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Abstract

We explore whether irrational beliefs can predict a disposition effect.
We propose a model of an overconfident investor whose beliefs can
change over time. We find that such an investor exhibits a disposition
effect. Moreover, we predict that the disposition effect may be driven
by investors being most likely to hold onto an asset after the asset
has experienced a small loss. We also find that our predictions match
empirical evidence on trading behavior as a function of magnitude of
return.
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1 Introduction

One of the most widely observed facts about the behavior of individual
investors is the disposition effect: a greater propensity to selling winning
positions compared to losing ones. To date, rational models of trading be-
havior do little to explain this phenomenon. Odean (1998) shows that tax
considerations, portfolio rebalancing, transaction costs and rationally driven
mean reversion fail to explain the observed data. Odean (1998) also posits
two possible behavioral theories behind this effect: prospect theory and an
irrational belief in mean-reversion. In turn, a sizable literature examining be-
havioral explanations has emerged. The majority of this literature focuses on
preference-based models given the intuitive similarities between the disposi-
tion effect and diminishing sensitivity to losses. Shefrin and Statman (1985)
were the first to apply prospect theory to individual trading behavior. More
recently, Barberis and Xiong (2009) provide a model that combines prospect
theory and realization utility to predict a disposition effect. Similarly, Meng
and Weng (2017) show that prospect theory with dynamic reference points
also predicts a disposition effect.

However, Ben-David and Hirshleifer (2012) show that prospect theory
models may not match the data. They estimate probability of sale as a func-
tion of profit and find that this function has a V-shape i.e. investors are
more likely to realize gains and losses when they are higher in magnitude.
Moreover, they find that the disposition effect could be driven by asymmetry
within this V-shape. They suggest that this could be explained by investors
updating their beliefs in line with Odean’s (1998) second hypothesis sur-
rounding an overconfident investor.

There is a large literature on overconfidence and its effect on trading be-
havior. Odean (1999) shows that overconfident investors trade too much and
to their detriment. Barber and Odean (2001) predict and confirm that men
should trade more frequently than women given that psychological research
finds men to be more overconfident on average. Scheinkman and Xiong (2003)
also show that speculation by overconfident investors can cause bubbles.

In this paper, we present a model of an overconfident investor and examine
his trading behavior to see if he exhibits a disposition effect. The investor
believes that the distribution of returns of a given stock is governed by one
of two regimes. The first is a belief in short-term mean reversion, which is
meant to capture his overconfidence. The second is a belief that the stock
in question has a positive but low expected return such that the investor
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would prefer a risk free asset to the stock. This model aims to describe an
underconfident investor who believes he is unable to properly evaluate the
return distribution of this particular stock and therefore is wary of investing
in it. The investor’s beliefs evolve over time according to Bayes’ rule and
the observed return history, capturing the investor’s varying confidence over
time.

We find that the investor exhibits a disposition effect. This disposition
effect tends to be stronger when the stock has lower expected returns and
when there are fewer trading periods over the course of the investment’s
life cycle. We also examine how the investor’s trading behavior changes
with respect to the magnitude of the stock’s return. Our results are largely
consistent with those of Ben-David and Hirshleifer (2012) as the investor is
less likely to hold the stock when it has performed very well or very poorly.
We also find that the investor is least likely to reduce his position after the
asset has achieved a small loss. This is a slight deviation from Ben-David
and Hirshleifer (2012) who predict that the probability of sale is minimized
at zero return. Our finding however, does not require an asymmetry in the
probability of sale curve to generate a disposition effect.

The paper is structured as follows. Section 2 describes the disposition
effect in greater detail along with the evidence supporting it. We will also
highlight some of the psychological evidence behind overconfidence and its
applications to finance. In Section 3, we formally define the model and solve
for the investor’s optimal share allocation. Section 4 explores the investor’s
trading behavior to see if he exhibits a disposition effect. Section 5 discusses
the model in the context of related research along with suggesting possible
adaptions of our model and extensions to other problems. Section 6 concludes
the paper.

2 Background

2.1 Evidence and Explanations for the Disposition Ef-
fect

Perhaps the most comprehensive exposition of the disposition effect comes
from Odean’s (1998) study of the trading behavior of retail investors. Using
data from 10,000 households’ trading activity between 1987 and 1993, Odean
(1998) finds a greater propensity to sell shares of stock that have achieved
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positive returns. He measures this propensity using the following methodol-
ogy. For every investor, Odean examines all of the days on which the investor
chooses to sell shares of at least one stock in his portfolio. On these days, he
places every stock in the investor’s portfolio into one of four categories. If the
stock is sold on that day, he marks it as a “realized gain” if it is sold at a price
higher than its average purchase price and as a “realized loss” otherwise. If
the stock is not sold that day and the market price on that day exceeds its
average purchase price the stock is marked as a “paper gain”. Otherwise it
is marked as a “paper loss”. Odean (1998) then calculates the proportion of
gains realized (PGR) and proportions of losses realized (PLR) by

PGR =
Number of Realized Gains

Number of Paper Gains + Number of Realized Gains
(1)

and

PLR =
Number of Realized Losses

Number of Paper Losses + Number of Realized Losses
(2)

He finds that PGR = 0.148 and PLR = 0.098 and thus concludes that
the disposition effect exists.

