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Abstract

I study the long-run economic effects of a policy of deporting undocumented immi-

grants. To evaluate such a policy, I develop a dynamic spatial growth model featuring

migration, endogenous innovation, and economic geography. Using this framework, I

simulate various deportation policy scenarios for the United States and quantify gains

and losses in welfare and real wages, both in the aggregate and across states. From

these results, I conclude that a policy of deporting undocumented immigrants leads to

small increases in welfare and real wages of US workers but that these gains do not

persist into the long run.

1 Introduction

In 2016, the political landscapes of the United States and European Union were reshaped

by a surge of opposition to liberal immigration policies and calls for harsh enforcement of

existing immigration laws. Most notably, a wave of support for more restrictive immigration

policies was a driving force behind the victories of both the “Brexit” campaign in the United

Kingdom and the Presidential campaign of Donald J. Trump in the United States. Although

support for policies limiting immigration may derive from concerns related to culture and

identity, both campaigns more often emphasized the negative economic effects of allowing

large-scale immigration. For instance, in June 2016, former Conservative Party leader and
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thank others members of the Yale Economics Department who have guided me and helped me to develop
economic intuition and research skills. In particular, I thank Fabian Eckert, Tony Smith, and Joseph Altonji.
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prominent “leave” campaigner Iain Duncan Smith predicted that the recent uptick in immi-

gration to Britain would result in “a 10% fall in wages.” Vice Presidential candidate Mike

Pence expressed similar concerns in August 2016, arguing that a “flood of illegal immigration

has contributed mightily to depressing wages in this country and denying jobs and opportu-

nities to Americans.”

In supposing that large-scale immigration results in lower wages, Smith and Pence intuitively

appeal to a simple static model of labor markets, in which the arrival of new immigrants

shifts right the labor supply curve and lowers the equilibrium wage rate. In this model,

deporting undocumented immigrants would be represented by the opposite shift and would

thus increase the equilibrium wage. However, such a model is overly simplistic, and fails to

acknowledge two features of labor markets and firm behavior that are critical in determin-

ing how a policy of deporting undocumented immigrants might affect economic outcomes.

First, the simple static model on which Pence’s argument implicitly relies assumes that the

labor supplied by undocumented immigrants and by US citizens are perfect substitutes.

This strong assumption is highly significant, as it implies that deportation would lead to

reduced labor market competition and, thus, wage gains for US citizens. A model which

assumed imperfect substitutibility between native and immigrant labor, on the other hand,

would likely predict such effects to be much smaller. Second, the simple static model fails

to account for a longer-run dynamic effect of deportation, which derives from the fact that

the innovation decisions of firms respond to local labor supply. In a model featuring this

linkage, the deportation of undocumented workers would reduce the incentives of US firms

to innovate, resulting in lower rates of US productivity growth. The first issue has been

explored extensively in the labor economics literature, with various approaches and find-

ings summarized by Dustmann, Schönberg, and Stuhler (2016) [1]. In this paper, I focus

on the second issue, developing a dynamic spatial growth model in which innovation re-

sponds to the distribution of labor across space. I use this model as a lens through which

to study the long-run effects of deporting undocumented immigrants from the United States.

Over the past 25 years, the macroeconomic literature on growth has emphasized the link

between ideas and growth, a connection highlighted most clearly by Romer (1990) [2]. In

this class of idea-based growth models, a larger population spurs more rapid innovation.

While the rate of new ideas per person might be the same in a large population as in a small

one, the fact that ideas are non-rivalrous means that it is the quantity of new ideas rather

than ideas per capita that matters for economic growth. To the extent that innovations are

not perfectly mobile across space, the spatial distribution of population is then significant in
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determining local innovation and thus, in the long run, local wages. Therefore, evaluating

the long-run effects of deportation requires a model that features this relationship between

population and innovation.

Desmet, Nagy, & Rossi-Hansberg (2017) [3] (hereafter referred to as DNRH) present a dy-

namic spatial growth model which incorporates geography and, in the spirit of Romer, fea-

tures a relationship between population distribution and innovation. This work furthers the

spatial economics literature in two significant ways. First, the DNRH model features a rich

and realistic geography, which includes local productivity that evolves endogenously, realistic

trade costs, endogenous amenities, spatial migration frictions, and land. Second, by impos-

ing a restriction on the structure of migration costs (Assumption 1 in DNRH), the authors

reduce the agent’s migration decision, which would otherwise be a complicated dynamic

problem, to a simple static decision. This is achieved by assuming that migration frictions

take the form of region-specific entry costs and exit benefits. An agent pays a permanent

multiplicative utility cost m1(r) to enter region r and receives a permanent multiplicative

utility benefit m2(r) when leaving region r, with m1(r) and m2(r) being reciprocals. Each

period, agents choose locations so as to maximize lifetime utility. However, the fact that

the entry cost that an agent pays when entering a region is reimbursed upon leaving the

region implies that she need not consider how her migration decision this period will affect

the migration problem she faces in future periods. Thus, the agent’s decision of where to

locate reduces to a static problem. Furthermore, the choice of r1, the agent’s location next

period, is independent of r0, her location this period.

As DNRH perform an ambitious counterfactual exercise for a world comprising 64,800 re-

gions, this assumption is critical to making it feasible to solve the model and perform coun-

terfactual data exercises. This migration cost structure, while convenient for the exercise

that the authors perform, makes it impossible to use the DNRH model to simulate realistic

dynamic effects of deportation, represented by an exogenous change in the initial spatial

distribution of population. The fact that each agent’s location decision is independent of her

current location implies that the population distribution for next period is independent of the

current population distribution. This means that in a counterfactual scenario in which one

exogenously changes the spatial population distribution, this change will not be persistent,

and will thus have no significant long-run effects. While the DNRH model has the benefits

of tractability and computational simplicity, it is not a suitable framework for analyzing the

dynamic effects of deportation.

3



Allen & Donaldson (2017)[4] (hereafter referred to as AD) present a dynamic spatial model in

which tractibility is achieved by assuming a generational structure in the migration problem

rather than by imposing the restrictive assumption on migration costs employed by DNRH.

AD assume that each agent is born in some region i, where her parent resides. The agent

is not economically active during childhood, but upon reaching adulthood, she chooses a

location j so as to maximize her own utility, but without regard for the lifetime utility of

her offspring. This structure also results in a static migration decision and, thus, AD are

able to achieve tractability in the migration problem while still allowing for flexible migra-

tion frictions and a realistic relation between next period’s population distribution and the

population distribution in the current period.

By combining the generational migration structure of AD with the innovation/growth struc-

ture from DNRH, I develop a model which offers an improved dynamic framework for sim-

ulating the effects of deportation. Using this new model, I perform experiments simulating

the long-run economic effects of a policy of deporting undocumented immigrants from the

United States. I find that while workers in every US state enjoy short-run benefits of re-

duced competition in local labor markets, these gains deteriorate over time. In the very long

run, US workers see lower real wages under the deportation scenario as compared with the

simulation without deportation.

This work extends a literature which employs quantitative models to study issues of eco-

nomic geography. These quantitative models have their origin in Eaton & Kortum (2002) [5],

work which reinvigorated traditional Ricardian models of international trade by introducing

a framework that both generalized to a many-country setting and could be taken to data.

More recently, others, most notably Allen & Arkolakis (2014) [6], have adapted this mod-

eling technique to study the spatial distribution of economic activity across many regions.

A complete taxonomy of this family of models is provided by Redding & Rossi-Hansberg

(2016) [7]. Key features of these models include agglomeration and dispersion forces. A

number of papers in the urban economics literature, including Ahlfeldt, Redding, Sturm &

Wolf (2015) [8] and Greenstone, Hornbeck & Moretti (2010) [9], document substantial ag-

glomeration externalities, and several others, including Ellison, Glaeser & Kerr (2010) [10],

suggest mechanisms underlying the existence of such forces. The balance between these

agglomeration forces and dispersion forces plays a central role in determining equilibrium

properties and long-run behavior of quantitative spatial models.

The paper proceeds as follows. In Section 2, I present data on both bilateral migration
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flows between the US and Mexico, as well as on undocumented immigration to the United

States. I also discuss the recent history of US immigration policy, providing background

for later evaluation of the economic implications of migration policy decisions. In Section

3, I outline the model and, in Section 4, analyze properties of its equilibrium system and

balanced growth path. In Section 5, I outline algorithms for calibrating migration costs, as

well as initial values of the state variables. In Section 6, I present and analyze results of both

the baseline simulation and deportation policy experiments. In Section 7, I draw conclusions

about the long-run effects of a policy of deporting undocumented immigrants from the US.

Finally, in Section 8, I discuss the limitations of the computational experiments I perform

and highlight opportunities for further theoretical work in this area of research.

2 US Immigration: Data and policy context

In this section, I present data on immigrants to the US—both legal and undocumented—to

provide background for the US immigration policy debate.

The 2015 American Community Survey reported a United States’ immigrant population

of 43.3 million, representing 13.5% of all people living in the US. While, as Donald Trump

frequently alluded to during the US Presidential campaign, this proportion is significantly

higher than the rate typical for the US in the second half of the 20th century, it does not rep-

resent a departure from longer-run historical norms; in 1910, for example, 14.7% of the US

population was foreign-born, and this proportion was even higher in the late 19th century

(Migration Policy Institute). Though Trump differs from many mainstream Republicans

in arguing that high levels of immigration, including legal immigration, are undesirable,

policymakers on both sides of the aisle have long expressed concern about the level of un-

documented immigration to the US. President Bill Clinton, for instance, declared in his 1996

book Between Hope and History that “We must not tolerate illegal immigration.” He went

on to say that his administration had “moved forcefully to protect American jobs...[and]

removed 30,000 illegal workers from jobs across the country.”

