
Information Aggregation with Asymmetric Asset Payoffs∗

Elias Albagli

Central Bank of Chile

Christian Hellwig

Toulouse School of Economics

Aleh Tsyvinski

Yale University

December 20, 2022

Abstract

We study noisy aggregation of dispersed information in financial markets beyond the usual

parametric restrictions imposed on preferences, information, and return distributions. This

allows a general characterization of asset returns by means of a risk-neutral probability mea-

sure that features excess weight on tail risks. Using this characterization, we show that noisy

aggregation of dispersed information provides a unified explanation for several prominent cross-

sectional return anomalies such as returns to skewness, returns to disagreement and interaction

effects between the two. Moreover, this characterization can be linked to observable moments

such as forecast dispersion and accuracy, and simple calibrations suggest the model can account

for a significant fraction of empirical return anomalies.
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1 Introduction

Dispersed information and disagreement among investors is an ubiquitous feature of financial mar-

kets, and asset prices are often viewed as playing a central role in aggregating such information.

We develop a flexible theory in which aggregation of dispersed information emerges as the core

force determining asset prices and expected returns, and link these to the distribution of the un-

derlying cash-flow risk and features of markets such as liquidity and investor disagreement. This

theory provides a unified explanation for several prominent asset pricing anomalies, such as nega-

tive excess return to skewness, and the seemingly contradictory evidence on the impact of investor

disagreement on returns in equity and bond markets.

We consider an asset market along the lines of Grossman and Stiglitz (1980), Hellwig (1980),

and Diamond and Verrecchia (1981), populated by informed investors who observe a noisy private

signal about asset payoffs, and noise traders whose random positions determine the net supply of

the asset.1 In such environment, the market-clearing price serves as an endogenous public signal

of cash-flow. In contrast to the existing literature, we don’t impose parametric restrictions on the

distribution of cash flows, which allows us to derive return implications for a wide range of assets

and compare the model-implied returns with their empirical counterparts.

The textbook no-arbitrage paradigm characterizes systematic return differences through a risk-

neutral probability measure which summarizes investors expectations and attitudes towards risk.

We build on no-arbitrage theory by constructing a risk-neutral probability measure for asset prices

with dispersed information, and show that noisy information aggregation leads to excess weight on

tail risks: the pricing kernel or change in probability measure is U-shaped, overweighting proba-

bilities of both very high and low returns. This leads to price premia that can be interpreted as

the value of a mean-preserving spread, whose magnitude scales up with the dispersion of investor

expectations. Negative returns to skewness, negative (positive) returns to investor disagreement for

positively (negatively) skewed securities, and positive interaction between skewness and investor

disagreement emerge as direct corollaries. Importantly, these predictions distinguish noisy infor-

mation aggregation from average risk premia, for which the pricing kernel is monotone and shifts

probability mass from high to low returns. They also distinguish our theory from heterogeneous

priors models with short-sales constraints in which disagreement unambiguously raises prices and

lowers returns.

The main challenge in characterizing asset prices with noisy information aggregation comes

1See Brunnermeier (2001), Vives (2008), and Veldkamp (2011) for textbook discussions.
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from the difficulty of tractably dealing with the endogeneity of information contained in the price.

We address this challenge in three steps. First, we represent the equilibrium price by means of a

sufficient statistic variable that summarizes the information aggregated through the price. This

representation reveals the presence of an updating wedge: noisy information aggregation makes

the asset price more sensitive to fundamental and noise trading shocks than the corresponding

risk-adjusted dividend expectations. Hence the price is higher (lower) than expected dividends

whenever the information aggregated through the price is sufficiently (un-)favorable.

Second, we represent the expected return of the asset by means of a risk-neutral probability

measure and show that the updating wedge leads to excess weight on tail risks. Specifically, the risk-

neutral differs from the objective distribution through a shift in the mean –akin to an average risk

premium–, and a mean-preserving spread that captures the additional effect of noisy information

aggregation. In consequence, securities characterized by upside (downside) risks are priced above

(below) their fundamental value. Moreover, the over-pricing of upside or under-pricing of downside

risks scales with excess weight on tail risks. Third, and to bring the model to the data, we represent

excess weight on tail risks as a function of two sufficient statistics of investor beliefs: forecast

dispersion and accuracy. The model attributes almost all the variation in excess weight on tail

risks to forecast dispersion, which we can therefore interpret as a natural empirical proxy for excess

weight on tail risks.

In section 2, we introduce our general model and illustrate these steps with three examples.

First, we revisit the canonical CARA-Normal model and confirm the presence of the updating wedge

and excess weight on tail risks property, but note it has no effects on average prices and returns due

to the imposed symmetry of cash flows. Our second example replaces normally distributed with

binary dividends and thus highlights the interaction between payoff asymmetry and excess weight of

tail risks. While these examples illustrate our general insights, they still rely on strong parametric

assumptions that limit their usefulness for comparative statics and empirical applications. Our

third example assumes traders are risk-neutral but face position limits, which allows us to fully

characterize the information content of prices for arbitrary securities. Moreover, by abstracting from

risk aversion, the risk-neutral model focuses exclusively on the role of noisy information aggregation

for asset returns. We show that the difference between the average price and cash flows, or the

price premium, (i) is increasing in the degree of upside risk, (ii) is positive and increasing (negative

and decreasing) in investor disagreement for securities characterized by upside (downside) risk, and

(iii) displays positive interaction effects or increasing differences between payoff asymmetry and

investor disagreement.
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Section 3 shows how the model predictions and comparative statics are consistent with several

empirical regularities. A substantial empirical literature recovers estimates of the pricing kernel by

inverting no-arbitrage characterizations of option prices. They consistently find evidence of non-

monotonic or U-shaped pricing kernels that seem at odds with standard risk-based no arbitrage

conditions, i.e. the so-called pricing kernel puzzle, or negative variance risk premia (the so-called

variance premium puzzle), which imply that the risk-neutral variance is a systematically upwards-

biased predictor of the underlying return variance. These observations are all consistent with our

core prediction that the risk-neutral measure displays excess weight on tail risks.2

Our other predictions then derive from the comparative statics that EWTR imply for the cross-

sectional variation in returns.

1. Returns to skewness: A large empirical literature documents a negative relation between

skewness of the return distribution and expected returns in equity markets.3 In bond markets,

returns to skewness are reflected in the credit spread puzzle, according to which markets appear to

overweight default risks, especially for high-quality investment grade bonds.4

2. Returns to disagreement: The empirical evidence on returns to investor disagreement is

divided. Several studies find negative returns to disagreement in equity markets, which are typically

interpreted in support of heterogeneous priors models with short-sales constraints in which securities

are over-priced due to an implicit re-sale option whose value is always increasing with forecast

dispersion (Miller, 1977). Others find positive returns to disagreement in bonds markets, and

interpret disagreement as a proxy for risk.5

3. Interaction effects: several studies find that returns to disagreement interact with returns to

asymmetry, such as the value premium for equity, or leverage and default risk for bonds.6

Our theory is able to account for all three predictions. In particular, it explains why higher

2See Jackwerth (2000), Ait-Sahalia and Lo (2000), Bakshi et al. (2010), Christoffersen et al. (2013) and Audrino

et al. (2022) for evidence of non-monotone or U-shaped pricing kernels, and Carr and Wu (2009) for evidence on

the variance premium puzzle. These empirical findings are established using index options and market returns, while

our predictions speak more naturally to cross-sectional return predictions for individual securities, especially in the

risk-neutral variant of our model. While we are not aware of equally sharp empirical results for individual securities,

the empirical results offer at least suggestive empirical support for the core forces at play in our model.
3See Conrad et al. (2013), Boyer et al. (2010) and Green and Hwang (2012).
4See Huang and Huang (2012), Feldhütter and Schaefer (2018) and Bai at al. (2020) for recent contributions.
5See Diether et al. (2002), and Gebhardt et al. (2001), and Yu (2011) for returns to disagreement in equity

markets, Guntay and Hackbarth (2010) for bond markets and Carlin et al. (2014) for mortgage-backed securities.
6Yu (2011) documents that returns to disagreement are increasing with book-to-market ratios, and the value

premium is increasing with forecast disagreement. Guntay and Hackbarth (2010) report that disagreement has larger

impacts on bond spreads and returns for firms with high leverage and low credit ratings.
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disagreement can lead to lower equity returns but higher bond returns by identifying upside vs.

downside risk as the key determinant for signing the returns to disagreement.

We then use our model to conduct a hypothetical portfolio sorting exercise. We parametrize

asset payoff distributions to match idiosyncratic skewness and volatility metrics reported in the

literature,7 and calibrate key informational parameters to match the observed variation in forecast

dispersion in the I.B.E.S. data of analysts’ earnings forecasts to impute excess weight on tail risks for

a cross-section of equity returns. While not a perfect measure of investor private information (after

all, analyst forecasts are publicly observed!), we argue below that the observed forecast dispersion is

a reasonable proxy of dispersed information between different investors. The analyst forecast sample

suggests excess weight on tail risks is highly skewed, i.e. small for most firms but very significant for

those in the top skewness quintile, with excess weight on tail risks twice as large as at the average,

and up to nine times as large as for the median firm. Our model can generate roughly 40% of the

observed return differential between the highest and lowest skewness quintiles and about 70% of

the observed return differential between the highest and lowest disagreement quintile. The model-

implied returns also display strong positive interaction effects, with annualized excess monthly

returns to skewness varying by about 6% between the highest and lowest disagreement quintiles,

and excess returns to disagreement varying by a similar magnitude between the highest and lowest

skewness quintiles–roughly 90% of the variation in returns to disagreement and the value premium

reported in Yu (2011).

Section 4 generalizes the key steps of our theoretical arguments to generic distributions of asset

payoffs, supply shocks and investor preferences. Excess weight on extreme tail risks materializes

under a weak condition on the informativeness of the prior in the tails. The richer comparative

statics results underlying our three main predictions require the somewhat stronger condition that

the implied pricing kernel is log-convex. Log-convexity holds in all canonical examples. More

generally, we show that the pricing kernel is log-convex whenever (i) posterior beliefs are “sufficiently

well behaved”, in the sense that agents update monotonically from signals (posterior beliefs satisfy

a monotone likelihood ratio property w.r.t. the endogenous market signal), and the informativeness

of signals does not vary too much across states, and (ii) the information contained in the price is

well approximated by a noisy affine signal of fundamentals.

Section 5 studies extensions to multiple securities and coexistence of informed and uninformed

traders. We highlight conditions under which the existence of a risk-neutral measure with an

updating wedge generalizes to multi-asset environments, so that a unique pricing kernel can be

7See Boyer et al. (2010).
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applied to simultaneously price multiple securities. Our extensions further highlight how dispersed

information amplifies skewness premia in asset markets, which is key for generating quantitatively

significant returns to skewness in the model.

Our paper contributes to the literature on noisy information aggregation in asset markets by

offering a variant of the canonical noisy rational expectations model that dispenses with strong para-

metric assumptions about asset payoffs. In a similar spirit, Breon-Drish (2015) analyzes non-linear

and non-normal variants of the noisy REE framework in the broad exponential family of distri-

butions and CARA preferences.8 Barlevy and Veronesi (2003), Peress (2004) and Yuan (2005)

also study non-linear models of noisy information aggregation with a single asset market. Mala-

mud (2015) and Chabakauri et al. (2021) study information aggregation in non-linear, multi-asset

noisy REE models with a rich set of state-contingent securities, exploiting spanning properties

of state prices with complete or incomplete markets. In contrast to our work, these papers all

impose parametric assumptions on the underlying asset payoffs, probability, information and pref-

erence structure to fully characterize the information content of asset prices, rather than identifying

properties of asset prices that apply beyond the specifics of their environment, and linking such

properties to cross-sectional return anomalies.

Our equilibrium characterization with noisy information aggregation also shares similarities

with common value auctions, which are especially pronounced in the case with risk-neutral agents

and position bounds.9 Yet whereas the auctions literature seeks to explore under what conditions

prices converge to the true fundamental, we focus on the departures from this competitive limit

under information frictions.

2 The general model and three examples

We begin by introducing our general model, including the information structure and the financial

market. We then discuss three examples to illustrate the key theoretical ideas of our paper.

The financial market is a Bayesian trading game with a unit measure of informed traders and a

single asset whose payoff is given by a strictly increasing function π(·) of a stochastic fundamental,

θ. Nature draws θ ∈ R according to a prior distribution with cdf. H (·). Each informed investor i

then receives a private signal xi = θ + εi, where εi is i.i.d across agents, and distributed according

8He further derives powerful results on the incentives for information acquisition, whereas we take the information

structure as given.
9See Wilson (1977), Milgrom (1979, 1981), Pesendorfer and Swinkels (1997), Kremer (2002) and Perry and Reny

(2006) for important contributions to this literature.
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to cdf. F (·) and smooth, symmetric density function f (·) with unbounded support. We assume

f ′ (·) /f (·) is strictly decreasing and unbounded above and below.10 We denote the variance of

fundamentals by σ2
θ ≡ V ar (θ) and the precision of private signals by β ≡ 1/V ar (ε).

Investors’ preferences are characterized by a strictly increasing, concave utility function U (·)

defined on realized gains or losses di · (π(θ)− P ), where demand di ∈ [dL, dH ] is restricted by

position limits dL < 0 < dH .11 Investors submit price-contingent demand schedules, defined as

a mapping d (xi, P ) from signal-price pairs into asset holdings. Aggregate demand is thus given

by D(θ, P ) =
∫
d(x, P )dF (x − θ), where F (x − θ) is the cross-sectional cdf. of private signals xi,

conditional on θ.12 The supply of securities s is stochastic with support [dL, dH ] and distributed

according to cdf G (·). Once investors submit orders, a price P (θ, s) is selected, which clears the

market if and only if, for all (θ, s) ∈ R× [dL, dH ],

s = D(θ, P ) ≡
∫
d (x, P ) dF (x− θ). (1)

Let H(·|P ) denote the posterior cdf of θ, conditional on observing P , and H(θ|x, P ) the in-

vestors’ posterior conditional on x and P . Given H(·|x, P ), a demand function d(x, P ) is opti-

mal, if it solves the investors’ decision problem maxd∈[dL,dH ]

∫
U (d(π(θ)− P )) dH (θ|x, P ). For

d(x, P ) = d ∈ (dL, dH), this leads to the first-order condition∫
(π(θ)− P ) · U ′(d(π (θ)− P ))dH(θ|x, P ) = 0. (2)

A Perfect Bayesian Equilibrium consists of a demand function d(x, P ), a price function P (θ, s),

and posterior beliefs H(·|P ) such that (i) d(x, P ) is optimal given H(·|x, P ); (ii) P (θ, s) clears

the market; and (iii) H(·|P ) satisfies Bayes’ rule whenever applicable, i.e., for all P such that

{(θ, s) : P (θ, s) = P} is non-empty. We focus on price-monotone equilibria {P (θ, s); d(x, P );H(·|P )}

in which d(x, P ) is decreasing in P whenever d(x, P ) ∈ (dL, dH).13

In our model, investors do not observe signals directly about asset payoffs, but rather about a

fundamental θ, and the asset payoff is a monotone function of θ.14 This formulation separates

10Monotonicity of f ′ (·) /f (·) implies signals have log-concave density and satisfy the monotone likelihood ratio

property. Unboundedness implies extreme signal realizations induce large updates in posterior beliefs, (almost)

regardless of the information contained in other signals.
11Position limits may be infinite ((dL, dH) = R) if the investors are strictly risk-averse (so that security demands

are bounded by risk aversion), but must be finite when investors are risk-neutral. Depending on the context and

application, both scenarios may be relevant.
12As is common in large anonymous games, we assume that a (Strong) Law of Large Numbers holds to equate

aggregate demand to the expectation of individaul demand at a given aggregate state.
13Price monotonicity of demand arises automatically if trade takes place through a limit-order book.
14If π (θ) = θ, our model reduces to the canonical formulation in which investors observe noisy signals of dividends.