Odean (1998) also examines potential rational explanations of the dispo-
sition effect and finds none that would predict a higher propensity to realize
gains rather than losses. The most straightforward justification for a dispo-
sition effect is that investors are trading on good information i.e. they hold
on to paper losses because they know the stock will rebound and they real-
ize gains in advance of poor short-term performance. However, Odean finds
that the average return of stocks on which investors have realized gains is
3.4 % higher than stocks on which investors retain paper losses. Thus, it is
unlikely that the disposition effect is driven by investors trading on quality
information.

Other possible explanations include tax considerations and portfolio re-
balancing. Yet, neither is consistent with observed phenomenon. Tax con-
siderations should actually encourage investors to realize losses as realized
losses can be used to offset taxable gains in other parts of the investor’s
portfolio. To study the effect of rebalancing, Odean (1998) limits his sample
to cases where the investor completely liquidates his position in an individual
stock. This filtering follows from the fact that rebalancing is more likely to
be achieved by a partial reduction in one’s holding as opposed to a sale of
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the entire position. Yet, even after this filtering Odean (1998) still finds a
disposition effect. Another failure in this explanation is that the disposition
effect is stronger among less sophisticated investors. Yet, we would expect
rebalancing to be more common among sophisticated investors if it is, in fact,
the optimal approach to investing. Hence, there is little to suggest that the
disposition effect is driven by rational behavior.

Finally, the disposition effect is not limited to the purchase of individual
stocks. Genesove and Mayer (2001) find that homeowners are reluctant to
sell their homes for less than the original purchase price. Meanwhile, Coval
and Shumway (2005) find that futures traders who earned positive returns
in the morning are less likely to take on risk in the afternoon.

2.2 Overconfidence and Trading Behavior

Before considering a model of an overconfident investor, it is important to
review some of the psychological evidence for overconfidence among investors.
A common form of overconfidence is overprecision i.e. excessive confidence in
the accuracy of one’s beliefs. A clear example of this is people’s tendency to
provide overly narrow confidence intervals when asked to estimate quantities.
For example, Alpert and Raiffa (1982) find that 98% confidence intervals
include the true value only 60% of the time.

A related behavior is belief perseverance. We find that individuals are
reluctant to give up on their initial beliefs (Lord, Ross and Lepper, 1979).
This reluctance has two sources. The first is an unwillingness to seek out
evidence that does not agree with their initial hypothesis. The second is to
treat contradictory evidence with too much skepticism.

In practice, we find substantial evidence for overconfidence among in-
vestors. One of the most surprising observations in the behavior of individual
investors is the amount they trade. In theory, one should be very reluctant
to trade due to fears of adverse selection i.e. one should be afraid of buy-
ing when someone else is eager to sell. Yet, in practice, we find very high
trading volume in markets across the world. Barber and Odean (2000) show
that investors, on average, underperform against standard benchmarks due
to trading costs incurred from excessive trading. Overconfidence provides a
simple explanation for this phenomenon as overconfident investors are more
likely to believe that they have sufficiently strong information to justify a
trade. Barber and Odean (2001) predict and confirm that this should lead
men to trade more than women as psychological evidence suggests that men
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tend to be more overconfident in areas such as finance.

3 A Model of an Overconfident Investor

We consider a two asset setting over T+1 trading periods, t = 0, 1, ..., , T .
For intuition, the trading periods are thought to be evenly spaced and the
interval from t = 0 to t = T is thought to be a year. The first asset is a
risk free asset, which earns a return of Rf ≥ 1 in each period. The second is
a risky asset, which can be thought of as a single stock. Let Pt denote the
price of the stock at time t and Rt,t+1 its return from period t to t+ 1. The
stock price then evolves as a binomial tree i.e.

Rt,t+1 =

{
Ru > Rf with probability π

Rd < Rf with probability 1− π
(3)

and

Pt = P0

t−1∏
i=0

Ri,i+1 (4)

under the assumption that

πRu + (1− π)Rd > Rf (5)

The stock is i.i.d over all periods. Going forward, we will fix π = 1
2

and
instead alter Ru and Rd to describe the riskiness of the asset. Moreover, our
imperfectly rational investor will always have correct information about Ru

and Rd and will express any views on the risky asset through beliefs on the
probabilities of the up and down state.

3.1 The Investor

The investor is given logarithmic preferences with the goal of maximizing
his expected utility at time T . At time t, let Wt be the investor’s wealth and
xt be the investor’s allocation towards the risky asset. We can then formalize
the investor’s problem as

max
x0,x1,...,xT−1

E[log(WT )] (6)
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with the budget constraint

Wt = (Wt−1 − xt−1Pt−1)Rf + xt−1Pt−1Rt−1,t

= Wt−1Rf + xt−1Pt−1(Rt−1,t −Rf ) ∀t ≥ 1 (7)

and a nonnegativity of wealth constraint

WT ≥ 0 (8)

In order to solve his allocation problem, the investor forms beliefs about
the evolution of the risky asset. He correctly understands that the risky
asset evolves according to a binomial tree and has accurate beliefs about the
values of Ru and Rd. However, he has different beliefs concerning the return
distribution of the risky asset. More specifically, he believes that there are
two possible return regimes: Model 1 and Model 2. In Model 1, the investor
correctly believes that P(R0,1 = Ru) = 1

2
. However, in each subsequent

trading period, the investor believes that the return of the risky asset follows
a mean-reverting Markov process given by P(Rt,t+1 = Rt−1,t) = p < 0.5.
Rt,t+1 can then be described by the following transition matrix