As of 2014, Pew Hispanic estimated the number of undocumented immigrants in the US

at 11.1 million, with just over half of that number (5.85 million) being of Mexican origin.[11]

While the relatively large undocumented population in the US is frequently cited to argue

in favor of tighter US border security, more relevant figures that are often omitted from such

discussions are net bilateral migration flows between the US and Mexico. During the late

1990s, estimated migration flows across the southern border of the US were quite one-sided,
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with approximately 2.94 million immigrants entering the US from Mexico and only 670,000

migrating from Mexico to the US between 1995 and 2000. However, the direction of these net

flows have since reversed. Between 2009 and 2014, about 870,000 immigrants moved from

Mexico to the US and about 1 million migrated from the US to Mexico. The 2014 Mexican

National Survey of Demographic Dynamics from which these estimates were calculated also

offers insight into the factors underlying this trend. While deportation did account for about

14% of the 1 million migrants from the US to Mexico in the 2009-2014 period, most left the

US voluntarily, with 61% citing family reunification as the reason for migration. [12]

The fact that bilateral net migration flows from Mexico to the US are now negative leads

one to question whether Trump’s campaign promise of “an impenetrable physical wall on

the southern border” would help achieve his goal of reducing the number of undocumented

immigrants living in the US. However, another policy pledge which Trump made as President-

elect, the deportation of two to three million undocumented immigrants, would undoubtedly

have a larger effect. Although Trump’s tone in discussing undocumented immigrants and

deportation has been markedly more aggressive than that of his predecessor, this suggested

policy would not be a violent departure from that carried out by the Obama Administration.

According to the Department of Homeland Security’s “Yearbook of Immigration Statistics,”

more than 3.1 million compulsory removals1 of undocumented immigrants were conducted

during the fiscal years 2008-2015.[14]

While immigration enforcement is (at least in theory) a federal issue and most immigra-

tion policy decisions are made at the national level, a policy of deporting undocumented

immigrants has significant local implications. Undocumented immigrants living in the US

are overwhelmingly concentrated in the Southwest, the Southeast, and few metropolitan

areas of the Northeast and Midwest (see Figure 1). This highly uneven geographic distribu-

tion means that US immigration policy has significant differential implications across the 50

states. This makes evaluating the economic effects of a policy of deportation an interesting

economic geography problem. In what follows, I will develop a quantitative spatial model

and use it to evaluate effects both aggregate and local.

1Note that this figure does not represent the number of undocumented immigrants living in the United
States who were deported. This includes people apprehended while attempting to cross the border or shortly
after crossing the border. According to the Los Angeles Times[13], this category accounted for nearly two-
thirds of the deportations recorded in 2013.
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Figure 1: Undocumented immigrants as a percent of state population [15]
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3 The Model

In this section, I outline the quantitative spatial model which I will use as a framework for

evaluating the economic effects of deportation. I begin by characterizing economic geography

in the model. Second, I outline and solve the consumption and migration decisions faced by

agents. Third, I define the evolution of technology and outline and solve the problem faced

by firms. Finally, I show that a special case of my model is isomorphic to that of Allen &

Donaldson.

3.1 Geography

The world comprises N spatially distinct regions denoted i, j = 1, 2, . . . , N . Economic geog-

raphy in this model is defined by land, local amenities, migration costs, and trade costs.

Each region i has measure of land Hi > 0. The exogenous local amenity associated with

living in region i at time t is ūi > 0. Let D ∈ RN×N be a matrix of exogenous iceberg trade

costs, with Di,j ≥ 1 representing the cost of transporting goods from region i to region j.

Finally, let M ∈ RN×N be the matrix of exogenous iceberg migration costs, with Mi,j ≥ 1

2Figures 1-4 and 11-12 were constructed using the MapTile package for Stata. I acknowledge Michael
Stepner of MIT for building this package and for providing map data files for the US to the public.
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representing the cost (in terms of utility) of moving from region i to region j.

For the purpose of my deportation experiments, I set N = 51, with regions representing

the 50 United States and Mexico. In order to make estimation feasible (see Section 5), I

impose the following structure for bilateral migration costs:

Mi,j =



1 i = j

δ1 if i, j are both in US

δ2 if i is in US and j = Mexico.

δ3 if j is in US and i = Mexico.

where δ1, δ2, δ3 ≥ 1.

3.2 Agent’s problem

A measure of adult agents resides in each region, and the total population of adult agents

across all regions is L̄. Some agents are citizens or legal residents while others are undoc-

umented immigrants. LCit denotes the citizens and legal residents per unit land, while LUit

denotes the undocumented immigrants per unit land residing in region i in period t. In

this model, the two groups do not differ in preferences or in labor productivity. The total

population density of region i is Lit = LCit + LUit .

In each period, adult agents derive utility from consumption of a variety of goods.

Preferences Agents consume varieties ω ∈ [0, 1]. Adult consumers have CES preferences

over this continuum of varieties with elasticity of substitution σ. For convenience, I set

ρ = σ−1
σ

. Solving the utility maximization problem, the utility from consumption of an

agent living in region i at time t is

[∫ 1

0

(cωit)
ρ dω

] 1
ρ

=
yit[∫ 1

0
(pωit)

1−σ dω
] 1

1−σ
=
yit
Pit

where yit is the income of an agent living in region i and Pit is the CES price index.
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Welfare is given by

Wit =
(
ūiL

−λ
it

) yit
Pit

(1)

Note that in addition to ūi, the exogenous component of the local amenity introduced above,

there is also an endogenous component. Lit denotes the population density of region i at

time t, so L−λit with λ > 0 represents a dispersion force; all else equal, agents prefer to reside

in less densely populated regions.

Adult agents also face a migration decision, in which they observe the wages, prices, and

amenities offered by each region and choose one in which to reside. Migration decisions in

this model follow the generational structure of Allen-Donaldson:

Timing The following steps summarize the lifetime of an agent who is an adult in period

t:

1. In period t− 1, the agent is born in region i, the region where her parent lives. She is

not economically active during childhood.

2. At the start of period t, the agent reaches adulthood and chooses j, the region in

which she will live, consume, and work as an adult. This decision is represented by

the maximization problem presented in (2). Note that in choosing j, the agent seeks

to maximize her own welfare, but does not consider the lifetime welfare of her child.

This assumption is crucial for delivering tractability. If this assumption were relaxed,

the migration decision would be a complicated dynamic problem and solving would

require considering agents’ intertemporal preferences and expectations of future states

of the economy.

3. In period t, the agent gives birth to a child in region j.

Migration problem An agent k born in i in period t− 1 chooses her period t location by

solving the problem

max
j

Wjt

Mij

× εkj (2)

where εkj is agent k’s idiosyncratic taste shock drawn from a Fréchet distribution. Assume

εkj ∼ Fréchet(1/Ω) is i.i.d. across individuals and locations with Ω > 0 exogenous. Then,

migration shares follow from the max-stable property of the Fréchet distribution, along with
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the Law of Large Numbers. Recall that Lit denotes the population density of region i at

time t. Let `ijt denote the proportion of people born in i in t− 1 who move to j in t:

`ijt =

(
Wjt/Mij

Πit

)1/Ω

(3)

where

Πit =

(
N∑
k=1

(Wkt/Mik)
1/Ω

)Ω

(4)

Thus, the period t population of j is given by

HjLjt =
∑
i

HiLi,t−1

(
Wjt/Mij

Πit

)1/Ω

(5)

= Wjt

∑
i

HiLi,t−1 (MijΠit)
−1/Ω (6)

Note that this equation, which defines the model’s population dynamics, differs from the

corresponding equation in DNRH (equation (7) in DNRH) in one important respect. In the

latter, the vector Lt is independent of the vector Lt−1. In DNRH, this path independence

comes from the fact that, as a result of the structure imposed on migration costs, the fraction

of people who move from region i to region j does not depend on i. That is, in the DNRH

model, an equal proportion of people living in each region will move to j. My model (like

the AD model), on the other hand, features path dependence; the spatial allocation of labor

next period depends directly on the spatial allocation of labor this period. This allows

for a more realistic characterization of population dynamics and, in particular, will deliver

more reasonable predictions for how these dynamics respond to an exogenous change in the

population distribution, such as the deportation of undocumented immigrants.

3.3 Technology and innovation

In this subsection, I outline the structure of technology and present the problem faced by

firms.3

3As the supply side of my model follows closely DNRH, the material in this section has in very similar
form been used in my Senior Project in Applied Mathematics, titled “Exploring the economic effects of
mass deportation in a spatial growth model”. That project used the DNRH model to perform counterfac-
tual experiments and, thus, required outlining the DNRH model in detail. I include the material here for
completeness.
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As in DNRH, a firm produces a good ω ∈ [0, 1] according to the following production

function

qωit = (φωit)
γ1 (Lωit)

µ zωit (7)

where qωit is the period-t output per unit land of a firm located in region i that produces good

ω. φωit is a level of “innovation,”chosen by the firm, which in part determines its productivity.

Innovation is costly, and the firm must employ ν (φωit)
ξ extra units of labor in order to enjoy

this innovation. Lωit is the amount of labor (per unit land) employed by the firm for produc-

tion (i.e., not for innovation). zωit is the realization of a random variable that exogenously

shifts the firm’s productivity. Draws are i.i.d. across goods and periods, and are distributed

Fréchet, with CDF F (z, i) = exp
(
−τit (Lit)

α z−θ
)
, where α ≥ 0 and θ > 0 are exogenous

parameters, and τit evolves according to an endogenous dynamic process.

In particular, τit is a state variable representing the non-random component of productivity,

and its evolution depends on the innovation decisions of firms in region i. In addition, tech-

nology in this model diffuses across space, so τit also depends indirectly on the innovation

decisions of firms in other regions.

τit = (φt−1,i)
θγ1

[
N∑
j=1

1

N
τt−1,j

]1−γ2

(τt−1,i)
γ2 (8)

where γ1, γ2 ∈ [0, 1].

Following DNRH, the productivity shock zωit is identical across firms producing a particular

good ω in a particular region i. Thus, within a region i, firms producing ω have identical

productivity and face identical wage rates, rental rates, and trade costs. Bertrand competi-

tion among identical firms implies that, in equilibrium, these firms will set identical prices,

resulting in perfect local competition. Under perfect competition, firms in region i will bid

up the rental rate to the point at which all firms earn zero profits.

