50)

for some GJ ⊆ · · · ⊆ G1 ⊆ G̃1 ⊆ · · · ⊆ G̃J and c+
j , c

−
j ≥ 0 for j = 1, . . . , J with∑J

j=1 c
+
j =

∑J
j=1 c

−
j = 1. Accordingly, from equation (48), the hinge risk of f̃ can be

written as

Rφh

(
f̃
)

=
J∑
j=1

[(
c+
j

) ∫
Gj

(1− 2η (x)) dPX (x)

]

+
J∑
j=1

[(
−c−j

) ∫
(G̃j)

c
(1− 2η (x)) dPX (x)

]
+ 1. (51)
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Denote the first and second terms in (51) by

RI
φh

(f̃) ≡
J∑
j=1

[(
c+
j

) ∫
Gj

(1− 2η (x)) dPX (x)

]
,

RII
φh

(f̃) ≡
J∑
j=1

[(
−c−j

) ∫
(G̃j)

c
(1− 2η (x)) dPX (x)

]
.

RI
φh

(f̃) can be rewritten as

RI
φh

(f̃) =
J∑
j=1

[(
c+
j

)
(R (Gj)− P (Y = 1))

]
=

J∑
j=1

(
c+
j

)
R (Gj)− P (Y = 1) ,

where the first equality follows from (10) and the second equality follows from
∑J

j=1 c
+
j =

1. Similarly, RII
φh

(f̃) can be written as

RII
φh

(f̃) =
J∑
j=1

[(
c−j
) (
R
(
G̃j

)
− P (Y = −1)

)]
=

J∑
j=1

(
c−j
)
R
(
G̃j

)
− P (Y = −1) ,

where the first equality follows from (49) and the second equality follows from
∑n

j=1 c
−
j =

1.

Combining these expressions, Rφh(f̃) can be written as

Rφh(f̃) = RI
φh

(f̃) +RII
φh

(f̃) + 1

=
J∑
j=1

(
c+
j

)
R (Gj) +

J∑
j=1

(
c−j
)
R
(
G̃j

)
. (52)

From this expressions, we can see that Rφh(f̃) is bounded from below by 2R∗.
Let G∗, G̃∗ ∈ G∗ such that G∗ ⊆ G̃∗, and define f̃ †(x) = 1{x ∈ G∗} − 1{x /∈ G̃∗}. f̃ †

can be taken from F̃G,J by setting G1 = G∗ with c+
1 = 1 and G̃1 = G̃∗ with c−1 = 1. Then,

from (52), Rφh(f̃ †) takes its lower bound 2R∗. Thus, f̃ † minimizes Rφh(·) over F̃G,J . This

proves Rφh(f̃ ∗) = 2R∗ and the statement (ii) of the lemma.

Next, we prove that a minimizer of the hinge risk Rφh(·) over F̃G,J also minimizes

the classification risk R(·) over FG. To obtain contradiction, suppose f̃ minimizes Rφh(·)
over F̃G,J but does not minimize R(·) over FG. As f̃ does not minimize the classification
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risk R(·), Gf̃ /∈ G∗ holds. Let m be the smallest number in {1, . . . , J} such that c−m > 0.

Because the corresponding set G̃m coincides with Gf̃ , G̃m /∈ G∗ holds. Then it follows

that

Rφh

(
f̃
)

=
J∑
j=1

(
c+
j

)
R (Gj) +

J∑
j=1

(
c−j
)
R
(
G̃j

)
= c−mR

(
G̃m

)
+

J∑
j=1

(
c+
j

)
R (Gj) +

∑
j∈{1,...,m−1,m+1,...,J}

(
c−j
)
R
(
G̃j

)
≥ c−mR

(
G̃m

)
+
(
2− c−m

)
R∗

> 2R∗,

where the last line follows from c−m > 0 and G̃m /∈ G∗. Rφh(f̃) does not take the minimum

value of Rφh (·) over F̃G,J that is 2R∗. This contradicts that f̃ minimizes the hinge risk

over F̃G,J . Thus, f̃ minimizes the classification risk over FG.

Proof of Theorem 4.4. Define a class of step functions

F̄∗J ≡

{
f =

J∑
j=0

c+
j 1 {x ∈ Gj} −

J∑
j=1

c−j 1
{
x /∈ G̃j

}
:

Gj, G̃j ∈ G and c+
j , c

−
j ≥ 0 for j = 1, . . . , J ; c−1 > 0;

GJ ⊆ · · · ⊆ G1 ⊆ Gf̃∗ = G̃1 ⊆ · · · ⊆ G̃J ;
J∑
j=1

c+
j = 1,

J∑
j=1

c−j = 1

}
.

Any function in F̄∗J has the prediction set corresponding to Gf̃∗ , i.e., Gf = Gf̃∗ for any

f ∈ F̄∗J . We can find a sequence of functions
{
f̄ ∗J
}∞
J=1

such that f̄ ∗J ∈ F̄∗J for any J and

f̄ ∗J (X) → f̃ ∗(X) as J → ∞ with probability one. Such a sequence of functions can be

made in F̄∗J by choosing Gj =
{
x : f̃ ∗ (x) ≥ j/J

}
and G̃j =

{
x : f̃ ∗ (x) ≥ −j/J

}
and

setting c+
j = c−j = 1/J for j = 1, . . . , J , i.e.,

f̄ ∗J (·) ≡ J−1

J∑
j=1

1

J

(
1
{
f̃ ∗ (·) ≥ j/J

}
− 1

{
f̃ ∗ (·) < −j/J

})
.

Then it follows for all x ∈ X that

∣∣∣f̄ ∗J (x)− f̃ ∗ (x)
∣∣∣ =

∣∣∣∣∣
J∑
j=1

1

J

(
1
{
f̃ ∗ (x) ≥ j/J

}
− 1

{
f̃ ∗ (x) < −j/J

})
− f̃ ∗ (x)

∣∣∣∣∣
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<
1

J
→ 0 as J →∞.

Thus, f̄ ∗J (X)→ f̃ ∗(X) holds with probability one.

Then it flows that

Rφh(f̃ ∗) =

∫
X

(1− 2η (x)) f̃ ∗ (x) dPX (x) + 1

= lim
J→∞

∫
X

(1− 2η (x)) f̄ ∗J (x) dPX (x) + 1

= lim
J→∞

Rφh

(
f̄ ∗J
)
≥ lim

J→∞
inf
f̄∈F̄∗J

Rφh

(
f̄ ∗J
)

(53)

≥ lim
J→∞

inf
f̃∈F̃G,J

Rφh(f̃), (54)

where the first and third equalities follow from equation (48); the second equality follows

from the dominated convergence theorem, which holds because both (1− 2η) f̄ ∗J (X) →
(1− 2η(X)) f̃ ∗(X) and

∣∣(1− 2η(X)) f̄ ∗J (X)
∣∣ < 1 hold with probability one; the first in-

equality follows from f̄ ∗J ∈ F̄∗J ; the last inequality follows from F̄∗J ⊆ F̃G,J .

Lemma 4.3 has shown that inf f̃∈F̃G,J Rφh

(
f̃
)

= 2R∗ for any J . Thus, from equation

(54), we have

Rφh

(
f̃ ∗
)
≥ lim

J→∞
inf

f̃∈F̃G,J
Rφh

(
f̃
)
≥ 2R∗,

which means that the minimal value of Rφh(·) over F̃G is at least 2R∗. Lemma 4.3 has

also shown that f̃ † leads to Rφh(f̃ †) = 2R∗. Therefore, f̃ † minimizes Rφh(·) over FG,
which proves the second statement of the theorem.

Next we will prove the first statement of the theorem by contradiction. Suppose that

f̃ ∗ does not minimize the classification risk R(·) over FG, or equivalently Gf̃∗ /∈ G∗. Then,

it follows for any f̄ ∈ F̄∗J that

Rφh

(
f̄
)

=
J∑
j=1

(
c+
j

)
R (Gj) +

J∑
j=1

(
c−j
)
R
(
G̃j

)
≥
(
c−1
)
R
(
G̃1

)
+
(
2− c−1

)
R∗

> 2R∗,

where the last inequality follows from G̃1 = Gf̃∗ /∈ G∗ and c−1 > 0. Therefore, we have

from equation (53) that

Rφh

(
f̃ ∗
)
≥ lim

J→∞
inf
f̄∈F̄∗J

Rφh

(
f̄
)
>2R∗.
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This contradicts that f̃ ∗ minimizes Rφ(·) over F̃G because, as we have seen, f̃ † achieves

Rφh(f̃ †) = 2R∗. Therefore, Gf̃∗ ∈ G∗ must hold.

Proof of Corollar 4.5. By equations (10) and (49), cR(f) can be written as

cR(f) =
1

2

{∫
X
c (1− 2η (x)) (1 {x ∈ Gf} − 1 {x /∈ Gf}) dPX (x) + c

}
.

By equation (48), the terms in the curly brackets equal

Rφ (1 {· ∈ Gf} − 1 {· /∈ Gf}) .

Combining this result with Theorem 4.4 (i) leads to equation (20).

When F̃G coincides with FG, by equation (20) and Corollary 3.4,

Rφ(1 {· ∈ Gf} − 1 {· /∈ Gf})−Rφ(f) ≤ Rφ(f)− inf
f∈FG

Rφ(f)

holds. Combining this with equation (20) leads to the second result.

B Proof of Theorems 5.1 and 5.2

This appendix provides the proof of the results in Section 5 with some auxiliary re-

sults. The results below are related to the theory of empirical processes. We refer to

Alexander (1984), Mammen and Tsybakov (1999), Tsybakov (2004), and Mbakop and

Tabord-Meehan (2021) for the general strategy of the proof.

Given G ∈ G, let 1G be an indicator function from X such that 1G(x) = 1{x ∈ G}.
We first give the definition of the bracketing entropy for a class of functions and a class

of sets.

