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Abstract. Algorithm designers increasingly optimize not only for accuracy but also fair-
ness, defined as how similar accuracy is across demographic groups. We study the tradeoff
between fairness and accuracy via a fairness-accuracy frontier, which consists of the opti-
mal points (for a fixed set of inputs) across a broad range of preferences over fairness and
accuracy. Our results identify a simple property of the inputs, group-balance, which qualita-
tively determines the shape of the frontier. We further study an information-design problem
where the designer flexibly regulates the inputs (e.g., by coarsening an input or banning its
use) but the algorithm is chosen by another agent. Whether it is optimal to ban an input
generally depends on the designer’s preferences. But when inputs are group-balanced, then
excluding group identity is strictly suboptimal for all designers, and when the designer has
access to group identity, then it is strictly suboptimal to exclude any informative input.

1. Introduction

Decisions such as which patients should receive treatment or which borrowers should re-

ceive loans are increasingly guided by the predictions of algorithms (Roth and Kearns, 2019).

A recent literature establishes that the error rates of commercially-deployed algorithms often

differ substantially across racial and gender groups (Arnold et al., 2021; Fuster et al., 2021).

For example, patients assigned the same risk score by a widely-used healthcare algorithm

were shown to have substantially different actual health risks depending on their race (Ober-

meyer et al., 2019); the false-positive rate of an algorithm used to predict criminal reoffense

was shown to be twice as high for Black defendants as for White defendants (Angwin and

Larson, 2016); and the accuracy of facial-recognition technologies vary substantially across

demographic groups (Klare et al., 2012).

There is a long tradition in economics of studying equity-efficiency tradeoffs in settings

as diverse as taxation (Saez and Stantcheva, 2016; Dworczak et al., 2021), policing (Persico,
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2002; Jung et al., 2020), and college admissions (Chan and Eyster, 2003; Ellison and Pathak,

2021). The context of algorithmic predictions presents a new equity-efficiency tradeoff, man-

ifested as the tradeoff between accuracy (the overall error rate of the algorithm) and fairness

(how similar the algorithm’s error rate is across pre-defined groups). This tradeoff is gov-

erned in substantial part by the inputs to the algorithm and their statistical relationship to

group identity—for example, whether these inputs are systematically more informative for

one group than another. Algorithmic inputs can be observed, manipulated, and regulated,

raising the following fundamental questions: How does the tradeoff between fairness and

accuracy depend on the information available for prediction? Which informational environ-

ments create a tension between fairness and accuracy, and which ameliorate it? While the

tradeoff between fairness and accuracy has been empirically computed in specific applications

(Wei and Niethammer, 2020; Chohlas-Wood et al., 2021; Little et al., 2022), substantially

less is known about how the available information shapes the tension between these goals in

general.

To examine these questions, we define and study a fairness-accuracy frontier. The frontier

consists of those outcomes that are optimal for various objective functions, which reflect a

wide range of views on how to optimally trade off fairness and accuracy. We prove two types

of results about the frontier. First, we identify simple properties of the algorithmic inputs

that determine the qualitative shape of this frontier. Second, we take an information-design

perspective on understanding how constraints on information can induce certain desired

outcomes. Specifically, we consider an interaction between a regulator flexibly constraining

the inputs and an agent setting the algorithm, and characterize what part of the fairness-

accuracy frontier the designer can achieve through appropriate design of the inputs. We also

examine whether it might be optimal for the designer to exclude an input altogether (e.g.,

excluding group identity in the context of medical predictions, or a test score in the context

of college admissions).

In our model, a designer chooses an algorithm that takes observed covariates as inputs

(e.g., image scans, lab tests, records of prior hospital visits) and outputs a decision (e.g.,

whether to recommend a medical procedure). The algorithm’s consequences for any given

individual are measured using a loss function, which can be interpreted as the inaccuracy or

the harm of the decision. We aggregate losses within two groups, group r (red) and group b

(blue). Each group’s error is the expected loss for individuals of that group. An algorithm

is understood to be more accurate if it implies lower errors for both groups, and more fair if

it implies a smaller difference between the two groups’ errors.

To understand the tradeoff between fairness and accuracy, we define the class of fairness-

accuracy (FA) preferences to be all preferences over group error pairs that are consistent

with the following order: one pair of group errors FA-dominates another if the former in-

volves smaller errors for both groups (greater accuracy) and also a smaller difference between
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group errors (greater fairness).1 This partial order is consistent with a broad range of de-

signer preferences, including Utilitarian designers (who minimize the aggregate error in the

population), Rawlsian designers (who minimize the greater of the two group errors), and

Egalitarian designers (who minimize the absolute difference between group errors). Some of

these preferences correspond directly to optimization problems that have been proposed for

use in practice.2 We define the fairness-accuracy frontier to be the set of all feasible group

error pairs that are FA-undominated within the feasible set, i.e., there is no feasible error

pair that improves simultaneously on accuracy and fairness.

A simple property of the algorithm’s inputs turns out to be critical for determining the

shape of the fairness-accuracy frontier. Say that a covariate vector is group-balanced if given

this covariate vector, group r’s optimal algorithm (i.e. the one that gives r the smallest

error over all feasible algorithms) yields a lower error for group r than for group b, and if the

reverse is true for group b’s optimal algorithm. Otherwise, say that the covariate vector is

group-skewed. It is difficult to anticipate in advance of an empirical analysis which of group-

balance or group-skew is more typical in practice. One reason to expect group-skew is if the

covariates have the same implications for both groups but are measured more accurately for

one group than the other—say, if medical data is recorded more accurately for high-income

patients than low-income patients.
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Figure 1. The Fairness-Accuracy Frontier.

1We do not take a stance on the normative desirability of these preferences, instead interpreting our class as
encompassing the broad range of designer preferences that could be relevant in practice.
2For example, optimizing a Rawlsian preference is equivalent to implementing group distributionally robust
optimization (Sagawa et al., 2020), and optimizing an Egalitarian preference is equivalent (on a restricted
domain) to maximizing accuracy subject to equality of error rates (as considered in Hardt et al. (2016)
among others).
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Our first result says that depending on whether the covariate vector is group-balanced or

group-skewed, the fairness-accuracy frontier takes either of two possible forms, as depicted

in Figure 1. In both cases, the frontier is a part of the lower boundary of the feasible set,

namely the error pairs that are implementable using some algorithm that takes the covariate

vector as input. But in the case of group-balanced inputs, the fairness-accuracy frontier is

the part of the lower boundary that begins at the point that is best for group r (labeled

R) and ends at the point that is best for group b (labeled B). This is precisely the set of

all feasible error pairs that cannot be simultaneously reduced in both coordinates. In the

case of group-skewed inputs, the frontier again includes those points, but now additionally

includes a positively-sloped part (in Figure 1, the segment from B to the fairness-maximizing

point F ) along which both groups’ errors increase but the gap between their errors decreases.

This characterization of the frontier tells us that a policy proposal that increases errors for

both groups, but reduces the gap between group errors, can only be justified by fairness

considerations if the covariate vector is group-skewed.

We next consider the important special case where group identity is an input to the

algorithm. We show that the feasible set and frontier simplify as depicted in Figure 2: The

feasible set is a rectangle, and the fairness-accuracy frontier is a single line segment along

which the disadvantaged group (i.e., the group with the higher error) receives its minimal

feasible error. If we consider a comparative static exercise in which a baseline covariate

vector is augmented to include group identity, then a corollary of this characterization is

that access to group identity must reduce the disadvantaged group’s error regardless of the

designer’s fairness-accuracy preferences.
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Figure 2. Depiction of the fairness-accuracy frontier in the case where X reveals G.

In the second part of the paper, we investigate what happens if the designer does not choose

the algorithm, but instead regulates the inputs of the algorithm. This question is motivated

by settings where a designer has fairness concerns, but the agent setting the algorithm

does not. For example, a judge (agent) determining sentencing may seek to maximize the
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number of correct verdicts, while a policymaker (designer) may additionally prefer that the

accuracy of the judge’s verdicts is equitable across certain social groups. In these cases, the

policymaker can impose regulation that restricts the inputs available to the algorithm, for

example, by legally banning the use of a specific input.

We model this as an information design problem (Kamenica and Gentzkow, 2011) where

the designer chooses a garbling of the available inputs, and an agent chooses an algorithm

(based on the garbling) to maximize accuracy. Under weak conditions, it turns out to be

without loss for the designer to only control the algorithm’s inputs. That is, any error pair

that a designer would choose to implement given full control of the algorithm can also be

achieved by appropriately garbling the inputs.

We next consider whether the optimal garbling might involve excluding a covariate entirely

from use in the algorithm. We demonstrate two results: First, excluding group identity as

an algorithmic input is strictly welfare-reducing for all designers (with FA preferences) if

and only if the permitted covariates are group-balanced. Second, when group identity is

permitted as an input, then completely excluding any other covariate makes every designer

strictly worse off, so long as that covariate satisfies a mild condition that we call decision-

relevance. When applied to the policy question of whether to permit standardized test

scores in admissions decisions, the latter result suggests that so long as group identity is a

permissible input into admission decisions,3 then excluding test scores is welfare-reducing for

all designers with the power to garble covariates. On the other hand, if group identity is

not permitted as an input into college admissions decisions (as is the case in the states of

California and Michigan), then the optimal garbling of covariates for some designer preference

may indeed involve completely excluding test scores, and we provide an example to this effect.

1.1. Related Literature. Our paper is motivated by recent problems in the literature

on algorithmic bias (Section 1.1.3), but assumes a novel perspective on these questions

based on approaches from two literatures in economic theory: the literature on information

design (Section 1.1.1) and the literature on social preferences and inequality (Section 1.1.2).

Building on the former, we model the interaction between a designer flexibly regulating

inputs and an agent setting the algorithm. Building on the latter, we focus on understanding

equity-efficiency tradeoffs, and consider a wide class of preferences that reflects heterogeneity

in social preferences.

1.1.1. Information Design. One contribution of our paper is the casting of the design of

algorithmic inputs as an information design problem (see Kamenica (2019) and Bergemann

and Morris (2019) for recent surveys). This approach complements previous frameworks

for modeling the regulation of algorithms, in which regulators communicate information via

3This is currently true in most states in the US, pending the decision of Students for Fair Admissions, Inc.
v. President and Fellows of Harvard College.
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cheap talk (Cowgill and Stevenson, 2020) or impose restrictions directly on the algorithm

(Yang and Dobbie, 2020; Rambachan et al., 2021; Blattner et al., 2022). We view the garbling

of inputs as a potentially effective policy tool, which can be implemented through a variety

of technological or legal commitments,4 and deserves further attention within the context of

algorithmic fairness.

Conversely, problems regarding algorithmic fairness motivate analyses that depart from

typical information design problems in a few interesting ways. First, the Sender in our

framework cannot choose a completely flexible information structure, but is constrained to

garblings of a primitive covariate vector. Second, motivated by heterogeneous attitudes

toward fairness (Section 1.1.2), we focus on a frontier of solutions with respect to a wide

class of Sender preferences. Our results in Section 4.2 describe how the frontier of solutions

changes with respect to changes in the underlying information. We focus on special cases of

this comparative static that are of interest given our motivation (e.g., adding or removing

group identity), but a more general solution (analogous to Curello and Sinander (2022)’s

recent work on comparative statics with respect to the Sender’s utility function) would be

an interesting avenue for future work.

Finally, at the broader intersection of information design and algorithms, Ichihashi (2023)

considers optimal information acquisition for crime deterrence, and Caplin et al. (2023) draws

a connection between different machine learning objectives and costly information design.

1.1.2. Social Preferences and Inequality. The literature on social preferences documents sub-

stantial heterogeneity in how individuals assess efficiency-equity tradeoffs (Andreoni and

Miller, 2002; Fehr and Schmidt, 1999; Fisman et al., 2007; Sullivan, 2022), which is reflected

in our broad class of FA-preferences. In this literature, social preferences are preferences

over individual payoffs rather than preferences over group errors, but most have analogues

in our setting. For example, the “social welfare approach” aggregates individual payoffs

using differential weights (Charness and Rabin, 2002; Saez and Stantcheva, 2016; Dworczak

et al., 2021), and is nested in our class of FA preferences (if we interpret individual payoffs

as group errors). We additionally allow for a direct penalty for unequal outcomes, as in the

models of “difference aversion” or “inequity aversion” (Loewenstein et al., 1989; Bolton and

Ockenfels, 2000; Fehr and Schmidt, 1999).5

There is a separate literature studying the equity-efficiency tradeoffs of affirmative action

programs. Specifically, Lundberg (1991) and Chan and Eyster (2003) model affirmative

4For example, organizations such as the US Census Bureau, Google, Apple, and Microsoft are committed
to differential privacy initiatives (Dwork and Roth, 2014), which take various forms of adding noise to user
inputs. Yang and Dobbie (2020) summarizes the existing law on algorithmic regulation and proposes new
legal policies for mitigating algorithmic bias.
5Another part of this literature is concerned with intentions and reciprocity (Rabin, 1993; Charness and
Rabin, 2002) and is outside of our model.



ALGORITHM DESIGN: A FAIRNESS-ACCURACY FRONTIER 7

action as a ban on the use of group identity in admissions decisions, and show that this can

lead organizations to condition on proxies in a way that reduces both efficiency and equity.

(A similar point is made in Agan and Starr (2018) regarding the use of prior criminal history

in hiring decisions in “ban-the-box” policies.) Ellison and Pathak (2021) empirically quantify

the equity and efficiency losses of race-neutral affirmative action (based on geographic proxies

for race) as compared to plans that explicitly consider race. These papers are related to our

study of the impact of excluding group identity, but focus on how a designer’s optimal

algorithm given group identity compares to the optimal algorithm without. Our analogous

comparative static is in the context of an information design problem, where the designer

controls the inputs to the algorithm but does not choose the algorithm itself. We examine

how the frontier of achievable outcomes changes when the designer can design a group-

dependent garbling versus when the designer must choose a group-independent garbling.

These analyses are not nested; see Section 4.2.1 for more detail.

1.1.3. Algorithmic Bias. The recent literature on algorithmic bias has emerged around the

concern that algorithms have error rates that differ substantially across social and demo-

graphic groups (see Kleinberg et al. (2018) and Cowgill and Tucker (2020) for overviews). In

this literature and in the accompanying policy discussion (e.g, Angwin and Larson (2016)),

algorithms are often considered to be “less fair” if the harms of the algorithm are more un-

equally borne across groups, with this comparison formalized as the disparity in error rates

across groups (Hardt et al., 2016; Kleinberg et al., 2017; Chouldechova, 2017).6 A growing

body of empirical work documents and quantifies these disparate impacts (Obermeyer et al.,

2019; Arnold et al., 2021; Fuster et al., 2021).

The tradeoff between accuracy (overall error rate of the algorithm in the population) and

fairness (discrepancy between error rates across social groups) is a special kind of equity-

efficiency tradeoff. A common approach for resolving this tradeoff is to posit a particular

objective criterion (Hardt et al., 2016; Diana et al., 2021). Other papers identify improve-

ments with respect to both objectives simultaneously (Rose, 2021; Feigenberg and Miller,

2021). Our paper is closest to a smaller part of this literature, which engages with the

tension between fairness and accuracy by quantifying fairness-accuracy tradeoffs for specific

loss functions (Menon and Williamson, 2018) or for specific empirical applications (Wei and

Niethammer, 2020; Chohlas-Wood et al., 2021; Little et al., 2022). We are interested in how

this fairness-accuracy tradeoff is moderated by the inputs to the algorithm in general, and

provide simple conditions on the inputs that qualitatively govern this tradeoff independently

of other details of the loss function or informational environment.