In DNRH, firms choose innovation so as to maximize the present discounted value of profits.

However, the fact that, in my model, all agents are short-lived and there are no capital

markets suggests that firms too should be short-lived. I assume that firms choose the levels

of production and innovation so as to maximize current-period profits.4

4Note that the assumption that firms are short-lived is made simply for consistency, and that this
assumption does not substantively alter the behavior of firms in this model. Although firms in DNRH seek
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Below, I present this static profit-maximization problem (9) and its two first-order con-

ditions, (10) and (11). First, I define notation for prices: Let pωt (i, i) be the price of a unit of

ω produced in region i and sold in region i. Prices will vary across space as a result of trans-

portation costs: The price of a unit of ω produced in i and sold in j is pωt (j, i) = Di,jp
ω
t (i, i)

where Di,j ≥ 1 is the iceberg trade cost of transporting goods from i to j.

The firm seeks to maximize period-t profits, which I write as revenue less costs of factor

inputs. Let Rit and wit denote, respectively, the rental rate of land and the wage rate in

region i at time t.

max
Lωit,φ

ω
it

pωt (i, i) (φωit)
γ1 (Lωit)

µ zωit − witLωit − witν (φωit)
ξ −Rit (9)

The first-order condition with respect to labor, Lωit:

µpωt (i, i) (φωit)
γ1 (Lωit)

µ−1 zωit = wit (10)

And with respect to innovation, φωit:

γ1p
ω
t (i, i) (φωit)

γ1−1 (Lωit)
µ zωit = ξwitν (φωit)

ξ−1 (11)

Solving (10) and (11), I find the total number of people employed by firms producing variety

ω in region i. Note that this is the sum of production workers, Lωit, and innovation workers,

ν (φωit)
ξ. First, dividing the left-hand side of (10) by the left-hand side of (11) and dividing

the right-hand side of (10) by the right-hand side of (11) gives

µφωit
γ1Lωit

=
1

ξν (φωit)
ξ−1

or, equivalently,
Lωit
µ

=
ξν (φωit)

ξ

γ1

(12)

It follows that total employment (per unit land) by firms producing good ω in region i is

L̄ωit ≡ Lωit + ν (φωit)
ξ =

Lωit
µ

[
µ+

γ1

ξ

]
(13)

to maximize the present value of profits for all periods, the competitive structure of local land market results
in the firm earning zero profits in all future periods. Thus, maximizing the present value of profits for all
periods is equivalent to maximizing static profits.
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The zero-profit condition allows me to write the equilibrium rental rate as

Rit = pωt (i, i) (φωit)
γ1 (Lωit)

µ zωit − witLωit − witν (φωit)
ξ (14)

From (10) and (12),

pωt (i, i) (φωit)
γ1 (Lωit)

µ zωit =
witL

ω
it

µ
= wit

ξν (φωit)
ξ

γ1

(15)

Then, substituting into (14) gives

Rit =

[
ξ (1− µ)

γ1

− 1

]
witν (φωit)

ξ (16)

Under perfect competition, firms take the rental rate of land, Rit, as well as the wage rate,

wit, as given. Thus, one can solve (16) for φωit. Then, the optimal choice of Lωit follows from

(12), and total employment by firms producing ω in region i follows from (13). It is impor-

tant to note that the idiosyncratic productivity shock zωit does not appear in (12), (13), or

(16). Thus, the firm’s innovation and employment decisions are independent of this shock.

As this shock is the only feature differentiating firms that produce different varieties, it fol-

lows that φωit and Lωit are identical across ω. All firms in region i make the same production

and innovation decisions irrespective of the goods they produce.

From these conclusions, it is straightforward to derive the input unit cost in location i

at time t

mcit ≡
[

1

µ

]µ [
νξ

γ1

]1−µ [
γ1Rit

witν (ξ (1− µ)− γ1)

](1−µ)− γ1
ξ

wit (17)

=

[
1

µ

]µ [
νξ

γ1

]1−µ

φ
ξ(1−µ)−γ1
it wit (18)

and the price of a unit of good ω produced at i and sold at i

pit (i, i) =
mcit
zωit

(19)

And, since trade costs are passed through completely to consumers, the price of a unit of

good ω produced at i and sold at j is

pt (j, i) = Di,j
mcit
zωit

(20)
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Exports Consumers in region j will buy good ω from whichever region offers the lowest

price. Thus, the proportion of goods produced in i that are sold in j is

πt (j, i) = Pr (pt (j, i) ≤ pt (j, k) for all k) (21)

=
τit (Lit)

α [mcitDj,i]
−θ∑

k∈R τkt (Lkt)
α [mcktDj,k]

−θ (22)

For a formal derivation of (22), see Appendix B of DNRH. This tractable expression for

export shares in this model results from the max-stable property of the Fréchet distribution.

The feature of Fréchet-distributed productivity shocks follows the example of Eaton & Ko-

rtum (2002)[5].

The CES price index for region i can be written as

Pit = κ1

[
N∑
j=1

τjtL
α
jt (mcjtDi,j)

−θ

]− 1
θ

(23)

where κ1 = Γ
(

1−σ
σ

+ 1
) 1

1−σ . The derivation uses a change of variable; since the probability

distribution of prices is known, it is convenient to integrate over prices rather than over

goods. This derivation is explained fully in Eaton & Kortum (2002)[5].

Trade balance As is common in spatial models of trade, I impose trade balance. For all

i = 1, 2, . . . , N ,

witHiLit =
N∑
j=1

πt(j, i)wjtHjLjt

By substituting in (22), I derive

witHi (Lit)
1−α 1

τit
(mcit)

θ =
N∑
j=1

(Dji)
−θ∑

k∈R τkt
(
L̄kt
)α

[mcktDj,k]
−θwjtHjLjt

=
N∑
j=1

(Dj,i)
−θ
(
Pjt
κ1

)θ
wjtHjLjt
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which can be rearranged as follows:

w1+θ
it HiL

1−α
it

1

τit

([
1

µ

]µ [
νξ

γ1

]1−µ
)θ

(φit)
θ(1−µ)ξ−θγ1 =

N∑
j=1

(Dj,i)
−θ
(
Pjt
κ1

)θ
wjtHjLjt (24)

Rental income As in DNRH, I assume local land ownership. That is, total rent payments

in region i are distributed equally among current residents of i, so the total income of an

agent living in i is

yit = wit +
Rit

Lit

= wit

[
1 +

(
ξ (1− µ)

γ1

− 1

)
ν
φξit
Lit

]
(25)

I recall that the first order conditions of the static profit maximization problem of a firm

producing good ω, along with the zero-profit condition, give

(φωit)
1/ξ

Lωit
=

γ1

µνξ

where Lωit is the amount of production labor per unit land employed by the firm. Then, using

the fact that the total labor (in both production and innovation) employed by the firm is

L̄it
ω

=
Lωit
µ

[
µ+ γ1

ξ

]
, along with the fact that the employment and innovation decisions of the

firm are independent of ω,

φξit
Lit

=
γ1

ν
× 1

γ1 + µξ
(26)

Substituting into (25), I find that an agent’s total income is a constant multiple of her wage:

yit =
wit
µ

(27)

Then, the unit cost expression simplifies to

mcit = κ
−1/θ
2 L

(1−µ)− γ1
ξ

it wit

where κ2 =

(
µ−µ

(
ν
γ1

) γ1
ξ
(

1
γ1+µξ

)(1−µ)− γ1
ξ

)−θ
.
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3.4 Isomorphism with Allen-Donaldson model

In the previous subsection, I outlined the technology and innovation side of my model which

follows DNRH and features endogenous productivity growth. This is one respect in which

my model differs from that of Allen-Donaldson, which has exogenous productivity. Another

difference is that my model, unlike that of AD, also features land as a factor of production. I

show in Appendix A that, considering a single period t, a special case of my model in which

all regions have an equal measure of land is isomorphic to the Allen-Donaldson model. The

two models are linked by Table 2, which is also presented in Appendix A.

4 Equilibrium

In order to use this model for calibrations, simulations, and policy experiments studying

the effects of deporting undocumented immigrants, I must first define what I mean by an

equilibrium and determine whether an equilibrium exists. If so, I must find a method for

solving for equilibrium and determine whether the resulting solution is unique.

I begin by defining two terms. The first, temporary equilibrium, refers to an equilibrium

for the economy at a particular point in time. The second, dynamic equilibrium, refers to a

sequence of temporary equilibria representing the path of the economy over time.

Definition 1 Given vectors τt, Lt−1 ∈ RN
>0, a temporary equilibrium is a set of vectors

{wt, Lt,Wt,Πt} which solves the following system of equations:

1. From equation (4):

Π
1/Ω
it =

N∑
j=1

(Wjt/Mij)
1/Ω

2. From equation (6):

LitW
−1/Ω
it =

N∑
j=1

Hj

Hi

M
−1/Ω
j,i Π

−1/Ω
jt Lj,t−1

3. From equations (23) and (1): Price equations

w−θit L
λθ
it W

θ
it = κ2κ

−θ
1

N∑
j=1

ūθiD
−θ
ij τjtw

−θ
jt L

α−θ(1−µ)+
θγ1
ξ

jt
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4. From equation (24) and (1): Trade balance condition

w1+θ
it L

1−α+θ(1−µ)− θγ1
ξ

it = κ−θ1 κ2µ
−θ

N∑
j=1

Hj

Hi

τitū
θ
j (Dj,i)

−θ w1+θ
jt L1−λθ

jt W−θ
it

Note that I have used (26) to substitute in for φit in each of the above equations.

Definition 2 Given vectors L0, τ0 ∈ RN
>0, a dynamic equilibrium is a path of tempo-

rary equilibria and technology vectors. That is, a dynamic equilibrium comprises a set of

vectors {wt, Lt,Wt,Πt, τt}Tt=1 such that, for each t = 1, . . . , T , the following two conditions

are satisfied:

1. The vectors τt, τt−1, and Lt−1 satisfy the technology evolution equations (8) and (26).

2. Given vectors τt and Lt−1, the set of vectors {wt, Lt,Wt,Πt} constitute a temporary

equilibrium.