Definition B.1 (Bracketing entropy). (i) Let F be a class of functions on X . For

f ∈ F , let ‖f‖p,Q :=
(∫
X |f (x)|p dQ (x)

)1/p
. ‖·‖p,Q is the Lp (Q)-metric on X , where

Q is a measure on X . Given a pair of functions (f1, f2) with f1 ≤ f2, let [f1, f2] :=

{f ∈ F : f1 ≤ f ≤ f2} be the bracket. Given ε > 0, let NB
p (ε,F , Q) be the smallest k

such that there exist pairs of functions
(
fLj , f

U
j

)
, j = 1, . . . , k, with fLj ≤ fUj that satisfy∥∥fUj − fLj ∥∥p,Q < ε and

F ⊆ ∪kj=1

[
fLj , f

U
j

]
.
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We call NB
p (ε,F , Q) the Lp (Q)-bracketing number of F , and HB

p (ε,F , Q) ≡ logNB
p (ε,F , Q)

the Lp (Q)-bracketing entropy of F . We also refer [fLj , f
U
j ] to the ε-bracket with respect to

Lp(Q) if and only if
∥∥fUj − fLj ∥∥p,Q < ε holds.

(ii) Given a class of sets G ⊆ X , let HG ≡ {1G : G ∈ G}. We define HB
p (ε,G, Q) ≡

HB
p (ε,HG, Q) and call it the Lp (Q)-bracketing entropy of G.

Note that in the definition of NB
p (ε,F , Q), the functions fLj and fUj do not have to

belong to F . Note also that if F ⊆ F̃ , HB
p (ε,F , Q) ≤ HB

p

(
ε, F̃ , Q

)
holds. When 1G ∈ F

for all G ∈ G, HB
p (ε,G, Q) ≤ HB

p (ε,F , Q) holds.

The following theorem gives a finite-sample upper bound for the mean of the estimation

error in Section 5, auxiliary results of which are provided below.

Theorem B.2. Let F̌ a class of classifiers whose members satisfy −1 ≤ f ≤ 1. Suppose

that P is a class of distributions on {−1, 1} × X such that there exist positive constants

C and r for which

HB
1

(
ε, F̌ , PX

)
≤ Cε−r

holds for any P ∈ P and ε > 0. Let qn and τn be as in Theorem 5.1. Let f̂ minimizes

R̂φh(·) over F̌ . Then the following holds:

sup
P∈P

EPn

[
Rφh

(
f̂
)
− inf

f∈F̌
Rφh (f)

]
≤

 4D1τn + 8D2 exp (−D2
1q

2
n)

4D3τn + 4n−1D4

for r ≥ 1

for 0 < r < 1
,

for some positive constants D1, D2, D3, D4, which depend only on C and r.

Proof. Fix P ∈ P . Let f̌ ∗ minimizes Rφh(·) over F̌ . Define a class of functions Ḟ ={
(f + 1)/2 : f ∈ F̌

}
, which normalizes F̌ so that 0 ≤ f ≤ 1 for all f ∈ Ḟ .

A standard argument gives

EPn

[
Rφh

(
f̂
)
− inf

f∈F̌
Rφh (f)

]
≤EPn

[
Rφh

(
f̂
)
− R̂φh

(
f̂
)

+ R̂φh

(
f̌ ∗
)
−Rφh

(
f̌ ∗
)]

(
∵ R̂φh

(
f̂
)
≤ R̂φh

(
f̌ ∗
))

= 2EPn

[
Rφh

(
f̂ + 1

2

)
− R̂φh

(
f̂ + 1

2

)]

+ 2EPn

[
R̂φh

(
f̌ ∗ + 1

2

)
−Rφh

(
f̌ ∗ + 1

2

)]
≤ 4 sup

f∈Ḟ
EPn

[∣∣∣Rφh (f)− R̂φh (f)
∣∣∣] . (55)
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Since Rφh (f)− R̂φh (f) can be seen as the centered empirical process indexed by f ∈ Ḟ ,

we can apply results in empirical process theory to (55) to obtain a finite-sample upper

bound for the mean of the excess hinge risk.

We follow the general strategy of Theorem 1 in Mammen and Tsybakov (1999) and

Proposition B.1 in Mbakop and Tabord-Meehan (2021). Note that

sup
f∈Ḟ

EPn
[∣∣∣Rφh (f)− R̂φh (f)

∣∣∣] = sup
f∈Ḟ

EPn

[∣∣∣∣∣EP (Y f (X))− 1

n

n∑
i=1

Yif (Xi)

∣∣∣∣∣
]

(56)

and that

sup
f∈Ḟ

∣∣∣∣∣EP (Y f (X))− 1

n

n∑
i=1

Yif (Xi)

∣∣∣∣∣ ≤ 2

with probability one.

We first prove the result for the case of r ≥ 1. For any f ∈ Ḟ and D > 0,

√
n

qn
sup
f∈Ḟ

EPn

[∣∣∣∣∣E (Y f (X))− 1

n

n∑
i=1

Yif (Xi)

∣∣∣∣∣
]

≤ D +
2
√
n

qn
P n

(
sup
f∈Ḟ

√
n

qn

∣∣∣∣∣E (Y f (X))− 1

n

n∑
i=1

Yif (Xi)

∣∣∣∣∣ > D

)
.

We consider to apply Corollary B.3. Set Z = (Y,X), g (z1) = z1, and H = Ḟ in Corollary

B.3. Note that, by the transformation, HB
1 (ε,H, P2) ≤ HB

1 (2ε,H, P2) holds. Then, by

Corollary B.3 with K = 2−rC, there exist D1, D2, D3 > 0, depending only on C and r,

such that

P n

(
sup
f∈Ḟ

√
n

qn

∣∣∣∣∣E (Y f (X))− 1

n

n∑
i=1

Yif (Xi)

∣∣∣∣∣ > D

)
≤ D2 exp

(
−D2q2

n

)
,

for D1 ≤ D ≤ D3

√
n/qn. Thus when r ≥ 1, we have

τ−1
n EPn

[
Rφh(f̂)− inf

f∈F̌
Rφh(f)

]
≤ 4τ−1

n sup
f∈Ḟ

EPn

[∣∣∣∣∣E (Y f (X))− 1

n

n∑
i=1

Yif (Xi)

∣∣∣∣∣
]

≤ 4D1 + 8τ−1
n D2 exp

(
−D2

1q
2
n

)
,

which leads to the result for the case of r ≥ 1.

The result for the case of 0 < r < 1 follows immediately by applying Lemma B.4 to

equation (56), where we set Z = (Y,X), g (z1) = z1, and H = Ḟ .

We now give the proofs of Theorems 5.1 and 5.2.
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Proof of Theorem 5.2. The result in Theorem 5.2 follows by combining equation (28)

and Theorem B.2.

Proof of Theorem 5.1. Define a new classifier

f̂ †(x) ≡ 1
{
x ∈ Gf̂

}
− 1

{
x /∈ Gf̂

}
, (57)

which is a step function indicating x ∈ Gf̂ and x /∈ Gf̂ by 1 and −1, respectively. Note

that R(f̂ †) = R(f̂) holds. Then equation (23) becomes

R(f̂)− inf
f∈FG

R(f) = R(f̂ †)− inf
f∈FG

R(f) =
1

2

(
Rφh(f̂ †)− inf

f∈F̃G
Rφh(f)

)
. (58)

When (24) holds for all ε > 0, the result follows by applying Theorem B.2 to (58).

We consider the case when (25) holds for all ε > 0. Define a class of step functions

IG ≡ {2 · 1G − 1 : G ∈ G}. We now show that (A) f̂ † minimizes R̂φh(·) over IG and

that (B) inff∈F̃G Rφh(f) = inff∈IG Rφh(f). If they hold, we can apply Theorem B.2 to the

excess hinge rink in (58) with F̌ replaced by IG.
We first prove (B). Since

inf
f∈IG

Rφh(f) = 2 inf
G∈G
R(G) = 2R∗,

Theorem 4.4 (i) shows that inff∈F̃G Rφh(f) = inff∈IG Rφh(f).

We next prove (A). Note first that f̂ † ∈ IG holds. Let Pn be the empirical distribution

on the sample {(Yi, Xi) : i = 1, . . . , n}. Replacing P with Pn in Theorem 4.4 shows that

f̂ minimizes R̂(·) over F̃G. Hence R̂(G) ≡ inff∈FG R̂(f) is minimized by Gf̂ over G. Then

Theorem 4.4 (ii) with P replaced by Pn shows that the new classifier f̂ † also minimizes

R̂φh(·) over F̃G. Then by the statement (B) with Rφh replaced with R̂φh , f̂ † minimizes

R̂φh(·) over IG.
From the definitions of HB

1 (ε,G, PX) and IG, we have HB
1 (ε, IG, PX) = HB

1 (2ε,G, PX).

Therefore, we can apply Theorem B.2, with F̌ replaced by IG, to (58) and then obtain

the inequality in (26).

The following corollary is similar to Corollary D.1 in Mbakop and Tabord-Meehan

(2021). The difference is that a class of functions H in the following corollary does not

need to be a class of binary functions.

Corollary B.3. Let Z = (Z1, Z2) ∼ P , and {Zi}ni=1 be a sequence of random variables

that are i.i.d distributed as Z. Denote by P2 the marginal distribution of Z2. Suppose
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P2 is absolutely continuous with respect to Lebesugue measure and its density is bounded

form above by a finite constant A > 0. Let F be a class of real-valued functions of the

form f (z) = f (z1, z2) = g (z1) · h (z2), where h ∈ H, H is a class of functions with values

in [0, 1], and g takes values in [−1, 1]. Suppose H satisfies

HB
1 (ε,H, P2) ≤ Kε−r

for some constants K > 0 and r ≥ 1 and for all ε > 0. Then there exist positive constants

D1,D2, D3, depending only on K and r, such that for n ≥ 3:

P n

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

(f (Zi)− EP [f (Zi)])

∣∣∣∣∣ > xqn

)
≤ D2 exp

(
−x2q2

n

)
,

for D1 ≤ x ≤ D3

√
n/qn, where

qn =

 log n

n(r−1)/2(r+2)

r = 1

r > 1
.

