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A sequence of myopic buyers decide whether to trust a patient seller after observing previous buyers’
actions and some private signals about the seller’s current and past actions. With positive probability,
the seller is a commitment type who plays his optimal commitment action in every period. When
each buyer observes all previous buyers’ actions and a bounded subset of the seller’s past actions,
there exist equilibria in which the patient seller receives his minmax payoff since the informativeness
of buyers’ actions goes to zero as the seller becomes patient. These low-payoff equilibria are robust as
long as each buyer has bounded observation of the seller’s past actions and can observe the buyer’s
action in the previous period. When each buyer can also observe an unboundedly informative private
signal about the seller’s current-period action, the informativeness of buyers’ actions is bounded away
from zero and a patient seller receives at least his optimal commitment payoff in all equilibria.
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1 Introduction

There has been abundant evidence showing that consumers’ behaviors are influenced by other con-

sumers’ choices (see for example, Cai, Chen and Fang 2009 and Conley and Udry 2010). This is the

case in many developing countries where sellers’ records are unavailable or incomplete due to the lack

of record-keeping institutions, making it time-consuming for consumers to directly learn about sellers’

past behavior. For example, a consumer needs to talk to some of the seller’s previous customers in

order to learn about the quality and attributes of the products they bought from the seller. Due to the

time costs of these conversations, information extracted from others’ choices is a useful supplement

when consumers make their decisions.

I examine a seller’s incentives to build good reputations when buyers have limited access to his past

records and learn from previous buyers’ choices. This question is relevant since the lack of provision
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of high-quality products is a key problem in many developing countries (Rahmat et al. 2016) and

observational learning is ubiquitous when consumers do not have access to the seller’s past records.

I introduce a new reputation model where each consumer observes all previous consumers’ choices,

a bounded subset of the seller’s past actions, and possibly, a private signal about the seller’s current-

period action. This stands in contrast to the model of Fudenberg and Levine (1989) where consumers

have unbounded observation of the seller’s past actions and there is no need for them to learn from

other consumers’ choices. It also differs from reputation models with limited memories (e.g., Liu 2011,

Liu and Skzypacz 2014) in which consumers cannot observe other consumers’ choices.

I show that a patient seller’s gains from reputations can be wiped out when consumers have no

information about his current-period action. This is because the speed of consumer learning is too low

relative to the seller’s discount rate. These bad equilibria persist as long as each consumer can observe

the action profile in the previous period. By contrast, the seller can guarantee high returns from

building reputations when each consumer observes an unboundedly informative private signal about

the seller’s current-period action. This happens, for example, when a trusted third party randomly

inspects a small fraction of products currently sold on the market, issues certificates to the ones with

high quality, which are noticed by the current-period consumer but not necessarily by other consumers.

I study a repeated game between a long-lived player 1 (seller) and a sequence of short-lived player 2s

(buyers). Players’ stage-game payoffs satisfy a monotone-supermodularity assumption, with the prod-

uct choice game a leading example. Player 1 is either a strategic type who maximizes his discounted

payoff, or a commitment type who plays his (pure) Stackelberg action in every period.

My analysis starts from the case in which every buyer observes all previous buyers’ actions and

the seller’s actions in the last K periods. Theorem 1 shows that when the probability of commitment

type is below a cutoff, there exist equilibria where the seller receives his minmax payoff no matter

how patient he is. This stands in contrast to models where buyers have unbounded observation of the

seller’s past actions, in which the patient seller receives at least his Stackelberg payoff in all equilibria

regardless of the probability of commitment type and the observability of previous buyers’ actions.

In order to identify the driving forces behind those low-payoff equilibria, I also show that in all

equilibria, buyers never herd on any action that does not best reply to the commitment action, and

the seller’s undiscounted average payoff from imitating the commitment type is at least a fraction

K
K+1 of his Stackelberg payoff (plus 1

1+K times his minimal stage-game payoff). Therefore, the only

plausible explanation for the seller to receive his minmax payoff in some equilibria is that the speed

of reputation building is too low relative to the seller’s discount rate.

The idea of slow learning is reflected in my constructive proof, which I illustrate using the following
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product choice game:

– Trust Not Trust

High Effort 1, 1 −cN , 0

Low Effort 1 + cT ,−1 0, 0

with cT , cN > 0

Every buyer’s action depends only on the action profile in the previous period. A buyer (1) trusts the

seller with zero probability when the previous buyer does not trust and the seller exerts low effort, (2)

trusts the seller with probability close to zero when the previous buyer does not trust and the seller

exerts high effort, (3) trusts the seller with probability less than but close to one when the previous

buyer trusts and the seller exerts low effort, and (4) trusts the seller for sure when the previous buyer

trusts and the seller exerts high effort. The strategic seller mixes between high and low effort unless

the buyer trusts the seller and the seller exerts high effort in the previous period.

Economically, this equilibrium describes a market that has two norms: a good norm in which

buyers trust the seller with high probability and a bad norm in which buyers trust the seller with low

probability. The market starts from the bad norm, i.e., buyers do not trust new sellers. Transition to

the good norm happens when the seller was trusted in the previous period. The transition probability

increases with the seller’s effort, which motivates the seller to exert high effort.

When the strategic type seller becomes more patient, he is willing to exert high effort and imitate

the commitment type even when his action has very low chances of changing the future buyer’s action.

This slows down consumer learning from previous consumers’ actions and increases the expected

number of periods to build a reputation. This explains why the seller’s gains from a good reputation

can be entirely wiped out even when he is arbitrarily patient.

Next, suppose each buyer also observes a private signal about the seller’s current-period action

whose distribution satisfies a monotone likelihood ratio property in addition to what she observes

in the previous case. Theorem 2 shows that the patient seller can secure his Stackelberg payoff in

all equilibria if and (almost) only if the buyer’s signal is unboundedly informative, i.e., some signal

realizations are arbitrarily more likely to occur under the Stackelberg action compared to other actions.

My proof shows that when a buyer’s private signal is unboundedly informative, the buyer’s action

is an informative signal of the seller’s current-period action, with informativeness bounded away from

zero. When the seller imitates the commitment type, either his stage-game payoff is close to his

Stackelberg payoff (when the buyer best replies with probability close to 1), or all future buyers learn

at least a certain amount of information about his type from the current-period buyer’s action. This

explains why the patient seller obtains his Stackelberg payoff in all equilibria.
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My paper contributes to the reputation literature by relating a patient player’s returns from build-

ing reputations to the speed with which his opponents learn from their predecessors’ actions. My

results examine how the speed of learning varies with the discount factor, and how it hinges on the

private signals myopic players receive about the patient player’s current-period action.

Theorem 1 identifies a new mechanism behind reputation failures, that the seller’s patience en-

dogenously lowers the speed of reputation building. This stands in contrast to most of the existing

reputation models (e.g., Fudenberg and Levine 1989, 1992) in which the seller’s patience only lowers

the cost of reputation building but has negligible impact on its speed.

Theorem 2 shows that reputation failures caused by slow learning can be resolved when a small

fraction of products currently sold on the market are certified, or when a small fraction of consumers

can precisely identify the quality of products before purchasing. These interventions guarantee a

minimal level of informativeness for each buyer’s action, and a patient seller receives a high payoff

when consumers observe all their predecessors’ choices. My result is conceptually different from the

one in Smith and Sørensen (2000) since in my model, the myopic players’ payoffs depend only on

players’ actions but not on the patient player’s type. Therefore, the myopic players asymptotically

learning about the patient player’s type is neither sufficient nor necessary for the latter to receive a

high discounted average payoff.

In terms of applications, my results provide an explanation for instances of reputation failures and

successful policy interventions in developing countries. For example, in the markets for malaria drugs

(Nyqvist, et al. 2018) and watermelons (Bai 2018), consumers refuse to pay quality premiums since

they believe that sellers are unlikely to supply high quality, and their pessimistic beliefs persist over

time. By contrast, the sellers’ reputational incentives are restored and consumers are willing to pay

quality premiums after researchers randomly assign laser tag machines to a fraction of watermelon

vendors (Bai 2018), or after the temporary entry of an NGO that sells high-quality drugs (Nyqvist,

et al. 2018). Existing explanations, such as sellers have low discount factors, or buyers receive no

information about the seller, or buyers do not purchase from the seller, either do not fit the applications

well,1 or do not provide an appealing rationale for those successful policy interventions.

Section 2 sets up the model. Section 3 states Theorems 1 and 2. Section 4 discusses the robustness

of my reputation failure result under alternative specifications of the buyers’ information structure,

and explains the role of my modeling assumptions. Section 5 concludes and discusses the connections

between my paper and the literature on reputation formation and social learning.

1For example, Bai (2018)’s structural estimation results in Table 8 show that watermelon vendors’ discount factor
across interactions is about 0.98. Even before the intervention, residents purchase from the local vendor and exchange
information about their experiences, despite they refuse to pay premiums for those so-called high-quality melons.
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2 Baseline Model

Time is discrete, indexed by t = 0, 1.... A long-lived player 1 (he, e.g., a seller) with discount factor

δ ∈ (0, 1) interacts with an infinite sequence of short-lived player 2s (she, e.g., consumers), arriving

one in each period, each plays the game only once, with 2t denoting the short-lived player in period t.

In period t, player 1 chooses at ∈ A (e.g., his effort or product quality), and then player 2t chooses

bt ∈ B (e.g., how many units to buy). Both A and B are finite sets. Player i ∈ {1, 2}’s stage-game

payoff is ui(at, bt). Let BR2(a) be player 2’s best reply to a. Player 1’s (pure) Stackelberg action is

arg maxa∈A

{
minb∈BR2(a) u1(a, b)

}
.

Assumption 1. Player 1 has a unique best reply to every b ∈ B. Player 2 has a unique best reply

to every a ∈ A. Player 1 has a unique Stackelberg action.

Since A and B are finite sets, Assumption 1 is satisfied for generic (u1, u2). Let a∗ be player 1’s

Stackelberg action. I focus on games with monotone-supermodular payoffs, which have been a primary

focus of the reputation literature, and fit applications to business transactions (Mailath and Samuelson

2001, Ekmekci 2011, Liu 2011), capital taxation (Phelan 2006), and monetary policy (Barro 1986).

Assumption 2. Players’ stage-game payoffs (u1, u2) are monotone-supermodular (or MSM) if

there is a complete order on A, �A, and a complete order on B, �B, such that:

1. Player 1’s payoff u1(a, b) is strictly decreasing in a and is strictly increasing in b.

2. Player 2’s payoff u2(a, b) has strictly increasing differences in (a, b).

3. Player 1’s Stackelberg action a∗ is not the lowest element of A.

In the product choice game, rank the seller’s actions according to the quality he supplies and rank

the buyer’s actions according to the extent to which she trusts the seller (e.g., the number of units she

buys), monotone-supermodularity implies that (1) buyers have stronger incentives to trust when the

seller supplies higher quality, (2) the seller finds it costly to supply high quality, but strictly benefits

from buyers’ trust, (3) supplying the lowest quality is not the seller’s optimal commitment.

My modeling innovation is on player 2’s information structure. I analyze two cases, which differ

only in terms of whether player 2t observes an informative signal about at before choosing bt.

1. Without Contemporaneous Information: Player 2t observes all of her predecessors’ actions

(b0, ..., bt−1) and player 1’s actions in the last K periods (amax{0,t−K}, ..., at−1), where K ∈ N is

a parameter. Since player 2t does not observe at before choosing bt, the stage game is equivalent
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to one with simultaneous-move. In Section 4, I discuss an alternative setting in which player 2t

observes (amax{0,t−K}, ..., at−1) and (bmax{0,t−M}, ..., bt−1) where K and M are finite integers.

2. With Contemporaneous Information: In addition to observing (amax{0,t−K}, ..., at−1) and

(b0, ..., bt−1), player 2t also privately observes st ∈ S, drawn according to f(·|at) ∈ ∆(S), with S

being a countable set. Let f(s|a) be the probability of signal s when player 1’s action is a.

Before choosing at, player 1 observes all the past actions (a0, ..., at−1, b0, ..., bt−1) and his perfectly

persistent type ω ∈ {ωs, ωc}. Let ωc stand for a commitment type who mechanically plays the Stackel-

berg action a∗ in every period. Let ωs stand for a strategic type who maximizes his discounted average

payoff
∑∞

t=0(1− δ)δtu1(at, bt), i.e., payoffs are normalized so that the weight on period t is (1− δ)δt.

Player 2’s prior belief attaches probability π0 ∈ (0, 1) to the commitment type. Let Hi be the set of

player i ∈ {1, 2}’s histories. Strategic-type player 1’s strategy is σ1 : H1 → ∆(A). Player 2’s strategy

is σ2 : H2 → ∆(B). The solution concept is Perfect Bayesian equilibrium (or equilibrium).

3 Results

Theorem 1 shows that when player 2 receives no contemporaneous information, player 1 receives his

minmax payoff in some equilibria no matter how patient he is. Theorem 2 shows that a patient player

1 can secure his Stackelberg payoff in all equilibria when each player 2 observes an unboundedly

informative private signal about player 1’s current-period action and all of player 2s’ past actions.

Section 3.3 provides a unified explanation for these theorems and the existing reputation results.

3.1 Reputation Failure without Contemporaneous Information

Let a′ be the lowest element of A. Let b′ ≡ BR2(a′). Let b∗ ≡ BR2(a∗). Player 1’s Stackelberg payoff

is u1(a∗, b∗). The first two requirements of MSM imply that u1(a′, b′) is player 1’s minmax payoff.2

The third requirement implies that a∗ 6= a′ and u1(a′, b′) < u1(a∗, b∗).

Theorem 1. Suppose u1 and u2 satisfy Assumptions 1 and 2, then there exists δ(u1, u2) ∈ (0, 1).3

For every K ∈ N, there exists π0 > 0, such that for every π0 < π0 and δ > δ(u1, u2), there exists an

equilibrium in which the strategic type player 1’s discounted average payoff equals u1(a′, b′).

2I adopt the notion of minmax payoff in Fudenberg, Kreps and Maskin (1990) which requires player 2 to play a best
reply against some α ∈ ∆(A) when she minmaxes player 1.

3The cutoff discount factor δ(u1, u2) depends only on players’ stage-game payoffs and is strictly between 0 and 1. In
the product choice game, δ(u1, u2) ≡ max{ cT

cT+1
, cN
cN+1

}, i.e., it is large enough such that player 1 has an incentive to
play H regardless of player 2’s current-period action if doing so increases his continuation value by 1.
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Theorem 1 suggests that when the initial trust level between players is low (i.e., π0 is small) and

player 2 has bounded observation of player 1’s past actions, player 1 can receive his minmax payoff no

matter how patient he is. As will become clear later in the proof, the low-payoff equilibrium is robust

to player 2’s information structure in the sense that it remains to be an equilibrium as long as player

2t can observe (at−1, bt−1), i.e., player 2s do not need to observe calendar time (i.e., when the game

started) and unbounded observation of player 2s’ past actions is allowed but not required.

The existence of low-payoff equilibria stands in contrast to the reputation result in Fudenberg and

Levine (1989), which shows that when player 2s have unbounded observation of player 1’s past actions,

the patient player receives payoff at least u1(a∗, b∗) in every equilibrium by playing a∗ in every period.

This applies regardless of π0 and whether player 2s’ past actions are observed or not.

In my model, unbounded observation of player 1’s past actions is replaced by unbounded observa-

tion of player 2’s past actions together with bounded observation of player 1’s past actions. Since the

history of player 1’s actions is revealed once player 2s aggregate their private information, one may

wonder why player 2 observing all her predecessors’ actions is not sufficient for player 1 to secure his

Stackelberg payoff, or at least some payoff in between his Stackelberg payoff and his minmax payoff.

I argue in two steps that player 1 receiving his minmax payoff from building his reputation is

not because his opponents herd on actions lower than b∗, or the signals his opponents receive are

uninformative, or his payoff is low in the long run, but instead, it is because the speed with which he

can build his reputation (or the informativeness of his opponents’ actions about his past actions) is

endogenous and vanishes to zero as his discount factor approaches unity.