Having defined temporary and dynamic equilibria, it is clear that, given initial distributions

of population and technology, solving for a dynamic equilibrium entails solving for a series

of temporary equilibria and, at each step, updating the technology vector, τt. Since (8) and

(26), the equations for updating technology, map strictly positive vectors τt−1 and Lt−1 to a

strictly positive vector τt, the questions of whether a dynamic equilibrium exists and, if so,

whether it is unique are equivalent to the questions of whether the temporary equilibrium,

for each t, exists and is unique.

4.1 Temporary equilibrium properties

In this section, I show that I can rewrite the conditions defining a temporary equilibrium

in a simpler form and, using this simplified system, find conditions for the existence and

uniqueness of a temporary equilibrium.

My analysis of questions the existence and uniqueness of the temporary equilibrium will

be simplified by making the following assumption regarding the structure of iceberg trade

costs in the model and using the implications of this assumption to rewrite the system of

equations defining a temporary equilibrium.

Assumption 1 Let D, the matrix of bilateral trade costs, be symmetric, i.e. Di,j = Dj,i

for all regions i, j.
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Theorem 2 from Allen, Arkolakis, & Takahashi (2014) [16] (hereafter referred to as AAT)

states that in a general equilibrium model yielding gravity equation of the form Xij = Kijγiδj

where K is a “quasi-symmetric” N × N matrix, assuming balanced trade is equivalent to

assuming that the origin and destination shifters of a region i are equal up to scale. That is

γi = κδi

To give intuition, I have included the proof of the special case of AAT Theorem 2 for sym-

metric trade frictions in Appendix B.

In my model,

Xijt = πt(j, i)wjtHjLjt

=
(
κ−θ1 κ2µ

−θ)D−θji [τitw−θit Lα−θ(1−µ)+
γ1θ
ξ

it

] [
ūjHjw

1+θ
jt L1−λθ

jt W−θ
jt

]
Thus, the origin- and destination-specific components are

γi = τitw
−θ
it L

α−θ(1−µ)+
γ1θ
ξ

it

δi = ūiHiw
1+θ
it L1−λθ

it W−θ
it

Applying AAT Theorem 2,

ūiHiw
1+θ
it L1−λθ

it W−θ
it = κτitw

−θ
it L

α−θ(1−µ)+
γ1θ
ξ

it

Solving this equation for the wage gives

wit =

(
κ (ūiHi)

−1 τitL
−1+λθ+α−θ(1−µ)+

γ1θ
ξ

it W−θ
it

) 1
1+2θ

This gives an explicit expression for equilibrium wages in terms of fundamentals and other

equilibrium objects. I can substitute this expression into the price equations, thus reducing

the temporary equilibrium system to a system of 3N equations in 3N unknowns. Notice that

κ cancels, so the price equations and trade balance condition in the temporary equilibrium
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system are replaced by

L
θ̃(1−λθ−α+θ(1−µ)− γ1θ

ξ )+λθ

it W
θ(1+θ̃)
it (28)

= κ2κ
−θ
1

N∑
j=1

D−θji

(
ūθ−θ̃i H−θ̃i τ θ̃it

)(
τ 1−θ̃
jt ūθ̃jH

θ̃
jL

θ̃(1−λθ)+(1−θ̃)(α−θ(1−µ)+
θγ1
ξ

)

jt W θ̃θ
jt

)

where θ̃ = θ
1+2θ

.

Having rewritten and combined two of the conditions defining a temporary equilibrium,

I am prepared to prove that there exists a unique, strictly positive temporary equilibrium.

To do so, I will leverage a theorem from Allen, Arkolakis, & Li (2015) [17] (hereafter re-

ferred to as AAL). Theorem 1 from AAL gives conditions for the existence and uniqueness

of solutions to a system of equations of the form

K∏
l=1

(
xli
)γkl = λk

N∑
j=1

F k
ij

K∏
l=1

(
xlj
)βkl ∀k ∈ {1, . . . , K}

where

• i, j ∈ {1, . . . , N} are regions

• k, l ∈ {1, . . . , K} are the number of equilibrium equations/variables

• F k
ij ≥ 0, βkl, γkl are exogenous

• xli is equilibrium variable l in region i.

Denote Γ and B as the K × K matrices with elements (Γ)kl = γkl and (B)kl = βkl, re-

spectively. Assuming that Γ is non-singular, define A = BΓ−1, and let Ap be the matrix

constructed from the absolute values of the elements of A, i.e. (Ap)kl = |Akl|. Furthermore,

let ρ (Ap) be the spectral radius of Ap. The theorem states that

1. If F k
ij > 0 for all i, j, k, then there exists a strictly positive solution.

2. If ρ (Ap) ≤ 1 and F k
ij ≥ 0 for all i, j, k, then there is at most one strictly positive

solution.

3. If ρ (Ap) < 1 and F k
ij > 0 for all i, j, k, then the unique solution can be computed by

a simple iterative process.

In my model, K = 3 and the set of variables in the temporary equilibrium system is

{Lit,Wit,Πit}Ni=1.
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Existence Using the theorem above, I construct Fij ∈ R3:

Fij =


M
−1/Ω
i,j

Hj
Hi
M
−1/Ω
i,j Lj,t−1

ūθ−θ̃i H−θ̃i τ θ̃itD
−θ
ji τ

1−θ̃
jt ūθ̃jH

θ̃
j


Recall that ūi, Hi,Mij, Dij > 0 by assumption. Then F k

ij > 0 for all i, j = 1, 2, . . . , N and

k = 1, 2, 3. Given positive, finite vectors τt and Lt−1, there exists a strictly positive solution

to this system, i.e., there exists a strictly positive temporary equilibrium.

Uniqueness Using the Theorem above, I construct matrices B,Γ ∈ R3×3:

B =


0 1

Ω
0

0 0 − 1
Ω

θ̃ (1− λθ) + (1− θ̃)
(
α− θ(1− µ) + θγ1

ξ

)
θθ̃ 0



Γ =


0 0 1

Ω

1 − 1
Ω

0

θ̃
(

1− λθ − α + θ(1− µ)− θγ1
ξ

)
+ λθ θ(1 + θ̃) 0


The parameters values I use in simulation are given in Table 1. For these values, ρ (BΓ−1) =

0.7557 < 1. Thus, for given initial levels of the state variables, there is a unique strictly

positive dynamic equilibrium.

4.2 Balanced growth path

In this subsection, I examine the balanced growth path properties of the model. This is

valuable insofar as it enables me to draw conclusions about how changing the initial state of

the economy (as in the case of my deportation experiments) affects the long-run behavior of

the economy.

In what follows, I derive conditions for existence and uniqueness of a balanced growth path,

using the argument presented in Appendix B.5 of DNRH as a guide. As innovation in my

model is the same as in DNRH, the first part of my derivation follows DNRH quite closely.

However, the fact that the population distribution in my model exhibits path dependence

complicates the derivation.
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From (8), the growth rate of τit can be written as

τi,t+1

τit
= φθγ1it

[∑
j

1

N

τjt
τit

]1−γ2

From this equation, it is clear that the growth rate of τit will be constant across time and

space only if τit
τjt

is constant across time. From this observation, it follows that the growth

rate of τit must be constant across space along the BGP. Thus, for all i, j,

1 =
τi,t+1/τit
τj,t+1/τjt

=

(
φit
φjt

)θγ1 ( τit
τjt

)1−γ2

It follows that

τit
τjt

=

(
φit
φjt

) θγ1
1−γ2

Then, from (26),

τit
τjt

=

(
Li
Lj

) θγ1
ξ(1−γ2)

Note that the time subscripts on L are dropped, acknowledging the fact that the population

distribution is steady along the BGP. Then, from labor market clearing, I can derive an

expression for τi in terms of Li. The total labor supply is

L̄ =
N∑
j=1

HjLj

= Li

N∑
j=1

(
τit
τjt

) θγ1
ξ(1−γ2)

Hj

and rearranging gives

τit = κtL
ξ(1−γ2)
θγ1

i (29)

where κt =

(
L̄−1

∑
j Hjτ

θγ1
ξ(1−γ2)
jt

) ξ(1−γ2)
θγ1

.

This equation shows that, along the BGP, τi, the level of technology in region i, is a power
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function of Li, the population density of region i. As the exponent on Li is positive, equation

(29) implies that, in the very long run, more densely populated regions will have higher levels

of technology and will exhibit higher productivity. This “market size” effect, the tendency

toward investment in technologies that augment the productivity of a factor that is abun-

dant, is well documented in the growth literature, and is explored by Acemoglu (2002) [18].

From this expression, one can also see that, for a given BGP population vector L, the extent

to which the level of technology varies across space depends on the exponent ξ(1−γ2)
θγ1

, with

higher values of the exponent indicating greater technological heterogeneity. In particular,

the exponent expression indicates that, all else equal, a more concave innovation production

function or a lower elasticity of technology and productivity with respect to innovation, im-

plies greater heterogeneity in technology.

Using equation (29), I derive a system of 3N equations in 3N unknowns that define the

balanced growth path. As in the temporary equilibrium system, the set of unknowns is

{Li,Wit,Πit}Ni=1.

1. I substitute (29) into (28):

L
θ̃(1−λθ−α+θ(1−µ)− γ1θ

ξ )+λθ−θ̃ ξ(1−γ2)
θγ1

i W
θ(1+θ̃)
it (30)

= κtκ2κ
−θ
1

N∑
j=1

D−θji

(
ūθ−θ̃i H−θ̃i

)(
ūθ̃jH

θ̃
jL

θ̃(1−λθ)+(1−θ̃)(α−θ(1−µ)+
θγ1
ξ

)+(1−θ̃) ξ(1−γ2)
θγ1

j W θ̃θ
jt

)

2. Dropping the time subscripts from variables that are constant along the BGP, (6)

becomes:

LiW
−1/Ω
it =

N∑
j=1

Hj

Hi

M
−1/Ω
j,i Π

−1/Ω
jt Lj (31)

3. Equation (4) remains unchanged:

Π
1/Ω
it =

N∑
j=1

(Wjt/Mij)
1/Ω (32)

Notice that this system is in the general AAL form with K = 3. Thus, I can apply AAL

Theorem 1:
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Existence

Fij =

 ūθ−θ̃i H−θ̃i D−θji ū
θ̃
jH

θ̃
j

Hj
Hi
M
−1/Ω
j,i

M
−1/Ω
j,i

 > 0

Thus, by AAL Theorem 1, there exists a strictly positive solution to this system. That is, a

balanced growth path exists.