Proof. Let
[
hLj , h

U
j

]
, j = 1, . . . , NB

1 (ε,H, P2), be a set of ε-brackets of H with respect to

L1(P2) such that
∥∥hUj − hLj ∥∥1,P2

≤ ε and that H ⊆ ∪N
B
1 (ε,H,P2)

j=1

[
hLj , h

U
j

]
. Since

∣∣hUj − hLj ∣∣ <
1,
∥∥hUj − hLj ∥∥2

2,P2
≤
∥∥hUj − hLj ∥∥1,P2

≤ ε holds. We hence have

NB
2 (ε,H, P2) ≤ NB

1

(
ε2,H, P2

)
≤ Kε−2r.

The result immediately follows by applying Proposition B.1.

Lemma B.4. Maintain the same definitions and assumptions as in Corollary B.3 with

r ≥ 1 replaced by 0 < r < 1. Then, there exist positive constants D3 and D4, depending

only on K and r, such that:

sup
f∈F

EPn

[∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EP [f(Z)]

∣∣∣∣∣
]
≤ D3√

n
+
D4

n
.

Proof. We consider to apply Proposition 3.5.15 in Giné and Nickl (2016). Note first that

|f | ≤ 1 and ‖f‖2,P ≤ 1 for all f ∈ F . Then we can apply Proposition 3.5.15 in Giné and
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Nickl (2016), with F = 1 and δ = 1, and obtain

sup
f∈F

EPn

[∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EP [f(Z)]

∣∣∣∣∣
]
≤
(

58√
n

+
1

3n

∫ 2

0

√
log (2NB

2 (ε,F , P ))dε

)
×
∫ 2

0

√
log (2NB

2 (ε,F , P ))dε.

≤
(

58√
n

+
2

3n
+

1

3n

∫ 2

0

√
HB

2 (ε,F , P )dε

)
×
(

2

3
+

1

3

∫ 2

0

√
HB

2 (ε,F , P )dε

)
. (59)

By combining the arguments form the proofs of Corollary B.3 and Proposition B.1 below,

we have

HB
2 (ε,F , P ) ≤ Kε−2r.

Therefore, substituting this upper bound into (59) yields

sup
f∈F

EPn

[∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EP [f(Z)]

∣∣∣∣∣
]
≤
(

58√
n

+
2

3n
+

1

3n

∫ 2

0

Kε−rdε

)
×
(

2

3
+

1

3

∫ 2

0

Kε−rdε

)
=

(
58√
n

+
2

3n
+

21−rK

3n(1− r)

)(
2

3
+

21−rK

3(1− r)

)
.

Therefore, setting

D3 :=

(
116

3
+

29 · 22−rK

3(1− r)

)
,

D4 :=

(
2

3
+

21−rK

3(1− r)

)2

,

leads to the result.

Proposition B.1. Let Z = (Z1, Z2) ∼ P , and {Zi}ni=1 be a sequence of random variables

that are i.i.d distributed as Z. Denote by P2 the marginal distribution of Z2. Let F be a

class of real-valued functions of the form f (z) = f (z1, z2) = g (z1) · h (z2), where h ∈ H,

H is a class of functions with values in [0, 1], and g takes values in [−1, 1]. Suppose H
satisfies

HB
2 (ε,H, P2) ≤ Kε−r (60)

54



for some constants K > 0 and r ≥ 2 and for all ε > 0. Then there exist positive constants

C1,C2, C3, depending only on K and r, such that if

ξ ≤
√
n

128
(61)

and

ξ ≥

 C1n
(r−2)/2(r+2)

C2 log max (n, e)

r ≥ 2

r = 2
, (62)

then

P n

(
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

(f (Zi)− EP [f (Zi)])

∣∣∣∣∣ > ξ

)
≤ C3 exp

(
−ξ2

)
.

Proof. We follow the general strategy of Theorem 2.3 and Corollary 2.4 in Alexander

(1984) and Proposition D.1 in Mbakop and Tabord-Meehan (2021). Define

vn (f) :=
1√
n

n∑
i=1

[f (Zi)− E (f (Zi))] .

We start by giving some definitions. Let δ0 > δ1 > · · · > δN > 0 be a sequence of real

numbers where {δj}Nj=0 and N will be specified later. For each δj, there exists a set of

δj-brackets HB
j of H with respect to L2 (P2) such that

∣∣HB
j

∣∣ = NB
2 (δj,H, P2). Define the

function H (·) : (0,∞)→ [0,∞) as follows:

H (u) =

 Ku−r

0

if u < 1

if u ≥ 1
.

Note that by Assumption (60) and the fact that H has the diameter 1 by definition,

NB
2 (δj,H, P2) ≤ exp (H (δj)) for all δj > 0. For each 0 ≤ j ≤ N and any f = g · h ∈ F ,

define fLj := g ·hLj 1 {g ≥ 0}+g ·hUj 1 {g < 0} and fUj := g ·hUj 1 {g ≥ 0}+g ·hLj 1 {g < 0} for

some
(
hLj , h

U
j

)
that forms a δj-bracket for h with respect to L2(P2) such that h ∈

[
hLj , h

U
j

]
and

[
hLj , h

U
j

]
∈ HB

j . From the construction,
[
fUj , f

L
j

]
is a δj-bracket for f with respect

to L2(P ). Let fj = fLj , and let Fj = {fj : f ∈ F}. We have |Fj| ≤ exp (H (δj)) and

‖f − fj‖2,P < δj for every f ∈ F .

By a standard chaining argument,

P

(
sup
f∈F
|vn (f)| > ξ

)
≤ |F0| sup

f∈F
P

(
|vn (f)| > 7

8
ξ

)
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+
N−1∑
j=0

|Fj| |Fj+1| sup
f∈F

P (|vn (fj − fj+1)| > ηj)

+ P

(
sup
f∈F
|vn (fN − f)| > ξ

16
+ ηN

)
,

where {ηj}Nj=0 are chosen such that
∑N

j=0 ηj ≤ ξ/16 and will be specified later. Define

R1 = |F0| sup
f∈F

P

(
|vn (f)| > 7

8
ξ

)
,

R2 =
N−1∑
j=0

|Fj| |Fj+1| sup
f∈F

P (|vn (fj − fj+1)| > ηj) ,

R3 = P

(
sup
f∈F
|vn (fN − f)| > ξ

16
+ ηN

)
.

We now choose {δj}Nj=0, {ηj}Nj=0, and N to make the three terms sufficiently small.

First we study R1. Set δ0 such that H (δ0) = ξ2/4. Then, applying Hoeffdings’s

inequality, we have

R1 ≤ 2 |F0| exp

(
−2

(
7

8
ξ

)2
)
≤ 2 exp

(
−ξ2

)
,

where we use that |F0| ≤ exp (H (δ0)) = exp (ξ2/4) in the second inequality.

Next, we study R2. Since ‖fj − fj+1‖2,P ≤ 2δj by construction, applying Bennet’s

inequality (Lemma B.5) to each supf∈F P (|vn (fj − fj+1)| > ηj) in R2 leads to

R2 ≤
N−1∑
j=0

2 exp (2H (δj+1)) exp
(
−ψ1

(
ηj, n, 4δ

2
j

))
,

where ψ1 satisfies the properties described in Lemma B.5.

Next, we study R3. Given the construction of FN ,

|vn (fN − f)| ≤
∣∣vn (fUN − fLN)∣∣+ 2

√
n
∥∥fUN − fLL∥∥1,P

≤
∣∣vn (fUN − fLN)∣∣+ 2

√
nδN .

The last inequality holds because
∥∥fUN − fLN∥∥1,P

≤
∥∥hUN − hLN∥∥1,P2

and

∥∥hUN − hLN∥∥1,P2
≤
∥∥hUN − hLN∥∥2,P2

≤ δN ,

which holds from Hölder’s inequality. Set δN ≤ s := ξ/ (32
√
n). Then, by the above
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derivation and Bennet’s inequality,

R3 ≤ P

(
sup
f∈F

∣∣vn (fUN − fLN)∣∣ > ηN

)
≤ 2 |FN | exp

(
−ψ1

(
ηN , n, δ

2
N

))
.

To develop upper bounds of R2 and R3, we consider two cases separately. First we

consider the case δ0 ≤ s. Set N = 0 and η0 = ξ/16. Then we have that R2 = 0 and

R3 ≤ 2 |F0| exp
(
−ψ1

(
η0, n, δ

2
0

))
.

Since Assumption (61) and δ0 ≤ s, we have that

2η0 =
ξ

8
≥ 4
√
n

(
ξ

32
√
n

)2

≥ 4
√
nδ2

0.

Hence by the property of ψ1 in Lemma B.5,

ψ1

(
η0, n, δ

2
0

)
≥ 1

4
ψ1

(
2η0, n, δ

2
0

)
≥ 1

4
η0

√
n.

Using η0 = ξ/16 and Assumption (61), we obtain

ψ1

(
η0, n, δ

2
0

)
≥ 1

4
η0

√
n =

ξ

64

√
n ≥ 2ξ2.

By the definition of δ0, we also have |F0| ≤ exp (ξ2/4) . Therefore, combining these

results gives

R2 +R3 ≤ 2 exp
(
−ξ2

)
.

Next we consider the case δ0 > s. We here consider to apply Lemma B.6 where

we let N and {δj}Nj=0 be as in Lemma B.6 and t = δ0 and s be as defined above. Let

ηj = 8
√

2δjH (δj+1)1/2 for 0 ≤ j < N and ηN = 8
√

2δNH (δN)1/2. Then Lemma B.6 leads

to

N∑
j=0

ηj = 8
√

2
N∑
j=0

H (δj+1)1/2 ≤ 64
√

2

∫ δ0

s/4

H (u)1/2 du.

We have that for 0 < s < t,

∫ t

s

H (u)1/2 du ≤

 K1/2 log (1/s)

2K1/2 (r − 2)−1 s(2−r)/2

r = 2

r > 2.
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Combining this with Assumption (62), where C1 and C1 are set to be sufficiently large,

we have

N∑
j=0

ηj ≤
ξ

16
,

which is consistent with our choice of {ηj}j. Setting C1 and C2 sufficiently large, it follows

from Assumption (62) that

H (s) ≤ ξ
√
n

16
.