First, I show that in every equilibrium, as long as player 1 imitates the commitment type, player

2s cannot herd on any action other than b∗ and player 1’s undiscounted average payoff is at least a

fraction K
K+1 of his Stackelberg payoff. Formally, let π(ht) be the probability of commitment type at

history ht. For every b ∈ B, player 2s herd on b at ht if they play b at every hs � ht. Let E(a∗,σ2)[·] be

the expectation when player 1 plays a∗ in every period and player 2 uses strategy σ2.

Claim 1. Suppose payoffs satisfy Assumptions 1 and 2, then in every equilibrium (σ1, σ2)

1. For every b 6= b∗, player 2s cannot herd on b at any history ht that occurs with positive probability

under (σ1, σ2) satisfying π(ht) > 0.

2.

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a∗, b∗) +

1

K + 1
u1(a∗, b′). (3.1)

When π0 is small and δ is large, there exists an equilibrium such that (3.1) holds with equality.
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The proof is in Appendix C. Intuitively, once player 2s herd on b 6= b∗, the strategic type has no

intertemporal incentive and hence, will not play a∗. As a result, player 2 knows that player 1 is the

commitment type after observing a∗, and will have a strict incentive to play b∗. This contradicts the

presumption that they herd on b 6= b∗. For the second statement, since a∗ is suboptimal for player 1

in the stage game, we know that for every t ∈ N, either the strategic type has no incentive to play

a∗ in period t, or (bt+1, ..., bt+K) is informative about at. In the first case, players 2t+1 to 2t+K learn

that player 1 is committed after observing at = a∗. By playing a∗ in every period, player 1’s average

payoff from period t to t+K is at least a fraction K
K+1 of his Stackelberg payoff. In the second case,

all future player 2s observe an informative signal about at, and in expectation, their posterior belief

attaches probability close to 1 to the commitment type after a finite number of periods with learning.

However, the above argument does not imply that imitating the commitment type leads to a high

discounted average payoff since the informativeness of (bt+1, ..., bt+K) about at is endogenous and may

depend on δ. As a result, the expected number of periods needed to establish a reputation may grow

with δ and the payoff consequences of these periods cannot be neglected no matter how large δ is.

This stands in contrast to reputation models with imperfect monitoring (e.g., Fudenberg and Levine

1992) where the informativeness of player 2s’ signals is bounded away from zero. The logic behind my

result also differs from that in Ely and Välimäki (2003) and Ely, et al. (2008). In their models, player

2 can take a non-participating action under which future player 2s receive no informative signal about

at and the patient player receives a low payoff in the long run, which cannot happen in my model.

A constructive proof of Theorem 1 is in Appendix A. I present a snapshot of my argument and

illustrate the economic forces using the product choice game in Section 1.

Proof of Theorem 1: Product Choice Game. Consider the following strategy profile in which player

2t’s strategy depends only on (at−1, bt−1), which is either ∅ (i.e., when t = 0), (H,T ), (H,N), (L, T ),

or (L,N), and the strategic type player 1’s action depends on (at−1, bt−1) and player 2’s belief about

the commitment type πt. Let q be any constant in (0, 1/2).

1. When (at−1, bt−1) = (L,N) or ∅, player 2t plays N for sure and the strategic type player 1 mixes

between H and L such that the unconditional probability of H is q, i.e., the probability that the

strategic type plays H, denoted by pt, satisfies πt + (1− πt)pt = q.

2. When (at−1, bt−1) = (H,N), player 2t plays T with probability r1 ≡ 1−δ
δ cN and N with comple-

mentary probability, i.e., πt + (1 − πt)pt = 1/2. The strategic type player 1 mixes between H

and L such that the unconditional probability of H is 1/2, i.e., πt + (1− πt)pt = 1/2.
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3. When (at−1, bt−1) = (L, T ), player 2t plays T with probability r2 ≡ 1 − 1−δ
δ cT and N with

complementary probability. The strategic type player 1 mixes between H and L such that the

unconditional probability of H is 1/2, i.e., πt + (1− πt)pt = 1/2.

4. When (at−1, bt−1) = (H,T ), player 2t plays T for sure and player 1 plays H for sure.

The strategic type player 1’s discounted average payoff under this strategy profile is 0 and his contin-

uation value is a function of (at−1, bt−1), denoted by V (at−1, bt−1), which is given by

V (H,T ) = 1, V (L,N) = V (∅) = 0, V (H,N) =
1− δ
δ

cN , V (L, T ) = 1− 1− δ
δ

cT .

I verify players’ incentive constraints for every (at−1, bt−1). Player 2s best reply to their posterior

beliefs about player 1’s stage-game action, which is the case for every (at−1, bt−1). For player 1,

1. When (at−1, bt−1) = (L,N) or ∅, player 1’s payoff from playing L is 0 and his payoff from playing

H is (1− δ)(−cN ) + δV (H,N) = 0. Therefore, he is indifferent between H and L.

2. When (at−1, bt−1) = (H,N), player 1’s payoff from playing L is

(1− δ)u1(L, r1T + (1− r1)N) + δ{r1V (L, T ) + (1− r1)V (L,N)} =
1− δ
δ

cN = V (H,N),

and his payoff from playing H is

(1− δ)u1(H, r1T + (1− r1)N) + δ{r1V (H,T ) + (1− r1)V (H,N)} =
1− δ
δ

cN = V (H,N).

3. When (at−1, bt−1) = (L, T ), player 1’s payoff from playing L is

(1− δ)u1(L, r2T + (1− r2)N) + δ{r2V (L, T ) + (1− r2)V (L,N)} =
1− δ
δ

cN = V (L, T ),

and his payoff from playing H is

(1− δ)u1(H, r2T + (1− r2)N) + δ{r2V (H,T ) + (1− r2)V (H,N)} =
1− δ
δ

cN = V (L, T ).

4. When (at−1, bt−1) = (H,T ), player 1’s payoff from playing H is 1 and his payoff from playing L

is (1− δ)(1 + cT ) + δV (L, T ) = 1.

I show that when π0 ≤
( q

2

)K( q
2−q
)
, player 2’s posterior belief attaches probability no more than
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q/2 to the commitment type at every history where (at−1, bt−1) 6= (H,T ). This implies that player 1’s

mixed strategy is well-defined since the strategic type needs to mix only when (at−1, bt−1) 6= (H,T ).

If at−1 = L or ∅, then player 2’s belief attaches probability either 0 or π0 to the commitment type,

which is less than q/2. If (at−1, bt−1) = (H,N), then player 2’s belief attaches positive probability to the

commitment type if and only if (amax{0,t−K}, ..., at−1) = (H, ...,H) and (b0, ..., bt−1) = (N,N, ..., N).

Let πt be the posterior probability of commitment type at such a history.

I show that πt ≤ q/2 by induction on calender time t. The conclusion true when t = 0 since

π0 ≤
( q

2

)K( q
2−q
)

and K ≥ 1. Suppose πs ≤ q/2 for every s ≤ t−1. Since the unconditional probability

with which player 1 plays H is at least q/2 and according to the induction hypothesis, πs ≤ q/2 for

every s ≤ t − 1. Therefore, the probability with which the strategic type plays H at each of those

histories is at least q/2. Let Pωs(·) be the probability measure induced by the equilibrium strategy of

the strategic type. Let Pωc(·) be the probability measure induced by the commitment type. Let Et be

the event that (amax{0,t−K}, ..., at−1) = (H, ...,H). Let Ft be the event that (b0, ..., bt−1) = (N, ..., N).

According to Bayes rule,

πt
1− πt

/ π0

1− π0
=
Pωc(Et ∩ Ft)
Pωs(Et ∩ Ft)

=
Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)
Pωs(Ft|Et)

. (3.2)

Since the strategic type plays H with probability at least 1/4 in every period before t and N occurs

with lower probability under the strategy of the commitment type compared to that of the strategic

type, we have
Pωc(Et)

Pωs(Et)
≤ (q/2)−K and

Pωc(Ft|Et)
Pωs(Ft|Et)

≤ 1. (3.3)

Since π0 ≤
( q

2

)K( q
2−q
)
, inequalities (3.2) and (3.3) lead to the conclusion that πt ≤ q/2.

The above equilibrium has several attractive features. First, it is robust to alternative specifications

of buyers’ information structure, which includes for example, each buyer only observes buyers’ actions

in the last M ≥ 1 periods and does not directly observe t, i.e., she does not know when the game

started. Second, buyers’ equilibrium strategy is simple and intuitive, making it plausible to be played

in practice. In particular, every buyer’s action depends only on players’ actions in the previous period

but not on more complicated aspects of her private history, and her equilibrium strategy is monotone

in the sense that the probability with which she trusts the seller is greater when the previous buyer

trusted the seller and the seller exerted high effort.

This equilibrium also exhibits interesting dynamics and highlights the interactions between repu-

tation building, bounded memory, and social learning. Despite bt+1 is informative about at whenever
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player 1 receives a low stage-game payoff, its informativeness goes to zero as δ approaches 1. As a

result, it takes more time for a more patient player to establish his reputation.

For an economic interpretation of the equilibrium dynamics, consider a market with two social

norms: a good norm in which buyers trust the seller with high probability, and a bad one in which

buyers trust the seller with low probability. The market initially gets stuck in the bad norm where

buyers are unwilling to trust a new seller, and are willing to trust with high probability only when at

least one buyer has trusted before. The seller has an incentive to exert high effort since doing so may

affect the buyer’s future actions after which play transits to a good norm. When the seller is patient,

he is willing to invest in his reputation even when doing so affects the buyer’s future actions with low

probability. This endogenously lowers the informativeness of the buyer’s action about the seller’s past

actions, and slows down the rate at which future player 2s learn about player 1’s type. As a result,

player 2s remain pessimistic about player 1’s type despite observing the latter exerted high effort, and

therefore, have no incentive to break away from the bad norm.

3.2 Reputation Result with Contemporaneous Information

I establish a reputation result when player 2t observes a private signal st, distributed according to

f(·|at) ∈ ∆(S), in addition to (b0, ..., bt−1) and (amax{0,t−K}, ..., at−1), before choosing bt. I restrict

attention to signal distributions that satisfy a standard monotone likelihood ratio property (MLRP).

MLRP. f ≡ {f(·|a)}a∈A satisfies MLRP if there exists a complete order on S, �S, such that

f(s|a)f(s′|a′) ≥ f(s′|a)f(s|a′) for every a �A a′ and s �S s′.

In applications to retail markets where a ∈ A stands for the quality the seller supplies, MLRP

implies that each buyer is more likely to receive a better signal (i.e., a higher s) when the seller supplies

higher quality. Whether the patient player can guarantee his Stackelberg payoff in all equilibria hinges

on whether player 2’s private signal is unboundedly informative about the Stackelberg action a∗.

Unbounded Informativeness. f is unboundedly informative about a∗ if for every M > 0, there

exists s ∈ S, such that f(s|a∗) > Mf(s|a) for every a 6= a∗.

My notion of unbounded informativeness is similar to that in Smith and Sørensen (2000).4 When

S is a finite set, unbounded informativeness requires the existence of s∗ ∈ S such that f(s∗|a) > 0 if

4First, when S is infinite, I allow for, but does not require, signal realizations that can perfectly rule out some of player
1’s actions, while Smith and Sørensen (2000) require the signal distribution to have full support conditional on every
state. Second, I restrict attention to S that is countable while Smith and Sørensen (2000) allow S to be uncountable.
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and only if a = a∗. When S is countably infinite, f(·|a) can have full support for every a ∈ A, as long

as there exists a sequence {sn}n∈N ⊂ S such that limn→+∞
f(sn|a∗)
f(sn|a) = +∞ for every a 6= a∗.

Theorem 2 shows that under MLRP, f being unboundedly informative about a∗ is sufficient and

almost necessary for player 1 to secure his Stackelberg payoff in all equilibria.

Theorem 2. Suppose payoffs satisfy Assumptions 1 and 2, and f satisfies MLRP.

1. If f is unboundedly informative about a∗, then for every π0 > 0 and ε > 0, there exists δ∗ ∈ (0, 1)

such that when δ > δ∗, player 1’s payoff is at least u1(a∗, b∗)− ε in all equilibria.

2. If there exists ε > 0 such that f(s|a′) ≥ εf(s|a∗) for every s ∈ S, then for every K ∈ N, there

exists π0 ∈ (0, 1) such that for every π0 < π0 and δ large enough, there exists an equilibrium in

which player 1’s payoff is u1(a′, b′).

The proof is in Appendix B.1, and a constructive proof for the existence of equilibrium is in

Appendix B.2.5 In games where |A| = 2, every f satisfies MLRP. Since MSM requires that a∗ 6= a′,

when |A| = 2 and f is not unboundedly informative about a∗, there exists ε > 0 such that f(s|a′) ≥

εf(s|a∗) for every s ∈ S. According to Theorem 2, f being unboundedly informative about a∗ is

both necessary and sufficient for player 1 to secure his Stackelberg payoff in all equilibria. When

|A| ≥ 3, MLRP cannot be dropped and the condition in statement 2 cannot be replaced by f not

being unboundedly informative about a∗. I present a counterexample in Section 4.

The requirement of unboundedly informative private signal in Theorem 2 is reminiscent of the

well-known results of Bikhchandani, Hirshleifer and Welch (1992) and Smith and Sørensen (2000),

that in canonical social learning models, myopic players’ actions are asymptotically efficient if and

only if their private signals are unboundedly informative about a persistent exogenous state.

My reputation result is conceptually different from their social learning results since the short-run

players asymptotically learn about the persistent state is neither necessary nor sufficient for player

1 to receive a high discounted average payoff.6 It is not sufficient since converging to a high-payoff

outcome asymptotically does not imply that player 1 receives a high discounted average payoff. This

is demonstrated by my constructive proof of Theorem 1 in which player 1’s asymptotic payoff is his

Stackelberg payoff while his discounted average payoff equals his minmax value. It is not sufficient

5Statement 1 of Theorem 2 only establishes a common property of all equilibria but does not establish the existence
of equilibrium. Equilibrium existence does not follow from the result of Fudenberg and Levine (1983) when S is infinite.

6My result also differs from Mirrlees (1976) who shows that in principal-agent models, the principal can implement
the first best outcome when there exists a signal realization that occurs with zero probability when the agent takes
the first-best action and occurs with positive probability otherwise. This is because in my model, the rewards and
punishments to player 1 are endogenously determined by player 2’s future actions. Depending on the equilibrium being
played, there are multiple ways in which the signal realizations are mapped to player 1’s continuation payoffs.
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since player 2 only cares about player 1’s action and does not care about player 1’s type per se. As a

result, in pooling equilibria where the strategic type imitates the commitment type, player 2s cannot

learn anything about player 1’s type, yet player 1 can still receive his Stackelberg payoff.

The intuition behind Theorem 2 is that player 2t observing an unboundedly informative private

signal about at guarantees a uniform lower bound on the speed with which they learn from previous

player 2s’ actions, which does not depend on player 1’s discount factor. Since each player 2 observes

all of her predecessors’ actions, player 1 receives at least his Stackelberg payoff in all equilibria. By

contrast, when the likelihood ratio between the lowest action a′ and the Stackelberg action a∗ is

uniformly bounded from below, the speed of observational learning can vanish to zero as δ → 1.

Similar to the case without contemporaneous information, the prolonged learning process wipes out

player 1’s gains from reputations and leads to equilibria in which he receives his minmax payoff.

I sketch the proof for my reputation result in two steps, which can explain the role of MLRP and

unbounded informativeness. To provide intuition, I focus on the case in which S is finite, i.e., f is

unboundedly informative only when there exists s∗ ∈ S such that f(s∗|a) > 0 if and only if a = a∗.

First, I examine whether player 2t’s action is informative about her private signal st. Intuitively,

bt can be uninformative about st for two reasons: (1) player 2t is unwilling to play b∗ no matter which

st she observes, and (2) player 2t is willing to play b∗ no matter which st she observes. Since f is

unboundedly informative about a∗, player 2 has a strict incentive to play b∗ when she observes s∗,

which rules out the first reason.7 If the second reason applies, then player 1’s stage-game payoff is

u1(a∗, b∗) when he imitates the commitment type.