Uniqueness

B =

 θ̃(1− λθ) + (1− θ̃)(α− θ(1− µ) + θγ1
ξ

) + (1− θ̃) ξ(1−γ2)
θγ1

θ̃θ 0

1 0 −1/Ω

0 1/Ω 0



Γ =


θ̃
(

1− λθ − α + θ(1− µ)− γ1θ
ξ

)
+ λθ − θ̃ ξ(1−γ2)

θγ1
θ(1 + θ̃) 0

1 −1/Ω 0

0 0 1/Ω


For the parameter values used in my simulations (listed in Table 1), I find that ρ

(
AP
)

=

1.2137 > 1, with AP defined as in Section 4.1. Thus, for the chosen parameter values, there

may be multiple balanced growth paths. This, combined with the result that the dynamic

equilibrium is unique for a given τ0 and L0, has interesting implications. For any given

initial state of the economy, there is a unique path of temporary equilibria which converges

to a BGP. However, since the model may have multiplicity of BGP, the long-run behavior of

the model could depend on this initial state. This suggests that exogenously changing the

population distribution, as occurs when a policy of deportation is implemented, may have

effects that persist into the very long run.

Note that the strategy employed here to study the BGP properties of the model is simi-

lar to that used by DNRH. However, due to the further tractability that results from DNRH

Assumption 1, they are able to find a single integral equation which defines the BGP. Thus,

applying AAL Theorem 1, they derive a single explicit condition on parameters for the

uniqueness of BGP. Furthermore, for their choice of parameters, this condition is satisfied,

so DNRH are able to prove that their model features a unique balanced growth path.
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5 Calibration & Simulation

Regions and time periods To use this model to analyze US immigration policy, I con-

sider a world comprising N = 51 regions, namely the 50 US states, plus Mexico. I set Hi to

be the land area of each region, which I obtain from the US Census Bureau and World Bank.

To justify the generational migration structure featured in the model, I let each period

have the interpretation of 20 years, an approximation of the length of one generation. I let

t = 0 correspond to the year 2015. The calibration procedures outlined below require data

from both t = −1 and t = 0, so I use population, wage, and subjective well-being data for

the years 1995 and 2015.

Wage and population data I obtain initial wages and populations directly from the

data. I set wi0 to 2015 GDP per capita in region i, obtained from the BEA and World Bank.

Similarly, I set Li0 to the 2015 population density of region i, obtained from estimates by

the US Census Bureau and World Bank. In calibrating migration costs (see below), I also

employ the corresponding population density data for the year 1995.

Amenities, local productivity, and subjective well-being DNRH propose a method

for backing out the exogenous local amenity using subjective well-being survey data. I out-

line a very similar method for backing out ūi in this model. I take state and country-level

data from the results of a Gallup-Healthways survey and the Gallup World Poll in which par-

ticipants were asked to rate their level of happiness using a “Cantril ladder” scale, on which

responses of 0 and 10 represent, respectively, the lowest and highest levels of life satisfaction

that the respondent can imagine. However, this subjective measure must be transformed

into a cardinal measure of utility. Let WCantril
i denote the Catril well-being measure for

region i. See Appendix C for details on the utility transformation.

This transformation results in an estimate of initial regional welfare: Wi0 = e1.8×WCantril
i0 .

Then, inverting equation (1) gives the exogenous local amenity as a function of local wage,

population density, welfare, and prices:

ūi = µw−1
i0 L

λ
i0Wi0Pi0 (33)

However, as the price index, Pi0, depends on the initial distribution of technology, τ0, tech-

nology and amenities must be backed out together using the iterative procedure below.
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The vectors w0, L0, and W0 are now known. From equation (4), these imply Π0 for a

given matrix of migration costs M . Thus, all that remains is to find vectors τ0 and P0

such that, {w0, L0,W0,Π0} form a temporary equilibrium. This can be accomplished by the

following iterative process:

1. Set φi0 =
(

γ1
γ1+µξ

Li0
ν

)1/ξ

.

2. Set mci0 =
(

1
µ

)µ (
νξ
γ1

)1−µ
φ
ξ(µ−1)−γ1
i0

3. Guess τ0.

4. Iterate over the following two steps until the process converges:

(a) Update P0:

Pi0 :=

(
κ1

[
1

µ

]µ [
νξ

γ1

]1−µ
)[

N∑
j=1

τj0L
α
r0 (mcj0Dij)

−θ

]− 1
θ

(34)

(b) Use inversion of (23) to update τ0:

τi0 :=

(
κ1

[
1

µ

]µ [
νξ

γ1

]1−µ
)θ

Hi (φi0)θ(1−µ)ξ−θγ1 w1+θ
i0 L1−α

i0

[
N∑
j=1

(Dj,i)
−θ (Pj0)θ

]−1

(35)

5. Then, use (33) to calculate local amenities: ūi := µw−1
i0 L

λ
i0Wi0Pi0 (See results in

Figure 2).

Note that the system (34) and (35) has exactly one positive solution though it is not guar-

anteed that a simple iterative process will converge to the solution. See proof in Appendix

D. In practice, I find that I can reach a solution to this system iteratively.

After completing this process, I have initial vectors for all of the endogenous objects:

{L0, w0, τ0,W0,Π0}. Thus, after calibrating migration costs, I will be able to simulate the

model forward.
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Figure 2: Calibration results: ūi, exogenous amenity (Mexico = 1)

0.34 − 1.00
0.28 − 0.34
0.25 − 0.28
0.21 − 0.25
0.17 − 0.21
0.09 − 0.17

5

Migration costs Recall that, from the structure of Mi,j which I specified in Section 3.1,

calibrating migration costs requires calibrating three parameters: δ1, δ2, and δ3.

From the data, L−1 is known, along with w0, L0,W0. Recall that for all i = 1, . . . , N ,

Li0W
−1/Ω
i0 =

N∑
j=1

M
−1/Ω
j,i∑N

k=1 (Wk0/Mik)
1/Ω

Lj,−1

From equation (3), the measure of people who move from i to j between periods −1 and 0

is

`ij,0Li,−1Hi =

(
Wj0/Mij

Πi0

)1/Ω

Li,−1Hi

Let U be the set of regions in the US. I calibrate δ1, δ2, δ3 using an iterative procedure on the

three equations below (note that iteration is required since Π0 depends on δ1, δ2, and δ3).

Suppose GDATA
interstate is the observed gross interstate migration flow between 1995 and 2015,

5For Figures 2-4, GIS shape files were obtained from the US Census-TIGER and DIVA-GIS.
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and GDATA
US-Mex and GDATA

Mex-US are the corresponding flows from the US to Mexico and from

Mexico to the US, respectively. Then, I calibrate δ1, δ2, and δ3 by finding a solution to

δ1 =

[(
GDATA

Interstate

)−1
∑
i∈U

∑
j∈U ,j 6=i

(
Wj0

Πi0

)1/Ω

Li,−1Hi

]Ω

δ2 = WMex,0

[(
GDATA

US-Mex

)−1
∑
i∈U

Π
−1/Ω
i,0 Li,−1Hi

]Ω

δ3 = (ΠMex,0)−1

[(
GDATA

Mex-US

)−1
LMex,−1HMex

∑
j∈U

W
1/Ω
j,0

]Ω

These three conditions are derived in Appendix E.

I take the following gross migration moments from the data:

• From Molloy, Smith, & Wozniak (JEP 2011) [19], I have the lifetime interstate mi-

gration rates for each decade. I seek to match the gross interstate migration rate

moment 0.318, which is an approximation of the 1995-2015 value, obtained by linear

interpolation. Let GDATA
interstate = 0.318× US population 1995

US population 1995+Mexico population 1995
.

• From Pew Hispanic’s November 2015 report [12], I can approximate the gross flows

between the US and Mexico for the period 1995-2015. I seek to match the following

two gross migration rates: US-Mexico migration rate of 0.0153 and Mexico-US migra-

tion rate of 0.0769. Let GDATA
US to Mex = 0.0153 × US population 1995

US population 1995+Mexico population 1995
and

GDATA
Mex to US = 0.0769× Mexico population 1995

US population 1995+Mexico population 1995
.

These calibrations result in the following migration cost estimates:

δ =

 11.0027

3.9408

44.4809


These results imply that, as one would expect, the relative cost of moving from Mexico to

the US is extremely high. They also suggest large interstate migration frictions, a result

consistent with findings of previous work in international trade. For example, Autor, Dorn

& Hanson (2013) [20] demonstrate that rising Chinese import competition has had strong

differential effects across local labor markets in the US, a result that we would likely not

observe if labor could reallocate frictionlessly across states in response to such shocks.
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While it is tempting to say that δ1 ≈ 11 has the interpretation that an agent pays 10
11

of

her welfare to move from one state to another, this is incorrect. The agents who actually

move from their home state i to destination state j pay less than this, as the people who

actually move have large εj. A more accurate way to interpret this value is to say that the

average agent born in state i would have to pay 10
11

of her welfare if she chose to move to

state j. But those who actually choose to move from i to j have large εj draws and thus

face lower effective frictions.

Simulation Given initial vectors {L0, w0, τ0,W0,Π0}, simulating the model into the future

(i.e. computing the dynamic equilibrium) is achieved by the following procedure:

1. Using equation (26), population distribution Lt implies the level of innovation φit

undertaken in each region. Then, from (8), one can obtain τt+1, the spatial distribution

of technology for period t+ 1.