Hence we have (
ηj

4δ2
j

√
n

)2

<
8H (s)

ns2
≤ 16.

Then from the property of ψ1,

ψ1

(
ηj, n, 4δ

2
j

)
≥

η2
j

16δ2
j

.

Using our bound on R2, we obtain that

R2 ≤
N−1∑
j=0

2 exp

(
2H (δj+1)−

η2
j

16δ2
j

)
≤

N−1∑
j=0

2 exp
(
−4j+1H (δ0)

)
.

Similarly, we obtain that

R3 ≤ 2 exp
(
−4N+1H (δ0)

)
.

Putting these together and using Assumption (62), we have

R2 +R3 ≤
∞∑
j=0

2 exp
(
−4j+1H (δ0)

)
≤ C exp

(
−ξ2

)
,

where C is a constant that depends only on K and r.

Lemma B.5 (Bennet’s inequality: see Theorem 2.9 in Boucheron et al. (2013)). Let

{Zi}ni=1 be a sequence of independent random vectors with distribution P . Let f be some
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function taking values in [0, 1] and define

vn (f) :=
1√
n

n∑
i=1

[f (Zi)− EP (f (Zi))] .

Then, for any ξ ≥ 0, the following holds:

P n (|vn (f)| > ξ) ≤ 2 exp (−ψ1 (ξ, n, a)) ,

where a = var (vn (f)) and

ψ1 (ξ, n, a) = ξ
√
nh

(
ξ√
nα

)
,

with h (x) = (1 + x−1) log (1 + x)− 1.

Furthermore, ψ1 has the following two properties:

ψ1 (ξ, n, α) ≥ ψ1 (Cξ, n, ρα) ≥ C2ρ−1ψ1 (ξ, n, α)

for C ≤ 1 and ρ ≥ 1, and

ψ1 (ξ, n, α) ≥


ξ2

4α

ξ
2

√
n

if ξ < 4
√
nα

if ξ ≥ 4
√
nα

.

Lemma B.6 (Lemma 3.1 in Alexander (1984)). Let H : (0, t] → R+ be a decreasing

function, and let 0 < s < t. Set δ0 := t, δj+1 := s ∨ sup {x ≤ δj/2 : H (x) ≥ 4H (δj)} for

j ≥ 0, and N := min {j : δj = s}. Then

N∑
j=0

δjH (δj+1)1/2 ≤ 8

∫ t

s/4

H (x)1/2 dx.

C Proofs of the results in Section 6

This appendix provides the proofs of the results in Section 6. Throughout this appendix,

we suppose X = [0, 1]dx as in Section 6.

We first provide the proof of Lemma 6.1.

Proof of Lemma 6.1. Let µX be the Lebesgue measure on X . From Theorem 8.3.2

in Dudley (1999), HB
1 (ε,GM , µX) ≤ Kεdx−1 holds for some positive constant K and for
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all ε > 0. Since PX is absolutely continuous with respect to µX and has a density that is

bounded from above by A, we have HB
1 (A−1ε,GM , PX) ≤ HB

1 (ε,GM , µX). Thus the result

(i) follows by setting C = A−dxK.

The following lemma will be used in the proof of Theorem 6.4.

Lemma C.1. Suppose that PX is absolutely continuous with respect to the Lebesgue mea-

sure on X and has a density that is bounded from above by a finite constant A > 0. Then

there exists a constant C̃, which depends only on A, such that

HB
1 (ε,FM , PX) ≤ C̃ε−dx .

holds for all ε > 0.

Proof. Transform FM into F̃M = {(f + 1) /2 : f ∈ FM}, which is a class of monotonically

increasing functions taking values in [0, 1]. By this transformation, NB
1 (ε,FM , PX) =

NB
1

(
ε/2, F̃M , PX

)
holds. Then the result follows by applying Corollary 1.3 in Gao and

Wellner (2007) to F̃M , in which we set C̃ = 2−dxC2, where C2 is the same constant that

appears in Corollary 1.3 in Gao and Wellner (2007). Note that this corollary requires

that PX is absolutely continuous with respect to the Lebesgue measure on X and has a

bounded density.

The following two lemmas will be used in the proof of Lemma 6.3.

Lemma C.2. Let f̂B ∈ arg inff∈BkR̂φh (f), and θ̂ :=
{
θ̂j1...jdx

}
j1=1,...,k1;...;jdx=1,...,kdx

be the

vector of the coefficients of the Bernstein bases in f̂B. Let r+
1 and r−1 be the smallest

non-negative value and the largest negative value in θ̂, respectively.

(i) If all non-negative elements in θ̂ take the same value r+
1 , let r+

2 be 1; otherwise, let

r+
2 be the second smallest non-negative value in θ̂. Make a (k1 + 1) × · · · × (kdx + 1)-

th dimensional vector θ̃ :=
{

Θ̃j1...jdx

}
j1=1,...,k1;...;jdx=1,...,kdx

such that, for all j1, . . . , jdx, if

θ̂j1...jdx = r+
1 , Θ̃j1...jdx

= r+
2 ; otherwise, Θ̃j1...jdx

= θ̂j1...jdx . Then a new classifier

f̃B (x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

Θ̃j1...jdx
(bk1j1 (x1)× · · · × bk1j1 (xdx))

minimizes R̂φh(·) over Bk.

(ii) Similarly, if all negative elements in θ̂ take the same value r−1 , let r−2 be −1; other-

wise, let r−2 be the second largest negative value in θ̂. Make a (k1 + 1) × · · · × (kdx + 1)-

th dimensional vector θ̌ :=
{
θ̌j1...jdx

}
j1=1,...,k1;...;jdx=1,...,kdx

such that, for all j1, . . . , jdx, if
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θ̂j1...jdx = r−1 , θ̌j1...jdx = r−2 ; otherwise, θ̌j1...jdx = θ̂j1...jdx . Then a new classifier

f̌B (x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

θ̌j1...jdx (bk1j1 (x1)× · · · × bk1j1 (xdx))

minimizes R̂φh(·) over Bk.

(iii) A classifier

f̂ †B (x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

sign
(
θ̂j1...jdx

)
·
(
bk1j1 (x1)× · · · × bkdxjdx (xdx)

)
minimizes R̂φh(·) over Bk.

Proof. First, note that θ̃, θ̌ ∈ Θ̃ holds by their constructions. We now prove (i). The

proof of (ii) follows by the similar argument. Define

Ln (θ) ≡
n∑
i=1

Yi ·
k1∑
j1=1

· · ·
kdx∑
jdx=1

θj1...jdx

n∑
i=1

(
bk1j1 (X1i)× · · · × bkdxjdx (Xdxi)

) .

Minimization problem of R̂φh(·) over Bk is equivalent to the maximization problem of

Ln (·) over Θ̃. Thus, θ̂ maximizes Ln (·) over Θ̃.

We prove the result by contradiction. Suppose θ̃ /∈ arg maxθ∈Θ̃Ln (θ). Let

J1 ≡
{

(j1, . . . , jdx) : θ̂j1...jdx = r+
1

}
.

Then,

Ln

(
θ̃
)
− Ln

(
θ̂
)

=
∑

(j1,...,jdx )∈J1

{(
r+

2 − r+
1

) n∑
i=1

Yi
(
bk1j1 (X1i)× · · · × bkdxjdx (Xdxi)

)}
< 0.

Since r+
2 − r+

1 ≥ 0, the above inequality implies that there exists some (j1, . . . , jdx) ∈ J1

such that
∑n

i=1 Yi
(
bk1j1 (X1i)× · · · × bkdxjdx (Xdxi)

)
< 0. For such (j1, . . . , jdx), setting

θ̂j1...jdx to r−1 can increase the value of Ln

(
θ̂
)

without violating the constraints in Θ̃. But

this contradicts that θ̂j1...jdx is non-negative. Therefore, θ̃ maximizes Ln (·) over Θ̃, or

equivalently f̃B minimizes R̂φh(·) over Bk.

The result (iii) is shown by applying Lemma C.2 (i) and (ii) repeatedly to f̂B.
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Lemma C.3. Fix G ∈ G and kj ≥ 1 for j = 1, . . . , dx. Define a classifier

fG(x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

θj1...jdx
(
bk1j1(x1)× · · · × bkdxjdx (xdx)

)
,

such that, for all j1, . . . , jdx,

θj1...jdx =

 1

−1

if (j1/k1, . . . , jdx/kdx) ∈ G

if (j1/k1, . . . , jdx/kdx) /∈ G
.

Then the following holds:

|Rφh (fG)−Rφh (1 {· ∈ G} − 1 {· /∈ G})| ≤ 2A
dx∑
j=1

√
log kj
kj

+
dx∑
j=1

4√
kj
.

Proof. Define

Jk := {(j1, . . . , jdx) : (j1/k1, . . . , jdx/kdx) ∈ G} ,

which is a set of grid points on G. It follows that

Rφh (fG)−Rφh (1 {· ∈ G} − 1 {· /∈ G})

=

∫
[0,1]dx

(2η (x)− 1) (1 {x ∈ G} − 1 {x /∈ G} −Bk (θ, x)) dPX (x)

=

∫
[0,1]dx

(2η (x)− 1) 1 {x ∈ G} dPX (x)−
∫

[0,1]dx
(2η (x)− 1) 1 {x /∈ G} dPX (x)

−
∫

[0,1]dx
(2η (x)− 1)Bk (θ, x) dPX (x)︸ ︷︷ ︸

(I)

. (63)

(I) can be written as

(I) =

∫
[0,1]dx

(2η (x)− 1)
∑

(j1,...,jdx )∈Jk

(
dx∏
v=1

bkvjv(xv)

)
dPX (x)

−
∫

[0,1]dx
(2η (x)− 1)

∑
(j1,...,jdx )/∈Jk

(
dx∏
v=1

bkvjv(xv)

)
dPX (x) .
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Thus,

(63) =

∫
[0,1]dx

(2η (x)− 1)

1 {x ∈ G} −
∑

(j1,...,jdx )∈Jk

[
dx∏
v=1

bkvjv(xv)

]
︸ ︷︷ ︸

dPX (x)

(II)

+

∫
[0,1]dx

(2η (x)− 1)

 ∑
(j1,...,jdx )/∈Jk

[
dx∏
v=1

bkvjv(xv)

]
− 1 {x ∈ (G)c}


︸ ︷︷ ︸

(III)

dPX (x) .