Ru Rd( )
Ru p 1− p
Rd 1− p p

In Model 2, the investor believes that the return distribution of the risky
asset is i.i.d Bernoulli with P(Rt,t+1 = Ru) = p∗ such that

p∗Ru + (1− p∗)Rd ≥ Rf (9)

and
p∗ log(Ru) + (1− p∗) log(Rd) ≤ log(Rf ) (10)

In words, the investor believes that the risky asset has an expected return
higher than the risk free rate but weakly prefers the risk-free asset to the
risky one. It is necessary that p < p∗ for these beliefs to be meaningful. To
see why note that

P(Rt,t+1 = Ru | Model 1) ≥ p ∀t (11)

Thus, if p ≥ p∗, the investor will simply associate all up states as evidence
for Model 1 and all down states as evidence for Model 2.
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Finally, the investor believes that the regime governing the return of the
risky asset is determined ex ante i.e. the return regime does not change across
periods. He sets a prior probability, q, that returns follow Model 1. In each
period, prior to making his allocation, the investor updates in accordance
with Bayes’ Rule.

Before solving the investor’s allocation problem, we would like to stop
and motivate the two return models. The first model is meant to describe
an overconfident investor. For intuition, consider an investor who has taken
a long position in a stock as a result of research he performed. Since he
has taken a position, we can infer that the investor strongly believes that
he is being overcompensated for the risk that he is taking i.e. the stock is
mispriced. Now, suppose that the stock experiences poor returns soon after
the investor opens his position. Since the investor is confident in his analysis,
he still believes that the perceived mispricing will eventually correct itself.
Moreover, the more confident the investor is in his analysis, the less likely he
is to believe that this mispricing will persist. Thus, an overconfident investor
would assign higher probability to seeing positive returns in the subsequent
periods. Now, suppose that the stock exhibits strong positive returns soon
after the investor opens his position. If the stock exceeds the target return
predicted by his research, an overconfident investor is more inclined to view
the stock’s strong performance as an overcorrection and would believe that
the stock price is more likely to fall in the near future. Altogether, in the
short-term an overconfident investor can behave very similarly to an investor
who believes in mean reversion.

Now, Model 2 is meant to describe the opposite of an overconfident in-
vestor i.e. an investor who believes that he cannot properly evaluate the
stock. For intuition, let p′ be the probability of the up state such that the
investor is indifferent between the risky asset and the risk free asset. Then,
we can think of Model 2 as the investor believing that p∗ = p′ − ε. Since
he does not believe he can accurate evaluate the stock, he has no reason to
believe that the stock is underpriced. Thus, he believes the probability of an
up return should be, at best, such that he is indifferent between this stock
and the risk-free asset i.e p′. He then slightly discounts this probability by ε,
to account for the risk that he is further misjudging the distribution of the
stock. At its core, this regime aims to capture the fact that investors do not
find assets they do not understand very attractive. As a result, an investor
who believes in Model 2 has very little incentive to make a large allocation
towards the risky asset. There are other ways to model this behavior — for
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example setting the probabilities of each state such that the expected return
of the stock is Rf . In practice, it makes nearly no difference.

Finally, together, the two models are meant to illustrate the changes in
an investor’s confidence over time. More specifically, we would expect a
confident investor to maintain or increase his position in the face of short-
term deviations from his predictions, due to his faith in his initial hypothesis.
However, as an investor faces a larger sample of results that contradict his
hypothesis he should begin losing faith in his research. This is modeled by the
investor placing greater weight on Model 2. Concretely, after seeing a string
of down states, we expect the investor to certainly stop ‘doubling down’ and
eventually liquidate their position in the asset. This is in contrast to a purely
overconfident investor who would never give up on his position, a behavior
which, introspectively, does not seem likely. Moreover, this model should
also predict that investors will liquidate their position after seeing a string
of positive returns. While it is certainly hard to give up on a stock that
has been a consistent winner, we believe that investors are fundamentally
uncomfortable with investing in stocks whose returns they cannot explain
and therefore would not trust the good returns to continue.

3.2 Optimal Strategy

Before solving for the investor’s optimal strategy it is helpful to define
some notation regarding the binomial tree. Note that since the investor’s
beliefs are path dependent, the tree does not recombine. Thus, at time t,
there are 2t nodes in our tree.1 We will therefore represent each node at
time t by a vector, Φ, of length of t containing the observed return path up
until time t where Φi = Ri,i+1. We will begin indexing all time-dependent
variables by t and Φ. Finally, let

put,Φ = P(Rt,t+1 = Ru | Φ) (12)

and
pdt,Φ = P(Rt,t+1 = Rd | Φ) (13)

be the investor’s updated beliefs about the probability of up and down returns
at time t and node Φ

1Since the investor’s beliefs are Markovian, it is possible to represent the tree in fewer
nodes. We, however, believe that this notation causes more confusion than it resolves.
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Proposition 1. Given the investor’s preferences and beliefs his optimal al-
location to the risky asset is

xt,Φ =
−Wt,ΦRf

[
put,Φ(Ru −Rf ) + pdt,Φ(Rd −Rf )

]
Pt,Φ(Ru −Rf )(Rd −Rf )

(14)

Proof. See Appendix 1

Note that the investor would choose the same optimal share allocation,
xt,Φ, if he were trying to maximize his expected utility at time t+ 1 i.e. the
investor’s share allocations are intertemporally separate. This is not a general
consequence of the investor’s beliefs but rather a result of his logarithmic
preferences. In practice, the assumption of logarithmic preferences allows
for a tractable, and more importantly, analytic solution to the investor’s
allocation problem.