2. Given τt+1 and Lt, iterating on the equations of the temporary equilibrium system

gives {Lt+1,Wt+1,Πt+1}. As shown above, there is a unique positive solution to this

system and a simple iterative process is guaranteed to converge to this solution.

3. Repeat to obtain the dynamic equilibrium for periods 1 through T .

Trade costs DNRH calculate trade costs using the fast-marching procedure suggested

by Allen & Arkolakis (2013)[6]. I take advantage of the parameters estimated by Allen

& Arkolakis, but use a greatly simplified functional form, in which Dij is an exponential

function of the distance between the centroid of i and the centroid of j (I obtain centroids

of US states from Rogerson (2015)[21] and the centroid of Mexico from INEGI.)

Parameters Table 1 lists the parameter values used in simulations and indicates how each

was assigned.
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Table 1: Parameter values

Values as in DRNH:
σ = 4 Elasticity of substitution

(Bernard et al., 2003) [22]

λ = 0.32 Governs strength of dispersion force
(DNRH 2017)[3]

Ω = 0.5 Fréchet parameter for idiosyncratic location shocks
(Monte et al., 2015) [23]

m = 0.55 Relation between income and Cantril well-being measure
(Deaton & Stone, 2003)[24]

α = 0.06 Productivity spillover parameter
(Carlino, Chatterjee & Hunt, 2007)[25]

θ = 6.5 Fréchet parameter for local productivity shock
(Eaton & Kortum, 2002 [5]; Simonovska & Waugh, 2014 [26])

µ = 0.8 Labor share in production
(Greenwood, Hercowitz, & Krusell, 1997 [27]; Desmet & Rappaport, 2015 [28])

γ1 = 0.319 Relation between innovation and same-period productivity
(DNRH 2017)

γ2 = 0.993 Parameter governing diffusion of technology across space
(DNRH 2017)

ξ = 125 Parameter governing convexity of innovation function
(Desmet & Rossi-Hansberg, 2015) [29]

Values calibrated using this model:
Growth: Chosen to match initial aggregate growth rate of 2% for US and Mexico

ν = 3.08e− 71 Scale parameter for innovation production function

Migration costs : Chosen to match gross migration moments for US and Mexico
δ1 = 11.0027 Iceberg migration cost associated with interstate migration

δ2 = 3.9408 Iceberg migration cost associated with US-to-Mexico migration

δ3 = 44.4809 Iceberg migration cost associated with Mexico-to-US migration
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6 Results

In this section, I first present and discuss simulation results for a baseline scenario in which

there is no deportation and, second, compare these baseline results with those obtained from

simulations in which a proportion η of undocumented immigrants for each US state are

deported to Mexico in period 0. This comparison allows me to draw conclusions about the

effects of a policy of deporting undocumented immigrants from the United States.

6.1 Baseline simulation

Figure 3 gives initial spatial distributions for population density, real wages, productivity,

and welfare, which are calibrated or taken from the data as described in the previous section.

Using the procedure above, I simulate the model forward 400 years (this corresponds to 20

periods). Outcomes for year 200 of this baseline simulation are presented in Figure 4. Scat-

terplots showing changes in the distributions of population and technology are presented

in Figures 5 and 6. These figures illustrate that, between years 0 and 200, the baseline

simulation predicts a significant spatial reallocation of labor and substantial changes in the

distributions of real wages and productivity.

First, the convex shape the relation between initial population density and population den-

sity in year 200 (see Figure 5) indicates a tendency of labor to reallocate toward regions

that already have a high population density. This feature of the simulation results is con-

sistent with the trend of urbanization observed in historical data. Population data from

the US Census Bureau shows that the percentage of Americans living in an urban area has

increased steadily since the early 19th century. The mechanism underlying the tendency to-

ward increasing concentrations of population in certain areas in this model differs somewhat

from the explanation offered by other spatial models. In many models (including those of

Fujita & Ogawa (1982)[30] and Ahlfeldt et al. (2015) [8]), this “urbanization” results from

agglomeration economies, which incentivize workers and firms to concentrate their activities

spatially in order to benefit from the productivity spillovers associated with spatial proxim-

ity. However, this cannot be the source of urbanization in my model because, as I discuss

in Appendix A, the effective agglomeration force is negative in my model. This tendency of

people to reallocate toward densely populated areas instead comes from the dynamic “mar-

ket size” effect. All else equal, regions with a higher population density see larger investment

in innovation and, thus, experience faster productivity growth. As I showed analytically in

Section 4.2, this means that, in the long run, there is a strictly increasing relation between

regional population density and productivity. This feature of the model is illustrated by Fig-
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ure 7, which shows the correlation between log population density and log productivity over

the course of the 400-year baseline simulation. As the economy moves toward the BGP over

time, this correlation steadily approaches 1. This increasingly tight relationship between

population density and productivity over the course of the simulation will have significant

implications for the results of my deportation policy experiment. If higher population density

means higher productivity, then a policy which exogenously reallocates labor across space

has the potential to reshape the spatial distribution of productivity.

Second, these simulation results show a decrease in the heterogeneity of real wages and

productivity. While Mexico still has lower real wages than each of the 50 states in year

200, it enjoys the fastest real wage growth of all 51 regions between the year 0 and year

200. The fact that Mexico enjoys more rapid progress than any US state in this simulation

results from a “catch-up” effect. Mexico begins the simulation endowed with a far lower

level of technology than other regions; in period t = 0, the average productivity of a worker

in Mexico is just 23% of the average productivity of workers across the 50 US states. From

equation (8), the technology evolution equation, one can see that the term capturing the

diffusion of technology across space will, over time, result in τMex converging toward the

global mean level of technology. Regions that lag further behind get a larger boost from this

technology diffusion effect, so Mexico experiences faster productivity growth than any other

region. This catch-up effect is illustrated by Figure 6, which plots the initial productivity

of each region (relative to New York, the region with highest initial productivity) versus its

annualized productivity growth rate over the course of the 200-year simulation.

31



Figure 3: Calibration results: Year 0 (t = 0)

110.5 − 470.3
68.2 − 110.5
41.1 − 68.2
22.7 − 41.1
10.2 − 22.7
0.5 − 10.2

Li0, population density (people / sq. km)

7.06 − 8.39
6.48 − 7.06
5.89 − 6.48
5.45 − 5.89
4.75 − 5.45
1.00 − 4.75

wi0/Pi0, real wage (Mexico = 1)

6.05 − 9.46
4.67 − 6.05
3.85 − 4.67
3.02 − 3.85
2.31 − 3.02
1.00 − 2.31

(τi0L
α
i0)1/θ, productivity (Mexico = 1)

2.14 − 3.12
1.81 − 2.14
1.70 − 1.81
1.58 − 1.70
1.38 − 1.58
0.84 − 1.38

Wi0, welfare (Mexico = 1)

Figure 4: Baseline simulation results: Year 200 (t = 10)

111.3 − 813.4
67.3 − 111.3
43.5 − 67.3
30.7 − 43.5
16.2 − 30.7
1.8 − 16.2

Li,10, population density (people / sq. km)

389.3 − 520.2
330.0 − 389.3
315.0 − 330.0
286.4 − 315.0
245.0 − 286.4
61.7 − 245.0

wi,10/Pi,10, real wage (wMex,0/PMex,0 = 1)

332.7 − 520.3
262.5 − 332.7
221.5 − 262.5
171.5 − 221.5
134.5 − 171.5
62.4 − 134.5

(
τi,10L

α
i,10

)1/θ
, productivity (prodMex,0 = 1)

98.8 − 133.2
91.7 − 98.8
83.2 − 91.7
74.4 − 83.2
67.6 − 74.4
55.7 − 67.6

Wi,10, welfare (WMex,0 = 1)
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Figure 5: Labor reallocation and urbanization: Years 0 to 200

Figure 6: Productivity catch-up: Years 0 to 200
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Figure 7: Correlation between log of population density and log of productivity: Years 0 to
400

6.2 Evaluating deportation policy

I study the effects of a policy of deporting undocumented immigrants from the US to Mexico

by comparing the baseline simulation results above to those of counterfactual simulations in

which the initial population distribution, L0, is altered to reflect the effects of a policy which

deports a proportion η of all undocumented immigrants from their current US states to

Mexico. I conduct these experiments at various levels of “deportation intensity,” with each

scenario representing the deportation of, in the aggregate, 1 million, 2 million, 3 million, and

5 million undocumented immigrants, respectively. Recall that LUi0 denotes the initial undoc-

umented immigrants per unit land in region i, obtained from Pew Hispanic estimates.[15] In

each deportation scenario, the post-deportation population density of region i is

L′i0 =


Li0 − ηLUi0 if i ∈ U

Li0 + η
∑
j∈U

LUj0
Hj
Hi

if i = Mexico
(36)

where η = Total number of deportees∑
i∈U L

U
i0Hi

.
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Aggregate effects Figures 8 and 9 present aggregate outcomes from these experiments,

showing the percent difference in country-level real GDP per capita in each scenario as

compared with the baseline simulation. In the scenarios with most intensive deportation,

Mexicans see significantly lower real incomes (as large as 0.9%) in the period following

the deportation, while the US experiences a smaller boost in GDP p.c. (no larger than

0.23%). The effect of deportation on Mexican GDP p.c. shrinks over time, eventually

turning positive, so that, after 360 years, average income in Mexico surpasses the level in

the baseline simulation. Similarly, the gains in per capita GDP that the US experiences in

the periods following deportation not only deteriorate over time, but also reverse sign in the

long-run; after 280 years, Americans are, on average, worse off in real income terms as a

result of a policy of deportation. This result is interesting from both a policy standpoint

and a theoretical one. First, the result of opposite short- and long-run effects on US GDP

p.c. adds a potential complication to the decision of a policymaker seeking to maximize

the average incomes of US citizens, as, at some point, the positive wage effects of reduced

competition in US labor markets are overwhelmed by the negative innovation effects of

deportation. Second, the fact that the effects of the deportation policy do not simply revert

to zero in the long-run suggests that, in altering the distribution of labor in period t = 0,

the deportation changes the balanced growth path to which the economy converges. While

I knew from my analysis in Section 4.2 that there was the potential for multiplicity of BGP,

it was not obvious, ex ante, that changing the initial population distribution would change

the BGP and thus affect outcomes in the very long run.
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Figure 8: Effects of various intensities of deportation of US real GDP per capita.