Second, I examine whether player 2t’s action is informative about player 1’s type. When player 1’s

action choice is binary, i.e., A ≡ {a∗, a′}, player 2t is willing to play b∗ if and only if f(st|a∗)
f(st|a′) is above

some cutoff. This implies that Pr(bt = b∗|at = a∗)− Pr(bt = b∗|at = a′) ≥ 0. Since player 2t plays b∗

after observing s∗ which occurs if and only if player 1 plays a∗, there exists c > 0 such that

Pr(bt = b∗|at = a∗)− Pr(bt = b∗|at = a′) ≥ c(1− Pr(bt = b∗|at = a∗)), (3.4)

i.e., the informativeness of bt about at is bounded from below by some positive function of 1−Pr(bt =

b∗|at = a∗). Since the strategic type plays a∗ with probability bounded away from 1 when Pr(bt =

b∗|at = a∗) ≤ 1− ν, the informativeness of bt about player 1’s type is also bounded from below.

When player 1 has three or more actions, player 2t’s incentive to play b∗ can no longer be summa-

7When S is infinite and f is unboundedly informative about a∗, there exists a nonempty subset of signal realizations
S(π) for every π ∈ (0, 1) such that when the prior probability of commitment type is at least π before player 2t observes
st, she has a strict incentive to play b∗ after observing any st ∈ S(π). See Lemma B.1 in Appendix B for details.
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rized by a likelihood ratio. As a result, her action can be uninformative about player 1’s type even

when f is unboundedly informative about a∗ and bt is informative about st. I provide a counterex-

ample in Section 4. Nevertheless, if f satisfies MLRP, then bt is informative about player 1’s type

in every period where Pr(bt = b∗|at = a∗) 6= 1. Formally, for every α ∈ ∆(A) and β : S → ∆(B),

let γ(α, β) ∈ ∆(B) be the distribution of b induced by (α, β). I show in Lemma B.2 of Appendix B

that there exists c > 0 such that for every ν ∈ (0, 1), every α such that a∗ belongs to the support of

α, and every β that best replies to α, if the probability of b∗ under γ(a∗, β) is less than 1 − ν, then

the distance between γ(α, β) and γ(a∗, β) is at least cν. This implies that when player 1 imitates the

commitment type, either b∗ occurs with probability close to 1 under a∗ and β, or the informativeness

of bt about player 1’s type is uniformly bounded from below.

3.3 Unified Explanation for Theorems 1 and 2

I provide a unified explanation for my two theorems and the canonical reputation results in Fudenberg

and Levine (1989, 1992). In the reputation models of Fudenberg and Levine (1989, 1992), Gossner

(2011) shows that for any δ ∈ (0, 1) and any equilibrium (σ1, σ2),

E(a∗,σ2)
[ ∞∑
t=0

d
(
yt(·|a∗)

∣∣∣∣∣∣yt(·))] ≤ − log π0, (3.5)

where yt(·|a∗) is the distribution over player 2’s signals about at when player 1 plays a∗, yt(·) is the

distribution over player 2’s signals about at in equilibrium, d(·||·) is the KL-divergence, and E(a∗,σ2)[·]

is the expectation operator when player 1 plays a∗ in every period and player 2 plays σ2.

Inequality (3.5) applies to my model, both with and without contemporaneous information.

In the models of Fudenberg and Levine (1989, 1992) when player 2s’ signals can statistically identify

player 1’s actions, d
(
yt(·|a∗)

∣∣∣∣yt(·)) is bounded away from 0 at every history where player 2t does not

have a strict incentive to play b∗. Inequality (3.5) implies that the expected number of such “bad

periods” is uniformly bounded from above and this upper bound does not depend on δ. Therefore,

player 1’s expected payoff in every equilibrium is at least u1(a∗, b∗) when δ is close to 1.

In my constructive proof of Theorem 1, let yt(·) be the distribution of bt+1 and let yt(·|a∗) be the

distribution of bt+1 conditional on at = a∗. It is still true that d
(
yt(·|a∗)

∣∣∣∣yt(·)) > 0 when player 2 does

not have a strict incentive to play b∗, but d
(
yt(·|a∗)

∣∣∣∣yt(·)) vanishes to 0 as δ goes to 1. Therefore, the

expected number of periods where player 2 does not have a strict incentive to play b∗ can grow without

bound, which explains the existence of equilibria where the patient player receives his minmax payoff.

In the case with contemporaneous information, let yt(·) be the distribution of bt and let yt(·|a∗)
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be the distribution of bt conditional on at = a∗. When f is unboundedly informative, there exists a

strictly increasing function g : [0, 1] → R+ with g(0) = 0 such that d
(
yt(·|a∗)

∣∣∣∣yt(·)) > g(ν) at every

history where player 2 plays b∗ with probability less than 1− ν. Inequality (3.5) implies that for every

ν ∈ (0, 1), the expected number of periods where Pr(bt = b∗|at = a∗) < 1− ν is bounded from above

and this upper bound depends only on ν and is independent of δ. This implies that a patient player

receives at least a fraction 1− ν of his Stackelberg payoff when he imitates the commitment type.

4 Discussions & Extensions

I discuss the robustness of my reputation failure result under alternative information structures and

explain the role of MLRP in my reputation result. I also discuss an extension in which every buyer

observes a bounded stochastic subset of the seller’s past actions, in addition to all previous buyers’

actions. Some of the claims made in this section are shown in a working paper version (Pei 2020).

Bounded Observation of Both Players’ Actions: I consider an extension in which player 2t

observes (amax{0,t−K}, ..., at−1) and (bmax{0,t−M}, ..., bt−1) where K ≥ 1 and M ≥ 1 are finite integers.

The low-payoff equilibrium in the proof of Theorem 1 remains to be an equilibrium since (1) player

2’s equilibrium strategy depends only on (at−1, bt−1), which is feasible as long as K ≥ 1 and M ≥ 1,

and (2) at every history where the strategic type player 1 needs to play a mixed action, in another

word, when (at−1, bt−1) 6= (a∗, b∗), the probability with which player 2’s posterior belief attaches to

the commitment type is uniformly bounded from above. For some intuition, take the product choice

game example and suppose (at−K , ..., at−1) = (H, ...,H) and (bt−M , ..., bt−1) = (N, ..., N). According

to my construction, if

Pr
(

(at−K , ..., at−1, b0, ..., bt−1)
∣∣∣(at−K , ..., at−1) = (H, ...,H) and (bt−M , ..., bt−1) = (N, ..., N)

)
> 0

and

Pr
(
ωc

∣∣∣(at−K , ..., at−1, b0, ..., bt−1)
)
> 0,

then (at−K , ..., at−1, b0, ..., bt−1) = (H, ...,H,N, ..., N). Since the posterior probability of commitment

type is less than q/2 after observing (at−K , ..., at−1, b0, ..., bt−1) = (H, ...,H,N, ..., N), we know that

the posterior probability of commitment type is also less than q/2 after observing (at−K , ..., at−1) =

(H, ...,H) and (bt−M , ..., bt−1) = (N, ..., N).

However, the conclusion that player 1’s undiscounted average payoff from imitating the commit-



4 DISCUSSIONS & EXTENSIONS 16

ment type is at least K
K+1u1(a∗, b∗) + 1

K+1u1(a∗, b′) in every equilibrium is no longer true. In fact,

there exist equilibria in which player 1’s undiscounted average payoff is close to his minmax payoff for

every finite K and M , which means that reputation failure is not caused by slow learning, but rather,

by bounded observation of players’ past actions.

Claim 2. In the product choice game with K and M being strictly positive and finite. For every

ε > 0, there exists δ ∈ (0, 1) such that when δ > δ, there exist equilibria in which

lim sup
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≤ ε. (4.1)

The proof is in Appendix D, and this conclusion generalizes to all monotone-supermodular games

that satisfy a mild regularity condition. Intuitively, each of player 2’s action is informative about

player 1’s past actions, although their informativeness is bounded. As a result, player 2 may never be

convinced that player 1 will play H when she can only observe a finite number of past actions. If this

is the case, then player 2t may have an incentive to play N despite (at−1, bt−1) = (H,T ). However,

such an equilibrium will unravel when player 2 observes all of player 2’s past actions, since player 2

will eventually be convinced that player 1 will play H in the future after observing a long string of T .

Detrimental Effects of Observing Player 2’s Past Actions: I show by example that allowing

buyers to observe previous buyers’ actions can significantly reduce the seller’s equilibrium payoff.

I focus on the product choice game in Section 1 with an additional parametric assumption that

cN > cT . That is, players’ actions are strategic complements.8 I show in Claim 2 that when player

2t can only observe at−1, a patient player 1 receives payoff close to 1 in all equilibria. This stands in

contrast to the conclusion of Theorem 1, in which an arbitrarily patient player 1 receives his minmax

payoff in some equilibria when player 2t can also observe player 2’s past actions in at least one period.

An implicit assumption is that player 2 cannot directly observe calendar time. She has a prior belief

about t, observes player 1’s action in the previous period and updates her belief about t according to

Bayes Rule (e.g,. if she observes at−1 = ∅, then she knows that t = 0). In order to make player 2’s

prior belief about calendar time well-defined, I decompose player 1’s discount factor δ into two parts.

1. Survival rate: In every period, player 1 survives in the next period with probability δ1 ∈ (0, 1),

and with complementary probability, he dies or exits the market after which the game ends.

2. Time preference: One unit of utility in period t is worth δ2 ∈ (0, 1) unit in period t− 1.

8Liu and Skrzypacz (2014) examine the product choice game under a different assumption that the seller’s cost of
effort is strictly greater when the buyer trusts the seller, i.e., players’ payoffs are submodular.
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By definition, δ = δ1δ2. Under the above interpretation, player 2’s prior belief attaches probability

(1− δ1)δt1 to calendar time being t. I establish the following reputation result.

Claim 3. Suppose 0 < cT < cN and each player 2 can only observe player 1’s action in the period

before, then for every π0 > 0, there exists δ ∈ (0, 1) such that when δ > δ,

1. There exists at least one equilibrium.

2. In every equilibrium, the strategic type player 1’s payoff is at least δ − (1− δ)cN .

The proof is in Appendix E. For some intuition, when player 2t cannot observe bt−1, bt−1 affects

player 1’s incentive in period t−1 only through his stage-game payoff. The strategic complementarity

between actions implies that player 1 has a stronger incentive to play H when player 2 plays T with

higher probability. Therefore, whenever the strategic type has an incentive to impede learning by

playing H when at−1 = L, he must have a strict incentive to do so when at−1 = H. If this is the

case, then the buyer has a strict incentive to trust him whenever at−1 = H and a patient seller can

guarantee his optimal commitment payoff by imitating the commitment type.

When player 2t observes bt−1, bt−1 can also affect player 1’s continuation value. This weakens the

implication of strategic complementarity in the stage game and leads to equilibria in which player 2t’s

action is more responsive to player 2t−1’s action rather than player 1’s past actions. The strategic

type player 1 always has an incentive to imitate the commitment type, although this incentive is weak

and therefore, is insufficient to provide player 2 a strict incentive to play T .

The Role of MLRP: MLRP ensures that the informativeness of bt about player 1’s type is bounded

away from 0 whenever the probability with which bt = b∗ is bounded away from 1.

In order to demonstrate that MLRP is not redundant for my reputation result, I provide an

example in which players’ stage-game payoffs satisfy Assumptions 1 and 2, the signal distribution

is unboundedly informative about a∗, but violates MLRP. I show that a patient player 1’s payoff is

bounded below his optimal commitment payoff in some equilibria. Players’ payoffs are

- b∗ b′

a 1, 4 −2, 0

a∗ 2, 1 −1, 0

a 3,−2 0, 0

Let S ≡ {s, s∗, s}, with f(s∗|a∗) = 2/3, f(s|a∗) = 1/3, f(s|a) = 1, f(s|a) = 1/3, and f(s|a) = 2/3.
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One can verify that players’ payoffs are monotone-supermodular when player 1’s actions are ranked

according to a � a∗ � a and player 2’s actions are ranked according to b∗ � b′. Player 1’s Stackelberg

action is a∗, his Stackelberg payoff is 2, f is unboundedly informative about a∗, but violates MLRP.

I construct an equilibrium in which player 1’s payoff is 1, which is strictly bounded below his

Stackelberg payoff. The strategic-type player 1 plays a mixed action that depends only on player 2’s

posterior belief about his type. If player 2’s posterior belief assigns probability π to the commitment

type, then the strategic-type player 1 plays α(π) ∈ ∆(A), which is pinned down by:

(1− π) ◦ α(π) + π ◦ a∗ = 0.5 ◦ a∗ + 0.25 ◦ a+ 0.25 ◦ a.

Player 2 plays b∗ if st ∈ {s∗, s} and plays b′ if st = s.

This strategy profile is an equilibrium since player 1’s expected stage-game payoff is 1 no matter

which action he plays, and his continuation value is independent of his action in the current period.

Player 2 has a strict incentive to play b∗ after observing s or s∗, and has an incentive to play b′ after

observing s. Conditional on each type of player 1, the probability with which player 2 plays b∗ is 2/3.

In the above example, bt is uninformative about player 1’s type despite the probability of bt = b∗

is bounded away from 1. As a result, even when player 1 builds a reputation for playing a∗, player 2

can still play b′ with significant probability in unbounded number of periods. This explains why the

patient player’s equilibrium payoff is bounded below his Stackelberg payoff in some equilibria.

Bounded Informativeness: I use the following example to explain why the condition in statement

2 cannot be replaced by a weaker bounded informativeness condition. Players’ payoffs are

- b∗ b′

a 1, 4 −2, 0

a∗ 2, 1 −1, 0

a 3,−2 0, 0

Let S ≡ {s, s∗, s}, with f(s|a) = 2/3, f(s∗|a) = 1/3, f(s|a∗) = 1/3, f(s∗|a∗) = 2/3, and f(s|a) = 1.

One can verify that players’ stage-game payoffs are monotone-supermodular when player 1’s actions

are ranked according to a � a∗ � a, and player 2’s actions are ranked according to b∗ � b′. When

signal realizations are ranked according to s � s∗ � s, f satisfies MLRP, and is not unboundedly

informative about a∗.

Player 1 receives at least his Stackelberg payoff 2 in every equilibrium. This is because when player

1 plays a∗, player 2 observes either s∗ or s, and has a strict incentive to play b∗.
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Games with Stochastic Network Monitoring: In the baseline model, each buyer observes the

seller’s actions in the last K periods.

In many applications of interest, each consumer observes a stochastic subset of the seller’s past

actions. For example, each buyer randomly samples previous buyers and asks the buyers in her

sample about their personal experiences with the seller. Alternatively, every buyer may only talk to

her friends, modeled as her neighbors in a stochastic network, about the seller’s actions against them.

In both scenarios, the seller does not know who does each buyer sample and who each buyer’s friends

are. This leads to private monitoring about the seller’s past actions and private learning about the

seller’s type. Both of these features bring new challenges to conduct equilibrium analysis.

I study an extension in a working paper version (Pei 2020) where every buyer observes the entire

history of previous buyers’ actions as well as the seller’s past actions according to a stochastic network

among the buyers N ≡ {Nt}∞t=1, with Nt ∈ ∆
(
2{0,1,...,t−1}). The realization of Nt is denoted by

Nt ⊂ {0, 1, ..., t − 1}, which is privately observed by player 2t and is unbeknownst to player 1 and

other short-run players. In the case without contemporaneous information, player 2t observes Nt,

{aτ}τ∈Nt , {b0, ..., bt−1}, and ξt. In the case with contemporaneous information, she observes Nt,

{aτ}τ∈Nt , {b0, ..., bt−1}, ξt, and st ∈ S drawn according to f(·|at) ∈ ∆(S).

Statement 1 of Theorem 2 applies regardless of the stochastic network N , since bt is informative

about at whenever Pr(bt = b∗) < 1. Theorem 1 and Statement 2 of Theorem 2 extend when N is such

that (1) for every s 6= t, Ns and Nt are independent random variables, which is commonly assumed in

the social learning literature including Acemoglu, Dahleh, Lobel and Ozdaglar (2011). (2) there exist

K ∈ N and γ ∈ (0, 1) such that Pr
(
|Nt| ≤ K

)
= 1 and Pr

(
t− 1 ∈ Nt

)
≥ γ for every t ≥ 1, i.e., every

buyer observes a bounded stochastic subset of the seller’s past actions and observes the seller’s action

against her immediate predecessor with probability bounded away from zero.