4 Results

To examine the results of the investor’s trading strategy, we must set
Ru and Rd. Instead of choosing Ru and Rd directly, we choose an annual-
ized expected return µ and standard deviation σ of the risky asset. Having
established the interval t = 0 to t = T to be a year and π = 1

2
, we have

µ =

(
Ru +Rd

2

)T
(15)

and

µ2 + σ2 =

(
R2
u +R2

d

2

)T
(16)

Together (15) and (16) imply

Ru = µ
1
T +

√
(µ2 + σ2)

1
T − (µ2)

1
T (17)

and

Ru = µ
1
T −

√
(µ2 + σ2)

1
T − (µ2)

1
T (18)

We will examine results for a range of values for µ and T while fixing p, q, rf
and σ at 0.4, 0.5, 1 and 0.3 respectively. We will also choose p∗ to be the
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midpoint of the probability that make the investor indifferent between the
two assets and the probability such that risky asset has an expected return
of Rf . The significance and effect of these parameters will be discussed in
Section 4.3. Finally, we will fix W0 = P0 = 1.

4.1 Disposition Effect

Before determining whether a disposition effect exists, we must first define
a metric for quantifying the disposition effect. The method of Odean (1998)
discussed in Section 2.1 is most appropriate for settings with multiple assets
and many possible trading periods as it uses other assets in an investor’s
portfolio to determine periods in which a investor has any propensity to
liquidate a portion of his portfolio. Moreover, it does not account for the
possibility of shorting the asset. In this paper, we will test for a disposition
effect by examinining the investor’s allocation to the risky asset at time T−1
i.e his final position. Under our assumption that the probability of up and
down returns are equal, we note that each of the 2T−1 return paths possible
at time T − 1 have equal probability of occurring. We can then compute the
investor’s average final share allocation at states where the risky asset has
achieved a positive gross return and the analogous figure for a negative gross
return. If the investor’s average final share allocation given a negative gross
return exceeds his average final share allocation given a positive gross return
we will conclude that the model predicts a disposition effect. Finally, the
results presented below will consider only even values of T so that as of time
T − 1, the investor will have seen an odd number of returns and therefore
clearly positive or negative gross returns. We present the results in Table I.

Upon examining Table I, we notice two immediate trends: the disposition
effect is stronger when the risky asset has a lower expected return and when
there are fewer trading periods. Both trends are a result of the speed at
which the investor updates his beliefs. For the first trend, note that the
probability of an up return in Model 2 is determined semi-endogenously.
More specifically, in Model 2, the probability of an up-state, p∗, is set so
that the expected return of the asset is slightly greater than Rf . Therefore,
as µ rises, p∗ must fall to keep the expected return of the risky asset low.
Since p∗ is higher for smaller µ, the investor is more likely to associate a
string of positive returns with Model 2 when µ is small. Thus, for small µ,
the investor more quickly updates towards Model 2 after a string of positive
returns, which leads him to liquidate his position faster. Meanwhile, when
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Table I
Analysis of the Disposition Effect by Average Final Share

Allocation

Each (µ, T ) pair denotes the average share allocation at t = T − 1 at states
where the risky asset has achieved a negative gross return followed by the
average share allocation at t = T − 1 at states where the risky asset has
achieved a positive gross return. If the average share allocation given a
negative gross return exceeds the average share allocation given a positive
gross return, we observe a disposition effect

Expected Return Number of Trading Periods per Year

µ T=4 T=6 T=8 T=10 T=12

1.05 0.87/0.05 0.84/0.09 0.83/0.1 0.82/0.11 0.81/0.11

1.06 0.92/0.11 0.89/0.14 0.88/0.16 0.87/0.17 0.87/0.17

1.07 0.97/0.17 0.94/0.2 0.93/0.22 0.92/0.23 0.92/0.23

1.08 1.02/0.23 0.99/0.27 0.98/0.29 0.97/0.29 0.97/0.3

1.09 1.08/0.3 1.04/0.34 1.03/0.36 1.02/0.37 1.02/0.37

1.1 1.13/0.38 1.09/0.42 1.08/0.44 1.08/0.44 1.07/0.45

1.11 1.18/0.47 1.15/0.51 1.14/0.52 1.13/0.53 1.12/0.53

1.12 1.24/0.56 1.2/0.6 1.19/0.61 1.18/0.62 1.18/0.63

1.13 1.3/0.66 1.26/0.7 1.25/0.72 1.24/0.73 1.24/0.73

facing a string of negative returns, Model 2 is not as convincing when µ is
small. Thus, the investor is slower to react to a string of negative returns
and holds his position longer.

The trend along the time axis is weaker and follows from the irrationality
of the investor. While both Model 1 and Model 2 are inaccurate charac-
terizations of the risky asset, Model 2 assumes probabilities closer to 1

2
as

p < p∗ < 1
2
. Thus, over larger samples of returns, Model 2 will, on average,

do a better job explaining the return of the risky asset. Since the investor
will have seen a larger return history when there are more trading periods,
he will place relatively more weight on Model 2. Because Model 2 assumes
that returns are i.i.d investors who believe in Model 2 will exhibit the same
trading behavior regardless of whether or not the asset has exhibited a pos-
itive or negative gross return. Thus, if the investor is more likely to believe
in Model 2, we should observe a weaker disposition effect.
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4.2 Trading Behavior by Return Magnitude

Having established a disposition effect at a high-level, we now want to
explore its nuances. We are particularly interested in how the observed gross
return affects trading behavior. We begin by noting that although the in-
vestor’s beliefs are path-dependent the gross return of the risky asset is not.
Thus, at t = T − 1 there are T possible gross returns, each corresponding
to the number of up returns the asset achieved. For each possible return,
we compute average share allocations. The results are presented in Table II
for T = 8. Results for other choices for T are similar and are included in
Appendix 2.