6A notable exception is the concept of individual fairness proposed in Dwork et al. (2012).
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2. Framework

2.1. Setup and Notation. There is a population of individuals, where each individual is

described by a covariate vector X taking values in the finite set X , a type Y taking values

in the finite set Y ,7 and a group identity G taking values r or b.8 Throughout we think of

G,X, Y as random variables with joint distribution P, and use pg ≡ P(G = g) > 0 to denote

the fraction of the population that belongs to group g ∈ {r, b}. We impose no assumptions

on the joint distribution,9 permitting for example each of the following:

Example 1 (X reveals or closely proxies for G). The group identity may be an input in

the covariate vector X, or predictable from inputs in the covariate vector X. For example,

Bertrand and Kamenica (2020) show that data on consumption patterns permits near perfect

classification of gender and a fairly accurate prediction of other group identities such as

income bracket, race, and political ideology.

Example 2 (Biased Covariates). The value of an input in X may be systematically biased

depending on group identity. For example, if G is income bracket, Y is ability, and X is a test

score that can be improved through better access to test prep, the distribution P may have

the property that at every ability level, the conditional distribution of test scores is shifted

higher for students in the high-income bracket (i.e., the distribution of X | Y = y,G = r

first-order stochastically dominates X | Y = y,G = b at every y ∈ Y).

Example 3 (Asymmetrically Informative Covariates). The inputs in X may be more infor-

mative about Y for one group than the other. For example, in Obermeyer et al. (2019), a

patient’s health care costs are more predictive of their health care needs for White patients

than for Black patients, and Rothstein (2004) shows that SAT scores are more informative

about future college grades for high-income students than low-income students.

A designer chooses an algorithm a : X → ∆(D) that maps covariate vectors into distribu-

tions over decisions in D = {0, 1}. Let AX denote the set of all algorithms. Some motivating

examples of types, group identities, covariate vectors, and decisions are given below:

7We make the assumption of finiteness to simplify various notations in the exposition. Most of our results
generalize to infinite covariate values and/or infinite types.
8Throughout, we assume the definition of the relevant groups to be a primitive of the setting, determined
by sociopolitical precedent and outside the scope of our model.
9We view P as the population distribution on which the algorithm is both trained and tested. An interesting
direction for future work would be to permit the data that the algorithm is trained on to differ in distribution
from the data on which the algorithm’s errors are evaluated. For example, the data on which the algorithm
is trained may reflect historical biases that are no longer descriptive of the current environment. Another
interesting direction would be to study optimal sampling of data on which to train the algorithm (in which
case P is endogenous); for example, Che et al. (2019) show that biased data sampling can create a dynamic
feedback loop that reinforces inequities.
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Healthcare. Y is need of treatment, G is socioeconomic class, and the decision is whether

the individual receives treatment. The covariate vector X includes possible attributes such

as image scans, number of past hospital visits, family history of illness, and blood tests.

Credit scoring. Y is creditworthiness, G is gender, and the decision is whether the bor-

rower’s loan request is approved. The covariate vector X includes possible attributes such

as purchase histories, social network data, income level, and past defaults.

Bail. Y is whether an individual is high-risk or low-risk of criminal reoffense, G is race, and

the decision is whether the individual is released on bail. The covariate vector X includes

possible attributes such as the individual’s past criminal record, psychological evaluations,

family criminal background, frequency of moves, or drug use as a child.10

Job hiring. Y is whether a job applicant is high or low quality, G is citizenship, and the

decision is whether the applicant is hired. The covariate vector X includes possible attributes

such as past work history, resume, and references.

The consequence of choosing decision d for an individual whose true type is y is evaluated

using a (potentially group-dependent) loss function ` : D × Y × G → R.11 We further

aggregate these losses across individuals within each group:

Definition 1. For any algorithm a ∈ AX and group g ∈ {r, b}, the group g error is

eg(a) := ED∼a(X) [`(D, Y, g) | G = g] .

That is, group g’s error is the average loss for members of group g. For example, if the type

Y is binary and `(d, y, g) = 1(d 6= y), then eg(a) is the total probability of a type I or type

II error. Other loss functions may put different weights on different kinds of errors. We view

the choice of the right loss function as application-specific, and demonstrate results that hold

for arbitrary `.

Each algorithm a implies a pair of group errors (er(a), eb(a)). Throughout this paper, an

improvement in accuracy means a reduction in both group errors, while an improvement

in fairness means a reduction in the absolute difference between the group errors.12 This

10These example covariates are based on the survey used by the Northpointe COMPAS risk tool. See for refer-
ence: https://www.documentcloud.org/documents/2702103-Sample-Risk-Assessment-COMPAS-CORE.

html.
11For example, if G is socioeconomic background, Y is creditworthiness, the decision is whether to grant a
loan, and the loss function corresponds to financial cost, then a bank manager may experience greater losses
from predicting creditworthiness incorrectly for the wealthy group.
12This formulation is consistent with much of the literature on algorithmic fairness, but does not take into
account all important fairness considerations. For example, perfect prediction of criminal offense (Y ) by the
algorithm for both groups does not address historical inequities that have shaped differential base rates of
Y across groups. Moreover, as Kasy and Abebe (2021) point out, an algorithm that is fair in the narrow
context of one decision may perpetuate or exacerbate inequalities within a larger context. We leave to future
work the interesting question of how these algorithmic design decisions might impact decisions in a larger
dynamic game.
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approach nests many of the various fairness criteria that have been proposed in the literature

(see Mehrabi et al. (2022) for a recent survey) under a particular choice of a loss function.

For example, if the type Y is binary and `(d, y, g) = 1(d 6= y), then er(g) = eb(g) corresponds

to equality of misclassification rates, while if `(d, y, g) = 1(d = 1, y = 0) then er(g) = eb(g)

corresponds to equality of false positive rates (Kleinberg et al., 2017; Chouldechova, 2017).

And if

`(d, y, g) =

{
P (Y=y)

P (Y=y|G=g)
if d = 1

0 otherwise

then er(g) = eb(g) corresponds to equality of equalized odds (Hardt et al., 2016). See

Appendix A for further details.

In Section 5, we discuss an extension of the fairness criterion to any |φ(er)− φ(eb)| where

φ is continuous and strictly increasing, which includes the ratio of error rates as a special

case (setting φ(e) = log(e)). We also discuss in Section 5 an extension of our framework

when fairness and accuracy are evaluated using different loss functions.

2.2. Fairness-Accuracy Preferences. The designer has a preference ordering over group

error pairs e = (er, eg) ∈ R2. We consider the set of all preferences that are consistent with

the following weak criterion.

Definition 2. The fairness-accuracy (FA) dominance relation >FA is the partial order on R2

satisfying (er, eb) >FA (e′r, e
′
b) if er ≤ e′r, eb ≤ e′b, and |er − eb| ≤ |e′r − e′b|, with at least one

of these inequalities strict.13

That is, if it is possible to simultaneously increase accuracy (reducing errors for both

groups) and also increase fairness (reducing the gap between these errors), then all designers

must prefer this.

Definition 3. A fairness-accuracy (FA) preference � is any total order on R2 such that e � e′

whenever e >FA e
′.

It is straightforward to see that these orders are unchanged if |er − eb| is replaced with

φ(|er − eb|) where φ is a strictly increasing function.

The class of FA preferences reflects a broad range of views on how to trade off fairness and

accuracy, including the following special cases that have been proposed in the literature.

13Kleinberg and Mullainathan (2019) define an admissions rule to be a strict improvement over another if
it improves both efficiency (the average type of an admitted applicant) and equity (the fraction of admitted
students who belong to the disadvantaged group), which is similar to our FA dominance relation but non-
nested, as it involves two loss functions. The FA-dominance relation in Online Appendix O.1 generalizes
both orders.
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Example 4 (Utilitarian). The designer evaluates errors e = (er, eb) according to the weighted

sum in the population. That is, let

wu(e) = −prer − pbeb
and let �u be the ordering represented by wu, i.e. e �u e′ if and only if wu(e) ≥ wu(e

′).

(Note that the minority population, which has a lower weight by definition, will be naturally

discounted as a group in this evaluation.) A designer with preferences �u is called Utilitarian

(Harsanyi, 1953, 1955).

Example 5 (Rawlsian). The designer evaluates errors e = (er, eb) according to the greater

error. That is, let

wr(e) = −max {er, eb}
and let �r be the corresponding ordering represented by wr.

14 A designer with preferences

�r is called Rawlsian (Rawls, 1971).

Example 6 (Egalitarian). The designer evaluates errors e = (er, eb) according to their differ-

ence. That is, let

we(e) = − |er − eb|
and let �e be the lexicographic order that first evaluates errors according to we and then

compares ties using the Utilitarian utility wu. A designer with preferences �e is called

Egalitarian (Parfit, 2002).

Example 7 (Constrained Optimization). The designer evaluates errors e = (er, eb) according

to

wc (e) = (1− λ)wu (e) + λwe (e)

for some λ ∈ [0, 1] (breaking ties with �e when λ = 1). The optimal choices here correspond

to the solutions of the following constrained optimization problem

min
a∈AX

prer(a) + pbeb(a) s.t. |er(a)− eb(a)| ≤ c

when the constraint is satisfiable.15 The special case of c = 0 (as considered in Hardt et al.

(2016)) returns the Egalitarian solution. This is a standard approach in the algorithmic

fairness literature (Ferry et al., 2022; Menon and Williamson, 2018; Corbett-Davis et al.,

2017; Agarwal et al., 2018).

Example 8 (Accuracy then Fairness). The designer evaluates errors e = (er, eb) by first

evaluating accuracy and then fairness. That is, e � e′ if er ≤ e′r and eb ≤ e′b with at least one

14This approach is also known as group distributionally robust optimization (Sagawa et al., 2020; Hansen
et al., 2022).
15The constant λ corresponds to the Lagrange multiplier in the optimization problem. Note that while
the preference induced by wc is complete, the constrained optimization yields an incomplete ordering (for
example, two errors that are both not feasible cannot be ranked).
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strict, and if not, they are then compared using we. This is the approach recently proposed

by Viviano and Bradic (2023).

Our consideration of this wide class of preferences is motivated in part by the experimental

literature on social preferences, which documents substantial heterogeneity across individ-

uals’ views on how to trade off equity and efficiency. In particular, when given the choice

between different allocations of payoffs across individuals, some experimental subjects choose

Pareto-dominated allocations that are more equal (corresponding in our setting to choice of

(er, eb) over (e′r, e
′
b) where er > e′r and eb > eb but |er − eb| < |e′r − e′b|). These are minority

preferences in the population (Andreoni and Miller, 2002; Charness and Rabin, 2002), but

constitute 31% of subjects in an experiment in Fisman et al. (2007). We view the class of

FA preferences as encompassing a broad range of designer preferences that may be relevant

in practice.

2.3. The Fairness-Accuracy Frontier. Fixing any covariate vector X, we define the fea-

sible set of group error pairs to be those pairs that can be implemented by some algorithm

that takes X as input. The fairness-accuracy frontier is the set of all group error pairs that

are FA-undominated in the feasible set.

Definition 4. The feasible set given covariate vector X is

E(X) ≡ {(er(a), eb(a)) : a ∈ AX}

Definition 5. The fairness-accuracy (FA) frontier given X, denoted F (X), is the set of all

error pairs e ∈ E(X) that are FA-undominated, i.e. there does not exist another error pair

e′ ∈ E(X) satisfying e′ >FA e.

The FA frontier consists of all group error pairs that are optimal under some FA preference.

Furthermore, it is minimal in the sense that every point in the FA frontier is uniquely optimal

for some FA preference, so we cannot exclude any points without hurting some designer. We

discuss these alternate characterizations in Appendix O.6.

3. The Fairness-Accuracy Frontier

In Section 3.1, we define the property of group-balance that will play a key role in several

of our results. In Section 3.2, we characterize the frontier and its implications for the kinds

of fairness-accuracy tradeoffs that emerge. In Section 3.3, we provide further results for two

important special cases: when group identity is an input in the algorithm and when group

identity is independent of type conditional on the covariate vector.

3.1. Key Property: Group-Balance. For all covariate vectors X, the feasible set E(X)

is closed and convex (Lemma B.1). It includes the following special points.
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Definition 6 (Group Optimal Points). For any covariate vector X, define

RX ≡ arg min
(er,eb)∈E(X)

er

to be the feasible point that minimizes group r’s error, and define

BX ≡ arg min
(er,eb)∈E(X)

eb

to be the feasible point that minimizes group b’s error. In both cases, if the minimizer is not

unique, break ties by choosing the point that minimizes the other group’s error. We use GX

to denote the group optimal point for group g.

Group optimal points can be easily derived. For instance, to calculate RX , set the algo-

rithm to choose the optimal decision for group r for each realization of X (breaking ties in

favor of group b).16 RX is then the error pair resulting from this algorithm.

Definition 7 (Fairness Optimal Point). For any covariate vector X, define

FX ≡ arg min
(er,eb)∈E(X)

|er − eb|

to be the point that minimizes the absolute difference between group errors. If the minimizer

is not unique, we choose the point that further minimizes either group’s error.17

While RX and BX respectively denote the points that minimize group r and b’s errors, the

group whose error is minimized need not be the group with the lower error. For example,

suppose X is a binary score where the conditional distribution (X, Y ) | G is described by:

X = 0 X = 1

Y = 0 3/8 1/8

Y = 1 1/8 3/8

X = 0 X = 1

Y = 0 1/3 1/6

Y = 1 1/6 1/3

G = r G = b

Let the loss function ` be the misclassification rate; that is, `(d, y, g) = 1(d 6= y). Then the

b-optimal point BX is achieved by the algorithm that maps X = 1 to d = 1 and X = 0 to

d = 0, which leads to a higher error for group b than group r (1/3 compared to 1/4). We

will define such a covariate vector to be r-skewed.

Definition 8. Covariate vector X is:

• r-skewed if er < eb at RX and er ≤ eb at BX

• b-skewed if eb < er at BX and eb ≤ er at RX

• group-balanced otherwise

16Throughout, when we say “the optimal decision for group g at realization x,” we mean any decision
d∗ ∈ arg mind∈D E[`(d, Y, g) | X = x,G = g].
17This point is the same regardless of which group is used to break the tie.
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If X is g-skewed for either group g, then we say it is group-skewed.

In words, X is r-skewed if group r’s error is smaller than group b’s error not only at the

r-optimal point RX , but also at the b-optimal point BX . Geometrically, this means that

RX and BX fall to the same side of the 45 degree line. In contrast, the covariate vector X

is group-balanced if at each group’s optimal point, its error is lower than that of the other

group, implying that RX and BX fall to opposite sides of the 45 degree line.

Loosely speaking, a covariate vector is group-balanced if it is possible to disentangle ac-

curate predictions for one group from accurate predictions for another. This might be, for

example, because the meaning of the covariate vector is group-dependent (e.g., larger re-

alizations of X imply larger realizations of Y for group r but smaller realizations of Y for

group b),18 or because different covariates in the covariate vector are predictive for either

group (e.g., X = (X1, X2) where X1 is uninformative about Y for group r and X2 is un-

informative about Y for group b). In contrast, we would expect a covariate vector to be

group-skewed if it is systematically more informative about one group than the other (e.g.,

if Y | X = x,G = r is more dispersed than Y | X = x,G = b for every x).

3.2. Characterization of the Frontier. Depending on whether the covariate vector X

is group-balanced or group-skewed, the fairness-accuracy frontier F (X) takes either of two

forms. In the result below, we use lower boundary between two points to mean the part of the

boundary of the set that lies between the two points and below the line segment connecting

the two.