The proof of the reputation failure result shares similar ideas with the proof of Theorem 1. In

particular, I construct an equilibrium that starts from a non-trusting phase and followed by a trusting

phase and a punishment phase. The main challenge is to construct the non-trusting phase under

private monitoring and private learning. The belief-free approach in the existing literature does not

directly apply, since player 2s are myopic in my model. In equilibria where nontrivial learning takes

place, player 2s’ actions are sensitive to their posterior beliefs about player 1’s type, making it hard

to sustain belief-free incentives.

To illustrate how I construct the non-trusting phase, consider the product choice game earlier in

this section. Let q∗ be the minimal probability with which H needs to be played in order to provide

player 2 an incentive to play T . Let {a0, ..., at−1, b0, ..., bt−1} be a complete history in period t.
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First, consider providing belief-free incentives such that (1) conditional on each complete history,

player 2 believes that H will be played with probability q∗, and (2) each player 2 mixes between T and

N with probability that makes player 1 indifferent between H and L. Under this arrangement, both

T and N are player 2’s best replies, regardless of her belief about player 1’s type and private history.

However, this belief-free arrangement is feasible in period t only if after observing each complete

history in period t, player 2’s posterior belief attaches probability less than q∗ to the commitment

type. Since player 2 plays N in the non-trusting phase, the probability with which player 1 plays H is

at most q∗. Therefore, a hypothetical observer’s posterior belief attaches probability arbitrarily close

to 1 to the commitment type after observing a sufficiently long string of H. This implies the existence

of a cutoff calendar time, such that the above belief-free arrangement is feasible only if calendar time

is below this cutoff.

In light of this observation, I use the following belief-based construction when calendar time is

above the aforementioned cutoff. In particular, player 1’s action depends on his private history, which

is chosen such that each player 2 is indifferent under her posterior belief about player 1’s private history.

This is equivalent to establish the existence of solution to a system of linear equations, in which the

number of player 1’s private histories is the number of free variables, and the number of player 2’s

private histories is the number of linear constraints. In period t, the number of free variables is 2t.

Given that each player 2’s sample size is at most K, the number of constraints is at most 2K
∑K

j=0

(
t
j

)
.

An important observation is that the linear system is under-determined if and only if t is large relative

to K. This explains why the belief-free construction is used only when calendar time is below the

cutoff, and the belief-based construction is used only when calendar time is above the cutoff.

5 Concluding Remarks

I examine a patient player’s returns from investing in his reputation when his opponents have limited

access to his past records and learn primarily from previous short-run players’ actions.

My results relate the patient player’s returns from good reputations to the speed with which

myopic players learn from their predecessors’ actions, which hinges on the private information each

myopic player receives about the patient player’s current-period action. When myopic players have

no information about the patient player’s current-period action or can only observe a boundedly

informative signal, the speed of observational learning can vanish to zero as the patient player’s

discount factor approaches unity, leading to equilibria in which the patient player receives his minmax

payoff. When every myopic player privately observes an unboundedly informative signal about the
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patient player’s current-period action, the patient player receives at least his optimal commitment

payoff in all equilibria since the speed of observational learning is uniformly bounded away from zero.

I construct a class of low-payoff equilibria in which every buyer’s action is more responsive to the

buyer’s past actions compared to the seller’s past actions. Those equilibria highlight the interaction

between social learning and reputation building, and demonstrate the fragility of reputation effects

when players have bounded memory or limited capacity to process detailed information. They also

demonstrate the importance of high-quality record-keeping institutions and high-quality inspection

technologies in encouraging sellers to build good reputations. In particular, observational learning from

buyers’ past actions is a powerful tool in motivating sellers to supply high quality once complemented

with a minimal frequency of product certification.

I conclude by explaining the connections between this paper and the existing literature on repu-

tation failure, reputation models with bounded memories, and social learning.

Reputation Failures: My Theorem 1 identifies a new mechanism for why reputation effects may fail

despite the reputation-building player is patient and his opponents receive informative signals about

his behavior. This stands in contrast to existing theories that are based on the lack-of-identification

(e.g., Ely and Välimäki 2003) or the uninformed player being patient (e.g., Cripps and Thomas 1997).

Models with lack-of identification such as Ely and Välimäki (2003), Ely, Fudenberg and Levine

(2008), and more recently Deb, Mitchell and Pai (2020) focus on participation games where the

uninformed player(s) can take a non-participating action under which future uninformed players cannot

receive informative signals about the informed player’s current-period action.9 The uninformed players’

option to shut down learning leads to equilibria with low asymptotic payoffs. My model stands in

contrast to theirs since no action of the uninformed player can stop her successors’ learning. Despite

the informed player is guaranteed to receive a high asymptotic payoff by building his reputation, his

discounted average payoff is low since the speed of learning depends endogenously on his patience.

Schmidt (1993), Cripps and Thomas (1997), and Chan (2000) construct low-payoff equilibria when

the uninformed player is patient and can observe the entire history of the informed player’s actions.

The takeaway message from their papers and other reputation models with complete records (e.g.,

Fudenberg and Levine 1989) is that the informed player’s patience helps reputation building while the

uninformed player’s patience hurts reputation building. In particular, the cost of reputation building

is lower when the informed player becomes more patient. The takeaway message from my analysis

is entirely the opposite, that the informed player’s patience lowers the rate of learning, prolongs the

9Levine (2019) examines a model where signals are less informative when the uninformed players do not participate.
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process of reputation building, which can exactly cancel out the positive effects of patience.

Reputation Models with Limited Memory: Existing reputation models with bounded memories

such as Liu (2011), Liu and Skrzypacz (2014), and Kaya and Roy (2020) study situations in which

every short-run player observes a bounded sequence of the long-run player’s past actions, but cannot

observe other short-run players’ actions.

This modeling difference between my paper and theirs leads to different insights. My model with

unboundedly informative contemporaneous information implies that consumers’ observational learning

can provide powerful incentives for sellers to build reputations in all equilibria once complemented

with a minimal frequency of product certification. In my model without contemporaneous information,

player 1 can guarantee a high asymptotic payoff from building his reputation in all equilibria, which

implies that slow learning is the only plausible driving force behind reputation failures.

By contrast, in the models of Liu (2011) and Liu and Skrzypacz (2014) when the prior probability of

commitment type is below a cutoff, both the patient player’s discounted average payoff and asymptotic

payoff are bounded below his Stackelberg payoff in all Markov equilibria. This implies that my positive

reputation results hinge on unbounded observation of previous consumers’ actions. Furthermore, the

reputation cycles in their models rely on the assumption that the seller can unilaterally clean up his

records, which is not feasible in my model when consumers can observe previous consumers’ choices.

Social Learning: My model can be viewed as a social learning game in which a sequence of myopic

players observe their predecessors’ actions and some private signals (e.g., the long-run player’s actions

in the last K periods) in order to forecast the current behavior of a strategic long-run player.

The object to learn differs from the social learning models of Banerjee (1992), Bikhchandani, et al.

(1992), and Smith and Sørensen (2000) in which myopic players learn about an exogenous state.10 As

a result, the myopic players asymptotically learn the state (i.e., the patient player’s type) is neither

sufficient nor necessary for the patient player to receive his Stackelberg payoff.

In terms of research question, I examine the effects of social learning on a patient player’s discounted

average payoff. This stands in contrast to existing results that focus on players’ asymptotic beliefs

(Banerjee 1992 and so on), their asymptotic rates of learning (Gale and Kariv 2003, Hann-Caruthers,

Martynov and Tamuz 2018, Harel, Mossel, Strack and Tamuz 2020), and their asymptotic payoffs

10Logina, Lukyanov and Shamruk (2019) study a social learning model in which every myopic player observes a private
signal about a patient player’s action. They show that the patient player exerts high effort only when the myopic players’
beliefs are intermediate. Board and Meyer-ter-Vehn (2020) study a model of innovation adoption in which players learn
about a persistent exogenous state, and characterize the rate of learning under different network structures.
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(Rosenberg and Vieille 2019).11 As highlighted by the comparison between Theorem 1 and Claim 1,

the patient player’s discounted average payoff can be low despite their asymptotic payoff is high.

In my model, the patient player receives at least his Stackelberg payoff in every equilibrium when

each myopic player directly observes her predecessors’ private signals. This is analogous to Banerjee

(1992), Bikhchandani, et al. (1992), and Smith and Sørensen (2000) in which myopic players’ actions

are asymptotically efficient when they can directly observe their predecessors’ private signals.

However, different forms of inefficiencies arise when the myopic players can only observe their

predecessors’ actions but not their private signals. In canonical social learning models, the asymptotic

outcome is inefficient since players can herd on an inefficient action. In every equilibrium of my model

without contemporaneous information, the myopic players never herd on any action other than b∗,

and inefficiencies take the form of low discounted average payoff despite player 1 can guarantee a high

asymptotic payoff by building his reputation.

My paper is also related to the literature on social learning with bounded memory. Drakopoulos et

al (2012) examine a setting in which every myopic player learns about an exogenous state by observing

some private signals and the actions of his last K immediate predecessors. They show that learning is

possible when K ≥ 2 but not when K = 1. By contrast, the myopic players learn about the behavior

of a strategic long-run player in my model and the informativeness of their private signal (i.e., the

patient player’s past actions) is also endogenous. In contrast to the conclusion in Drakopoulos et al

(2012), the length of memory does not play a key role in my result as long as it is strictly positive.

11A separate strand of works characterize mechanisms that maximize a sequence of myopic players’ discounted average
payoff in social learning games, which include Che and Hörner (2018) and Smith, Sørensen and Tian (2021).
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A Proof of Theorem 1

Since a∗ 6= a′, a′ is the lowest action, and u1(a, b) is strictly decreasing in a, we know that u1(a′, b′) <

u1(a∗, b∗). I normalize player 1’s payoff by setting u1(a′, b′) = 0 and u1(a∗, b∗) = 1.

Let q be the largest q ∈ [0, 1] such that b′ is not player 2’s strict best reply to qa∗ + (1 − q)a′.

Let q be the smallest q ∈ [0, 1] such that b∗ is not player 2’s strict best reply to qa∗ + (1 − q)a′.

Assumption 1 implies that b∗ is a strict best reply to a∗ and b′ is a strict best reply to a′. Hence

0 < q < q < 1 and there exist b∗∗ 6= b′ and b′′ 6= b∗ such that {b∗∗, b′} ⊂ BR2(qa∗ + (1 − q)a′) and

{b∗, b′′} ⊂ BR2(qa∗+(1−q)a′). The MSM condition (i.e., Assumption 2) implies that b∗ � b′′, b∗∗ � b′,

and b∗ � b′. This implies that there are three possibilities, which I consider separately in the proof.

1. b∗ = b∗∗ and b′ = b′′.

2. b∗ � b′′ � b∗∗ � b′.

3. b∗ � b′′ = b∗∗ � b′.

I construct equilibrium in which (1) player 1’s payoff is 0, (2) player 2t’s action depends only on

(at−1, bt−1) and player 1’s action in period t depends only on (at−1, bt−1) and player 2’s posterior

belief about player 1’s type, (3) player 1 plays a∗ or a′ on the equilibrium path, (4) if at−1 /∈ {a′, a∗},

then the continuation play proceeds as if (at−1, bt−1) = (a′, bt−1). Since u1(a, b) strictly decreases in a

and a′ is player 1’s lowest action, he strictly prefers a′ to actions other than a∗ and a′ at any history.

Case 1: b∗ = b∗∗ and b′ = b′′ In this case, q = q ≡ q. The construction resembles that in the

product choice game after replacing H with a∗, L with a′, T with b∗, and N with b′.

1. When (at−1, bt−1) = (a′, b′) or ∅. Player 2 plays b′. The strategic type player 1 mixes between

a∗ and a′ such that player 2 believes that a∗ is played with probability q.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b∗ with probability −1−δ
δ u1(a∗, b′) and plays b′ with

complementary probability. The strategic type player 1 mixes between a∗ and a′ such that player

2 believes that a∗ is played with probability q.

3. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability 1−(1−δ)u1(a′,b∗)
δ and plays b′ with

complementary probability. The strategic type player 1 mixes between a∗ and a′ such that player

2 believes that a∗ is played with probability q.

4. When (at−1, bt−1) = (a′, b∗), player 2 plays b∗ and the strategic type player 1 plays a∗.
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Suppose π0 ≤
(
q
2

)−K−1
. Verifying players’ incentive constraints and that player 2’s posterior belief

attaches probability less than q/2 to the commitment type at every history where (at−1, bt−1) 6= (H,T )

follows from the same steps as in the product choice game, which I omit in order to avoid repetition.

Case 2: b∗ � b′′ � b∗∗ � b′ Consider the following strategy profile, which is parameterized by

r(a∗, b′), r(a∗, b′′), r(a′, b∗), and r(a′, b∗∗), all belong to (0, 1) and will be specified later on.

(1) When (at−1, bt−1) = (a′, b′) or (a′, b′′) or ∅. Player 2 plays b′. The strategic type player 1 mixes

between a∗ and a′ such that a∗ is played with probability q under player 2’s posterior.

(2) When (at−1, bt−1) = (a∗, b′). Player 2 plays b∗∗ with probability r(a∗, b′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played

with probability q under player 2’s posterior.

(3) When (at−1, bt−1) = (a∗, b′′). Player 2 plays b∗∗ with probability r(a∗, b′′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played

with probability q under player 2’s posterior.

(4) When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability r(a′, b∗) and b′′ with complemen-

tary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played with

probability q under player 2’s posterior.

(5) When (at−1, bt−1) = (a′, b∗∗). Player 2 plays b∗ with probability r(a′, b∗∗) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played

with probability q under player 2’s posterior.

(6) When (at−1, bt−1) = (a∗, b∗) or (a∗, b∗∗). Player 2 plays b∗ and player 1 plays a∗.

Next, I compute player 1’s continuation values and verify his incentive constraints. From (1) and (6),

we know that V (∅) = V (a′, b′) = V (a′, b′′) = 0 and V (a∗, b∗∗) = V (a∗, b∗) = 1. Player 1’s indifference

at (at−1, bt−1) = (a′, b′) implies that

V (a∗, b′) = −1− δ
δ

u1(a∗, b′). (A.1)

Since (1 − δ)u1(a∗, b′) + δV (a∗, b′) = (1 − δ)u1(a′, b′) + δu1(a′, b′) = 0, player 1 is indifferent when

(at−1, bt−1) ∈ {(a′, b′′), (a∗, b′), (a∗, b′′)} if and only if

(1− δ)u1(a′, b∗∗) + δV (a′, b∗∗) = (1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a∗, b∗∗) + δ, (A.2)
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which implies that

V (a′, b∗∗) = 1− 1− δ
δ

(
u1(a′, b∗∗)− u1(a∗, b∗∗)︸ ︷︷ ︸

>0

)
. (A.3)

Let V (a′, b∗) be such that player 1 is indifferent when (at−1, bt−1) = (a∗, b∗). This yields:

V (a′, b∗) =
1− (1− δ)u1(a′, b∗)

δ
. (A.4)

According to (A.4), player 1 is indifferent when (at−1, bt−1) ∈ {(a∗, b∗∗), (a′, b∗), (a′, b∗∗)} if and only if

(1− δ)u1(a∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a′, b′′) + δV (a′, b′′) = (1− δ)u1(a′, b′′). (A.5)

This yields:

V (a∗, b′′) =
1− δ
δ

(
u1(a′, b′′)− u1(a∗, b′′)︸ ︷︷ ︸

>0

)
. (A.6)

Next, I pin down variables r(a∗, b′), r(a∗, b′′), r(a′, b∗), and r(a′, b∗∗).

1. r(a∗, b′) is pinned down by:

V (a∗, b′)︸ ︷︷ ︸
positive but close to 0

= r(a∗, b′)
(

(1− δ)u1(a∗, b∗∗) + δ V (a∗, b∗∗)︸ ︷︷ ︸
=1

)
.

Such r ∈ [0, 1] exists since 0 < V (a∗, b′) < (1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗).

2. r(a∗, b′′) is pinned down by:

V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

= r(a∗, b′′)
(

(1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗)
)
.

Such r ∈ [0, 1] exists since 0 < V (a∗, b′′) < (1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗).

3. r(a′, b∗) is pinned down by:

V (a′, b∗)︸ ︷︷ ︸
less than but close to 1

= r(a′, b∗) + (1− r(a′, b∗))
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

)
.