From Table II, we immediately notice that the investor, for the most part,
decreases his average position size as the magnitude of the gross loss or gain
rises. This phenomenon corresponds to Ben-David and Hirshleifer’s (2012)
observation that the probability of selling as a function of profit is V-shaped.
This follows fairly intuitively from the investor’s beliefs. Given the binomial
structure of the risky asset, larger magnitude returns are the result of runs of
consecutive returns of the same type. These runs are unlikely under Model 1
which predicts mean reversion. Thus, the investor updates towards Model 2.
Under Model 2, the risky asset is not particularly attractive so the investor
prefers to take a small position.

There are two exceptions to this claim. The first is fairly minor. For
low µ, the investor begins taking small short positions in the risky asset
after many up returns reaching a maximum, in terms of magnitude, at 6
up returns. In practice, this behavior should be interpreted as the investor
effectively closing out his position altogether.

The second exception is that we see a small increase in average share
allocation in states where the asset has taken a relatively small gross loss.
For example, we see that the investor’s average allocation in states with 2 up
returns jumps to 1.07 from 0.97 in states with 3 up returns. This is depicted
in Figure 1 which plots the average share allocations for µ = 1.08. From
Table II we see that this phenomenon exists for other µ as well. We will
use the example of µ = 1.08 to explain why this happens. As noted earlier
Model 1 appears less likely after larger magnitude losses or gains. Therefore,
we would correctly expect the average probability of Model 1 across all states
with 3 up returns to be higher than that of all states with 2 up returns. For
states with 3 up returns, the average probability of Model 1 is 0.5 compared
to 0.41 for states with 2 up returns. Alone, this should lead to a smaller
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Table II
Average Final Share Allocation by Return Magnitude

Each (µ, n) pair denotes the average share allocation at t = T − 1 at states
where the risky asset has achieved exactly n up returns

Number of Up Periods Over the Year

µ Initial Allocation 0 1 2 3 4 5 6 7

1.05 0.43 0.51 0.8 0.98 0.75 0.25 -0.07 -0.13 -0.07

1.06 0.5 0.5 0.8 1.01 0.82 0.33 -0.02 -0.12 -0.07

1.07 0.57 0.49 0.79 1.04 0.9 0.41 0.03 -0.1 -0.07

1.08 0.64 0.48 0.79 1.07 0.97 0.49 0.08 -0.08 -0.07

1.09 0.71 0.47 0.78 1.1 1.05 0.58 0.14 -0.05 -0.07

1.1 0.78 0.45 0.78 1.13 1.13 0.68 0.21 -0.02 -0.06

1.11 0.86 0.44 0.77 1.16 1.21 0.78 0.29 0.02 -0.05

1.12 0.94 0.43 0.76 1.19 1.3 0.89 0.37 0.06 -0.03

1.13 1.02 0.42 0.76 1.22 1.39 1.01 0.47 0.11 -0.02

average share allocation in states with 2 up returns. However, the crucial
distinction is that of the 28 states with 2 up returns, 21 have a down return
as their most recent return i.e. RT−2,T−1 = Rd. This is compared to 49 out
of 70 possible 3 up return states. Given that the investor is still somewhat
confident in Model 1, he is likely to take a relatively large long position
whenever the most recent return was negative. Thus, the greater likelihood
of recent negative returns and the investor’s aggressive response to recent
losses outweigh the conservatism that comes from a slightly stronger belief
in Model 2. This logic also implies that this effect is more pronounced for
lower µ as the investor is slower to adopt Model 2 for small µ.

From this two related questions emerge: why does this logic not extend
to states where there has only been one up period and why don’t we see a
similar effect for positive gross returns? The first question can be explained
by the investor’s faith in Model 1. For µ = 1.08, when the asset has only
exhibited one period of positive returns, the investor, on average, believes
that there is a 27% chance of Model 1. This represents a sharper decline
in the average probability of Model 1 than in the previous example, which
cannot be outweighed by the greater likelihood of recent negative returns.
The second question can be answered by examining the investor’s behavior
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Figure 1: Average Final Share Allocations by Return for µ = 1.08

after seeing a positive return. While his belief in mean-reversion suggests
that the risky asset is unlikely to rise again, he is not as eager to short the
risky asset as he is to take a relatively large long position after a down return.
This is because Ru > Rd i.e. it has a positive expected return. As a result,
the investor has a more tempered reaction to the recent positive returns and
we do not see this blip in the V-shape.

Figure 1 provides another interesting insight. Ben-David and Hirshleifer
(2012) also estimate the probability of selling as a function of profit and
find that their estimated functions are steeper for gains than losses. They
argue that this phenomenon drives the disposition effect and suggest that
an overconfident investor will drive this effect. While the structure of our
risky asset is not sufficiently granular to confirm this result2, there does not
appear to be a significant difference in slopes on either side of the peak in
Figure 1.