6



the distribution of asset payoffs from the investors’ updating of beliefs, which strikes us as a

reasonable approximation of many real world financial markets. For example, equity analysts

gather information about a firm’s earnings and investment opportunities, which affect dividend

payouts to shareholders, while a bond analyst may assess the issuer’s solvency which depends on

revenues and leverage, among other variables often summarized in a single "distance to default"

metric. An option trader will forecast where the underlying is heading. In all these cases, the

fundamental about which information is gathered is distinct from the security’s payoffs, and the

mapping from fundamentals to asset payoffs is typically non-linear. Our model is flexible enough

to accommodate any of these possibilities.

2.1 Example 1: the Canonical CARA-normal model

We begin with the textbook CARA-normal model of noisy information to introduce two key ideas

that we will generalize throughout the rest of our paper: first, we show that the equilibrium price

can be represented by a sufficient statistic which is defined as a linear combination of fundamental

and supply shocks. Furthermore, the price displays an information updating wedge, which makes it

more sensitive to this sufficient statistic than is warranted by the information it conveys about the

fundamental. Second, we show that the updating wedge leads to a risk-neutral probability measure

that displays excess weight on tail risks (EWTR, henceforth). Moreover, we illustrate that EWTR

arises from the presence of supply shocks, and that it gets amplified through the presence of noisy

private information. These properties are of limited interest when payoffs are symmetric, but they

turn out to be quite consequential once the symmetry assumption is relaxed.

Our general model nests the canonical CARA-normal setup with the following assumptions: (i)

normally distributed dividends, π (θ) = θ with θ ∼ N
(
0, σ2

θ

)
; (ii) normal distribution of supply:

s ∼ N
(
s, σ2

s

)
; (iii) normally distributed private signals, xi|θ ∼ N

(
θ, β−1

)
; (iv) CARA preferences

over terminal wealth, U (w) = − exp(−χw), and (v) no limits on portfolio holdings, (dL, dH) = R.

Sufficient statistic representation: Recall that we can represent an informed trader’s asset

demand in the CARA-normal set-up as d (x, P ) = (χV ar (θ|x, P ))−1 (E (θ|x, P )− P ). Now, define

z (P ) as the private signal of the investor who, at a given price P , finds it optimal to hold exactly

s units of the asset. If z (P ) is monotone in the price, we can think of the information that is

contained in P as equivalent to the direct observation of z, i.e. z serves as a sufficient statistic for

the information content of the price. Setting d (z (P ) , P ) = s, we can invert the demand relation

to obtain the following sufficient statistic representation of the equilibrium price as a function of z:

P (z) = E (θ|x = z, z)− χV ar (θ|x = z, z) · s. (3)
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It is then straight-forward to check that z|θ is normally distributed with mean θ and variance

τ−1 ≡ (χ/β)2 · σ2
s , and therefore posterior beliefs are normal with E (θ|x, z) = βx+τz

1/σ2
θ+β+τ

and

V ar (θ|x, z) =
(
1/σ2

θ + β + τ
)−1

. Therefore, E (θ|x = z, z) = γ̂ ·z and V ar (θ|x = z, z) = (1− γ̂)σ2
θ ,

where γ̂ ≡ β+τ
1/σ2

θ+β+τ
denotes the slope coefficient of P (z) with respect to z.

In other words, the equilibrium price is represented as the risk-adjusted dividend expectation of

a trader who, at the given price, chooses to hold exactly s units of the security. To understand the

significance of this representation, we compare P (z) to the “objective” Bayesian posterior of θ, given

z, which is also normal, but with expectation E (θ|z) = γ · z and variance V ar (θ|z) = (1− γ)σ2
θ ,

where γ = τ
1/σ2

θ+τ
represents the slope coefficient of E (θ|z) w.r.t. z. Since γ̂ > γ, the price differs

from the expected dividend by responding more strongly to the market signal z than is justified

purely by its information content: E (θ|x = z, z) treats the signal as if it had precision β + τ , when

its true precision instead is only equal to τ . We term this excess price sensitivity the information

updating wedge.15 In addition, the price incorporates an expected risk premium χ (1− γ̂)σ2
θ · s,

which scales with risk aversion, posterior uncertainty, and average supply.

This information updating wedge results from market clearing with dispersed information and

is perfectly consistent with Bayesian rationality. An increase of the sufficient statistic from z to

z′ conveys positive news about θ through the information contained in the price and thus raises

dividend expectations for all traders in the market. In addition, such a shift must come from either

a reduction in supply s or an increase in θ, which shifts the distribution of private signals and thus

increases asset demand. In both cases a further price adjustment is needed to clear the market. The

expression for the equilibrium price incorporates the effect of the sufficient statistic z on posterior

beliefs through the price signal weighted by τ , and the extra adjustment due to market-clearing

with the additional weight β. In contrast, the Bayesian posterior of θ given z only includes the

first effect. Theorem 1 in Section 4 shows that under weak regularity conditions, the equilibrium

price with noisy information aggregation always admits a sufficient statistics representation with

an information updating wedge of the form described by equation (3).

The information updating wedge arises from a combination of dispersed information and finitely

elastic asset demand, due to risk aversion. The latter implies that demand (fundamental) and supply

shocks have price impact, as reflected by the extra price adjustment required to clear markets.

Dispersed information allows us to represent these price changes as shifts in the marginal investor’s

private information. Compare this with an otherwise identical market in which all investors share

the same information z ∼ N
(
θ, τ−1

)
. With CARA preferences and taking as given supply s, the

15The only prior discussion of the updating wedge we are aware of is by Vives (2008).
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asset price with common information is V (z, s) = E (θ|z)− χV ar (θ|z) s.

Risk-neutral measure and excess weight on tail risks: The asset price can equivalently

be represented as

P (z) = E
(
(θ −R) ·mI (θ, z) |z

)
where mI (θ, z) ≡ h(θ|x=z,z)

h(θ|z) represents the change in probability measure implied by noisy informa-

tion aggregation and R ≡ χ (1− γ̂)σ2
θ · s the expected risk premium.16 Taking prior expectations,

we obtain

E (P (z)) = E ((θ −R) ·m (θ)) =

∫ ∞
−∞

θ′dĤ
(
θ′
)

where m (θ) = E
(
mI (θ, z) |θ

)
, and Ĥ(θ) =

∫ θ
−∞m(θ′ + R)dH (θ′ +R). It is straight-forward

to check that E
(
mI (θ, z) |z

)
= E (m (θ)) = 1, i.e. mI (θ, z) and m (θ) represent the changes in

probability measure and Ĥ(θ) the risk neutral probability measure associated with the equilibrium

price. The latter combines a risk adjustment R = χ (1− γ̂)σ2
θ · s that represents a parallel shift

in the distribution of fundamentals with the informational adjustment m̂ (·) that captures the

information updating wedge.

Equivalently, we can construct Ĥ(·) by compounding the posterior θ|x = z, z∼ N
(
γ̂z, (1− γ̂)σ2

θ

)
,

with the prior distribution over z, z∼ N
(
0, σ2

θ + τ−1
)
, and adjusting the mean for the risk-

premium term R = χ (1− γ̂)σ2
θ · s. Hence Ĥ(·) is normal with mean −R and variance σ̂2

θ ≡(
1− γ̂ + γ̂2/γ

)
σ2
θ > σ2

θ . In other words, Ĥ(·) departs from the prior H(·) through an adjustment

of the mean and a mean-preserving spread, a property that we refer to as excess weight on tail

risks: controlling for the mean −R, Ĥ(·) places higher weight on realizations of θ in both upper

and lower tails. EWTR distinguishes the risk-neutral measure under dispersed information from an

average risk premium, which shifts probability mass from the upper to the lower tail realizations,

analogous to the shift −R in the mean of the distribution.

Combining the Law of Total Variance with the observation that V ar (θ|x, z) is independent of

the realization of x, we obtain that σ̂2
θ −σ2

θ = V ar (E (θ|x = z, z))−V ar (E (θ|x, z)). Hence EWTR

(σ̂2
θ > σ2

θ) is equivalent to saying that the posterior expectations under the risk-neutral measure are

strictly more variable than the posterior expectations of an arbitrary informed trader in the market.

This property emerges because supply shocks introduce fluctuations in risk-neutral expectations

that are orthogonal to the investors’ private signals of fundamentals.

16When m (θ, z) = h(θ|x=z,z)
h(θ|z) , E (θ|x = z, z) =

∫
θ · h(θ|x=z,z)

h(θ|z) · h(θ|z)dθ = E (θ ·m (θ, z) |z).
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Supply shocks vs. dispersed information: We can re-state σ̂2
θ as

σ̂2
θ = σ2

θ +
β + χ2σ2

s(
1/σ2

θ + β + β2/ (χ2σ2
s)
)2 .

It follows that in the limit as β → 0 (private information vanishes), σ̂2
θ converges to σ2

θ +σ4
θ ·χ2σ2

s >

σ2
θ . In other words, the presence of supply shocks on its own is already sufficient to generate

EWTR, even when all traders have identical beliefs. The reason is that supply shocks vary the risk

premium required for holding the asset, which generates price fluctuations that are independent of

the underlying fundamentals. These orthogonal price fluctuations are captured by the EWTR in

the risk-neutral measure.

On the other hand, for small positive β, σ̂2
θ ≈ σ2

θ +σ4
θ ·
(
β + χ2σ2

s

)
is increasing in β. Dispersed

information thus amplifies EWTR when private signals are sufficiently noisy. Furthermore, consider

the limit when β and σ2
s become small but the precision of the price signal τ is held constant. Since

β =
√
τ ·χσs, the EWTR σ̂2

θ−σ2
θ is of order χσs with dispersed information, but of order χ2σ2

s when

β = 0. Hence when supply shocks are small and private signals sufficiently noisy, amplification can

become arbitrarily large. On the other hand, private information obviously reduces excess weight on

tail risks, if signals are sufficiently informative: in the limit as β →∞, the price becomes perfectly

revealing and must therefore converge to the true fundamental, in which case the risk-neutral

distribution coincides with the prior distribution over θ. The amplification arises because noisy

information aggregation generates negative co-movement between investor dividend expectations

and the stochastic risk premia required to compensate investors for holding the asset: a positive

supply shock that increases exposures leads to a higher risk premium and a lower equilibrium price.

But since traders can’t distinguish whether price movements are driven by fundamentals or supply

shocks, they view the price reduction as possibly negative news about fundamentals thus adjusting

their expectations downwards, which in turn amplifies price fluctuations and EWTR.17

Asset-pricing predictions: Figure 1 compares the price (thick solid line) with expected

dividends (thin solid line), conditional on z (assuming average supply s = 0). Since γ̂ > γ, the

price responds more to z than the underlying dividend expectations. We can then derive predictions

for return premia by taking expectations w.r.t. z, or equivalently by comparing expected cash-

flows under the risk-neutral measure Ĥ(·) and the physical distribution H(·). However, such a

comparison is of limited interest in the CARA-normal model, since the average price only depends

on the expected risk premium R and not on the EWTR property. This can be seen by comparing

the solid horizontal line (average price with s = 0) with the dashed horizontal line (average price

17We generalize these observations below in section 5.
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Figure 1: Linear payoff model –CARA-normal example
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with s > 0). Indeed, when s = 0, the unconditional expectations of prices and dividends coincide,

as payoff symmetry implies that overpricing when z is positive is exactly offset by underpricing

when z is negative. We must therefore look beyond the symmetry assumptions embedded in the

CARA-normal example to analyze how noisy information aggregation and EWTR affect average

prices and returns.

2.2 Example 2: the CARA-binary model

Our second example illustrates how noisy information aggregation leads to a non-zero premium in

expected prices when asset payoffs are asymmetric, even when the expected asset supply is zero.

We consider a model with CARA preferences but assume binary payoffs: π (θ) = θ, where

θ ∈ {0, 1}, with ex-ante probability Pr (θ = 1) = λ > 0. The parameter λ measures the degree of

upside versus downside risk : if λ > 1/2, the security is a downside risk; if λ = 1/2, the risk is

symmetric; if λ < 1/2, the security is an upside risk. All other elements and notation are kept as

in section 2.1.18

With CARA preferences, an investor with private signal x demands

d (x, P ) =
1

χ

(
log

(
µ (x, P )

1− µ (x, P )

)
− log

(
P

1− P

))
(4)

units of the security, where µ (x, P ) represents the informed investor’s posterior belief that θ = 1,

conditional on observing private signal x and price P . As before, we construct a sufficient statistic

18This example is a special case of example 1 in Breon-Drish (2015).
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z (P ) as the private signal of the investor who, at a given price P , finds it optimal to hold exactly s

units of the asset. We conjecture that z|θ ∼ N
(
θ, τ−1

)
is normally distributed with mean θ ∈ {0, 1}

and precision τ , in which case µ (x, P (z)) takes the form

log

(
µ (x, P (z))

1− µ (x, P (z))

)
= log

(
λ

1− λ

)
+ β

(
x− 1

2

)
+ τ

(
z − 1

2

)
. (5)

Substituting (5) into (4) and inverting the condition d (z, P ) = s then leads to the following sufficient

statistic representation of the equilibrium price:

P (z) =
λe(β+τ)(z− 1

2)−χs̄

λe(β+τ)(z− 1
2)−χs̄ + 1− λ

. (6)

From the market-clearing condition s =
∫
d (x, P ) dΦ

(√
β (x− θ)

)
, for θ ∈ {0, 1}, it is then

straight-forward to verify that z = θ − χ/β · (s− s̄) and hence z|θ ∼ N
(
θ, τ−1

)
with τ−1 =

(χ/β)2 · σ2
s , which confirms our initial conjecture. As in the CARA-normal model, equation (6)

represents the price as a function of the sufficient statistics z, with an updating wedge: the log-odds

ratio implied by the price attributes a weight τ + β to the market signal z, rather than just τ , and

also includes a risk adjustment −χs̄ to compensate investors for their expected exposure s̄.

With binary payoffs, the expected price is equal to the market-implied or risk-neutral prior that

θ = 1, which we can compute by taking expectations over the price function in (6). Proposition

1 shows that when the asset is in zero expected supply, the expected price or risk-neutral prior

attaches a higher probability to “tail risks”:

Proposition 1 : If s = 0, there exists ∆ ∈ (0, 1) such that the expected price takes the form

E (P (z)) = λ+

(
1

2
− λ

)
∆. (7)

Moreover, limβ→0 ∆ = λ (1− λ) (χσs)
2 + o

(
(χσs)

4
)

and lim
β→0,χσs=

β√
τ

∆
β = λ (1− λ) + o (τ).

Hence when the expected asset supply is 0, the expected price includes an adjustment (1/2− λ) ∆

that increases the expected asset price whenever the asset is characterized by upside risk (λ < 1/2),

and decreases the expected asset price whenever the asset is characterized by downside risk (λ >

1/2). This adjustment introduces a positive relation between the skewness of the security and its

expected price, we therefore refer to (1/2− λ) ∆ as the skewness premium.

To understand the intuition of this result, Panels a) and b) in Figure 2 plot the price and

dividend expectation for different realizations of z, for the cases of downside (λ = 0.9), and upside

(λ = 0.1) risks, all under s = 0. As before, the price responds more strongly to z than the dividend
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expectation and thus crosses the latter from below for some realization of z. For symmetric payoffs

(not plotted), and as was the case for the CARA-normal model, the average price coincides with

the average payoff.