Such r ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1.
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4. r(a′, b∗∗) is pinned down by:

V (a′, b∗∗)︸ ︷︷ ︸
less than but close to 1

= r(a′, b∗∗) + (1− r(a′, b∗∗))
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

)
.

Such r ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1.

When the prior probability of commitment type is less than π0 where π0 is given by

π0

1− π0
=
(q

2

)K
·

q

2− q
, (A.7)

player 2’s posterior belief attaches probability less than q/2 to the commitment type at every history

where (at−1, bt−1) /∈ {(a∗, b∗), (a∗, b∗∗)}. This implies that the strategic type player 1 plays a∗ with

probability at least q/2 at every history, and that his mixed strategy is well-defined.

Case 3: b∗ � b′′ = b∗∗ � b′ I write b′′ instead of b∗∗. Consider the following strategy profile,

parameterized by s(a∗, b′), s(a∗, b′′), s(a′, b∗), and s(a′, b∗∗).

(1) When (at−1, bt−1) = (a′, b′) or ∅. Player 2 plays b′. The strategic type player 1 mixes between

a∗ and a′ such that a∗ is played with probability q under player 2’s posterior.

(2) When (at−1, bt−1) = (a∗, b′). Player 2 plays b
′′

with probability s(a∗, b′) and b′ with complemen-

tary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played with

probability q under player 2’s posterior.

(3) When (at−1, bt−1) = (a′, b′′). Player 2 plays b′′ with probability s(a′, b′′) and b′ with complemen-

tary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played with

probability q under player 2’s posterior.

(4) When (at−1, bt−1) = (a∗, b′′). Player 2 plays b∗ with probability s(a∗, b′′) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played

with probability q under player 2’s posterior.

(5) When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability s(a′, b∗∗) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′ such that a∗ is played

with probability q under player 2’s posterior.

(6) When (at−1, bt−1) = (a∗, b∗). Player 2 plays b∗ and player 1 plays a∗.
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According to (1) and (6), V (∅) = V (a′, b′) = 0 and V (a∗, b∗) = 1. Player 1’s indifference at

(a′, b′) implies that V (a∗, b′) = −1−δ
δ u1(a∗, b′). Let V (a′, b∗) = 1−(1−δ)u1(a′,b∗)

δ , under which player 1 is

indifferent between a∗ and a′ when (at−1, bt−1) = (a∗, b∗).

Since (1−δ)u1(a∗, b′)+δV (a∗, b′) = (1−δ)u1(a′, b′)+δV (a′, b′) and (1−δ)u1(a∗, b∗)+δV (a∗, b∗) =

(1−δ)u1(a′, b∗)+δV (a′, b∗) under these continuation values, the strategic type of player 1 is indifferent

at (a∗, b′), (a′, b′′), (a∗, b′′), and (a′, b∗) if and only if

(1− δ)u1(a∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a′, b′′) + δV (a′, b′′). (A.8)

Assumption 2 implies that u1(a′, b′′) > u1(a∗, b′′), u1(a∗, b′′) < u1(a∗, b∗) and u1(a′, b′′) > u1(a′, b′).

Lemma A.1. There exists γ ∈ (0, 1) ∩ (u1(a∗, b′′), u1(a′, b′′)) such that

γ(1− u1(a∗, b′′)) ≥ (1− γ)u1(a′, b′′). (A.9)

Proof. Consider two cases separately. First, when u1(a′, , b′′) ≤ 1, by setting γ = u1(a′, b′′),

γ(1− u1(a∗, b′′)) = u1(a′, b′′)(1− u1(a∗, b′′)) > u1(a′, b′′)(1− u1(a′, b′′)).

The intermediate value theorem implies that (A.9) holds for some γ that is strictly less than u1(a′, b′′)

but is strictly greater than u1(a∗, b′′). Second, when u1(a′, b′′) > 1, by setting γ = 1, the LHS of (A.9)

is strictly positive while the RHS of (A.9) is 0. The intermediate value theorem implies that (A.9)

holds for some γ that is strictly less than 1 but is strictly greater than u1(a∗, b′′)

Pick γ that satisfies the condition in Lemma A.1, and set player 1’s continuation values at (a∗, b′′)

and (a′, b′′) to be

V (a∗, b′′) =
1

δ

(
γ − (1− δ)u1(a∗, b′′)

)
(A.10)

and

V (a′, b′′) =
1

δ

(
γ − (1− δ)u1(a′, b′′)

)
. (A.11)

These continuation values satisfy player 1’s incentive constraint (A.8), and moreover,

V (a∗, b′′) > (1− δ)u1(a∗, b′′) + δV (a∗, b′′) = γ = (1− δ)u1(a′, b′′) + δV (a′, b′′) > V (a′, b′′).

When δ is close to 1, both V (a∗, b′′) and V (a′, b′′) are bounded away from 0 and 1, and moreover,

V (a′, b′′) < u1(a′, b′′) and V (a∗, b′′) > u1(a∗, b′′).
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Next, I pin down the values of s(a∗, b′), s(a∗, b′′), s(a′, b∗), and s(a′, b′′) so that player 1 receives

these continuation values. Recall that V (a∗, b′) = −1−δ
δ u1(a∗, b′) and V (a′, b∗) = 1−(1−δ)u1(a′,b∗)

δ , and

the values of V (a∗, b′′) and V (a′, b′′) are given by (A.10) and (A.11).

1. s(a∗, b′) is pinned down by:

V (a∗, b′)︸ ︷︷ ︸
positive but close to 0

= s(a∗, b′)
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
bounded away from 0

)
.

Such s ∈ [0, 1] exists since 0 < V (a∗, b′) < (1− δ)u1(a∗, b′′) + δV (a∗, b
′′
).

2. s(a′, b′′) is pinned down by:

V (a′, b′′) = s(a′, b′′)
(

(1− δ)u1(a′, b′′) + δV (a′, b′′)
)
.

Such s ∈ [0, 1] exists since 0 < V (a′, b′′) < (1− δ)u1(a′, b′′) + δV (a′, b′′).

3. s(a∗, b′′) is pinned down by:

V (a∗, b′′) = s(a∗, b′′) + (1− s(a∗, b′′))
(

(1− δ)u1(a∗, b′′) + δV (a∗, b′′)
)
.

Such s ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a∗, b′′) < 1.

4. s(a′, b∗) is pinned down by:

V (a′, b∗)︸ ︷︷ ︸
close to but less than 1

= s(a′, b∗) + (1− s(a′, b∗))
(

(1− δ)u1(a∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
bounded away from 1

)

Such s ∈ [0, 1] exists since (1− δ)u1(a∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1.

Next, I show that player 2’s posterior belief attaches probability less than q/2 to the commitment type

at every history where (at−1, bt−1) 6= (a∗, b∗). The key step is Lemma A.2.

Lemma A.2. If γ satisfies (A.9), then s(a′, b′′) + s(a∗, b′′) ≥ 1.

Proof. According to the expressions of player 1’s continuation value, we have

s(a∗, b′′) =
V (a∗, b′′)− γ

1− γ
and s(a′, b′′) =

V (a′, b′′)

γ
. (A.12)
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Therefore, s(a′, b′′) + s(a∗, b′′) ≥ 1 if and only if

V (a∗, b′′)− γ
1− γ

+
V (a′, b′′)

γ
≥ 1

which is equivalent to (1−γ)V (a′, b′′) ≥ γ(1−V (a∗, b′′)). Plugging in (A.10) and (A.11), this inequality

is equivalent to γ(1− u1(a∗, b′′)) ≥ (1− γ)u1(a′, b′′), which is (A.9).

Since player 2 plays b′′ with probability 1− s(a∗, b′′) when (at−1, bt−1) = (a∗, b′′) and plays b′′ with

probability s(a′, b′′) when (at−1, bt−1) = (a′, b′′), Lemma A.2 implies that

Pr(bt+1 = b′′|bt = b′′, at = a′) ≥ Pr(bt+1 = b′′|bt = b′′, at = a∗). (A.13)

Therefore, the likelihood ratio between the commitment type and the strategic type does not increase

when player 2 observes bt+1 = b′′ conditional on bt = b′′. Back to the proof of πt ≤ q/2 whenever

(at−1, bt−1) 6= (a∗, b∗), we only need to consider histories such that at−1 = a∗. Assume π0 < π0 where

π0 is given by
π0

1− π0
=
(q

2

)K+1 q

2− q
. (A.14)

1. At histories where (at−1, bt−1) = (a∗, b′), then the same argument as that in Section 3 implies

that when π0 is no more than π0 defined in (A.14), player 2’s posterior belief attaches probability

less than q/2 at every such history.

2. At histories where (at−1, bt−1) = (a∗, b′′), then player 2’s posterior belief about the commitment

type is strictly positive only if (at−K , ..., at−1) = (a∗, ..., a∗) and there exists s ≤ t − 1 such

that bτ = b′ for every τ < s and bτ = b′′ for every t − 1 ≥ τ ≥ s. Let Et be the event

that (at−K , ..., at−1) = (a∗, ..., a∗), let Fs,t be the event that (b0, ..., bt−1) = (b′, ..., b′, b′′, b′′, ..., b′′)

where the first b′′ occurs in period s. Let π∗s,t be the posterior probability of commitment type

conditional on Et ∩ Ft. According to Bayes rule,

π∗s,t
1− π∗s,t

/ π0

1− π0
=
Pωc(Et ∩ Ft)
Pωs(Et ∩ Ft)

=
Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)
Pωs(Ft|Et)

. (A.15)

The first term on the RHS of (A.15) is no more than (q/2)−K . For every n < s, let

ln ≡
Pωc(an = a′|Et, (b0, ..., bn−1) = (b′, ..., b′))

Pωs(an = a′|Et, (b0, ..., bn−1) = (b′, ..., b′))
(A.16)
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and for every n ≥ s, let

ln ≡
Pωc(an = a′′|Et, (b0, ..., bn−1) = (b′, ..., b′))

Pωs(an = a′′|Et, (b0, ..., bn−1) = (b′, ..., b′))
(A.17)

According to Bayes rule, the second term on the RHS of (A.15) equals Πt−1
i=0li. According to

Lemma A.2, ln ≤ 1 for every n 6= s. Since π0 ≤ π0, we have π∗s,t ≤ q/2 for every t ≤ s. Since

πt ≤ maxs≤t π
∗
s,t, we have πt ≤ q/2 for every t ≤ s. Since the unconditional probability with

which player 1 plays a∗ is at least q in every period and π∗s,s ≤ q/2, we have ls ≤ (q/2)−1. This

implies that πt ≤ q/2 for every t ∈ N, which concludes the proof.

B Proof of Theorem 2

Section B.1 establishes a payoff lower bound that applies to all equilibria when f is unboundedly

informative. Section B.2 establishes the existence of equilibrium when f is unboundedly informative,

S is countablely infinite, and δ is large enough. The existence of equilibrium when S is finite follows

from the standard argument in Fudenberg and Levine (1983).

B.1 Proof of Statement 1

I start from a lemma showing that in every equilibrium, if player 1 plays a∗ in every period, then there

exists η > 0 that depends only on f and the prior probability of commitment type π0, such that the

probability with which player 2 plays b∗ with probability at least η in every period is close to 1.

Lemma B.1. Suppose f is unboundedly informative about a∗. For every π0 > 0 and ε > 0, there

exists η > 0, such that in every equilibrium (σ1, σ2),

Pr
{

Pr(bt = b∗) ≥ η for every t ∈ N
∣∣∣(a∗, σ2)

}
≥ 1− ε. (B.1)

Proof. Let p∗ ∈ (0, 1) be such that player 2 has a strict incentive to play b∗ when she believes that

player 1 plays a∗ with probability more than p∗. For every π > 0, there exists M(π) > 0 such that

when the prior belief attaches probability more than π to a∗ and the signal realization s is such that

f(s|a∗) > M(π)f(s|a) for every a 6= a∗, the posterior belief after observing s attaches probability more

than p∗ to a∗. Let l0 ≡ 1−π0
π0

, l∗ ≡ l0/ε, π∗ ≡ 1
l∗+1 , let S(π∗) ⊂ S be the set of signal realizations such

that f(s|a∗) > M(π∗)f(s|a) for every a 6= a∗, and let η ≡
∑

s∈S(π∗) f(s|a∗). Since f is unboundedly

informative, S(π∗) is non-empty and f(s|a∗) > 0 for every s ∈ S(π∗). Therefore, we have η > 0.
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Let πt be the probability of commitment type after player 2t observes {b0, ..., bt−1}, but not

st and {amax{0,t−K}, ..., at−1}. Let π̃t be the probability of commitment type after player 2t ob-

serves {b0, ..., bt−1} and {amax{0,t−K}, ..., at−1}, but not st. By definition, if {amax{0,t−K}, ..., at−1} =

{a∗, ..., a∗}, then π̃t ≥ πt. Under the probability measure induced by (a∗, σ2), {1−πt
πt
}t∈N is a non-

negative supermartingale. The Doob’s Upcrossing Inequality implies that when the prior belief is π0,

the probability of the event {πt ≥ π∗ for all t ∈ N} is at least 1 − ε. Since player 2t has a strict

incentive to play b∗ after she observes st ∈ S(π̃t), and moreover π̃t ≥ πt, we have S(π∗) ⊂ S(π̃t) when

πt ≥ π∗. The probability of event {Pr(bt = b∗) ≥ η for every t ∈ N} is at least 1− ε.

Next, I show that in every period where the probability of commitment type is more than π∗ but

player 2 plays b∗ with ex ante probability less than 1 − ν, one can bound the informativeness of bt

about player 1’s type from below by a strictly positive function of ν.

Lemma B.2. Suppose f is unboundedly informative about a∗, and satisfies MLRP. For every

π∗ ∈ (0, 1), there exists c > 0 such that for every ν ∈ (0, 1), α ∈ ∆(A) with α(a∗) > π∗, and

β : S → ∆(B) that best replies to α. If γ(a∗, β)[b∗] < 1− ν, then d
(
γ(α, β)

∥∥γ(a∗, β)
)
> 2cν2.

Proof. I omit the subscripts in the complete orders on S, A, and B and write � instead. Since u2(a, b)

has strictly increasing differences and f satisfies MLRP, Topkis Theorem implies that every β that

best replies to some α must be monotone, i.e., for every s � s′ and b ∈ B, if β(s) attaches positive

probability to b, then β(s′) attaches zero probability to every b′ smaller than b. Therefore, it is without

loss of generality to focus on player 2’s pure strategies taking the form of β : S → B.

When πt > π∗, player 2t has a strict incentive to play b∗ after observing s ∈ S(π∗), where S(π∗) is

the set of signal realizations such that f(s|a∗) > f(s|a)M(π∗) for every a 6= a∗. At every history ht,

there exists an interval [s, s] ⊂ S such that β(s) = b∗ if and only if s ∈ [s, s], and moreover, β(s) � b∗

for every s � s, and β(s) ≺ b∗ for every s ≺ s. By definition, S(π∗) ⊂ [s, s]. Let S∗ ≡ [s∗, s∗] be a non-

empty interval that is a subset of S(π∗). Since f satisfies MLRP, we know that f(s|a∗) > f(s|a)M(π∗)

for every s � s∗ and a � a∗, and f(s|a∗) > f(s|a)M(π∗) for every s � s∗ and a ≺ a∗.

Let A be the set of actions that are strictly higher than a∗ and let A be the set of actions that

are strictly lower than a∗. For every α ∈ ∆(A), let α′ ∈ ∆(A) be the distribution over A conditional

on a 6= a∗. If supp(α) ∩ A 6= {∅}, then let α ∈ ∆(A) be the distribution over A conditional on

a ∈ supp(α) ∩A. If supp(α) ∩A 6= {∅}, then let α ∈ ∆(A) be the distribution over A conditional on

a ∈ supp(α) ∩A. By definition, there exists λ ∈ [0, 1] such that α′ = λα+ (1− λ)α.
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Suppose γ(a∗, β)[b∗] < 1 and ||γ(α′, β)− γ(a∗, β)|| = D, then

∑
s�s

f(s|a∗) ≥ −D + λ
∑
s�s

f(s|α),
∑
s≺s

f(s|a∗) ≥ −D + (1− λ)
∑
s≺s

f(s|α), (B.2)

and

−D+
∑

s∈[s,s]\S∗
f(s|a∗)+

∑
s∈S∗

f(s|a∗) ≤ λ
∑
s∈S∗

f(s|α)+(1−λ)
∑
s∈S∗

f(s|α)+λ
∑

s∈[s,s]\S∗
f(s|α)+(1−λ)

∑
s∈[s,s]\S∗

f(s|α).