Let Bin (kj, xj), j = 1, . . . , dx, be independent binomial variables with parameters

(kj, xj). Then, both (II) and (III) are equivalent to

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) 1 {x ∈ G}

−Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) 1 {x ∈ (G)c} .

Hence,

(63) = 2

∫
G

(2η (x)− 1) Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPX(x).

− 2

∫
(G)c

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x) ,

and therefore

|Rφh (fG)−Rφh (1 {· ∈ G} − 1 {· /∈ G})|

≤ 2

∫
G

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPX (x)︸ ︷︷ ︸
(IV )

+ 2

∫
(G)c

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x)︸ ︷︷ ︸
(V )

.

We first evaluate (V). Let ε be a small positive value which will will converge to zero as

kv → ∞. For small ∆v ≤ ε/
√
dx, v = 1, . . . , dx, which will converge to zero as kv → ∞,

define

G̃c := {x ∈ (G)c : (x1 + ∆1, . . . , xdx + ∆dx) ∈ (G)c} .

This set might be nonempty or empty. We consider these cases separately. First, suppose
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that G̃c is nonempty. For each x ∈ G̃c, let

(j1 (x) , . . . , jdx (x)) ∈ arg min
(j1,...,jdx )∈Jk:j1/k1≥x1+∆1,...,jdx/kdx≥xdx+∆dx

‖x− (j1/k1, . . . , jdx/kdx)‖ .

Then,

(V ) ≤
∫

(G)c\G̃c
Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x)

+

∫
G̃c

(
dx∑
v=1

Pr (Bin (kv, xv) ≥ jv (x))

)
dPX (x)

≤ A · (∆1 + · · ·+ ∆dx)

+

∫
G̃c

dx∑
v=1

exp

{
−2kv

(
jv (x)

kv
− xv

)2
}
dPX (x)

≤ A · (∆1 + · · ·+ ∆dx) +
dx∑
v=1

∫
G̃c

exp
(
−2kv∆

2
v

)
dPX (x) .

To obtain the second inequality, we apply the Hoeffding’s inequality to Pr (Bin (kv, xv) ≥ jv (x)),

which is applicable since kvxv ≤ jv (x) for each x ∈ G̃c, and use the following:∫
(G)c\G̃c

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x)

≤ A

∫
(G)c\G̃c

dx ≤ A · (∆1 + · · ·+ ∆dx) ,

where the second inequality holds because
∫

(G)c\G̃c dx is bounded from above by
∑dx

v=1 ∆v−
(dx − 1)

∏dx
v=1 ∆v, which is taken when (G)c = X . The last inequality follows from that

jv (x) /kv − xv ≥ ∆v for all v = 1, . . . , dx and x ∈ G̃ .

Next, we consider the case that G̃c is empty. In this case,

(V ) =

∫
(G)c

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x)

≤
∫

(G)c
dPX (x) ≤ A · max

v=1,...,dx
∆v.

The inequality follows because
∫

(G)c
dx is bounded from above by maxv=1,...,dx ∆v when

G̃c is empty. Therefore, regardless of whether G̃c is empty or not, we have

(V ) ≤ A · (∆1 + · · ·+ ∆dx) +
dx∑
v=1

∫
G̃c

exp
(
−2kv∆

2
v

)
dPX (x) .
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Set ∆v =
√

log kv/
(
2
√
kv
)

for each v = 1, . . . , dx. Then we have

(V ) ≤ A

2

(
dx∑
v=1

√
log kv
kv

)
+

dx∑
v=1

exp

(
−1

2
log kv

)

=
A

2

(
dx∑
v=1

√
log kv
kv

)
+

dx∑
v=1

1√
kv
.

Next, we evaluate (IV). For small ∆v ≤ ε/
√
dx, v = 1, . . . , dx, which will converge to

zero as kv →∞, define

G̃ := {x ∈ G : (x1 −∆1, . . . , xdx −∆dx) ∈ G} .

We again separately consider two cases: G̃ is empty or not. First, suppose that G̃ is

nonempty. For each x ∈ G̃, let

(
j̃1 (x) , . . . , j̃dx (x)

)
∈ arg min

(j1,...,jdx )∈(Jk)c:j1/k1≤x1−∆1,...,jdx/kdx≤xdx−∆dx

‖x− (j1/k1, . . . , jdx/kdx)‖ .

Then,

(IV ) ≤
∫
G\G̃

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPX (x)

+

∫
G̃

(
dx∑
v=1

Pr
(
Bin (kv, xv) ≤ j̃v (x)

))
dPX (x)

≤ A · (∆1 + · · ·+ ∆dx) +

∫
G̃

(
dx∑
v=1

exp

{
−2kv

(
xv −

j̃v (x)

kv

)2
})

dPX (x)

≤ A · (∆1 + · · ·+ ∆dx) +
dx∑
v=1

∫
G̃

exp
(
−2kv∆

2
v

)
dPX (x) .

The second inequality follows from Hoeffding’s inequality and that∫
G\G̃

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPX (x)

≤ A

∫
G\G̃

dx ≤ A · (∆1 + · · ·+ ∆dx) ,

where the inequality holds because
∫
G\G̃ dx takes the largest value,

∑dx
v=1 ∆v −

∏dx
v=1 ∆v,

when G = X . The last inequality follows from that jv (x) /kv ≤ xv−∆v for all v = 1, . . . dx

and x ∈ G̃ .
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Next, we consider the case that G̃ is empty. In this case,

(IV ) =

∫
G

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPX (x)

≤
∫
G

dPX (x) ≤ A · max
v=1,...,dx

∆v,

where the inequality follows because
∫
G
dx is bounded from above by maxv=1,...,dx ∆v when

G̃ is empty. Therefore, regardless of whether G̃ is empty or not, we have

(IV ) ≤ A · (∆1 + · · ·+ ∆dx) +
dx∑
v=1

∫
G̃

exp
(
−2kv∆

2
v

)
dPX (x) .

Set ∆v =
√

log kv/
(
2
√
kv
)

for each v = 1, . . . , dx. Then, we have

(IV ) ≤ A

2

(
dx∑
v=1

√
log kv
kv

)
+

dx∑
v=1

exp

(
−1

2
log kv

)

=
A

2

(
dx∑
v=1

√
log kv
kv

)
+

dx∑
v=1

1√
kv
.

Consequently, combining above the results, we obtain

|Rφh (fG)−Rφh (1 {· ∈ G} − 1 {· /∈ G})| ≤ 2A

(
dx∑
v=1

√
log kv
kv

)
+

dx∑
v=1

4√
kv
.

Finally, the following is the proof of Lemma 6.3.

Proof of Lemma 6.3. We first prove (i). Let G∗ minimizes R(·) over GM . From

Theorem 4.4, a classifier f̃ ∗ (x) := 1 {x ∈ G∗} − 1 {x ∈ (G∗)c} minimizes the hinge risk

Rφh (·) over FM . Define a vector θ∗ =
{
θ∗j1...jd

}
j1=0,...,k1;...;jd=0,...,kd

such that for each

j1, . . . , jd,

θ∗j1...jd =

 1

−1

if (j1/k1, . . . , jd/kd) ∈ G∗

otherwise.

Note that θ∗ is contained by Θ̃. Thus, it follows that

inf
f∈Bk

Rφh (f)−Rφh

(
f̃ ∗
)
≤ Rφh (Bk (θ∗, ·))−Rφh

(
f̃ ∗
)
.
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Then, applying Lemma C.3 to Rφh (Bk (θ∗, ·))−Rφh

(
f̃ ∗
)

shows the result (i).

The result (ii) follows immediately from Lemmas C.2 (iii) and C.3.

D Proofs of the results in Section 7

This section gives the proofs of the results in Section 7 for the weighted classification.

Most of the proofs are natural extensions of the proofs of the results in Sections 3–6. For

the simplicity of the notation, define a function

L(ω+, ω−, η) ≡ −ω+η + ω−(1− η),

the right hand side of which appears in the condition (37).

We first give the proofs of Theorem 7.1 and Corollary 7.2.

Proof of Theorem 7.1. We first prove the “if part” of the first statement. By equation

(35),

Rw
φ (G1)−Rw

φ (G2) =

∫
G1\G2

∆Cw
φ (ω+ (x) , ω− (x) , η (x)) dPX (x)

−
∫
G2\G1

∆Cw
φ (ω+ (x) , ω− (x) , η (x)) dPX (x) .

Thus, Rw
φ1

(G1) ≥ Rw
φ1

(G2) is equivalent to∫
G1\G2

∆Cw
φ1

(ω+ (x) , ω− (x) , η (x)) dPX (x) ≥
∫
G2\G1

∆Cw
φ1

(ω+ (x) , ω− (x) , η (x)) dPX (x) .

Replacing ∆Cw
φ1

by ∆Cw
φ2

= c∆Cw
φ1

with c > 0 does not change the above inequality.

Moreover, the above inequality with ∆Cw
φ1

replaced by ∆Cw
φ2

is equivalent to Rw
φ2

(G1) ≥
Rw
φ2

(G2). Therefore, the “if part” of the first statement holds.

The “only if” part follows directly from Theorem 3.6 by setting ∆Cw
φ (ω+ (x) , ω− (x) , η (x)) =

∆Cφ (η (x)), or equivalently ω+(x) = ω−(x) = 1, for all x ∈ X .