Figure 9: Effects of various intensities of deportation of Mexican real GDP per capita.
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Local effects The fact that US states differ both in the proportion of undocumented im-

migrants in their populations and in other economic dimensions results in differential effects

of deportation across the 50 states. Figure 10 shows the state-level effects of deportation

(for the 3 million deportee scenario) on real wages, welfare, and population density over

time. Similarly, Figure 11 presents a map displaying short-run and long-run effects on real

wages across the 50 states. Figure 12 shows the corresponding maps for welfare. Unsurpris-

ingly, the largest short-run increases in real wages as a result of deportation occur in states

which have relatively large proportions of undocumented immigrants. Texas and California,

the states with the largest proportion of undocumented immigrants, experience the most

significant real wage increases (.3035% and .2867%, respectively, in the 3 million deportee

scenario) as a result of deportation. After 400 years, the effects of deportation of real wages

are, in percentage terms, much smaller and, interestingly, negative. All 50 states see lower

real wages in the deportation scenario after 320 years. The corresponding analysis of welfare

effects shows largely similar results, although the congestion term in the amenity means that

Americans enjoy an additional benefit from decreased population density as a result of the

deportation policy. In the period following deportation, each of the 50 states sees higher

welfare, with increases ranging from 0.187% in Ohio to .455% in California, as compared

with the scenario without deportation. In the long run, these welfare improvements deterio-

rate. In year 400, all states see welfare within 0.01% of the levels in the baseline simulation.

Despite the fact that workers in most states see lower real wages than in the baseline sim-

ulations, only 21 states see lower welfare in year 400 of the deportation scenario, as agents

benefit from persistently lower population densities across all states.
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Figure 10: Percent difference in outcomes for each of the 50 US states, deportation simulation
(3 million deportee scenario) as compared with the baseline scenario.

Figure 11: Percent difference in real wages for the 50 US states, deportation simulation (3
million deportee scenario) as compared with the baseline scenario. These maps present the
distributions of effects across states for years 20 and 400.

Year 20

0.162 - 0.303
0.110 - 0.162
0.093 - 0.110
0.073 - 0.093
0.064 - 0.073
0.039 - 0.064

Year 400

-0.0051 - -0.0044
-0.0053 - -0.0051
-0.0056 - -0.0053
-0.0066 - -0.0056
-0.0069 - -0.0066
-0.0105 - -0.0069
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Figure 12: Percent difference in welfare for the 50 US states for deportation simulation (3
million deportee scenario) as compared with the baseline scenario. These maps give the
distributions of effects across states for years 20 and 400.

Year 20

0.310 - 0.455
0.263 - 0.310
0.240 - 0.263
0.221 - 0.240
0.211 - 0.221
0.187 - 0.211
No data

Year 400

0.0010 - 0.0013
0.0008 - 0.0010
0.0003 - 0.0008
-0.0003 - 0.0003
-0.0009 - -0.0003
-0.0039 - -0.0009
No data

7 Conclusion

In this paper, I have developed a dynamic spatial growth model which combines the tech-

nology and innovation structure of Desmet, Nagy & Rossi-Hansberg (2017) [3] with the

generational migration structure of Allen & Donaldson (2017) [4]. I have explored the equi-

librium and balanced growth path properties of this model and used it to conduct policy

experiments studying the long-run economic effects of deporting undocumented immigrants

from the US to Mexico, with the goal of evaluating the claim of the Trump campaign that

US citizens would be better off if not for the presence of undocumented immigrants in the US

labor force. Analyzing the results of these experiments, I find that US workers do experience

small short-run gains in real wages and welfare as a result of the deportation policy, but that

these gains deteriorate the long run. In the very long run, workers in all US states receive

lower real wages as a result of the deportation.

It is worth considering the extent to which these conclusions depend on my modeling choices.

Altering certain features of the model will not change the conclusions qualitatively. For in-

stance, if one eliminates the dispersion force (i.e. sets λ = 0), then US workers enjoy slightly

more persistent gains from the deportation policy, but still, after 400 years, receive lower

wages on average than in the baseline scenario. However, the long-run results of the depor-

tation are quite sensitive to changes in the strength of the productivity spillover (α); the

parameters of the functions relating labor supply, innovation, and productivity (particularly

γ1 and ξ); and the relative factor input shares of land and labor (governed by µ). As I
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explain in Appendix A, altering any one of these parameters changes the effective agglom-

eration force. Such a change not only affects the impact of deportation on productivity and

real wages in the short-run, but also determines the development of the spatial distribution of

labor and, therefore, technology in the long-run. To illustrate the importance of one of these

features, I present in Appendix F results of the deportation policy experiment in the case

where land is not a scarce factor of production (i.e. µ = 1). In this experiment, American

workers on average receive lower real wages not only in the long run, but also in the short

run, as a result of deportation. This sensitivity of my results to certain parameter values and

modeling choices indicates that a high level of precision is required in estimates of production

functions and productivity spillovers in order to obtain highly credible predictions from such

a model.

8 Limitations and further work

This paper highlights a number of opportunities for further work in this area are research.

First, there are several ways in which the deportation experiment conducted using my model

could be improved to offer more accurate predictions. In my experiments, treating Mexico

as a single region represents a strong assumption, as the model has no frictions to the move-

ment of goods, people, and technology within a region. One approach to resolving this issue

would be to treat each of Mexico’s 31 states as a separate region. However, in order to carry

out the deportation experiment in a setting in which Mexico is broken into its 31 states, one

would need more refined data. While population and GDP data for each Mexican state could

be obtained from INEGI, additional data on both subjective well-being and undocumented

immigrants would also be required. Gallup provides state-level subjective well-being data

for the US but provides only a country-level measure for Mexico. A state-level Cantril mea-

sure would be necessary to calibrate amenities and initial technology levels for the Mexican

states. In addition, if one were to treat each Mexican state as a separate region, carrying

out deportation simulations would require taking a stance on which Mexican states undoc-

umented immigrants would be deported to. The scarcity of detailed data on undocumented

immigrants would make it challenging to find a reasonably accurate breakdown by state of

origin of undocumented immigrants from Mexico living in the US.

A second shortcoming of the way in which the exercises presented in this paper are car-

ried out is that, in considering only the US and Mexico, my experiments offer an incomplete

picture of the effects of a policy of deporting undocumented immigrants from the United

States. Though just over half of all undocumented immigrants living in the US are of Mexi-
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can origin, millions more come from elsewhere in Latin America or from Asia, Europe, Africa,

and the Middle East [31]. A more complete analysis of this policy problem would, therefore,

expand the exercise to the entire world, allowing for results that describe the deportation

policy’s effects both on the complete set of countries to which undocumented immigrants

would be deported and the dynamic effects on the United States through trade and migration.

In addition to improving the way in which the deportation policy experiment is carried

out in the context of this model, further theoretical work could also lead to the development

of a model that captures important dimensions of the immigration policy problem which are

omitted from the model I have presented here. In particular, my model makes the strong

assumptions that undocumented immigrants and legal residents/citizens are identical in pref-

erences and productivity, and that immigrant and native labor are perfect substitutes. These

assumptions could be relaxed in a number of ways. First, one could introduce a production

function which treats the labor supplied by undocumented immigrants and the labor sup-

plied by US citizens/legal residents as factors which are imperfect substitutes. This would

enrich the model not only by capturing the fact that these two group differ, on average, in

skills and human capital, but also by allowing for citizens and undocumented immigrants

earning different wages. A second, related, improvement to the model could be achieved by

introducing multiple sectors. In the data, the industry makeup of undocumented workers

employed in the United States differs significantly from that of US-born workers [32]. Us-

ing this data, one could calibrate sector-specific production function parameters, allowing

sectors to differ in their input elasticities for each of the two labor factors, as well as in the

extent to which the two factors are substitutable. While formulating and calibrating such

a model may be challenging, the result would be a framework that would offer much richer

predictions for the effects of a deportation policy. Such a model could be used to not only

more accurately predict the effects of deportation on American citizens, but also to analyze

effects on undocumented immigrants remaining in the US, changes in sector-specific prices,

and the impact on sectoral employment shares in the short- and long-run.
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A Isomorphism with Allen-Donaldson model

The equilibrium system of the AD model consists of the following 4N equations in 4N

unknowns: wit, the wage; Lit, the population (not density); Wit, the welfare measure; and

Πit, the expected utility of an agent born in region i.

Πθ
it =

∑
j

µ−θij W
θ
jt (37)

LitW
−θ
it =

∑
j

−µ−θji Π−θjt Lj,t−1 (38)

w1−σ
it L

β(1−σ)
it W σ−1

it =
∑
j

(
τij

Ājtūit

)1−σ

L
α(σ−1)
jt w1−σ

jt (39)

wσitL
1−α(σ−1)
it =

∑
j

(
τij

Āitūjt

)1−σ

L
β(σ−1)
jt W 1−σ

jt wσjtLjt (40)

Table 2: “Cross-walk” for isomorphism

Allen-Donaldson My model

Simple notational differences:

µij Mij Iceberg migration costs

τij Dij Iceberg trade costs

θ 1/Ω Migration elasticity

σ − 1 θ Trade elasticity

β −λ Dispersion force

α α
θ
− (1− µ) + γ1

ξ
Productivity spillover

Āit κ
1/θ
2 κ−1

1 τ
1/θ
it Exogenous productivity

Using Table 2, one can easily see that the AD equilibrium system comprising equations

(37)-(40) can be rewritten as the temporary equilibrium system of my model presented on

pages 16-17 (assuming Hi = Hj for all i, j). While the first five rows of Table 2 simply
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indicate changes in notation, the final two rows allow one to gain insight about both local

productivity and the effective level of agglomeration forces in my model.

In the AD model, α is the parameter governing spillovers in productivity, with higher values

of α indicating a stronger agglomeration force. In mapping my model into the AD structure,

I find that the effective productivity spillover parameter in my model is α
θ
− (1− µ) + γ1

ξ
.