Let η ≡
∑

s∈S∗ f(s|a∗). Since f(s|a∗) > f(s|a)M(π∗) for every s ∈ S∗ and a 6= a∗,

−D+η(1− 1

M(π∗)
)+

∑
s∈[s,s∗)

f(s|a∗)+
∑

s∈(s∗,s]

f(s|a∗) ≤ λ
∑

s∈[s,s]\S∗
f(s|α)+(1−λ)

∑
s∈[s,s]\S∗

f(s|α). (B.3)

Since f satisfies MLRP,

∑
s�s f(s|a∗)∑
s�s f(s|α)

≤
∑

s∈(s∗,s] f(s|a∗)∑
s∈(s∗,s] f(s|α)

and

∑
s≺s f(s|a∗)∑
s≺s f(s|α)

≤
∑

s∈[s∗,s) f(s|a∗)∑
s∈[s∗,s) f(s|α)

.

These inequalities together with (B.2) imply that

∑
s∈(s∗,s]

f(s|a∗) ≥
∑

s∈(s∗,s] f(s|α)
∑

s�s f(s|a∗)∑
s�s f(s|α)

≥ λ
∑

s�s f(s|a∗)
D +

∑
s�s f(s|a∗)

∑
s∈(s∗,s]

f(s|α) (B.4)

and ∑
s∈[s,s∗)

f(s|a∗) ≥ (1− λ)

∑
s≺s f(s|a∗)

D +
∑

s≺s f(s|a∗)
∑

s∈[s,s∗)

f(s|α) (B.5)

Plugging (B.4) and (B.5) back to (B.3), we obtain

η(1− 1

M(π∗)
)−λ

∑
s∈[s,s∗)

f(s|α)−(1−λ)
∑

s∈(s∗,s]

f(s|α) ≤ D
{

1+
λ

D +
∑

s�s f(s|a∗)
+

1− λ
D +

∑
s≺s f(s|a∗)

}
.

(B.6)

First, I show that the LHS of (B.6) is greater than η/2 when M is large enough. Without loss of

generality, I index the elements of S as {..., s−1, s0, s1, ...} such that si ≺ sj for every i < j. Consider

three cases, depending on the limit of set S∗ as M → +∞.

1. If there exist m,n ∈ N such that limM→+∞ S
∗ = [sm, sn], then there exists k ∈ N such that

sk ∈ S∗ for every M ∈ R+. As a result, η is bounded from below by f(sk|a∗) for every M , which

implies that the LHS of (B.6) is more than η/2 when M is large enough.
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2. If the limit of S∗ is unbounded from above, then f(s|a∗) ≥ f(s|a)M for every a � a∗ and s ∈ S,

which leads to a contradiction unless A is empty. Therefore, λ = 0 and (s∗, s] is an empty set,

and the LHS of (B.6) is η(1− 1
M(π∗)), which is greater than η/2 when M(π∗) is large enough.

3. If the limit of S∗ is unbounded from below, then similarly, the LHS of (B.6) is η.

Next, I bound the term 1+ λ
D+

∑
s�s f(s|a∗) + 1−λ

D+
∑

s≺s f(s|a∗) from above. Since {b∗} = BR2(a∗), we know

that for every b � b∗, there exists r∗ ∈ R+ such that b ∈ BR2(α) only if α(A)/α(a∗) ≥ r∗, and for

every b ≺ b∗, there exists r∗ ∈ R+ such that b ∈ BR2(α) only if α(A)/α(a∗) ≥ r∗. When α(a∗) ≥ π∗,

Bayes rule implies that

λ(1− π∗)
∑

s�s f(s|α)

π∗
∑

s�s f(s|a∗)
≥ r∗ and

(1− λ)(1− π∗)
∑

s≺s f(s|α)

π∗
∑

s≺s f(s|a∗)
≥ r∗.

As a result,

1 +
λ

D +
∑

s�s f(s|a∗)
+

1− λ
D +

∑
s≺s f(s|a∗)

≤ 1 +
π∗

1− π∗
(r∗ + r∗).

Let R ≡ 1 + π∗

1−π∗ (r
∗ + r∗). Inequality (B.6) then implies that ||γ(α′, β)− γ(a∗, β)|| = D ≥ η

2R . Since

γ(a∗, β)[b∗] < 1− ν, then there exists c > 0 such that α(a∗) ≤ 1− cν, and therefore,

||γ(α, β)− γ(a∗, β)|| ≥ cν||γ(α′, β)− γ(a∗, β)|| ≥ cν η

2R
.

The Pinsker’s inequality leads to a lower bound on the KL-divergence between γ(α, β) and γ(a∗, β).

Let ht ≡ {b0, ..., bt−1, amax{0,t−K}, ..., at−1, ξt} be player 2t’s information before observing st. Let

g(ht) be the probability of bt = b∗ at ht. Let g(ht, ωc) be the probability of bt = b∗ at ht conditional

on player 1 being the commitment type.

Lemma B.2 bounds the speed of learning at ht from below. This implies a lower bound on the

speed of learning when future player 2s observe b∗ in period t, given that she knew that the probability

with which player 2t plays b∗ is no more than g(ht). However, future player 2s’ information does not

nest that of player 2t’s, since they do not observe (at−K , ..., at−1). As a result, they cannot interpret

bt in the same way as player 2t does.

For every s, t ∈ N with s > t, I provide a lower bound on the informativeness of bt about player 1’s

type from the perspective of player 2s, as a function of the informativeness of bt from the perspective

of player 2t. This together with Lemma B.2 establishes a lower bound on the informativeness of bt

from the perspective of future player 2s as a function of the probability that bt 6= b∗. Using the entropy

approach in Gossner (2011), one can obtain the lower bound on player 1’s equilibrium payoff.
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Let π(ht) be the probability with which player 2’s belief attaches to the commitment type at ht.

By definition, π(h0) = π0. For every strategy profile σ, let Pσ be the probability measure over H

induced by σ, let P σ,ωc be the probability measure induced by σ conditional on player 1 being the

commitment type, and let P σ,ωs be the probability measure induced by σ conditional on player 1 being

the strategic type. One can the write the posterior likelihood ratio as

π(ht)

1− π(ht)

/ π0

1− π0

=
P σ,ωc(b0)

P σ,ωs(b0)
· P

σ,ωc(b1|b0)

P σ,ωs(b1|b0)
· ... · P

σ,ωc(bt−1|bt−2, ..., b0)

P σ,ωs(bt−1|bt−2, ..., b0)
· P

σ,ωc(at−K , ..., at−1|bt, bt−1, ..., b0)

P σ,ωs(at−K , ..., at−1|bt, bt−1, ..., b0)
(B.7)

Furthermore, for every ε > 0 and every t, we know that:

P σ,ωc

(
πσ(b0, b1, ...bt−1) < επ0

)
≤ ε 1− π0

1− π0ε
, (B.8)

in which πσ(b0, b1, ...bt−1) is player 2’s belief about player 1’s type after observing (b0, ..., bt−1) but

before observing player 1’s actions and st. For every ε > 0, let

ρ∗(ε) ≡ επ0

1− cε
. (B.9)

If πσ(b0, b1, ...bt−1) ≥ επ0 and player 2t believes that bt = b∗ occurs with probability less than 1−ε after

observing (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), then under probability measure P σ, the probability of

(amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) conditional on (b0, ..., bt−1) is at least ρ∗(ε).

Suppose towards a contradiction that the probability with which (at−K , ..., at−1) = (a∗, ..., a∗) is

strictly less than ρ∗(ε) conditional on (b0, ..., bt−1). According to (B.9), after observing (at−K , ..., at−1) =

(a∗, ..., a∗) in period t and given that πσ(b0, b1, ...bt−1) ≥ επ0, π(ht) attaches probability strictly more

than 1− cε to the commitment type. As a result, player 2 in period t believes that a∗ is played with

probability at least 1− cε at ht. This contradicts presumption that she plays b∗ with probability less

than 1− ε.

Next, I study the believed distribution of bt from the perspective of player 2s conditional on the

event that πσ(b0, b1, ...bt−1) ≥ επ0. Let P (σ, t, s) ∈ ∆(∆(AK)) be player 2’s signal structure in period

s(≥ t) about (at−K , ..., at−1) under equilibrium σ. For every small enough η > 0, given that P (σ, t)

attaches probability at least ρ∗(ε) to (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), the probability with which

P(σ, t, s) attaches to event (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) occurring with probability less than
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ηρ∗(ε) is bounded from above by:

ηρ∗(ε)(1− ρ∗(ε))
(1− ηρ∗(ε))ρ∗(ε)

= η
1− ρ∗(ε)
1− ρ∗(ε)η

. (B.10)

Let g(t|hs) be player 2’s belief about the probability with which b∗ is played in period t when she

observes hs. Let g(t, ωc|hs) be her belief about the probability with which b∗ is played in period

t conditional on player 1 being committed. When player 2t believes that (amax{0,t−K}, ..., at−1) =

(a∗, a∗, ..., a∗) occurs with probability more than ηρ∗(ε), we have:

g(t|hs) ≤ 1− εηρ∗. (B.11)

Applying (B.11), we obtain a lower bound on the KL-divergence between g(t, ωc|hs) and g(t|hs). This

is the lower bound on the speed with which player 2s at hs will learn through bt = b∗ about player

1’s type, which applies to all events except for one that occurs with probability less than η 1−ρ∗
1−ρ∗η .

Therefore, for every ε and π0, there exists δ∗ ∈ (0, 1) such that when δ > δ∗, strategic-type player 1’s

discounted average payoff by playing a∗ in every period is at least:

(
1− ε− ε 1− π0

1− π0ε

)
u1(a∗, b∗) +

(
ε+ ε

1− π0

1− π0ε

)
min
b∈B

u1(a∗, b)− ε. (B.12)

Let ε→ 0 and δ → 1, (B.12) implies that with probability at least 1− ε, player 1’s discounted average

payoff from playing a∗ in every period is at least (1 − ε)u1(a∗, b∗). Take ε → 0, one can obtain that

the patient player’s discounted average payoff is at least u1(a∗, b∗) in every equilibrium.

B.2 Existence of Equilibrium when f is Unboundedly Informative

I establish the existence of Perfect Bayesian equilibrium when f is unboundedly informative about a∗,

K ≥ 1, and δ is large enough. For every s ∈ S, let a(s) ≡ mina∈A{f(s|a) > 0} and let b(s) ∈ B be

player 2’s strict best reply to a(s). For every a ∈ A, let v(a) ≡
∑

s∈S f(s|a)u1(a, b(s)). Let

S′ ≡
{
s ∈ S

∣∣∣∃a ≺ a∗ such that f(s|a) > 0
}

and S∗ ≡
{
s ∈ S

∣∣∣f(s|a∗) > 0
}
.

When S′ ∩ S∗ 6= {∅}, we have
∑

s∈S′ f(s|a) > 0 for every a � a∗, and let p∗ ≡ mina�a∗
∑

s∈S′ f(s|a).

I show that the following strategy profile and belief constitute a Perfect Bayesian equilibrium.

• If t = 0, or t ≥ 1, (b0, ..., bt−1) = (b∗, ..., b∗) and at−1 = a∗, then player 1 plays a∗, player 2t

believes that at = a∗ upon receiving any st ∈ S∗ and plays b∗, and believes that at = a(st) upon
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receiving any st /∈ S∗ and plays b(st).

• At any other history, player 2t believes that at = a(st) upon receiving any st ∈ S, and plays

b(st). Player 1 plays arg maxa∈A v(a) in period t if there exists τ < t such that bτ 6= b∗. At

histories where there exists no τ < t such that bτ 6= b∗ but at−1 6= a∗, player 1 plays a∗ if

(1− δ)v(a∗) + δ
∑
s∈S′

f(s|a∗) max
a∈A

v(a) + δ
∑
s/∈S′

f(s|a∗)u1(a∗, b∗)

≥ max
ã6=a∗

{(1− δ)v(ã) + δ
∑

s∈(S\S∗)∪S′ f(s|ã) maxa∈A v(a)

1− δ
∑

s∈S∗\S′ f(s|ã)

}
(B.13)

and plays

arg max
ã6=a∗

{(1− δ)v(ã) + δ
∑

s∈(S\S∗)∪S′ f(s|ã) maxa∈A v(a)

1− δ
∑

s∈S∗\S′ f(s|ã)

}
if inequality (B.13) is violated.

Player 2’s strategy is optimal given her belief. Player 2’s belief at on-path history respects Bayes Rule

since every period t on-path history satisfies (b0, ..., bt−1) = (b∗, ..., b∗) and at−1 = a∗, in which case

both types of player 1 play a∗ and player 2t believes that at = a∗ upon observing any st ∈ S∗. I verify

player 1’s incentive constraints by considering two cases separately.

1. Suppose S′ ∩ S∗ = {∅}, i.e., f is such that f(s|a) = 0 for every a ≺ a∗ and s ∈ S satisfying

f(s|a∗) > 0. In period t, player 1’s stage-game payoff from playing a∗ is u1(a∗, b∗). When he plays

any a 6= a∗, player 2t plays a(st) at any history after observing any st that occurs with positive

probability under a, from which player 1’s stage-game payoff is no more than u1(a,BR2(a)),

which is no more than u1(a∗, b∗) since a∗ is player 1’s Stackelberg action.

2. Suppose S′ ∩ S∗ 6= {∅}. Player 1’s continuation value from playing a∗ is u1(a∗, b∗) at every

on-path history. Suppose he makes a one-shot deviation and plays a � a∗ at an on-path history,

then his stage-game payoff is no more than max{u1(a, b∗), u1(a,BR2(a))}, which is no more than

u1(a∗, b∗), and his continuation value is no more than u1(a∗, b∗), which means that he cannot

strictly profit from such a deviation. Suppose he makes a one-shot deviation and plays a ≺ a∗

at an on-path history, then his stage-game payoff is no more than u1(a′, b∗) and his continuation

value is at most

max
{

max
a�a∗

u1(a, b∗), (1− δ)u1(a′, b∗) + δp∗max
a∈A

v(a) + δ(1− p∗)u1(a∗, b∗)
}
, (B.14)
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where the first term is player 1’s maximal continuation value when he plays a � a∗ at histories

where player 2 has not played actions other than b∗ but player 1’s action in the previous period

is not a∗, and the second term is player 1’s maximal continuation value when he plays a � a∗

at such histories. The value of maxa�a∗ u1(a, b∗) is strictly less than u1(a∗, b∗) since u1(a, b)

strictly decreases in a, the value of maxa∈A v(a) is strictly less than u1(a∗, b∗) since a∗ is player

1’s unique Stackelberg action, S∗ ∩ S′ 6= {∅}, and u1(a, b) strictly increases in b. Therefore,

(B.14) is strictly less than u1(a∗, b∗) when δ is large enough. It implies that when δ is large

enough, playing a′ is not a profitable one-shot deviation.

When at−1 6= a∗ but there is no τ < t such that bτ 6= b∗, notice that the LHS of (B.13) is player

1’s continuation value from playing a∗, and the RHS is his continuation value from playing

ã 6= a∗. This verifies his incentive constraint. When there exists τ < t such that bτ 6= b∗, player

2 plays b(s) upon observing s, and it is optimal for player 1 to play arg maxa∈A v(a).

C Proof of Claim 1

I establish the no herding result in Section C.1, which only uses Assumption 1 but not Assumption 2.

I establish the lower bound on player 1’s undiscounted average payoff in Section C.2. and construct

equilibria in which player 1’s asymptotic payoff equals the right-hand-side of (3.1) in Section C.3.