Instead, the surprising observation is the location of the peak itself. Our
model predicts that the investor has an implicit threshold loss and only starts

2More specifically, due to the binomial nature of the asset and the limited number of
trading periods, there is not enough return data to accurately calculate slope.
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to scale down his position if he exceeds that loss. When the investor is in
the region between the peak and 0, he likely has lower confidence in his
forecast than before opening his initial position. However, due to the poor
performance of the asset, if his forecast is, in fact, correct trusting it would
become very profitable. Thus, he sticks with his long position until the
losses exceed this threshold. This prediction is in contrast to Ben-David
and Hirshleifer (2012) who estimate that the return at which the lowest
probability of sale is zero. When the probability of sale curve attains its
minimum at 0, asymmetric slopes are necessary to predict a disposition effect.
However, they are not required if the probability of sale curve reaches a
minimum to the left of 0, as even a symmetric probability of sale curve will
exhibit a disposition effect when translated to the left.

4.3 Robustness

In order to capture the investor’s changing confidence, this model requires
a number of parameters. In this section, we will examine the 3 parameters
that are unique to this model: p, q and p∗. We will also briefly discuss the
behavior of the model at extreme choices for µ and T

We begin by considering q. We can simply interpret q as the investor’s
ex ante confidence in his forecast or more colloquially, his stubbornness. In
practice q controls the speed at which the investor loses confidence in his
model. For smaller q, the investor is quicker to give up on his forecast.
While the results of the previous section used q = 0.5 there is certainly an
argument for choosing q > 0.5. For example an overconfident investor is
likely to be fairly stubborn. That being said, the choice of q makes little
difference on the model’s predictions.

We find that for all 0 < q < 1, this model predicts a disposition effect.
Varying q only affects the strength of the disposition effect i.e. the magnitude
of the difference in final share allocations. For larger q, we see a stronger
disposition effect. This follows from the same logic that drives the trend
along the time axis in Table I: low q places greater weight on Model 2 which
predicts that future returns are independent of the past. The model also
predicts a V- shaped sale probability function for all 0 < q < 1. Higher
values of q lead to a more pronounced V-shape sale probability function.
This is largely because the investor’s additional faith in Model 1 lead him
to take on more leverage. Finally, for all 0 < q < 1, we continue to observe
that the peak average final share allocation occurs to the left of 0 suggesting
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a probability of sale curve that is translated to the left.
We will next examine p∗. In constructing the model we assert that p∗ is

set so that the risky asset has a higher expected return than the risk free
asset but the investor weakly prefers the risk free asset to the risky one.
Varying p∗ within this range affects how conservative the investor becomes
when he loses faith in Model 1. In practice, it has little affect on the model’s
predictions. All the phenomena reported in the previous two sections hold
for all p∗ in this range.

For the results presented in the previous sections, we opted for a more
conservative value for p to bring the investor’s beliefs closer to the true distri-
bution. Given that p is bounded above by p∗, we could not choose p > 0.41
while still using this model for larger µ. In general, varying p affects the
aggressiveness of the investor. For low values of p, the investor is eager to
take on large amounts leverage. This is, in part, due to the the binomial
structure of the risky asset which sets a maximum possible loss in any one
period. As a result, for smaller p, we find a stronger disposition effect and a
much steeper average final allocation curve. For extreme p the V-shape prob-
ability of sale curve begins to break down for positive returns. This because
the investor tends to take on large short positions in states where the asset
has exhibited small positive returns. However, for larger positive returns, the
investor begins to update towards Model 2 and reduces his position size.

Finally, for large (µ, T ) pairs this model fails to predict a disposition
effect. Moreover, the largest average final allocation occurs to the right
of 0. We expect the largest average final allocations in states that have
experienced slightly more down returns than up returns. For reasonable µ,
the gross return in these states is negative. However, for large µ and T it is
possible for the asset to experience more down returns than up returns and
still exhibit a positive gross return. Thus, the average final share allocation
given positive gross returns become artificially inflated while the analogous
figure for negative gross returns is deflated. Larger µ also leads the investor
to take on more leverage. Since the investor is almost always long the risky
asset, he becomes quite wealthy in states with many up returns. Thus, even
if he is contributing a smaller share of his wealth towards the risky asset, he
can still hold more shares of his risky asset.
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5 Discussion and Extensions of the Model

This paper is most closely related to Ben-David and Hirshleifer (2012)
who examine probability of sale as a function of profit and suggest that the
disposition effect could be driven by beliefs rather preferences. Our analysis
supports this hypothesis as we have shown that an overconfident investor
with rational preferences is likely to exhibit a disposition effect. Moreover
our results predict a V-shaped probability of sale function i.e. increasing
in the magnitude of return. Our model does depart from Ben-David and
Hirshleifer’s (2012) suggestion that the probability of sale is minimized at
0 return, as we predict that the investor is most likely to hold a position
after experiencing a small gross loss. This, however, is not necessarily a
contradiction. When reporting selling probability schedules, Ben-David and
Hirshleifer (2012) report a small dip to the left of the origin. Moreover their
estimated probability of sale functions are derived from a probit model that is
inherently monotonic. Since return magnitude is bounded below by 0 and the
estimated function is increasing, the best fit will always suggest a minimum at
0. Finally, our prediction that the probability of sale is minimized to the left
of 0 has the added benefit of not requiring that the V-shape is asymmetric.

Our model can be extended to other disposition effects. For example
Coval and Shumway (2005) show that futures traders are less likely to take
risk in the afternoon if they have accrued profits that morning.

More generally, our model can be applied to larger classes of portfolio
allocation problems. One particularly relevant problem is excessive trading.
Barber and Odean (2000) show that retail investors trade quite frequently
and underperform relative to the market. Much of this underperformance is
the result of trading costs. However, Odean (1999) also shows evidence for
poor asset selection. While there exist many overconfidence based explana-
tions for excessive trading in general, a model like the one presented here
could potentially explain poor stock selection.