Next, we prove the second statement. For the 0-1 loss function φ0−1 (α) = 1 {α ≤ 0},

∆Cw
φ0−1

(ω+, ω−, η) = L(ω+, ω−, η)

holds. Thus, according to the first statement, condition (37) is a necessary and sufficient

condition for φ2 to share the same risk ordering with φ0−1.

Finally, we prove the last statement. For the hinge loss function φh(α) = amax {0, 1− α}
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and f ∈ FG, we have

Cφh (ω+, ω−, f, η) = a (ω+ (1− f) η + ω− (1 + f) (1− η)) .

Hence, we obtain

∆Cw+
φh

(ω+, ω−, η) =

 2aω− (1− η)

a (ω+η + ω− (1− η))

for L (ω+, ω−, η) < 0

for L (ω+, ω−, η) ≥ 0
,

∆Cw
φh

(ω+, ω−, η) =

 a (ω+η + ω− (1− η))

2aω+η

for L (ω+, ω−, η) < 0

for L (ω+, ω−, η) ≥ 0
.

Hence, ∆Cw
φh

(ω+, ω−, η) = aL(ω+, ω−, η) holds for all (ω+, ω−, η) ∈ R× R× [0, 1].

Proof of Corollary 7.2. Equation (38) follows by

Rw (f)− inf
f∈FG

Rw (f) = Rw (Gf )−Rw (G∗)

=

∫
X
L(ω+(x), ω−(x), η(x)) (1{x ∈ Gf} − 1{x ∈ G∗}) dPX (x)

= c−1

∫
X

∆Cw
φ (ω+ (x) , ω− (x) , η (x)) (1{x ∈ Gf} − 1{x ∈ G∗}) dPX (x)

= c−1
(
Rw
φ (Gf )−Rw

φ (G∗)
)

= c−1

(
inf

f̃∈FGf
Rw
φ

(
f̃
)
− inf

f∈FG
Rw
φ (f)

)

≤ c−1

(
Rw
φ (f)− inf

f∈FG
Rw
φ (f)

)
,

where the first equality follows from (34); the second equality follows from the assump-

tion; the third equality follows from (35).

We next provide the proof of Theorem 7.5. Beforehand, note that the weighted hinge

risk can be expressed as

Rw
φh

(f) =

∫
X

(ω+ (x) (1− f (x)) η (x) + ω− (x) (1 + f (x)) (1− η (x))) dPX (x)

=

∫
X
L(ω+(x), ω−(x), η(x))f (x) dPX (x) + EP [ω] . (64)
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Moreover, for G ∈ G, R(G) can be written as

Rw (G) =

∫
X

(ω+ (x) η (x) 1 {x ∈ Gc}+ ω− (x) (1− η (x)) 1 {x ∈ G}) dPX (x)

=−
∫
Gc
L(ω+(x), ω−(x), η(x)) (1− η (x)) dPX (x)

+

∫
X
ω− (x) (1− η (x)) dPX (x) . (65)

The following lemma, which is an analogue of Lemma 4.3, will be used in the proof of

Theorem 7.5.

Lemma D.1. (i) Let f̃ ∗ be a minimizer of the weighted hinge risk Rw
φh

(·) over F̃G,J . Then

f̃ ∗ minimizes the weighted classification risk Rw (·) over F̃G,J , and leads to Rw
φh

(
f̃ ∗
)

=

2Rw∗.

(ii) For G∗, G̃∗ ∈ G∗ such that G∗ ⊆ G̃∗, f̃ † (·) = 1 {· ∈ G∗} − 1
{
· /∈ G̃∗

}
minimizes

Rw
φh

(·) over F̃G,J .

Proof. Fix f̃ ∈ F̃G,J . The classifier f̃ has the form of (50) for some GJ ⊆ · · · ⊆ G1 ⊆
G̃1 ⊆ · · · ⊆ G̃J and c+

j , c
−
j ≥ 0 for j = 1, . . . , J with

∑J
j=1 c

+
j =

∑J
j=1 c

−
j = 1. From (64),

the weighted hinge risk of f̃ can be written as

Rw
φh

(
f̃
)

=
J∑
j=1

[(
c+
j

) ∫
Gj

L(ω+(x), ω−(x), η(x)) (1− η (x)) dPX (x)

]

+
J∑
j=1

[(
−c−j

) ∫
(G̃j)

c
L(ω+(x), ω−(x), η(x)) (1− η (x)) dPX (x)

]
+ EP [ω] . (66)

Denote the first and second terms in (66) by

RwI
φh

(
f̃
)

=
J∑
j=1

[(
c+
j

) ∫
Gj

L(ω+(x), ω−(x), η(x)) (1− η (x)) dPX (x)

]
,

RwII
φh

(
f̃
)

=
J∑
j=1

[(
−c−j

) ∫
(G̃j)

c
L(ω+(x), ω−(x), η(x)) (1− η (x)) dPX (x)

]
.

By equation (35), RwI
φh

(
f̃
)

can be written as

RwI
φh

(
f̃
)

=
J∑
j=1

[(
c+
j

)(
Rw (Gj)−

∫
X
ω+ (x) η (x) dPX (x)

)]
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=
J∑
j=1

(
c+
j

)
Rw (Gj)−

∫
X
ω+ (x) η (x) dPX (x) ,

where the second equality follows from
∑J

j=1 c
+
j = 1. Similarly, by equation (65), RwII

φh

(
f̃
)

can be written as

RwII
φh

(
f̃
)

=
J∑
j=1

[(
c−j
)(
Rw
(
G̃j

)
−
∫
X
ω− (x) (1− η (x)) dPX (x)

)]

=
J∑
j=1

(
c−j
)
Rw
(
G̃j

)
−
∫
X
ω− (x) (1− η (x)) dPX (x) ,

where the second equality follows from
∑J

j=1 c
−
j = 1.

Combining these expressions gives

Rw
φh

(
f̃
)

= RwI
φh

(
f̃
)

+RwII
φh

(
f̃
)

+ EP [ω]

=
J∑
j=1

(
c+
j

)
Rw (Gj) +

J∑
j=1

(
c+
j

)
Rw
(
G̃j

)
. (67)

Because Rw (Gj) ,Rw
(
G̃j

)
≥ Rw∗ and

∑J
j=1 c

+
j =

∑J
j=1 c

−
j = 1, the above expression

implies that Rw
φh

(
f̃
)
≥ 2Rw∗ for all f̃ ∈ F̃G,J .

Let G∗, G̃∗ ∈ G∗ such that G∗ ⊆ G̃∗, and let f̃ † (x) = 1 {x ∈ G∗} − 1
{
x /∈ G̃∗

}
. f̃ †

can be taken from F̃G,J by setting G1 = G∗ with c+
1 = 1 and G̃1 = G̃∗ with c−1 = 1. Then,

from (67), Rw
φh

(
f̃ †
)

takes its lower bound 2Rw∗. Therefore, f̃ † minimizes Rw
φh

(·) over

F̃G,J . This proves inff∈F̃G,J R
w
φh

(f) = 2Rw∗ and the statement (ii).

We next prove that a minimizer of Rw
φh

(·) over F̃G,J also minimizes Rw (·) over F̃G,J .

To obtain contradiction, suppose f̃ minimizes Rw
φh

(·) over F̃G,J but do does not minimize

Rw (·) over F̃G,J . As f̃ does not minimize the weighted classification risk, Gf̃ /∈ G∗ holds.

Let m be the smallest number in {1, . . . , J} such that c−m > 0. Because G̃m = Gf̃ , G̃m /∈ G∗

holds. Then,

Rw
φh

(
f̃
)

=
J∑
j=1

(
c+
j

)
Rw (Gj) +

J∑
j=1

(
c−j
)
Rw
(
G̃j

)
= c−mRw

(
G̃m

)
+

J∑
j=1

(
c+
j

)
Rw (Gj) +

∑
j∈{1,...,m−1,m+1,...,J}

(
c+
j

)
Rw
(
G̃j

)
≥ c−mRw

(
G̃m

)
+
(
2− c−m

)
Rw∗

> 2Rw∗,
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where the last line comes from c−m > 0 and G̃m /∈ G∗. As inff∈F̃G,J R
w
φh

(f) = 2Rw∗, this

contradicts that f̃ minimizes Rw
φh

(·) over F̃G,J .

We are now prepared to give the proof of Theorem 7.5.

Proof of Theorem 7.5. Let F̄∗J be as in the proof of Theorem 4.4. Note that Gf = Gf̃∗

holds for any f ∈ F̄∗J . Similarly to the the proof of Theorem 4.4, define a sequence of

functions
{
f̄ ∗J
}∞
J=1

with

f̄ ∗J (x) ≡
J∑
j=1

1

J

(
1
{
f̃ ∗ (x) ≥ j/J

}
− 1

{
f̃ ∗ (x) < j/J

})
.

It is shown in the the proof of Theorem 4.4 that f̄ ∗J (X) → f̃ ∗ (X) as J → ∞ with

probability one.

Then the following holds:

Rw
φh

(
f̃ ∗
)

=

∫
X
L(ω+(x), ω−(x), η(x))f̃ ∗ (x) dPX (x) + EP [ω]

= lim
J→∞

∫
X
vf̄ ∗J (x) dPX (x) + EP [ω]

= lim
J→∞

Rw
φh

(
f̄ ∗J (x)

)
≥ lim

J→∞
inf
f̄∈F̄∗J

Rw
φh

(
f̄
)

(68)

≥ lim
J→∞

inf
f̃∈F̃G.J

Rw
φh

(
f̃
)
,

where the first and third equalities follow from (66). The second equality follows from

the dominated convergence theorem, which holds as both

L(ω+(X), ω−(X), η(X))f̄ ∗J (X)→ L(ω+(X), ω−(X), η(X))f̃ ∗ (X)

and

∣∣L(ω+(X), ω−(X), η(X))f̄ ∗J (X)
∣∣ <∞

hold with probability, where the second condition holds from condition (7.4). The first

inequality follows from f̄ ∗J ∈ F̄∗J , and the last inequality follows from F̄∗J ⊆ F̃G.J .