Theorem 1. The fairness-accuracy frontier F (X) is the lower boundary of the feasible set

E(X) between

(a) RX and BX if X is group-balanced

(b) GX and FX if X is g-skewed

These two cases are depicted in Figure 3. When X is group-balanced and RX and BX

are distinct, the two points fall on opposite sides of the 45-degree line (Panel (a)), and the

fairness-accuracy frontier is that part of the lower boundary of the feasible set connecting

these two points. This corresponds precisely to the set of all points (er, eb) such that no

other feasible point (e′r, e
′
b) is component-wise smaller, which we subsequently call the Pareto

frontier. When X is r-skewed (Panel (b)), then both RX and BX fall on the same side of

the 45-degree line, and the fairness-accuracy frontier consists not only of the usual Pareto

18For example, let subjects be borrowers, Y be creditworthiness, X be frequency of address changes, and G be
an income bracket. Suppose frequent address changes (high X) signal higher creditworthiness for high-income
borrowers (e.g., because these borrowers primarily move for new opportunities) but lower creditworthiness for
low-income borrowers (e.g., because these borrowers primarily move due to evictions). Then the algorithm
(based on this covariate) that maximizes accuracy for the high-income group will lead to a lower error for
the high-income group, and vice versa.
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frontier connecting RX to BX , but additionally a positively sloped line segment connecting

the Pareto frontier to FX .

Thus, the usual Pareto frontier and the fairness-accuracy frontier differ if and only if the

covariate vector is group-skewed, implying the following corollary.

45

eb

er

eb

45

BX

RX

RX

BX

er

E⇤(X)

E(X)

E(X)

(a) X is group-balanced (b) X is r-skewed

FX

FX

Figure 3. Example feasible set and fairness-accuracy frontier for (a) a group-balanced
covariate vector X and (b) an r-skewed covariate vector X.

Corollary 1. Suppose FX is distinct from RX and BX . Then if and only if X is group-

skewed, there are points e, e′ ∈ F (X) satisfying er ≤ e′r and eb ≤ e′b with at least one

inequality strict.

This corollary says that if the covariate vector is group-balanced, then no two points on

the fairness-accuracy frontier can be Pareto-ranked. Thus, a policy proposal that increases

errors for both groups, but reduces the gap between group errors, cannot be optimal under

any fairness-accuracy preference. On the other hand, if inputs are group-skewed, then the

frontier has a positively-sloped segment along which every pair of points can be Pareto-

ranked. On this part of the frontier, the only way to decrease the gap in errors (given the

available information) is to increase errors for both groups. In practice, moving along this

part of the frontier could correspond to choosing to ignore certain available information.19

Suppose it were possible to acquire new covariates that turned a group-skewed covariate

vector into a group-balanced covariate vector. Corollary 1 implies that such a change would

not only (weakly) improve the fairness-accuracy frontier, but also change the nature of the

fairness-accuracy conflict, eliminating the need to consider Pareto-dominated outcomes as

19The choice to exclude test scores from admissions decisions is arguably such an example—test scores are
predictive of college grades for all of the relevant demographic groups (see Section A.5 of Systemwide Aca-
demic Senate (2020)), but are more predictive for applicants in some groups than others (Rothstein, 2004).
In Section 4.2.2 we return to this application, interpreting the exclusion of test scores slightly differently—
not as a choice made by the agent setting the algorithm, but as an informational regulation imposed by a
designer whose preferences are different from those of the agent.
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a means to improve fairness. It would be interesting to explore such implications in more

detail in a model of endogenously chosen covariates.

3.3. Special Cases. In the important case where group identity is an algorithmic input,

the feasible set and fairness-accuracy frontier simplify further.

Definition 9. Say that X reveals G if the conditional distribution G | X = x is degenerate

for every realization x of X.

Proposition 1. Suppose X reveals G. Then the feasible set E(X) is a rectangle whose sides

are parallel to the axes, and the fairness-accuracy frontier F (X) is the line segment from

RX = BX to FX .

er

eb

45

E(X)

RX = BX FX

Figure 4. Example feasible set and fairness-accuracy frontier when X reveals G.

An example of such a feasible set and fairness-accuracy frontier are depicted in Figure

4. One endpoint, the Utilitarian-optimal point labeled RX = BX , gives both groups their

minimal feasible error. The other endpoint, the Egalitarian-optimal FX , maximizes fairness.

Everywhere along the fairness-accuracy frontier F (X), the worse-off (higher error) group

receives its minimal feasible error, so every point on the frontier is optimal for a Rawlsian

designer. It is straightforward to see from this result that if we consider augmenting any

covariate vector X to include G, the error for the group that was “worse-off” under X (i.e.,

had the higher error) must reduce regardless of which FA preference the designer holds.

Another interesting condition (nesting the previous) is one in which the covariates satisfy

the following conditional independence property.

Definition 10. Say that X creates conditional independence if G ⊥⊥ Y | X.
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A covariate vector that satisfies this property contains all of the information in group identity

that is relevant for predicting Y .20 We characterize the fairness-accuracy frontier for such

covariate vectors, in the case that the loss function is group independent.

Proposition 2. Suppose `(·, ·, r) = `(·, ·, b) and X creates conditional independence. Then

F (X) is that part of the lower boundary of the feasible set from the point BX = RX to the

point FX .

er
45

E(X)

RX = BX

eb

FX

Figure 5. Depiction of the fairness-accuracy frontier under assumption of conditional
independence of G and Y .

Figure 5 depicts an example fairness-accuracy frontier for a covariate vector satisfying

Conditional Independence. The left point is the (shared) group optimal point RX = BX ,

and the right endpoint is the fairness optimal point FX . From RX = BX to FX , the fairness-

accuracy frontier consists entirely of positively sloped line segments. Thus, everywhere along

the frontier, the two groups’ errors move in the same direction, implying that the only way to

improve fairness is to decrease accuracy uniformly across groups, and that the only difference

across designers that matters is how they choose to resolve strong fairness-accuracy conflicts

of this form.

4. Input Design

We have so far assumed that the designer directly chooses the best algorithm to maximize

a preference that (weakly) responds to both fairness and accuracy. This is a good description

of some settings; for example, a company may internalize both fairness and accuracy concerns

in its hiring algorithm. But often the algorithm is set by an agent who does not care about

fairness across groups, while the inputs used by the algorithm are constrained by a designer

who does. For example, a judge (agent) determining sentencing may seek to maximize the

20This kind of conditional independence appears for example when the coefficient on group identity is zero
in a regression of Y on observables, e.g. Ludwig and Mullainathan (2021) find that race (G) is not predictive
of a criminal’s risk (Y ) conditional on arrest (X) in their data.
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number of correct verdicts, while a policymaker (designer) may additionally prefer that the

accuracy of the judge’s verdicts is equitable across certain social groups. Or, a bank (agent)

may seek to maximize profit from loan issuance, while a regulator (designer) may require

that the rate at which individuals are incorrectly denied loans does not differ too sharply

across groups. In these settings, the designer can often influence the algorithm indirectly by

passing regulation that constrains the algorithm’s inputs. For example, Chan and Eyster

(2003) report that as part of an effort to influence Berkeley law school’s admissions policy

in 1997, UC Berkeley administrators coarsened candidates’ LSAT scores into intervals and

reported this coarsened variable to the law school admissions committee.

In Section 4.1, we model this interaction as an information design problem in which the

designer constrains the inputs of the algorithm, while the algorithm is chosen by an accuracy-

minded agent. In Section 4.2, we ask whether the designer should completely exclude an

input such as group identity or a test score.

4.1. Input Design Versus Algorithm Design. A designer chooses a garbling of the co-

variate vector X, which is represented as a stochastic map T : X → ∆(T ) taking realizations

of X into distributions over the possible realizations of T (assumed without loss to be finite).

Examples include:

Example 9 (Banning an Input). X = (X1, X2, X3) and T (x1, x2, x3) = (x1, x2) with proba-

bility 1.

Example 10 (Coarsening the Input). The set of realizations X = {1, 2, 3, 4} is partitioned

into {{1, 2}, {3, 4}}, and T (x) reports (with probability 1) the partition element to which x

belongs.

Example 11 (Adding Noise). T (x) = x+ ε where the noise term ε takes value +1 or −1 with

equal probability.

We view these garblings as information policies that the designer can plausibly commit

to by law. Real examples of garblings are abundant: The “ban-the-box” campaign (Agan

and Starr, 2018) restricted employers from using criminal history as an input into hiring

decisions (similar to Example 9); the College Board coarsens a test-taker’s answers into an

integer-valued score between 400 and 1600 (similar to Example 10); and organizations such

as the US Census Bureau, Apple, and Google add noise to users’ inputs under differential

privacy initiatives (similar to Example 11).21

The agent chooses an algorithm a : T → ∆ (D) that takes as input the garbled variable

chosen by the designer. The agent’s utility function is

−αr · er (a)− αb · eb (a)

21See Garfinkel et al. (2018) for an example reference.
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for some constants αr, αb ≥ 0, with the special case αg = pg returning the Utilitarian

preference.22,23 (We prove additional results in Appendix O.4 for the case in which some

coefficient αg is negative, in which case the agent prefers to increase error for one of the two

groups, thus falling outside of our class of FA preferences.) We can rewrite this utility as

αrer (a) + αbeb (a) =
∑
g

αgE [` (a (T ) , Y, g) | G = g]

=
∑
t∈T

pt
∑
y,g

αg
pg
· P (Y = y,G = g | T = t) · ` (a(t), y, g) ,

where pt is the probability of T = t. Thus the agent’s problem of minimizing ex-ante error

is equivalent to the following ex-post problem24

(1) a (t) ∈ arg min
d∈D

∑
y,g

αg
pg
· P (Y = y,G = g | T = t) · ` (d, y, g) .

Definition 11. The pair of group errors (er, eb) is implemented by T if there exists an algorithm

aT satisfying (1) such that (er, eb) = (er(aT ), eb(aT )).

Definition 12. The input-design feasible set given X consists of all error pairs that the

designer can implement using a garbling of X:

E∗(X) ≡ {(er, eb) : (er, eb) is implemented by a garbling T of X}.

The input-design fairness-accuracy frontier F ∗(X) is the set of error pairs e ∈ E∗(X) with

the property that no other e′ ∈ E∗(X) satisfies e′ >FA e.

The following proposition says that under relatively weak conditions, it is without loss to

have control only of the algorithm’s inputs: Any error pair that a designer would choose to

implement in the unconstrained problem (i.e., given control of the algorithm) can also be

achieved under input design. To state the result, we define

e0 = min
d∈D

(αr · E[`(d, Y, r) | G = r] + αb · E[`(d, Y, b) | G = b])

to be the best payoff that the agent can achieve given no information, and

H = {(er, eb) : αrer + αbeb ≤ e0}
22The agent’s utility may involve weights different from the utilitarian weights if errors for the two groups
are differentially costly for the agent. For example, suppose the agent is a bank manager and group b is
wealthier than group r. In this case, loans for group b may be of higher value, so that incorrectly classifying
creditworthy individuals in group b is more costly. This corresponds to scaling the loss ` for group b by
αb/pb > 1.
23We view the typical setting as one in which the regulator has fairness concerns that the agent does not
share, but the reverse case (in which the agent has fairness concerns that the regulator does not share) is
also interesting. See Section 5 for a brief discussion of some technical complications that arise in this case.
24When the agent’s utility is non-linear in group errors, the ex-ante and ex-post problems are not equivalent
in general.
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to be the halfspace including all error pairs that improve the agent’s payoff relative to no

information.

Proposition 3 (When Input Design is Without Loss). The following hold:

(a) Suppose X is group-balanced. Then, F ∗(X) = F (X) if and only if RX , BX ∈ H.

(b) Suppose X is g-skewed. Then, F ∗(X) = F (X) if and only if GX , FX ∈ H.

This result follows from the subsequent lemma, which says that the input-design feasible

set is equal to the intersection of the unconstrained feasible set and H, with an analo-

gous statement relating the fairness-accuracy frontiers. A version of this lemma has been

demonstrated in Alonso and Câmara (2016) and Ichihashi (2019), although we provide an

independent argument in Appendix 1 for completeness.

Lemma 1. For every covariate vector X, the input-design feasible set is E∗(X) = E(X)∩H
and the input-design fairness-accuracy frontier is F ∗(X) = F (X) ∩H.

Clearly the designer cannot hold the agent to a payoff lower than what the agent can

guarantee with no information, so E∗(X) ⊆ E(X) ∩ H. In the other direction, we need to

show that every point in E(X) ∩ H can be implemented by a garbling of X. The proof is

by construction: If the designer garbles X into recommendation of the decision, then the

obedience constraints reduce precisely to the condition that the agent’s payoff is improved

relative to no information, i.e., the error pair belongs to H. This yields the lemma, and

Figure 6 provides an illustration of how Proposition 3 is implied by Lemma 1.

These results tell us that input design is always sufficient to recover part of the original

fairness-accuracy frontier. Moreover, so long as certain points (RX and BX in the case of

a group-balanced X, RX and FX in the case of an r-skewed X, or BX and FX in the case

of a b-skewed X) improve the agent’s payoffs relative to no information, then the designer

can induce the agent to choose the designer’s most preferred outcome even without explicit

control of the algorithm. Conversely, when these conditions do not hold, then input design

is limiting for some designers.

4.2. Excluding a Covariate. Constraints on algorithmic inputs sometimes take the form

of a ban on use of a specific covariate. For example, protected group identities such as race,

religion and gender are illegal inputs into lending and hiring decisions,25 and the University

of California university system recently excluded consideration of standardized test scores

from their admissions decisions.26

25For example, the Equal Opportunity Act forbids any creditor to discriminate on the basis of “race, color, re-
ligion, national origin, sex or marital status, or age” (see https://files.consumerfinance.gov/f/201306_
cfpb_laws-and-regulations_ecoa-combined-june-2013.pdf), and Title VII of the Civil Rights Act pro-
hibits discrimination by employers on the basis of “race, color, religion, sex, or national origin” except in
cases where the protected trait is an occupational qualification.
26See https://www.nytimes.com/2021/05/15/us/SAT-scores-uc-university-of-california.html.
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Figure 6. Depiction of an example input-design fairness-accuracy frontier for (a) a
group-balanced covariate vector X and (b) an r-skewed covariate vector X. In Panel (a), it
is sufficient to check RX , BX ∈ H to determine whether the entire unconstrained fairness-
accuracy frontier belongs to H. In Panel (b), it is sufficient to check whether RX , FX ∈ H.
This condition is failed in the figure, so some designer cannot implement his favorite uncon-
strained outcome using input design.

Since the designer and agent have (potentially) misaligned preferences, it can be optimal

for the designer to ban an input.27 But for two important classes of inputs, we will show

that excluding the input is strictly worse for all designers with FA-preferences.

Definition 13. Say that excluding covariate vector X ′ over X uniformly worsens the (input

design) frontier if every point in F ∗(X) is FA-dominated by a point in F ∗(X,X ′).

To interpret this condition, recall that F ∗(X) is the frontier of error pairs that can be

implemented by some garbling of X, while F ∗(X,X ′) is the frontier of error pairs that

can be implemented by some garbling of (X,X ′). So any point that belongs to F ∗(X,X ′)

but not to F ∗(X) can only be implemented if the garbling chosen by the designer includes

information about X ′. When excluding X ′ over X uniformly worsens the frontier, then no

designer’s optimal garbling excludes X ′, and so a ban on X ′ is not optimal for any designer

in our class.

4.2.1. Excluding Group Identity. First let X ′ = G, so that the comparison is between the

frontier implemented by garblings of X and the frontier implemented by garblings of (X,G).

The property of group balance (suitably strengthened) turns out to be critical for whether

exclusion of G uniformly worsens the frontier.

Definition 14. Say that X is strictly group-balanced if er < eb at RX and eb < er at BX .