C.1 Proof of No Herding Result

Suppose toward a contradiction that player 2s herd on b 6= b∗ at ht, then the strategic type has no

intertemporal incentive at ht and at every ht∗ that differs from ht only in {a0, ..., at−K}. In equilibrium,

strategic-type player 1 plays his myopic best reply to b at those histories. Consider two cases. First,

suppose BR1(b) = {a∗}, then in equilibrium, both types of player 1 play a∗ at ht and at every ht∗ that

differs from ht only in {a0, ..., at−K}. As a result, player 2t has a strict incentive to play b∗ instead

of b at ht. This contradicts the presumption that b 6= b∗. Second, suppose BR1(b) 6= {a∗}, then in

equilibrium, the strategic type has no incentive to play a∗ at ht and at every ht∗ that differs from ht

only in {a0, ..., at−K}. Since π(ht) > 0, player 2t+1’s belief attaches probability 1 to the commitment

type if she observes at = a∗, and player 1’s actions from period t − K + 1 to t − 1 and player 2’s

actions from period 0 to t− 1 are given according to ht. Therefore, player 2t+1 plays b∗ following the

aforementioned observation, which contradicts the presumption that they herd on b 6= b∗.
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C.2 Lower Bound on Undiscounted Average Payoff

Consider the strategic-type’s payoff when he deviates and imitates the commitment type. For every

β ∈ ∆(B) and a ≺ a∗, MSM implies that u1(a∗, β) < u1(a, β). Let ht ≡ {as, bs}t−1
s=0. For every t ∈ N

and a ∈ A, let Et(a, b
t) be the event that (1) player 1 plays a in period t, (2) player 1 has played a∗

from period t−K + 1 to t− 1, (3) player 1 plays according to σ1 starting from period t+ 1, and (4)

the history of player 2’s actions until period t is bt ≡ (b0, ..., bt−1). For every τ ∈ {1, 2, ...,K} and

ht ≡ (a∗, ..., a∗, bt), let yτt (·|a, ht) ∈ ∆(B) be the distribution of bt+τ conditional on event Et(a, b
t),

and let yt(·|a, ht) ∈ ∆(BK) be the distribution of (bt+1, ..., bt+K) conditional on event Et(a, b
t). Let

u1 and u1 be player 1’s highest and lowest feasible stage-game payoffs, respectively, and let || · || be

the total variation norm. If

||yt(·|a∗, ht)− yt(·|a, ht)|| ≤
1− δ

2δ(u1 − u1)

(
u1(a, β)− u1(a∗, β)

)
, (C.1)

then the strategic-type player 1 has a strict incentive to play a instead of a∗ at ht as well as at every

history ht∗ that differs from ht only in terms of {a0, ..., at−K}. The latter is because the distribution

of {bt+1, ..., bt+K} does not depend on {a0, ..., at−K} since they cannot be observed by players 2t+1 to

2t+K . Let

∆ ≡ 1− δ
2Kδ(u1 − u1)

min
β∈∆(B),a≺a∗

{
u1(a, β)− u1(a∗, β)

}
. (C.2)

Since

||yτt (·|a∗, ht)− yτt (·|a, ht)|| ≤ ||yt(·|a∗, ht)− yt(·|a, ht)|| ≤
K∑
s=1

||yst (·|a∗, ht)− yst (·|a, ht)||,

inequality (C.1) holds when ||yτt (·|a∗, ht)− yτt (·|a, ht)|| ≤ ∆ for every τ ∈ {1, 2, ...,K}. Let H(a∗,σ2) be

the set of public histories that occur with positive probability when player 1 plays a∗ in every period

and player 2 plays σ2. I partition H(a∗,σ2) into two subsets, H(a∗,σ2)
0 and H(a∗,σ2)

1 :

1. If there exists a ≺ a∗ such that ||yτt (·|a∗, ht)− yτt (·|a′, ht)|| ≤ ∆ for every τ , then ht ∈ H(a∗,σ2)
0 .

2. If for every a ≺ a∗, there exists τ such that ||yτt (·|a∗, ht)− yτt (·|a′, ht)|| ≥ ∆, then ht ∈ H(a∗,σ2)
1 .

For every ht ∈ H(a∗,σ2)
0 , the strategic type has a strict incentive not to play a∗ at ht, which means

that player 2 attaches probability 1 to the commitment type after observing a∗ at ht. For every

τ ∈ {1, 2, ...,K}, every on-path history ht+τ � ht such that a∗ has been played from period t to

t+ τ − 1, player 2 has a strict incentive to play b∗ at ht+τ . This in addition to the fact that player 2
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plays an action at least as large as b′ at every on-path history implies that for every ht ∈ H(a∗,σ2)
0 , we

have:
1

K + 1
E(a∗,σ2)

[ t+K∑
s=t

u1(as, bs)
∣∣∣ht] ≥ K

K + 1
u1(a∗, b∗) +

1

K + 1
u1(a∗, b′). (C.3)

For every ht ∈ H(a∗,σ2)
1 , there exists a constant γ > 0 such that for every α ∈ ∆(A) such that b ≺ b∗

best replies against α, we have ||yt(·|a∗, ht)− yt(·|α, ht)|| ≥ γ∆. The Pinsker’s inequality implies that

d
(
yt(·|α, ht)

∥∥∥yt(·|a∗, ht)) ≥ 2γ2∆2. (C.4)

for every such α ∈ ∆(A). For every equilibrium (σ1, σ2) and every τ ∈ {0, 1, ...,K},

E(a∗,σ2)
[ ∞∑
s=0

d
(
ys(K+1)+τ (·|σ1(hs(K+1)+τ ), hs(K+1)+τ )

∥∥∥ys(K+1)+τ (·|a∗, hs(K+1)+τ )
)]
≤ − log π0. (C.5)

Inequalities (C.4) and (C.5) together imply that:

E(a∗,σ2)
[ ∞∑
s=0

1
{
hs(K+1)+τ ∈ H(a∗,σ2)

1 and σ2(hs(K+1)+τ ) ≺ b∗
}]
≤ − log π0

2γ2∆2
(C.6)

I derive a lower bound for lim inft→∞
1
tE

(a∗,σ2)
[∑t−1

s=0 u1(as, bs)
]

using inequalities (C.3) and (C.6).

For every τ ∈ {0, 1, ...,K}, let

Hτ0 ≡
{
ht
∣∣∣∃hs(K+1)+τ ∈ H(a∗,σ2)

0 such that ht � hs(K+1)+τ and t ∈ [s(K + 1), s(K + 1) +K]
}
,

let

Hτ1 ≡
{
hs(K+1)+τ ∈ H(a∗,σ2)

1

∣∣∣s ∈ N
}
,

and let Hτ ≡ Hτ0 ∪Hτ1 . By definition, H(a∗,σ2) =
⋃K
τ=0Hτ . An important observation is that for every

τ, τ ′ ∈ {0, 1, ...,K} with τ 6= τ ′,

Hτ1 ∩Hτ
′

1 = {∅} and Hτ0 ∩Hτ
′

0 = {∅}. (C.7)

The former is straightforward. For the latter, suppose toward a contradiction that ht ∈ Hτ0 ∩Hτ
′

0 with

τ < τ ′, there exist hs and hs+τ
′−τ such that ht % hs+τ

′−τ � hs, hs ∈ Hτ0 , t − s ≤ K, and s − τ is

divisible by K+ 1. On one hand hs ∈ Hτ0 and τ ′− τ ≤ K implies that σ1(hs+τ
′−τ ) = a∗. On the other

hand hs+1 ∈ Hτ ′0 implies that σ1(hs+τ
′−τ ) 6= a∗. This leads to a contradiction.

For every τ ∈ {0, 1, ...,K}, inequality (C.3) implies that player 1’s expected average payoff at
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histories in Hτ0 is at least the RHS of (3.1). Since Hτ0 ∩ Hτ
′

0 = {∅} for every τ 6= τ ′, it implies that

player 1’s expected average payoff at histories in
⋃K
τ=0Hτ0 is at least the RHS of (3.1). For every

τ ∈ {0, 1, ...,K}, (C.6) implies that player 1’s expected average payoff at histories belonging to set

Hτ1
∖⋃K

s=0Hs0 is at least u1(a∗, b∗). Since Hτ1 ∩ Hτ
′

1 = {∅} for every τ 6= τ ′, it implies that player 1’s

expected average payoff at histories in
⋃K
s=0Hs1

∖⋃K
s=0Hs0 is at least u1(a∗, b∗). The two parts imply

that

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a∗, b∗) +

1

K + 1
u1(a∗, b′).

C.3 Tightness of Lower Bound

When payoffs are monotone-supermodular, (a′, b′) is the unique stage-game Nash equilibrium. Let π0

be the largest real number in (0, 1) such that b′ best replies against the mixed action π0◦a∗+(1−π0)◦a′.

Consider the following construction when π0 ∈ (0, π0). At every on-path history (the set of on-path

histories can be derived recursively),

• if t is divisible by K + 1, then player 1 plays a′ and player 2 plays b′ in period t;

• if t is not divisible by K + 1, then player 1 plays a∗ and player 2 plays b∗ in period t.

I partition off-path histories into three subsets. For every period t public history such that:

• (1) there exists no r < t, such that br 6= b∗ and r is not divisible by K + 1; (2) there exists no

s < t such that bs 6= b′ and s is divisible by K + 1; (3) player 2 observes player 1 playing an

off-path action in period t−1, then players play (a∗, b∗) if t is divisible by K+1, and play (a′, b′)

if t is not divisible by K + 1.

• (1) there exists no r < t, such that br 6= b∗ and r is not divisible by K + 1, but (2) there exists

s < t such that bs 6= b′ and s is divisible by K + 1. If t− 1 is divisible by K + 1, bt−1 = b∗ while

at−1 6= a∗, then play (a′, b′) in period t. If t− 1 is divisible by K + 1, bt−1 = b∗ while at−1 = a∗,

then play (a∗, b∗) in period t if and only if ξt > 1/2 and play (a′, b′) in period t otherwise. If

t− 1 is not divisible by K + 1, or bt−1 6= b∗, then play (a∗, b∗) if t is not divisible by K + 1 and

play (a′, b′) if t is divisible by K + 1.

• there exists r < t, such that br 6= b∗ and r is not divisible by K + 1, then play (a′, b′) in all

subsequent periods.

Player 1’s time-average payoff from playing a∗ in every period equals the RHS of (3.1). I verify players’

incentive constraints. Since b∗ best replies to a∗ and b′ best replies to a′, player 2’s incentive constraints

are satisfied. In what follows, I verify player 1’s incentives. At every on-path history ht,
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• If t+1 not divisible by K+1 and t is not divisible by K+1, then the strategic type’s continuation

value from playing a∗ in period t is at least

V ≡ u1(a′, b′) + δu1(a∗, b∗) + δ2u1(a∗, b∗) + ...+ δKu1(a∗, b∗)

1 + δ + ...+ δK
, (C.8)

while his continuation value from playing any other action is u1(a′, b′). This verifies his incentive

to play a∗ when δ is above some cutoff.

• If t+ 1 not divisible by K + 1 and t is divisible by K + 1, then the strategic type’s continuation

values from playing a∗ and a′ are the same, equal V , while his continuation value from playing

other actions is u1(a′, b′). He has a strict incentive to play a′ since a′ best replies to b′.

• If t + 1 is divisible by K + 1, then the strategic type’s continuation value from playing a∗ in

period t is at least V . If he deviates and plays at, then consider his incentive in period t+ 1 at

off-path history (ht, at, bt = b∗).

Since player 2 plays b∗ in period t+ 1 after observing player 1’s deviation in period t, player 1’s

continuation value from playing a∗ in period t + 1 is at least 1
2V + 1

2u1(a′, b′). This is because

player 2 will play b∗ with probability 1/2 in period t+ 2, after which player 1 will be forgiven for

his deviation. Player 1’s continuation value from playing actions other than a∗ in period t+ 1 is

u1(a′, b′). Therefore, he has a strict incentive to play a∗ in period t + 1 following his deviation

in period t, and his continuation value in period t when he deviates is strictly lower than V .

D Asymptotic Payoff under Bounded Memory

I state and show a general result on player 1’s asymptotic payoff when he imitates the commitment

type in games where player 2t observes player 1’s actions in the last K periods and player 2’s actions

in the last M periods, where K and M are finite integers. This result implies Claim 2.

D.1 Statement of General Result

Since players’ payoffs are monotone-supermodular, u1(a∗, b∗) > u1(a′, b′). Without loss of generality,

I normalize player 1’s payoff so that u1(a′, b′) = 0 and u1(a∗, b∗) = 1. Let q be the largest q ∈ [0, 1]

such that b′ is not player 2’s strict best reply to qa∗ + (1− q)a′. Let q be the smallest q ∈ [0, 1] such

that b∗ is not player 2’s strict best reply to qa∗ + (1− q)a′. Since b′ is a strict best reply to a′ and b∗

is a strict best reply to a∗, there exist b∗∗ 6= b′ and b′′ 6= b∗ such that {b∗∗, b′} ⊂ BR2(qa∗ + (1− q)a′)
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and {b∗, b′′} ⊂ BR2(qa∗ + (1 − q)a′). My monotone-supermodularity assumption implies that either

b∗ = b∗∗ and b′ = b′′, or b∗ � b′′ � b∗∗ � b′, or b∗ � b′′ = b∗∗ � b′.

Definition 1. Players’ payoffs are irregular if b′′ = b∗∗ and u1(a∗, b∗∗) < −1. Otherwise, players’

payoffs are regular.

Players’ payoffs are regular in the product choice game in which b∗ = b∗∗ � b′′ = b′ and in more

general monotone-supermodular games in which player 1’s cost of playing a∗ is not too large when

player 2 plays actions in between b′ and b∗. An example of an irregular game is shown as follows:

– b∗ b′′ b′

a∗ 1, 1 −2, 0 −3,−2

a′ 2,−2 1, 0 0, 1

Proposition 1. Suppose players’ payoffs are monotone-supermodular and regular. For every ε > 0,

there exists δ ∈ (0, 1) such that when δ > δ, there exist equilibria in which

lim sup
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≤ ε. (D.1)

The rest of this section shows this proposition. I consider three cases separately, depending on the

value of u1(a∗, b∗∗) and the comparison between b∗, b∗∗, b′, and b′′.

D.2 The Case in which u1(a
∗, b∗∗) > 0

Consider the following strategy profile in which player 2t’s action depends only on (at−1, bt−1), and

the strategic type player 1 mixes between a∗ and a′ with probabilities such that player 2t is indifferent

between b∗∗ and b′. I verify later than there exist such mixing probabilities by bounding the posterior

probability of commitment type from above.

1. When (at−1, bt−1) /∈ {(a∗, b′), (a∗, b∗∗), (a′, b∗∗)}, player 2t plays b∗∗ with probability r(a′, b′).

2. When (at−1, bt−1) = (a∗, b′), player 2t plays b∗∗ with probability r(a∗, b′).

3. When (at−1, bt−1) = (a′, b∗∗), player 2t plays b∗∗ with probability r(a′, b∗∗).

4. When (at−1, bt−1) = (a∗, b∗∗), player 2t plays b∗∗ with probability r(a∗, b∗∗).

Let

X ≡ max
{
− 1− δ

δ
u1(a∗, b′), (1− δ)u1(a′, b∗∗)

}
. (D.2)
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Player 1’s continuation values are V (a′, b′) = 0, V (a∗, b′) = −1−δ
δ u1(a∗, b′), and

V (a, b∗∗) =
X − (1− δ)u1(a, b∗∗)

δ
for every a ∈ {a′, a∗}. (D.3)

Let r(a′, b′) = 0. For every (a, b) ∈ {(a∗, b′), (a∗, b∗∗), (a′, b∗∗)}, let

r(a, b) =
V (a, b)

X
. (D.4)

I verify that V (a, b) ≤ X so that r(a, b) is a well-defined probability. First, V (a∗, b′) ≤ X by definition.

This is because u1(a′, b∗∗) > u1(a∗, b∗∗) and (D.3). Second, I show that V (a′, b∗∗) < V (a∗, b∗∗) ≤ X,

which is equivalent to
X − (1− δ)u1(H,T )

δ
≤ X ⇔ X < u1(a∗, b∗∗).

The last inequality is satisfied when δ is close to 1 since X converges to 0 and u1(a∗, b∗∗) > 0.

According to the construction of these continuation values, we have

(1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a′, b∗∗) + δV (a′, b∗∗),

and

(1− δ)u1(a∗, b
′
) + δV (a∗, b

′
) = (1− δ)u1(a′, b

′
) + δV (a′, b

′
),

which means that player 1 is indifferent regardless of player 2’s action, and therefore, he is indifferent

between a∗ and a′ at every (at−1, bt−1). Since a′ is the lowest action and player 1’s continuation value

at (a, b) is the same as his lowest continuation value V (a′, b′) for every b and a /∈ {a∗, a′}, player 1

strictly prefers a′ to actions other than a′ and a∗ at every history.