Lemma D.1 shows that inf f̃∈F̃G,J R
w
φh

(
f̃
)

= 2Rw∗ for any J . Thus, we have

Rw
φh

(
f̃ ∗
)
≥ lim

J→∞
inf

f̃∈F̃G.J
Rw
φh

(
f̃
)

= 2Rw∗.

This means that the minimal value of Rw
φh

on F̃G is at least 2Rw∗. Lemma D.1 also shows
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that f̃ † defined in Theorem 7.5 leads to Rw
φh

(
f̃ †
)

= 2Rw∗. Therefore, f̃ † minimizes Rw
φh

over F̃G. This proves the second statement of the theorem.

We next prove the first statement of the theorem by contradiction. Suppose that f̃ ∗

does not minimize Rw (·) over F̃G, or equivalently Gf̃∗ /∈ G∗. Then, for any f̄ ∈ F̄∗J ,

Rw
φh

(
f̄
)

=
J∑
j=1

(
c+
j

)
Rw (Gj) +

J∑
j=1

(
c−j
)
Rw
(
G̃j

)
≥ c−1Rw

(
G̃1

)
+
(
2− c−1

)
Rw∗

> 2Rw∗,

where the last line follows from G̃1 = Gf̃∗ /∈ G∗ and c−1 > 0. Therefore, we have from

equation (68) that

Rw
φh

(
f̃ ∗
)
≥ lim

J→∞
inf
f̄∈F̄∗J

Rw
φh

(
f̄
)
> 2Rw∗.

This contradicts that f̃ ∗ minimizes Rw
φh

over F̃G because Rw
φh

(
f̃ †
)

= 2Rw∗. Therefore,

f̃ ∗ minimizes Rw (·) over F̃G.

The following is the proof of Corollary 7.6.

Proof of Corollary 7.6. By equations (34) and (65), Rw(f) can be written as

cRw(f) =
c

2

{∫
X
L(ω+(x), ω−(x), η(x)) (1 {x ∈ Gf} − 1 {x /∈ Gf}) dPX(x) + EP [ω]

}
.

By equation (64), the right-hand side is equal to 2−1Rw
φ (1 {· ∈ Gf} − 1 {· /∈ Gf}).

The following gives the proof Theorem 7.7, which is an extension of the proof of

Theorem 5.1.

Proof of Theorem 7.7 (ii). For the convenience of notation, we prove the result with

C ′ and r′ replaced by C and r, respectively. Fix P ∈ P . First of all, Corollary 7.6 and

decomposing Rw
φh

(f̂)− inff∈F̃G R
w
φh

(f) gives

Rw(f̂)− inf
f∈FG

Rw(f) =
1

2

(
Rw
φh

(
f̂
)
− inf

f∈F̌
Rw
φh

(f)

)
+

1

2

(
inf
f∈F̌

Rw
φh

(f)− inf
f∈F̃G

Rw
φh

(f)

)
+

1

2

(
Rw
φh

(1
{
· ∈ Gf̂

}
− 1

{
· /∈ Gf̂

}
)−Rw

φh
(f̂)
)
. (69)
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Hence, to obtain the inequality in (40), we need to prove

Rw
φh

(
f̂
)
− inf

f∈F̌
Rw
φh

(f) ≤ LC(r, n).

We follow the same strategy as the proof of Theorem B.2. Let f̌ ∗ minimizes Rw
φh

(·) over

F̌ . A standard argument gives

EPn

[
Rw
φh

(
f̂
)
− inf

f∈F̌
Rw
φh

(f)

]
≤ EPn

[
Rw
φh

(
f̂
)
− R̂w

φh

(
f̂
)

+ R̂w
φh

(
f̌ ∗
)
−Rw

φh

(
f̌ ∗
)]

(
∵ R̂w

φh

(
f̂
)
≤ R̂w

φh

(
f̌ ∗
))

= 2EPn

[
Rw
φh

(
f̂ + 1

2

)
− R̂w

φh

(
f̂ + 1

2

)]

+ 2EPn

[
R̂w
φh

(
f̌ ∗ + 1

2

)
−Rw

φh

(
f̌ ∗ + 1

2

)]
≤ 4 sup

f∈Ḟ
EPn

[∣∣∣Rw
φh

(f)− R̂w
φh

(f)
∣∣∣] ,

where Ḟ =
{

(f + 1)/2 : f ∈ F̌
}

be as in the proof of Theorem B.2.

Note that

sup
f∈Ḟ

EPn
[∣∣∣Rw

φh
(f)− R̂w

φh
(f)
∣∣∣]

= M sup
f∈Ḟ

EPn

[∣∣∣∣∣EP (( ωM )
Y f (X)

)
− 1

n

n∑
i=1

(ωi
M

)
Yif (Xi)

∣∣∣∣∣
]

(70)

and that

sup
f∈Ḟ

∣∣∣∣∣EP (( ωM )
Y f (X)

)
− 1

n

n∑
i=1

(ωi
M

)
Yif (Xi)

∣∣∣∣∣ ≤ 2.

We first prove the result for the case of r ≥ 1. For any f ∈ Ḟ and D > 0, it holds that

√
n

qn
sup
f∈Ḟ

EPn

[∣∣∣∣∣E (( ωM )
Y f (X)

)
− 1

n

n∑
i=1

(ωi
M

)
Yif (Xi)

∣∣∣∣∣
]

≤ D +
2
√
n

qn
P n

(
sup
f∈F̀

√
n

qn

∣∣∣∣∣E (( ωM )
Y f (X)

)
− 1

n

n∑
i=1

(ωi
M

)
Yif (Xi)

∣∣∣∣∣ > D

)
.

Then, applying Corollary B.3, where we set Z1 = (ω, Y ), Z2 = X, g (Z1) = (ω/M) · Y ,
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and H = Ḟ , shows that there exist D1, D2, D3 > 0, depending only on r and C, such that

P n

(
sup
f∈F̀

√
n

qn

∣∣∣∣∣E (( ωM )
Y f (X)

)
− 1

n

n∑
i=1

(ωi
M

)
Yif (Xi)

∣∣∣∣∣ > D

)
≤ D2 exp

(
−D2q2

n

)
,

for D1 ≤ D ≤ D3

√
n/qn. Therefore, when r ≥ 1, we have

τ−1
n EPn

[
Rw
φh

(f̂)− inf
f∈F̌

Rw
φh

(f)

]
≤ 4MD1 + 8Mτ−1

n D2 exp
(
−D2

1q
2
n

)
.

Combining this result with (69) leads to the inequality (40) for the case of r ≥ 1.

The inequality in (40) for the case of r < 1 follows immediately by applying Lemma

B.4 to equation (70).

It remains to prove the inequality (39) for the case of F̌ = F̃G. By the similar argument

as in the proof of Theorem 5.1, when F̌ = F̃G, the second and third terms in equation

(69) are ignorable. Thus, the inequality (39) follows from the above argument.

Proof of Theorem 7.7 (i). We follow the same strategy as in the proof of Theorem

5.1. Define f̂ †(x) = 1{x ∈ Gf̂} − 1{x /∈ Gf̂}. Then equation (69) becomes

Rω(f̂)− inf
f∈FG

Rω(f) = Rω(f̂ †)− inf
f∈FG

Rω(f) (71)

=
1

2

(
Rω
φh

(f̂ †)− inf
f∈F̃G

Rω
φh

(f)

)
.

It follows that

Rω
φh

(f̂ †)− inf
f∈F̃G

Rω
φh

(f) = EP (ωY f̂ †(X))− inf
f∈F̃G

EP (ωY f(X))

≤M

∣∣∣∣EP (Y f̂ †(X))− inf
f∈F̃G

EP (Y f(X))

∣∣∣∣
= M

(
Rφh(f̂ †)− inf

f∈F̃G
Rφh(f)

)
,

where Rφh(·) is defined here with respect to the marginal distribution of (Y,X) generated

by P . The third line follows because F̃G is a classification-preserving reduction of FG and,

accordingly, EP (Y f̂ †(X)) ≥ inff∈F̃G EP (Y f(X)) holds. Thus we have

Rω(f̂)− inf
f∈FG

Rω(f) ≤M

(
Rφh(f̂ †)− inf

f∈F̃G
Rφh(f)

)
.
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Then the result follows by applying the same argument in the proof of Theorem 5.1 to

the above equation.

The following are extensions of Lemmas C.2, C.3, and 6.3.

Lemma D.2. Let f̂B ∈ arg inff∈BkR̂
w
φh

(f), and θ̂ :=
{
θ̂j1...jdx

}
j1=1,...,k1;...;jdx=1,...,kdx

be the

vector of the coefficients in f̂B. Let r+
1 and r−1 be the smallest non-negative value and the

largest negative value in θ̂, respectively.

(i) If all non-negative elements in θ̂ take the same value r+
1 , let r+

2 be 1; otherwise, let

r+
2 be the second smallest non-negative value in θ̂. Make a (k1 + 1) × · · · × (kdx + 1)-

th dimensional vector θ̃ :=
{

Θ̃j1...jdx

}
j1=1,...,k1;...;jdx=1,...,kdx

such that for all j1, . . . , jdx if

θ̂j1...jdx = r+
1 , Θ̃j1...jdx

= r+
2 ; otherwise, Θ̃j1...jdx

= θ̂j1...jdx . Then, a classifier

f̃B (x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

Θ̃j1...jdx
(bk1j1 (x1)× · · · × bk1j1 (xdx))

minimizes R̂φh over Bk.

(ii) Similarly, if all negative elements in θ̂ take the same value r−1 , let r−2 be −1; otherwise,

let r−2 be the second largest negative value in θ̂. Make a (k1 + 1) × · · · × (kdx + 1)-vector

θ̌ :=
{
θ̌j1...jdx

}
j1=1,...,k1;...;jdx=1,...,kdx

such that for all j1, . . . , jdx if θ̌j1...jdx = r−1 , θ̌j1...jdx = r−2 ;

otherwise, θ̌j1...jdx = θ̂j1...jdx . Then, a classifier

f̌B (x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

θ̌j1...jdx (bk1j1 (x1)× · · · × bk1j1 (xdx))

minimizes R̂w
φh

over Bk.