27Adding group identity leads to a Blackwell-improvement in information; thus, it is well understood that
access to this variable must weakly improve the designer’s payoffs when the designer has control of the
algorithm (see Menon and Williamson (2018), Agarwal et al. (2018), Lipton et al. (2018), and Rambachan
et al. (2021) among others). This is no longer generally the case when the designer cannot choose the
algorithm.
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Relative to group-balance, strict group-balance rules out covariate vectors X for which RX =

BX = FX .

Proposition 4. Suppose RX , BX ∈ H. Then, excluding G over X uniformly worsens the

frontier if and only if X is strictly group-balanced.28

To show this result, we first demonstrate that the minimal (and maximal) feasible error

for both groups is the same given X and given (X,G). Geometrically, this means that the

feasible set given (X,G) is the smallest rectangle containing the feasible set given X. When

X is group-balanced, then F ∗(X) is characterized by Part (a) of Theorem 1 while F ∗(X,G)

is characterized by Proposition 1 (using the equivalence in Proposition 3 for both cases). As

depicted in Panel (a) of Figure 7, the fairness-accuracy frontier given X does not intersect

with the frontier given (X,G), so every point on the frontier given X is FA-dominated by

a point on the frontier given (X,G). On the other hand, when X is group-skewed, the two

frontiers necessarily overlap as depicted in Panel (b).
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E⇤(X,G)

F⇤(X,G)

F⇤(X)

F⇤(X)

F⇤(X,G)

Figure 7. (a) X is strictly group-balanced and excluding G over X uniformly
worsens the input-design frontier; (b) X is r-skewed and excluding G over X
does not uniformly worsen the input-design frontier.

Proposition 4 says that so long as X is strictly group-balanced, then every designer is

made strictly better off by being given access to group identity.29 That is, every designer can

find a way of combining the information in G and X—for example, by adding noise to X for

individuals in one group but not the other—which induces the agent to choose an algorithm

that the agent would not have chosen given any garbling of X alone. In contrast, if X is not

strictly group-balanced, then there is at least one designer for whom no garbling of (X,G)

28The assumption RX , BX ∈ H makes the above result easier to state as an if-and-only-if condition. But
it follows from our proof of Proposition 4 that even when this assumption fails, strict group-balance is a
sufficient condition for the frontier to uniformly worsen when excluding G.
29We show in Appendix O.4 that this result extends even to a case where the agent is adversarial against
one of the groups (i.e., preferring to increase that group’s error) so long as the agent is not “too strongly”
adversarial.
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strictly improves over garblings of X. For example, we see in Panel (b) of Figure 7 that the

Rawlsian designer’s payoffs is not improved by access to G.

Our results complement papers such as Chan and Eyster (2003), which compare choice

between decision rules based on (X,G) to choice between decision rules based on X alone

(in a single-agent setting), and show that the latter can be worse in terms of both equity

and efficiency. Our analyses are distinct for a few reasons. First, we consider a strategic

interaction between a designer and agent with misaligned preferences, so it may be that the

designer prefers not to give the agent access to group identity because of how the agent will

use this information, even while there is some use of this information that the designer would

consider an improvement. Second, the property of a uniform worsening of the frontier does

not in general rank the information policy of revealing X versus revealing (X,G). That is,

it may be that excluding G over X uniformly worsens the frontier, but the designer’s payoff

is lower from revealing (X,X ′) than from revealing X alone.

Nevertheless, our result relates to and builds on previous findings that disparate treat-

ment (use of different rules for individuals in different groups) may be necessary to preclude

disparate impact (disparate harms across groups).30 Specifically, Proposition 4 implies that

to reduce disparate impact, it may be necessary to impose information policies that are

asymmetric across groups. Interestingly, this may not involve sending G as an input, so the

algorithm can be formally group-blind (thus not exhibiting disparate treatment).31 Never-

theless, if we consider the total procedure—taking into account both information design and

algorithm design—then two individuals who are otherwise identical but belong to different

groups may receive different distributions of outcomes. This distinction brings up an in-

teresting question regarding how disparate treatment should be conceptualized in settings

where both information design and algorithm design are present.

4.2.2. Excluding a Covariate When Group Identity is Known. Next compare the frontier

implemented by garblings of (X,G) with the frontier implemented by garblings of (X,G,X ′),

where X and X ′ are arbitrary covariate vectors.

Definition 15. Say that X ′ is decision-relevant over X for group g if there are realizations

(x, x′) and (x, x̃′) of (X,X ′) that have strictly positive probability conditional on G = g,

where

{1} = arg min
d∈D

E[`(d, Y, g) | X = x,X ′ = x′, G = g]

30This tension between disparate treatment and disparate impact is noted in explicitly in works such as
Chouldechova (2017) and Rambachan et al. (2021), and is implied by results in Chan and Eyster (2003).
31The algorithm exhibits disparate treatment if, holding all other covariates equal, it yields different outputs
depending on the individual’s group identity. See https://www.justice.gov/crt/book/file/1364106/

download for definitions of disparate treatment and impact.
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while

{0} = arg min
d∈D

E[`(d, Y, g) | X = x,X ′ = x̃′, G = g].

This weak condition requires only that there is some individual in group g for whom the

decision that maximizes (expected) accuracy is different given X and given (X,X ′). For

example, if X ′ is a test score and X is high school GPA, then X ′ is decision-relevant for

group g when taking the test score into consideration reverses the admission decision for at

least one individual in group g relative to the decision based on GPA alone. Systemwide

Academic Senate (2020) report that test scores indeed satisfy this property for relevant

demographic groups.32

Proposition 5. Choose arbitrary covariate vectors X and X ′.

(a) If (X,G) is g-skewed, then excluding X ′ over X uniformly worsens the frontier if and

only if X ′ is decision-relevant over X for group g′ 6= g.

(b) If (X,G) is group-balanced, then excluding X ′ over X uniformly worsens the frontier

if and only if X ′ is decision-relevant over X for both groups.

WhenX ′ is decision-relevant overX for the disadvantaged group, then the minimal feasible

error for that group given (X,G,X ′) is strictly lower than the minimal feasible error given

(X,G) only. So the fairness-accuracy frontier is pushed towards the origin (either downwards

or towards the left), as in Panel (a) of Figure 8. On the other hand, when X ′ is not decision-

relevant over X for the disadvantaged group, then the new fairness-accuracy frontier must

remain a line that overlaps with the previous frontier (see Panel (b) of Figure 8), so there

is some FA preference for which excluding X ′ is at least weakly (and possibly strictly)

worse. This yields part (a) of the result. Part (b) pertains to a knife-edge case: If (X,G) is

group-balanced then the minimal feasible error is the same for both groups. For a uniform

worsening of the frontier to occur, access to X ′ over X must reduce the minimal feasible

error for both groups.

One application of Proposition 5 relates to the question of whether to ban test scores in

admissions decisions. Our result suggests that so long as group identities are permissible

inputs for college admission decisions, then excluding test scores is welfare-reducing for all

designers with the ability to garble available covariates. On the other hand, if group identity

is not permitted as an input into college admissions decisions, then it may be better for a

sufficiently fairness-minded designer to completely exclude test scores. With regards to the

pending Supreme Court case Students for Fair Admissions, Inc. v. President and Fellows

of Harvard College, our result suggests that if affirmative action is banned nationwide, then

32Specifically, Section A of Systemwide Academic Senate (2020) finds that test scores are predictive of college
success, predictive above other covariates (such as GPA), and and predictive for all demographic groups that
they consider (with individuals disaggregated by factors such as parental education, family income, and
racial/ethnic identity).
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Figure 8. (a) Example in which X ′ is decision-relevant for group b, and
excluding X ′ uniformly worsens the frontier; (b) Example in which X ′ is not
decision-relevant for group b, and excluding X ′ does not uniformly worsen the
frontier.

universities with certain FA preferences will have more reason to ban use of test scores in

admissions decisions.

While our framework abstracts away from many important features of the college admis-

sions process—including access to testing (Garg et al., 2021) and test-optional admissions

(Dessein et al., 2022))—the link between the availability of group identity and the value of

additional information, such as test scores, is one that we believe holds more generally. The

crucial point is that when group identity is available, then the designer can tailor how the

additional information is used for each group separately. For example, the designer could

selectively report test scores only for standout students in the disadvantaged group.33 In this

sense, access to group identity has a positive spillover effect for the value of other covariates,

guaranteeing that there is some (possibly group-dependent) garbling of the other information

that aligns the agent and designer’s incentives.

We conclude with the following simple example, which illustrates the contrast between

access to an auxiliary covariate X ′ alone versus access to the pair (X ′, G).

Example 12. Suppose Y = {0, 1} and Y and G are independently and uniformly distributed,

i.e., P(Y = y,G = g) = 1/4 for any y ∈ {0, 1} and g ∈ {r, b}. Let X be a null signal;

that is, X = x0 with probability one. Further let X ′ be a binary signal with the following

33Indeed, Systemwide Academic Senate (2020) reports that one use of test scores at UC Berkeley (prior to
the university’s move to test-blind admissions in 2021) was to identify otherwise ineligible applicants from
relatively disadvantaged backgrounds.
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conditional probabilities P(X ′ | Y,G): 34

X ′ = 1 X ′ = 0

Y = 1 1 0

Y = 0 0 1

X ′ = 1 X ′ = 0

Y = 1 0.6 0.4

Y = 0 0.4 0.6

G = r G = b

Thus, X ′ is perfectly informative about the individuals in group r, and imperfectly informa-

tive about those in group b. Suppose the loss function is `(d, y, g) = 1(d 6= y), and the agent

is Utilitarian (αr = pr = 1/2 and αb = pb = 1/2).

45

eb

er

(0.5, 0.5)

(0, 0.4)
(0.4, 0.4)

45

eb

er

(0.5, 0.5)

(0, 0.4)

(a) (b)

F⇤(X,G,X 0)

F⇤(X,G)F⇤(X)

F⇤(X,X 0)

Figure 9. (a) A comparison of the input-design fairness-accuracy frontiers
given X versus given (X,X ′); (b) A comparison of the input-design fairness-
accuracy frontiers given (X,G) versus given (X,G,X ′)

.

The input-design feasible set given X only is the singleton {(0.5, 0.5)}, which delivers a

payoff of 0 to the Egalitarian designer. But if the designer chooses any nontrivial garbling

of (X,X ′), the agent will use what he learns about X ′ to maximize aggregate accuracy.

Since this information is inevitably more informative about group r than about group b,

conditioning decisions on this information increases the gap between the two group errors,

reducing the designer’s payoff.35 So it is strictly optimal for the designer to exclude all

information about X ′. In more detail, the fairness-accuracy frontier given (X,X ′) is the line

segment connecting (0, 0.4) with (0.5, 0.5) (see Panel (a) of Figure 9),36 and any nontrivial

garbling of (X,X ′) leads to a point on this frontier that is different from (0.5, 0.5), yielding

a strictly negative payoff for the designer.

34In this example, neither covariates X nor X ′ reveal group identity. Thus, this example falls outside of the
settings considered in the previous two subsections.
35While we assume an Egalitarian designer here for simplicity, a similar construction is possible for any
designer who places sufficient weight on fairness considerations.
36Indeed this is also the input-design feasible set. See Appendix B.9 for details.
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In contrast, Panel (b) of Figure 9 demonstrates the comparison between the fairness-

accuracy frontiers F∗(X,G) and F∗(X,G,X ′). Here we see that the Egalitarian designer

is able to achieve the superior outcome (0.4, 0.4) by choosing an appropriate garbling of

(X,G,X ′). Thus while making information about X ′ available to the agent is strictly harmful

for the designer when group identity is not available, this ceases to be true once the designer

can condition the garbling of X ′ on G.

5. Extensions

5.1. Different loss functions for evaluating fairness and accuracy. When defining

the partial order >FA we use the same loss function to evaluate accuracy and fairness. In

some cases, the designer may wish to evaluate accuracy using one loss function and fairness

using another. (For example, the designer may wish to minimize the misclassification rate

subject to equality of false positive rates.) In Appendix O.1 we develop a more general

version of our framework that allows for different loss functions, and extend Theorem 1 under

an assumption that the accuracy and fairness loss functions are not “directly opposed” to

one another. In this result, our group-balance condition is generalized to a condition of

whether the fairness-maximizing point FX belongs to usual Pareto frontier. When this

condition is satisfied, then the fairness-accuracy frontier is identical to the usual Pareto

frontier; otherwise, the fairness-accuracy frontier is the union of the Pareto frontier and a

positively-sloped sequence of lines, along which every pair of points has the property that

one point involves higher errors for both groups but greater fairness.

5.2. Beyond absolute difference for evaluating fairness. Our main analysis assumes

that (un)fairness is evaluated according to the absolute difference of errors between the two

groups, i.e. |er − eb|. A natural extension is to consider |φ(er) − φ(eb)| where φ is some

continuous strictly increasing function. For instance, if φ is log, then this corresponds to

evaluating fairness using the ratio of errors rather than their difference. Our main charac-

terization (Theorem 1) holds for any such φ with the fairness optimal point FX suitably

defined.37 We further demonstrate that the frontier becomes larger (smaller) whenever φ

is concave (convex). Thus, for example, evaluating fairness using ratios instead of absolute

difference results in a larger frontier, although the qualitative properties of this frontier are

unchanged.

5.3. Other agent preferences in the input design problem. Section 4 considers mis-

aligned incentives between a designer controlling inputs and an agent setting the algorithm.

There, we assume that the agent cares about accuracy and prefers for both group errors

37To see why, first note that no interior point can be on the frontier. Otherwise, we can always find some
ε1, ε2 > 0 such that |φ (er − ε1)− φ (eb − ε2)| ≤ |φ (er)− φ (eb)| so (er − ε1, eb − ε1) >FA (er, eb) yielding a
contradiction. The rest of the proof follows as in Theorem 1.
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to be lower. In Appendix O.4, we consider what happens when this misalignment is more

extreme and the agent is adversarial (i.e. negatively biased) towards one of the two groups,

preferring that group’s error to be higher. We generalize several results from Section 4 and

show that even if the agent is negatively biased, it can still be optimal for the designer to

provide information about group identity (so long as the bias is not too extreme).

Two other potential generalizations would permit the agent and designer to have different

loss functions, or permit the agent to care about fairness.38 In both cases, the set of points

that the agent prefers over the prior (what we defined to be H) is no longer a halfspace

from the designer’s perspective. Moreover, non-linearities in the agent’s objective function

imply that the agent’s ex-ante and ex-post problems may be different, and so it is relevant

whether the agent commits to the algorithm or chooses the decision after the realization of

the garbling. We consider these problems beyond the scope of the present paper, and leave

them as open questions for future work.

5.4. Capacity constraints. In our main model, we allow the designer unconstrained choice

of any algorithm. In a few of the applications of interest, there may be an additional capacity

constraint on the algorithm, e.g., if only a fixed number of students can be admitted in

admissions decisions. One way to formulate a capacity constraint is a restriction on the

ex-ante probability of assignment of decision d = 1 (e.g., admit). In this case, the set of

error pairs satisfying the constraint can be shown to be a convex set, so the feasible set is

simply the intersection between the feasible set (as we have defined) and the convex set of

error pairs that satisfy this capacity constraint. Our Theorem 1 then applies for this new

feasible set, although the fairness-accuracy frontier as characterized in Proposition 1 may no

longer be a horizontal line.

5.5. More than two groups or two decisions. We have assumed that there are two

groups G = {r, b}. Some of our results, such as Proposition 3, can be shown to directly

extend for any finite G. However, in order to extend our other results, we would first have

to specify a definition of fairness for multiple groups. One possible generalization of the FA-

dominance relationship is to say that a vector of group errors (eg)g∈G FA-dominates another

vector (e′g)g∈G if eg ≤ e′g for every group g, and also |eg − 1
|G|
∑

g∈G eg| ≤ |e′g − 1
|G|
∑

g∈G e
′
g|

for every g ∈ G, with at least one inequality holding strictly. That is, fairness is improved

if each group’s error is closer to the average group error. We expect our characterization in

Theorem 1 to extend qualitatively in this case.