This expression allows me to draw conclusions about the implicit agglomeration or disper-

sion forces generated by various features of my model. First, the subtraction of the (1− µ)

term reflects the fact that firms located in more densely populated regions face higher rental

rates, an effect which increases the marginal cost (effectively lowering the productivity) of

firms located in congested areas. Thus, in my model, competitive local land markets act as

a dispersion force. Second, the addition of the γ1
ξ

term reflects the fact that firms located

in densely populated regions invest in higher levels of innovation, boosting current-period

productivity. Thus, innovation incentives in my model act as an agglomeration force. For

the parameter values used in my simulations (see Table 1), α
θ
− (1− µ) + γ1

ξ
= −0.1882.

Thus, the rent effect dominates, resulting in an effective dispersion, rather than agglomera-

tion force in productivity spillover.

It is worth noting that while this effective productivity spillover is negative, my model

still features a positive “market size” effect. The negative productivity spillover means that

for a given level of technology, τit, an increase in the population of region i will lead to a

decrease in region i’s period-t productivity. However, the positive market size effect means

that this increase in the population density of region i increases the incentive for firms in

region i to invest in innovation that augments the productivity of labor. Thus, while an

exogenous increase in population would lower region i’s current-period productivity, it may

lead to higher productivity in the long run. This tension between short- and long-run effects

is consequential for the deportation policy experiments I perform. The market size effect

is discussed further in Section 4.2 and is demonstrated in the baseline simulation results in

Section 6.1.

This expression for the “effective” productivity spillover is also interesting in that it suggests,

for a particular choice of parameter values, an empirical strategy for quantifying the strength

of such spillovers. Consider the case with α = 0 and µ = 1 (i.e., labor is the only factor

of production). Then, the effective productivity spillover is γ1
ξ

. Thus, in this case, estimat-

ing the innovation function (as is done in Desmet & Rossi-Hansberg (2015) [29]) suffices to

determine the magnitude of the agglomeration force.
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B Proof of AAT Theorem 2 (special case)

What follows is a proof of AAT Theorem 2 in the special case with symmetric (rather than

just “quasi-symmetric”) trade costs. This proof follows closely the one presented by AAT.

Assuming trade balance gives

Yi =
∑
j

Xij =
∑
j

Xji

And, given the gravity structure of trade flows, we have

Xij = Mijγiδj

Assume M is a symmetric matrix of trade costs. Then,

Yi =
∑
j

Mijγiδj = γi
∑
j

Mijδj

Yi =
∑
j

Mjiγjδi = δi
∑
j

Mijγj

So,

1 =
δi
∑

jMijγj

γi
∑

jMijδj

γi
δi

=

∑
jMijγj∑
jMijδj

=
∑
j

Mijδj∑
jMijδj

×
(
γj
δj

)

For any κ > 0, this equation is solved by γi = κδi. Using the Perron-Frobenius Theorem,

the solution is unique up to a scale. �
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C Conversion of Cantril well-being measure to initial

welfare

Deaton and Stone (2013) [24] find the following relation between subjective well-being and

income:

W k,Cantril
i = m ln yki + vi + εki,DS (41)

where vi is a location fixed-effect.

Ignoring migration costs, the welfare of an individual k living in region i in the model

is

W k
it = uityiε

k
i

Taking logs and multiplying through by m gives

m lnW k
it = m lnuit +m ln yi +m ln εki (42)

Equations (41) and (42) imply that

W k
i0 = e

1
m
Wk,Cantril
i0

Deaton & Stone estimate m to be 0.55.

D Solution to (34) and (35): Existence & uniqueness

I use AAL Theorem 1 to prove that the system (34) and (35) has exactly one positive solution.

I rewrite equation (34) as

P−θi0 =

(
κ1

[
1

µ

]µ [
νξ

γ1

]1−µ
)−θ N∑

j=1

(
D−θij L

α
i0mc−θj0

)
τj0
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and I rewrite (35) as

τ−1
i0 =

(
κ1

[
1

µ

]µ [
νξ

γ1

]1−µ
)−θ N∑

j=1

(
H−1
i (φi0)−θ(1−µ)ξ+θγ1 w−1−θ

i0 L−1+α
i0 (Dj,i)

−θ
)

(Pj0)θ

Note that this is a system of 2N equations in 2N unknowns (namely P0 and τ0), which is in

the form specified by AAL Theorem 1.

Fij =

(
D−θij L

α
r0mc−θj0

H−1
i (φi0)−θ(1−µ)ξ+θγ1 w−1−θ

i0 L−1+α
i0 (Dj,i)

−θ

)
> 0

Therefore, there exists a strictly positive solution to the system.

B =

(
0 1

θ 0

)

Γ =

(
−θ 0

0 −1

)

Since det Γ = θ > 0, Γ is invertible. In particular,

Γ−1 =
1

θ

(
−1 0

0 −θ

)
=

(
−1 0

0 −1/θ

)

A = BΓ−1 =

(
0 1

θ 0

)(
−1 0

0 −1/θ

)
=

(
0 −1/θ

−θ 0

)

AP =

(
0 1/θ

θ 0

)

which has eigenvalues λ1 = 1 and λ2 = −1. So, ρ
(
AP
)

= 1. Thus, there exists at most

one strictly positive solution (to scale). However, since ρ
(
AP
)
6< 1, the Theorem does not

guarantee the existence of an algorithm that converges uniformly to the solution. Note that

this result is independent of the choice of θ.
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E Derivation of gross migration moment expressions

From equation (3), the total measure of people who migrate from region i to region j between

periods −1 and 0 is

`ij0 ×HiLi,−1 =

(
Wj0/Mij

Πi0

)1/Ω

HiLi,−1 (43)

First, I find an expression for gross interstate migration in the model by summing this

expression across all pairs of states (i, j) ∈ U × U :

GMODEL
Interstate =

∑
i∈U

∑
j∈U ,j 6=i

(
Wj0/Mij

Πi0

)1/Ω

HiLi,−1

= δ
−1/Ω
1

∑
i∈U

∑
j∈U ,j 6=i

(
Wj0

Πi0

)1/Ω

HiLi,−1

Setting this expression equal to gross interstate migration from the data and solving for δ1

gives

δ1 =

[(
GDATA

Interstate

)−1
∑
i∈U

∑
j∈U ,j 6=i

(
Wj0

Πi0

)1/Ω

Li,−1Hi

]Ω

(44)

I similarly derive an expression for gross migration from the US to Mexico by setting j =

Mexico and summing (43) across all states i ∈ U :

GMODEL
US-Mex =

∑
i∈U

(
WMex,0/Mi,Mex

Πi0

)1/Ω

HiLi,−1

=

(
WMex,0

δ2

)1/Ω∑
i∈U

Π
−1/Ω
i0 HiLi,−1

Setting this expression equal to the gross US-to-Mexico migration moment from the data

implies

δ2 = WMex,0

[(
GDATA

US-Mex

)−1
∑
i∈U

Π
−1/Ω
i,0 Li,−1Hi

]Ω

(45)

Finally, I derive an expression for gross migration from Mexico to the US by setting i =
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Mexico and summing across all states j ∈ U :

GMODEL
Mex-US =

∑
j∈U

(
Wj,0/MMex,j

ΠMex,0

)1/Ω

LMex,−1HMex

= (δ3ΠMex,0)−1/ΩHMexLMex,−1

∑
j∈U

W
1/Ω
j,0

Setting this expression equal to the gross Mexico-to-US migration moment from the data

and solving for δ3 gives

δ3 = (ΠMex,0)−1

[(
GDATA

Mex-US

)−1
LMex,−1HMex

∑
j∈U

W
1/Ω
j,0

]Ω

(46)

Iterating over equations (44)-(46) leads to estimates for parameters δ1, δ2, δ3 (see Section 5).

F Deportation experiment results for the µ = 1 case

In this section, I consider the case in which land is not a scarce factor (i.e. µ = 1). I repeat

the migration policy experiments from Section 6.2 using this specification and present results

illustrating both the aggregate and local effects of deportation.

Figure 13 illustrates that this specification predicts aggregate effects of deportation for the

US that are vastly different from those computed in the case in which land is a scarce factor

(see Figure 8). Whereas deportation resulted in higher US GDP per capita for the first 200+

years in the original model specification, effects in the µ = 1 case are negative and very per-

sistent. The stark difference in short-run effects in the two specifications of the model results

from the fact that when land is no longer a scarce factor, the negative effective productivity

spillover that resulted from high rental rates in densely populated areas is eliminated. Thus,

in the µ = 1 case, the effective productivity spillover is positive, so when undocumented

immigrants are exogenously moved from the US, this results in an immediate decrease in US

productivity. The corresponding aggregate effects for Mexico, illustrated in Figure 14, are

not very different qualitatively from those in the original specification (compare with Figure

9), but do differ in the magnitude of effects. While Mexicans experienced a decrease in real

income as large as 0.9% in the period following deportation in the original specification, these

losses are not nearly so large are in the µ = 1 case. Even in the most extreme deportation

scenario I consider, Mexico now sees just a 0.37% decrease in real GDP p.c. as a result of the

deportation policy. In addition, these losses are recovered more quickly than in the original
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specification.

These substantial differences between the simulated effects of deportation in the cases with

µ = 0.8 and µ = 1 underline the fact that the results of these experiments are somewhat

sensitive to model specifications and parameter values. This demonstrates that great care

should be taken when specifying features and choosing parameters for a quantitative spatial

model.

Figure 13: Effects of various intensities of deportation on US real GDP per capita. Specifi-
cation in which land is not a scarce factor (i.e. µ = 1).
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Figure 14: Effects of various intensities of deportation on Mexican real GDP per capita.
Specification in which land is not a scarce factor (i.e. µ = 1).
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Figure 15: Percent difference in outcomes for the US 50 states of deportation simulation (3
million deportee scenario) as compared with the baseline scenario. Specification in which
land is not a scarce factor (i.e. µ = 1).
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