For downside risks, Panel a) of the Figure shows that the difference between price and expected

dividend becomes highly asymmetric and is much more pronounced for low realizations of z than

for high draws. Intuitively, for a given dispersion of private signals, disagreement among investors

about payoffs is rather limited for high values of z, as cash-flow variability is much more bounded

on the upside relative to the prior. For low draws of z, on the other hand, the risk shifts towards a

situation where the security payoff may fall considerably below its prior, heightening the dispersion

of payoff expectations among investors, thus amplifying the difference between the price and the

expected dividend as function of z. Taking the average across realizations, this asymmetry naturally

leads to expected prices (thick solid horizontal line)below average payoffs (thin solid horizontal line),

even when the risk-premium compensation is by construction set to zero (s = 0). The opposite

situation arises with upside risks.

In addition, we obtain, as in the CARA-normal model, that the skewness premium is of order

χ2σ2
s when private information vanishes, but of order β =

√
τ · χσs, when the price remains

informative in the limit. In other words, once again the skewness premium already results from the

presence of supply shocks, but is amplified by noisy information aggregation.

Recall that in the CARA-normal model, we linked the presence of EWTR without private signals

to stochastic risk premia that generate price fluctuations that are orthogonal to fundamentals,

and we linked the amplification from private information to co-movement between average risk

premia and dividend expectations. The same forces are at play in the CARA-binary model, but in

addition the asymmetry in payoffs makes both the stochastic risk premia and their co-movement

with dividend expectations asymmetric: with upside (downside) risk, the risk premium required to

compensate investors for a given size positive asset exposure is strictly smaller (larger) in absolute

value than the risk premium for taking on a negative exposure of equal size. This is due to downside

risk aversion: investors require extra compensation for downside exposures, and when the security

is characterized by upside risk (λ < 1/2), the downside exposure is larger for negative than for

positive positions, and the opposite is true for downside risks (λ > 1/2). The magnitude of the

asymmetry between upside and downside risks is then scaled by the variance of supply shocks.

Likewise, with noisy private signals, a positive supply shock increases required compensation for

risk and lowers the asset price, which in turn leads investors to lower their dividend expectations.

But this also reduces their posterior uncertainty for upside risks, since the unlikely event of a
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high payoff becomes even more remote, but increases posterior uncertainty for downside risks since

investors become more worried about the unlikely scenario that the asset may actually fail to pay

off. For upside risks, this means that the co-movement of risk premia with dividend expectations is

stronger on the upside than the downside, since uncertainty and exposures are negatively correlated

(and risk premia are the product of the two), while for downside risks, the co-movement of risk

premia with dividend expectations is stronger on the downside than on the upside. This asymmetric

amplification then generates a positive price premium for upside risks and a negative price premium

for downside risk, which is captured by the value of ∆ in proposition 1. This information-based

skewness premium scales with the standard deviation of supply shocks σs and thus becomes the

dominant force behind price premia for skewness when private information is noisy yet the price

remains informative.19

The characterization in proposition 1 can be extended to the case with s 6= 0 as follows:20

Let λ̃ = λe−χs/
(
λe−χs + 1− λ

)
denote a risk-adjusted prior that π = 1. With s 6= 0, we can

replace λ with λ̃ and go through the same steps using the risk-adjusted prior λ̃. However, when

computing E (P (z))−λ one must correct for the gap between λ and λ̃, which yields the additional

risk premium term
(
λ− λ̃

)
R, with R < 1. The risk premium scales with the difference between

the objective and the risk-adjusted probability that θ = 1, which depends on the expected asset

supply s. The contribution of this term is illustrated in Figure 2 through the dashed horizontal

line, corresponding to the average price when s = 0 (thick solid horizontal line) minus the risk

premium that arises when s > 0 (a negative average supply would lead to the opposite result).

Summing up, the CARA-binary example illustrates that noisy information aggregation gener-

ates a skewness premium in asset prices that is separate from the risk premium that emerges from

non-zero average supply. However, this example relies heavily on the specific features introduced by

CARA preferences and binary payoffs, limiting its applicability for broader, more realistic security

classes and quantitative explorations. Moreover, the binary distribution of payoffs links expected

payoff, payoff uncertainty and payoff asymmetry all to the same parameter λ. Hence our interpre-

tation of ∆ as a price premium linked to skewness, along with the amplification result from noisy

information aggregation, is at best suggestive, since the formal analysis doesn’t clearly separate

the respective roles of payoff uncertainty and asymmetry. Our next example relaxes the present

payoff assumptions and formally establishes a tight link between the expected price premium and

19In section 5, we generalize this decomposition into preference- and information-based skewness premia, along

with the amplification result, to general preferences and securities, in a manner that clearly highlights the respective

roles of downside risk aversion and posterior uncertainty.
20Details are presented in the online appendix.
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Figure 2: Non-linear payoff models –CARA-binary and risk neutral, normal model
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the asymmetry of asset payoffs.

2.3 The risk-neutral, normal model

We now introduce a variant of the general model that allows us to generalize the key ideas of the

previous examples without imposing strong restrictions on security payoffs. Specifically, we assume

that informed investors are risk-neutral and face binding position limits. This model is rich enough

to convey our main theoretical results, yet tractable enough to allow closed-form solutions that

facilitate the derivation of rich empirical predictions for returns to skewness and disagreement. It

also helps to tie model parameters more closely to observables, which we explore in the next section.

We view the risk-neutral model with position limits as depicting the activity of one among many

parallel securities markets, and interpret comparative statics results as cross-sectional predictions

about asset returns. This model is of special interest because risk preferences disappear from the

equilibrium characterization. It therefore strikes us as a natural laboratory for studying cross-

sectional return predictions with noisy information aggregation, since investors should be able to

diversify asset-specific risks by investing across a wide range of assets, i.e. risk preferences disappear

from the characterization of returns. Such diversification can be achieved by limiting the wealth

that is invested in any given security, akin to position limits in our model. In section 5 we return

to the discussion of multi-asset extensions of our model, and also address conditions under which

one may consider asset markets one-by-one, in isolation from each other.

We consider the following specialization of the general model: (i) normally distributed funda-

mentals θ ∼ N
(
0, σ2

θ

)
and private signals xi|θ ∼ N

(
θ, β−1

)
, (ii) risk-neutral preferences U (w) = w

with positions limited by [dL, dH ] = [0, 1],21 and (iii) stochastic asset supply s = Φ (u), where Φ (·)

is the cdf of a standard normal distribution, and u ∼ N
(
0, σ2

u

)
. Importantly, our analysis imposes

no restriction on the payoff function π (·), allowing us to offer asset pricing predictions for arbitrary

payoff distributions. The functional form assumption about asset supply is adapted from Hellwig et

al. (2006) and appears in similar form in Goldstein et al. (2013).22 It keeps the updating problem

tractable by preserving normality of the investors’ posterior beliefs.

As before, we first derive a price function in terms of a sufficient statistic z, and then use it to

obtain a risk-neutral representation of the expected price that displays EWTR. Finally we derive

21Our main predictions are not dependent on the specific bounds assumed, such as the short-sale constraint (dL = 0)

which we assume only for simplicity.
22Goldstein et al.(2013) similarly assume risk-neutral investors and position limits, but focus on specific return

assumptions that allow them to analyze informational feedback from financial markets to investment decisions.
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comparative statics of expected prices from the interaction between EWTR and payoff asymmetries.

Characterization of equilibrium price:

Standard arguments imply that H(·|x, P ) must be first-order stochastically increasing in the

investor’s signal x. There then exists a unique signal threshold x̄ (P ) such that∫
π (θ) dH (θ|x, P ) R P if and only if x R x̄ (P ) , (8)

and investors find it optimal to purchase one unit of the security if and only if their private signal

x exceeds the threshold x̄ (P ), otherwise they do not buy. This leads to an aggregate demand by

informed investors that is equal to D (θ, P ) = Pr (x ≥ x̄ (P ) |θ) = 1− Φ(
√
β(x̄ (P )− θ)).

Setting z ≡ x̄ (P ), market-clearing then implies 1 − Φ(
√
β(z − θ)) = s = Φ(u), or equivalently

z = θ − 1/
√
β · u, and z|θ ∼ N

(
θ, τ−1

)
, where τ ≡ β/σ2

u. Substituting this characterization of z

into the marginal investor’s indifference condition (8) leads to the following proposition:

Proposition 2 : The unique price-monotone equilibrium is characterized by the equilibrium price

function

Pπ(z) = E (π (θ) |x = z, z) =

∫
π(θ)dΦ

(
θ − γ̂z√
1− γ̂σθ

)
(9)

where γ̂ ≡ β + τ

1/σ2
θ + β + τ

.

As before, Proposition 2 represents the equilibrium price in terms of a sufficient statistic z

for the information conveyed through the asset price. This sufficient statistic corresponds to the

private signal of the marginal investor who is just indifferent between buying and not buying the

asset. Once again we can equate the price to the dividend expectation of a hypothetical investor

who treats the market signal z as if it had precision β + τ .

The expected dividend conditional on z instead takes the form

E (π (θ) |z) =

∫
π(θ)dΦ

(
θ − γ · z√
1− γσθ

)
where γ ≡ τ

1/σ2
θ + τ

. (10)

The comparison between equations (9) and (10) shows exactly the same information updating

wedge as in the CARA-normal and CARA-binary examples. The intuition behind these expressions

is also the same: in order to clear the market, the expectation of the marginal investor must respond

more strongly to changes in the sufficient statistic z than is warranted purely by the information

conveyed through it, which occurs through the systematic shift in the identity of this marginal

investor in order to accommodate fluctuations in supply.

Asset pricing implications of noisy information aggregation:
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Proposition 2 allows us to represent the expected price E (P (z)) =
∫
π (θ) dĤ (θ) as an expecta-

tion of dividends under a risk-neutral measure Ĥ. As in the CARA-normal example, we compound

the risk-neutral posterior θ|x = z, z ∼ N
(
γ̂ · z, σ2

θ (1− γ̂)
)

with the prior z ∼ N
(
0, σ2

θ/γ
)

to show

that the risk-neutral measure Ĥ(·) is normal with mean 0 and variance

σ̂2
θ =

(
1− γ̂ + γ̂2/γ

)
σ2
θ > σ2

θ . (11)

This representation is identical to the one found in the CARA-normal example, aside from the fact

that the precision τ of the sufficient statistic is calculated differently. The difference between Ĥ(·)

and H(·) thus corresponds to a mean-preserving spread characterized by the difference between the

risk-neutral prior and the objective prior variance, σ̂2
θ as compared to σ2

θ . Taking expectations we

represent the difference between the expected price and expected payoff as

W (π, σ̂θ) ≡ E (Pπ (z))− E (π (θ)) =

∫ ∞
−∞

(
π

(
σ̂θ
σθ
θ

)
− π (θ)

)
dΦ

(
θ

σθ

)
. (12)

The term W (π; σ̂θ) summarizes the impact of the mean-preserving spread on the expected price

premium. Our next definition provides a partial order on payoff functions that we use for the

comparative statics of W (π, σ̂θ).

Definition 1 (Cash flow risks) :

(i) Payoff function π has symmetric risk if π (θ1)− π (θ2) = π (−θ2)− π (−θ1) for all θ1 > θ2 ≥ 0.

(ii) Payoff function π is dominated by upside risk if π (θ1) − π (θ2) ≥ π (−θ2) − π (−θ1) , and

dominated by downside risk if π (θ1)− π (θ2) ≤ π (−θ2)− π (−θ1) , for all θ1 > θ2 ≥ 0.

(iii) Payoff function π1 has more upside risk than π2 if π1 − π2 is dominated by upside risk.

This definition classifies payoff functions by comparing marginal gains and losses at fixed dis-

tances from the prior mean to determine whether payoff fluctuations are larger on the upside or on

the downside. Any linear payoff function has symmetric risks, any convex function is dominated

by upside risks, and any concave function by downside risks, but the classification extends to more

general non-linear functions with symmetric gains and losses, non-convex functions with upside risk

or non-concave functions with downside risk.

Securities are easy to classify according to this definition when the fundamental and the return

are both observable (for example in the case of defaultable bonds or options). But even without

direct information about fundamentals, for any symmetric prior H (·), upside and downside risk

directly translate into the distribution of returns being more spread out above or below the median

of the return distribution. Intuitively, this means that a security that is dominated by upside
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(downside) risk has positive (negative) skewness. The reverse may not be true, however: a security

may be positively skewed overall, but have local violations of the upside risk condition for some

realizations of θ. As an expectation of third moments, skewness only offers a summary measure of

all the local asymmetries between upside and downside risks that are captured by definition 1.23

The following proposition generalizes the insights of proposition 1 from the CARA-binary model

to arbitrary returns in the risk-neutral model with position limits.

Proposition 3 (Sign and comparative statics of W (π, σ̂θ)):

(i) If π has symmetric risk, then W (π; σ̂θ) = 0. If π is dominated by upside risk, then W (π; σ̂θ)

is positive and increasing in σ̂θ. If π is dominated by downside risk, then W (π; σ̂θ) is negative and

decreasing in σ̂θ. Moreover, limσ̂θ→σθ |W (π;σθ) | = 0; and limσ̂θ→∞|W (π; σ̂θ) | = ∞, whenever

limθ→∞|π (θ) + π (−θ) | =∞.

(ii) If π1 has more upside risk than π2, then W (π1; σ̂θ) −W (π2; σ̂θ) is non-negative and in-

creasing in σ̂θ.

Proposition 3 shows how the expected price premium arises as a combination of asymmetry in

the payoff function π and noisy information aggregation through its effect on EWTR (σ̂θ > σθ).

The price premium is positive for upside risks, negative for downside risks and larger in absolute

value for assets with larger return asymmetries. Furthermore, the price premium increases and can

grow arbitrarily large as EWTR becomes more important, and it vanishes as σ̂θ → σθ. The latter

case arises, for example, when private signals become infinitely noisy (β → 0), or the price signal

infinitely precise (σ2
u → 0). Finally, price impact of information aggregation frictions and return

asymmetry are mutually reinforcing, since the price premium has increasing differences in upside

risk and EWTR. These results follow directly from our interpretation of the skewness premium as

a mean-preserving spread, which becomes more valuable when the payoff function shifts towards

more upside risk.

Panels c) and d) in Figure 2 help with the intuition of Proposition 2. With symmetric π (·)

(not plotted), EWTR does not affect the average price: over-pricing when z is high is just offset by

under-pricing when z is low. When instead π (·) is dominated by downside risk (panel c), the lower

tail risk of dividends is more important than the upper tail, and divergence of opinion between

investors becomes more consequential and widens the gap between expectations of the marginal

23Indeed the relation between the partial order defined by upside and downside risk according to Definition 1 and

the summary measure provided by skewness is akin to the comparison between ranking distributions by second-order

stochastic dominance and the summary ranking by the variance of the distribution.
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investor (eg., the price) and the expected dividend conditional only on the price signal, z. Hence

under-pricing on the downside is larger than over-pricing on the upside, which results in a positive

skewness premium. When instead π (·) is dominated by upside risk (panel d), reverse arguments

apply and the skewness premium is positive.

So far, the risk-neutral model abstracted from average supply effects like the risk premium in

the CARA-normal and CARA-binary models. It is possible to reintroduce them by assuming that

supply takes the form s = Φ (u), where u ∼ N
(
ū, σ2

u

)
, with ū 6= 0. In this case, the risk-neutral

measure Ĥ(·) is normal with mean θ̄ ≡ −
√
β

1/σ2
θ+β+τ

ū and variance σ̂2
θ . Hence, a higher supply

(ū > 0) results in a downwards shift of the risk-neutral distribution, similar to the CARA-normal

case. The expected price premium then decomposes into a component reflecting the shift in means

and a mean-preserving spread that inherits the same properties as described above in Proposition

3. The downwards shift in means leads to a lower average price and is plotted in panels c) and d) of

Figure 2 (dashed horizontal lines). The opposite case (upward shift) arises for ū < 0 (not plotted).