We have also assumed that there are two decisions D = {0, 1}. All of our results in Sec-

tion 3 about the unconstrained problem directly extend for any finite D. However, Lemma 1

(the relationship between the input-design fairness-accuracy frontier and the unconstrained

38Our result does include the special case when the agent’s loss function `a = αg`d is just a group-specific
multiple of the designer’s loss function. This is mathematically equivalent to the setup in Section 4
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fairness-accuracy frontier) relies on the assumption of a binary decision. We leave a charac-

terization of the input design frontier for this more general case to future work.

Appendix A. Fairness Criteria in the Literature

We review here certain fairness criteria that have appeared in the literature, and explain

how these criteria can be accommodated within our framework.

A.1. Statistical Parity. This criterion seeks equality in decisions, namely that the propor-

tion of either group receiving the two decisions is the same (Dwork et al., 2012). Formally,

an algorithm a satisfies statistical parity if

E(a(X) = 1 | G = r)− E(a(X) = 1 | G = b) = 0

The loss function

`(d, y, g) =

{
1 if d = 1

0 otherwise

returns a relaxed version of this criterion, since

eg(a) = E [`(a(X), Y, g) | G = g] = E [a(X) = 1 | G = g]

so |er(a)− eb(a)| is the absolute difference in the probability that a group-r individual and

a group-b individual receive the decision d = 1.

A.2. False Positives. Another common fairness criterion is equality of false positives across

two groups (Angwin and Larson, 2016; Chouldechova, 2017; Kleinberg et al., 2017). For

example, among borrowers who would not have defaulted on their loan if approved, prediction

of default should be equal across the two groups. Formally, an algorithm a satisfies equality

of false positive rates if

E(a(X) = 1, Y = 0 | G = r)− E(a(X) = 1, Y = 0 | G = b) = 0

The loss function

`(d, y, g) =

{
1 if (d, y) = (1, 0)

0 otherwise

returns a relaxed version of this criterion, since

eg(a) = E [`(a(X), Y, g) | G = g] = E [a(X) = 1, Y = 0 | G = g]

is the false-positive rate for group g, and so |er(a)− eb(a)| is the absolute difference in false

positive rates. A fairness criterion based on the difference in false negative rates can be

accommodated similarly.
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A.3. Equalized Odds. Another popular fairness criterion asks for equalized odds (Hardt

et al., 2016), which an algorithm a satisfies if

(A.1) EY [EX [a(X) | G = r, Y ]− EX [a(X) | G = b, Y ]] = 0

The inner difference compares the average decision for group-r and group-b individuals who

share the same type Y , and the outer expectation averages over those values of Y .

The loss function

`(d, y, g) =

{
P (Y=y)

P (Y=y|G=g)
if d = 1

0 otherwise

returns a relaxed version of this criterion, since

E[`(d, y, g) | G = r] = P (Y = 0 | G = r)× E
[

P (Y = 0)

P (Y = 0 | G = r)
× 1(d = 1) | G = r, Y = 0

]
+ P (Y = 1 | G = r)× E

[
P (Y = 1)

P (Y = 1 | G = r)
× 1(d = 1) | G = r, Y = 1

]
= P (Y = 0)× E[1(d = 1) | G = r, Y = 0]

+ P (Y = 1)× E[1(d = 1) | G = r, Y = 1]

so |E[`(a(X), Y,G) | G = r]− E[`(a(X), Y,G) | G = b]| is exactly the LHS of (A.1).

Appendix B. Proofs for Main Text Results

B.1. Characterization of the Feasible Set.

Lemma B.1. The full-design feasible set E(X) is a closed and convex polygon.

Proof. Given algorithm a, we slightly abuse notation to let a(x) denote the probability of

choosing decision d = 1 at covariate vector x. We further let xy,g denote the conditional

probability that Y = y and G = g given X = x. Finally, let px denote the probability of

X = x. Then the group errors can be written as follows:

eg(a) = E [a (X) ` (1, Y, g) + (1− a (X)) ` (0, Y, g) | G = g]

=
∑
x

(
a (x)

∑
y

xy,g
pg

` (1, y, g) + (1− a (x))
∑
y

xy,g
pg

` (0, y, g)

)
· px,

where pg is the prior probability that G = g. The set of all feasible errors is given by

E (X) = {(er (a) , eb (a)) : a(x) ∈ [0, 1] ∀x ∈ X} .

If we let

E (x) :=

{
λ

(∑
y

xy,r
pr

` (1, y, r) ,
∑
y

xy,b
pb
` (1, y, b)

)
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+ (1− λ)

(∑
y

xy,r
pr

` (0, y, r) ,
∑
y

xy,b
pb
` (0, y, b)

)
: λ ∈ [0, 1]

}
represent a line segment in R2, then we see that

E (X) =
∑
x∈X

E (x) · px.

This is a (weighted) Minkowski sum of line segments, which must be a closed and convex

polygon. �

B.2. Proof of Theorem 1. First observe that the FA frontier must be part of the boundary

of the feasible set E(X), because any interior point (er, eb) is FA-dominated by (er− ε, eb− ε)
which is feasible when ε is small.

Consider the group-balanced case, where RX lies weakly above the 45-degree line and

BX lies weakly below. If RX = BX , then this point simultaneously achieves minimal error

for both groups, as well as minimal unfairness since it must be on the 45-degree line. In

this case it is clear that the fairness-accuracy frontier consists of that single point, which

FA-dominates every other feasible point. Another degenerate case is when the entire feasible

set E(X) consists of the line segment RXBX . Here again it is easy to see that the entire line

segment is FA-undominated, and the result also holds.

Next we show that the upper boundary of E(X) connecting RX to BX (excluding RX and

BX) is FA-dominated. One possibility is that the upper boundary consists entirely of the line

segment RXBX . Take any point Q on this line segment, and through it draw a line parallel

to the 45-degree line. Then this line intersects the boundary of E(X) at another point Q′

(otherwise we return to the degenerate case above). By our current assumption about the

upper boundary, this point Q′ must be strictly below the line segment RXBX . It follows

that Q′ reduces both group errors compared to Q, by the same amount. Thus Q′ >FA Q.

If instead the upper boundary is strictly above the line segment RXBX , then through any

such boundary point Q we can still draw a line parallel to the 45-degree line. But now let

Q∗ be the intersection of this line with the extended line RXBX . If Q∗ lies between RX and

BX , then it is feasible and FA-dominates Q because both groups’ errors are reduced by the

same amount. Suppose instead that Q∗ lies on the extension of the ray BXRX (the other

case being symmetric), then we claim that RX itself FA-dominates Q. Indeed, by definition

Q must have weakly larger er than RX . And because in this case Q∗ is farther away from

the 45-degree line than RX (this is where we use the assumption that RX is already above

that line), Q∗ and thus Q also induce strictly larger group error difference eb − er than RX .

Hence Q has larger er, eb − er as well as eb when compared to RX , as we desire to show.
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To complete the proof for the group-balanced case, we need to show that the lower bound-

ary connecting RX to BX is not FA-dominated. RX (and symmetrically BX) cannot be FA-

dominated, because it minimizes er and conditional on that further minimizes eb uniquely.

Take any other point Q on the lower boundary. If Q lies on the line segment RXBX , then

the lower boundary consists entirely of this line segment. In this case Q minimizes a certain

weighted average of group errors αer + βeb across all feasible points, where α, β > 0 are

such that the vector (α, β) is orthogonal to the line segment RXBX (which necessarily has a

negative slope). Any such point Q cannot be FA-dominated, since a dominant point would

have smaller αer+βeb. Finally suppose Q is a boundary point strictly below the line segment

RXBX . Then it minimizes some weighted sum of group errors αer + βeb, and it will suffice

to show that the weights α, β must be positive. Indeed, α, β ≤ 0 cannot happen because Q

induces smaller er, eb than Q∗ (Q∗ defined in the same way as before but now to the top-right

of Q) and thus larger αer + βeb. α > 0 ≥ β cannot happen because Q induces larger er and

smaller eb than RX , and thus also larger αer+βeb. Symmetrically β > 0 ≥ α cannot happen

either. So we indeed have α, β > 0, which implies that Q is FA-undominated. This proves

the result for the group-balanced case.

This argument can be adapted to the group-skewed case as follows. Suppose X is r-skewed,

so that RX and BX are both above the 45-degree line. To show that the upper boundary

connecting RX to FX is FA-dominated, we choose any boundary point Q and (similar to

the above) let Q∗ be on the extended line RXFX such that QQ∗ is parallel to the 45-degree

line. If Q∗ is on the line segment RXFX then it is a feasible point that FA-dominates Q. If

Q∗ lies on the extension of the ray FXRX , then as before it can be shown that RX >FA Q.

Finally if Q∗ lies on the extension of the ray RXFX , then it must be the case that FX lies

on the 45-degree line (otherwise it will not minimize |er − eb| as defined). In this case Q is a

point that is below the 45-degree line, but also above the extended line BXFX by convexity

of the feasible set. Since FX already has larger eb than BX , we see that Q must in turn have

larger eb than FX . But then it follows that Q is FA-dominated by FX because it has larger

eb, larger er − eb (being below the 45-degree line where FX belongs to), and thus also larger

er.

It remains to show that the lower boundary connecting RX to FX is FA-undominated.

By essentially the same argument, we know that the lower boundary from RX to BX is

FA-undominated. As for the lower boundary from BX to FX , note that if some point Q

here is FA-dominated by another boundary point Q̂, then Q̂ must induce smaller |eb − er|.
Since eb − er is positive at Q, this means that Q̂ induces smaller eb − er than Q, without

the absolute value applied to the difference. So either Q̂ lies on the lower boundary from Q

to FX , or Q̂ belongs to the other side of the 45-degree line (i.e., below it). Either way the

alternative point Q̂ must be farther away from BX than Q on the lower boundary, so that

by convexity Q̂ lies above the extended line BXQ. Given that Q already has larger eb than
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BX , this implies that Q̂ has even larger eb than Q. Hence Q̂ cannot in fact FA-dominate Q,

completing the proof.

B.3. Proof of Corollary 1. Suppose X is group-balanced, then by Theorem 1 the fairness-

accuracy frontier is the lower boundary from RX to BX . Let LX be the group error pair that

consists of the er in RX and the eb in BX (geometrically, LX is such that the line segments

RXLX and BXLX are parallel to the axes). Then because RX , BX have respectively minimal

group errors in the feasible set, and because we are considering the lower boundary, any point

on this lower boundary F (X) must belong to the triangle with vertices RX , BX and LX .

This implies by convexity that each edge of this lower boundary has a negative slope (just

note that the first and final edges must have negative slopes). Because of this, if we start

from RX and traverse along this lower boundary, it must be the case that er continuously

increases while eb continuously decreases. Thus in the group-balanced case there does not

exist any strong fairness-accuracy conflict along the fairness-accuracy frontier.

On the other hand, suppose X is r-skewed. Then we claim that BX and FX (which are

assumed to be distinct) present a strong fairness-accuracy conflict. Indeed, by assumption

of r-skewness, BX is weakly above the 45-degree line. FX must also be weakly above the

45-degree line because otherwise it would be less fair compared to the point on the line

segment BXFX that also belongs to the 45-degree line. Thus, the fact that FX is weakly

more fair than BX implies that FX entails smaller eb − er than BX . By definition of BX ,

FX entails larger eb than BX . Combining the above two observations, we know that FX also

entails larger er than BX . Hence FX induces larger group errors than BX for both groups,

but reduces the difference in group errors. This is a strong fairness-accuracy conflict as we

desire to show.

B.4. Proof of Proposition 1. We recall the proof of Lemma B.1, where we showed that

the feasible set E(X) can be written as
∑

xE (x)·px, with E(x) representing the line segment

connecting the two points (∑
y

xy,r
pr

` (1, y, r) ,
∑
y

xy,b
pb
` (1, y, b)

)
and (∑

y

xy,r
pr

` (0, y, r) ,
∑
y

xy,b
pb
` (0, y, b)

)
.

If X reveals G, then for each realization x, either xy,r = 0 for all y or xy,b = 0 for all y. Thus

each E(x) is a horizontal or vertical line segment, implying that E(X) must be a rectangle

with RX = BX being its bottom-left vertex.

Suppose without loss of generality that RX = BX lies above the 45-degree line. If the

rectangle E(X) does not intersect the 45-degree line, then it is easy to see that FX must
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be the bottom-right vertex of E(X). In this case the fairness-accuracy frontier is the entire

bottom edge of the rectangle, which is a horizontal line segment. If instead the rectangle

E(X) intersects the 45-degree line, then FX is the intersection between the bottom edge

of E(X) and the 45-degree line. Again the fairness-accuracy frontier is the horizontal line

segment from RX = BX to FX . This proves the result.

B.5. Proof of Lemma 1. We first characterize the input-design feasible set, and later study

the input-design fairness-accuracy frontier. It is clear that regardless of what garbling the

designer gives the agent, the agent’s payoff will be weakly better than what can be achieved

under no information. Thus any error pair that is implementable by input-design must

belong to the halfspace H. Such an error pair must also belong to the feasible set E(X), so

we obtain the easy direction E∗(X) ⊆ E(X) ∩H in the lemma.

Conversely, we need to show that a feasible error pair (er, eb) ∈ E(X) that satisfies αrer +

αbeb ≤ e0 can be implemented by some garbling T . Consider a garbling T that maps X to

∆(D), with the interpretation that the realization of T (x) is the recommended decision for

the agent. If we abuse notation to let a(x) denote the probability that the recommendation

is d = 1 at covariate vector x, then this algorithm a needs to satisfy the following obedience

constraint for d = 1:39∑
y,g

αg
pg

∑
x

px,y,g · a(x) · `(1, y, g) ≤
∑
y,g

αg
pg

∑
x

px,y,g · a(x) · `(0, y, g).

The above is just equation (1) adapted to the current setting with the observation that given

the recommendation T = 1, the conditional probability of Y = y and G = g is proportional

to the recommendation probability
∑

x px,y,g · a(x), where we use px,y,g as a shorthand for

P(X = x, Y = y,G = g).

Let us rewrite the above displayed equation as∑
x,y,g

px,y,g
αg
pg
· a(x)`(1, y, g) ≤

∑
x,y,g

px,y,g
αg
pg
· a(x)`(0, y, g).

If we add px,y,g
αg

pg
(1− a(x))`(0, y, g) to each summand above, we obtain

(B.1)
∑
x,y,g

px,y,g
αg
pg
· (a(x)`(1, y, g) + (1− a(x))`(0, y, g)) ≤

∑
x,y,g

px,y,g
αg
pg
· `(0, y, g).

Now, the LHS above can be rewritten as
∑

x,y,g px,y,g
αg

pg
· ED∼a(x)[`(D, y, g) | X = x, Y =

y,G = g], which is also equal to
∑

g αg · ED∼a(x)[`(D, Y, g) | G = g]. This is precisely the

agent’s expected loss when following the designer’s recommended decisions.

On the other hand, the RHS in (B.1) can be seen to be the agent’s expected loss when

taking the decision d = 0 regardless of the designer’s recommendation. Thus, we deduce

39By a version of the revelation principle, such garblings together with the following obedience constraints
are without loss for studying the feasible decisions, in a general setting.
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that the obedience constraint for the recommendation d = 1 is equivalent to (B.1), which

simply says that the agent’s payoff under the designer’s recommendation should be weakly

better than the constant decision d = 0 ignoring the recommendation. Symmetrically, the

other obedience constraint for the recommendation d = 0 is equivalent to the agent’s payoff

being better than the constant decision d = 1. Put together, these obedience constraints

thus reduce to the requirement that the designer’s recommendation gives the agent a payoff

that exceeds what can be achieved with no information.