(iii) A classifier

f̂ †B (x) :=

k1∑
j1=1

· · ·
kdx∑
jdx=1

sign
(
θ̂j1...jdx

)
·
(
bk1j1 (x1)× · · · × bkdxjdx (xdx)

)
minimizes R̂φh(·) over Bk.

Proof. First, note that θ̃, θ̌ ∈ Θ̃ holds by their constructions. We here prove (i). The

proof of (ii) follows by the similar argument. Define

Ln (θ) =
n∑
i=1

ωiYi
k1∑
j1=1

· · ·
kdx∑
jdx=1

θj1...jdx

n∑
i=1

(
bk1j1 (X1i)× · · · × bkdxjdx (Xdxi)

) .
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Minimization problem of R̂φh over Bk is equivalent to the following maximization problem

of Ln (θ) over Θ̃. Thus, θ̂ maximizes Ln (θ) over Θ̃.

We prove the result by contradiction. Suppose θ̃ /∈ arg max
θ∈Θ̃

Ln (θ). Let

J1 ≡
{

(j1, . . . , jdx) : θ̂j1...jdx = r+
1

}
.

Then,

Ln

(
θ̃
)
− Ln

(
θ̂
)

=
∑

(j1,...,jdx )∈J1

{(
r+

2 − r+
1

) n∑
i=1

ωiYi
(
bk1j1 (X1i)× · · · × bkdxjdx (Xdxi)

)}
< 0

holds. Since r+
2 − r+

1 ≥ 0, the above equation implies that there exists some (j1, . . . , jdx)

in J1 such that
∑n

i=1 ωiYi
(
bk1j1 (X1i)× · · · × bkdxjdx (Xdxi)

)
< 0. For such (j1, . . . , jdx),

setting θ̂j1...jdx to r−1 increases the value of Ln

(
θ̂
)

without violating the constraints in Θ̃.

But this contradicts that θ̂j1...jdx is non-negative. Therefore, θ̃ maximizes Ln (θ) over Θ̃,

or equivalently f̃B minimizes R̂φh over Bk.

The result (iii) follows by applying the results (i) and (ii) repeatedly to f̂B.

Lemma D.3. Fix G ∈ G and k1, . . . , kdx. Define a classifier

fG(x) =

k1∑
j1=1

· · ·
kdx∑
jdx=1

θj1...jdx
(
bk1j1(x1)× · · · × bkdxjdx (xdx)

)
,

such that, for all j1, . . . , jdx, θj1...jdx = 1 if (j1/k1, . . . , jdx/kdx) ∈ G, and θj1...jdx = −1

otherwise. Then, the following holds:

∣∣Rw
φh

(fG)−Rw
φh

(1 {· ∈ G} − 1 {· /∈ G})
∣∣ ≤2MA

dx∑
j=1

√
log kj
kj

+
dx∑
j=1

4M√
kj
.

Proof. Define

Jk ≡{(j1, . . . , jdx) : (j1/k1, . . . , jdx/kdx) ∈ G} ,

which is a set of grid points on G, and

L(x) ≡ −ω+(x)η(x) + ω−(x)(1− η(x)).
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It follows that

Rw
φh

(fG)−Rw
φh

(1 {· ∈ G} − 1 {· /∈ G})

=

∫
[0,1]dx

L(x) (1 {x ∈ G} − 1 {x /∈ G} −Bk (θ, x)) dPX (x)

=

∫
[0,1]dx

L(x)1 {x ∈ G} dPX (x)−
∫

[0,1]dx
L(x)1 {x /∈ G} dPX (x)

−
∫

[0,1]dx
L(x)Bk (θ, x) dPX (x)︸ ︷︷ ︸

(I)

. (72)

(I) can be written as

(I) =

∫
[0,1]dx

L(x)
∑

(j1,...,jdx )∈Jk

(
dx∏
v=1

bkvjv(xv)

)
dPX (x)

−
∫

[0,1]dx
L(x)

∑
(j1,...,jdx )/∈Jk

(
dx∏
v=1

bkvjv(xv)

)
dPX (x) .

Thus,

(72) =

∫
[0,1]dx

L(x)

1 {x ∈ G} −
∑

(j1,...,jdx )∈Jk

bkvjv(xv)


︸ ︷︷ ︸

dPX (x)

(II)

+

∫
[0,1]dx

L(x)

 ∑
(j1,...,jdx )/∈Jk

bkvjv(xv)− 1 {x ∈ (G)c}


︸ ︷︷ ︸

(III)

dPX (x) .

Let Bin (kj, xj), j = 1, . . . , dx, be independent binomial variables with parameters

(kj, xj). Then, (II) and (III) are equivalent to

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) 1 {x ∈ G}

−Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) 1 {x ∈ (G)c} .

Hence,

(72) = 2

∫
G

L(x) Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPx(x)

− 2

∫
(G)c

L(x) Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x) ,
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and therefore

∣∣Rw
φh

(fG)−Rw
φh

(1 {· ∈ G} − 1 {· /∈ G})
∣∣

≤ 2M

∫
G

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ (Jk)c) dPX (x)︸ ︷︷ ︸
(IV )

+ 2M

∫
(G)c

Pr ((Bin (k1, x1) , . . . , Bin (kdx , xdx)) ∈ Jk) dPX (x)︸ ︷︷ ︸
(V )

,

because ‖L(x)‖ < M for all x ∈ X . The proof of Lemma 6.3 shows that

Then, applying the same argument in the proof of Corollary C.2 shows

∣∣Rw
φh

(fG)−Rw
φh

(1 {· ∈ G} − 1 {· /∈ G})
∣∣ ≤ 2MA

(
dx∑
v=1

√
log kv
kv

)
+

dx∑
v=1

4M√
kv
.

Lemma D.4. Let kj ≥ 1, for j = 1, . . . , dx, be fixed. Suppose that the density of

PX is bounded from above by A > 0 . Suppose further that k = (k1, . . . , kdx) satisfies√
dx log kj/

(
2
√
kj
)
≤ ε for all j = 1, . . . , dx and some ε > 0.

(i) The following holds for the approximation error to the best classifier:

inf
f∈Bk

Rw
φh

(f)− inf
f∈FM

Rw
φh

(f) ≤ 2AM
dx∑
j=1

√
log kj
kj

+
dx∑
j=1

4M√
kj
.

(ii) For f̂B ∈ arg inff∈Bk
R̂w
φh

(f) such that its coefficients take values in {−1, 1}, the

following holds for the approximation error to the step function:

Rw
φh

(
1
{
· ∈ Gf̂B

}
− 1

{
· /∈ Gf̂B

})
−Rw

φh
(f̂B) ≤ 2AM

dx∑
j=1

√
log kj
kj

+
dx∑
j=1

4M√
kj
.

Proof. We first prove (i). Let G∗ minimizesRw(·) over GM . From Theorem 7.5, a classifier

f̃ ∗ (x) := 1 {x ∈ G∗} − 1 {x ∈ (G∗)c} minimizes the hinge risk Rw
φh

(·) over FM . Define a

vector θ∗ =
{
θ∗j1...jd

}
j1=0,...,k1;...;jd=0,...,kd

such that for each j1, . . . , jd,

θ∗j1...jd =

 1

−1

if (j1/k1, . . . , jd/kd) ∈ G∗

otherwise.
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Note that θ∗ is contained by Θ̃. Thus, it follows that

inf
f∈Bk

Rw
φh

(f)− inf
f∈FM

Rw
φh

(f) ≤ Rw
φh

(Bk (θ∗, ·))−Rw
φh

(
f̃ ∗
)
.

Then, applying Lemma D.3 to Rw
φh

(Bk (θ∗, ·))−Rw
φh

(f̃ ∗) shows the result (i).

The inequality in Lemma D.4 (ii) follows immediately from Lemma D.3. Applying

Lemma D.2 (iii) to any f̂B ∈ arg inff∈Bk
R̂φh (f) shows that a classifier

f̂ †B(x) =

k1∑
j1=1

· · ·
kdx∑
jdx=1

sign
(
θ̂j1...jdx

) (
bk1j1 (x1)× · · · × bkdxjdx (xdx)

)
minimizes R̂w

φh
(·) over Bk, which proves the existence of f̂B ∈ arg inff∈Bk

R̂w
φh

(f) such

that its coefficients take values in {−1, 1}.

References

Alexander, K. S. (1984): “Probability inequalities for empirical processes and a law

of the iterated logarithm,” Annals of Probability, 12, 1041–1067.

Athey, S. and S. Wager (2021): “Policy learning with observational data,” Econo-

metrica, 89, 133–161.

Babii, A., X. Chen, E. Ghysels, and R. Kumar (2020): “Binary Choice with

Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial

Justice,” arXiv.

Bartlett, P. L., M. I. Jordan, and J. D. McAuliffe (2006): “Convexity, classifi-

cation, and risk bounds,” Journal of the American Statistical Association, 101, 138–156.

Beygelzimer, A. and J. Langford (2009): “The offset tree for learning with partial

labels,” in Proceedings of the 15th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Association for Computing Machinery, 129–137.

Bhattacharya, D. and P. Dupas (2012): “Inferring welfare maximizing treatment

assignment under budget constraints,” Journal of Econometrics, 167, 168–196.

Boucheron, S., G. Lugosi, and P. Massart (2013): Concentration Inequalities: A

Nonasymptotic Theory of Independence, Oxford, UK: Oxford University Press.

79



Breiman, L., J. Friedman, C. Stone, and R. Olshen (1984): Classification and

Regression Trees, The Wadsworth and Brooks-Cole statistics-probability series, Taylor

& Francis.

Calders, T. and S. Verwer (2010): “Three naive Bayes approaches for

discrimination-free classification,” Data Mining and Knowledge Discovery, 21, 277–292.

Cano, J. R., P. A. Gutiérrez, B. Krawczyk, M. Woźniak, and S. Garćıa
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