For example, consider an adaptation of this model where we replace Model
2 with a return continuation model i.e the opposite of Model 1. In this case we
interpret Model 2 as the introduction of new information that will cause the
stock to trend in a certain direction as a it percolates through the population
of investors. We would then model overconfidence by setting q > 0.5. In
practice, this version of the model should lead to similar results as the one
presented in this paper. We would expect the investor to update faster
towards Model 2 after seeing a string of similar returns. However, this will be

17



balanced by the the higher initial probability of Model 1. Thus, our current
prediction that investors will allocate more to small losers would likely hold
and provide some explanation for why overconfident investors’ poor stock
selection. The version of the model used for this paper was chosen to more
explicitly indicate when the investor has ’no belief’ on how to evaluate asset.
However, this adapted model is also a perfectly valid approach for trying to
explain the disposition effect. It is perhaps a more elegant approach to the
problem as the return regimes are symmetric.

6 Conclusion

This paper examines whether irrational beliefs can predict a disposition
effect. We consider an overconfident investor who believes in mean reversion
and whose beliefs vary over time. We find that our hypothetical investor will
exhibit a disposition effect. Moreover, we predict that the investor is more
likely to exit his position when the asset has exhibited returns that are large
in magnitude. Surprisingly, we find that the investor is most likely to hold
onto his position after the asset has achieved a small gross loss. This suggests
that the disposition effect is not necessarily dependent on asymmetry between
the probability of sale with respect to losses and gains.

Appendix 1

Proof of Proposition 1. We begin with a Lemma.

Lemma 1. Suppose that at time t and node Φ the investor’s allocation to
the risky asset follows

xt0,Φ0 =
−Wt0,Φ0Rf

[
put0,Φ0(Ru −Rf ) + pdt0,Φ0(Rd −Rf )

]
Pt0,Φ0(Ru −Rf )(Rd −Rf )

for all t0 > t and appropriate paths Φ0. Then for any path of returns of
length T , Φ′, such that Φ′i = Φi where i < t

WT,Φ′ = kWt+1,Φ∗ (19)

where Φ∗ = (Φ0, ...,Φt−1,Φ
′
t) and k does not depend on xt0,Φ0 for any t0 and

appropriate Φ0
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Proof. We proceed by backwards induction on t. The base case t = T − 1
holds trivially For the inductive case, we seek to show that the result holds
for t − 1 i.e. wealth at time T can be expressed as a multiple of wealth at
time t. Let Φ1 = (Φ0, ...,Φt−1,Φ

′
t) and Φ2 = (Φ0, ...,Φt−1,Φ

′
t,Φ

′
t+1). Then,

by equation (7)

Wt+1,Φ2 = Wt,Φ1Rf + xt,Φ1Pt,Φ1(Rt,t+1 −Rf )

= Wt,Φ1Rf + xt,Φ1Pt,Φ1(Φ′t −Rf )

= Wt,Φ1Rf

−
Wt,Φ1Rf

[
put,Φ1(Ru −Rf ) + pdt,Φ1(Rd −Rf )

]
Pt,Φ1(Ru −Rf )(Rd −Rf )

× Pt,Φ1(Φ′t −Rf )

Thus, we have
Wt+1,Φ2 = k1Wt,Φ1

where

k1 = Rf

1−

[
put,Φ1(Ru −Rf ) + pdt,Φ1(Rd −Rf )(Φ

′
t −Rf )

]
(Ru −Rf )(Rd −Rf )


Note that none of the terms in k1, depend on xt0,Φ0 for any t0 and appropriate
Φ0. Finally, by the inductive hypothesis, we have that Wt+1,Φ2 = k2WT,Φ′

where k2 does not depend on xt0,Φ0 for any t0 and appropriate Φ0. Thus,

Wt,Φ1 =
k2

k1

WT,Φ′

and the inductive case holds.

Now, to the main result. We once again proceed by backwards induction.
For the base case, we consider t = T − 1 and node Φ. For ease of notation,
let Φu = (Φ0, ...,ΦT−1, Ru) and Φd = (Φ0, ...,ΦT−1, Rd) Then, the investor
seeks to maximize

E [log(WT )] = puT−1,Φ log(WT,Φu) + pdT−1,Φ log(WT,Φd)

= puT−1,Φ log (WT−1,ΦRf + xT−1,ΦPT−1,Φ(Ru −Rf ))

+ pdT−1,Φ log (WT−1,ΦRf + xT−1,ΦPT−1,Φ(Rd −Rf ))
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which yields the following first order condition with respect to xT−1,Φ

puT−1,φ(Ru −Rf )

WT−1,ΦRf + xT−1,ΦPT−1,Φ(Ru −Rf )
=

−pdT−1,φ(Rd −Rf )

WT−1,ΦRf + xT−1,ΦPT−1,Φ(Rd −Rf )

which is solved by

xT−1,Φ =
−WT−1,ΦRf

[
puT−1,Φ(Ru −Rf ) + pdT−1,Φ(Rd −Rf )

]
PT−1,Φ(Ru −Rf )(Rd −Rf )

and the base case therefore holds.
Now, for the inductive case. By the law of total expectation, we have

E[log(WT )] =
∑
Φ′

Φ′i=Φi∀i<t−1

P(Φ′|Φ) log(WT,Φ′)

=
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) log(WT,Φ′) +
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) log(WT,Φ′)