For any error pair (er, eb) that is feasible under unconstrained design, we can construct a

garbling T that implements it by recommending the desired decision. If (er, eb) belongs to

the halfspace H, then by the previous analysis we know that obedience is satisfied. Thus

(er, eb) is implementable under input-design, showing that E(X) ∩H = E∗(X) as desired.

Finally we turn to the fairness-accuracy frontier and argue that F ∗(X) = F (X) ∩H. In

one direction, if an error pair is FA-undominated in E(X) and implementable under input

design, then it is also FA-undominated in the smaller set E∗(X). This proves F (X) ∩H ⊆
F ∗(X). In the opposite direction, suppose for contradiction that a certain point (er, eb) ∈
F ∗(X) does not belong to F (X) ∩H. Since F ∗(X) ⊆ E∗(X) ⊆ H, we know that (er, eb)

must not belong to F (X). Thus by definition of F (X), (er, eb) is FA-dominated by some

other error pair (êr, êb) ∈ E(X). In particular, we must have êr ≤ er and êb ≤ eb, which

implies αrêr + αbêb ≤ αrer + αbeb ≤ e0 (the first inequality uses αr, αb ≥ 0 and the second

uses (er, eb) ∈ F ∗(X) ⊆ E∗(X)). It follows that the FA-dominant point (êr, êb) also belongs

to H and thus E∗(X). But this contradicts the assumption that (er, eb) is FA-undominated

in E∗(X). Such a contradiction completes the proof.

B.6. Proof of Proposition 3. We now deduce Proposition 3 from Lemma 1. If X is

group-balanced, then by Theorem 1 we know that F (X) is the part of the boundary of

E(X) that connects RX to BX from below. Clearly, F ∗(X) = F (X) can only hold if

RX , BX ∈ F ∗(X) ⊆ H, so we focus on the “if” direction of the result. Suppose RX , BX ∈ H,

then we claim that the entire lower boundary of E(X) from RX to BX belongs to H. Indeed,

let LX be the error pair that consists of the er in RX and the eb in BX . Geometrically, LX is

such that the line segments RXLX and BXLX are parallel to the axes. Because RX , BX have

respectively minimal group errors in the feasible set E(X), and because we are considering

the lower boundary, any point on this lower boundary F (X) must belong to the triangle

with vertices RX , BX and LX . Since RX , BX , LX all belong to the halfspace H (LX ∈ H

because the agent’s payoff weights αr, αb are non-negative), we deduce that F (X) ⊆ H.

Hence whenever RX , BX ∈ H, we have by Lemma 1 that F ∗(X) = F (X) ∩ H = F (X).

This argument proves Proposition 3 in the group-balanced case.

Suppose instead that X is r-skewed (a symmetric argument applies to the b-skewed case).

To generalize the above argument, we need to show that whenever RX , FX belong to H,
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then so does the entire lower boundary connecting these points. To see this, note that

by the definition of BX and FX , the lower boundary connecting these two points consists

of positively sloped edges.40 So across all points on this part of the lower boundary, FX
maximizes αrer +αbeb. Thus the assumption FX ∈ H implies that the lower boundary from

BX to FX belongs to H. In particular BX ∈ H, which together with RX ∈ H implies that

the lower boundary from RX to BX also belongs to H (by the same argument as in the

group-balanced case before). Hence the entire lower boundary from RX to FX belongs to H,

as we desire to show.

B.7. Proof of Proposition 4. We first present a simple lemma which conveniently restates

the property of “uniform worsening of frontier”:

Lemma B.2. Excluding covariate X ′ over X uniformly worsens the frontier if and only if

F ∗(X) does not intersect with F ∗(X,X ′).

The proof of this lemma is straightforward: If there exists a point in F ∗(X) that also

belongs to F ∗(X,X ′), then this point is not FA-dominated by any point in F ∗(X,X ′), so

that the frontier does not uniformly worsen when excluding X ′. On the other hand, suppose

no point in F ∗(X) belongs to F ∗(X,X ′). Note that any point in F ∗(X) is implementable

via a garbling of X and thus implementable via a garbling of X,X ′. Thus any such point

belongs to E∗(X,X ′), and since it is not FA-optimal in this set, it must be FA-dominated

by some FA-optimal point in this (compact) set. In this case we do have uniform worsening

of the frontier, as we desire to show.

Below we use Lemma B.2 to deduce Proposition 4. The key observation is that whether

or not G is excluded does not affect the minimal (or maximal) feasible error for either group.

This is because if we want to minimize the error of a particular group g using an algorithm

that depends on X, then we essentially condition on G = g anyways.

With this observation, suppose X is strictly group-balanced. Then RX lies strictly above

the 45-degree line and BX lies strictly below. Since we assume RX , BX ∈ H, Proposition

3 tells us that the input-design fairness-accuracy frontier F ∗(X) is the same as the un-

constrained fairness-accuracy frontier F (X), and by Theorem 1 this frontier is the lower

boundary of the feasible set E(X) connecting RX to BX . By Lemma B.2, we just need to

show that in this case the lower boundary of E(X) from RX to BX does not intersect with

the input-design fairness-accuracy frontier F ∗(X,G) given (X,G). To characterize the latter

frontier, let LX = RX,G = BX,G denote the error pair that has the same er as RX and the

same eb as BX . Without loss of generality assume LX lies weakly above the 45-degree line.

40If we start from BX and traverse the lower boundary to the right until FX , then the first edge of this
boundary must be positively sloped because BX has minimum eb. The final edge of this boundary must also
be positively sloped, since otherwise the starting vertex of this edge would be closer to the 45-degree line
than FX . It follows by convexity that the entire boundary from BX to FX has positive slopes.
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Then from Proposition 1 we know that the unconstrained fairness-accuracy frontier F (X,G)

is the horizontal line segment from LX to FX,G. This point FX,G is the intersection between

the line segment LXBX and the 45-degree line (here we use the fact that LX lies above

the 45-degree line and BX lies below). As BX ∈ H, the points LX and FX,G also belong

to H because they have equal eb and smaller er compared to BX . Hence the input-design

fairness-accuracy frontier F ∗(X,G) is also the line segment from LX to FX,G. To see that

this horizontal line segment does not intersect the boundary of E(X) from RX to BX , just

note that BX is the only point on that boundary with the same (minimal) eb as any point

on the horizontal line segment. But BX does not belong to that line segment because it is

strictly below the 45-degree line. This proves the result when X is strictly group-balanced.

Now suppose X is not strictly group-balanced. Then RX and BX lie weakly on the same

side of the 45-degree line, and without loss of generality let us assume they lie weakly above.

It is still the case that the unconstrained fairness-accuracy frontier F (X,G) is the horizontal

line segment from LX to FX,G. But in the current setting FX,G must be weakly closer to

the 45-degree line than BX , which means that BX now lies in between LX and FX,G. In

other words, BX ∈ F (X) and BX ∈ F (X,G). But by assumption, BX also belongs to H.

So Lemma 1 tells us that BX belongs to the input-design fairness-accuracy frontiers F ∗(X)

and F ∗(X,G). This shows that the two frontiers F ∗(X) and F ∗(X,G) intersect, which

completes the proof by Lemma B.2.

B.8. Proof of Proposition 5. Let eg = min{eg | (er, eb) ∈ E(X,G)} and eg = max{eg |
(er, eb) ∈ E(X,G)} be the minimal and maximal feasible errors for group g given covariate

vector (X,G), and define e∗g = min{eg | (er, eb) ∈ E(X,G,X ′)} and e∗g = max{eg | (er, eb) ∈
E(X,G,X ′)} to be the corresponding quantities given (X,G,X ′). The following lemma says

that additional access to X ′ reduces the minimal feasible error for group g relative to (X,G)

if and only if X ′ is decision-relevant over X for group g.

Lemma B.3. e∗g < eg if X ′ is decision-relevant over X for group g, and e∗g = eg if it is not.

Proof. Let ag : X → {0, 1} be any strategy mapping each realization of X into an optimal

outcome for group g, i.e.,

ag(x) ∈ arg min
d∈{0,1}

E [`(d, Y, g) | G = g,X = x)] ∀x ∈ X .

Likewise let a∗g : X × X ′ → {0, 1} satisfy

a∗g(x, x
′) ∈ arg min

d∈{0,1}
E [`(d, Y, g) | G = g,X = x,X ′ = x′)] ∀x ∈ X , ∀x′ ∈ X ′.

By optimality of a∗g,

E
[
`(a∗g(x, x

′), Y, g) | G = g,X = x,X ′ = x′]
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≤ E [`(ag(x), Y, g) | G = g,X = x,X = x′] ∀x ∈ X , ∀x′ ∈ X ′.(B.2)

Suppose X ′ is decision-relevant over X for group g. Then there exist x ∈ X and x′, x̃′ ∈ X ′
such that the optimal assignment for group g is uniquely equal to 1 at (x, x′) and 0 at (x, x̃′),

where both (x, x′) and (x, x̃′) have positive probability conditional on G = g. But then (B.2)

must hold strictly at either (x, x′) or (x, x̃′). By taking the expectation of (B.2) conditional

on G = g, we obtain

e∗g = E
[
`(a∗g(X,X

′), Y, g) | G = g
]
< E [`(ag(X), Y, g) | G = g] = eg.

If X ′ is not decision-relevant over X for group g, then (B.2) holds with equality at every

x, x′, and the equivalence e∗g = eg follows. �

We now use Lemma B.2 and B.3 to prove Proposition 5. First suppose (X,G) is r-

skewed, in which case RX = BX lies strictly above the 45-degree line. By Proposition 1, the

unconstrained fairness-accuracy frontier F (X,G) is then the horizontal line segment from

RX,G = BX,G to FX,G.

If X ′ is not decision-relevant over X for group b, then from Lemma B.3 we know that

the minimal feasible error for group b is the same given (X,G,X ′) as given (X,G). By

assumption that (X,G) is r-skewed, group b’s minimal error given (X,G) exceeds group

r’s minimal error given (X,G). Since group b’s minimal error is the same given (X,G)

and (X,G,X ′), while group r’s minimal error is weakly smaller given (X,G,X ′) compared

to (X,G), it must be that group b minimal error given (X,G,X ′) also exceeds the group r

minimal error given (X,G,X ′). In other words, RX,G,X′ = BX,G,X′ also lies strictly above the

45-degree line, and the fairness-accuracy frontier F (X,G,X ′) is the horizontal line segment

from RX,G,X′ = BX,G,X′ to FX,G,X′ . Crucially, this line segment shares the same eb as the

line segment from RX,G = BX,G to FX,G. In addition, as RX,G,X′ must have weakly smaller

er than RX,G, and FX,G,X′ must be weakly closer to the 45-degree line than FX,G, we deduce

that the unconstrained fairness-accuracy frontier F (X,G,X ′) is a horizontal line segment

that is a superset of the line segment F (X,G). Thus, in particular, RX,G = BX,G belongs

to both of these frontiers. Lemma 1 thus imply that RX,G = BX,G also belongs to the

input-design fairness-accuracy frontiers F ∗(X,G) and F ∗(X,G,X ′) (RX,G = BX,G belongs

to H because this point can be implemented by giving (X,G) to the agent, who will then

minimize both groups’ errors given this information). By Lemma B.2, uniform worsening of

the frontier does not occur when excluding X ′, as we desire to show.

If X ′ is decision-relevant over X for group b, then Lemma B.3 tells us that e∗b < eb with

strict inequality. There are two cases to consider here. One case involves e∗b > e∗r, so that

(X,G,X ′) is r-skewed just as (X,G) is. Then the unconstrained fairness-accuracy frontier

F (X,G,X ′) is again a horizontal line segment, but with eb equal to e∗b . Since e∗b < eb, this

frontier is parallel but lower than the fairness-accuracy frontier F (X,G). Thus F (X,G)
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does not intersect F (X,G,X ′). As their subsets, the input-design fairness-accuracy frontiers

F ∗(X,G) and F ∗(X,G,X ′) also do not intersect. Thus by Lemma B.2, there is uniform

worsening of the frontier. In the remaining case we have e∗b ≤ e∗r, so that (X,G,X ′) is

b-skewed. Then the unconstrained fairness-accuracy frontier F (X,G,X ′) is now a vertical

line segment with er = e∗r. The points on this frontier have varying eb, but any of the eb does

not exceed e∗r because these points are below the 45-degree line. Because e∗r ≤ er < eb, we

thus know that any point on the frontier F (X,G,X ′) has strictly smaller eb compared to

any point on F (X,G). Once again these two unconstrained frontiers do not intersect, and

nor do the input-design frontiers. This proves Proposition 5 when (X,G) is r-skewed.

A symmetric argument applies when (X,G) is b-skewed, so below we focus on the case

where (X,G) is group-balanced. That is, RX,G = BX,G lies on the 45-degree line. In

this case the fairness-accuracy frontiers F (X,G) and F ∗(X,G) are both this singleton

point. If X ′ is not decision-relevant over X for group b, then Lemma B.3 tells us that

e∗b = eb = er ≥ e∗r. When equality holds the fairness-accuracy frontiers F (X,G,X ′) and

F ∗(X,G,X ′) are also the singleton point RX,G = BX,G, and uniform worsening does not

occur. If we instead have strict inequality e∗b = eb > e∗r, then (X,G,X ′) is r-skewed and the

unconstrained fairness-accuracy frontier F (X,G,X ′) is a horizontal line segment with one of

the endpoints being FX,G,X′ = RX,G = BX,G. Thus RX,G = BX,G belongs also to the input-

design fairness-accuracy frontier F ∗(X,G,X ′), showing that F ∗(X,G) and F ∗(X,G,X ′)

intersect. Uniform worsening of the frontier does not occur either way.

B.9. Details of Example 12. In this section, we compute the input-design feasible set

and fairness-accuracy frontier for Example 12. Since X is a null signal, garblings of (X,X ′)

are the same as garblings of X ′. Without loss, we can restrict attention to garblings of X ′

that take two values, d = 1 and d = 0, which correspond to the designer’s decisions for the

agent. Any such garbling can be identified with a pair (α, β), where α is the probability

with which X ′ = 1 is mapped into d = 1, and β is the probability with which X ′ = 0 is

mapped into d = 1. It is easy to check that the agent’s obedience constraint reduces to the

simple inequality α ≥ β, which intuitively requires the agent to choose d = 1 more often

when X ′ = 1.

For any pair (α, β), the two groups’ errors can be calculated as

er(α, β) =
1

2
(1− α) +

1

2
β = 0.5− 0.5(α− β),

eb(α, β) =
1

2
· 0.6(1− α) +

1

2
· 0.4(1− β) +

1

2
· 0.4α +

1

2
· 0.6β = 0.5− 0.1(α− β).

So as α− β ranges from 0 to 1, the implementable group errors constitute the line segment

connecting (0, 0.4) with (0.5, 0.5). This entire line segment is also the fairness-accuracy

frontier F ∗(X,X ′), as illustrated in Figure 9 in the main text.
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For an Egalitarian designer, sending the null signalX leads to the point (0.5, 0.5) and yields

a payoff of 0. In contrast, we say that the designer “makes use of X ′ over X” if the garbling

T is not independent of X ′ conditional on X (in this example the conditioning is irrelevant

since X is null). Whenever T is not independent of X ′, then for some realizations of T the

agent believes X ′ = 1 is more likely, which makes d = 1 strictly optimal. Thus, whenever

the designer makes use of X ′ in the garbling, the agent is strictly better off compared to

the null signal, and the resulting error pair must be distinct from (0.5, 0.5). But given the

shape of the implementable set, this means that the designer is strictly worse off when any

information about X ′ is provided to the agent.