Then I verify player 1’s mixed strategies is well-defined by showing that πt ≤ q∗/2 at every history.

Let

L ≡ min
{ r(a∗, b′)

r(a∗, b∗∗)
,
r(a∗, b∗∗)

r(a∗, b′)

}
. (D.5)

According to the expressions for r(a∗, b∗∗) and r(a∗, b′), we have

r(a∗, b′)

r(a∗, b∗∗)
=

−u1(a∗, b′)

max
{
− u1(a∗, b′)

δ
, u1(a′, b∗∗)

}
− u1(a∗, b∗∗)

.

Both the denominator and the numerator of the above expression are bounded away from 0 and are

bounded from above for δ close to 1, which implies that L is bounded away from 0. Let π0 be such
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that
π0

1− π0
=

q∗/2

1− q∗/2

(q∗
2

)K+M+1
LM (D.6)

I show by induction that πt ≤ q∗/2 for every t ∈ N if π0 < π0. Without loss of generality, we only need

to consider histories where (at−K , ..., at−1) = (a∗, ..., a∗) and (bt−M , ..., bt−1) = (b∗∗, ..., b∗∗). First,

condition (D.6) implies that π0 ≤ q∗/2. Second, suppose πs ≤ q∗/2 for every s ≤ t − 1, then the

strategic type plays a∗ with probability at least q∗/2 at every history from period 0 to period t − 1.

Recall from Section 3 that Pωc is the probability measure induced by the commitment type and Pωs

is the probability measure induced by the strategic type. According to Bayes rule, we have

πt
1− πt

=
π0

1− π0
ΠK
i=1

Pωc(at−i = a∗|at−i+1, ..., at−1)

Pωs(at−i = a∗|at−i+1, ..., at−1)
ΠM
i=1

Pωc(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)

Pωs(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)

According to the induction hypothesis,

Pωc(at−i = a∗|at−i+1, ..., at−1)

Pωs(at−i = a∗|at−i+1, ..., at−1)
≤ (q∗/2)−1. (D.7)

Since the strategic type player 1 plays a∗ with probability at least q∗/2 in every period before t and

conditional on playing a∗, the probability of b∗∗ is at least min{r(a∗, b′), r(a∗, b∗∗)}. Therefore,

Pωc(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)

Pωs(bt−i = b∗∗|at−i+1, ..., at−1, bt−i+1, ..., bt−1)
≤ (q∗/2)−1L−1 (D.8)

Plugging inequalities (D.7) and (D.8) into the expression for πt, we have πt ≤ q∗/2.

In the last step, I compute player 1’s undiscounted time average payoff by playing a∗ in every

period, which induces a 2-state Markov Chain with transition probabilities Pr(b∗∗|b∗∗) = r(a∗, b∗∗)

and Pr(b′|b′) = r(a∗, b′). The stationary distribution attaches probability r(a∗,b′)
1−r(a∗,b∗∗)+r(a∗,b′) to state

b∗∗. Player 1’s undiscounted average payoff from playing a∗ in every period is

r(a∗, b′)

1− r(a∗, b∗∗) + r(a∗, b′)
u1(a∗, b∗∗) +

1− r(a∗, b∗∗)
1− r(a∗, b∗∗) + r(a∗, b′)

u1(a∗, b′). (D.9)

Plugging in the expressions for r(a∗, b′) and r(a∗, b∗∗) and using the observation that X → 0 as δ → 1,

we obtain that the above equation is close to 0 as δ → 1.

D.3 The Case in which b∗ � b′′ � b∗∗ � b′

Consider the following strategy profile:
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1. When (at−1, bt−1) /∈ {(a∗, b′), (a∗, b∗∗), (a∗, b′′), (a∗, b∗), (a′, b∗), (a′, b∗∗)}, player 2t plays b′ and the

rational type player 1 mixes between a∗ and a′ with probabilities such that the unconditional

probability of a∗ is q.

2. When (at−1, bt−1) = (a∗, b′), player 2t plays b∗∗ with probability r(a∗, b′) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

3. When (at−1, bt−1) = (a′, b∗∗), player 2t plays b∗∗ with probability r(a′, b∗∗) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

4. When (at−1, bt−1) = (a∗, b∗∗), player 2t plays b∗ with probability r(a∗, b∗∗) and plays b′′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

5. When (at−1, bt−1) = (a∗, b′′), player 2t plays b∗∗ with probability r(a∗, b′′) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

6. When (at−1, bt−1) = (a′, b∗), player 2t plays b∗ with probability r(a′, b∗) and plays b′′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

7. When (at−1, bt−1) = (a∗, b∗), player 2t plays b∗ with probability r(a∗, b∗) and plays b′′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

The rational type player 1’s continuation value satisfies V (a′, b′) = 0, V (a′, b′′) = 0,

0 = (1− δ)u1(a∗, b′) + δV (a∗, b′) = (1− δ)u1(a′, b′) + δV (a′, b′). (D.10)

X(b∗∗) ≡ (1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a′, b∗∗) + δV (a′, b∗∗). (D.11)

Y (b′′) ≡ (1− δ)u1(a∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a′, b
′′
) + δV (a′, b′′). (D.12)

Y (b∗) ≡ (1− δ)u1(a∗, b∗) + δV (a∗, b∗) = (1− δ)u1(a′, b∗) + δV (a′, b∗), (D.13)
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where Y (b′′) ≡ (1− δ)u1(a′, b′′),

X(b∗∗) ≡ max
{

(1− δ)u1(a′, b′′), (1− δ)u1(a′, b∗∗),−1− δ
δ

u1(a∗, b′)
}
,

and

Y (b∗) ≡ 2 max
{X(b∗∗)− (1− δ)u1(a∗, b∗∗)

δ
, (1−δ)(δu1(a′, b′′)+u1(a∗, b∗)), (1−δ)u1(a′, b∗)+δX(b∗)

}
.

In order to deliver these continuation values, we need

Y (b′′) ≤ V (a∗, b∗∗) =
X(b∗∗)− (1− δ)u1(a∗, b∗∗)

δ
≤ Y (b∗) (D.14)

0 ≤ V (a∗, b′′) =
Y (b′′)− (1− δ)u1(a∗, b′′)

δ
≤ X(b∗∗) (D.15)

Y (b′′) ≤ V (a∗, b∗) =
Y (b∗)− (1− δ)u1(a∗, b∗)

δ
≤ Y (b∗), (D.16)

Y (b′′) ≤ V (a′, b∗) =
Y (b∗)− (1− δ)u1(a′, b∗)

δ
≤ Y (b∗), (D.17)

0 ≤ V (a′, b∗∗) =
X(b∗∗)− (1− δ)u1(a′, b∗∗)

δ
≤ X(b∗∗), (D.18)

all of which are satisfied when δ is close to 1 given the values of X(b∗∗), Y (b′′), and Y (b∗∗). As a

result, there exist r(a∗, b′), r(a∗, b∗∗), r(a∗, b′′), r(a∗, b∗), r(a′, b∗), and r(a′, b∗∗) that deliver player 1

continuation values V (a∗, b′), V (a∗, b∗∗), V (a∗, b′′), V (a∗, b∗), V (a′, b∗), and V (a′, b∗∗). Furthermore,

the definition of Y (b∗) implies that r(a∗, b∗), r(a∗, b∗∗), r(a′, b∗) are less than 1/2.

Let

L ≡ min
{min{r(a∗, b∗), r(a∗, b∗∗), r(a′, b∗)}

max{r(a∗, b∗), r(a∗, b∗∗), r(a′, b∗)}
,

min{r(a∗, b′′), r(a′, b∗), r(a′, b∗∗)}
max{r(a∗, b′′), r(a′, b∗), r(a′, b∗∗)}

}
,

which is bounded away from 0. Let π0 ∈ (0, 1) be defined via the following equation:

π0

1− π0
=

q/2

1− q/2

(q
2

)K+M+1
LM . (D.19)

The same argument as that in Section D.1 implies that player 2’s posterior belief attaches probability

less than q/2 to the commitment type if her prior belief satisfies π0 ≤ π0.

When player 1 plays a∗ in every period, he induces a Markov Chain with four states b∗, b∗∗, b′′,

and b′, which is communicating. Since his discounted average payoff is 0, his undiscounted average
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payoff is close to 0 when δ is close to 1.

D.4 The Case in which b∗ � b′′ = b∗∗ � b′ and u1(a
∗, b∗∗) ∈ (−1, 0]

Consider the following strategy profile:

1. When (at−1, bt−1) /∈ {(a∗, b′), (a∗, b∗∗), (a∗, b∗), (a′, b∗), (a′, b∗∗)}, player 2t plays b′ and the ra-

tional type player 1 mixes between a∗ and a′ with probabilities such that the unconditional

probability of a∗ is q.

2. When (at−1, bt−1) = (a∗, b′), player 2t plays b∗∗ with probability r(a∗, b′) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

3. When (at−1, bt−1) = (a∗, b∗∗), player 2t plays b∗∗ with probability r(a∗, b∗∗) and plays b′ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

4. When (at−1, bt−1) = (a′, b∗∗), player 2t plays b∗ with probability r(a′, b∗∗) and plays b∗∗ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

5. When (at−1, bt−1) = (a′, b∗), player 2t plays b∗ with probability r(a′, b∗) and plays b∗∗ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

6. When (at−1, bt−1) = (a∗, b∗), player 2t plays b∗ with probability r(a∗, b∗) and plays b∗∗ with

complementary probability. The rational type player 1 mixes between a∗ and a′ with probabilities

such that the unconditional probability of a∗ is q.

Let

X ≡ max
{

(1− δ)u1(a′, b∗∗),−1− δ
δ

u1(a∗, b′)
}
, (D.20)

and Y ∈ R be a real number satisfying

X − (1− δ)u1(a∗, b∗∗)

δ
< Y < (1− δ)u1(a∗, b∗) + δX. (D.21)

Such Y exists if and only if (1 + δ)X < u1(a∗, b∗∗) + δu1(a∗, b∗). When δ is close enough to 1, this is

satisfied when u1(a∗, b∗) + u1(a∗, b∗∗) > 0, i.e., when payoffs are regular.
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Player 1’s continuation values are V (a′, b′) = 0, V (a∗, b′) = −1−δ
δ u1(a∗, b′), V (a∗, b∗∗) and V (a′, b∗∗)

are pinned down by

X = (1− δ)u1(a′, b∗∗) + δV (a′, b∗∗) = (1− δ)u1(a∗, b∗∗) + δV (a∗, b∗∗), (D.22)

and V (a′, b∗) and V (a∗, b∗) are pinned down by

Y = (1− δ)u1(a′, b∗) + δV (a′, b∗) = (1− δ)u1(a∗, b∗) + δV (a∗, b∗). (D.23)

According to the construction of X and Y , we know that V (a∗, b′) ∈ (0, X), V (a′, b∗∗) ∈ (0, X),

V (a∗, b∗∗) ∈ (X,Y ), V (a′, b∗) ∈ (0, X) and V (a∗, b∗) ∈ (0, X). The strategy of playing a∗ in every

period induces a Markov Chain with three states b′, b∗, and b∗∗, that is communicating. Since player

1’s discounted average payoff from playing a∗ in every period is 0, his undiscounted average payoff is

close to 0 when δ is close to 1.

E Proof of Claim 3

Payoff Lower Bound: Player 2’s strategy can be summarized by a triple (r∅, rH , rL), where rx is

the probability of playing T when at−1 = x for x ∈ {∅, H, L}. First, I show that rH > rL. Suppose by

way of contradiction that rH ≤ rL, then the strategic type player 1 has no incentive to play H. After

player 2 observes at−1 = H, she infers that player 1 is the commitment type for sure and has a strict

incentive to play T , which implies that rH = 1. Since rH ≤ rL, we have rL = 1 as well. However, since

player 2t knows that player 1 is the strategic type after observing at−1 = L and the strategic type has

no incentive to play H, we have rL = 0. This contradicts the previous conclusion that rL = 1.

Since player 2t’s strategy depends only on at−1, starting from period 1, player 1’s continuation

value depends only on whether at−1 = L or at−1 = H. Let V (L) and V (H) be these continuation

values, respectively. Player 1 has an incentive to play H when at−1 = H if and only if:

(1− δ)(rH + (1− rH)(−cN )) + δV (H)− (1− δ)(1 + cT )rH − δV (L) ≥ 0

or equivalently,
δ

1− δ
(V (H)− V (L)) ≥ cT rH + cN (1− rH). (E.1)
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Similarly, player 1 has an incentive to play H when at−1 = L if and only if

δ

1− δ
(V (H)− V (L)) ≥ cT rL + cN (1− rL). (E.2)

Since rH > rL and cN > cT , the RHS of (E.2) is strictly greater than the RHS of (E.1), which implies

• If player 1 is indifferent between H and L when at−1 = L, then player 1 has a strict incentive to

play H when at−1 = H.

• If player 1 is indifferent between H and L when at−1 = H, then player 1 has a strict incentive

to play L when at−1 = L.

I consider several cases separately. First, suppose player 1 has a strict incentive to play L when

at−1 = H, then he also has a strict incentive to play L when at−1 = L. Then by observing at−1 = H,

player 2 infers that player 1 is the commitment type and has a strict incentive to play T , which implies

that rH = 1. A strategic type player 1 can guarantee discounted average payoff at least δ − (1− δ)cN

by playing H in every period.

Next, suppose player 1 has a strict incentive to play H when at−1 = H, then after player 2 observes

at−1 = H, she knows that player 1 will play H regardless of his type and will have a strict incentive

to play T . As a result, rH = 1. A strategic type player 1 can guarantee discounted average payoff at

least δ − (1− δ)cN by playing H in every period.

The above reasoning implies that in every equilibrium where the strategic type player 1 receives

a payoff strictly less than δ − (1− δ)cN , the strategic type player 1 is indifferent when at−1 = H and

strictly prefers L when at−1 = L, and moreover, rH < 1. I show that there is no such equilibria when

δ is close enough to 1. Let pt be the ex ante probability of the event that:

• player 1 is the strategic type and plays H in period t.

Since the strategic type player 1 plays L for sure when at−1 = L, we have 1− π0 ≥ p0 ≥ p1 ≥ p2 ≥ ...

Since player 2’s prior belief attaches probability π0 to the commitment type and probability δt1(1− δ1)

to the calendar time being t, she is indifferent between T and N after observing at−1 = H if and only

if
+∞∑
t=1

(1− δ1)δt1(π0 + 2pt − pt−1) = 0. (E.3)

Notice that π0 + 2pt − pt−1 ≤ π0
2 if and only if pt−1 − pt ≥ pt + π0

2 ≥
π0
2 . This suggests that there can

be at most

T ≡
⌈2(1− π0)

π0

⌉
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such periods. Since π0 + 2pt − pt−1 ≥ −(1− 2π0),

+∞∑
t=1

(1− δ1)δt1(π0 + 2pt − pt−1) ≥ −(δ1 − δT+1
1 )(1− 2π0) + δT+1

1

π0

2
. (E.4)

The RHS of (E.4) is strictly positive when δ1 is close to 1, which contradicts (E.3). Since δ < δ1, the

above contradiction implies that such equilibria do not exist when δ is close to 1.

Existence of Equilibrium: I establish the existence of equilibrium in the game where K = 1 and

M = 0 by constructing an equilibrium in which player 1’s discounted average payoff is 1. Both players’

strategies depend only on at−1:

1. When at−1 = ∅ or H, the strategic type player 1 plays H and player 2 plays T .

2. When at−1 = L, the strategic type player 1 plays H with probability 1/2 and L with comple-

mentary probability. Player 2 plays T with probability

δ − (1− δ)cN
(1 + cT )− (1− δ)(1 + cN )

,

and N with complementary probability.

One can verify that the strategic type player 1’s continuation value is 1 when at−1 = ∅ or H and

his continuation value is δ−(1−δ)cN
(1+cT )−(1−δ)(1+cN )(1 + cT ) when at−1 = L. The strategic type player 1 is

indifferent between L and H when at−1 = L and strictly prefers H when at−1 = H or ∅.
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