Now, let Φu = (Φ0, ...,Φt−1, Ru) and Φd = (Φ0, ...,Φt−1, Rd). By the inductive
hypothesis, we have

xt0,Φ0 =
−Wt0,Φ0Rf

[
put0,Φ0(Ru −Rf ) + pdt0,Φ0(Rd −Rf )

]
Pt0,Φ0(Ru −Rf )(Rd −Rf )

for all t0 > t and appropriate paths Φ0. Thus, we can apply Lemma 1 to find∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) log(WT,Φ′) =
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) log(k′Wt+1,Φu)

=
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) [log(Wt+1,Φu) + log(k′)]

=
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) log(Wt+1,Φu) +Ku
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where
Ku =

∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) log(k′)

By similar logic, we have∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) log(WT,Φ′) =
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) log(Wt+1,Φd) +Kd

where
Kd =

∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) log(k′)

Now, from Lemma 1, for all Φ′, k′ is not a function of xt−1,Φ. Thus, Ku and
Kd will drop out of our first order condition and maximizing E log(WT ) is
equivalent to maximizing∑

Φ′
Φ′i=Φi∀i<t−1

Φ′t=Ru

P(Φ′|Φ) log(Wt+1,Φu) +
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) log(Wt+1,Φd)

Now, note that since Φ′|Φu is a distribution∑
Φ′

Φ′i=Φi∀i<t−1

P(Φ′|Φu) = 1
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Thus,∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) =
∑
Φ′

Φ′i=Φi∀i<t−1

P(Φ′ ∩Rt,t+1|Φ)

=
∑
Φ′

Φ′i=Φi∀i<t−1

P(Φ′|Rt,t+1 = Ru ∩ Φ)P(Rt,t+1 = Ru|Φ)

=
∑
Φ′

Φ′i=Φi∀i<t−1

P(Φ′|Φu)put,Φ

= put,Φ
∑
Φ′

Φ′i=Φi∀i<t−1

P(Φ′|Φu)

= put,Φ

Similarly, we have ∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) = pdt,Φ

Thus, our objective function can be simplified to∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) log(Wt+1,Φu) +
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ) log(Wt+1,Φd)

=

log(Wt+1,Φu)
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Ru

P(Φ′|Φ) + log(Wt+1,Φd)
∑
Φ′

Φ′i=Φi∀i<t−1
Φ′t=Rd

P(Φ′|Φ)

=

put,Φ log(Wt+1,Φu) + pdt,Φ log(Wt+1,Φd)

=

put,Φ log(Wt,ΦRf + xt,ΦPt,Φ(Ru −Rf )) + log(Wt,ΦRf + xt,ΦPt,Φ(Rd −Rf ))

This function is analogous to the objective function from the base case and
therefore yields a first order condition of the same form giving us the desired
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solution

xt,Φ =
−Wt,ΦRf

[
put,Φ(Ru −Rf ) + pdt,Φ(Rd −Rf )

]
Pt,Φ(Ru −Rf )(Rd −Rf )

Thus, the inductive step holds and the proof is complete.

Appendix 2

Table A2.1
Average Final Share Allocation by Return Magnitude for T = 6

Each (µ, n) pair denotes the average share allocation at t = T − 1 at states
where the risky asset has achieved exactly n up returns

Number of Up Periods Over the Year

µ Initial Allocation 0 1 2 3 4 5

1.05 0.43 0.67 0.96 0.79 0.2 -0.11 -0.11

1.06 0.5 0.66 0.99 0.86 0.28 -0.07 -0.1

1.07 0.57 0.65 1.01 0.93 0.35 -0.03 -0.09

1.08 0.64 0.64 1.02 1.01 0.44 0.01 -0.08

1.09 0.71 0.64 1.04 1.08 0.52 0.06 -0.07

1.1 0.78 0.63 1.06 1.16 0.62 0.12 -0.05

1.11 0.86 0.62 1.08 1.24 0.72 0.18 -0.02

1.12 0.94 0.61 1.09 1.32 0.83 0.26 0.01

1.13 1.02 0.6 1.11 1.4 0.95 0.34 0.04
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Table A2.2
Average Final Share Allocation by Return Magnitude for T = 10

Each (µ, n) pair denotes the average share allocation at t = T − 1 at states
where the risky asset has achieved exactly n up returns

Number of Up Periods Over the Year

µ Initial 0 1 2 3 4 5 6 7 8 9

1.05 0.43 0.4 0.62 0.88 0.97 0.72 0.28 -0.03 -0.13 -0.1 -0.04

1.06 0.5 0.39 0.61 0.88 1.01 0.79 0.36 0.02 -0.11 -0.1 -0.04

1.07 0.57 0.38 0.59 0.88 1.05 0.87 0.44 0.08 -0.09 -0.09 -0.04

1.08 0.64 0.37 0.58 0.89 1.09 0.95 0.53 0.14 -0.06 -0.09 -0.05

1.09 0.71 0.36 0.57 0.89 1.13 1.03 0.62 0.21 -0.02 -0.08 -0.05

1.1 0.79 0.35 0.56 0.89 1.17 1.11 0.71 0.28 0.02 -0.06 -0.05

1.11 0.86 0.34 0.55 0.89 1.2 1.2 0.82 0.36 0.07 -0.05 -0.05

1.12 0.94 0.33 0.54 0.89 1.24 1.28 0.93 0.46 0.12 -0.02 -0.04

1.13 1.02 0.32 0.53 0.89 1.28 1.37 1.05 0.56 0.19 0.01 -0.03
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