Conversely, suppose X ′ is decision-relevant over X for both groups. Then by Proposition

1, the unconstrained frontier F (X,X ′) is either a horizontal line segment with eb = e∗b <

eb = eb, or a vertical line segment with er = e∗r < er = eb. Either way the point RX = BX

does not belong to this frontier, showing that F (X) does not intersect with F (X,X ′).

Hence F ∗(X) and F ∗(X,X ′) also do not intersect, and by Lemma B.2 we know that there

is uniform worsening of the frontier. This completes the entire proof of Proposition 5.
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Alonso, R. and O. Câmara (2016): “Persuading Voters,” American Economic Review,

106, 3590–3605.

Andreoni, J. and J. Miller (2002): “Giving According to GARP,” Econometrica, 70,

737–753.

Angwin, J. and J. Larson (2016): “Machine bias,” ProPublica.

Arnold, D., W. Dobbie, and P. Hull (2021): “Measuring Racial Discrimination in

Algorithms,” AEA Papers and Proceedings, 111, 49—54.

Bergemann, D. and S. Morris (2019): “Information Design: A Unified Perspective,”

Journal of Economic Literature, 57, 44–95.

Bertrand, M. and E. Kamenica (2020): “Coming apart? Cultural distances in the

United States over time,” Working Paper.

Blattner, L., S. Nelson, and J. Spiess (2022): “Unpacking the Black Box: Regulating

Algorithmic Decisions,” Working Paper.

Bolton, G. E. and A. Ockenfels (2000): “ERC: A Theory of Equity, Reciprocity, and

Competition,” American Economic Review, 90, 166–193.

Caplin, A., D. Martin, and P. Marx (2023): “Modeling Machine Learning,” Working

Paper.



ALGORITHM DESIGN: A FAIRNESS-ACCURACY FRONTIER 41

Chan, J. and E. Eyster (2003): “Does Banning Affirmative Action Lower College Student

Quality?” American Economic Review, 93, 858–872.

Charness, G. and M. Rabin (2002): “Understanding Social Preferences with Simple

Tests,” The Quarterly Journal of Economics, 117, 817–869.

Che, Y.-K., K. Kim, and W. Zhong (2019): “Statistical Discrimination in Ratings-

Guided Markets,” Working Paper.

Chohlas-Wood, A., M. Coots, E. Brunskill, and S. Goel (2021): “Learning to be

Fair: A Consequentialist Approach to Equitable Decision-Making,” Working Paper.

Chouldechova, A. (2017): “Fair Prediction with Disparate Impact: A Study of Bias in

Recidivism Prediction Instruments.” Big Data, 5, 153–163.

Corbett-Davis, S., E. Pierson, A. Feller, S. Goel, and A. Huq (2017): “Algo-

rithmic decision-making and the cost of fairness,” in Proceedings of the 23rd Conference

on Knowledge Discovery and Data Mining.

Cowgill, B. and M. T. Stevenson (2020): “Algorithmic Social Engineering,” AEA

Papers and Proceedings, 110, 96–100.

Cowgill, B. and C. E. Tucker (2020): “Algorithmic Fairness and Economics,” Working

Paper.

Curello, G. and L. Sinander (2022): “The Comparative Statics of Persuasion,” Work-

ing Paper.

Dessein, W., A. Frankel, and N. Kartik (2022): “Test-Optional Admissions,” Work-

ing Paper.

Diana, E., T. Dick, H. Elzayn, M. Kearns, A. Roth, Z. Schutzman, S. Sharifi-

Malvajerdi, and J. Ziani (2021): “Algorithms and Learning for Fair Portfolio Design,”

in Proceedings of the 22nd ACM Conference on Economics and Computation.

Dworczak, P., S. Kominers, and M. Akbarpour (2021): “Redistribution Through

Markets,” Econometrica, 89, 1665–1698.

Dwork, C., M. Hardt, T. Pitassi, O. Reingold, and R. Zemel (2012): “Fairness

through awareness,” in Proceedings of the 3rd Innovations in Theoretical Computer Science

Conference, 214–226.

Dwork, C. and A. Roth (2014): “The Algorithmic Foundations of Differential Privacy,”

Found. Trends Theor. Comput. Sci., 9, 211–407.

Ellison, G. and P. A. Pathak (2021): “The Efficiency of Race-Neutral Alternatives

to Race-Based Affirmative Action: Evidence from Chicago’s Exam Schools,” American

Economic Review, 111, 943–75.

Fehr, E. and K. M. Schmidt (1999): “A Theory of Fairness, Competition, and Cooper-

ation,” The Quarterly Journal of Economics, 114, 817–868.



42 ANNIE LIANG, JAY LU, AND XIAOSHENG MU

Feigenberg, B. and C. Miller (2021): “Would Eliminating Racial Disparities in Motor

Vehicle Searches have Efficiency Costs?*,” The Quarterly Journal of Economics, 137, 49–

113.
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O.1. Different Loss Functions. In this section, we generalize Theorem 1 when fairness

and accuracy are evaluated using loss functions that are possibly different but not “directly

opposed.”

As in the main text, let a : X → ∆(D) describe a generic algorithm and let AX be the

set of all algorithms. Different from the main text, we have two loss functions—an accuracy

loss function `A : D × Y × G → R and a fairness loss function `F : D × Y × G → R. For

either group g ∈ {r, b}, let

eAg (a) = ED∼a(X)[`
A(D, Y, g) | G = g] ∀a ∈ AX

eFg (a) = ED∼a(X)[`
F (D, Y, g) | G = g] ∀a ∈ AX

be group errors defined using the respective loss functions. We use eA(a) ≡ (eAr (a), eAb (a)) to

denote the error pairs evaluated by the accuracy loss function, and

E(X) = {eA(a) : a ∈ AX}

to denote the set of feasible (accuracy) error pairs. Also define

∆(a) = |eFr (a)− eFb (a)| ∀a ∈ AX

to be the gap between group errors evaluated by the fairness loss function, i.e., the “unfair-

ness” of algorithm a. The function u : E(X)→ R satisfying

u(e) = min
a∈AX

{∆(a) : eA(a) = e}

maps each (accuracy) error pair to the minimal achievable unfairness value. This function

is well-defined as ∆ (·) is continuous and eA (·) is linear.

We now extend the definitions of FA-dominance and the fairness-accuracy frontier.

Definition O.1. Let >FA be the partial order on E(X) satisfying (er, eb) >FA (e′r, e
′
b) if

er ≤ e′r, eb ≤ e′b, and u (e) ≤ u (e′), with at least one of these inequalities strict.

Definition O.2. F (X) is the set of all pairs e ∈ E (X) that are FA-undominated, i.e. no

e′ ∈ E (X) exists that satisfies e′ >FA e.

When `F = `A then we can express u directly as a function of the (accuracy) error-pairs,

u (e) = |er − eb|, and so these definitions reduce to Definitions 2, 3 and 5.
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Lemma O.4. u (·) is piecewise linear and convex.

Proof. Since X is finite, eA (·) is linear and ∆ (·) is piecewise linear, u (·) must be piecewise

linear. We now prove convexity. Fix any e1, e2 ∈ E (X). Since these error pairs are feasible,

there exist algorithms a1, a2 ∈ AX that implement them, i.e., u (ei) = u
(
eA (ai)

)
= ∆ (ai)

for each i = 1, 2. Let a = λa1 + (1− λ) a2 for λ ∈ [0, 1] and note that since eA (·) is linear,

eA (a) = λe1 + (1− λ) e2. Thus,

u (λe1 + (1− λ) e2) = u
(
eA (a)

)
≤ ∆ (a) =

∣∣eFr (a)− eFb (a)
∣∣

=
∣∣λeFr (a1) + (1− λ) eFr (a2)−

(
λeFb (a1)− (1− λ) eFb (a2)

)∣∣
≤ λ

∣∣eFr (a1)− eFb (a1)
∣∣+ (1− λ)

∣∣eFr (a2)− eFb (a2)
∣∣

≤ λu (e1) + (1− λ)u (e2)

as desired. �

Given Lemma O.4, the directional derivatives of u are well-defined in the interior of E .

We generalize Theorem 1 under the following assumption.

Assumption 1. There does not exist e ∈ E(X) such that D(1,0)u(e) < 0 and D(0,1)u(e) < 0.

This assumption says that, for at least one group, increasing error must hurt fairness.

It rules out the case when fairness and accuracy are directly opposed, in the sense that

increasing errors in both groups improves fairness. Since we are primarily interested in the

tradeoffs between fairness and accuracy due to informational constraints rather than the

definitions of fairness and accuracy being intrinsically in conflict, we view this assumption

as a natural one for our purposes. In the case when both loss functions are the same so

u (e) = |er − eb|, this assumption is always satisfied.41

We now define the fairness-optimal set. First, let

∆ := min
e∈E(X)

u (e)

be the minimal achievable level of unfairness.

Definition O.3 (Pareto Frontier). For any set E ⊆ R2, let P (E) denote the usual Pareto

frontier of E, i.e., all points (er, eb) ∈ E where no (e′r, e
′
b) ∈ E is weakly smaller in each entry

and strictly smaller in at least one.

41In the case where Y ∈ {0, 1}, the accuracy loss function is the misclassification rate `A(d, y) = 1(d 6= y),
and the fairness loss function is `F (d, y) = 1(d = 1), a sufficient condition for Assumption 1 to hold is
existence of x, x′ ∈ X such that E(Y = 1 | X = x,G = g) < 1/2 and E(Y = 1 | X = x′, G = g) < 1/2 for
both g (so that the Bayes-optimal assignment at both x and x′ is 0 for members of either group), and also
P(X = x | G = r) > P(X = x | G = b) while P(X = x′ | G = r) < P(X = x′ | G = b). Details are available
upon request. We leave to future work the derivation of other conditions on primitives for specific (`A, `F )
pairings.
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Definition O.4. The fairness-optimal set is

FX ≡ P {e ∈ E (X) : u (e) = ∆}

It’s easy to see that FX is always a subset of the fairness-accuracy frontier.

Theorem O.1. Under Assumption 1, the following hold:

(1) If FX ⊆ P (E (X)), then F (X) = P (E (X))

(2) If FX * P (E (X)), then FX is a singleton and F (X) is the union of P (E (X)) and

a connected sequence of positively-sloped line segments ending at FX

Thus, the condition that the fairness-maximizing point FX belongs to the Pareto frontier

generalizes group-balance. That is, when this condition is satisfied, we can restrict attention

to the usual Pareto frontier without loss. Moreover, no two points on the fairness-accuracy

frontier can be Pareto-ranked. When (generalized) group-balance fails, then the frontier

consists of two parts: the Pareto frontier, and a positively-sloped sequence of lines, along

which every pair of points has the property that one point involves higher errors for both

groups but greater fairness. Corollary 1 thus extends directly under this generalized notion

of group-balance.

O.2. Proof of Theorem O.1. To save on notation we suppress dependence on X in what

follows, using F for the fairness-accuracy frontier and E for the feasible set. We first show

that the fairness-accuracy frontier is the union of the Pareto frontiers of the unfairness

sublevel sets.

Definition O.5. For any ∆ ∈ R, let E≤∆ = {e ∈ E | u(e) ≤ ∆} be u’s ∆-sublevel set.

Lemma O.5. F =
⋃

∆P(E≤∆).

Proof. Fix any unfairness level ∆ and point e ∈ P(E≤∆). We will show that e must belong to

the fairness-accuracy frontier F . Suppose to the contrary that there exists e′ ∈ E such that

e′r ≤ er, e
′
b ≤ eb, and u(e′) ≤ u(e) with at least one inequality strict. Since u(e′) ≤ u(e) ≤ ∆,

the error pair e′ must belong to E≤∆. But since e belongs to the Pareto frontier P(E≤∆),

there cannot exist a point e′ ∈ E≤∆ satisfying e′r ≤ er and e′b ≤ eb with either inequality

strict. Thus

e′r = er e′b = eb u(e′) < u(e)

in contradiction of the definition of u(e).

In the other direction, consider any e ∈ F and set ∆ ≡ u(e) so that e ∈ E≤∆. We will

show that e ∈ P(E≤∆). Suppose not. Then there exists e′ ∈ E≤∆ such that e′r ≤ er and

e′b ≤ eb with at least one inequality strict. But since also u(e′) ≤ u(e) = ∆, it must be that

e′ >FA e, and we have the desired contradiction. �

Assumption 1 implies that the Pareto frontiers P(E≤∆) takes either of two forms:
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Lemma O.6. For every ∆ ≥ ∆,

(a) If E≤∆ ∩ P(E) 6= ∅, then P(E≤∆) = E≤∆ ∩ P(E)

(b) If E≤∆ ∩ P(E) = ∅, then P(E≤∆) is a singleton.

That is, if the sublevel set E≤∆ has nonempty intersection with the Pareto frontier P(E),

then the Pareto frontier of E≤∆ is precisely this intersection. Otherwise, the Pareto frontier

P(E≤∆) must be a singleton.

Proof. Suppose E≤∆ has nonempty intersection with the accuracy frontier P(E). This in-

tersection E≤∆ ∩ P(E) must be part of the frontier P(E≤∆), since if a point e is Pareto

undominated within E , it must also be Pareto undominated within the smaller set E≤∆.

Suppose P(E≤∆) includes a point that does not belong to P(E). Since the sublevel sets

are nested convex polygons (by Lemma O.4), P(E≤∆) must include an entire line segment

not included in P(E). This line segment must further be negatively sloped, since any Pareto

frontier consists exclusively of negatively sloped lines. Choose any point e in the interior

of this line segment. Since e is not in P(E), it must be Pareto dominated by some other

point e′ ∈ E . Consider a point e∗ between e′ to e and arbitrarily close to e. Since the line

segment must have negative slope, it must be that D(1,0)u(e∗) < 0 and D(0,1)u(e∗) < 0. But

this contradicts Assumption 1. So P(E≤∆) cannot include any points outside of P(E), and

we conclude that P(E≤∆) = E≤∆ ∩ P(E) as desired.

Now suppose E≤∆ ∩ P(E) = ∅. Suppose towards contradiction that P(E≤∆) is not a

singleton. Then P(E≤∆) consists of negatively sloped line segments. Choose some point e

in the interior of one such line segment. Since P(E≤∆) does not intersect with P(E), e must

be Pareto dominated by some point e′ ∈ E . By the same argument above, this contradicts

Assumption 1. �

Now we can complete the proof of Theorem O.1. First suppose FX belongs to the accuracy

frontier P(E). Since every E≤∆ for ∆ ≥ ∆ includes FX , each sublevel set must have nonempty

intersection with P(E). Applying Lemma O.5 and Part (a) of Lemma O.6, each P(E≤∆) is

a subset of P(E), and we recover all of P(E) as we vary over ∆. So F = P(E).

Next suppose FX does not belong to the accuracy frontier P(E). Define

U ≡ {∆ | E≤∆ ∩ P(E) = ∅}

be the unfairness levels ∆ for which the sublevel set E≤∆ have empty intersection with P(E).

For any ∆ ∈ U c, the previous arguments apply and show that the full accuracy frontier P(E)

is again recovered as part of the fairness-accuracy frontier F .