EWTR and Forecast Dispersion:

Equation (11) defines EWTR σ̂θ/σθ in terms of two parameters: the precision of private infor-

mation and the variance of noise trading. We conclude this section by showing how EWTR can

equivalently be represented in terms of two statistics that can, in principle, be estimated using

data on investors’ forecasts of fundamentals. These statistics allow us to translate the comparative

statics of Proposition 3 into testable predictions.

Define γ̂ = 1− 1/σ2
θ

1/σ2
θ+β+τ

= 1− V ar(θ|x,z)
V ar(θ) as a measure of the accuracy of investors’ forecasts of

fundamentals, and

D̃ ≡

√
V ar (E (θ|x, z) |θ, z)

V ar (θ)
=

β

1/σ2
θ + β + τ

β−1/2

σθ
=

√
β(

1/σ2
θ + β + τ

) 1

σθ
(13)

as a measure of forecast dispersion, defined as the cross-sectional standard deviation of investor

expectations, normalized by the standard deviation of fundamentals. We then represent EWTR

σ̂θ/σθ in terms of these two statistics:

σ̂θ
σθ

=

√
1 + D̃2

γ̂ (1− γ̂)

γ̂ (1− γ̂)− D̃2
(14)

Representation (14) shows that EWTR increases with forecast dispersion and is U-shaped in

forecast accuracy, reaching a minimum at γ̂ = 1/2, and diverging to infinity when γ̂ (1− γ̂)→ D̃2.

However, for most of its range, the effect of forecast accuracy γ̂ on σ̂θ/σθ is very mild as we move
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away from γ̂ = 0.5.24 In other words, forecast dispersion D̃ emerges as a natural empirical proxy

variable for EWTR. We can then re-cast the comparative statics with respect to σ̂θ in proposition

3 in terms of forecast dispersion. Our model thus predicts a positive (negative) relation between

forecast dispersion and returns for securities with downside (upside) risks. This distinguishes our

theory from models of heterogeneous priors with short-sales constraints in which higher disagree-

ment generates a positive option value of resale regardless of a security’s return structure.

3 Returns to skewness and disagreement: empirical evidence and

numerical calibration

3.1 Empirical evidence

Proposition 3 offers three qualitative predictions: returns to skewness, returns to disagreement, and

positive interaction effects. They all follow from the core prediction that the risk-neutral measure

displays excess weight on tail risks. We now briefly summarize the empirical evidence that offers

qualitative support for these predictions.

Core prediction (Excess Weight on Tail Risks): Starting with Jackwerth (2000) and

Ait-Sahalia and Lo (2000), a substantial empirical literature documents the pricing kernel puzzle,

i.e. the empirical observation that pricing kernels recovered from option prices on stock indices

appear to be non-monotone, and in certain cases U-shaped, confirming the core implication of our

theoretical model. Christoffersen et al. (2013) use a GARCH-based model of option pricing with

stochastic volatility, Audrino et al. (2022) apply the Ross (2015) recovery theorem, and Bakshi et

al. (2010) derive pricing implications of securities characterized by pure upside risks. All three focus

on index options and market returns, and find strong evidence in support of pricing kernels that

are U-shaped or upwards-sloping on the upside. While our theory (in particular, the risk-neutral,

normal model) may more naturally relate to cross-sectional variation in asset returns, the evidence

presented in these papers offers at least suggestive support for our theory. Moreover, Carr and Wu

(2008) document the variance premium puzzle: i.e. the observation that risk-neutral variance of

returns is an upwards-biased predictor of the true variance of returns. Christoffersen et al. (2013)

discuss the relation between the pricing kernel and variance premium puzzles. In their estimates,

the implied variance of returns overestimates the true variance of returns by about 12 to 18%,

which is consistent with an estimate of EWTR in the range of σ̂θ
σθ
≈ 1.06 to 1.09 in our model. As

24For example, a value of D̃ = 0.2, close to the average dispersion of earnings forecasts in GH, implies a minimum

value of σ̂θ/σθ = 1.0235, but does not exceed 1.0244 for values of forecast accuracy in the range of [0.25, 0.75].
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we wil see below, these estimates are very similar to the ones that we obtain by calibrating σ̂θ
σθ

to

match forecast accuracy and disagreement.

Our qualitative predictions then concern returns to skewness, disagreement and interaction

effects. For a given EWTR σ̂θ, we define a price premium for disagreement W
(
πQH ; σ̂θ

)
−

W
(
πQL ; σ̂θ

)
, where πQ represents a return distribution at a given quantile Q in the distribu-

tion of upside or downside risks (or skewness), with QH > QL. By sorting stocks according to

their implied level of upside or downside risk, or skewness, we can obtain the empirical analogue

of the skewness premium in returns. Likewise, for a given security π, we define a price premium

for disagreement W
(
π; σ̂qHθ

)
−W

(
π; σ̂qLθ

)
, where σ̂qθ represents the EWTR associated with a given

disagreement quantile q, with qH > qL. By sorting stocks according to their level of disagreement,

we can obtain the empirical analogue of the disagreement premium in returns.

Prediction 1 (Returns to skewness): Price premia are positive (negative) and return pre-

mia negative (positive) for securities dominated by upside (downside) risk. Price premia are in-

creasing and returns decreasing with skewness or upside risk.

A sizable empirical literature documents a negative relationship between expected skewness and

equity returns. For example, Conrad et al. (2013) estimate skewness of equity returns from option

prices, Boyer et al. (2010; BMV henceforth) from forecasting regressions. Both studies then sort

stocks by expected skewness and find that securities with higher skewness earn about 0.7% lower

average returns per month, equivalent to more than 8% of yearly excess returns for the strategy of

going long/short on low/high skewness stocks. Green and Hwang (2012) find that IPOs with high

expected skewness earn significantly more negative abnormal returns in the following one to five

years. Zhang (2013) shows that skewness correlates positively with the book-to-market factor and

thus helps account for the value premium.

Returns to skewness also manifest themselves in bond markets through the credit spread puzzle,

i.e. the difficulty to reconcile high levels of corporate bonds spreads with historical default data in

standard models pricing credit risk. This shortfall is most severe for short maturity, high investment

grade securities, which are almost as safe as treasuries of similar maturity, yet pay significantly larger

return premia. 25

25Huang and Huang (2012) calibrate a number of structural models to historical default data and show that they

all produce spreads relative to treasuries that fall significantly short of their empirical counterparts. Chen (2010),

He and Milbradt (2014) and Chen et al. (2018) develop dynamic models of credit risk with endogenous default,

long-run risks and market liquidity. While they come closer to matching empirical counterparts, most purely risk-

and liquidity-based models account for at most a small fraction of the level and volatility of spreads that are observed

in practice, especially for short-horizon investment grade bonds. A separate literature has linked credit spreads and
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Existing explanations for these empirical findings rely on investor preferences for positive skew-

ness.26 Proposition 3 offers an alternative explanation for a negative returns to skewness and high

spreads on investment-grade corporate bonds as the result of EWTR. In contrast to preference-

based theories, this explanation also links returns to skewness and disagreement. In section 5 we

return to the comparison between preference- and information-based returns to skewness and show

that dispersed information amplifies returns to skewness.

Prediction 2 (Returns to disagreement): Price premia for disagreement are positive (neg-

ative) and return premia negative (positive) for securities dominated by upside (downside) risk.

A growing literature uses forecast dispersion as an empirical proxy for disagreement. Dietheret

al. (2002; DMS henceforth) sort stocks by the dispersion of earnings forecasts across analysts

covering each security. They find that stocks in the highest dispersion quintile have monthly

returns which are about 0.62% lower than those in the lowest dispersion quintile, amounting to a

yearly excess return over 7% for the strategy of going long/short on low/high dispersion stocks.

They interpret this result as evidence consistent with the hypothesis of Miller (1977) of investor

disagreement interacting with short-selling constraints.27 Yu (2011) reports similar results and

Gebhardt et al. (2001) document that an alternative measure of stock risk premia, the cost of

capital, is also negatively related to analyst forecast dispersion.

Güntay and Hackbarth (2010; GH henceforth) perform a similar analysis for bond yields but

reach the opposite conclusion as DMS: yield spreads and bond returns are increasing with forecast

dispersion, and spreads are 0.14% higher and returns 0.08% higher in the top dispersion quintile,

which amounts to a yearly excess return of about 1% for the strategy long/short on high/low disper-

sion bonds. GH replicate DMS’ result of negative returns to disagreement in equity returns in their

sample (though the measured excess returns are smaller), which suggests a systematic difference in

returns to disagreement for equity and bond markets. GH interpret returns to disagreement as a

proxy for risk premia. Carlin et al. (2014) confirm GH’s results for mortgage-backed securities.

Proposition 3 reconciles the seemingly contradictory empirical results about return premia for

disagreement by noting that studies that find negative returns to disagreement focus on securities

equity returns through capital structure models with time-varying default risk (See Bhamra et al., 2010 and citations

therein, as well as McQuade, 2018). Our analysis instead links credit spreads and (levered) equity returns through

dispersed investor information and EWTR.
26In Brunnermeier and Parker (2005) and Brunnermeier et al. (2007), overinvestment in highly skewed securities,

along with under-diversification, results from a model of optimal expectations. Barberis and Huang (2008) show that

cumulative prospect theory results in a demand for skewness or a preference for stocks with lottery-like features.

Mitton and Vorkink (2007) develop a model in which investors have heterogeneous preference for skewness.
27They rule out a risk-based explanation for the anomaly by controlling for stocks exposure to standard risk factors.
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with upside risk, while studies that find positive returns to disagreement focus on securities where

downside risk is dominant.

Our third prediction focuses on interaction effects: returns to disagreement increase with asset

skewness, and returns to skewness increase with investor disagreement.

Prediction 3 (Interaction effects): There is positive interaction between returns to dis-

agreement and returns to skewness.

Evidence on interaction effects between skewness and disagreement is more limited. Ideally,

one would like to match measures of returns, expected skewness, and forecast disagreement and

accuracy at the level of individual stocks, and then conduct a dual sorting exercise which could

speak to all three predictions simultaneously. Unfortunately we are not aware of studies that take

exactly this approach.28 Yu (2011) comes closest to what we need by sorting stocks by book-to-

market ratio and disagreement. He reports that the value premium increases from 4.3% annual

return with the lowest tercile disagreement to 11.3% with the highest tercile, and the returns

to disagreement range from −0.26% annual for the highest quintile of book-to-market ratios to

−7.2% for the lowest quintile. Following Zhang (2013) who interprets book-to-market ratios as a

proxy for skewness, these results suggest substantial interaction between returns to skewness and

disagreement in equity returns.29

For bond markets, GH report that the effect of disagreement on spreads and yields doubles in

high leverage or low-rated rated firms, two plausible proxies for downside risks. In a regression of

credit spreads on leverage, disagreement and their interaction, the interaction term turns out to be

highly significant, but disagreement and leverage are insignificant on their own. These empirical

results suggest that returns to skewness and disagreement interact in the data along the lines

suggested by our theoretical results.30

28Short of this ideal, the empirical studies on returns to skewness and disagreement that we cite are either based on

different samples data sources, or focus on imperfect proxies for the skewness and disagreement or EWTR measures

implied by our theory.
29More specifically, Zhang (2013) first documents strong positive correlation between book-to-market ratios and

skewness of returns, and then shows that the explanatory power of book-to-market ratios for returns is significantly

lower when controling for skewness.
30Hou et al. (2020) question the statistical robustness of various return anomalies in equity markets including the

studies on returns to skewness and disagreement. They replicate existing studies on a uniform sample and emphasize

the importance of small capitalizations and equal vs. value weighting in estimating return anomalies. They replicate

DMS and show that value-weighting leads to much lower and statistically insignificant returns to disagreement. This

suggests that returns to disagreement are concentrated in markets with small capitalizations, which is consistent with

the replication of DMS by GH for a subsample of firms that are active also in bond markets. They also find returns

to skewness that are small and insignificant, but by using the realized skewness of past returns rather than predicted
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The ability to account for returns to skewness and disagreement in both equity and bond mar-

kets sharply distinguishes our theory from heterogeneous prior models with short-sales constraints

following Miller (1977): in those models prices incorporate a resale option value that lowers future

returns irrespective of the asset characteristics. They are therefore inconsistent with Predictions

2 and 3 and thus unable to explain why these comparative statics would be different for different

security classes such as stocks and bonds, as suggested by the empirical evidence discussed in the

preceding paragraphs.

Indeed, the ambiguous empirical relationship between disagreement and asset returns remains

one of the major unresolved puzzles in asset pricing. Perhaps Carlin et al. (2014) put it best:

“Understanding how disagreement affects security prices in financial markets is one of the most

important issues in finance. ...Despite the fundamental nature of this issue, though, there still re-

mains significant controversy in the literature about how disagreement risk affects expected returns

and asset prices.” To our knowledge, ours is the first explanation that can reconcile the seem-

ingly contradictory empirical results as direct predictions of a unified theory, tractable enough to

encompass assets with different underlying cash-flow risks.

3.2 A simple calibration

We offer a first attempt to quantify the role of noisy information aggregation for asset returns

by informing key model parameters from data onasset payoffs and investor disagreement. The

objective of the exercise is two-fold: first, to illustrate more formally how our model can be applied

to shed light on specific empirical asset pricing puzzles. Second, to provide a first assessment of

the quantitative potential of information frictions in explaining such puzzles. In doing so, it is

important to note that since our contribution is essentially theoretical, we regard these results by

no means as a conclusive test of our model, but we do hope that they will open the door for more

sophisticated empirical work in the future.

Forecast dispersion and EWTR in the data:

We infer EWTR from measures of forecast dispersion D̃ and forecast accuracy γ̂ (see online

appendix for a more detailed description). In line with the empirical literature reviewed above, we

interpret the asset fundamental as a firm’s earnings, and derive measures of forecast dispersion and

accuracy from the I.B.E.S. data of analyst earnings forecasts for a cross-section of listed firms. The

future skewness, they do not directly replicate Conrad et al. (2013) or BMV. Their estimates of the value premium

are similar to the ones reported in Yu (2011). Our predictions are broadly consistent with Hou et al. (2020), if one

assumes that larger markets are more liquid and less subject to noisy information aggregation frictions.
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data reports a measure of forecast dispersion, along with a consensus or average earnings forecast

and realized earnings per share for each firm-year in the sample. We base our estimates of forecast

dispersion, forecast accuracy and EWTR on a sample of 5,320 firms used in the empirical study by

Guntay and Hackbarth (GH), which uses forecasts over relatively short horizons (within quarter)

from 1987-1998.31 We use the time series of realized forecast errors to compute forecast accuracy,

and substitute our estimates of forecast dispersion and accuracy into equation (14) to construct a

firm-level estimate of EWTR.

This approach ties our model parameter most directly to empirical counterparts, but it implicitly

assumes that analysts’ forecast dispersion is representative of dispersion in investors’ private beliefs.

However, analyst forecasts are in the public domain and thus not part of private information sets.

This distinction doesn’t play a major role in heterogeneous priors models where investors’ beliefs

may disagree about public information, but it does for models of noisy information aggregation

under a common prior, which precludes public information as a source of dispersion in beliefs.32 One

possible resolution is to argue that public disagreement in analyst forecasts is broadly representative

of dispersion in private investor forecasts: as long as the former is positively correlated with the

latter, the qualitative predictions discussed above will remain valid.

Using analyst’s earnings forecasts to quantify EWTR requires in addition that the quantitative

magnitudes are comparable. If one is willing to accept that analysts forecasts are more precise and

less dispersed than investor forecasts, then the measures drawn from analyst forecast dispersion

represents a lower bound on the overall magnitude of EWTR. Alternatively, we may assume that

analysts are representative of the wider investor pool and treat survey forecasts as a noisy finite

sample of private investor expectations that are publicly disclosed to the market. We formally

develop this interpretation in the online appendix and show that we can use equation (14) with

minor adaptations for noisy public signals along with the sample estimates of forecast dispersion

and accuracy to infer EWTR in equity markets.33

Table 1 reports the mean, the mid-point of each quintile bin of the distributions of forecast

dispersion, and forecast accuracy and EWTR across firms from the GH sample. These objects are

highly skewed: for most firms, forecast dispersion is low and accuracy is fairly high, so the implied

31We thank these authors, as well as Ludwig Straub and Robert Ulbricht, for sharing the data used in this section.
32This concern arises whenever public survey expectations are used to estimate dispersion in private beliefs, as

virtually all papers cited here do.
33Kovbasyuk and Pagano (2022) discuss anecdotal and empirical evidence suggesting that analysts have an incentive

to disclose their information after taking certain positions to realize gains from informed trading, consistent with our

view that analyst forecast disagreement as a proxy measure for forecast dispersion among a wider pool of investors.
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Mean 10% 30% Median 70% 90%

Dispersion (D̃) 0.19 0.05 0.11 0.17 0.24 0.36

Accuracy (γ̂) 0.75 0.395 0.673 0.817 0.917 0.976

EWTR ( σ̂θ
σθ

) 1.10 1.002 1.008 1.022 1.053 1.192

Table 1: Forecast dispersion, accuracy, and implied EWTR

EWTR is very small. However, both forecast dispersion and EWTR is fairly significant in the top

quintile of the distribution –while the 90th percentile of dispersion is about twice the mean, EWTR

is up to nine times as high. As a ballpark estimate, the data suggest an average EWTR of about

10%, but most of this average is driven by the top quintile where EWTR is close to 20%. For

robustness, we replicate our estimates on a second sample from Straub and Ulbricht (2015), who

use the entire I.B.E.S. sample (1976-2016) and forecasts over a longer 8 month horizon. We further

restrict our sample to a subset of 2,103 firms which have at least 10 years of forecast data, which

substantially reduces the noise in measuring forecast dispersion and accuracy. The distribution of

forecast dispersion, accuracy and EWTR obtained is qualitatively similar to the GH sample, with

a highly skewed distribution where most variation is concentrated in the top quintile. The fact that

two substantially different data sets deliver qualitatively similar distributions of forecast dispersion

and EWTR gives us some confidence in the robustness of our numerical examples.

Model-implied returns to skewness and disagreement:

We now compute model-implied returns to skewness and disagreement for EWTR in the range

reported in Table 1. We define a parametric asset return function π (θ) = ekx(θ) such that x (·)

follows a beta distribution, setting the key parameters to match target values for expected skewness

and volatility at the firm level. We then vary informational parameters to generate levels of forecast

dispersion and EWTR in line with the distributions from GH (Table 1). Concretely, we set γ̂ to

the sample mean of 0.75, and we then vary D̃ to match the mean friction, as well as the 10th, 30th,

50th, 70th and 90th percentile of the distribution of forecast dispersion.34

Table 2 compares the empirical and model-implied returns for securities sorted into quintiles by

skewness (in rows) and forecast dispersion (in columns). The row and column labeled "Targets"

reports forecast dispersion (in the row) from Table 1 and skewness (in the column) and from BMV

(Table 3, column 4). The row and the column labeled "Returns" report the corresponding average

34The challenge is to identify targets for expected return skewness and volatility for firms matching the distribution

of earnings forecasts. Since DMS or GH do not report these moments, we calibrate our returns to match the mean

realized firm-level return skewness and volatility reported in BMV (Table 3, Columns 4 and 5).
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Mean Q1 Q2 Q3 Q4 Q5 Q5-Q1

Targets Disp (GH) 0.315 0.05 0.11 0.17 0.24 0.36

Skew (BMV) Returns GH 0 -10 -18 -27 -26 -26

Mean 0.851 BMV -9.5 -0.1 -0.6 -1.5 -3.8 -18.7 -18.6

Q1 0.167 0 -0.8 -0.0 -0.0 -0.1 -0.3 -1.5 -1.5

Q2 0.375 -7 -2.3 -0.0 -0.1 -0.4 -0.9 -4.6 -4.6

Q3 0.565 -9 -4.7 -0.0 -0.3 -0.8 -1.8 -9.2 -9.2

Q4 0.809 -13 -8.6 -0.1 -0.5 -1.4 -3.4 -16.9 -16.8

Q5 1.629 -67 -25.8 -0.3 -1.6 -4.2 -10.3 -50.7 -50.4

Q5-Q1 -67 -25 -0.3 -1.6 -4.1 -10.0 -49.2 -48.9

Table 2: Returns to skewness and disagreement (model vs data)

returns (in basis points,bp) from the two empirical studies from BMV (Table 3, column 1) in the

column and GH (Table 12, Panel A) in the row; in both cases we report excess returns of stocks

in Q2-Q5 over stocks in Q1 to focus on the variation in returns and improve the comparability

between model and data. The subsequent rows and columns then report model-implied returns

for different levels of skewness and forecast dispersion, while the final row and column report the

difference in returns between top and bottom quintiles.

To quantify the implications of varying skewness, the column labeled "mean" sets the level of

forecast dispersion to target a mean level of information frictions equal to σ̂θ
σθ

= 1.1, and varies

the level of skewness across rows. Our model generates returns to skewness of about −25 bp per

month between the top and bottom quintiles, corresponding to 37% of the skewness premium of

−67 bp reported in BMV.35 The subsequent columns repeat the same exercise varying the level of

forecast dispersion across quintiles, which yield skewness premia that range from −0.3 up to −50

bp in the top quintile of the distribution. Analogously, to quantify the effects of varying dispersion,

the row labeled "mean" sets the level of idiosyncratic skewness and volatility to the sample mean

reported by BMV (Table 1) and varies forecast dispersion across quintiles. Our model generates

returns to disagreement of about −19 bp, or 72% of the returns to disagreement of reported for

equity in GH (26 bp). The subsequent rows repeat the same exercise varying the level of skewness

across quintiles, which yield returns to disagreement from less than 2 bp in the lowest quintile all

the way up to 50 bp for the highest.

35The model accounts for between 30% and 60% of excess returns for the other skewness quintiles.
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The table also allows to illustrate interaction effects. Variation in returns to disagreement from

the bottom to top skewness quintile (−49 bp), as well as the variation in returns to skewness from

the bottom to the top disagreement quintiles (−50 bp) are both significant and correspond to about

6.2% annual returns. We do not have direct empirical counterparts for the joint variation of returns

with skewness and disagreement, but Yu (2011) reports that annualized returns to disagreement

vary by about 7% between the highest and lowest quintiles of book-to-market value, and the value

premium varies by a similar amount between high and low disagreement terciles. DMS (Table IV)

report similar magnitudes of variation in returns to disagreement with changes in book-to-market

value and market capitalization.

Overall, and with the caveats that apply to a simple calibration, our results suggest model-

implied returns to skewness and forecast dispersion may explain a relevant fraction of those docu-

mented empirically, hopefully inviting further studies on these important issues in asset pricing.

4 Generalizing the risk-neutral model

We now generalize the equilibrium characterization and comparative statics from section 3 to

the general model set-up of section 2. Suppose that there exists a price-monotone equilibrium

{P (θ, s); d(x, P );H(·|P )} in which d(x, P ) is strictly decreasing in P for d(x, P ) ∈ (dL, dH).36

Fix any D̄ ∈ (dL, dH) and define z ≡ z (P ) as the private signal of an informed investor who

finds it optimal to hold D̄ units at price P . z (P ) is implicitly defined by d(z, P ) = D̄. Since

d(x, P ) is strictly increasing in x, z (P ) is strictly increasing in P , and is therefore a sufficient

statistic for the information conveyed in the price. By inverting z (P ), we can represent the price

as a function of z only. In addition, we can construct posterior beliefs directly from the market-

clearing condition. Since aggregate demand D (θ, P ) is decreasing in P , we have Pr (P ≤ P ′|θ) =

Pr (D (θ, P ) ≥ D (θ, P ′)) = Pr (s ≥ D (θ, P ′)) = 1−G (D (θ, P ′)). Therefore conditional on θ, z is

distributed according to

Ψ (z|θ) = 1−G (D (θ, Pπ (z))) . (15)

Together with the prior H (·), equation (15) defines the joint distribution of P and θ, from which

we derive the posterior H(·|P ) using Bayes’ Rule whenever applicable. These observations lead to

the following theorem:

Theorem 1 : For any price-monotone equilibrium {P (θ, s); d(x, P );H(θ|P )}, and any D̄ ∈ (dL, dH),

there exists a sufficient statistic z = z (θ, s), with cdf given by (15), such that the price function

36To our knowledge, no equilibrium existence results are available for this general class of models.
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takes the form P (θ, s) = Pπ (z (θ, s)), where Pπ (·) satisfies

Pπ (z) =
E
(
U ′
(
D̄ (π (θ)− Pπ (z))

)
· π (θ) |x = z, z

)
E
(
U ′
(
D̄ (π (θ)− Pπ (z))

)
|x = z, z

) . (16)

Theorem 1 generalizes the sufficient statistic representation of Proposition 2 for any price-

monotone equilibrium. For each D̄ ∈ (dL, dH), there exists a state variable z, function of θ and s

only, such that the price is represented as the risk-adjusted expectation of dividends of an investor

who finds it optimal to hold exactly D̄ units of the asset when the state is z.37

Equation (16) generalizes the updating wedge discussed in the context of the CARA-normal,

CARA-binary and risk-neutral examples. The risk-neutral, conditional expectation of dividends

processes the price signal twice, once as a public price signal, and once as the private signal of the

threshold investor who purchases D̄ units of the asset. The intuition for this characterization is as

before: shifts in fundamentals or noise trading result in price adjustment, due to market-clearing,

over and above the mere information content of the price. In the price expression, these effects are

represented by the sufficient statistic z appearing twice in the conditioning set, once through the

price signal, and once through the marginal investor’s private information. This wedge between

the market expectation of dividends and the Bayesian posterior is thus a necessary characteristic

of any model with noisy information aggregation through asset prices.

Theorem 1 only offers a partial equilibrium characterization: to fully characterize asset valua-

tions, we still need to compute, for some D̄, the distribution of the associated sufficient statistic

z. This distribution, however, derives from the market clearing condition D (θ, P ) = s, which still

requires information about the entire demand schedule. Nevertheless, Theorem 1 allows us to de-

velop implications for asset prices and returns through a risk-neutral representation of the price.

Specifically, equation (16) can be rewritten as Pπ (z) = E (π (θ)m (θ, z) |z), where

m (θ, z) =
U ′
(
D̄ (π (θ)− Pπ (z))

)
E
(
U ′
(
D̄ (π (θ)− Pπ (z))

)
mI (θ, z) |z

)mI (θ, z) ,

and mI (θ, z) = h(θ|x=z,z)
h(θ|z) = f(z−θ)

E(f(z−θ′)|z) . Since E (m (θ, z) |z) = 1, the asset price admits a risk-

neutral representation, where the pricing kernel m (θ, z) can be decomposed into a risk adjust-

ment
U ′(D̄(π(θ)−Pπ(z)))

E(U ′(D̄(π(θ)−Pπ(z)))mI(θ,z)|z)
that weighs states according to the investor’s marginal utility of

37The representation in theorem 1 depends on the choice of D̄, but the representations for different values of D̄ are

all monotonic transformations of each other. They correspond to different decompositions of the price into expected

dividend and risk premium: the higher is D̄, the higher is the required risk premium, and hence also the dividend

expectation of the investor who holds D̄ in equilibrium. It may be natural to set D̄ equal to E (s), so that the risk

adjustment accounts for the risk preferences of an investor who holds the unconditional average exposure.
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consumption at given exposure D̄, and an informational adjustment mI (θ, z) that weighs states

according to the ratio between the marginal trader’s and the objective posterior density. Notice

that the first factor vanishes when traders are either approximately risk-neutral (U ′ (·) is constant)

or D̄ = 0, while the second factor vanishes if private information becomes infinitely noisy (no

private information). Equation (16) therefore provides an analogous representation to the “usual”

no-arbitrage representation of prices that weighs states according to the marginal investors’ atti-

tudes towards risk (the first component in m (θ, z)), and an additional adjustment factor that is

new and specific to models with noisy information aggregation.

We can therefore represent the asset price as the conditional dividend expectation under Ĥ(θ|z) ≡∫ θ
−∞m (θ, z) dH(·|z): Pπ (z) = Ê (π (θ) |z) =

∫
π (θ) dĤ(θ|z). As before, we compound Ĥ(·|z)

with the prior over z to define the risk-neutral probability measure Ĥ(θ) =
∫
Ĥ(θ|z)dΨ (z), where

Ψ (z) ≡
∫

(1−G (D (θ, Pπ (z)))) dH (θ) denotes the prior cdf of z. Hence, the expected price

is represented as the expectation of dividends under the risk-neutral measure Ĥ: E (Pπ (z)) =∫
Ê (π (θ) |z) dΨ (z) = Ê (π (θ)) = E (π (θ) ·m (θ)), where

m (θ) =
ĥ (θ)

h (θ)
= E (m (θ, z) |θ) ,

with E (m (θ)) = 1.38

Excess Weight on Tail Risks: We now provide conditions under which Ĥ(·) overweighs

tail realizations of the fundamental. We first show that the risk-neutral measure Ĥ(·) overweights

extreme tail probabilities under a simple regularity condition on the market-implied signal:

Proposition 4 : Suppose that limz→−∞H(z+k|z) = 0 and limz→∞H(z+k|z) = 1, for any finite

k. Then limθ→∞m (θ) = limθ→−∞m (θ) =∞.

Proposition 4 shows that the upper and lower tail densities of the risk-neutral measure are

infinitely thicker than the corresponding prior densities, whenever the updating conditional on the

price remains bounded, even in the face of extreme realizations of the sufficient statistic z, or in

other words, if z is arbitrarily high (low), the posterior belief assigns probability close to 1 to the

38With CARA preferences and absolute risk aversion χ, it is furthermore possible to rewrite equation (16) as

Pπ (z) = ER
(
π (θ)mI (θ, z) |z

)
, where expectations ER (·) are formed given a risk-adjusted prior with pdf hR (θ) ∼

h (θ) e−χD̄π(θ). In other words, with CARA preferences, it is straight-forward to incorporate the risk adjustment into

the prior distribution over θ. The expected price then satisfies E (Pπ (z)) = ER (π (θ)) + CovR
(
π (θ) ,mI (θ, z)

)
, and

the expected price premium decomposes into a risk adjustment ER (π (θ))−E (π (θ)) and an informational adjustment

CovR
(
π (θ) ,mI (θ, z)

)
. Without the CARA assumption, the informational and risk adjustments are not independent,

since z may affect the risk premium through a wealth effect of P on asset demand.
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event that the fundamental θ is lower (higher) than any fixed difference k from the realized value

of z. This property emerges naturally from Bayesian updating, provided that the prior remains

informative (relative to the sufficient statistic) in the tails.

Under the conditions of Proposition 4, the risk neutral measure displays fatter tails than the

prior distribution, or Ĥ(θ) > H(θ) for sufficiently low θ and Ĥ(θ) < H(θ) for sufficiently high

θ. These conditions are sufficient to establish comparative statics and return predictions based on

excess weight on tail risks for securities where risks are concentrated in the extreme tails, like high

grade corporate bonds or deeply out of the money options.

However, we need a stronger characterization of excess weight on tail risks to establish com-

parative statics globally. Specifically, we say that Ĥ (·) displays excess weight on tail risks, if m (·)

is log-convex with limθ→∞m (θ) = limθ→−∞m (θ) = ∞. We further say that Ĥ1 (·) has more

excess weight on tail risk than Ĥ2 (·) if m1 (θ) /m2 (θ) is log-convex. Log-convexity of m (·) implies

that m (·) is U-shaped (rather than, say, W-shaped), and that Ĥ (·) intersects H (·) exactly once.

Log-convexity also identifies the key distinction between the risk-neutral measure under noisy in-

formation aggregation and the "usual" risk adjustment for a security in positive net supply, since

the latter typically leads to a strictly downwards-sloping pricing kernel (rather than a U-shaped

one) to shift probability mass from higher towards lower states.

Suppose that the prior h (·) and the signal density f (·) are strictly log-concave with

τ̄h ≥ −

(
h′′

h
−
(
h′

h

)2
)
≥ τh > 0 and τ̄f ≥ −

(
f ′′

f
−
(
f ′

f

)2
)
≥ τ f > 0.

This assumption imposes that variation in the log-curvature in the two distributions, or in the

informativeness of the prior and the private signals, is bounded on both sides. When f and h are

normal, then h′′

h −
(
h′

h

)2
and f ′′

f −
(
f ′

f

)2
are constant with τ̄h = σ−2

θ = τh and τ̄f = β = τ f .39

Proposition 5 : Suppose that ψ (z|θ) ≡ ψ (z − θ), where ψ (·) is strictly log-concave with τ̄ψ ≥

−
(
ψ′′

ψ −
(
ψ′

ψ

)2
)
≥ τψ > 0. Define γ̂ =

τf+τψ
τf+τψ+τh

and γ̄ =
τ̄ψ

τ̄ψ+τ̄h
, and suppose further that

γ̂τh − τ̄hγ̄ > 0. Then, m (·) is strictly log-convex and

d

dθ

m′ (θ)

m (θ)
=

d

dθ

(
ĥ′ (θ)

ĥ (θ)
− h′ (θ)

h (θ)

)
≥

γ̂
(
γ̂ − τ̄h

τh
γ̄
)

γ̂ −
(
1− γ̂

) (
γ̂ − τ̄h

τh
γ̄
)τh > 0.

Moreover, whenever f , ψ, and h converge to normal densities, then d
dθ
m′(θ)
m(θ) converges to 1

σ2
θ
− 1
σ̂2
θ
> 0,

where σ̂2
θ is given by equation (11).

39See Saumard and Wellner (2014) for a primer to log-concave distributions. Proposition 5 makes use of their

proposition 10.1.
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Proposition 5 identifies sufficient conditions for log-convexity of the risk-neutral measure, which

generalize equation (11) in the linear-normal setting. When z is affine in θ with ∂z(θ,s)
∂θ = 1, m̂

is log-convex whenever ϕ (z) ≡ E (f (z − θ′) |z) is log-concave, and the latter is shown to be true

whenever γ̂τh − τ̄hγ̄ > 0. This expression can be interpreted as a lower bound on the gap between

the posterior uncertainty under the objective and the risk-neutral probability measure, just as γ̂

is a lower bound on the combined informativeness of the private and market signal relative to the

prior, and γ̄ an upper bound on the informativeness of the market-signal relative to the prior. The

condition that γ̂τh > τ̄hγ̄ thus imposes that private signals are sufficiently informative so that the

risk-neutral measure has uniformly lower posterior uncertainty than the objective posterior.

Moreover, equation (11) for the linear-normal model can be restated as 1
σ2
θ
− 1
σ̂2
θ

= γ̂(γ̂−γ)
γ̂−(1−γ̂)(γ̂−γ)

1
σ2
θ
.

When all three densities converge to log-quadratic (normal) densities, then γ̂ → γ̂, γ̄ → γ, and

the above bound converges to 1
σ2
θ
− 1

σ̂2
θ
. Hence if the densities are approximately Gaussian, then

equation (11) provides a good approximation to the extent of excess weight on tail risks for noisy

information aggregation models that are "close" to the linear-normal model used in the preceding

examples, and more generally the same equation can be used to construct a lower bound on excess

weight on tail risks by using upper and lower bounds on the informativeness of signals in each state.

The proposition relies on three conditions: first, log-concavity of the densities h, f , and ψ

insures that agents update monotonically from both the private signal and the price signal, and

therefore posterior beliefs are monotone in the signal realization.

Second, we require a bound on the variation in log-curvature of the signal densities, or equiva-

lently a lower bound on the precision of trader’s private signals. Variation in log-curvature implies

that posterior uncertainty may vary across states and signal realizations. The additional bound

insures that such variation in posterior uncertainty cannot become too important (or equivalently,

private signals are sufficiently informative) so that the risk-neutral posterior displays a uniformly

stronger response to variation in z than the objective posterior throughout the state space.

Third, the condition that ∂z(θ,s)
∂θ = 1 for all (θ, s), or equivalently, that ψ (z|θ) = ψ (z − θ) for

all (z, θ), imposes that the sufficient statistic variable takes the canonical form of “fundamental

plus noise”. To interpret this condition, notice that differentiating the market-clearing condition

D (θ, P ) = s with respect to θ, we obtain

Dθ (θ, Pπ (z))

DP (θ, Pπ (z))
= −∂Pπ (z)

∂z

∂z (θ, s)

∂θ
.

In general, ∂Pπ(z)
∂z = −dx (z, P ) /dP (z, P ) measures the rate at which the marginal investor trades

off between higher price and higher dividend expectation, while −Dθ/DP represents the same
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marginal rate of substitution for aggregate demand, or investors on average. Additive separability

then obtains whenever the marginal and average investors’ marginal rates of substitution coincide.

Departures from this benchmark require that −dx (x, P ) /dP (x, P ) varies with x, and that this

variation does not wash out through aggregation.

Alternatively, we may replace the assumption that ψ (z|θ) = ψ (z − θ) for all (z, θ) with stronger

assumptions on the bounds to variation in log-curvature of the signal distributions. Intuitively

speaking, these bounds impose that departures from the canonical benchmark are not too large so

as to change the sign of the bound constructed in proposition 5.40

To summarize, proposition 5 shows that EWTR emerges naturally if agents’ posteriors satisfy

a monotone likelihood ratio property with regards to private signal realizations and prices, the

informativeness of the prior and the signals doesn’t vary too much over the state space, and the

sufficient statistic is reasonably close to the canonical “fundamental plus noise” structure. While

the former amounts to regularity conditions on the prior and the private signal densities, the latter

imposes restrictions on the endogenous distribution of the sufficient statistic which we unfortunately

have not been able to translate into conditions on exogenous primitives. Nevertheless, they clarify

in what sense the results from the risk-neutral and normal updating models can be expected

to generalize. Alternatively, we can prove log-convexity of m̂ (·) and EWTR by invoking other

restrictions on primitive parameters, for example in limiting cases with either very large or very

small supply noise and private signal precisions. The online appendix provides further details.

Generalizing Proposition 3: For a given change in probability measure m̂, we then write

the expected price premium as

W (π, m̂) ≡ E (Pπ (z))− E (π (θ)) = cov (π (θ) ,m (θ)) .

If H (·) and m̂ (·) are symmetric and centered around the same mean (say, around 0), we can then

directly generalize the comparative statics predictions of Proposition 3, applying the partial order

on returns given by Definition 1:

Theorem 2 Suppose that m1 (·) and m2 (·) /m1 (·) are symmetric around 0 and log-convex, and

H (·) is symmetric around 0.

(i)Comparative Statics w.r.t. m: If π has symmetric risk, then W (π;m) = 0. If π is dom-

inated by upside (downside) risk, then W (π1,m2) ≥ W (π1,m1) ≥ 0 (W (π1,m2) ≤ W (π1,m1) ≤
40Such departures introduce additional terms in the characterization of d

dθ
m′(θ)
m(θ)

, which vanish when ψ (z|θ) ≡

ψ (z − θ).
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0). Moreover, limm→1W (π,m) = 0, and |W (π,m) | grows arbitrarily large if m has arbitrarily

large excess weight on tail risk and limθ→∞|π (θ) + π (−θ) | =∞.

(ii) Comparative Statics w.r.t. π and Increasing differences: If π2 has more upside

risk than π1, then W (π2,m2)−W (π1,m2) ≥W (π2,m1)−W (π1,m1) ≥ 0.

This generalization relies on the symmetry and equal means assumption that were already

embedded in the risk-neutral normal model. We can still obtain variants of the comparative statics

in theorem 2 upon relaxing these assumptions. With equal means but asymmetric distributions,

the theorem continues to hold if the partial order on upside and downside risks is restricted to

payoff functions that are strictly concave or strictly convex.

If means are not equal, then the expected price premium responds to both a shift in means and

a mean-preserving spread in the risk-neutral distribution (Section 3). The comparative statics of

theorem 2 then continue to hold if these two shifts are mutually reinforcing, or equivalently (in the

notation used above), if
∫
θdĤ2 (θ) ≥

∫
θdĤ1 (θ) ≥

∫
θdH (θ) for convex return functions (upside

risks) or
∫
θdĤ2 (θ) ≤

∫
θdĤ1 (θ) ≤

∫
θdH (θ) for convex return functions (downside risks).

Alternatively, we can decompose the expected premium E (Pπ (z)) − E (π (θ)) into a shift in

means and a mean-preserving spread:

E (Pπ (z))− E (π (θ)) =

∫ ∞
−∞

(π (θ)− π (θ − δ)) dĤ (θ) +

∫ ∞
−∞

(
H (θ)− Ĥ (θ + δ)

)
dπ (θ)

where δ ≡
∫
θdĤ (θ)−

∫
θdH (θ) = cov (θ, m̂ (θ)). The shift in means

∫∞
−∞ (π (θ)− π (θ − δ)) dĤ (θ)

varies with the expected asset supply: for a given distribution of dividends, a first-order stochastic

increase in the supply distribution G (·) requires that informed investors buy more shares in equilib-

rium, which lowers the marginal investor’s z. This downwards shift in the price distribution is cap-

tured by a decrease in δ. The second-order shift in the distribution
∫∞
−∞

(
H (θ)− Ĥ (θ + δ)

)
dπ (θ)

instead captures the excess weight on tail risks implied by the risk-neutral distribution, controlling

for the difference in means. We can then apply the above comparative statics results to this second

term, under the assumption that Ĥ (θ + δ) has EWTR over H (θ).

Finally, without log-convexity, the condition of proposition 4 implies that there exists θL and

θH > θL such that comparative statics from theorem 2 continue to apply to securities for which

π (θL) = π (θH), i.e. all the variation in returns is concentrated in the tails θ ≤ θL and θ ≥ θH .

Numerical solution methods: The generalized equilibrium characterization described in

this section can also be used to develop a new procedure to solve noisy REE equilibrium with

general preferences numerically, by iterating over the information content of prices. This is of

interest for two reason. First, it provides a method for verifying, at least numerically, whether the
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model-implied risk-neutral measure satisfies the sufficient conditions for excess weight on tail risks

described in proposition 4; hence short of having explicit sufficient conditions for EWTR, these

conditions can at least be verified numerically for a given set of primitives. Second, the lack of

sharp equilibrium characterizations, except in special cases that are analytically solvable, has been

a long-standing challenge to bring information aggregation models closer to standard preferences

used in finance and to derive asset pricing predictions.41

Fix a support of the fundamental θ and prior H (·). We start conjecturing a distribution of prices

conditional on a given value of θ: Ψ(0)(P ′|θ) ≡ Pr(P ≤ P ′|θ), along with a conditional density

ψ(0)(P |θ). From ψ(0)(P |θ), we calculate the posterior distribution for each investor using Bayes rule:

Pr(0)(θ|xi, P ) = ψ(0)(P |θ) · Pr(θ|xi)/
∑

θ′ ψ
(0)(P |θ′) · Pr(θ′|xi), where Pr(θ|xi) corresponds to the

posterior conditional on observing xi only. Using the posterior distribution, we find optimal demand

functions d(0) (x, P ), and then determine aggregate demand D(0)(θ, P ) numerically by integrating

over x. Using the market-clearing condition, we then characterize the resulting informational

content of prices: Ψ(1)(P ′|θ) ≡ 1 − G(D(0)(θ, P ′)). This new conditional price distribution Ψ(1)

is used then as the starting guess in place of Ψ(0), and the exercise is iterated until convergence.

Finally, we calculate the price function P (θ, s) by inverting the function D(θ, P ) = s to obtain

P = P (θ, s = D).

In the online appendix, we apply this method to a model with binary payoffs and CRRA

preferences. The numerical results confirm the analytical results for the CARA case in section 2

and the risk-neutral model in section 3: downside risk is on average under-priced, upside risk is

over-priced.42

41Bernardo and Judd (2000) and Peress (2004) numerically solve a RE equilibrium under asymmetric information

and CRRA preferences by “guessing” price and demand functions using hermite polynomials under the structural

moment conditions implied by demand optimality and market clearing. The central difference of our approach is that

here we explicitly solve for the price likelihood function, which allows a clean characterization of the informational

content of prices, for different price realizations. To our knowledge, this methodology is new in the REE literature.
42We make our matlab code available for the CRRA, binary payoff case solved in the online appendix. Under generic

preferences and payoff structures, aggregate demand monotonicity w.r.t. prices is not guaranteed (see for example,

Barlevy and Veronesi (2003)). Without strict monotonicity, it is no longer true that Pr(P ≤ P ′|θ) = Pr(u ≥ D(θ, P ))

for any price level, and the solution method proposed here would not work. The example presented in this section

uses parameters which satisfy monotonicity of demand as a function of the price.
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5 Multiple assets and uninformed traders

We consider extensions of our model to multiple assets and uninformed, as well as informed traders.

Within this context, we discuss several results.

First, we discuss conditions under which our construction of the risk-neutral probability mea-

sure based on noisy information aggregation generalizes to multi-asset models. We illustrate this

characterization with two polar cases, one in which securities are linked to the same fundamental

(i.e. stocks and bonds issued by the same firm, or different options on the same underlying secu-

rity), and one in which securities are completely independent, and each market can be analyzed in

isolation.

Second, we use the latter representation to show that stochastic risk premia due to noisy supply

shocks are sufficient to generate excess weight on tail risks, but this is then amplified by the

presence of informed traders and noisy information aggregation. In the process, we also generalize

the decomposition into preference-based and information-based skewness premia that we discussed

in the context of the CARA-normal and CARA-binary examples.

General set-up: Suppose that there are two securities with stochastic payoff πn (·), with

n ∈ {1, 2}.43 Their supply is stochastic with s ≡ (s1, s2) ∈ [dL,1, dH,1] × [dL,2, dH,2] distributed

according to a smooth cdf. G.44 Security n is conditioned on a fundamental θn, and the vector of

fundamentals θ = (θ1, θ2) ∈ R2 is distributed according to a common prior H (·). We suppose that

a measure κI > 0 of traders are informed, and a measure κU > 0 are uninformed. The informed

traders receive two private signals xin = θn + εin, where εi1 and εi2 are iid across agents i, but may

be correlated across securities.

We assume throughout that traders’ preferences are as in Section 4. Let Pn denote the price

of asset n, din ∈ [dL,n, dH,n] the position of trader i in security n (as before, we impose that po-

sitions are bounded), and πn the realized payoff. Then the trader’s realized utility over gains

and losses is given by U
(∑

n∈{1,2} d
i
n (πn − Pn)

)
. A Perfect Bayesian Equilibrium consists of

a set of demand functions
(
dI(x, P ), dU (P )

)
≡
{
dIn (x, P ) , dUn (P )

}
n=1,2

for informed and un-

informed traders and for each security, a set of price functions P (θ, s) ≡ {Pn (θ, s)}n=1,2, and

posterior beliefs H(·|P ) such that (i)
(
dI (x, P ) , dU (P )

)
is optimal given H(·|x, P ) and H(·|P );

(ii) P (θ, s) clears the market for all n; and (iii) H(·|P ) satisfies Bayes’ rule whenever applicable,

43The restrictions to two assets is convenient for exposition; extensions to more than two securities are immediate.
44Throughout this section, we let y = (y1, y2) where yn, with n ∈ {1, 2}, denotes a random variable specific to

market n. Hence s refers to the vector of supply realizations, π = (π1, π2) to the vector of dividends, P = (P1, P2) to

the vector of prices etc.
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i.e., for all P such that {(θ, s) : P (θ, s) = P} is non-empty. We focus on price-monotone equilib-

ria {P (θ, s); dI(x, P ), dU (P ) ;H(·|P )} in which dIn (x, P ) and dUn (P ) decreasing in Pn whenever

dIn(x, P ), dUn (P ) ∈ (dL,n, dH,n).

Suppose that there exists a unique vector z (P ) such that dI (z, P ) = 0, and that this vector

is invertible, so that we can write P (θ, s) = P (z).45 Using the equilibrium price function, we

write z (θ, s) ≡ z (P (θ, s)) as the sufficient statistic vector. Using the informed trader’s first-order

condition, the equilibrium price for security k ∈ {1, 2} satisfies

Pk (z) = E (πk (θk) |x = z, z)

i.e. we obtain a vector representation of the equilibrium price with the updating wedge for informed

traders. As before we can thus represent the equilibrium price as the dividend expectation of a

marginal trader who chooses not to hold any of the assets, or

Pk (z) = E
(
mI (θ, z)πk (θk) |z

)
, where mI (θ, z) =

h (θ|x = z, z)

h (θ|z)
.

The expected price premium then takes the form E (P (z))−E (π (θ)) = Cov
(
π (θ) ,mI (θ)

)
, where

mI (θ) = E
(
mI (θ, z) |θ

)
= E

(
h(θ|x=z,z)
h(θ|z) |θ

)
and Cov

(
π (θ) ,mI (θ)

)
represents the vector of co-

variances of πk (·) with mI (·). These results directly extend the characterization of the updating

wedge and the risk-neutral probability measures to multiple securities.

Therefore the key challenge in generalizing the previous analysis to multiple securities is to

show that (i) there exists a marginal investor who finds it optimal to not hold any risky assets,

and (ii) that the mapping from this marginal investor’s private signal to the equilibrium price is

invertible. If these conditions are satisfied, we can use this signal vector as a sufficient statistic

for the information content of the price vector and the price vector inherits the multi-dimensional

analogue of the updating wedge.

But the coexistence of informed and uninformed traders also allows us to derive an alternative

equivalent representation of equilibrium asset prices based on the uninformed traders’ demand.

Specifically, the first-order condition for asset k ∈ {1, 2} by uninformed traders yields:

Pk =
E
(
U ′
(∑

n∈{1,2} d
U
n (P ) (πn − Pn)

)
πk (θk) |P

)
E
(
U ′
(∑

n∈{1,2} d
U
n (P ) (πn − Pn)

)
|P
) = E

(
mU (θ, P )πk (θk) |P

)
45The characterization below generalizes to arbitrary D̄ ∈ [dL,1, dH,1] × [dL,2, dH,2] along the same lines as in the

single-asset case. In that case, the condition dI (z, P ) = D̄ must be invertible, and the resulting pricing kernel

decomposes into a risk adjustment for given D̄ and an adjustment term due to noisy information aggregation. The

present case abstracts from the former by setting D̄ = 0.
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where mU (θ, P ) =
U ′(

∑
n∈{1,2} d

U
n (P )(πn−Pn))

E(U ′(
∑
n∈{1,2} d

U
n (P )(πn−Pn))|P)

. Hence, knowing the exposures of uninformed

traders dU (P ) is sufficient to construct a risk-neutral probability measure to price all securities.

Two polar cases: We now discuss two polar cases. In the first, the two securities are condi-

tioned on the same fundamental θ, and informed traders receive a single noisy signal x; formally,

θ1 and θ2, as well as εi1 and εi2 are identically distributed and perfectly correlated. This case may

represent simultaneous trading of different options on the same underlying security, or stocks and

bonds issued by the same company. In the second case, the two securities are independent: funda-

mentals, supply realizations and private signals are independent across securities. This case may

correspond to a situation where traders invest in multiple independent securities, such as shares of

different companies.

1. Common fundamentals: Suppose that fundamentals and signal noise are perfectly correlated,

so that θ1 = θ2 = θ and εi1 = εi2 = εi. In this case, since private information is one-dimensional,

there exists a unique zk (P ), and a unique representation

Pk (z) = E (πk (θk) |x = zk, z)

of the equilibrium price from the perspective of the informed traders. Here, we recover that the

main spill-over from market 1 into market 2 is informational: the equilibrium price in market 1

depends on the sufficient statistic from market 2 only through the information it conveys about the

common fundamental θ. On the other hand, the sufficient statistic from market 1 affects the price

in market 1 both for informational reasons, and because of the market-clearing effect we discussed

for the single-asset model. Hence, we obtain in this case an asset-specific updating wedge from the

informed trader’s demand function.46

In earlier versions of this paper, we solved a two-asset version of the risk-neutral model with

common fundamentals, and showed that differential levels of information frictions in two markets

can give rise to a novel rationale for departures from the Modigliani-Miller theorem: by separating

upside from downside risks into equity and debt claims, the owner of a cashflow π (·) can take

advantage of different degrees of information frictions in the two markets. These results are available

in the online appendix.

2. Independent assets: Suppose now that θ1 and θ2, s1 and s2, εi1 and εi2 are independent

across securities. Suppose also that traders have CARA preferences with absolute risk aversion χ.

Then there exists an equilibrium in which demand and the price in market 1 are independent from

46Chabakauri et al (2021) solve a multi-asset noisy REE model with a finite set of states and complete set of

Arrow-Debreu securities using similar insights.
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market 2 and vice versa. The equilibrium price for security k ∈ {1, 2} satisfies the one-dimensional

representations

Pk (zk) = E
(
mU
k (θk, zk)πk (θk) |zk

)
= E

(
mI
k (θk, zk)πk (θk) |zk

)
where mU

k (θk, zk) =
U ′(dUk (Pk(zk))πk)

E(U ′(dUk (Pk(zk))πk)|zk)
and mI

k (θk, zk) = h(θk|xk=zk,zk)
h(θk|zk) , i.e. we recover asset-

by-asset the same representation as in the single-asset model. Spill-overs from one asset market

to another potentially occur because of information effects and wealth effects. Information effects

arise if prices in market 1 convey information about likely returns in market 2. The independence

assumption implies that markets are orthogonal to each other, thus eliminating informational spill-

overs. Concretely this manifests itself in a multiplicative decomposition of the informed trader’s

pricing kernel: mI (θ, z) =
∏
k∈{1,2}m

I
k (θk, zk). Wealth effects arise if prospective gains or losses

in market 1 affect the investor’s appetite for risk in market 2. The CARA assumption implies that

trading in market 1 is independent of gains or losses in market 2. This appears through a multi-

plicative decomposition of the uninformed traders’ pricing kernel: mU (θ, z) =
∏
k∈{1,2}m

U
k (θk, zk).

In Albagli et al. (2017), we solve a variant of the risk-neutral model with a continuum of inde-

pendent securities (interpreted as equity shares in different firms) to study the interplay between

information aggregation and shareholder risk-taking incentives.

Expected Price Premia: Let C (z) ≡ E
(∑

n∈{1,2} d
U
n (P ) (πn − Pn) |z

)
denote the unin-

formed traders’ expected portfolio payoff conditional on z. A second-order Taylor expansion of

the uninformed traders’ first-order condition yields the following approximation of the equilibrium

price for security n ∈ {1, 2}:

Pn (z) ≈ E (πn (θ) |z)− χ (z) · e′nΣ (z) dU (P (z)) +
α (z)

2
· dU (P (z))

′
Ψn (z) dU (P (z))

where χ (z) = −U ′′(C(z))
U ′(C(z)) denotes the absolute risk aversion coefficient, α (z) = U ′′′(C(z))

U ′(C(z)) > 0

represents a local measure of downside risk aversion,47 both evaluated at the expected portfolio

payoff conditional on z. e′1 = (1, 0) and e′2 = (0, 1) represent the n-th dimension unit vectors, Σ (z)

Σ (z) =

 V ar (π1 (θ) |z) Cov (π1 (θ) , π2 (θ) |z)

Cov (π1 (θ) , π2 (θ) |z) V ar (π2 (θ) |z)

 ,

the 2x2 variance-covariance matrix of expected returns, and Ψn (z) the n-th third-moment matrix

with k, l-th entries

ψn(k,l) (z) = E ((πn (θ)− E (πn (θ) |z)) (πk (θ)− E (πk (θ) |z)) (πl (θ)− E (πl (θ) |z)) |z) .
47See, e.g. Modica and Scarsini (2005). The measure α can also be represented as the product of prudence

−U
′′′(C(z))
U′′(C(z))

(Kimball 1990) and risk aversion χ (z). With CARA preference, χ (z) = χ and α (z) = χ2 are both

constants.
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The difference between price and expected dividend thus decomposes into a risk adjustment

−χ (z) ·e′nΣ (z) dU (P (z)) that scales with the uninformed traders’ exposure dU (P (z)) and a third-

moment adjustment term α(z)
2 · d

U (P (z))
′
Ψn (z) dU (P (z)) that depends on the squares of expo-

sures. The risk adjustment can be rewritten as e′nΣ (z) dU (P (z)) = Cov
(
πn (θ) , π (θ) · dU (P (z)) |z

)
,

where π (θ) · dU (P (z)) represents the uninformed traders’ total portfolio return. Abstracting from

the second-order (third-moment) terms, the model-implied risk premium thus recovers a standard

“CAPM” representation from the perspective of uninformed investors.48

Suppose first that α (z) = 0 (quadratic preferences, no downside risk aversion), or equivalently,

ignore the third-moment terms. Then the expected price premium satisfies

E (Pn (z))−E (πn (θ)) ≈ −e′nE
(
χ (z) Σ (z) · dU (P (z))

)
= −E

(
χ (z)Cov

(
πn (θ) , π (θ) · dU (P (z)) |z

))
= −e′nE (χ (z) Σ (z))D − E

(
χ (z) e′nΣ (z) ·

(
dU (P (z))−D

))
where D = E

(
dU (P (z))

)
. The expected price premium thus decomposes into an average risk

premium that scales with risk aversion χ (z), expected posterior uncertainty E (Σ (z)), expected

exposure D, and an adjustment due to the co-movement between the exposure, uncertainty and risk

aversion. When assets are conditionally independent (Cov (π1 (θ) , π2 (θ) |z) = 0), this co-movement

term reduces to E
(
χ (z) e′nΣ (z) ·

(
dU (P (z))−D

))
= Cov

(
χ (z)V ar (πn (θ) |z) , dUn (P (z))

)
. If

exposure dUn (P (z)) is everywhere decreasing in z, then the co-movement term is positive (negative)

if uncertainty V ar (πn (θ) |z), scaled by risk aversion χ (z), is decreasing (increasing) in z. Therefore,

controlling for the average exposure, co-movement generates a positive expected price premium if

uncertainty times risk aversion and exposure are both counter-cyclical, and a negative premium if

uncertainty times risk aversion is pro-cyclical. This is exactly what return asymmetry generates: for

downside risks, a deterioration of z increases the likelihood of adverse tail risks, hence uncertainty

is countercyclical. For an upside risk the same deterioration of reduces uncertainty as the positive

tail event is less likely to materialize.

This observation leads to an alternative interpretation of our results: generalizing the discussion

from section 2, the negative relation between skewness and returns results from the combination

of (i) counter-cyclical exposure of uninformed traders, and (ii) pro-cyclical (counter-cyclical) un-

certainty of upside (downside) risks, giving rise to an information-based skewness premium. The

counter-cyclical exposure of uninformed traders emerges naturally from the informed traders’ de-

48See Andrei et al. (2022) for implications of noisy information aggregation for empirical properties of the CAPM

with linear/normal asset returns.
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mand and the market-clearing condition: since

κI

∫
dI (x, P (z)) dF (x− θ) + κUd

U (P (z)) = s

an increase in the fundamental vector θ that raises demand
∫
dI (x, Pπ (z)) dF (x−θ) by the informed

traders for all securities must be offset by a reduction in the demand by uninformed traders, resulting

in lower exposures for uninformed traders when the fundamental is high, or asset supply is low.49

Consider next the case where α (z) > 0. With downside risk aversion, the second-order term
α(z)

2 ·d
U (P (z))

′
Ψn (z) dU (P (z)) multiplies the investors’ attitudes towards downside risk with the

squared exposures and asymmetries in returns that are summarized by dU (P (z))
′
Ψn (z) dU (P (z)).

When assets are conditional independent, the latter term reduces to Skew (πn (θ) |z) · dUn (Pn (z))2,

where Skew (πn (θ) |z) = ψn(n,n) (z) denotes the conditional skewness of asset payoffs. Taking ex-

pectations, this term thus generalizes the observation discussed in section 2 that attitudes towards

downside risk introduce a preference-based skewness premium in asset prices: because of downside

risk aversion, traders require additional compensation for accepting the market-clearing exposure

level s on negatively skewed securities, while willing to reduce the risk premium for positively

skewed securities.

To summarize, the expected price premium decomposes into an information-based skewness

premium that depends on the co-movement of the uninformed traders’ exposure and posterior

uncertainty and a preference-based skewness premium that depends on downside risk aversion and

the conditional skewness of the security. These two terms generalize the observations discussed in

the context of the CARA-normal and CARA-binary models.

Amplification of price premia with dispersed information: We conclude by show-

ing that the amplification results and limit results discussed in section 2 also generalize from

the examples to the general model: supply shocks alone are sufficient to generate EWTR and

preference-based skewness premia, but these are amplified by noisy information aggregation and

49Similar results obtain in the risk-neutral model with a noise trader demand of the form s =

Φ (u+ ω (P − E (π (θ) |P ))), which captures the notion that the residual supply available to informed traders in-

creases in the expected price premium P − E (π (θ) |P ). In this formulation, the higher is ω > 0 the more actively

the uninformed traders arbitrage the perceived price premium, with P → E (π (θ) |P ) as ω → ∞, akin to free entry

by uninformed risk-neutral arbitrageurs. A micro-foundation for this functional form assumption about asset sup-

ply can be obtained by assuming that (i) the asset supply is normalized to 1, and (ii) there is a unit measure of

risk-neutral uninformed arbitrageurs, who each have a stochastic cost of ci = c + ui of holding the one unit of the

asset, where c ∼ N
(
c̄, σ2

c

)
and ui ∼ N

(
0, γ−1

)
. In this case, uninformed arbitrageurs buy the security if and only

if ci + P ≤ E (π (θ) |P ), resulting in a residual supply schedule of Φ
(√
γ (c+ P − E (π (θ) |P ))

)
, which confirms the

above representation with ω =
√
γ and u =

√
γc ∼ N

(√
γc̄, γσ2

c

)
.
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the information-based skewness premium. Suppose that E (s) = 0 and consider first the limit with-

out informed traders, as κI goes to 0. In this case, dU (P (z)) must converge to s/κU , P must become

completely uninformative, and price fluctuations are exclusively due to supply shocks. Therefore,

Σ (z) converges to the prior variance-covariance matrix Σ which is independent of dU (P (z)) =

s/κU , and hence the information-based premium vanishes: E
(
e′nΣ (z) ·

(
dU (P (z))−D

))
= 0.

However E
(
dU (P (z))

′
Ψn (z) dU (P (z))

)
converges to 1

κ2
U
E (s′Ψns), where Ψn is the unconditional

third-moment matrix. This last expression is positive (negative) whenever Ψn is positive (negative)-

definite; with independent assets, this limit is Skew (πn (θ))E
(
s2
n

)
. This limit thus highlights that

the preference-based skewness premium scales with the variance of supply shocks. preference-based

skewness premium that scales with the variance of supply shocks:

Compare this limit with the alternative in which κI → 0 and the distribution of supply shocks

is also scaled by κI , i.e. s = κI s̃, where s̃ is distributed according to some fixed distribution G̃,

with E (s̃) = 0. This limit is equivalent to the limit where κU → ∞, holding κI = 1 and the

distribution of supply shocks constant (i.e. we have entry of risk-averse, uninformed investors). In

this limit, z remains informative and conveys information about
∫
dI (x, P (z)) dF (x − θ) − s, i.e.

Σ (z) converges to a finite limit, and dU (P (z)) must then scale with κI to satisfy market-clearing.

The expected price premium satisfies

E (Pn (z))− E (πn (θ)) = −χ · cov (V ar (πn (θ) |z) , sn) + o (V ar (sn))

This last expression, and hence the information-based skewness premium, scales with κI , or the

standard deviation of supply shocks, and conditional second moments of returns (variance), rather

than third moments (skewness). By the same argument, letting κU tend to infinity implies that

for large κU , the expected price premium vanishes at a rate 1/κU , equal to inverse of the measure

of uninformed traders. Hence sufficient entry by uninformed (but risk-averse) traders will result in

convergence of prices to expected dividends - even if the information aggregated through the price

remains noisy.

To conclude, for small values of κI and σ2
sn , the skewness premium becomes an order of magni-

tude larger with dispersed information than without. Relative to the benchmark with no dispersed

information, noisy information aggregation thus amplifies the price premium for skewness.50

50In the online appendix, we show that the same result holds very generally when supply shocks are small: the

expected price premium is of order σ2
s if there are no informed traders, but of order σs, when private information

vanishes along-side supply shocks while keeping the informativeness of the price constant, or equivalently the mass

of uninformed traders converges to infinity while keeping noise trading and informed trading constant. Hence an

economy with small supply shocks and some privately informed traders may generate substantially larger average
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6 Concluding Remarks

We have developed a theory of asset price formation based on dispersed information and its ag-

gregation in asset markets. This theory ties expected asset returns to properties of their return

distribution and the market’s information structure. The theory imposes no restrictions on asset

payoffs, investor information and asset supply and therefore speaks to much wider asset classes

than most of the prior literature on noisy information aggregation. Finally, our theory is tractable

and easily lends itself to applications as well as quantitative evaluation of asset pricing puzzles

by calibrating model parameters to moments of forecast dispersion. In particular we show that

our theory can account for a rich set of empirical facts regarding returns to skewness and forecast

dispersion in equity and bond markets.

Future work will have to explore the quantitative implications of dispersed information for ex-

cess price volatility and return predictability, as well as other asset pricing puzzles. In Albagli et

al. (2014) we use our framework to develop a dynamic model of corporate credit spreads. A second

direction is to explore the effects of public news and information disclosures. A third direction

consists in exploring how market frictions influence real decision-making by firms, households or

policy makers. Using variants of our model, Bassetto and Galli (2019) compare information sensi-

tivity of domestic and foreign debt and provide a theory of “original sin”, and Gaballo and Galli

(2022) develop a theory of quantitative easing based on information frictions and limits to arbitrage

between bond and money holdings. In Albagli et al. (2017), we study the interplay between noisy

information aggregation and risk-taking incentives. In an earlier version of this paper, we applied

our model to security design and capital structure questions. These applications already suggest

that our model may be useful to shed light on other economic phenomena well beyond empirical

asset pricing puzzles.
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7 Appendix: Proofs

Proof of Proposition 1:

See Online Appendix.

Proof of Proposition 2:

The price function Pπ (z) = E (π (θ) |x = z, z) given by (9) is continuous and strictly increasing

in z. It then follows from arguments given in the text that when coupled with the threshold

x̂ (P ) = z and the associated posterior beliefs, Pπ (z) constitutes an equilibrium in which d (x, P ) is

non-increasing in P . Moreover, by market-clearing, z =x̂(Pπ (z)) and z′ = x̂(Pπ (z′)), and therefore

z = z′ if and only if Pπ (z) = Pπ (z′). Therefore, the equilibrium conjectured above is the only

equilibrium, in which P is informationally equivalent to z.

It remains to be shown that there exists no other equilibrium in which demand is non-increasing

in P . In any equilibrium, in which d (x, P ) is non-increasing in P , x̂ (P ) must be non-decreasing

in P . Moreover, x̂ (P ) must be continuous – otherwise, if there were jumps, then there would be

certain realizations for z, for which there is no P , such that x̂ (P ) = z, implying that the market

cannot clear at these realizations of z. Now, if x̂ (P ) is strictly increasing in P , it is invertible, and

we are therefore back to the equilibrium that we have already characterized. Suppose therefore that

x̂(P ) x̂(P ) = x̂(P ′) = x̂(P ′′) for P ∈ (P ′, P ′′) and P ′′ > P ′. Suppose further that for sufficiently low
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ε > 0, x̂(P ) is strictly increasing over (P ′ − ε, P ′) and (P ′′, P ′′ + ε), and hence uniquely invertible.51

But then for z ∈ (x̂(P ′ − ε), x̂(P ′) and z ∈ (x̂(P ′′), x̂ (P ′′ + ε)), P (z) is uniquely defined, so we have

P ′ ≥ limz↑x̂P (z) = limz↑x̂E (π (θ) |x = z, z) and P ′′ ≤ limz↓x̂P (z) = limz↓x̂E (π (θ) |x = z, z) . But

since E (π (θ) |x = z, z) is continuous, it must be that

P ′′ ≤ limz↓x̂E (π (θ) |x = z, z) = limz↑x̂E (π (θ) |x = z, z) ≤ P ′,

which yields a contradiction.

Proof of Proposition 3:

Part (i) follows directly from applying Definition 1 in equation (12) and from taking the derivative

w.r.t. σ̂θ. Part (ii) follows from additivity (for given σ̂θ, W (π1, σ̂θ)−W (π2, σ̂θ) = W (π1 − π2, σ̂θ))

and applying part (i) to π1−π2. For the limit as σ̂θ →∞, note that limσ̂θ→∞
∫∞
−∞

(
π
(
σ̂θ
σθ
θ
))

dΦ
(
θ
σθ

)
=

limθ→∞
1
2 (π (θ) + π (−θ)), and therefore limσ̂θ→∞ |W (π, σ̂θ)| = limθ→∞

1
2 |π (θ) + π (−θ)|.

Derivation of equation 14:

Simple algebra shows that

σ̂2
θ

σ2
θ

= 1 + γ̂
γ̂ − γ
γ

= 1 + γ̂
β/σ2

θ(
1/σ2

θ + β + τ
)
τ

= 1 +
β/σ2

θ(
1/σ2

θ + β + τ
)2 β + τ

τ

Since D̃2 =
β/σ2

θ

(1/σ2
θ+β+τ)

2 and γ̂ (1− γ̂) =
(β+τ)/σ2

θ

(1/σ2
θ+β+τ)

2 , it follows that

σ̂2
θ

σ2
θ

= 1 + D̃2 γ̂ (1− γ̂)

γ̂ (1− γ̂)− D̃2
.

Proof of Theorem 1:

We begin with two useful lemmas:

Lemma 1 Suppose that θ is distributed according to cdf. H (·) and that f (·) is log-concave and

f ′ (·) /f (·) unbounded. Then H (θ|x) ≡
∫ θ
−∞ f (x− θ′) dH (θ′) /

∫∞
−∞ f (x− θ′) dH (θ′) is decreasing

in x, with limx→−∞H (θ|x) = 1 and limx→∞H (θ|x) = 0.

51It cannot be flat everywhere, because then informed demand would be completely inelastic, and there would be

no way to absorb supply shocks.
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Proof. Notice that

H (θ|x)

1−H (θ|x)
=

∫ θ
−∞ f (x− θ′) dH (θ′)∫∞
θ f (x− θ′) dH (θ′)

=

∫ θ
−∞

f(x−θ′)
f(x−θ) dH (θ′)∫∞

θ
f(x−θ′)
f(x−θ) dH (θ′)

=
H (θ)

1−H (θ)

E
(
f(x−θ′)
f(x−θ) |x, θ

′ ≤ θ
)

E
(
f(x−θ′)
f(x−θ) |x, θ′ > θ

)
Log-concavity and MLRP of f imply that whenever θ′ < θ, f (x− θ′) /f (x− θ) is decreasing in x

with limx→−∞f (x− θ′) /f (x− θ) = ∞ and limx→∞f (x− θ′) /f (x− θ) = 0. It follows that the

second ratio is strictly decreasing in x and converges to 0 as x→∞ and ∞ as x→ −∞.

Lemma 2 In any equilibrium, and for any P on the interior of the support of π(θ), there exist

xL (P ) and xH (P ), such that d (x, P ) = dL for all x ≤ xL (P ), d (x, P ) = dH for all x ≥ xH (P ),

and d (x, P ) is strictly increasing in x for x ∈ (xL (P ) , xH (P ))

Proof. For any D, consider the risk-adjusted cdf

H (·|P ;D) =

∫ θ
−∞ U

′ (D(π (θ)− P )) dH (θ|P )∫∞
−∞ U

′ (D(π (θ)− P )) dH (θ|P )
,

and let H (·|x, P ;D) and E (π (θ) |x, P ;D)≡
∫
π (θ) dH (θ|x, P ;D) denote the cdf and conditional

expectations after updating conditional on a private signal x. By Lemma 1, H (·|x, P ;D) is strictly

decreasing in x, E (π (θ) |x, P ;D) is strictly increasing in x and limx→−∞ E (π (θ) |x, P ;D) < P <

limx→∞ E (π (θ) |x, P ;D) for any P on the interior of the support of π (·). But then there exist

xL (P ) s.t. E (π (θ) |xL (P ) , P ; dL) = P , which implies that d (x, P ) = dL for all x ≤ xL (P ), and

xH (P )s.t. E (π (θ) |xH (P ) , P ; dH (P )) = P , which implies that d (x, P ) = dH for all x ≥ xH (P ).

For x ∈ (xL (P ) , xH (P )) and x′ > x, Lemma 1 implies that P = E (π (θ) |x, P ; d (x;P )) <

E (π (θ) |x′, P ; d (x;P )), or equivalently E ((π(θ)− P )|x′, P ; d (x, P )) > 0. Since the LHS of this

condition is strictly decreasing in d, it follows that d (x′, P ) > d (x, P ).

Lemmas 1 and 2, and d (x, P ) strictly decreasing in P imply that there exists a unique z (P ) ∈

(xL (P ) , xH (P )); s.t. d (z (P ) , P ) = D̄, or equivalently, P = Pπ (z) = E
(
π (θ) |x = z (P ) , P ; D̄

)
.

Combining with the equilibrium price function, we then define a candidate sufficient statistic func-

tion z (θ, u) = z (P (θ, u)), and since z (P ) is invertible, z must be a sufficient statistic for the

information contained in P . Therefore we obtain the representation (16), along with representa-

tion (15) of equilibrium beliefs.
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Proof of Proposition 4:

Set D̄ = 0 (wolg). Fix θn and zn = θn + k. We first show that limθn→∞m (θn, zn) =

limθn→−∞m (θn, zn) =∞. To see this, write

m (θ, z)−1 =
E (f (z − θ′) |z)

f (z − θ)
=
f (z − θ)−

∫∞
θ (1−H (θ′|z)) f ′ (z − θ′) dθ′ +

∫ θ
−∞H (θ′|z) f ′ (z − θ′) dθ′

f (z − θ)

= 1−
∫∞
θ (1−H (θ′|z)) f ′ (z − θ′) dθ′∫∞

θ f ′ (z − θ′) dθ′
−
∫ θ
−∞H (θ′|z) f ′ (z − θ′) dθ′∫ θ

−∞ f
′ (z − θ′) dθ′

= 1−
∫ z−θ
−∞ (1−H (z − u′|z)) f ′ (u′) du′∫ z−θ

−∞ f ′ (u′) du′
−
∫∞
z−θH (z − u′|z) f ′ (u′) du′∫∞

z−θ f
′ (u′) du′

Now, with zn = θn + k, we have

m (θn, zn) = 1−
∫ k
−∞ (1−H (zn − u′|zn)) f ′ (u′) du′∫ k

−∞ f
′ (u′) du′

−
∫∞
k H (zn − u′|zn) f ′ (u′) du′∫∞

k f ′ (u′) du′

and since limz→∞H (z − u′|z) = 1, it follows that limθn→∞m (θn, zn) = ∞. Likewise, since

limz→−∞H (z − u′|z) = 0, it also follows that limθn→−∞m (θn, zn) =∞. In addition, it is straight-

forward to check that limz→−∞m (θ, z) = limz→∞m (θ, z) =∞, for fixed θ.

Next notice that for fixed k, Pr (x > zn|θn) = 1 − F (zn − θn) = 1 − F (k). It follows that

F (k) dL ≤ D (θn, P (zn)) ≤ (1− F (k)) dH , and therefore D (θn, P (zn)) is strictly bounded away

from dH and dL. But then, Ψ (zn|θn) = 1 − G (D (θn, P (zn))) is strictly and uniformly bounded

away from 0 and 1 for all θn.

Finally, consider m (θ) =
∫
m (θ, z)ψ (z|θ) dz. Since limz→∞m (θ, z) = ∞ it must be the case

that

m (θn) ≥ m (θn, zn) (1−Ψ (zn|θn)) +

∫ zn

−∞
m (θn, z)ψ (z|θn) dz.

for θn sufficiently high. Since limθn→∞Ψ (zn|θn) < 1 and limθn→∞m (θn, zn) = ∞, it follows that

limθn→∞m (θn) =∞. Likewise, m (θn) ≥ m (θn, zn) Ψ (zn|θn) for θn sufficiently low, and it follows

that limθn→−∞m (θn) =∞.

Proof of Proposition 5:

See Online Appendix.

Proof of Theorem 2:

With symmetry, we have Ĥk (θ) =
∫ θ
−∞mk (θ′)h (θ′) dθ′ =

∫ θ
−∞mk (−θ′)h (−θ′) dθ′ =

∫∞
θ mk (θ′)h (θ′) dθ′ =
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1− Ĥk (θ). Moreover,

W (π, m̂k) =

∫ ∞
−∞

(
H (θ)− Ĥk (θ)

)
dπ (θ) =

∫ ∞
0

(
H (θ)− Ĥk (θ)

)
d (π (θ) + π (−θ)) .

Finally, by log-convexity of m2 (·) and m1 (·) /m1 (·), Ĥ2 (θ) ≥ Ĥ1 (θ) ≥ H (θ) for θ ≤ 0 and

Ĥ2 (θ) ≤ Ĥ1 (θ) ≤ H (θ) for θ ≥ 0.

Part (i) then follows from Definition 1 and the ordering of distributions. Part (ii) follows from

additivity, W (π1,m)−W (π2,m) = W (π1 − π2,m), and applying part (i) to π1 − π2.

To complete the proof, we show that |W (π,m)| may become arbitrarily large if Ĥ (·) converges

to an improper distribution characterized by Ĥ (θ)→ 1
2 . In this limit case, we rewrite

|W (π,m)| =
∫ ∞

0

(
H (θ)− Ĥ (θ)

)
dπ̂ (θ) ,

where π̂ (θ) = |π (θ) + π (−θ)|. For some (small) ε > 0, there exist θ̄ and θ, such that H (θ)−Ĥ (θ) ≥

ε for θ ∈
(
θ, θ̄
)
, and therefore

|W (π, m̂)| ≥
∫ θ̄

θ

(
H (θ)− Ĥ (θ)

)
dπ̂ (θ) ≥ ε

(
π̂
(
θ̄
)
− π̂ (θ)

)
As Ĥ (θ)→ 1

2 , θ̄ →∞ and θ → H−1
(

1
2 + ε

)
. It follows that limĤ(θ)→ 1

2
|W (π, m̂)| = limθ̄→∞ επ̂

(
θ̄
)

=

∞.
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