For any ∆ ∈ U , Part (b) of Lemma O.6 implies that the accuracy frontier in this sublevel

set is a singleton, and hence can be characterized as the point A∆ = arg mine∈E≤∆
er, where

the choice of group r is arbitrary. The sublevel set E≤∆ is convex and compact for each

∆ ∈ U , and E≤∆ is continuous at each ∆ ∈ U by continuity of u(e). By the theorem of the
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maximum, A∆ is continuous in ∆, so the set {A∆}∆≥0 is connected. By Lemma O.4, this

path consists of a sequence of line segments. Moreover, since the sets E≤∆ are nested, and

the point A∆ simultaneously minimizes er and eb within the set E≤∆, these points must move

weakly down and left as ∆ increases, so the path consists of a sequence of positively sloped

line segments. Thus the fairness-accuracy frontier F is the union of the accuracy frontier

P(E) and a sequence of positively sloped line segments connecting P(E) to FX , as desired.

O.3. General Fairness Criteria. In this section, we consider the general case where fair-

ness is evaluated using |φ (er)− φ (eb)| for some strictly increasing continuous function φ.

For instance, if φ is log, then this reduces to using the ratio of error rates as a measure of

fairness. The characterization of the fairness-accuracy frontier remains the same except the

fairness optimal point FX may now be different. Whether it expands or contracts depends

on the curvature of φ as the following Proposition demonstrates.42

Proposition O.1. Let F ′ (X) denote the fairness-accuracy frontier where fairness is eval-

uated using

|φ (er)− φ (eb)|
for strictly increasing φ : R→ R. Then

(1) F (X) = F ′ (X) if X is group-balanced

(2) F (X) ⊂ F ′ (X) if X is group-skewed and φ in concave

(3) F (X) ⊃ F ′ (X) if X is group-skewed and φ in convex

Proof. Let E (X) and E ′ (X) denote the feasible sets where fairness is defined using |er − eb|
and |φ (er)− φ (eb)| respectively. Let FX and F ′X denote the corresponding fairness optimal

points. First, note that if X is group-balanced, then by the same argument as Theorem 1,

F (X) = F ′ (X) is the lower boundary from RX = R′X to BX = B′X .

Now, suppose X is r-skewed without loss. Let e and e′ correspond to FX and F ′X so

eb − er ≤ e′b − e′r
φ (e′b)− φ (e′r) ≤ φ (eb)− φ (er)

First, suppose φ is concave. We will show that e′r ≥ er. Suppose by contradiction that

e′r < er so φ (e′r) < φ (er). Thus,

φ (e′b)− φ (eb) ≤ φ (e′r)− φ (er) < 0

so e′b < eb. Thus, we have e′r ≤ e′b < eb. Note that

e′b = λeb + (1− λ) e′r

42We assume that the accuracy and fairness loss functions are the same but can generalize the results in this
section via the same methodology as in Section O.1.
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where

λ :=
e′b − e′r
eb − e′r

We thus have

φ (eb)− φ (er) + φ (e′r) ≥ φ (e′b) = φ (λeb + (1− λ) e′r)

≥ λφ (eb) + (1− λ)φ (e′r)

(1− λ) (φ (eb)− φ (e′r)) ≥ φ (er)− φ (e′r)

(eb − e′b)
φ (eb)− φ (e′r)

eb − e′r
≥ φ (er)− φ (e′r)

where the second inequality follows from the fact that φ is concave. Since er − e′r ≥ eb − e′b,
this implies

φ (eb)− φ (e′r)

eb − e′r
≥ φ (er)− φ (e′r)

er − e′r
Since X is r-skewed, eb ≥ er > e′r. Since φ is concave, the above inequality must be satisfied

with equality. This means that

(eb − e′b)
φ (eb)− φ (e′r)

eb − e′r
≥ φ (er)− φ (e′r) = (er − e′r)

φ (eb)− φ (e′r)

eb − e′r
so eb − e′b = er − e′r or eb − er = e′b − e′r. But e corresponds to FX and since e′ achieves the

same fairness as e, it must be that er ≤ e′r. This contradicts our assumption that e′r < er.

Thus, e′r ≥ er and by the same argument characterizing the FA frontier as in Theorem 1,

F (X) ⊂ F ′ (X). The case for when φ is convex is symmetric. �

O.4. Adversarial Agents. We now consider the problem outlined in Section 4, when one

of the weights αr, αb is negative.43 Without loss, let αr > 0 > αb, reflecting an adversarial

agent who prefers for group b’s error to be higher. The first half of Lemma 1 extends fully.

Lemma O.7. For every covariate vector X, E∗(X) = E(X) ∩H.

But the analogous equivalence for the FA frontier does not extend. Instead, similar to the

development of RX , BX , and FX , define

G∗X ≡ arg min
(er,eb)∈E∗(X)

eg

to be the feasible point in E∗(X) that minimizes group g’s error (breaking ties by minimizing

the other group’s error), and define

F ∗X ≡ arg min
(er,eb)∈E∗(X)

|er − eb|

43It is straightforward also to consider the case where both weights are negative, but we do not consider this
setting to be practically relevant.
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to be the point that minimizes the absolute difference between group errors (breaking ties

by minimizing either group’s error).

Definition O.6. Covariate vector X is:

• input-design r-skewed if er < eb at R∗X and er ≤ eb at B∗X
• input-design b-skewed if eb < er at B∗X and eb ≤ er at R∗X
• input-design group-balanced otherwise

The proof for Theorem 1 applies for any compact and convex feasible set, and so directly

implies:

Theorem O.2. The input-design fairness-accuracy (FA) frontier F ∗(X) is the lower bound-

ary of the input-design feasible set E∗(X) between

(a) R∗X and B∗X if X is input-design group-balanced

(b) G∗X and F ∗X if X is input-design g-skewed

We can use this characterization to extend our result from Section 4.2.1.

Definition O.7. X is strictly input-design-group-balanced if er < eb at R∗X and eb < er at B∗X .

Proposition O.2. Suppose αr > 0 > αb and X is strictly input-design group-balanced. Then

excluding G over X uniformly worsens the frontier.

This result says that, perhaps surprisingly, even if the agent choosing the algorithm has

adversarial motives against one of the groups, the designer may still prefer to send informa-

tion about group identity. The notion of group-balanced covariate vectors, suitably adapted

to the input design setting, again serves as a sufficient condition for uniform worsening of

the frontier when excluding G.

Proof. By assumption that X is strictly input-design group-balanced, the input-design FA

frontier given X is the lower boundary of E∗(X) from R∗X to B∗X , which consists of negatively

sloped edges. We will show that every point on this frontier is FA-dominated by some point

in E∗(X,G).

If this point (er, eb) is distinct from B∗X and R∗X , then we claim that for sufficiently small

positive ε, the point (er− ε, eb− ε) belongs to E∗(X,G). Indeed, (er− ε, eb− ε) belongs to the

unconstrained feasible set E(X,G) because this feasible set is a rectangle, and er − ε, eb − ε
are within the minimal and maximal group errors achievable given X. Moreover, (er, eb)

must have smaller group-r error and larger group-b error compared to B∗X , which means the

same is true for (er − ε, eb − ε). Since αr > 0 > αb, the point (er − ε, eb − ε) must belong to

H given that B∗X does. Hence when (er, eb) differs from B∗X and R∗X , it is FA-dominated by

(er − ε, eb − ε) ∈ E∗(X,G).
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Suppose now that (er, eb) = B∗X . Then by similar argument it is FA-dominated by (er −
ε, eb) ∈ E∗(X,G). Finally if (er, eb) = R∗X , then it is FA-dominated by (er, eb−ε) ∈ E∗(X,G).

In all these cases the FA frontier uniformly worsens when excluding G, completing the

proof. �

O.5. Supplementary Material to Section 3.3.

O.5.1. Proof of Proposition 2. We will show that BX = RX under conditional independence.

Recall from the proof of Lemma B.1 that

E (X) =
∑
x∈X

E (x) px

where

E (x) =

{
λ

(∑
y

xy,r
pr

` (1, y) ,
∑
y

xy,b
pb
` (1, y)

)

+ (1− λ)

(∑
y

xy,r
pr

` (0, y) ,
∑
y

xy,b
pb
` (0, y)

)
: λ ∈ [0, 1]

}
Under conditional independence, xy,g = xyxg so we have

E (x) =

{(
λ
∑
y

xy` (1, y) + (1− λ)
∑
y

xy` (0, y)

)(
xr
pr
,
xb
pb

)
: λ ∈ [0, 1]

}
This means that for each realization x ∈ X , the outcome that gives the lower error

for group r also gives the lower error for group b. In other words, when
∑

y xy` (1, y) ≤∑
y xy` (0, y), then outcome Y = 1 is optimal for both groups (and vice-versa for the other

outcome). Consider the following algorithm:

f (x) =

1 if
∑

y xy` (1, y) ≤∑y xy` (0, y)

0 if
∑

y xy` (1, y) >
∑

y xy` (0, y)

This algorithm will deliver the lowest error for both groups and

(er (f) , eb (f)) = RX = BX

as desired.

O.5.2. Strong Independence. We consider here another special case of conditional indepen-

dence when covariate vectors satisfy the following strong independence condition:

Definition O.8. Say that X satisfies strong independence if for both groups g,

P(G = g | Y = y,X = x) = pg ∀x, y.
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In this case, the feasible set turns out to be a line segment on the 45-degree line, and the

fairness-accuracy frontier is a single point, as depicted in Figure 10.

Proposition O.3. Suppose X is strongly independent. Then the fairness-accuracy frontier

is a single point on the 45-degree line.

Proof. We continue to follow the notation laid out in the proof of Lemma B.1. Note that

under strong independence,

xy,r
xy,b

=
P(Y = y,G = r | X = x)

P(Y = y,G = b | X = x)

P(Y = y,G = r,X = x)

P(Y = y,G = b,X = x)

=
P(G = r | Y = y,X = x)

P(G = b | Y = y,X = x)
=
pr
pb
.

Thus xy,r
pr

=
xy,b
pb

for all x, y. It follows that the line segment E(x), which connects the

two points
(∑

y
xy,r
pr
` (1, y) ,

∑
y
xy,b
pb
` (1, y)

)
and

(∑
y
xy,r
pr
` (0, y) ,

∑
y
xy,b
pb
` (0, y)

)
, lies on the

45-degree line. Therefore E (X) =
∑

xE (x) · px is also on the 45-degree line. �

The FA frontier consists of the single point that is achieved by conditioning on all of

the available information in X. Since this point is on the 45-degree line, both groups have

the same error. Thus, this point is simultaneously optimal for Rawlsian, Utilitarian, and

Egalitarian designers—indeed, fairness-accuracy preferences are completely irrelevant here:

All designers who agree on the basic FA-dominance principle outlined in Definition 2 prefer

the same policy.

er

eb

45

E(X)
P(X)

RX = BX = FX

Figure 10. Depiction of the fairness-accuracy frontier under assumption of strong independence
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O.6. Microfoundations for the FA frontier. We now provide a foundation of our FA

frontier as the optimal points for different classes of FA preferences.44 First, consider the

following utility over errors

w (er, eb) = αrer + αbeb + αf |er − eb|

where αr, αb < 0 and αf ≤ 0. Call the corresponding preference of this utility simple. Simple

preferences are FA preferences. For example, both the Utilitarian and Rawlsian preferences

are simple. To see this for the Utilitarian designer, set αr = −pr, αb = −pb and αf = 0. To

see this for the Rawlsian designer, set αr = αb = αf = −1.

Given any FA preference �, let

F� (X) = {e ∈ E (X) : e � e′ for all e′ ∈ E (X)}

denote the set of �-optimal points. We now provide the following characterizations of the

FA frontier.45

Proposition O.4. The following are equivalent:

(1) e ∈ F (X)

(2) e ∈ F� (X) for some FA preference �
(3) {e} = F� (X) for some FA preference �
(4) e ∈ F� (X) for some simple FA preference �

The above result shows that our FA frontier is the set of all optimal points for all FA

preferences. Moreover, F (X) is minimal in the sense that we cannot exclude any points

from F (X) without hurting some designer. This is because for every point e ∈ F (X), there

exists some FA preference � such that e is the unique optimal error pair given � within

the feasible set E(X). Finally, our FA frontier also corresponds to the optimal points for all

simple FA preferences.

Proof. We will first show that (3) implies (2) implies (1) implies (3). Note that (3) implies

(2) is trivial. To see why (2) implies (1), suppose e ∈ F� (X) for some FA preference � but

e 6∈ F (X). Thus, there exists some e′ >FA e so e′ � e yielding a contradiction.

We now prove that (1) implies (3). Fix some e∗ ∈ F (X) and let h : R → (0, 1) be a

strictly decreasing function. Define

w (e) =

1 + h (er + eb) if e = e∗ or e >FA e
∗

h (er + eb) otherwise

44Note that we could have alternatively defined FA preferences to be weakly decreasing in er, eb and |er − eb|.
The equivalence of (1), (3) and (4) in Proposition O.4 would still hold.
45The proof of the equivalence of (1) and (4) in Proposition O.4 relies on finite X. The other parts do not.
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and let � be the corresponding preference. We will show that � is an FA preference.

Suppose e >FA e
′ so h (er + eb) > h (e′r + e′b). If both points FA-dominate e∗ or neither do,

then w (e) > w (e′). The only remaining case is when e >FA e
∗ but e′ does not FA-dominate

e∗, in which case

w (e) = 1 + h (er + eb) > 1 > h (e′r + e′b) = w (e′)

Thus, � is an FA preference. Now, since e∗ ∈ F (X), there exists no other e ∈ E (X) such

that e >FA e
∗. That means that for all e ∈ E (X) \ {e∗}, w (e∗) > w (e) so {e∗} = F� (X).

This proves (3).

Finally, we show the equivalence of (1) and (4). Note that (4) implies (2) which implies

(1) from above. We now show that (1) implies (4). Fix some e∗ ∈ F (X), so by Theorem

1, e∗ must either belong to the lower boundary from RX to BX or the lower boundary from

BX to FX , where the latter case only happens when X is r-skewed (we omit the symmetric

situation when X is b-skewed). If e∗ belongs to the boundary from RX to BX , then from the

proof of Theorem 1 we know that e∗ belongs to an edge of this boundary that has negative

slope. Thus there exists a vector (αr, αb) that is normal to this edge, such that e∗ maximizes

αrer+αbeb among all feasible points. Since this edge has negative slope, it is straightforward

to see that αr, αb < 0. So e maximizes the simple utility αrer + αbeb as desired.

If instead X is r-skewed and e∗ belongs to the boundary from BX to FX , then again e∗

belongs to an edge of this boundary. But now this edge must have weakly positive slope

(since the edge starting from BX has weakly positive slope by the definition of BX , and since

the boundary is convex). In addition, this slope must be strictly smaller than 1 because

otherwise FX would be farther away from the 45-degree line compared to its adjacent vertex

on this boundary. It follows that the outward normal vector (βr, βb) to the edge that e∗

belongs to satisfies βr ≥ 0 ≥ −βr > βb. The point e∗ of interest maximizes βrer + βbeb
among all feasible points. Now let us choose any αf to belong to the interval (βb,−βr),
which is in particular negative. Further define αr = βr +αf < 0 and αb = βb−αf < 0. Then

βrer + βbeb can be rewritten as αrer + αbeb + αf (eb − er). If we consider the simple utility

αrer + αbeb + αf |eb − er|, then for any other feasible point e∗∗ it holds that

αre
∗∗
r + αbe

∗∗
b + αf |e∗∗b − e∗∗r | ≤ αre

∗∗
r + αbe

∗∗
b + αf (e

∗∗
b − e∗∗r )

= βre
∗∗
r + βbe

∗∗
b

≤ βre
∗
r + βbe

∗
b

= αre
∗
r + αbe

∗
b + αf (e

∗
b − e∗r)

= αre
∗
r + αbe

∗
b + αf |e∗b − e∗r|,
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where the first inequality holds since αf ≤ 0 and the last equality holds because e∗ ∈ F (X)

must be weakly above the 45-degree line. Hence the above inequality shows that e∗ maximizes

the simple utility we have constructed, completing the proof. �


