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Abstract

We describe a new design-based framework for drawing causal inference in random-
ized experiments. Causal effects in the framework are defined as linear functionals
evaluated at potential outcome functions. Knowledge and assumptions about the po-
tential outcome functions are encoded as function spaces. This makes the framework
expressive, allowing experimenters to formulate and investigate a wide range of causal
questions. We describe a class of estimators for estimands defined using the frame-
work and investigate their properties. The construction of the estimators is based on
the Riesz representation theorem. We provide necessary and sufficient conditions for
unbiasedness and consistency. Finally, we provide conditions under which the esti-
mators are asymptotically normal, and describe a conservative variance estimator to
facilitate the construction of confidence intervals for the estimands.
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1 Introduction

Randomized experiments have been widely adopted in a diverse set of fields, including clin-
ical trials, policy evaluations, and social science research. However, the use of experiments
is limited, partly because conventional experimental methodologies cannot accommodate
the range of settings empirical researchers are interested in. An important such limitation
is the assumption of no interference, stating that a unit’s outcome or behavior is unaffected
by the treatment assigned to other units. Another limitation is the widespread focus on
binary treatments, as opposed to, for example, continuous or set-valued treatments.

A growing body of work seeks to address these limitations, but both conventional and
recently developed frameworks lack sufficient expressiveness to formulate the full range of
questions empirical researchers are interested in. Furthermore, recently developed frame-
works and methods still tend to require strong assumptions, and they are generally justified
by an assumption of sampling from an imagined super-population, in contrast to a design-
based justification in which all randomness under consideration stems from the experiment
itself. This restricts the applicability and interpretability of current frameworks and meth-
ods.

In this paper, we describe a new design-based experimental framework for causal esti-
mation under interference to address these limitations. The purpose of the framework is
to be sufficiently expressive to allow experimenters to define and investigate a wide range
of causal questions involving continuous or discrete treatments under rich and complex
interference structures. At the same time, the framework is constructed to be sufficiently
tractable to admit precise estimation and inference of the estimands defined with it. The
framework unifies and generalizes all previously developed design-based frameworks that
we are aware of.

There are three main contributions of this paper.

1. We describe a new design-based causal inference framework, in which causal effects
are defined using linear functionals evaluated on potential outcome functions. This
gives empirical researchers an expressive tool to formulate new types of estimands that
are relevant for policy and substantive theory. In the framework, assumptions about
the potential outcome functions are formalized as function spaces, giving empirical
researchers flexibility also in formulating any knowledge or beliefs they might have
about the environment under study.

2. We describe a new treatment effect estimator, which we call the Riesz estimator. The
estimator can be used for any estimand defined in the framework as long as a type
of positivity assumption holds. We provide both finite- and large-sample analyses
of the estimator, including conditions for unbiasedness, consistency and asymptotic
normality. These conditions are empirically non-trivial, in the sense that there exist
many practically relevant situations in which they do not hold, but we believe the
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conditions are sufficiently easy to understand, given their generality, that empirical
researchers will find it feasible to assess their validity.

3. We describe a new conservative variance estimator for the Riesz estimator, and pro-
vide conditions under which the variance estimator is consistent. This facilitates the
construction of asymptotically valid confidence intervals.

The statistical methodology developed in this paper uses several insights from functional
analysis, including the Riesz representation theorem that has given the paper its title.
We believe these insights shed light on the underlying principles that facilitate inference
of causal effects more generally in the design-based paradigm, both with and without
interference, and we believe the insights will be of independent interest to many researchers
working in causal inference.

The Riesz representation theorem has previously been used in the semiparametric causal
inference literature. To the best of our knowledge, the earliest uses were by Newey (1994)
to characterize the variance of semiparametric estimators and independently by Robins,
Rotnitzky, and Zhao (1994) to construct doubly robust estimators. More recently, the the-
orem has been prominently featured in work by Rotnitzky, Smucler, and Robins (2020),
Hirshberg and Wager (2021) and Chernozhukov, Newey, and Singh (2022a), among oth-
ers. We describe previous uses of the Riesz representation theorem in causal inference in
Section 4.4. To the best of our knowledge, we are the first to use the Riesz representa-
tion theorem in a design-based setting, and the application of the theorem in this paper
is different from the application in the semiparametric literature. Nevertheless, there are
commonalities, and we hope that this paper will serve as starting point for building bridges
between the design-based and semiparametric perspectives on causal inference.

Because the framework and methods we describe in this paper generalize and unify
many approaches previously described in the design-based causal inference literature, we
find it advantageous to review and highlight these connections throughout the paper, rather
than describing the connections to prior work in a dedicated section.

2 Illustrations

We first describe a restricted version of our framework to illustrate its use. Consider
an experiment with n units, where each unit is assigned a continuous treatment Zi ∈
[0, 1] selected at random. We collect the treatments in a vector Z = (Z1, . . . , Zn). The
distribution of Z can be complex and does not necessarily factor into independent and
identical components. The units can potentially interfere with each other, meaning that
the outcome of one unit could depend on the treatments of other units. Therefore, the
potential outcome function yi(z) for each unit maps from [0, 1]n to R.
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The conventional estimand in this setting is the so-called Global Average Treatment
Effect, or the “all-or-nothing” effect, which is the difference in outcomes when all units are
assigned to the extreme ends of the treatment variable interval: n−1

∑n
i=1[yi(1) − yi(0)].

This estimand has been investigated by Eckles, Karrer, and Ugander (2017), Chin (2019),
Harshaw, Sävje, Eisenstat, Mirrokni, and Pouget-Abadie (2021) and Leung (2022b), among
others. While the all-or-nothing effect is useful in some settings, and an estimand that our
framework can accommodate, it is a crude summary of the ways the treatments affect the
outcomes. Empirical researchers often seek a deeper and more nuanced picture of how
the treatments are causally related to the outcomes. We provide two examples of such
estimands in this section.

2.1 Policing Experiments

A type of policy that has received recent attention in the social sciences is intensive policing
in high-crime settings. The general idea is that there might be increasing returns to scale
of policing. That is, intensive policing, such as around-the-clock patrolling, in a few se-
lected locations might be more effective in reducing crime than moderate policing in many
locations. An example of such a study is Blattman, Green, Ortega, and Tobón (2021), who
investigate how intensive policing affects crime in the city of Bogotá, Colombia.

Here, the units are some type of geographical areas, such as neighborhoods, and Zi
denotes the amount of policing allocated to area i. Policing is arguably best seen as a
continuous variable (e.g., the number of hours patrolled), but following the convention in
this literature, Blattman et al. (2021) discretize the treatment variable into two levels, cor-
responding to high and low levels of patrolling. In our illustration, Zi ∈ [0, 1] is continuous,
where Zi = 0 denotes no policing and Zi = 1 denotes the most policing the policy maker
finds relevant or imaginable. The outcome yi(z) is some measure of crime activity, such as
the number of reported crimes in the neighborhood.

It is common to focus on a version of the all-or-nothing effect when studying the effects
of intensive policing, although the estimand is often defined only informally or implicitly.
However, the focus on the all-or-nothing effect can be problematic in this setting, because
the effect is typically not relevant to policy makers. This is because neither the “all” policy
(e.g., patrolling all the neighborhoods all the time) nor the “nothing” policy (never patrol
any neighborhoods) are viable or desirable policing policies. Instead, the relevant patrolling
policies are arguably stochastic, because otherwise organized criminals could adapt their
behavior to avoid encountering the patrols.

If we are interested evaluating the performance of stochastic policy F relative to some
other policy G, where F and G are distribution functions over [0, 1]n for the assignment of
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Z, then a reasonable estimand is

1

n

n∑
i=1

∫
[0,1]n

yi(z) dµ(z),

where µ(z) = F (z)−G(z) is a signed measure. Note that F and G can implicitly depend
on characteristics of the units through the unit indices, so they can be targeted policies.

2.2 Cash Transfer Programs

Another type of policy that has received attention in the social sciences in general, and in de-
velopment economics in particular, is conditional or unconditional cash transfer programs,
the latter of which is sometimes referred to as universal basic income (UBI) programs.
Here, the units are people, and Zi denotes the cash transfer that person i receives, where
Zi = 0 denotes no transfer and Zi = 1 denotes the maximum possible transfer. An example
of a study investigating such a program is Haushofer and Shapiro (2016), who investigate
how different amounts of cash in an unconditional cash transfer program targeting poor
households in Kenya affected consumption and well-being.

The typical estimand in a cash transfer experiment is a contrast between two levels
of the transfer, resulting in a version of the all-or-nothing effect. A possible alternative
estimand is the effect of a marginal increase of the transfer, which for example would be
relevant to a policy maker who is considering making changes to an existing cash transfer
program. We can use the derivative of the potential outcome function to capture such a
marginal effect. For example, the overall effect of a marginal increase of the transfer is
captured by

1

n

n∑
i=1

n∑
j=1

∂yi
∂zj

(s),

where s ∈ [0, 1]n is the current transfer level. It is also possible to consider the overall
effect under some alternative, counterfactual policy s′ ∈ [0, 1]n different from the current
policy s.

Note that this marginal effect takes into account all spillover effects of the increase.
We could imagine that increasing the transfer could have a positive effect for the person
who receives the transfer but be detrimental to other people because of crowding-out or
inflationary effects. As highlighted by Egger, Haushofer, Miguel, Niehaus, and Walker
(2022), among others, general equilibrium effects, which is a type of spillover effect, is an
important consideration when evaluating cash transfer programs.

It is possible to define effects that provide a more nuanced picture of these spillover
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effects. One can for example decompose the overall effect into direct and indirect effects:

1

n

n∑
i=1

∂yi
∂zi

(s) and
1

n

n∑
i=1

∑
j 6=i

∂yi
∂zj

(s).

The first estimand captures the marginal effect of increasing the transfer on the person
receiving the transfer, while the second estimand captures effect on other people. The first
estimand is related to the Incremental Causal Effect, which is studied by Rothenhäusler and
Yu (2019) in a super-population setting. The second estimand is informative of potential
spillover and general equilibrium effects. If units are suspected to primarily interfere along
the edges of a known graph, then it might aid interpretability and generalizability to restrict
the indirect estimand to units in neighborhoods of the graph. Letting Ni denote the indices
of the units adjacent to unit i in the graph, we can define a restricted indirect effect as

1

n

n∑
i=1

∑
j∈Ni

∂yi
∂zj

(s).

This type of restriction of the estimand might make sense even if units interfere in ways
that are not captured by the graph. That is, the restricted indirect effect is well-defined
and might be useful even if units interfere with units outside of their neighborhoods, Ni.

The purpose of these examples is to illustrate questions that cannot be investigated
using existing design-based frameworks and methods, but can be investigated using the
framework we describe in this paper. It is sometimes possible to translate some of these
questions into a form that can be accommodated by existing frameworks, but that transla-
tion must be done on a case-by-case basis, and the translation tends to be opaque, in our
view. The causal inference literature based on a super-population justification has made
progress on some of these types of estimands, but it is often difficult or impossible to ex-
press general forms of interference when working in a super-population framework, limiting
its applicability. However, recent work in the super-population framework has make con-
siderable progress in the direction of allowing for more general forms of interference (see,
e.g., Li & Wager, 2022; Ogburn, Sofrygin, Diaz, & van der Laan, 2022; Tchetgen Tchetgen,
Fulcher, & Shpitser, 2021). We see this paper as complementary to the ongoing work in
the super-population literature.
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3 The Framework

3.1 Treatments and Potential Outcomes

The type of experiment we consider in this paper consists of two primitives: a treatment
variable and a set of outcome measurements. The treatment variable captures various
interventions the experimenter can make. These interventions could potentially affect the
world, including the outcomes, and our aim is to estimate these effects.

Let Z denote the set of all interventions that the experimenter potentially could do.
We do not impose any restrictions on properties of the interventions, meaning that Z can
have whatever structure most suitable for the application at hand. We will use z ∈ Z to
denote a particular intervention, which we refer to as a treatment assignment. By virtue
of being a randomized experiment, an element from Z is selected at random to be the
realized intervention. Together with an appropriate σ-algebra and a probability measure,
Z forms a probability space that describes how the intervention is selected. Let Z denote
the randomly selected intervention. We refer to the distribution of Z as the experimental
design, which we take to be known to the experimenter. The only randomness under
consideration in this paper is that which is induced by the experimental design.

There are n outcome measurements in the experiment, which are indexed by integers
i ∈ [n] = {1, . . . , n}. For convenience, we will refer to the measurements as units, but they
do not need to be distinct units as conventionally understood. Each unit has an associated
potential outcome function yi that maps the treatment variable to an observed value of
the measurement. The function describes what the outcome would have been under a
particular, potentially counterfactual, intervention. It is assumed that all units have well-
defined potential outcome functions, in the sense that an unambiguous outcome is produced
by each intervention in Z, and that this outcome can be observed. Let Yi = yi(Z) denote
the (random) realized outcome for unit i.

We define Y to be the function space of all functions y : Z → R that are measurable
and square integrable with respect to the design:

Y =
{
y ∈ RZ : y is measurable and E

[
y(Z)2

]
<∞

}
.

The space Y contains all potential outcome functions that we will consider in this paper.
This space might be smaller than the complete set of all real-valued functions on Z, but the
purpose of Y is not to encode knowledge or beliefs the experimenter might have about how
the interventions affect the outcomes. The purpose is instead to impose enough structure
on Y to ensure that the objects we construct on the space are well-defined and sensible.

A special case of our framework is the conventional causal inference setting. Here,
Z = {0, 1}n is a set of all binary vectors, corresponding to active and control treatment.
In examples involving binary treatment vectors, we will write the treatment variable as
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a vector for clarity: Z = (Z1, . . . , Zn). An example of a possible intervention is z =

(0, 1, 1, 0, . . . , 1, 0) ∈ Z. In this setting, there is generally a correspondence between the ith
unit and the ith coordinate of the treatment vector, Zi, which is said to be the treatment
assigned to the unit. Our framework does not require such a correspondence between the
units and the treatment variable.

The framework also encompasses other settings, as illustrated by the following exam-
ples. Zigler and Papadogeorgou (2021) consider bipartite experiments, in which the units
receiving treatment are different from the units for which we measure outcomes, meaning
that Z = {0, 1}m for some m 6= n, and there is no obvious mapping from the dimensions
of the treatment variable to the units. Aronow, Samii, and Wang (2021), Papadogeorgou,
Imai, Lyall, and Li (2020) and Pollmann (2020) consider spatial experiments, in which
the possible interventions are geographical locations, meaning that Z is a set of vectors
of geographical coordinates. VanderWeele and Hernan (2013) considers experiments with
hidden versions of treatment, in which the nominal treatments are coarsened versions of Z.
Hirano and Imbens (2004), Galvao and Wang (2015), Kennedy, Ma, McHugh, and Small
(2017), and Rothenhäusler and Yu (2019), among others, consider continuous treatments,
Z ⊆ Rn, in a super-population framework. Kennedy (2019) and Hu, Li, and Wager (2022)
consider the causal effect of changes to the experimental design, which for example could
be an increase in the probability of receiving treatment. Basse, Ding, Feller, and Toulis
(2019) consider causal effects of group formation, where the treatment is the assignment of
units into groups. All of these examples fit in the current framework.

3.2 Effect Functionals

The starting point for the definition of a causal estimand in our framework is a set of indi-
vidual treatment effects. Each individual effect is defined by a linear functional evaluated
at the corresponding unit’s potential outcome function. A linear functional is a function
θ : Y → R with the properties θi(f + g) = θi(f) + θi(g) and θi(αf) = αθi(f) for f, g ∈ Y
and α ∈ R. We refer to these functionals as effect functionals. This approach to effect defi-
nition is more expressive than conventional approaches, and it accommodates a wide range
of types of treatments, meaning that we do not need to impose any particular structure on
Z to define our effects.

The experimenter specifies an effect functional θi for each unit i ∈ [n], and the individual
treatment effect is given by τi = θi(yi). The estimand of interest is the average of the
individual treatment effects:

τ =
1

n

n∑
i=1

τi =
1

n

n∑
i=1

θi(yi).

Because this class of estimands is large and includes essentially all estimands previously
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considered in the design-based causal inference literature as special cases, we do not find
it useful to give τ a particular name. For convenience, we will refer to τ as the aggregate
treatment effect. The aggregate treatment effect is not the same as the average treatment
effect (ATE), as conventionally defined, although we can reproduce the ATE estimand by
using an appropriate set of effect functionals, as described in Section 3.6.1.

The effect functionals θi do not need to be the same for all units; indeed, they will
typically be different. However, the functionals will often have the same structural inter-
pretation, as illustrated by the examples below. The aggregate treatment effect can be
extended to any linear combination of the individual treatment effects, as the coefficients
of the combination can be absorbed into the functionals.

There are settings where the effect functionals of interest are not defined on the full
function space Y . For example, if a functional is the derivative of the potential outcome
function at a certain point, then the potential outcome function must be differentiable at
that point for the functional to take a well-defined value. In the remainder of the paper,
we implicitly impose the assumption that the true potential outcome functions yi are in
the subset of Y on which the effect functionals of interest are well-defined. It is possible
that this subset is different for different units. Note that this assumption is not related
to estimation, and it is imposed only to ensure that the treatment effects exist and are
sensible.

The use of functionals to define parameters of interest has a long history in econometrics
and the super-population causal inference literature. The function that the functional is
evaluated on in these literatures is typically a conditional expectation function with respect
to some infinite population rather than individual potential outcome functions, as in this
paper, meaning that the functionals capture population-level characteristics. To the best
of our knowledge, we are the first to explicitly use functionals to define treatment effects in
a design-based setting, and the first to consider functionals directly on potential outcome
functions.

3.3 Examples of Effect Functionals

The use of effect functionals facilitates a large and expressive class of estimands. We believe
it is useful to categorize these estimands into different types. We will review some of these
types in this section along illustrative examples taken from the previous literature. The
types of estimands we review here are partially overlapping and not exhaustive. Given its
expressiveness, we anticipate that empirical researchers will use the framework to define
estimands that we have not yet envisioned.

The first type is evaluation functionals, which capture the value of the potential out-
come functions at particular treatment assignments. A slight extension of this type is
contrastive functionals, which capture contrasts of potential outcome functions at differ-
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ent treatment assignments. The conventional definition of the average treatment effect is
implicitly constructed using contrastive functionals. There are other examples.

• The Global Average Treatment Effect, or the all-or-nothing effect, discussed in Sec-
tion 2 is constructed using contrastive functionals. In particular, the effect is the
contrast in average outcomes between when all units are treated and when no unit is
treated:

1

n

n∑
i=1

[
yi(1)− yi(0)

]
.

The effect functional θ(y) = y(1)− y(0) reproduces this estimand.

• We can define various direct and indirect interference effects by making the functional
unique to each unit. For example, using the functional θi(y) = y(ei) − y(0) for unit
i, where ei is the standard basis vector of dimension n, produces a type of direct
effect estimand. A related effect is given by θi(y) = y(1)− y(1− ei). The functional
θi(y) = y(1− ei)− y(0) produces a type of indirect or spillover effect estimand.

The second type is integration functionals, which capture the value of potential out-
come functions over some set of interventions with respect to some measure. Integration
functionals can for example be used to capture the average, expected or accumulation of
an outcome under a treatment policy. We have already seen one such estimand in the
intensive policing example in Section 2. There are other examples.

• Hudgens and Halloran (2008) define a direct effect estimand under interference as the
average contrast in the expected outcome when a unit is treated and when it is not
treated:

1

n

n∑
i=1

{
E[yi(Z) | Zi = 1]− E[yi(Z) | Zi = 0]

}
.

Because the expectation operator is linear, this effect is captured by the effect func-
tional θi(y) =

∫
Z y(z) dµi(z), where µi is a signed measure defined as µi(z) =

(2zi − 1) Pr(Z = z | Zi = zi). Sävje, Aronow, and Hudgens (2021) describe a re-
lated estimand that often is easier to interpret. Here, the signed measure is µi(z) =

(2zi − 1) Pr(Z−i = z−i), where Z−i denotes the vector Z excluding its ith element.
Both these estimands can be seen as combining contrastive and integration aspects,
because the treatment assignments are partially but not fully pinned down.

• Aronow and Samii (2017) investigate causal inference when the treatment assignments
are summarized using exposure mappings. An exposure mapping di : {0, 1}n → ∆

is a unit-specific mapping from the treatment vector to a low-dimensional, discrete
space of labels, ∆ ⊂ N. The effect of the exposures as considered by Aronow and
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Samii (2017) requires additional assumptions to be defined, but it is possible to define
a corresponding effect without those assumptions, and the original authors discuss
the possibility of such an extension. This effect is referred to as the expected exposure
effect and is studied by, for example, Sävje (2021) and Leung (2022a). The definition
is similar to the definitions in the previous bullet point. The functional corresponding
to the expected exposure effect for exposures a, b ∈ ∆ is θi(y) =

∫
Z y(z) dµi(z), where

the measure is

µi(z) =
{
1[di(z) = a]− 1[di(z) = b]

}
Pr
(
Z = z

∣∣ di(Z) = di(z)
)
.

While exposure mappings have conventionally only been considered for binary treat-
ments, the idea generalizes to arbitrary treatment variables. The expected exposure
effect is related to the effect defined by VanderWeele and Hernan (2013) to study
multiple version of treatments.

• Aronow et al. (2021), Papadogeorgou et al. (2020) and Pollmann (2020) consider
causal inference for spatial treatments, where the treatments are localized to points
in some two-dimensional plane. The estimands they study can be written using effect
functionals in the current framework, but we will depart somewhat from their exact
definitions to illustrate that the current framework can accommodate more general
types of estimands. For example, unlike many papers in this literature, we do not
impose the restriction that treatments only can take place in a small number of
candidate locations.

Let S ⊂ R2 be a region in the two-dimensional plane, representing geographical
coordinates. The set of possible interventions is some measurable collection of subsets
of S. For example, a possible treatment assignment is {(a, b), (c, d)} ∈ Z, indicating
that treatment is assigned to the two points (a, b) and (c, d). Note that Z generally
is uncountable and cannot be represented by a binary vector; for example, a possible
treatment assignment could be some region of S. A possible effect of interest in this
setting is the comparison between being close to a treated location and being far from
all treated locations. A way to formalize this effect is with the effect functional

θi(y) =

∫
Ci

y({s}) ds− y({}),

where Ci ⊂ S is the region of the plane that is considered to be close to unit i. This
estimand compares the outcome when there is only one treated location compared
to no treated locations, which might not be relevant for policy if there will always
be some treated locations. A possible alternative estimand to address this uses the
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effect functional

θi(y) =

∫
Z

∫
Ci

y
(
{s} ∪ (S \ Ci)

)
ds dF (S)−

∫
Z
y(S \ Ci) dF (S),

where F is some distribution of the treatment assignments, perhaps representing the
current policy. This estimand considers the effect of modifying the policy F in a way
that forces there to be either one or no treated location close to unit i.

The third and final type of estimand we consider here is based on differentiation func-
tionals, which capture how the potential outcome functions change in certain circumstances.
These functionals can for example be used to describe marginal effects for continuous treat-
ments, as in the cash transfer example presented in Section 2. There are other examples.

• Hu, Li, and Wager (2022) defines an infinitesimal policy effect as the average deriva-
tive of the expected outcome over the units with respect to the probability of being
assigned active treatment. Let Fπ denote the distribution of a binary treatment vector
under a set of experimental designs parametrized by π. In the case of Hu et al. (2022),
the set contains all Bernoulli designs and π is the marginal treatment probability,
which for simplicity we set to be the same for all units. The expected outcome for a
unit with potential outcome function y under design π is Eπ[y(Z)] =

∫
Z y(z) dFπ(z),

so the infinitesimal policy effect at the individual level is given by the effect functional

θ(y) =
∂ Eπ[y(Z)]

∂π
.

It is possible to extend this to other designs and to multi-dimensional, partial pa-
rameterizations. A related estimand has been studied by Kennedy (2019) in a super-
population framework.

3.4 Model Spaces

Experimenters use their knowledge and beliefs about the possible effects of the interven-
tions to impose structure on the potential outcome functions. This structure facilitates
estimation and inference. In this paper, we formalize the structure on the potential out-
come functions using subspaces of the full function space Y . We refer to these subspaces
as model spaces.

Let Mi ⊆ Y denote the model space of unit i. We do not require that Mi has any
particular structure, other than being a subspace of Y and that the effect functional θi
is well-defined on Mi. The central results of this paper hold for both finite- or infinite-
dimensional model spaces, but some of the computational procedures we describe apply
only to model spaces with finite dimensions. The use of infinite-dimensional model spaces
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also involves a bias–variance trade-off that we do not investigate in this paper. We save
the full extension to model spaces with infinite dimensions for future work.

The purpose of the model spaces is to restrict the possible potential outcome functions,
as captured by the following assumption.

Assumption 1 (Correctly specified models). Each unit’s potential outcome function is in
the model space specified for that unit: yi ∈Mi for all i ∈ [n].

The assumption states that the models specified by the experimenter are correct, in
the sense that there is no loss of information about the behavior of the potential outcome
function yi when we restrict our attention to the model space Mi. As illustrated by the
examples later in this section, this type of assumption is widely used in the causal inference
literature. However, there is recent work that considers relaxations (e.g., Leung, 2022a;
Sävje, 2021; Sävje et al., 2021). Assumption 1 is strong, and it is unlikely to hold exactly
in most settings, but it can sometimes be seen as a useful approximation. We will maintain
the assumption of correctly specified model spaces throughout this paper, and describe a
relaxation in future work.

Experimenters are free to specify the model spaces however they wish. When the
model spaces are finite-dimensional, we suspect experimenters often will find it convenient
to specify them using a set of explicit functions. The model space is then the span of these
functions. If the functions are linearly independent, they act as a basis for the model space.
We provide concrete examples of model spaces created from basis functions in Section 3.6.

When working with model spaces created from explicit basis functions, some experi-
menters will find it convenient to define their estimands based on the coefficients for the
basis functions corresponding to the true potential outcome function yi, because this is
reminiscent of how estimands often are defined in conventional linear regression studies.
In Section S4.2 of the supplement, we show that any linear combination of the coefficients
corresponding to yi when written in a basis of the model space is an effect functional as
defined in this section. This means this approach to defining estimands is accommodated
by our framework. However, the disadvantage is that the estimand is well-defined only if
the model space is correctly specified. The advantage of using an explicit effect functional is
that we can separate the definition of the treatment effect from the assumptions we impose
to estimate it.

The type of model encoded by the model spaces is not the same as a conventional
statistical outcome model. A conventional statistical model in a causal inference setting is
a parametrization of the conditional expectation function E[Yi | Zi, Xi] for some treatment
variable Zi and some vector of covariates Xi in a super-population, or a parametrization of
the full conditional distribution. The models we consider here describe how the treatment
variable relates to the outcomes for one particular unit; no restrictions are imposed on how
the outcome relates to some possible set of covariates or on the heterogeneity in the potential
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outcomes between different units. That is, the model spaces limit how the interventions
(e.g., the full treatment vector) affects the units, but they do not impose any regularity
or homogeneity between units of those effects. To appreciate this difference, note that a
d-dimensional conventional statistical model can be parametrized with d parameters, but
if the model spaces Mi are all d-dimensional, the joint model is parametrized with dn

parameters. In this sense, the framework we describe is nonparametric even when each
individual model space is finite-dimensional.

3.5 Positivity

A model space does not ensure that we observe all aspects of the potential outcome function
that are relevant for the estimand of interest. For example, if the experimental design is
such that Z takes a certain value in Z with probability one, then we will only ever see one
value of each potential outcome function, and will have no hope to estimate anything other
than trivial estimands. The following assumption ensures that the design is such that all
relevant aspects of the potential outcome functions are observable.

Assumption 2’ (Simple positivity). For all i ∈ [n], if u, v ∈ Mi are equal almost surely
on Z, then the effect functional θi is the same on the two functions: θi(u) = θi(v).

Simple positivity concerns the experimental design, the estimand, and the model spaces.
It stipulates that the design provides information about all functions in the model spaces
that are relevant for the estimand. Assumption 2’ does not hold if there exists two functions
u, v ∈ Mi such that θi(u) 6= θi(v), but u(Z) = v(Z) almost surely under the experimental
design. By linearity of the effect functional, an equivalent definition of simple positivity is
that all functions u ∈ Mi that are almost surely zero on Z must evaluate as zero on the
effect functional: θi(u) = 0.

A complication here is that the model spaceMi might contain limit points, in a sense
that will be made precise in Section 4.2, that are outside the model space, and positivity
as defined in Assumption 2’ does not pertain to such limit points. We address this com-
plication by requiring that the effect functional is sufficiently well-behaved to ensure that
observability holds also for these limit points, as formalized by the following assumption.

Assumption 2 (Positivity). There exists some C < ∞ such that |θi(u)| ≤ C
√

E[u(Z)2]

for all u ∈Mi and i ∈ [n].

The positivity assumption stipulates that the effect functionals are bounded linear func-
tionals. This can be interpreted as a slight strengthening of simple positivity; Assumption 2
implies Assumption 2’, and if the model spaces are finite-dimensional, the two assumptions
are equivalent. This is because all linear functionals are bounded on the non-zero functions
in a finite-dimensional model space, so the only functions that must be regulated are those
with E[(u(Z))2] = 0, which is what Assumption 2’ does.
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Assumption 2 is a direct generalization of conventional positivity assumptions made in
the design-based causal inference literature. We will return to this point in the examples
later in this section. Similar to the conventional positivity assumption, our two versions
of the assumption are related to the existence of an unbiased estimator of an estimand, as
described in the following proposition. The proof is provided in Section S1.1. The central
idea behind the proposition is that if positivity does not hold, then it is possible to modify
the potential outcome functions in a way that changes the estimand while holding the joint
distribution of the observed outcomes constant.

Proposition 3.1. Given correctly specified models (Assumption 1), simple positivity (As-
sumption 2’) is a necessary condition for the existence of an unbiased estimator for the
estimand τ = n−1

∑n
i=1 θi(yi), and positivity (Assumption 2) is a sufficient condition.

There is a gap between the necessary condition (Assumption 2’) and the sufficient con-
dition (Assumption 2) in Proposition 3.1, in the sense that it is unclear if an unbiased
estimator exists if Assumption 2’ holds but Assumption 2 does not. This gap is closed
when the model spaces have finite dimensions, because the two assumptions then coincide,
meaning that Assumption 2’ is a necessary and sufficient condition for the existence of an
unbiased estimator. We conjecture that Assumption 2 is necessary and sufficient for the
existence of an unbiased estimator when the model spaces have infinite dimensions. How-
ever, we find no urgency in closing this gap, because estimation using infinite-dimensional
model spaces will typically involve a bias–variance trade-off, and empirical researchers will
typically opt for a biased estimator in this setting even if an unbiased estimator exists.

It is possible to investigate whether the positivity assumption holds before the experi-
ment is run, because the assumption only depends on aspects of the experiment that are
known to the experimenter. In Section S1.3 in the supplement, we describe a computation-
ally efficient procedure for determining whether positivity holds when the model space has
finite dimensions. If the experimenter aims to investigate several estimands in the same
experiment, it could become tedious to check positivity with respect to each estimand sep-
arately. In Section S1.1 in the supplement, we describe a stronger notion of positivity.
For finite-dimensional model spaces, the stronger notion of positivity can also be investi-
gated before the experiment is run, and if it holds, positivity as defined in Assumption 2
is ensured for all possible estimands.

3.6 Examples of Model Spaces

3.6.1 Stable unit treatment value assumption

The stable unit treatment value assumption (SUTVA) states that there are no hidden ver-
sions of treatment and that a unit’s outcome depends only on its own treatment assignment.
In the case with binary treatments, Z = {0, 1}n, the assumption implies that each unit
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effectively has only two potential outcomes. A way to express this is to write the potential
outcome function as

yi(z) =

{
ai if zi = 1,

ci if zi = 0,

where, as above, we write the treatment variable as a vector z = (z1, . . . , z2) when consid-
ering binary treatments. Here, ai is the outcome of unit i when assigned active treatment,
and ci is the outcome under the control treatment. The assumption allows us to interpret
each potential outcome function as a mapping from {0, 1}, which is common in the liter-
ature, so we can write simply yi(1) = ai and yi(0) = ci. However, to keep the notation
consistent, we will always consider yi as a mapping from Z.

The model spaces corresponding to the stable unit treatment value assumption are
finite-dimensional, so we can specify the model spaces using basis functions. A possible
choice for these basis functions is to use the indicator functions gi,1(z) = 1[zi = 1] and
gi,2(z) = 1[zi = 0], so that gi,1 takes the value one if unit i is assigned active treatment,
Zi = 1, and gi,0 takes the value one if it is assigned control, Zi = 0. The corresponding
model space is then

Mi =
{
u ∈ Y : u = b1gi,1 + b2gi,2 for b1, b2 ∈ R

}
,

meaning that the true potential outcome function is yi = aigi,1 + cigi,2. The notation
u =

∑d
k=1 bkgi,k is meant to indicate that the function u is such that u(z) =

∑m
k=1 bkgi,k(z)

for all z ∈ Z. Note that this potential outcome model does not impose any homogeneity of
the potential outcome functions between the units; for example, ai provides no information
about aj for j 6= i.

An alternative but equivalent choice for basis functions to capture the stable unit treat-
ment value assumption is the constant function gi,1(z) = 1 and the unit’s treatment variable
gi,2(z) = zi. The true potential outcome function is then given by yi = cigi,1 + (ai− ci)gi,2,
which is the same function as above.

Because the basis functions gi,1(z) = 1[zi = 1] and gi,2(z) = 1[zi = 0] are disjoint, in the
sense that at most one is non-zero for any treatment assignment, positivity for any effect
functional is ensured by positivity for these basis functions alone. That is, Assumption 2
holds for any effect functional if Pr(gi,1(Z) = 1) > 0 and Pr(gi,2(Z) = 1) > 0. Note that
this condition is the same as 0 < Pr(Zi = 1) < 1, which is the conventional positivity
assumption under the stable unit treatment value assumption.

3.6.2 Exposure mappings

In their study of causal inference using exposure mappings, Aronow and Samii (2017)
assume the exposures are correctly specified. Using the unit-specific exposure mapping
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di : Z → ∆, the assumption states that as long as two treatment assignments z, z′ ∈ Z
map to the same exposure in ∆, the outcome for the corresponding unit is the same:

yi(z) = yi(z
′) for all z, z′ ∈ Z such that di(z) = di(z

′).

We can express this assumption using model spaces. Let m = |∆| denote the number
of exposures, and index the exposures in ∆ with the integers [m] = {1, . . . ,m}. Define m
basis functions for k ∈ [m] as gi,k(z) = 1[di(z) = k]. The model space corresponding to the
correctly specified exposure assumption is then given by

Mi =
{
u ∈ Y : u =

∑m
k=1 bkgi,k for b1, . . . , bm ∈ R

}
. (1)

Similar to the stable unit treatment value assumption, this model does not impose any
homogeneity between units nor any relationship between the coefficients of different units
corresponding to the true potential outcome functions when written in the bases of the
model spaces.

Because the basis functions are disjoint also in this setting, positivity for any effect
functional is ensured if Pr(di(Z) = k) > 0 holds for all i ∈ [n] and k ∈ [m]. However,
unlike under the stable unit treatment value assumption, this might not be a necessary
for positivity to hold for practically relevant estimands. If the number of exposures is
three or more, m ≥ 3, and the estimand only involve two of the exposures, say a, b ∈ [m],
then positivity only requires positivity with respect to those exposures. That is, we only
need Pr(di(Z) = a) > 0 and Pr(di(Z) = b) > 0. If we have Pr(di(Z) = c) = 0 for
some c ∈ [m] \ {a, b}, the design provides no information about dimension c of the model
space, but that is unproblematic as long as the effect functional does not depend on that
dimension.

Auerbach and Tabord-Meehan (2021) use an approach that can be interpreted as a
generalization of the exposure mapping approach, in which the exposures are local config-
urations of a rooted network. They consider estimation using a network sieve based on a
distance pseudo-metric on these rooted networks.

3.6.3 Linear-in-means models

Exposure mappings can be used to model interference that takes place in a network, but
it can be difficult or impossible to model more intricate structure because the exposures
must be discrete. As an alternative to the exposure mapping approach, consider a design-
based version of the linear-in-means model, which is used extensively in applied work (see,
e.g., Cai, Janvry, & Sadoulet, 2015; Dupas, 2014; Oster & Thornton, 2012). Methodological
investigations of the model are provided by Chin (2019), Leung (2020) and Hu et al. (2022),
among others.
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In this model, units are presumed to be affected by the share of treated units among
their neighbors in a network. Let Ni be the indices of the units that are adjacent to unit i
in the graph describing the network. The linear-in-means model then stipulates that

yi(z) = βi,1 + βi,2zi + βi,3
1

|Ni|
∑
j∈Ni

zj,

where |Ni| is the number of units adjacent to unit i. That is, the potential outcome
function depends on the unit’s own treatment assignment and the share of treated units in
its neighborhood.

It is common to add a random error term that is assumed to be mean zero and indepen-
dent between units to capture heterogeneity between units in their responses. There is no
need to add such an error term in this case, because no homogeneity is enforced between
the units by the model spaces. That is, the potential outcome function for one unit is
completely uninformative of the potential outcome functions of other units, as captured by
the fact that the coefficients βi,k are indexed by i, so we already accommodate full unit het-
erogeneity. Empirical researchers sometimes add error terms for other reasons, for example
to capture measurement errors. One can interpret the current setting as conditioning on
those measurement errors. Alternatively, one could extend the framework by including an
explicit measurement error, which means that the extended framework would blend com-
ponents from the design-based and super-population approaches. We will not investigate
such an extension in this paper.

It is not possible to express the linear-in-means model using exposure mappings. We
could have an exposure for each possible level of (zi,

∑
j∈Ni

zj), resulting in a model with
2|Ni| + 2 dimensions for unit i. This model is, however, much larger than the three-
dimensional model above. More importantly, the exposure mapping model fails to encode
the presumed linear relationship between a unit’s outcome and the number of treated units
in its neighborhood.

We can, however, express the linear-in-means model using model spaces. Let gi,1(z) = 1

be a constant function, gi,2(z) = zi be the unit’s own treatment indicator, and gi,3(z) =

|Ni|−1
∑

j∈Ni
zj be the number of treated units in unit i’s neighborhood. The model space

corresponding to the network interference model is then given by Equation (1) from the
previous subsection using these functions as the basis functions. Of course, it is possible to
make the model more elaborate by adding additional basis functions.

Positivity is somewhat more intricate to check in this setting, because the basis func-
tions are neither disjoint nor orthogonal. To ensure positivity for all effect functionals,
we need that E[gi,k(Z)2] > 0 for all k ∈ {1, 2, 3}, and that E[gi,k(Z)gi,`(Z)] is not equal
to
√

E[gi,k(Z)2] E[gi,`(Z)2] for all k 6= `. Essentially, this means that the design induces
variation in all basis functions and that no two basis functions are collinear. We might be
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able to relax some of these conditions for certain effect functionals if they do not depend
on all aspects of the potential outcome functions.

The linear-in-means model can be too restrictive to be tenable in practice, but the lin-
earity assumption can be relaxed. For example, Munro, Wager, and Xu (2021) investigate
a setting where the interference is known to be mediated through a set of market prices,
but they impose essentially no restrictions on how the prices affect the units. This can
be seen as a greatly generalized version of the linear-in-means model. The market price
here plays the same role as the share of treated neighbors in linear-in-means model, cor-
responding to gi,3(z), but linearity is not imposed, so the model space would consist be
various, possibly infinite, non-linear transformations of the market prices. Munro et al.
(2021) consider when market price is convergent, meaning that gi,3(Z)

p−→ a ∈ R. This
facilitates estimation of direct treatment effects, as a unit’s own treatment assignment then
only has a negligible on the market price. However, because the prices are convergent, and
thus exhibit negligible variation in large samples, positivity might not hold for functionals
capturing effects of changes in the prices. Munro et al. (2021) address this by considering
a design that introduces unit-level perturbations of the prices.

3.6.4 Spatial potential outcome models

In the setting of spatial causal inference for a finite number of candidate treatment location,
Pollmann (2020) considers several potential outcome models. One model stipulates that
treatment locations close to each unit have additive effects on the unit. Another model
stipulates that only the treated location closest to each unit has an effect on the unit. The
treatments assigned to locations very far from each unit, as dictated by some threshold
distance, are assumed to never have an effect.

To create model spaces for these models, letNi be the indices of the candidate treatment
locations that are sufficiently close to unit i to potentially affect its outcome, meaning that
they are not beyond the threshold distance. The basis functions for unit i under the
assumption of additive effects would then be gi,k(z) = zJi(k) for all k ∈ {1, . . . , |Ni|}, where
Ji(k) is an indexing of the elements in Ni. We typically also want to include a constant
function, gi,0(z) = 1, among the basis functions, as otherwise the unit cannot have a
non-zero outcome unless there is a non-zero treatment effect.

For the assumption that only the closest treatment location matters, we again would
have a basis function for each element inNi, plus a constant function. However, the function
gi,k(z) would now be such that it takes the value one only when location Ji(k) ∈ Ni is
treated and no location closer to i is treated. For example, if Ji(1) is the closest location
to i and Ji(2) is the next closest, then gi,2(z) = (1− zJi(1))zJi(2).
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3.6.5 Treatment timing experiments

Consider a setting in which we want to investigate the effects of the timing of one particular
intervention, rather than the effects of a set of several different interventions implemented
at one particular time point. To make things concrete, consider an agricultural experiment
in which we want to investigate when it is best to apply fertilizer for a particular type
of crop. The units i ∈ [n] are here plots of land used to grow the crop of interest, and
the intervention is the time at which the fertilizer was applied to a particular plot. Let
zi ∈ [−1, 1] denote the time at which plot i was fertilized, where zi = 0 is the current
recommended fertilization time, and zi = −1 and zi = 1 are the earliest and latest time
points under consideration. For example, if zi = 0 is May 23, then zi = −0.7 might be May
4. The full intervention set is Z = [−1, 1]n, collecting all possible combinations of fertilizer
timing for the n plots. The potential outcome functions yi(z) give the crop yield from plot
i when the fertilizer timing of all plots is z.

To investigate whether the crop yields are greater when the fertilizer is applied earlier
or later than the current recommendation, we set out to estimate the sum of the gradients
of the potential outcome functions at z = 0. An effect functional that captures this effect
is θ(y) = 1

ᵀ∇y(0), where 1 and 0 denote the vectors of ones and zeros, and ∇ is the
gradient operator. This is similar to the effect defined in Equation 2.2 for the cash transfer
illustration in Section 2.2.

The question remains what model spaces to use. In the experiment, the plots are
sufficiently separated geographically, so we are comfortable ruling out interference between
plots, meaning that the fertilizer timing on plot i has no effect on the yield on plot j.
This means that the potential outcome functions effectively map from [−1, 1] to R. It is
reasonable to assume that the potential outcome functions are smooth, in the sense that
small changes in fertilizer timing will lead to small changes in the crop yield, which also
ensure that the effect functional is well-defined for all potential outcome functions. This
yields the model spaces

Mi =
{
y ∈ Y : y is continuously differentiable and y(z) = y(z′) when zi = z′i

}
.

Note that this is a very large model space, and it might not be possible to construct a
stable estimator with a model space that is this permissive. We will return to this point in
Section 4.5.3, where we discuss estimation using this model space.
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4 The Riesz Estimator

4.1 Overview and Definition

There are two components of the framework at this point. The first is an effect functional
for each unit, θi, which defines the estimand: τ = n−1

∑n
i=1 θi(yi). The second is a model

space for each unit,Mi, which encodes prior knowledge or beliefs about each unit’s potential
outcome function. The construction of the effect functionals and the model spaces could
be complex, but the framework allows us to abstract away from this complexity, which is
one of its benefits.

Being able to abstract away from the complexity allows us to take a unified approach
to constructing estimators for estimands defined using the framework. The approach we
describe in this section can be applied to any estimand as long as positivity holds. This is
in contrast to the current convention in the design-based causal inference literature, where
estimators often are constructed in an ad hoc way that is tailored uniquely to the estimand
and model assumptions at hand. However, some estimators previously considered in the
design-based literature are special cases of the estimators we describe here.

We give an overview of our estimation approach and the definition of the estimator in
this subsection, postponing the discussion of some of the technical details of the definition
to the next subsection. The construction of the estimator uses the Riesz representation
theorem from functional analysis. The theorem states that any bounded linear functional
defined on a function space can be represented by a member of the function space itself,
which we call the Riesz representor and denote ψi. The Riesz representor represents the
linear functional in the sense that an inner product of any function in the function space
and representor equals the functional evaluated at that function.

In our setting, the relevant function spaces are the model spaces. The model spaces
contain functions that map from the interventions in Z, so the Riesz representors can be
interpreted both as functions and as random variables. That is, in addition to interpreting
ψi ∈Mi as a function, we can also interpret it as the random variable ψi(Z). The potential
outcome functions yi can be interpreted in the same way, yielding the random variables
Yi = yi(Z). We seek a Riesz representor that will represent the effect functional on the
model space with respect to the expectation of the product of the two corresponding random
variables.

Definition 1. A function ψi ∈Mi is a Riesz representor for an effect functional θi on the
model spaceMi if θi(u) = E[ψi(Z)u(Z)] for all u ∈Mi.

If the model space has infinite dimensions and is not closed, in a sense that will be
made precise in the next subsection, then it is possible that the Riesz representor is not in
the model space: ψi /∈Mi. However, the Riesz representor is then on the boundary of the
model space. To make Definition 1 fully rigorous, we need to consider a type of closure of
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Mi discussed in the next subsection. For the purpose of building an initial understanding
of the Riesz estimator, concerns about whetherMi is closed are not important.

The usefulness of the representation described in Definition 1 is that it essentially gives
us a direct observation of the effect functional. The value of the effect functional when
evaluated at the true potential outcome function θi(yi) is unattainable because our obser-
vation of the potential outcome function Yi = yi(Z) provides only a very limited picture of
the whole function yi. Generally, it is unclear how to relate Yi to the individual treatment
effect θi(yi), which is the reason for the conventional ad hoc approach to estimation in this
setting. The usefulness of the Riesz representor is that it tells us exactly how to relate Yi
to θi(yi).

If the Riesz representor ψi exists and is known, we observe ψi(Z)Yi. By construction,
ψi(Z)Yi is a direct observation of a random variable whose expectation is the individual
treatment effect, because E[ψi(Z)yi(Z)] = θi(yi). That is, the Riesz representor provides a
way to relate our observation of Yi to the individual treatment effect. That is, we attain a
direct but noisy observation of the effect functional evaluated at the true potential outcome
function. Note, however, that this is true only when the model space is correctly specified,
meaning that yi ∈Mi, because Riesz representor is only ensured to represent the functional
θi on this space.

Definition 2 (The Riesz estimator). Let ψi be a Riesz representor of θi on Mi for each
i ∈ [n]. The Riesz estimator of τ = n−1

∑n
i=1 θi(yi) is

τ̂ =
1

n

n∑
i=1

ψi(Z)Yi.

The Riesz estimator is a linear estimator in the sense that it is a (random) linear com-
bination of the observed outcomes. Following the logic discussed earlier in this section, one
can interpret the terms of the estimator ψi(Z)Yi as estimators of the individual treatment
effects θi(yi). Each of these unit-level estimators will be terribly imprecise, but they are
unbiased by construction, so precision could potentially be achieved by averaging. The
idea is similar to other design-based, linear estimators based on re-weighting; indeed, as
we show in Section 4.5.1, the Riesz estimator is a generalization of the Horvitz–Thompson
estimator. However, whereas the Horvitz–Thompson estimator requires a small number of
discrete treatments, the Riesz estimator does not have any such limitations.

One can also interpret the Riesz estimator as a type of plug-in estimator. With this
interpretation, we first construct an estimator ŷi of the whole potential outcome function
yi. An estimator of the unit-level treatment effect τi = θi(yi) is then constructed by
plugging the estimated function into the effect functional: τ̂i = θi(ŷi). These unit-level
estimators are averaged to form an estimator of the aggregated treatment effect τ . For a
particular choice of function estimators ŷi, this approach coincides exactly with the Riesz
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estimator. We prefer the Riesz representation interpretation, as it is more general and
less notationally involved, but some readers might prefer the plug-in interpretation as it
may be more familiar. We describe this alternative interpretation in Section S4.1 of the
supplement.

4.2 Existence and Unbiasedness

Showing that the Riesz representor exists in our setting is somewhat intricate. The chal-
lenge is that the experimental design might not provide information about the full model
space, in the sense that the design might not induce variability in some dimensions of the
space. This is the same concern discussed in Section 3.5, where we introduced our version
of the positivity assumption. On a technical level, the problem is that the Riesz represen-
tation theorem concerns Hilbert spaces, but the model spaces as currently defined do not
necessarily have associated inner products that are appropriate for our estimation problem.

To navigate this problem, we will consider equivalence classes of potential outcome
functions that are observationally indistinguishable. We say that two functions u, v ∈ Y
are observationally equivalent if u(Z) = v(Z) almost surely with respect to the experimental
design. If two distinct functions u and v are observationally equivalent, then the probability
that the design produces an assignment that allows us to distinguish them is zero. We can
use this equivalence relation to partition the space of all potential outcome functions Y into
equivalence classes. We denote the equivalence class that contains all functions that are
observationally equivalent to some function u ∈ Y as [u]. We call the quotient space that
collects these equivalence classes the unrestricted outcome space, and it is denoted L(Y).
Note that the unrestricted outcome space is itself a vector space built from the vector space
Y .

By viewing each equivalence class [u] ∈ L(Y) as being associated with a random variable
u(Z), we can interpret L(Y) as the collection of all distinct random variables that can be
constructed from the functions in Y . The random variables that are constructed in this
way from functions in the same equivalence class are technically different random variables,
but they are equal almost surely. The reason L(Y) is called an outcome space is because
the random variables that represent the units’ observed outcomes Yi = yi(Z) can be seen
as elements of this set.

We endow the unrestricted outcome space L(Y) with an inner product that is the
expectation of the product of the two random variables associated with the corresponding
two equivalence classes. That is, for equivalence classes [u], [v] ∈ L(Y), we define the inner
product as 〈[u], [v]〉 = E[u(Z)v(Z)]. It follows that L(Y) together with this inner product
is a Hilbert space, as the completeness property is satisfied. Indeed, we have just used the
standard approach to constructing the L2 function space on Z induced by the experimental
design (see, e.g., Chapter 3 of Rudin, 1987).
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We construct similar quotient spaces for each model spaceMi. We denote these spaces
L(Mi) and refer to them as model outcome spaces, or just outcome spaces for short. The
outcome space for unit i contains the equivalence classes of all functions that are observa-
tionally equivalent to functions inMi. The space is formally defined as the closure of the
subspace of all equivalence classes in L(Y) that contain at least one function fromMi:

L(Mi) = cl
({

[u] ∈ L(Y) : u ∈Mi

})
,

where the closure is taken with respect to the metric induced by 〈·, ·〉 on L(Y). Taking the
closure ensures that L(Mi) contains all its limit points. When the model space is finite-
dimensional, the set {[u] ∈ L(Y) : u ∈ Mi} is a finite-dimensional subspace of L(Y) and
therefore already closed, meaning that taking the closure is redundant. However, taking
the closure is important when the model space is infinite-dimensional.

An equivalence class [u] ∈ L(Mi) for some potential outcome function u ∈Mi contains
all potential outcome functions that are observationally indistinguishable from u under
the current experimental design. In this sense, the most we can possibly learn about
the true potential outcome function yi from the experiment is which equivalence class it
belongs to. As with the unrestricted outcome space L(Y), we can view each equivalence
class [u] ∈ L(Mi) as being associated with a random variable u(Z), so L(Mi) can be
interpreted as the collection of all distinct random variables that can be constructed from
the functions in the model spaceMi.

Proposition 4.1. Together with the inner product 〈[u], [v]〉 = E[u(Z)v(Z)], each model
outcome space L(Mi) is a Hilbert space.

The proposition shows that the Riesz representation theorem is applicable to L(Mi),
which we use to construct Riesz representors on the model spaces Mi. Our approach is
to first construct a Riesz representor ψ†i on L(Mi) for an extension of the effect functional
θi to the outcome space, which we denote θ†i . We then use the correspondence between
L(Mi) andMi to translate ψ†i to a representor ψi on the model space.

The central insight behind the extension of the effect functional is that positivity (As-
sumption 2) implies that the equivalence classes in the outcome space L(Mi) contain the
same information about the effect functional θi as the functions in the model space Mi.
Given positivity, θi(u) = θi(v) for any two observationally equivalent functions u, v ∈ Mi,
so we only need to know which equivalence class the true potential outcome function yi
belongs to in order to know θi(yi). This suggests using the definition θ†i (E) = θi(u) where
u ∈ E ∩Mi for all equivalence classes E ∈ L(Mi) that contain at least one function u

from the model space. A complication here is that L(Mi) could contain limit points that
are completely outside the model space Mi. Assumption 2 together with Hahn–Banach
theorem allow us to extend the definition of θ†i to also these limit points. This culminates
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in the following proposition. The proof of the proposition appear in Section S1.2 of the
supplement.

Proposition 4.2. Given positivity (Assumption 2), there exists an equivalence class ψ†i ∈
L(Mi) such that every function ψi ∈ ψ†i satisfies

θi(u) = E[ψi(Z)u(Z)] for all u ∈Mi.

We say that any function ψi ∈ ψ†i is a Riesz representor for the effect functional θi on the
model spaceMi.

Proposition 4.2 simultaneously defines the Riesz representor rigorously and proves their
existence. A consequence of the proposition is that the Riesz representors when seen as
functions are not necessarily unique, because the equivalence class ψ†i could contain many
functions. However, all Riesz representors in ψ†i are almost surely equal by construction.
Therefore, the Riesz representor is unique, in an almost surely sense, when seen as a random
variable.1

Proposition 4.2 allows us to better understand the caveat of Definition 1 discussed
directly following the definition in the previous subsection. If the equivalence class ψ†i
contains at least one function fromMi, we can pick the Riesz representor be one of those
functions, ensuring that the representor is in the model space as stated in the definition.
However, if the equivalence class ψ†i is a limit point, it may not contain any functions from
Mi, in which case the Riesz representor function will not be in the model space. The Riesz
representor can then be expressed as an infinite series of functions in the model space,
meaning that the representor is on the boundary of the model space. If the model space
has finite dimensions, there always exists a Riesz representor that is in the model space.

The existence of Riesz representors ensures the existence of the Riesz estimator, giving
us the following theorem.

Theorem 4.3. Given correctly specified model spaces and positivity (Assumptions 1 and 2),
the Riesz estimator exists and is unbiased: E[τ̂ ] = τ .

Proof. Positivity ensures the existence of the Riesz representors and thus the Riesz estima-
tor. By linearity of expectation, the definition of Riesz representors and correctly specified
model spaces,

E[τ̂ ] =
1

n

n∑
i=1

E[ψi(Z)yi(Z)] =
1

n

n∑
i=1

θi(yi) = τ.

1There are functions outside L(Mi) that also represent of the effect functionals on the model space,
but that are not almost surely equal to the Riesz representor. We conjecture that estimators built on these
alternative representors generally will have higher variance, but we will not explore that in this paper.
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Unbiasedness is a direct consequence of the construction of the Riesz representors. While
the theorem holds for any model space, the Riesz estimator might perform poorly when
the model spaces have high or infinite dimensions. The reason is a bias–variance trade-off
similar to the conventional bias–variance trade-off in nonparametric statistics. To achieve
unbiasedness when the model spaces are complex, the estimator must be complex unless
the estimand is sufficiently simple, so we must accept a high variance. The Riesz estimator
as defined here achieves unbiasedness, so it will often be imprecise, especially when the
dimensions of the model spaces are high. If the model spaces and effect functionals are suf-
ficiently complex, the Riesz estimator will not be useful in practice because it would require
unreasonably large samples to achieve acceptable precision. We sketch a possible solution
to this problem at the end of the next subsection, but we leave a proper investigation of
how to navigate this bias–variance trade-off for future work.

4.3 Constructing the Riesz Representors

The Riesz representors depend solely on the model spaces, the effect functionals, and the
experimental design, all of which are known to the experimenter. This means that the
Riesz estimator in principle can be constructed. However, constructing and evaluating the
Riesz representors can be non-trivial computational tasks in practice. To facilitate the
construction of the Riesz estimator, we require that the model spaces are of a form that
make it tractable to work with them, as captured by the following assumption.

Assumption 3. The outcome spaces L(Mi) are separable.

Separability means that there exists a dense subset of L(Mi) that is countable. This
implies that L(Mi) has a countable orthonormal basis, so L(Mi) has at most countable
dimensions. If a model space has finite dimensions, L(Mi) is always separable. We believe
Assumption 3 will be unproblematic in essentially all practical applications, and it can be
seen as a regularity condition.

Provided that L(Mi) is separable, all Riesz representors of θi onMi satisfy

ψi(Z) =
∞∑
k=1

θi(φi,k)φi,k(Z) almost surely, (2)

where [φi,1], [φi,2], . . . is an orthonormal basis of L(Mi). The construction of the Riesz
estimator therefore boils down to whether we can construct a set of orthonormal basis
functions such that the basis functions can be evaluated on the realized treatment variable,
φi,k(Z), and the effect functional can be evaluated on the basis functions, θi(φi,k).

When the model space has finite dimensions, the number of basis functions is also finite,
meaning that there are only finite terms in the sum in Equation (2). If the model space is
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specified using a set of explicit basis functions gi,1, . . . , gi,d, as is the case in many of the
examples in this paper, an orthonormal basis can be constructed via a Gram–Schmidt or-
thogonalization procedure. The orthogonalization procedure requires that the experimenter
knows or can compute the cross-moments E[gi,`(Z)gi,k(Z)], which can be done using the
Monte Carlo method. However, in what follows, we assume that the orthonormal basis
is known exactly, without any Monte Carlo error. In Section S1.3, we provide a descrip-
tion this procedure, and investigate its computational properties. If the cross-moments are
known and all model spaces have d dimensions, the Riesz estimator can be computed using
O(nd3) arithmetic operations. Subsequent evaluations of the same estimator require only
O(nd) arithmetic operations per evaluation.

When the model space has infinite dimensions, it will generally not be feasible to com-
pute the Riesz estimator exactly. If the experimenter has access to a sequence of orthonor-
mal basis functions, they can compute the Riesz estimator approximately by using the same
procedure as for the finite-dimensional setting with a truncated sequence. For an appropri-
ate basis and sufficiently generous truncation, the approximation error will be negligible for
practical purposes. However, using a generous truncation will not resolve the bias–variance
trade-off discussed at the end of the previous subsection. A way to navigate this trade-
off is to carefully pick the sequence of basis functions so that the product of θi(φi,k) and
E[φi,k(Z)Yi] quickly approaches zero, and then more aggressively truncate the sequence.
This effectively creates a sieve version of the Riesz estimator. We save the investigation of
the Riesz sieve estimator for future work.

4.4 Previous Uses of Riesz Representors

The Riesz representation theorem was developed in the early twentieth century indepen-
dently by Fréchet (1907) and Riesz (1907). The theorem has played an important role in
the semiparametric causal inference literature over the past 30 years. To the best of our
knowledge, its earliest use was by Robins, Rotnitzky, and Zhao (1994) and independently
by Newey (1994). Robins et al. (1994) developed doubly robust estimators using general
representation theorems for efficient scores and influence functions. Newey (1994) described
a general approach for estimating the asymptotic variance of semiparametric estimators,
which features the L2 inner product between the regression residual and the Riesz repre-
sentor of the functional derivative. A common theme in this and following work is that
a one-step bias correction, made possible through careful consideration of the influence
function and Riesz representors, can often achieve the semiparametric efficiency bound.

The Riesz representation theorem has taken an increasingly prominent position in some
recent work in the semiparametric literature. The focus has been to extend key insights from
the existing literature to high-dimensional settings using machine learning methods (see,
e.g., Robins, Li, Mukherjee, Tchetgen Tchetgen, & van der Vaart, 2017, and Chernozhukov
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et al., 2018). Part of this focus includes the development of automatic methods for Riesz
representor estimation through various regularization schemes for a variety of types of
local and global estimands (Chernozhukov, Escanciano, Ichimura, Newey, & Robins, 2022;
Chernozhukov, Newey, & Singh, 2022a, 2022b; Hirshberg &Wager, 2021). The insights have
also between extended to dynamic settings (Lewis & Syrgkanis, 2021) and the estimation of
long term effects (Singh, 2021). Relatedly, Rotnitzky et al. (2020) describe the construction
of doubly robust estimators in a semiparametric settings where a mixed-bias property holds.
Finally, Riesz representors have been used to analyze sieve estimator in a time series setting
and to analyze nonparametric instrumental variables estimation (Chen & Christensen, 2018;
Chen, Liao, & Sun, 2014). To the best of our knowledge, the Riesz representation theorem
has not previously been used in the design-based causal inference literature.

There are several similarities between how the Riesz representation theorem is used in
the current paper and how it is used in the semiparametric literature. In both cases, the
theorem is used to construct estimators with desirable statistical properties. The broad
outline of the application of theorem is also the same: the underlying Hilbert space is an
L2 space in which the measure is a probability measure that captures the stochasticity
from the data generating process. We find these connections exciting and hope that the
current paper can act as a starting point for building bridges between design-based and
super-population causal inference.

However, there are several important differences in our use of the Riesz representation
theorem and its use in the semiparametric literature. In the semiparametric literature, pa-
rameters of interest are defined as functionals of a conditional expectation function of some
outcome given treatment and covariates in a super-population. The source of stochasticity
is sampling from the super-population. As a result, there is a single Riesz representor
defined in the super-population, representing the functional with respect to the population
distribution. This means that the Riesz representor must be estimated in the semiparamet-
ric literature, as the population distribution is unknown. In the current paper, parameters
of interest are defined as functionals of individual potential outcome functions, thereby cir-
cumventing the need to consider super-population distributions. Furthermore, the source
of stochasticity is random treatment assignment in a finite population. As a result, there is
one Riesz representor for each unit, providing a noisy observation of the treatment effect of
that specific unit, as described in Section 4.1. Because the Riesz representors in our setting
are defined in the finite population with respect to a known experimental design, they can
be computed, making estimation of the representors redundant.

Ultimately, the difference boils down to the fact that we are considering an experimental
setting, with a finite population and known experimental design, whereas the semiparamet-
ric literature considers an observational setting, with a super-population and an unknown
assignment mechanism that generally is assumed to be unconfounded.
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4.5 Examples of Riesz Estimators

4.5.1 Average Treatment Effects

Our first example of a concrete Riesz estimator is for estimation of the average treatment
effect under the stable unit treatment value assumption. As discussed in Section 3.6.1, a
natural choice of basis functions for this model is gi,1(z) = 1[zi = 1] and gi,2(z) = 1[zi = 0],
meaning that

Mi =
{
u ∈ Y : u = b1gi,1 + b2gi,2 for b1, b2 ∈ R

}
.

There are many functionals that capture the average treatment effect under this model. A
common choice is the effect functional corresponding to the global average treatment effect:
θ(y) = y(1)−y(0). While we use this functional in this example for concreteness, the value
of the estimand and the Riesz estimator are the same for any functional that captures the
average treatment effect under correctly specified model spaces.

Using the approach described in the supplement, we can derive the Riesz representor
by hand in only a few steps. The Riesz representor for unit i in this setting is

ψi(z) =
1[zi = 1]

Pr(Zi = 1)
− 1[zi = 0]

Pr(Zi = 0)
,

yielding the following Riesz estimator of the average treatment effect:

τ̂ =
1

n

n∑
i=1

ψi(Z)Yi =
1

n

n∑
i=1

1[Zi = 1]

Pr(Zi = 1)
Yi −

1

n

n∑
i=1

1[Zi = 0]

Pr(Zi = 0)
Yi.

This is the conventional Horvitz–Thompson estimator for the average treatment effect
under the stable unit treatment value assumption (Aronow & Middleton, 2013; Horvitz &
Thompson, 1952; Narain, 1951).

The derivation of the Riesz estimator for exposure effects under the assumption of
correctly specified exposure mappings, as discussed in Section 3.6.2, is almost identical.
The resulting estimator is the Horvitz–Thompson-type estimator described by Aronow and
Samii (2017). In particular, when estimating the exposure effect for exposures a, b ∈ ∆ and
given the exposure mapping di : Z → ∆, the Riesz representor for unit i is

ψi(z) =
1[di(z) = a]

Pr(di(Z) = a)
− 1[di(z) = b]

Pr(di(Z) = b)
.
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4.5.2 Network Effects

The next example considers the type of linear-in-means interference models discussed in
Section 3.6.3. This model specified that the potential outcome functions were such that

yi(z) = βi,1 + βi,2zi + βi,3
1

|Ni|
∑
j∈Ni

zj,

where Ni was the set of indices of the units adjacent to unit i in the graph describing the
network. The natural basis functions for this model are

gi,1(z) = 1, gi,2(z) = zi, and gi,3(z) =
1

|Ni|
∑
j∈Ni

zj.

The estimands we consider here are the global average treatment effect, θgi (y) = y(1)−y(0),
and an indirect interference effect, θini (y) = y(1− ei)− y(0), where ei is the ith standard
basis function.

We need to know the experimental design to construct the Riesz representors in this set-
ting. Consider a Bernoulli design, meaning that the treatments are assigned independently
with some probability Pr(Zi = 1) = p, so that

Pr(Z = z) =
n∏
i=1

pzi(1− p)1−zi .

Also in this setting can we derive the Riesz representors by hand. The Riesz representor
for unit i and the indirect interference effect is

ψin
i (z) =

|Ni|−1
∑

j∈Ni
(zj − p)

p(1− p)
,

meaning that the Riesz estimator for the indirect interference effect is

τ̂in =
1

np(1− p)

n∑
i=1

Yi
|Ni|

∑
j∈Ni

(zj − p).

This estimator is related to the estimator described by Hu, Li, and Wager (2022). The
difference is that Hu et al. (2022) implicitly use a larger model space. It is possible to
reproduce the exact estimator of Hu et al. (2022) by extending the model spaces to allow
each unit in the neighborhoods Ni to have a different effect on the potential outcome,
effectively increasing the number of dimensions of each model space from 3 to 2 + |Ni|.
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The Riesz representor of the global average treatment effect for unit i is

ψg
i (z) =

1[zi = 1]

p
− 1[zi = 0]

1− p
+
|Ni|−1

∑
j∈Ni

(zj − p)
p(1− p)

.

Thus, the Riesz estimator for the global average treatment effect is the sum of the estimator
for the indirect effect and the Horvitz–Thompson estimator from the previous section, which
can be seen as an estimator of a type of direct effect.

4.5.3 Treatment timing experiments

Finally, we return to the example of a fertilizer timing experiment discussed in Section 3.6.5.
The full intervention set was there Z = [−1, 1]n, and we aimed to estimate the gradient
of the potential outcome functions at zero: θ(y) = 1

ᵀ∇y(0). The model spaces imposed
no-interference, so that yi only depends on the ith dimension of z, and the spaces otherwise
contained the set of all functions that are measurable, square integrable and continuously
differentiable.

We will consider an experimental design for which Z1, . . . , Zn are jointly independent
and each Zi is distributed according to the Wigner semicircle distribution with parameter
R = 1. This distribution is unimodal, bell-shaped, and centered at 0, which we believe
would be appropriate in this application, but the primary motivation for using this design
here is that the derivation of the Riesz estimator becomes straightforward. The estimator
can be constructed for other designs, but one would then likely need to do it numerically,
rather than analytically as in this example.

The model spaces have infinite dimensions, but they are separable (Assumption 3), so a
countable orthonormal basis exists. One such basis is the set of Chebyshev polynomials of
the second kind, which is what we will use here. The kth basis function for unit i is given
explicitly as

φi,k(z) =

(
zi +

√
z2i − 1

)k
−
(
zi −

√
z2i − 1

)k
2
√
z2i − 1

.

The effect functional when evaluated on the kth basis function is

θ(φi,k) = −k cos(πk/2),

where cos(·) is the cosine function. This means that the Riesz representor for unit i is

ψi(z) =
∞∑
k=1

−k cos(πk/2)φi,k(z) =
∞∑
k=1

(−1)k2kφi,2k(z),

32



and the Riesz estimator for τ is

τ̂ =
1

n

n∑
i=1

∞∑
k=1

(−1)k2kφi,2k(Z)Yi.

The Riesz estimator will be unbiased for the average gradient of the potential outcome
functions at zero in this setting. However, the estimator does not try to navigate the bias–
variance trade-off we discussed at the end of Section 4.2. Therefore, this estimator will not
be useful in practice because of its high variance. As we already have remarked, a way
to make the estimator practically useful is to truncate the series to include only a finite
number of basis functions. We leave it to future work to investigate how to best conduct
such a truncation.

5 Properties of the Riesz Estimator

5.1 Asymptotic Regime and Regularity Conditions

We consider an asymptotic regime that consists of a sequence of experiments with a grow-
ing number of observations. Each experiment in the sequence is associated with its own
experimental design, set of model spaces, linear functionals, and so on. Therefore, nearly
all variables and parameters are implicitly indexed by n to denote which experiment in
the sequence they are associated with, but following the current convention, we leave this
indexing implicit for notational tidiness. We investigate the asymptotic properties of the
Riesz estimator subject to conditions on the sequence of experiments. This asymptotic
regime, or minor variations of it, has been widely used in the design-based causal inference
literature (see, e.g., Freedman, 2008; Leung, 2022a; Lin, 2013; Sävje et al., 2021).

To state our regularity conditions, it will prove useful to consider the product spaces of
the model spaces and the outcome spaces. LetM(n) =M1×· · ·×Mn be the product model
space, which contains all vector-valued potential outcome functions. That is, functions
in this space are of the form u : Z → Rn and describe the outcomes produced by an
intervention z ∈ Z for all units. If the model spaces are correctly specified, then the
true vector-valued potential outcome function y = (y1, . . . , yn) is in the product model
space: y ∈M(n). Similarly, let L(M(n)) = L(M1)× · · · × L(Mn) be the product outcome
space. This space contains equivalence classes of vector-valued functions fromM(n) that are
observationally equivalent. Similar to the unit-level outcome spaces, each equivalence class
[u] ∈ L(M(n)) can be interpreted as a multivariate random variable u(Z) of dimension n.

We will occasionally consider the behavior of the Riesz estimator when the vector-
valued potential outcome function take some particular value. We use semicolon to extend
common probability operators to clarify which function we consider in such settings. For
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example, E[τ̂ ;u] and Var(τ̂ ;u) denote the expectation and variance of the Riesz estimator
when the true vector-valued potential outcome function is equal to some u ∈M(n).

Our regularity conditions concern the magnitude of functions in the product spaces.
This magnitude is captured by norms ‖·‖ : L(M(n))→ R+ on the product outcome space.
We consider several types of norms in our analysis, as described below. For notational
convenience, we also consider the norms on the product model spaceM(n) that are induced
by the norms on product outcome space L(M(n)). That is, for any u ∈M(n), we define its
norm to be the norm of the equivalence class it belongs to in the product outcome space:
‖u‖ = ‖[u]‖. This is technically a seminorm, because it is not positive definite on M(n),
but that distinction will not be important for our purposes. More generally, the distinction
between a function u ∈M(n) and its equivalence class [u] ∈ L(M(n)) will typically not be
important in what follows, and we will often use the notation u to refer to both.

The first type of norm we will consider, which also has been implicitly used in the
design-based causal inference, is what we refer to as the max-p norm:

‖u‖max,p = max
i∈[n]

E
[
|ui(Z)|p

]1/p
.

For example, it is common to assume that the fourth moment of the outcome Yi exists for
all units, and this is equivalent to assuming that the max-4 norm of the true vector-valued
potential outcome function y exists.

The other type of norm we will consider is the mean-square norm, which is similar to
the Euclidean norm for real vector spaces:

‖u‖ms =

√√√√ 1

n

n∑
i=1

E
[
ui(Z)2

]
.

The reason the mean-square norm will play an important role in our analysis is that it is
the norm induced by the Hilbert space when L(M(n)) is endowed with the inner product
〈u,v〉ms = n−1

∑n
i=1 E[ui(Z)vi(Z)], which can be seen as the canonical inner product in

this setting because of its correspondence with the inner product on L(Y).
The central regularity condition for our results in this section is that norms of functions

in the product spaces are bounded. This condition corresponds directly to moment condi-
tions conventionally made in the design-based causal inference literature. For example, if
we impose the condition that ‖y‖ms ≤ C for some C < ∞, we say that the vector-valued
potential outcome function is in some ball given by the mean-square norm. This prevents
the potential outcome functions from producing outcomes that are large outliers. Our reg-
ularity conditions do not require empirical researchers to pin down C. It suffices to know
that such a ball exists for some finite radius.
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5.2 Necessary and Sufficient Conditions for Consistency

We provide two analyses of the precision of the Riesz estimator in large samples. The first
analysis, presented in the current subsection, yields necessary and sufficient conditions for
consistency in mean square, and provides the rate of convergence in the most general setting.
The analysis is based on the operator norm of a linear operator on the product outcome
model space that exactly characterizes the variance. While this approach is somewhat
involved, it highlights what drives consistency of design-based estimators, and these insights
will prove useful both for empirical researchers and for future theoretical work. In the next
subsection, we present an analysis of consistency using only sufficient conditions, which are
more restrictive than the conditions in this subsection, but also simpler and more familiar.

Proposition 5.1. Given correctly specified model spaces and positivity (Assumptions 1 and
2), either:

(i) There exists a bounded linear operator V : L(M(n)) → L(M(n)) that exactly charac-
terizes the variance of the Riesz estimator in finite samples:

Var
(
τ̂ ;u

)
=

1

n
‖V(u)‖2ms for all u ∈M(n),

(ii) Or the variance of the Riesz estimator cannot be characterized with respect to the
mean-square norm:

sup
‖u‖ms≤C

Var(τ̂ ;u) =∞ for all C > 0.

The proposition describes two situations. In the first situation, the variance of the
Riesz estimator is described by the mean-square norm of a transformation V : L(M(n))→
L(M(n)) of the vector-valued potential outcome function. That is, the variance of the Riesz
estimator is exactly n−1‖V(y)‖2ms. We therefore refer to V as the variance characterizing
operator. In the second situation, the variance of the Riesz estimator cannot be described
using a regularity condition based on the mean-square norm. That is, if we impose the
condition that ‖y‖ms ≤ C, then no matter how small we make C, we cannot rule out that
the variance is infinite. In other words, we cannot rule out that the Riesz estimator is
extremely poorly behaved in this setting even when the potential outcome functions are
extremely well-behaved in a mean-square norm sense.

The variance characterizing operator depends solely on the experimental design, the
effect functionals and the model spaces. This is powerful because these components are
known to the experimenter before the experiment is run, so V is known without any knowl-
edge of the true potential outcomes y, other than what is encoded in the model spaces.
However, it might be computationally challenging to construct the operator in practice.
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In Section S2.1.1 of the supplement, we show that the operator can be represented as a
closed-form matrix when the model spaces have finite dimensions, making the computation
tractable. If the model spaces are infinite-dimensional and separable, then relevant aspects
of the variance characterizing operator can be computed approximately under additional
regularity conditions, but we will not explore that direction in this paper.

It can be challenging to test whether we are in the first or second situation, correspond-
ing to when the variance characterizing operator does and does not exist. If the model
spaces have finite dimensions, one can construct and inspect the closed form matrix men-
tioned in the previous paragraph; we are in the first situation if all entries of the matrix are
finite. For infinite-dimensional model spaces, one must investigate whether a more elemen-
tary condition about whether a certain bilinear functional is bounded with respect to the
mean-square norm, as described by Lemma S2.2 in Section S2.1.1 of the supplement. We
do not have a general computational procedure for testing whether this condition holds,
and one would need to proceed on a case by case basis.

While we cannot exactly delineate when the variance characterizing operator exists,
there are many settings of interest where we can show that it does exist. One such set-
ting is when the model spaces contain functions that are bounded with probability one on
the experimental design. That is, if we know that ‖u‖max,∞ < ∞ by construction for all
u ∈ L(M(n)), where ‖·‖max,p is the max-p norm defined in the previous subsection, then
the operator exists. This is the case, for example, when the cardinality of the intervention
set Z is finite. Another setting where the operator exists is when the effect functionals are
integration functionals with respect to measures that are sufficiently close to the experi-
mental design. More generally, a sufficient (but not necessary) condition for the existence
of the variance characterizing operator is that the essential supremum of each unit’s Riesz
representor is finite. That is, V exists if ‖ψ‖max,∞ < ∞, where ψ = (ψ1, . . . , ψn) is the
vector of all Riesz representors.

We cannot use the result of Proposition 5.1 to estimate the standard error of the Riesz
estimator, because we can never evaluate the operator at the true potential outcome func-
tion. The potential outcome function y is unknown even after the experiment is run.
Instead, the usefulness of the proposition is that it allows us to characterize the behavior
of the estimator over a set of potential outcome functions.

Corollary 5.2. Given correctly specified model spaces and positivity (Assumptions 1 and 2),
the worst-case root mean square error of the Riesz estimator in any mean-square norm ball
is the scaled product of the radius of the ball and the operator norm of V:

sup
‖u‖ms≤C

√
E
[
(τ̂ − τ)2;u

]
= n−1/2C‖V‖op for all C > 0.

If the variance characterizing operator does not exists, set ‖V‖op =∞.
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A direct implication of the corollary is that root mean square error of the Riesz estimator
is bounded from above by the product of the mean-square norm of the true potential
outcome function y and the operator norm of the variance characterizing operator V :√

E
[
(τ̂ − τ)2

]
≤ n−1/2‖y‖ms‖V‖op.

Furthermore, this inequality is sharp, also in finite samples, in the sense that for any
C > 0, there exists some u ∈ M(n) with ‖u‖ms = c such that the root mean square error
is n−1/2‖u‖ms‖V‖op when y = u.

The operator norm ‖·‖op captures how much the magnitude of the input can increase by
the transformation described by the operator. That is, the operator norm of an operator f
is how large the magnitude of the output ‖f(x)‖ can possibly be relative to the magnitude
of the input ‖x‖. In our case, the operator norm for the linear transformation V is defined
with respect to the mean-square norm:

‖V‖op = sup
u6=0

‖V(u)‖ms

‖u‖ms
.

The operator norm bound in Corollary 5.2 follows almost directly from this definition.
The strength of Corollary 5.2 is that it separates the transformation of y from the input

y itself. This is useful because ‖V‖op only depends on the design, the effect functionals and
the model spaces, so it is known, at least in principle, without any knowledge of the true
potential outcomes. Furthermore, while y is unknown, experimenters often feel comfortable
reasoning about its magnitude. The variance is therefore decomposed into one part, ‖V‖op,
that can be calculated without knowledge of the true potential outcomes, and one part,
‖y‖ms, that empirical researchers often feel comfortable reasoning about, at least to the
degree that they can judge whether it is asymptotically bounded.

Corollary 5.3. If Assumptions 1 and 2 hold and the mean-square norm of the potential
outcomes is asymptotically bounded, ‖y‖ms = O(1), then a necessary and sufficient condi-
tion for consistency in mean square of the Riesz estimator is ‖V‖op = o(n1/2). Furthermore,
the rate of convergence of the Riesz estimator is exactly the rate at which n−1/2‖V‖op ap-
proaches zero. A necessary and sufficient condition for root-n consistency of the Riesz
estimator is ‖V‖op = O(1).

The corollary uses the operator norm bound to describe in what situations we can expect
the Riesz estimator to be precise in large samples. The takeaway is that the precision of the
estimator is determined by the operator norm ‖V‖op, where a smaller operator norm means
more precision. The estimator is root-n consistent if the operator norm is asymptotically
bounded. The reason the corollary restricts the potential outcome function to to have
asymptotically bounded mean-square norm is that the variance trivially becomes large if
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the magnitude of y approaches infinity. Conversely, if the potential outcome functions
approach the zero function asymptotically, ‖y‖ms = o(1), then the Riesz estimator can be
precise even when the operator norm is not well-controlled. However, both these edge cases
are typically not relevant in practice, which is why Corollary 5.3 does not consider them.

We take the experimental design as given in this paper, but experimenters often have
some control over what design is used in the experiment. Proposition 5.1 and its corollaries
provide some guidance on how to select a well-performing design. Corollary 5.2 tells us
that we should minimize the operator norm ‖V‖op in order to make the worst-case variance
of the Riesz estimator as small as possible. This is, at least in principle, a feasible task
because the operator norm can be calculated before running the experiment. The approach
of using operator norms to guide the design of randomized experiments has been investi-
gated in the setting of binary treatments under no interference by Efron (1971), Kapelner,
Krieger, Sklar, Shalit, and Azriel (2020) and Harshaw, Sävje, Spielman, and Zhang (2021).
Proposition 5.1 shows that this idea extends to a more general setting. We save the full
investigation of how to design experiments in this setting for future work.

5.3 Sufficient Conditions for Consistency

The operator norm characterization in the previous subsection exhaustively describes when
the Riesz estimator is precise in large samples, but some experimenters might find it some-
what opaque. To complement the previous analysis, we describe sufficient conditions for
consistency of the Riesz estimator in this section that are more restrictive but perhaps eas-
ier to interpret. The alternative approach is based on dependency neighborhoods, which
have been widely used in the recent literature on causal inference under interference. The
dependency neighborhoods concern the model spaces in our setting.

Definition 3. The model dependency neighborhood for unit i is the smallest Di ⊂ [n] such
that Mi and

⋃
j∈[n]\Di

Mj are independent with respect to the experimental design. Let
davg = n−1

∑n
i=1|Di| denote the average size of the dependence neighborhoods, and let

dmax = maxi|Di| denote the size of the largest dependence neighborhood.

We say that two sets of functions, such asMi and
⋃
j∈[n]\Di

Mj, are independent if any
finite-dimensional vector of functions from the first function space evaluated at Z is inde-
pendent of any finite-dimensional vector of functions from the second function space also
evaluated at Z. For example, if u1, . . . , uk ∈ Mi and v1, . . . , v` ∈

⋃
j∈[n]\Di

Mj, then inde-
pendence of Mi and

⋃
j∈[n]\Di

Mj implies that (u1(Z), . . . , uk(Z)) and (v1(Z), . . . , v`(Z))

are independent. Intuitively, if unit j is in unit i’s model dependency neighborhood, then
unit j’s outcome (possibly together with outcomes of other units) provides information
about unit i’s outcome under the experimental design. The size of a dependency neighbor-
hood is one way to characterize the amount of dependence for a given unit, and the average
davg and maximum dmax characterize the overall amount of dependence in the experiment.
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Proposition 5.4. Let p and q be values satisfying 1/p+ 1/q = 1/2. The root mean square
error of the Riesz estimator is upper bounded by√

E
[
(τ̂ − τ)2

]
≤ n−1/2d1/2avg‖y‖max,p‖ψ‖max,q,

where ψ = (ψ1, . . . , ψn) is the vector of all Riesz representors and ‖·‖max,p is the max-p
norm discussed in Section 5.1.

The proposition has the same structure as Corollary 5.2, but with the operator norm
substituted with d1/2avg‖ψ‖max,q. Because the Riesz representors are in the model spaces, we
can consider the magnitude of the vector-valued Riesz representor ψ in the same way as
we consider the magnitude of the vector-valued potential outcome function, here using the
max-p norm.

The magnitude of ψ captures the degree to which the outcomes are weighted in the
Riesz estimator, which can interpreted as a measure of how difficult it is to estimate the
treatment effect. If ‖ψ‖max,q is large, the outcomes are heavily weighted and the effect is dif-
ficult to estimate. If the estimand is the average expected outcome, n−1

∑n
i=1 E[Yi], which

is easy to estimate, then the Riesz representors are constant at one, so ‖ψ‖max,q = 1. Posi-
tivity (Assumption 2) implies that the max-2 norm is finite for any fixed n, ‖ψ‖max,2 <∞,
but ‖ψ‖max,q could be infinite for q > 2 even when positivity holds, and it could be that
‖ψ‖max,2 →∞ as n grows. Experimenters should try to ensure that ‖ψ‖max,q is asymptot-
ically bounded, which can be seen as a strengthening of the positivity assumption. When
using exposure mappings, this corresponds to ensuring that the assignment probabilities of
the relevant exposures are bounded away from zero by a constant. That is, if di(z) = a is
an exposure of interest for unit i, then positivity stipulates that Pr(di(Z) = a) > 0, while
‖ψ‖max,q = O(1) stipulates that Pr(di(Z) = a) ≥ c for some constant c > 0.

The following corollary of Proposition 5.4 shows that consistency is ensured for the Riesz
estimator provided that the potential outcomes and Riesz representors are asymptotically
bounded, and that there is not too much dependence between the model spaces.

Corollary 5.5. Given correctly specified model spaces and positivity (Assumptions 1 and 2),
limited average model dependence, davg = o(n), and ‖y‖max,p = O(1) and ‖ψ‖max,q = O(1)

for some 1/p+1/q = 1/2, the Riesz estimator is consistent in mean square. If the condition
on the average model dependence is strengthened to davg = O(1), the Riesz estimator is
root-n consistent.

5.4 Asymptotic Normality

We conclude this section by investigating the limiting distribution of the Riesz estimator.
We provide sufficient conditions under which the distribution approaches a normal distri-
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bution as the sample size grows. It is beyond the scope of this paper to provide necessary
and sufficient condition for asymptotic normality.

The approach we take here is similar to the one we took in the previous subsection, using
model dependency neighborhood to capture dependence between units. The conditions
used to ensure asymptotic normality are stronger than those we used for consistency. We
also impose an additional regularity condition to ensure that the limiting distribution of
the Riesz estimator is not degenerate, which is implemented as an assumption that the
convergence rate is not faster than root-n, which is the parametric rate. In theory, there
are sequences in our asymptotic regime for which the rate is faster than this, but they are
knife-edge situations where, for example, the dependence structure in the design perfectly
aligns with the potential outcomes. We do not believe that these situations are practically
relevant, so essentially nothing is lost by imposing the non-degeneracy assumption. This
type of assumption is common in the design-based causal inference literature; examples
include Condition 6 in Aronow and Samii (2017) and Assumption 5 in Leung (2022b).

Assumption 4 (Non-degeneracy). nVar(τ̂) ≥ c for some c > 0 and all n.

Proposition 5.6. Given correctly specified model spaces, positivity and non-degeneracy
(Assumptions 1, 2 and 4), limited maximum model dependence, dmax = o(n1/4), and
‖y‖max,p = O(1) and ‖ψ‖max,q = O(1) for some 1/p + 1/q = 1/4, the limiting distribution
of the Riesz estimator is normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1).

The proof of Proposition 5.6 appears in Section S2.3 of the supplement. The main
technique of the proof is Stein’s method adapted to dependency graphs, as described by
Ross (2011).

6 Variance Estimation and Inference

6.1 Overview

To assess the precision of the Riesz estimator and construct confidence intervals, we aim
to estimate its variance:

Var(τ̂) = Var
(
n−1

∑n
i=1 ψi(Z)Yi

)
=

1

n2

n∑
i=1

n∑
j=1

Cov
(
ψi(Z)Yi, ψj(Z)Yj

)
.

The expression shows that we can reinterpret the variance as an average of n2 bilinear
functionals on the Cartesian products of the model spaces evaluated at the true potential
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outcome functions. This interpretation highlights a parallel to the estimation of τ , which is
an average of linear functionals on the model spaces evaluated at the true potential outcome
functions. We will approach the variance estimation problem in a similar way to how we
approached the point estimation problem.

There are, however, two hurdles that prevent a direct application of the approach we
used for point estimation. First, the Riesz representation theorem concerns linear function-
als, but the variance consists of bilinear functionals. We navigate this issue by tensorizing
the variance expression. For our purposes, the tensors are used to rewrite the bilinear
functionals on the Cartesian products of the model spaces,Mi×Mj, as linear functionals
on the tensor product of the model spaces, Mi ⊗Mj. We describe tensor products and
our use of them later in this section.

The second hurdle is that the structure of the variance estimation problem often in-
troduces positivity violations, meaning that the equivalent to Assumption 2 generally does
not hold in the variance estimation problem. That is, some aspects of the tensor products
of the model spaces that are relevant for the variance are often inherently unobservable.
Unlike positivity violations under the point estimation, this problem can typically not be
addressed by changing the experimental design when estimating the variance. We navi-
gate this issue by estimating alternative linear functionals on the tensor products, whose
average is an upper bound for the true variance. This means that our variance estimator
will be conservative in expectation. This approach is commonly used in the design-based
causal inference literature (see, e.g., Aronow, Green, & Lee, 2014; Fogarty, 2018; Imbens &
Menzel, 2021). The bound we use is inspired by the bound described by Aronow and Samii
(2013, 2017) for discrete treatments. Our bound is a generalization of this bound to gen-
eral tensor products of model spaces. It is possible to use the ideas described by Harshaw,
Middleton, and Sävje (2021) to improve on the bound we use here, but we will not explore
such an extension in this paper. Because we use the more straightforward approach, our
variance bounds are often quite crude, yielding overly conservative variance estimators.

6.2 Tensor Spaces and Tensorization of the Variance

The tensor productMi ⊗Mj of two model spaces is the vector space for which a basis is
the collection of all pairs of elements from a basis of Mi and a basis of Mj. The tensor
product contains an element associated with all elements in the Cartesian product of the
model spaces: (u, v) ∈ Mi ×Mj. The element in Mi ⊗Mj corresponding to the pair
(u, v) is denoted u ⊗ v, and such an element is called a simple tensor. The mapping from
Mi ×Mj into the set of simple tensors is bilinear, in the sense that if u =

∑s
k=1 akuk and

v =
∑r

`=1 b`v`, then u ⊗ v =
∑s

k=1

∑r
`=1 akb`(uk ⊗ v`). The tensor product contains all
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linear combinations of the simple tensors:

Mi ⊗Mj = span
(
{u⊗ v : u ∈Mi, v ∈Mj}

)
.

The tensor product ofMi andMj is different from their Cartesian product. If both model
spaces have dimension d, thenMi×Mj has 2d dimensions butMi⊗Mj has d2 dimensions.

We will use tensors to rewrite bilinear functionals onMi×Mj as linear functionals on
Mi ⊗Mj. This is done by first defining the linear functional to coincide with the bilinear
functional for all simple tensors and then use linearity to extend the functional to the full
tensor product. The relevant bilinear functionals in our case is the covariance terms in
Equation 6.1 when interpreted as functionals of the potential outcome functions. That is,
the bilinear functional Ai,j :Mi ×Mj → R is defined as

Ai,j(u, v) = Cov
(
ψi(Z)u(Z), ψj(Z)v(Z)

)
,

for all u ∈ Mi and v ∈ Mj. Under correctly specified model spaces, the variance can
therefore be written as

Var(τ̂) =
1

n2

n∑
i=1

n∑
j=1

Ai,j(yi, yj).

Let Ai,j :Mi⊗Mj → R denote the linear functional produced by tensorizing Ai,j. The
tensorization starts by defining Ai,j to coincide with Ai,j for all simple tensors, meaning
that Ai,j(u⊗ v) = Ai,j(u, v) for all u ∈ Mi and v ∈ Mj. This is followed by an extension
of the definition to the full tensor product using linearity. That is, if ρ =

∑m
k=1 ak(uk ⊗ vk)

is a non-simple tensor written as a linear combination of m simple tensors, then Ai,j(ρ) =∑m
k=1 akAi,j(uk ⊗ vk). By definition, all tensors can be written as a linear combination of

simple tensors, so the extension is complete.
We can now write the variance as an average of linear functionals on the tensor products

of the model spaces:

Var(τ̂) =
1

n2

n∑
i=1

n∑
j=1

Ai,j(yi ⊗ yj).

6.3 Constructing Variance Riesz Representors

Having written the variance as an average of linear functionals, we can now proceed in
a similar fashion as in Section 4 to construct estimators for the variance functionals us-
ing Riesz representors. For point estimation, the relevant function spaces were the model
spaces, so the Riesz representors were functions mapping from Z to R. Here, the relevant
spaces are the tensor productsMi⊗Mj, meaning that the Riesz representors will be ten-
sors. To construct these representors, we build Hilbert spaces from the tensor products, in
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a similar fashion as when we constructed the point estimator. Under a positivity assump-
tion on the tensors, we can define linear functionals on the Hilbert spaces that capture the
behavior of the variance functionals on the tensor products.

It will prove helpful to associate each tensor with a function mapping from Z to R. We
slightly overload the notation and use the same symbol for the tensor ρ ∈Mi⊗Mj to also
denote its associated function ρ : Z → R. For a simple tensor ρ = u⊗ v, the corresponding
function ρ is defined as the product ρ(z) = u(z)v(z). Next, we use linearity to extend the
definition to also non-simple tensors. That is, if ρ =

∑m
k=1 ak(uk⊗vk) is a non-simple tensor,

then the corresponding function is defined as ρ(z) =
∑m

k=1 akuk(z)vk(z). This means that
ρ(Z) can be seen as a random variable associated with the tensor ρ ∈Mi ⊗Mj.

A potential concern here is that some tensors ρ ∈Mi ⊗Mj may not be in Y , because
they may not be square integrable. This would prevent us from using the Riesz representa-
tion theorem. To address this, we impose a stronger moment condition on the model spaces
than square integrability. For each unit, we define the moment restricted model space M∗

i

to be the set of all functions in the model spaceMi with bounded fourth moments:

M∗
i = {u ∈Mi : E[u(Z)4] <∞},

and we require the true potential outcome function to be in this set.

Assumption 5. The true potential outcome function for each unit has bounded fourth
moment under the design: yi ∈M∗

i .

Mirroring Section 4.2, we say that two tensors ρ and γ inM∗
i ⊗M∗

j are observationally
equivalent if ρ(Z) = γ(Z) almost surely under the experimental design. We define the
outcome tensor space to be the closure of the equivalence classes that contain a function
corresponding to a tensor inM∗

i ⊗M∗
j :

L(M∗
i ⊗M∗

j) = cl
({

[ρ] ∈ L(Y) : ρ ∈M∗
i ⊗M∗

j

})
.

The closure is taken with respect to the topology induced by the Hilbert space L(Y). By
Hölder’s inequality, the function associated with each tensor ρ ∈ M∗

i ⊗M∗
j has bounded

second moment, meaning that ρ ∈ Y . This means that we can use the inner product from
the Hilbert space L(Y) together with L(M∗

i ⊗M∗
j) to form a new Hilbert space that can

be used to create the Riesz representors for the variance functionals.2

Proposition 6.1. Together with the inner product 〈[ρ], [γ]〉 = E[ρ(Z)γ(Z)], each outcome
tensor space L(M∗

i ⊗M∗
j) is a Hilbert space.

2An alternative approach to create a Hilbert space in this setting is to use the tensor products of the
outcome spaces L(Mi)⊗L(Mj) with the inner product 〈ui ⊗ uj , vi ⊗ vj〉 = E[ui(Z)vi(Z)] E[uj(Z)vj(Z)].
While this is a Hilbert space, it is not an useful for the construction of variance estimators.
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To extend the variance functionals to the outcome tensor spaces, we must ensure that
the outcome tensor spaces contains the same information about the functionals as the
tensor spaces. This is done by the same type of positivity condition as we used for point
estimation.

Definition 4. A linear functional Ai,j :M∗
i ⊗M∗

j → R satisfies second-order positivity if
there exists C <∞ such that |Ai,j(ρ)| ≤ C

√
E[ρ(Z)2] for all ρ ∈M∗

i ⊗M∗
j .

Second-order positivity states that if two tensors are observationally equivalent under
the design, then they must have the same value when evaluated on the corresponding
variance functional. While this positivity condition is essentially the same as Assumption 2,
we refer to it as second-order positivity for clarity. In Section S1.3.4 of the supplement,
we demonstrate how to computationally verify whether second-order positivity holds when
the model spaces are finite dimensional. If second-order positivity holds, we can extend the
variance functionalAi,j to the Hilbert space L(M∗

i⊗M∗
j), on which the Riesz representation

theorem can be applied. The construction is almost identical to the one that appears in
Section 4.2. We describe the extension in detail in Section S1.3.4 of the supplement.

Proposition 6.2. If a linear functional Ai,j on the tensor spaceM∗
i ⊗M∗

j satisfies second-
order positivity, then there exists an equivalence class Ψ†i,j ∈ L(M∗

i ⊗M∗
j) such that every

tensor Ψi,j ∈ Ψ†i,j satisfies

Ai,j(ρ) = E[Ψi,j(Z)ρ(Z)] for all ρ ∈M∗
i ⊗M∗

j .

We say that any tensor Ψi,j in this equivalence class is a second-order Riesz representor for
the functional Ai,j.

Proposition 6.2 establishes the existence of Riesz representors for the variance functional
under second-order positivity. The procedure for constructing Riesz representors for the
variance functionals is the same as constructing Riesz representors for the effect functionals,
as discussed in Section 4.3, provided that the outcome spaces L(Mi) are replaced with the
outcome tensor spaces L(M∗

i ⊗M∗
j).

We can use the Riesz representors for the variance functionals to construct a variance
estimator. Provided that second-order positivity holds for all variance functionals, Riesz
representors Ψi,j exist for all those functionals. This means that the expectation of the
random variable Ψi,j(Z)YiYj, which is observed, is equal to Ai,j(yi ⊗ yj), which in turn is
the i, jth term of the variance expression. The average of Ψi,j(Z)YiYj over i, j ∈ [n] would
therefore be an unbiased estimator of the variance of the Riesz point estimator. Note,
however, that this only holds if all variance functionals satisfy second-order positivity.
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6.4 Variance Bound for the Riesz Estimator

Second-order positivity will generally not hold for all variance functionals Ai,j. The reason
is what Holland (1986) calls the fundamental problem of causal inference, which is the fact
that we can never simultaneously observe the potential outcome functions evaluated at two
different treatment assignments. This means that the diagonal tensor productsM∗

i ⊗M∗
i

tend to violate positivity, because they typically contain observationally equivalent tensors
for which the variance functional has different values. This is true even for simple model
spaces and experimental designs, such as binary treatments under no interference and a
Bernoulli design. Positivity violations tend to exist also for non-diagonal tensor products
M∗

i ⊗M∗
j even for moderately complex model spaces and experimental designs. However,

while second-order positivity violations are common, there situations where all variance
functionals satisfy positivity, in which case unbiased variance estimation is possible. One
such setting is studied by Harshaw, Sävje, Eisenstat, Mirrokni, and Pouget-Abadie (2021).

We will follow the current convention in the design-based causal inference literature
and address these positivity violations by deriving an upper bound for the variance that
satisfies second-order positivity. We construct the variance bound by defining a new linear
functional Bi,j :M∗

i ⊗M∗
j → R for all i, j ∈ [n] such thatM∗

i ⊗M∗
j satisfies second-order

positivity with respect to Bi,j and

VB(τ̂) =
1

n2

n∑
i=1

n∑
j=1

Bi,j(yi ⊗ yj)

is an upper bound for the variance Var(τ̂). This means that we can construct Riesz-type
estimators for all terms Bi,j(yi ⊗ yj), and thereby estimate the variance bound, which acts
as a conservative variance estimator.

At a high level, our approach to construct a variance bound is to decompose each
variance functional Ai,j :M∗

i ⊗M∗
j → R into a sum of more elementary linear functionals

based on basis representations of the Riesz representors ψi and ψj. If the variance functional
violates second-order positivity, then at least one of these elementary linear functionals must
also violate positivity. For all elementary linear functionals that do not satisfy positivity,
we apply the bound described by Aronow and Samii (2013, 2017) to bound the functionals
by two other functionals that satisfy positivity. After all positivity violations have been
addressed for the elementary functionals, we re-collect terms to construct our variance
bound functionals Bi,j.

Under Assumption 3, each outcome model space L(Mi) is separable and therefore has
a countable orthonormal basis {[φi,`]}∞`=1. Each [u] ∈ L(Mi) can be written uniquely as
[u] =

∑∞
k=1 ak[φi,k]. Using these bases, we can decompose the equivalence class of each Riesz

representor used in the point estimator as [ψi] =
∑∞

k=1 βi,k[φi,k] for some set of coefficients
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{βi,k}∞k=1. We can then decompose the variance functional as

Ai,j(u⊗ v) = Cov
(
ψi(Z)u(Z), ψj(Z)v(Z)

)
=
∞∑
k=1

∞∑
`=1

βj,kβi,` Cov
(
φi,k(Z)u(Z), φj,`(Z)v(Z)

)
,

where {φi,`}∞`=1 is a sequence of arbitrary functions selected from each basis equivalence
class. Define a new set of linear functionals Ai,j,k,` :M∗

i ⊗M∗
j → R on the simple tensors

as
Ai,j,k,`(u⊗ v) = βj,kβi,` Cov

(
φi,k(Z)u(Z), φj,`(Z)v(Z)

)
,

and use linearity to extend the definition to the full tensor product. The variance func-
tional can thereby be reinterpreted as the sum of these elementary functionals: Ai,j =∑∞

k=1

∑∞
`=1Ai,j,k,`.

If Ai,j does not satisfy positivity, then at least one of elementary functionals Ai,j,k,` does
not satisfy positivity. When either i 6= j or k 6= `, we bound these offending functionals
using the Cauchy–Schwarz and AM–GM inequalities:

Ai,j,k,`(u⊗ v) = βi,kβj,` Cov
(
φi,k(Z)u(Z), φj,`(Z)v(Z)

)
≤ 1

2

[
β2
i,k Var

(
φi,k(Z)u(Z)

)
+ β2

j,` Var
(
φj,`(Z)v(Z)

)]
.

Note that β2
i,k Var

(
φi,k(Z)u(Z)

)
is exactly the functional Ai,i,k,k evaluated on the simple

tensor u⊗ u, resulting in the bound 2Ai,j,k,`(u⊗ v) ≤ Ai,i,k,k(u⊗ u) +Aj,j,`,`(v ⊗ v). It is
computationally tractable to test for second-order positivity violations of a linear functional
on M∗

i ⊗M∗
j , meaning that we can discover which functionals need to be bounded. We

describe this test in Section S1.3.4 in the appendix.
If one of the elementary functionals Ai,j,k,` that does not satisfy positivity is on the

diagonal, meaning that i = j and k = `, then we need an alternative bound. We cannot
apply the Cauchy–Schwarz and AM–GM inequalities in this case because they would return
the same the functional as we started with. Here, we use the fact that the second raw
moment is a bound on the variance for any random variable:

Ai,i,k,k(u⊗ u) = β2
i,k Var

(
φi,k(Z)u(Z)

)
≤ β2

i,k E
[
(φi,k(Z)u(Z))2

]
.

We introduce a new family of linear functionals Di,k : M∗
i ⊗M∗

i → R to capture these
terms. For simple tensors, let Di,k(u⊗v) = E[φi,k(Z)2u(Z)v(Z)], and use linearity to extend
the definition to the full tensor product. This means that Ai,i,k,k(u ⊗ u) ≤ Di,k(u ⊗ u).
Lemma S1.8 in Section S1.3.4 of the supplement shows that Di,k satisfies second-order
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positivity. The intuition behind this is that the random variable (φi,k(Z)u(Z))2 is directly
informative of its expectation, so the design always provides sufficient information of Di,k.

After applying these bounds on all offending elementary functionals Ai,j,k,`, we are
left with a set of functionals that all satisfy second-order positivity. The final step is a
bookkeeping exercise, collecting all functionals defined on the same tensor product into a
single functional, which gives our variance bound functional Bi,j. To this end, let Fi,j ⊆ N2

be the set of pairs of indices (k, `) of elementary functionals Ai,j,`,k for i and j that satisfy
second-order positivity. Let ρi,k ∈ {0, 1} be an indicator of whether Ai,i,k,k satisfies second-
order positivity: ρi,k = 1[(k, k) ∈ Fi,i]. The variance bound functional is then defined
as

Bi,j =

{∑
(k,`)∈Fi,j

Ai,j,k,` if i 6= j,∑
(k,`)∈Fi,j

Ai,i,k,` +
∑∞

k=1Qi,k

(
ρi,kAi,i,k,k + (1− ρi,k)Di,k

)
if i = j,

where Qi,k = |{(j, `) ∈ [n] × [d] : (k, `) /∈ Fi,j}| is the number of elementary functionals
Ai,j,`,k involving unit i and basis k that do not satisfy positivity. If the model spaces have
infinite dimensions, then [d] = N in the definition of Qi,k. For this bound to be useful, one
must ensure that Qi,k is finite for all (i, k) ∈ [n]× [d].

The intuition behind the inequalities we have used to derive this variance bound is that
they transfer mass, in lack of a better term, from the off-diagonal terms, i 6= j or k 6= `,
that do not satisfy positivity to diagonal terms. The counting variable Qi,k captures the
amount of mass transferred to the diagonal term involving unit i and basis function k,
corresponding to functionals Ai,i,k,k or Di,k, and the sum of Qi,k gives a rough indication of
the overall conservativeness of the variance bound.

Proposition 6.3. The variance bound VB(τ̂) based on functionals Bi,j is an upper bound
on the variance of the Riesz estimator:

Var(τ̂) =
1

n2

n∑
i=1

n∑
j=1

Ai,j(yi ⊗ yj) ≤
1

n2

n∑
i=1

n∑
j=1

Bi,j(yi ⊗ yj) = VB(τ̂).

The proposition states that VB(τ̂) indeed is a variance bound, and therefore can be
used to construct a conservative variance estimator. Note that the inequality does not
necessarily hold term by term, meaning that we generally will have some terms for which
Ai,j(yi ⊗ yj) ≥ Bi,j(yi ⊗ yj).

To construct the variance estimator, first construct Riesz representors for the variance
bound functionals, as described in the previous subsection. Let Ψvb

i,j denote the Riesz
representors for Bi,j onMi⊗Mj. The estimator for the variance bound, which acts as our
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variance estimator, is then

V̂B(τ̂) =
1

n2

n∑
i=1

n∑
j=1

Ψvb
i,j (Z)YiYj.

Some model spaces and designs make it easy to deduce thatAi,j(yi⊗yj) = 0 for certain pairs
i, j ∈ [n]. In that case, the corresponding Riesz representor will capture this, in the sense
that Ψvb

i,j (Z) = 0 almost surely, meaning that nothing needs to changed to accommodate
those situations. However, to speed up the computation of the variance estimator and
improve numerical stability, it is advisable to not derive the Riesz representor for the terms
that are known to be zero.

Proposition 6.4. For each pair i, j ∈ [n], the variance functional Bi,j satisfies second-order
positivity with respect to the moment restricted tensor productM∗

i ⊗M∗
j .

Corollary 6.5. Given correctly specified model spaces, first-order positivity, separability
and bounded fourth moments (Assumptions 1, 2, 3, and 5), the variance estimator is un-
biased for the variance bound and conservative in expectation for the true variance:

E
[
V̂B(τ̂)

]
= VB(τ̂) ≥ Var(τ̂).

6.5 Confidence Intervals and Consistency of Variance Estimator

With the variance estimator in hand, we have all the components needed to construct
Wald-type confidence intervals. This type of confidence interval takes advantage of the fact
that the estimator is asymptotically normal and approximates the sampling distribution
with a normal distribution, yielding an interval for τ at the 1− α nominal confidence level
that is centered at τ̂ with a radius that is the product of the estimated standard error and
the 1− α/2 percentile of the standard normal distribution:

τ̂ ± Φ−1(1− α/2)

√
V̂B(τ̂),

where Φ−1 : [0, 1]→ R is the quantile function of the standard normal deviate.
To prove that this interval is a valid confidence interval, we must show that the variance

estimator is not only conservative in expectation, but that it is conservative with a prob-
ability approaching one. We will do this by showing that it is consistent for the variance
bound. Because the variance estimator is a type of Riesz estimator, we could take the same
approach as in Section 5.2 to show consistency. That is, we would construct a linear oper-
ator on the direct product of the outcome tensor spaces that characterizes the variance of
the variance estimator, in a manner analogous to Proposition 5.1. However, unlike for the
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point estimator, for which this approach gave necessary and sufficient conditions, the ap-
proach would only give sufficient conditions for the variance estimator. The reason for this
is that we know that the estimand corresponds to the variance bound functionals evaluated
at simple tensors, because the true potential outcome tensors are simple by construction,
but the operator norm bound considers all tensors. A possible way forward would be to
use a restricted concept of an operator norm that only considers simple tensors, but that
would be of limited practical value as such a restricted operator norm is hard to reason
about and compute. For this reason, we will provide sufficient conditions for consistency
of the variance estimator using an approach similar to the one taken in Section 5.3.

Definition 5. The pairwise second-order dependency neighborhood for unit pair (i, j) is
the smallest Si,j ⊂ [n]2 such thatM∗

i ∪M∗
j andM∗

r ∪M∗
s are independent with respect

to the experimental design for all pairs (r, s) ∈ [n]2 \ Si,j. Let savg = n−2
∑n

i=1

∑n
j=1|Si,j|

denote the average size of the second-order dependence neighborhoods.

Proposition 6.6. Let Ψvb = (Ψvb
1,1, . . . ,Ψ

vb
n,n) be a vector collecting all Riesz representors

for the variance bound functionals Bi,j. Given correctly specified model spaces, first-order
positivity, separability and bounded fourth moments (Assumptions 1, 2, 3, and 5), that
‖y‖max,p and ‖Ψvb‖max,q are asymptotically bounded for p ≥ 4 and q ≥ 2 such that 1/p +

1/2q = 1/4, and that savg = o(1), the normalized variance estimator is consistent of the
normalized variance bound: E[(nV̂B(τ̂)− nVB(τ̂))2] = o(1).

Corollary 6.7. Given the conditions of Propositions 5.6 and 6.6 (asymptotic normality of
the point estimator and consistency of the variance estimator), the Wald-type confidence
intervals are asymptotically valid:

lim inf
n→∞

Pr
(
τ̂ −Rα ≤ τ ≤ τ̂ +Rα

)
≥ 1− α,

where Rα = Φ−1(1− α/2)

√
V̂B(τ̂) is the radius of the interval.

7 Concluding remarks

The framework we have described in this paper and the associated Riesz estimator al-
low empirical researchers to answer a wide range of causal question in the design-based
paradigm. The results also provide insights about what we believe are some of the founda-
tions of design-based causal inference, as evident from the fact that the framework unifies
and generalizes existing design-based frameworks. Even in situations where the intricacies
of the current framework are superfluous for practical purposes, such as when one is estimat-
ing the conventional average treatment effect for binary treatments under no-interference,
the framework provides an explanation of why conventional estimators work, such as the
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Horvitz–Thompson estimator. We find that to be valuable on its own, and we hope those
insights will prompt new investigations and discoveries.

One such more general insight is about what type of statistical problem causal inference
is in the design-based paradigm. It is common to interpret the causal inference problem as
a discrete missing data problem, in the sense that the cells in our data set corresponding to
the counterfactual potential outcomes are missing. We interpret the framework and results
in this paper to suggest that the missing data perspective is too limited to capture the full
range of causal questions empirical researchers might want to ask. A conclusion we draw
from this work is that the causal inference problem is instead best seen as a functional
estimation problem.

There are many open questions related to the framework and the Riesz estimator, some
of which we have already mentioned. The most pressing open question is estimation when
the model spaces have infinite dimensions. Our theory allows us to show that the Riesz
estimator exists in the infinite-dimensional setting, given positivity, and we can compute the
Riesz estimator to arbitrary numerical precision, given that the model spaces are separable.
However, it is an open question when the Riesz estimator based on infinite-dimensional
model spaces is useful in practice. The concern is that the variance of the estimator might
be very high, possibly infinite. We know of examples where the Riesz estimator based on
infinite-dimensional model spaces is consistent, and we know of examples where it is not.
It remains to better delineate these situations, and describe alternatives in the situations
where the Riesz estimator, as described here, is not useful. We believe the best candidate
for such an alternative is the sieve version of the Riesz estimator discussed at the end of
Section 4.3.

Another pressing open question is the behavior of the Riesz estimator when the assump-
tion of correctly specified model spaces does not hold. The fact that the model spaces can
be large, possibly infinite-dimensional, means that the assumption of correct specification
might be less problematic here than in the conventional setting. But it is nevertheless
a strong assumption. It remains to be investigated what properties the Riesz estimator
has when the model spaces are misspecified. We conjecture that this investigation will
reveal connections to the sieve version of the Riesz estimator. A potential way to address
misspecification is to consider a sequence of model spaces, indexed by n, with increasing
complexity such that a model space for any finite n might be misspecified, but the sequence
is correctly specified in the limit. The sequence of Riesz estimators corresponding to this
sequence of model spaces could be interpreted as a type of sieve estimator, suggesting that
infinite-dimensional model spaces and misspecification might be two perspectives of the
same underlying question.
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S1 Positivity and Riesz Representors

S1.1 Positivity and Effect Estimation

We begin by showing that, under the correctly specified model assumption, simple positiv-
ity is a necessary condition for unbiased treatment effect estimation while positivity is a
sufficient condition.

Proposition 3.1. Given correctly specified models (Assumption 1), simple positivity (As-
sumption 2’) is a necessary condition for the existence of an unbiased estimator for the
estimand τ = n−1

∑n
i=1 θi(yi), and positivity (Assumption 2) is a sufficient condition.
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Proof. The fact that Assumption 2 is sufficient condition for unbiased estimation under
Assumption 1 follows directly from Theorem 4.3, which shows that the Riesz estimator
exists and is unbiased under the two conditions.

Now let us show that under Assumption 1, Assumption 2’ is a necessary condition for
existence of an unbiased estimator. An effect estimator is a function T : Z×Rn → R which
is evaluated at the treatment Z and observed outcomes Y1, . . . Yn. The effect estimator
is unbiased if E[T (Z, Y1, . . . Yn)] = (1/n)

∑n
i=1 θi(yi) for all potential outcome functions

yi ∈Mi.
We proceed by way of contradiction. At a high level, we will construct two sets of

individual potential outcome functions under which the observational distributions are
identical, but the estimands are different. This will establish that no unbiased estimator
exists.

Suppose that Assumption 2’ does not hold so that there exists a unit k ∈ [n] such that
the model spaceMk contains functions uk and vk which are observationally equivalent but
have different values under the effect functional θi. Unpacking this definition, this means
that uk(Z) = vk(Z) with probability 1 but θk(uk) 6= θk(vk).

Consider two collections of individual potential outcome functions y = (y1, . . . yn) and
y′ = (y′1 . . . y

′
n). We set yk = uk and y′k = vk and for all i 6= k we set yj = y′j. Define the

aggregated effects

τ =
1

n

n∑
i=1

θi(yi) and τ ′ =
1

n

n∑
i=1

θi(y
′
i) .

By construction, we have that τ 6= τ ′. Let T be an unbiased estimator for the aggregate
treatment effect. Using unbiasedness of the estimator in addition to the equivalence of the
observational distributions under y and y′, we have that

τ = E[T (Z, Y1, . . . Yn) | y] = E[T (Z, Y1, . . . Yn) | y′] = τ ′ .

We have arrived at a contradiction, as τ 6= τ ′.

We now present a stronger notion of positivity which is applicable primarily to finite-
dimensional model spaces. The definition of strong positivity is given below.

Definition S1. A model spaceMi satisfies strong positivity if for u ∈ Mi, E[u(Z)2] = 0

implies that u is the zero function.

Unlike positivity (Assumption 2) which depends on the linear effect functional, strong
positivity as defined above depends only on the model space and the underlying experi-
mental design. If strong positivity holds, then no two distinct functions in the model space
are observationally equivalent. To see this, let u, v ∈ Mi and observe that if u 6= v, then
u − v 6= 0 so that strong positivity implies that E[(u(Z) − v(Z))2] > 0 and thus u and v
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are not observationally equivalent. Thus, strong positivity implies that positivity holds for
every linear functional on the model space. In other words, we have shown the following
claim.

Proposition S1.1. If a finite-dimensional model spaceMi satisfies strong positivity with
respect to the experimental design, then every linear functional θi : Mi → R satisfies
positivity on the model spaceMi with respect to the design.

Proof. As discussed by Section 3.5, Assumption 2’ is equivalent to saying that all functions
u ∈ Mi that are almost surely zero on Z must evaluate as zero on the effect functional:
θi(u) = 0. If strong positivity holds, then the only function in Mi that is almost surely
zero on Z is the zero function. By linearity of the the effect functional, θi(u) = 0 if u is
the zero function.

To test whether strong positivity holds, it suffices to compute the d-by-d matrix H
whose entries are Hk,` = E[gi,`(Z)gi,k(Z)] and compute whether its smallest eigenvalue is
nonzero.

S1.2 Existence of Riesz Representors

In this section, we prove Proposition 4.2, which establishes existence of the Riesz estimators
for the effect functionals, under the positivity condition (Assumption 2). This argument
works for both finite and infinite dimensional model spaces, although it is non-constructive.
In later sections, we will provide methods for explicitly constructing a Riesz representor
when the model space is finite dimensional. At the end of this section, we will discuss how
a similar technique may be used to prove Proposition 6.2, which establishes existence of
second order Riesz representors under the assumption of second-order positivity, which is
required for the variance estimator.

Fix a unit i ∈ [n] with model space Mi ⊆ Y . We begin by proving Proposition 4.1,
which states that L(Mi) is a Hilbert space.

Proposition 4.1. Together with the inner product 〈[u], [v]〉 = E[u(Z)v(Z)], each model
outcome space L(Mi) is a Hilbert space.

Proof. Recall that L(Y) is a Hilbert space. By construction, L(Mi) is a closed subspace
of the Hilbert space L(Y). Thus, it contains all its limit points and is itself a Hilbert
space.

Our next goal is to extend the linear effect functional θi defined on the model spaceMi

to a linear function θ†i defined on the outcome model space L(Mi). The first step towards
this goal is to first show that the effect functional is identical for two observationally
equivalent functions.
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Lemma S1.2. Suppose that u, v ∈ Mi are observationally equivalent. Under Assump-
tion 2, we have that θi(u) = θi(v).

Proof. Suppose that u, v ∈Mi are observationally equivalent. This means that E[(u(Z)−
v(Z))2] = 0. The linearity of the effect functional together with the positivity condition
and observational equivalence imply that

|θi(u)− θi(v)| = |θi(u− v)| ≤ C · E[(u(Z)− v(Z))2] = 0 .

Now, we can use the fact that the effect functional is constant on equivalence classes to
extend it to a bounded linear functional on the entire model outcome space L(Mi).

Lemma S1.3. Under Assumption 2, there exists a bounded linear functional θ†i : L(Mi)→
R such that θ†i ([u]) = θi(u) for all u ∈Mi.

Proof. Recall that L(Mi) = cl(Xi), where Xi = {[u] : u ∈ Mi}. Observe that Xi is a
subspace of L(Y).

We begin by constructing a functional θ†i : Xi → R. For each equivalence class E ∈ Xi,
there exists at least one function uE ∈ E ∩Mi. Invoking the axiom of choice, let uE be an
arbitrary representative function from E ∩Mi and define θ†i (E) = θi(uE). It follows from
Lemma S1.2 that θ†i ([u]) = θi(u) for all u ∈Mi.

We now seek to show that θ†i is a bounded linear functional on Xi. Let E1 and E1

be equivalence classes in L(Mi), and consider their sum E1 + E2. Let the representative
elements be denoted uE1 , uE2 , and uE1+E2 , respectively. By definition of the quotient space,
uE1 +uE2 ∈ E1+E2 so that uE1 +uE2 and uE1+E2 are two equivalent functions in the model
spaceMi. Thus, Lemma S1.2 together with linearity of the effect functional θi implies that

θ†i (E1 + E2) = θi(uE1+E2) = θi(uE1 + uE2) = θi(uE1) + θi(uE2) = θ†i (E1) + θ†i (E2) .

A similar argument shows that for θ†i (α ·E) = α · θ†i (E). This establishes that θ†i is a linear
functional on Xi. Now, to show that θ†i is bounded, we may apply the positivity condition
again to obtain

|θ†i (E)| = |θi(uE)| ≤ C
√

E[uE(Z)2] = C‖E‖ .

Finally, we seek to extend θ†i from a bounded linear functional on the subspace Xi to
a bounded linear functional on L(Mi). The Hahn-Banach theorem guarantees that there
exists such an bounded extension of θ†i to the entirety ofMi.

Finally, we are ready to prove Proposition 4.2, which establishes the existence of a
Riesz representor ψi ∈ Mi for a linear functional θi : Mi → R satisfying positivity. For
completeness, we re-state the proposition below.
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Proposition 4.2. Given positivity (Assumption 2), there exists an equivalence class ψ†i ∈
L(Mi) such that every function ψi ∈ ψ†i satisfies

θi(u) = E[ψi(Z)u(Z)] for all u ∈Mi.

We say that any function ψi ∈ ψ†i is a Riesz representor for the effect functional θi on the
model spaceMi.

Proof. Let θi be the effect functional on Mi. By Lemma S1.3, there exists a bounded
linear functional θ†i : L(Mi) → R such that θ†i ([u]) = θi(u) for all u ∈ Mi. By the
Riesz representation theorem, there exists an equivalence class ψ†i ∈ L(Mi) such that
θ†i (E) = 〈E,ψ†i 〉 for all equivalence classes E ∈ L(Mi). We attain the desired result by
combining these facts as

θi(u) = θ†i ([u]) = 〈[u], ψ†i 〉 = E[u(Z)ψi(Z)] .

A nearly identical argument may be used to prove Proposition 6.2. To avoid repeating
the argument again, we sketch the high level ideas here. First, one may establish that
L(Mi⊗Mj) is a Hilbert space, which is listed in the main body as Proposition 6.1. When
a linear functional Ai,j : Mi ⊗Mj → R satisfies second order positvity (Definition 4),
then it is possible to extend this to a bounded linear functional defined on the Hilbert
space L(Mi ⊗Mj). Finally, the Riesz representation theorem is applied, which proves
Proposition 6.2.

S1.3 Constructing Riesz Representors and Verifying Positivity

In the previous section, we demonstrated that for an arbitrary model space Mi which is
subspace of measurable functions with bounded second moment Y , there always exists a
Riesz representor for a linear functional provided that a positivity condition is satisfied.
However, the proof was non-constructive, which means that although the Riesz representor
exists, it is not obvious how to evaluate it. Moreover, it is not clear how to computationally
or analytically verify that the positivity condition holds in this general setting. Similar
concerns arise for the second-order Riesz representors as well.

In this section, we present algorithms for explicitly constructing the Riesz representors
and computationally verifying whether the positivity condition holds in the more restricted
setting when the model space is finite dimensional. Although this setting is more restricted,
we believe that it will be most relevant for the majority of practitioners. To this end, we
study finite dimensional vector quotient spaces and demonstrate how to explicitly and
concretely verify positivity and construct Riesz representors in an algorithmically efficient
manner. At the end of the section, we sketch how these computational methods may

58



be extended to dealing with the second-order Riesz representors used in the the variance
estimator.

We assume that each model spaceMi is represented as a collection of d basis functions,
gi,1, . . . gi,d. That is, each function u ∈Mi admits a unique decomposition u =

∑d
`=1 α`gi,`.

We assume that the experimenter can perform the following three computational primitives:

1. Evaluate the basis function gi,`(z) for all z ∈ Z.

2. Compute cross moments E[gi,`(Z)gi,k(Z)].

3. Evaluate effect functionals θi(gi,`).

We will measure the computational efficiency of our algorithms by the number of calls to
these computational primitives. Using these primitives, we show that the Riesz representor
may be explicitly represented as ψi =

∑d
`=1 βi,`gi,` and thus evaluated. Additionally, we

will show that verifying positivity may be done by checking whether a few carefully chosen
linear combinations ck =

∑d
`=1 α`,kθi(gi,`) are equal to zero.

S1.3.1 An Equivalent Definition of Positivity

In order to better test positivity, we derive a condition which is equivalent, provided that
the model spaces are finite dimensional. For a fixed unit i ∈ [n] with modelspace Mi,
we define the design-null subspace Si as those functions in Mi that are observationally
equivalent to the zero function:

Si = {u ∈Mi : E[u(Z)2] = 0} .

The following proposition demonstrates that when the model space is finite dimensional,
positivity of a linear effect functional θi is equivalent to requiring that Si is in the null space
(i.e., kernel) of θi.

Proposition S1.4. Suppose that the model space Mi is finite dimensional. An effect
functional θi :Mi → R satisfies positivity if and only if θi(u) = 0 for all u ∈ Si.

The usefulness of Proposition S1.4 is that it will admit simpler computational tests than
the original definition of positivity. Indeed, the original definition of positivity would seem
to require that we iterate over all pairs of observationally equivalent functions inMi, which
seems like a daunting computational task. Instead, Proposition S1.4 states that it is enough
to check that all vectors in the subspace Si evaluate to zero under the linear functional.
In particular, if we can find a finite set of vectors which span Si, then by linearity of θi, it
suffices to check only their values under the linear functional. A more complete description
of this test is given in the following sections.

59



S1.3.2 Constructing an Orthonormal Basis

We saw in Section 4.3 that constructing an orthonormal basis for the outcome model space
L(Mi) was the main computational challenge behind constructing a Riesz representor.
Likewise, we saw in Section S1.3.1 that verifying positivity may be reduced to finding a
set of vectors which span Si. In this Section, we show that a modified Gram–Schmidt
Orthogonalization procedure may be used to accomplish both tasks at the same time.

The modified Gram–Schmidt Orthogonalization procedure is similar to the typical
Gram–Schmidt Orthogonalization procedure, except that it creates two sets of vectors:
one will form an orthonormal basis for L(Mi) and the other will form a spanning set of
Si. Like the typical Gram–Schmidt procedure, a sequence of functions φi,1, . . . φi,d is con-
structed in an iterative fashion from the basis by projecting out previously seen iterates.
The main difference in the procedure is that if a function φi,` has zero “norm”, as measured
by
√

E[u(Z)2], then it is placed into the spanning set of Si. The procedure is given formally
below as Algorithm S1.

Algorithm S1: Modified Gram–Schmidt Orthogonalization
Input : Basis vectors gi,1, . . . , gi,d forMi

Output: Functions {φi,`}`∈B(o) and {φi,`}`∈B(z) for disjoint index sets B(o) and B(z).
1 for t = 1, . . . d do
2 ui,t ← gi,t −

∑
s<t E[gi,t(Z)φi,s(Z)]φi,s

3 if E[ui,t(Z)2] > 0 then
4 φi,t ← ui,t/

√
E[ui,t(Z)2]

5 B(o) ← B(o) ∪ {t}
6 else
7 φi,t ← ui,t
8 B(z) ← B(z) ∪ {t}
9 end

10 return Functions {φi,`}`∈B(o) and {φi,`}`∈B(z) for disjoint index sets B(o) and B(z).

The following proposition guarantees that the output of the modified Gram–Schmidt
procedure produces the desired results.

Proposition S1.5. The modified Gram–Schmidt Orthogonalization procedure, as described
by Algorithm S1, returns two sets of functions the following properties:

1. The functions {φi,`}`∈B(o) form an orthonormal basis for L(Mi).

2. The functions {φi,`}`∈B(z) span the design-null subspace Si.
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In the Gram–Schmidt procedure, each of the functions φi,1, . . . φi,d is expressed as a
linear combination of the basis functions:

φi,k =
∑
s≤k

αs,kgi,s ,

where the coefficients αs,k are computed in an iterative way. Using this decomposition,
expectations can be re-expressed as

E[gi,t(Z)φi,s(Z)] =
∑
r≤s

αr,k E[gi,t(Z)gi,r(Z)] ,

so that only the computation of the cross moments E[gi,t(Z)gi,s(Z)] on the basis functions
are required. Running the Gram–Schmidt orthogonalization in this way for a single unit
requires pre-computing all O(d2) cross moments E[gi,`(Z)gi,k(Z)] as well as O(d3) arith-
metic operations. Running Gram–Schmidt orthogonalization on the model spaces for all
n units requires O(nd3) arithmetic operations and computing all O(nd2) within-unit cross
moments. This will be the dominating cost of the tests for positivity and construction of
the individual Riesz representors.

S1.3.3 Test for Positivity and Construction of Riesz Representors

Once the Gram–Schmidt procedure has been run, the test for positivity is relatively easy.
It simply requires us to check that the effect functional is zero on the spanning set of Si.
This test is presented formally below as Algorithm S2.

Algorithm S2: Positivity Test
Input : Spanning set {φi,`}`∈B(z) of Si.
Output: Boolean, which tests whether positivity holds

1 for k ∈ B(z) do
2 if θi(φi,k) 6= 0 then
3 return False
4 end
5 return True

Recall that each function φi,k is represented as the linear combination of the basis func-
tions, i.e. φi,k =

∑
s≤k αs,kgi,s. By linearity, an evaluation θi(φi,k) =

∑
s≤k αs,kθi(gi,s) is pos-

sible using the evaluation of the effect functional on the basis functions and O(d) arithmetic
operations. Thus, in addition to the computational requirements of the Gram–Schmidt pro-
cedure, the test for positivity requires O(d2) arithmetic operations and evaluating the effect
functional at all O(d) basis functions. Testing positivity for all n effect functionals requires
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O(nd2) arithmetic operations and O(nd) evaluations of all effect functionals on the their
basis functions.

Once the Gram–Schmidt procedure has been run, the construction of the Riesz repre-
sentors is similarly straightforward. It simply requires us to take the weighted sum of the
orthogonal basis functions, weighted by their evaluation under the effect functional. This
test is presented formally below as Algorithm S2.

Algorithm S3: Construction of Riesz Representors
Input : Orthonormal basis {φi,`}`∈B(o) of L(Mi).
Output: Riesz representor ψi

1 Set ψi ←
∑

`∈B(o) θi(φi,`)φi,`
2 return ψi

Recall that each function φi,k is represented as the linear combination of the basis
functions, i.e. φi,k =

∑
s≤k αs,kgi,s. By linearity, an evaluation θi(φi,k) =

∑
s≤k αs,kθi(gi,s)

is possible using the evaluation of the effect functional on the basis functions and O(d)

arithmetic operations. In this way, the result of Algorithm S3 are coefficients βi,` such that
the Riesz representor may be expressed as ψi =

∑d
`=1 βi,`gi,`.

In addition to the computational requirements of the Gram–Schmidt procedure, the
construction of an individual Riesz representor requires O(d2) arithmetic operations and
evaluating the effect functional at allO(d) basis functions. Constructing all of the individual
Riesz representors requires O(nd2) arithmetic operations and O(nd) evaluations of all effect
functionals on the their basis functions. Evaluating all n individual Riesz representors
requires O(nd) evaluations of all basis functions and O(nd) arithmetic operations.

S1.3.4 Second Order Positivity and Riesz Representors

So far, this section has been concerned with testing positivity and computing individual
Riesz representors, which relates primarily to the point estimation. We now discuss how
these same computational techniques can be used for testing second-order positivity of
linear functionals on the tensor space and constructing second-order Riesz representors.
The overall techniques are more or less the same, so we go through the material more
quickly.

The key difference here is that instead of working with the model space Mi, we are
working with the moment restricted tensor spaceM∗

i ⊗M∗
j . The basis for the tensor space

will be the simple tensors formed from the bases of the restricted model spaces M∗
i and

M∗
j respectively, i.e. gi,` ⊗ gj,k for `, k ∈ [d]. In this way, each tensor ρ ∈ M∗

i ⊗M∗
j may

be represented uniquely as a linear combination of gi,` ⊗ gj,k for `, k ∈ [d].
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We can define the second-order design null-space Si,j ⊆M∗
i ⊗M∗

j as

Si,j = {ρ ∈M∗
i ⊗M∗

j : E[ρ(Z)2] = 0} .

The benefit of this definition is that it allows for an alternative characterization of second-
order positivity, which admits for efficient tests.

Proposition S1.6. Suppose that the model spaces Mi and Mj are finite dimensional.
A linear functional Ai,j : M∗

i ⊗M∗
j → R satisfies second order positivity if and only if

Ai,j(ρ) = 0 for all ρ ∈ Si,j.

Next, we present a modified Gram–Schmidt Orthogonalization procedure applied to the
moment restricted tensor spaceM∗

i⊗M∗
j . To distinguish this procedure from the previously

introduced Gram–Schmidt orthogonalization procedure (Algorithm S1), we refer to this one
as being “second order”, to reflect the fact that it involves pairs of units. Like its first-order
counterpart, the second-order orthogonalization procedure will iteratively construct two
sets a functions: functions that form an orthonormal basis for L(M∗

i ⊗M∗
j) and a set of

functions that will form a spanning set for Si,j. There are two main differences between
the first and second order orthogonalization procedures: first, the second order procedure
operates on the tensor space, which has d2 basis vectors. This increases the computational
resources required by the algorithm. Second, the functions are expressed as products of
basis functions, and so the inner product now requires 4-way expectations to be computed.
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The algorithm is given formally below as Algorithm S4.
Algorithm S4: Modified Second Order Gram–Schmidt Orthogonalization
Input : Basis vectors {gi,`}`∈[d] forM∗

i and {gj,k}k∈[d] forM∗
j

Output: Functions {Γi,j,r}r∈B(o) and {Γi,j,r}r∈B(z) for disjoint index sets B(o) and
B(z).

1 Set r ← 1

2 for ` = 1, . . . , d do
3 for k = 1, . . . , d do
4 ui,j,r ← gi,`gj,k −

∑
s<r E[gi,`(Z)gi,k(Z)Γi,j,s(Z)]Γi,j,s

5 if E[ui,j,r(Z)2] > 0 then
6 Γi,j,r ← ui,j,r/

√
E[ui,j,r(Z)2]

7 B(o) ← B(o) ∪ {r}
8 else
9 Γi,j,r ← ui,j,r

10 B(z) ← B(z) ∪ {r}
11 r ← r + 1

12 end
13 end
14 return Functions {Γi,j,r}r∈B(o) and {Γi,j,r}r∈B(z) for disjoint index sets B(o) and

B(z).

Proposition S1.7. The modified Second-Order Gram–Schmidt Orthogonalization proce-
dure (Algorithm S4) returns two sets of functions the following properties:

1. The functions {Γi,j,r}r∈B(o) form an orthonormal basis for L(M∗
i ⊗M∗

j).

2. The functions {Γi,j,r}r∈B(z) span the design-null subspace Si,j.

In the second order Gram–Schmidt procedure, each of the functions Γi,j,r is expressed
as a linear combination of the product of basis functions:

Γi,j,r =
d∑
`=1

d∑
k=1

αr,`,kgi,`gj,k ,

where the coefficients αr,`,k are computed in an iterative way. Using this decomposition,
the expectations can be re-expressed as

E[gi,`(Z)gi,k(Z)Γi,j,s(Z)] =
d∑
p=1

d∑
q=1

αs,p,q E[gi,`(Z)gi,k(Z)gi,p(Z)gj,q(Z)] ,

so that only the computation of the 4-way expectations of the basis functions is required.
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For a single pair of units i, j ∈ [n], there are O(d4) such expectations and they may be pre-
computed at the beginning of the second order Gram–Schmidt procedure. The procedure
itself requires O(d6) arithmetic operations. Thus, running the procedure for all pairs of
units incurs a computational requirement of O(n2d4) 4-way expectation computations and
O(n2d6) arithmetic operations.

We now briefly discuss how to use the output of the second order Gram–Schmidt or-
thogonalization procedure to test for second-order positivity and construct second-order
Riesz representors. By Propositions S1.6 and S1.7, a linear functional Ai,j on the moment
restricted tensor spaceM∗

i ⊗M∗
j satisfies second order positivity if and only if

Ai,j(Γi,j,r) = 0 for all r ∈ B(z) ,

which admits a computationally efficient test, the details of which are nearly identical to
Algorithm S2. The linear functional may be evaluated using linearity by decomposing each
tensor into its basis decomposition and writing it as

Ai,j(Γi,j,r) = Ai,j
( d∑
`=1

d∑
k=1

αr,`,kgi,` ⊗ gj,k
)

=
d∑
`=1

d∑
k=1

αr,`,kAi,j(gi,` ⊗ gj,k) .

In order to construct the Riesz representor, we can use the explicit construction:

Ψi,j(Z) =
∑
r∈B(o)

Ai,j(Γi,j,r)Γi,j,r(Z) ,

which can be further broken down into the basis functions for the tensor space. The details
are nearly identical to the Riesz representor construction of Algorithm S3, so we omit them
here.

Finally, we demonstrate that the following linear functional on the outcome tensor space
always satisfies second order positivity, provided that a moment condition holds.

Lemma S1.8. Let φi,k be a basis function for the moment restricted tensor spaceM∗
i . The

corresponding linear functional Di,k :M∗
i ⊗M∗

i → R defined as

Di,k(ρ) = E[φi,k(Z)2ρ(Z)]

satisfies second order positivity with respect to the experimental design.

Proof. By Hölder’s inequality, we have that

E[φi,k(Z)2ρ(Z)] ≤ E[φi,k(Z)4]1/2 · E[ρ(Z)2]1/2 .

Observe that φi,k ∈M∗
i so that E[φi,k(Z)4] is finite.
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S2 Analysis of the Riesz Estimator

S2.1 Necessary and Sufficient Conditions for Consistency

S2.1.1 A Characterizing Linear Operator

In this section, we show that the variance can be characterized by a linear operator V :

L(M(n))→ L(M(n)) on the product outcome space. We first show a general representation
theorem for bilinear forms on a Hilbert space. Next, we show that the variance of the Riesz
estimator is a bilinear form on the product outcome space and thus the representation
theorem can be applied.

The proposition below gives the representation theorem for symmetric and positive
semidefinite bilinear forms on a general Hilbert space.

Proposition S2.1. Let (H, 〈·, ·〉) be a Hilbert space and let V : H ×H → R be a bilinear
form satisfying the following properties:

• Symmetric: V (x, y) = V (y, x) for all x, y ∈ H.

• Positive Semi-definite: V (x, x) ≥ 0 for all x ∈ H.

• Bounded: There exists C <∞ such that |V (x, y)| ≤ C‖x‖‖y‖ for all x, y ∈ H

Then, there exists a bounded linear operator L : H → H such that

V (x, x) = ‖Lx‖2 for all x ∈ H .

Proof. Observe that for a fixed x ∈ H, we have that y 7→ V (x, y) is a linear functional.
Moreover, this linear functional is bounded in the sense that

|V (x, y)| ≤ C‖x‖‖y‖ = Cx‖y‖ ,

where we have used the boundedness of the bilinear form V . Thus, by the Riesz represen-
tation theorem, there exists a unique vector fx ∈ H such that V (x, y) = 〈fx, y〉. Define the
operator A : H → H to be the mapping x 7→ fx, which is easily verified to be linear due to
bilinearity of V . Thus, we have the representation

V (x, y) = 〈Ax, y〉 .

We will now show that A is positive semi-definite, symmetric, and bounded. The fact
that A is positive semidefinite follows directly from the fact that V is a positive semidefinite
form, as 〈Ax, x〉 = V (x, x) ≥ 0. The fact that A is symmetric follows from the symmetry
of V as

〈Ax, y〉 = V (x, y) = V (y, x) = 〈Ay, x〉 .
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Finally, the boundedness of A follows from boundedness of V as

‖Ax‖ = max
‖y‖=1
〈Ax, y〉 = max

‖y‖=1
V (x, y) ≤ C‖x‖ .

Because A is a positive semi-definite, self-adjoint, and bounded operator, there exists a
bounded linear operator L : H → H such that A = LᵀL. Now, the claim follows as

V (x, x) = 〈Ax, x〉 = 〈Lᵀ
Lx, x〉 = 〈Lx, Lx〉 = ‖Lx‖2 .

In order to apply Proposition S2.1, we need to show that the variance of the Riesz
representor may be identified with a positive semi-definite and symmetric bilinear form
on the product outcome space satisfying the appropriate conditions. The next lemma
demonstrates that a certain bilinear form satisfies these properties.

Lemma S2.2. Let ψ ∈ L(M(n)) be a fixed element of the product outcome space. and
define the function V : L(M(n))× L(M(n))→ R by

V (u,v) =
1

n

n∑
i=1

n∑
j=1

Cov
(
ui(Z)ψi(Z), vj(Z)ψj(Z)

)
.

Then, V is a bilinear form which is symmetric and positive semi-definite. Moreover, if the
supremum of the variance over the ‖·‖ms unit ball is finite

sup
‖u‖ms≤1

Var(τ̂ ;u) = C ,

then the bilinear form V is bounded in the sense that there exists a value C ′ <∞ such that

V (u,v) ≤ C ′‖u‖ms‖v‖ms for all u,v ∈ L(M(n)) .

Proof. Both the bilinearity and the symmetry of V follow from symmetry and bilinearity
of the covariance. The positive semi-definiteness of V follows from the non-negativity of
variance as

V (u,u) =
1

n

n∑
i=1

n∑
j=1

Cov
(
ui(Z)ψi(Z), uj(Z)ψj(Z)

)
=

1

n
Var
( n∑
i=1

ui(Z)ψi(Z)
)
≥ 0 .

Now, we show the boundedness condition. By bilinearity, the boundedness condition
is immediate if either ‖u‖ = 0 or ‖u‖ = 0, as both sides of the inequality would be
zero. Suppose then that u and v are functions in L(M(n)) with positive norm. Define
ũ = u/‖u‖ms and ṽ = v/‖v‖ms, so that ‖ũ‖ms = ‖ṽ‖ms = 1. Using bilinearity and the
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Cauchy-Schwarz inequality, we have that

V (u,v) =
1

n

n∑
i=1

n∑
j=1

Cov
(
ui(Z)ψi(Z), uj(Z)ψj(Z)

)
=

1

n
Cov

( n∑
i=1

ui(Z)ψi(Z),
n∑
j=1

vj(Z)ψj(Z)
)

=
1

n
‖u‖ms‖v‖ms Cov

( n∑
i=1

ũi(Z)ψi(Z),
n∑
j=1

ṽj(Z)ψj(Z)
)

≤ 1

n
‖u‖ms‖v‖ms

√√√√Var
( n∑
i=1

ũi(Z)ψi(Z)
)
,Var

( n∑
j=1

ṽj(Z)ψj(Z)
)

≤ 1

n
‖u‖ms‖v‖ms max

[
Var
( n∑
i=1

ũi(Z)ψi(Z)
)
,Var

( n∑
j=1

ṽj(Z)ψj(Z)
)]

≤ C

n
· ‖u‖ms‖v‖ms

= C ′ · ‖u‖ms‖v‖ms ,

where the final inequality follows from the assumption that the supremum of the variance
over the ‖·‖ms unit ball is C.

We are now ready to prove the existence of the variance characterizing linear operator.

Proposition 5.1. Given correctly specified model spaces and positivity (Assumptions 1 and
2), either:

(i) There exists a bounded linear operator V : L(M(n)) → L(M(n)) that exactly charac-
terizes the variance of the Riesz estimator in finite samples:

Var
(
τ̂ ;u

)
=

1

n
‖V(u)‖2ms for all u ∈M(n),

(ii) Or the variance of the Riesz estimator cannot be characterized with respect to the
mean-square norm:

sup
‖u‖ms≤C

Var(τ̂ ;u) =∞ for all C > 0.

Proof. Without loss of generality, set C = 1. Suppose that the supremum of the variance
over the ‖·‖ms unit ball is finite.
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Under the correctly specified assumption y ∈ L(M(n)), so that

n · Var(τ̂) = n · Var
( 1

n

n∑
i=1

yi(Z)ψi(Z)
)

=
1

n

n∑
i=1

n∑
j=1

Cov(yi(Z)ψi(Z), yj(Z)ψj(Z))

= V (y,y) .

Lemma S2.2 demonstrates that V : L(M(n)) × L(M(n)) is a bilinear form which is sym-
metric, positive semidefinite, and bounded in terms of the ‖·‖ms norm in the sense that

|V (y,y)| ≤ C‖u‖ms‖v‖ms .

Thus, we may apply Proposition S2.1, which guarantees the existence of a bounded linear
operator V : L(M(n))× L(M(n))→ R for which

n · Var(τ̂) = V (y,y) = ‖V(y)‖2ms .

We now describe how to numerically compute a matrix representation of this operator
when the model spaces are finite dimensional. For each outcome model space L(Mi), let
{φi,`}d`=1 be an orthonormal basis with respect to the inner product 〈u, v〉 = E[u(Z)v(Z)].
We can write each of the potential outcome functions in this basis as yi =

∑d
`=1 αi,`φi,`.

The following lemma shows how to explicitly construct a matrix whose quadratic form
represents the variance.

Proposition S2.3. Let H be the (d · n) × (d · n) dimensional symmetric matrix whose
entries are given as

H(i,`),(j,k) = Cov(φi,`(Z)ψi(Z), φj,k(Z)ψj(Z)) .

Then, the matrix H represents the variance of the Riesz representor in the following sense:

nVar(τ̂) = α
ᵀ
Hα .

where α = (α1,1/
√
n, . . . , α1,d/

√
n, . . . , αn,1/

√
n, . . . , αn,n/

√
n) is the n · d-dimensional vec-

tor whose entries are scaled coefficients of the orthogonal basis functions. Furthermore, the
following two conditions are satisfied:

1. The matrix H is positive semidefinite and so admits the decomposition H = V
ᵀ
V .

Any such matrix V is a representation of the the operator V in the orthonormal basis.
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2. The largest eigenvalue of the matrix H is equal to ‖V‖2op.

Proof. By decomposing the variance into individual covariance terms and writing the po-
tential outcome functions in their basis, we have that

n · Var(τ̂) =
1

n

n∑
i=1

n∑
j=1

Cov(yi(Z)ψi(Z), yj(Z)ψj(Z))

=
1

n

n∑
i=1

n∑
j=1

Cov
(( d∑

`=1

αi,`φi,`(Z)
)
ψi(Z),

( d∑
k=1

αj,kφi,k(Z)
)
ψj(Z)

)
=

n∑
i=1

n∑
j=1

d∑
`=1

d∑
k=1

αi,`√
n

αj,k√
n

Cov(φi,`(Z)ψi(Z), φi,k(Z)ψj(Z))

= α
ᵀ
Hα ,

which establishes the first part of the proposition.
Next, observe that the mean squared norm ‖y‖ms is equal to the `2 norm of the vector

‖α‖2.

‖y‖2ms =
1

n

n∑
i=1

E[yi(Z)2]

=
1

n

n∑
i=1

E
[( d∑

`=1

αi,`φi,`(Z)
)2]

=
1

n

n∑
i=1

d∑
`=1

d∑
k=1

αi,`αi,k E[φi,`(Z)φi,k(Z)]

=
n∑
i=1

d∑
`=1

(αi,`√
n

)2
= ‖α‖2 .

Let’s show the first bulleted point of the proposition. For any Cholesky factorization
H = V

ᵀ
V , we have that αᵀHα = ‖V α‖22. Because the `2 norm of the coefficients can

be identified with the mean squared norm of the vector-valued potential outcome function,
we have that ‖V α‖22 = ‖V(y)‖ms, so that V is a matrix representation of the operator V .

Next, we show the second bulleted point of the proposition. Recall that the largest
eigenvalue is λmax(H) = λmax(L

ᵀ
L) = ‖L‖22, where ‖·‖2 is the matrix norm induced by the

`2 norm. Because the `2 norm on the coefficients α can be identified with the mean squared
norm of the vector-valued potential outcome function,‖L‖2 = ‖V‖op. This establishes that
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λmax(H) = ‖V‖op.

S2.1.2 Mean Squared Error Rates thru the Operator Norm

Corollary 5.2. Given correctly specified model spaces and positivity (Assumptions 1 and 2),
the worst-case root mean square error of the Riesz estimator in any mean-square norm ball
is the scaled product of the radius of the ball and the operator norm of V:

sup
‖u‖ms≤C

√
E
[
(τ̂ − τ)2;u

]
= n−1/2C‖V‖op for all C > 0.

If the variance characterizing operator does not exists, set ‖V‖op =∞.

Proof. The proof follows from direct applications of Theorem 4.3 which guarantees unbi-
asedness of the Riesz representor, Proposition 5.1 which proves existence of the variance
characterizing operator, and the definition of the operator norm:

sup
‖u‖ms≤C

√
n · E[(τ̂ − τ)2;u] = sup

‖u‖ms≤C

√
n · Var(τ̂ ;u) = sup

‖u‖ms≤C
‖V(u)‖ms = C · ‖V‖op .

Corollary 5.3. If Assumptions 1 and 2 hold and the mean-square norm of the potential
outcomes is asymptotically bounded, ‖y‖ms = O(1), then a necessary and sufficient condi-
tion for consistency in mean square of the Riesz estimator is ‖V‖op = o(n1/2). Furthermore,
the rate of convergence of the Riesz estimator is exactly the rate at which n−1/2‖V‖op ap-
proaches zero. A necessary and sufficient condition for root-n consistency of the Riesz
estimator is ‖V‖op = O(1).

Proof. Corollary 5.2 demonstrates that the root mean squared error of the Riesz estimator
may be bounded as √

E[(τ̂ − τ)2] ≤ 1√
n
‖V‖op · ‖y‖ms .

Because the sequence of potential outcome functions is asymptotically bounded in the ‖·‖ms,
we have that ‖y‖ms = O(1) so that the standardized mean squared error is on the order of√

E[(τ̂ − τ)2] = O(n−1/2‖V‖op) .

Thus, ‖V‖op = o(n1/2) is sufficient for convergence in mean squared error for all sequences
which are asymptotically bounded with respect to the ‖·‖ms norm. Moreover, for some such
sequences, the inequalities above hold with equality, and so the condition ‖V‖op = o(n1/2)

is also necessary for consistency of sequences in this class.
A similar calculation shows that ‖V‖op = O(1) is both necessary and sufficient for√
n-convergence in mean squared error.
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S2.2 Sufficient Conditions for Consistency

In this section, we prove the sufficient conditions for consistency of the Riesz estimator,
which appear in Section 5.3. We begin by deriving an upper bound on the variance of an
individual Riesz estimator in terms of the moments of the potential outcome function and
the individual Riesz representor.

Lemma S2.4. Let p and q be values satisfying 1/p + 1/q = 1/2. The variance of an
individual treatment estimator is bounded as

Var(τ̂i) ≤
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

.

Proof. We can upper bound the variance by the raw second moment:

Var(τ̂i) = E[τ̂ 2i ]− E[τ̂i]
2 ≤ E[τ̂ 2i ] = E[|yi(Z)ψi(Z)|2] .

Define p′ = p/2 and q′ = q/2 and observe that p′ and q′ are conjugate pairs as

1

p′
+

1

q′
=

2

p
+

2

q
= 2 ·

(1

p
+

1

q

)
= 2 · 1

2
= 1 .

Thus, we may use Hölder’s inequality to obtain that

Var(τ̂i) ≤ E[|yi(Z)ψi(Z)|2]
≤ E[|yi(Z)|2p′ ]1/p′ · E[|ψi(Z)|2q′ ]1/q′

=
(

E[|yi(Z)|2p′ ]1/2p′ · E[|ψi(Z)|2q′ ]1/2q′
)2

=
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

.

Next, we use the bounds on the variance of the individual Riesz estimator together with
the dependency neighborhood conditions to obtain a bound on the variance of the Riesz
estimator.

Lemma S2.5. Let p and q be values satisfying 1/p+ 1/q = 1/2. The variance of the Riesz
estimator is bounded above by

Var(τ̂) ≤ 1

n2

n∑
i=1

|Di|
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

.
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Proof. We begin by decomposing the variance as

Var(τ̂) = Var
( 1

n

n∑
i=1

τ̂i

)
=

1

n2

n∑
i=1

n∑
j=1

Cov(τ̂i, τ̂j) ,

By definition of the dependency neighborhoods, if i /∈ Dj or j /∈ Di, then τi and τj are
independent, so that Cov(τ̂i, τ̂j) = 0. Thus, we have the identity Cov(τ̂i, τ̂j) = 1[i ∈
Dj]1[j ∈ Di] Cov(τ̂i, τ̂j). Substituting this identity into the variance calculation and using
Cauchy-Schwarz inequality together with Lemma S2.4, we obtain that

Var(τ̂) =
1

n2

n∑
i=1

n∑
j=1

1[i ∈ Dj]1[j ∈ Di] Cov(τ̂i, τ̂j) (indicator identity)

≤ 1

n2

n∑
i=1

n∑
j=1

1[i ∈ Dj]1[j ∈ Di]
√

Var(τ̂i) Var(τ̂j) (Cauchy-Schwarz)

=
1

n2

n∑
i=1

n∑
j=1

√
1[j ∈ Di] Var(τ̂i) · 1[i ∈ Dj] Var(τ̂j)

≤ 1

n2

n∑
i=1

n∑
j=1

1

2

(
1[j ∈ Di] Var(τ̂i) + 1[i ∈ Dj] Var(τ̂j)

)
(AM-GM inequality)

=
1

n2

n∑
i=1

|Di|Var(τ̂i) (collecting terms)

≤ 1

n2

n∑
i=1

|Di|
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

(Lemma S2.4) .

Finally, we are ready to use the previous lemma to derive a finite sample bound on the
variance of the Riesz estimator.

Proposition 5.4. Let p and q be values satisfying 1/p+ 1/q = 1/2. The root mean square
error of the Riesz estimator is upper bounded by√

E
[
(τ̂ − τ)2

]
≤ n−1/2d1/2avg‖y‖max,p‖ψ‖max,q,

where ψ = (ψ1, . . . , ψn) is the vector of all Riesz representors and ‖·‖max,p is the max-p
norm discussed in Section 5.1.

Proof. Using Lemma S2.5 and the definition of the max-p norms, we have that the variance
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of the Riesz estimator may be bounded as

Var(τ̂) ≤ 1

n2

n∑
i=1

|Di|
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

≤ 1

n2

n∑
i=1

|Di|
(
‖y‖max,p‖ψ‖max,q

)2
=

1

n

( 1

n

n∑
i=1

|Di|
)(
‖y‖max,p‖ψ‖max,q

)2
=
davg
n

(
‖y‖max,p‖ψ‖max,q

)2
.

The proof follows by rearranging terms.

Finally, the following corollary re-interprets the finite sample bound above in an asymp-
totic setting.

Corollary 5.5. Given correctly specified model spaces and positivity (Assumptions 1 and 2),
limited average model dependence, davg = o(n), and ‖y‖max,p = O(1) and ‖ψ‖max,q = O(1)

for some 1/p+1/q = 1/2, the Riesz estimator is consistent in mean square. If the condition
on the average model dependence is strengthened to davg = O(1), the Riesz estimator is
root-n consistent.

Proof. Observe that under Assumptions 1 and 2, the Riesz estimator is unbiased so that
its mean squared error is equal to its variance. In other words, we have that

√
E[(τ̂ − τ)2] =

√
Var(τ̂) ≤

√
davg
n
· ‖y‖max,p‖ψ‖max,q .

By assumption, ‖y‖max,p and ‖ψ‖max,q are asymptotically bounded as O(1) and so the
normalized mean squared error is on the order of

√
E[(τ̂ − τ)2] = O(

√
davg/n). Thus, the

estimator is consistent in mean square if davg = o(n).
A similar calculation shows that davg = O(1) guarantees

√
n-convergence in mean

squared error, i.e.
√
n · E[(τ̂ − τ)2] = O(1).

S2.3 Asymptotic Normality of the Riesz Estimator

In this section, we prove that the Riesz estimator is asymptotically normal under moment
conditions on the outcomes and Riesz representors and a bound on the dependency between
model spaces. Our technique will be the dependency graph version of Stein’s method.

We begin by re-defining the notion of dependency neighborhoods used in this literature
on Stein’s method (Ross, 2011). Let A1, . . . An be random variables indexed by integers
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[n]. For each index i ∈ [n], we define the dependency neighborhood to be the smallest set
Di ⊂ [n] such that

Ai is jointly independent of the variables {Aj : j ∈ [n] \ Di} .

In the main paper, we introduce the notion of dependency neighborhoods at the level of
the model spaces, but they induce dependency neighborhoods of random variables of the
form ui(Z) for ui ∈Mi

The following lemma is a finite sample bound on the Wassterstein distance between the
normalized sum of random variables A1, . . . An and a normal distribution.

Lemma S2.6 (Lemma 3.6 of Ross (2011)). Let A1, A2, . . . An be random variables such
that E[A4

i ] < ∞, E[Ai] = 0. Define S = 1
n

∑n
i=1Ai and define σ2 = Var(S), and define

X = S/σ. Then for a standard normal B ∼ N (0, 1), we have

dW (X,B) ≤ d2max

σ3n3

n∑
i=1

E[|Ai|3] +

√
28

π
· d

3/2
max

n2σ2

√√√√ n∑
i=1

E[A4
i ] ,

where dmax = maxi∈[n] |Di| is the maximum dependency degree of the random variables and
dW (·, ·) is the Wasserstein distance.

We will be considering the random variables Ai = τ̂i − τi, which are the errors of the
individual treatment effect estimates. To this end, we need to bound the pth moments of
the absolute error of the individual treatment effect estimates. We begin with the following
lemma which holds for general random variables.

Lemma S2.7. For 1 ≤ p ≤ ∞ and a random variable X, we have that

E
[∣∣X − E[X]

∣∣p] ≤ 2p E
[
|X|p

]
.

Proof. We may use Minkowski’s inequality together with Jensen’s inequality applied to
x 7→ |x|p, we have that

E
[∣∣X − E[X]

∣∣p]1/p ≤ E[|X|p]1/p + (|E[X]|p)1/p (Minkowski’s inequality)

≤ E[|X|p]1/p + E[|X|p]1/p (Jensen’s inequality)

= 2 E[|X|p]1/p .

Next, we use this lemma together with Hölder’s inequality to obtain a bound on the
pth moments of absolute error of the individual treatment effect estimates.
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Lemma S2.8. Fix 1 ≤ r ≤ ∞ and let p, q be value satisfying 1/p+ 1/q = 1/r. Under As-
sumption 1, the rth moment of the absolute error of the individual treatment effect estimate
is

E
[
|τ̂i − τi|r

]
≤
(

2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)r
.

Proof. Define p′ = p/r and q′ = q/r and observe that p′ and q′ are conjugate pairs as

1

p′
+

1

q′
=
r

p
+
r

q
= r ·

(1

p
+

1

q

)
= r · 1

r
= 1 .

Under Assumption 1, we have that E[τ̂i] = τi. Thus, we may apply Lemma S2.7 and obtain

E
[
|τ̂i − τi|r

]
≤ 2r E

[
|τ̂i|r

]
(Lemma S2.7)

= 2r E
[
|yi(Z)ψi(Z)|r

]
(definition of τ̂i)

≤ 2r E
[
|yi(Z)|rp′

]1/p′
· E
[
|ψi(Z)|rq′

]1/q′
(Hölder’s Inequality)

=
(

2 E
[
|yi(Z)|rp′

]1/rp′
· E
[
|ψi(Z)|rq′

]1/rq′)r
=
(

2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)r
.

Finally, we are ready to prove Proposition 5.6 asymptotic normality of the Riesz esti-
mator under moment conditions and the assumption of limited dependence. We restate
the proposition below for completeness.

Proposition 5.6. Given correctly specified model spaces, positivity and non-degeneracy
(Assumptions 1, 2 and 4), limited maximum model dependence, dmax = o(n1/4), and
‖y‖max,p = O(1) and ‖ψ‖max,q = O(1) for some 1/p + 1/q = 1/4, the limiting distribution
of the Riesz estimator is normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1).

Proof. We seek to use Lemma S2.6 on the random variables Ai = τ̂i−τi, which are the errors
of the individual treatment effect estimates. Note that in this case, S = (1/n)

∑n
i=1Ai =

τ̂ − τ , σ =
√

Var(τ̂), and X = τ̂−τ√
Var(τ̂)

.

First, let us verify that condition required for Lemma S2.6 hold. By Assumption 1,
the individual treatment effect estimators are unbiased so that E[Ai] = E[τ̂i − τi] = 0. By
Lemma S2.8 together with asymptotic boundedness of ‖y‖max,p and ‖ψ‖max,q yields

E[A4
i ]

1/4 = E[(τ̂i − τi)4]1/4 ≤ 2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q
≤ 2‖y‖max,p‖ψ‖max,q <∞ .
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Using Lemma S2.6, we have that for B ∼ N (0, 1),

dW (X,B) ≤ d2max

σ3n3

n∑
i=1

E[|τ̂i − τi|3] +

√
28

π
· d

3/2
max

n2σ2

√√√√ n∑
i=1

E[|τ̂i − τi|4] .

Using Lemma S2.8 for r = 3, the first sum may be bounded as

n∑
i=1

E[|τ̂i − τi|3] ≤
n∑
i=1

(
2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)3
≤ n(2‖y‖max,p‖ψ‖max,q)

3 .

Similarly, using Lemma S2.8 with r = 4, the second sum may be bounded as

n∑
i=1

E[|τ̂i − τi|4] ≤
n∑
i=1

(
2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)4
≤ n(2‖y‖max,p‖ψ‖max,q)

4 .

By assumption, the moment quantities ‖y‖max,p and ‖ψ‖max,q are asymptotically bounded
so the Wasserstein distance is bounded by

dW (X,B) = O
(d2max

σ3n2
+

d
3/2
max

σ2n3/2

)
.

By Assumption 4, the variance is bounded below as Var(τ̂) = σ2 ≥ Ω(1/n) and so the
Wasserstein distance is bounded by

dW (X,B) = O
(d2max

n1/2
+
d
3/2
max

n1/2

)
= O

(d2max

n1/2

)
.

By assumption, dmax = o(n1/4), so that the Wasserstein distance goes to zero.

S3 Analysis of the Variance Estimation

S3.1 Consistency of the Variance Estimation

In this section, we prove Proposition 6.6, which establishes that the normalized variance
estimator is mean squared consistent for the normalized variance bound.

Proposition 6.6. Let Ψvb = (Ψvb
1,1, . . . ,Ψ

vb
n,n) be a vector collecting all Riesz representors

for the variance bound functionals Bi,j. Given correctly specified model spaces, first-order
positivity, separability and bounded fourth moments (Assumptions 1, 2, 3, and 5), that
‖y‖max,p and ‖Ψvb‖max,q are asymptotically bounded for p ≥ 4 and q ≥ 2 such that 1/p +
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1/2q = 1/4, and that savg = o(1), the normalized variance estimator is consistent of the
normalized variance bound: E[(nV̂B(τ̂)− nVB(τ̂))2] = o(1).

Proof. Write the variance of the n-normalized variance estimator as

Var(nV̂B) =
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

n∑
s=1

Cov
(
YiYjΨ

vb
i,j (Z), YrYsΨ

vb
r,s(Z)

)
.

Note that if (r, s) 6∈ Si,j, then the corresponding covariance term is zero, meaning that

Var(nV̂B) =
1

n2

n∑
i=1

n∑
j=1

∑
(r,s)∈Si,j

Cov
(
YiYjΨ

vb
i,j (Z), YrYsΨ

vb
r,s(Z)

)
.

Using the Cauchy–Schwarz inequality, followed by the AM–GM inequality, and finally the
fact that the second raw moment bounds the variance, we have

Cov
(
YiYjΨ

vb
i,j (Z), YrYsΨ

vb
r,s(Z)

)
≤
√

Var
(
YiYjΨvb

i,j (Z)
)

Var
(
YrYsΨvb

r,s(Z)
)

≤ 1

2
Var
(
YiYjΨ

vb
i,j (Z)

)
+

1

2
Var
(
YrYsΨ

vb
r,s(Z)

)
≤ 1

2
E
[
Y 2
i Y

2
j (Ψvb

i,j (Z))2
]

+
1

2
E
[
Y 2
r Y

2
s (Ψvb

r,s(Z))2
]
.

For some p > 1 and q > 1 such that 2/p+ 1/q = 1, use Hölder’s inequality to write

E
[
Y 2
i Y

2
j (Ψvb

i,j (Z))2
]
≤ E

[
Y 2p
i

]2/2p
E
[
Y 2p
j

]2/2p
E
[
(Ψvb

i,j (Z))2q
]2/2q ≤ ‖y‖4max,2p‖Ψvb‖2max,2q

and similarly for indices r and s. It follows that

Cov
(
YiYjΨ

vb
i,j (Z), YrYsΨ

vb
r,s(Z)

)
≤ ‖y‖4max,2p‖Ψvb‖2max,2q,

and

Var(nV̂B) ≤ 1

n2

n∑
i=1

n∑
j=1

∑
(r,s)∈Si,j

‖y‖4max,2p‖Ψvb‖2max,2q

= ‖y‖4max,2p‖Ψvb‖2max,2q

1

n2

n∑
i=1

n∑
j=1

|Si,j| = savg‖y‖4max,2p‖Ψvb‖2max,2q.

By assumption, ‖y‖max,2p and ‖Ψvb‖max,2q are asymptotically bounded, meaning that the
variance of the normalized variance estimator is Var(nV̂B) = O(savg). From savg = o(1), we
have Var(nV̂B) = o(1). The proposition then follows from the fact that E[nV̂B] = nVB.
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Using the non-degeneracy assumption, we can show that the ratio of the variance es-
timator and the variance bound goes to 1 in probability. This is an important lemma for
the asymptotic validity of the normal-based confidence intervals.

Lemma S3.1. Under the conditions of Proposition 6.6 and the non-degeneracy assumption
(Assumption 4), we have that the ratio of the variance estimator and the variance bound
converge to 1 in probability: (V̂B/VB)

p−→ 1.

Proof. Fix ε > 0. Note that E[V̂B] = VB so by Chebyshev’s inequality, we have

Pr
(∣∣∣1− V̂B

VB

∣∣∣ > ε
)
≤ 1

ε2
Var
(V̂B

VB

)
=

1

ε2
Var
(n · V̂B

n · VB

)
=

1

ε2
Var(n · V̂B)

(n · VB)2
.

By Proposition 6.3, we have that Var(τ̂) ≤ VB. Additionally, the non-degeneracy assump-
tion (Assumption 4), states that n · Var(τ̂) ≥ c for some constant c > 0. Putting these
together we have that n · VB ≥ c. Using this, we have that

Pr
(∣∣∣1− V̂B

VB

∣∣∣ > ε
)
≤ 1

ε2
· 1

c2
· Var(n · V̂B)→ 0 ,

where the last line follows from Proposition 6.6.

S3.2 Asymptotic Validity of the Confidence Intervals

We are now ready to establish asymptotic validity of the normal-based confidence intervals.
This is demonstrated by Corollary 6.7.

Corollary 6.7. Given the conditions of Propositions 5.6 and 6.6 (asymptotic normality of
the point estimator and consistency of the variance estimator), the Wald-type confidence
intervals are asymptotically valid:

lim inf
n→∞

Pr
(
τ̂ −Rα ≤ τ ≤ τ̂ +Rα

)
≥ 1− α,

where Rα = Φ−1(1− α/2)

√
V̂B(τ̂) is the radius of the interval.

Proof. Write the probability as

Pr
(
τ̂ −Rα ≤ τ ≤ τ̂ +Rα

)
= Pr

(
SnΦ−1(α/2) ≤ TnUn ≤ SnΦ−1(1− α/2)

)
,

where

Sn =

√
VB(τ̂)

Var(τ̂)
, and Tn =

τ̂ − τ√
Var(τ̂)

, and Un =

√
VB(τ̂)

V̂B(τ̂)
,
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and symmetry of the standard normal deviate was used for Φ−1(α/2) = −Φ−1(1− α/2).
Note that Proposition 6.3 (validity of variance bound) ensures that Sn ≥ 1 for all n.

This extends the interval in the probability expression for TnUn, meaning that

Pr
(
SnΦ−1(α/2) ≤ TnUn ≤ SnΦ−1(1− α/2)

)
≥ Pr

(
Φ−1(α/2) ≤ TnUn ≤ Φ−1(1− α/2)

)
.

Let Fn : R → [0, 1] be the cumulative distribution function of the random variable
TnUn. We then have

Pr
(
Φ−1(α/2) ≤ TnUn ≤ Φ−1(1− α/2)

)
= Fn

(
Φ−1(1− α/2)

)
− Fn

(
Φ−1(α/2)

)
.

Lemma S3.1 ensures that U2
n goes to 1 in probability. By the continuous mapping

theorem, this implies that Un goes to 1 in probability. This implies, together with Propo-
sition 5.6 (asymptotic normality) and Slutsky’s theorem, that the limiting distribution of
TnUn is standard normal: limn→∞[Fn(x)− Φ(x)] = 0 pointwise for all x ∈ R. As a result,

lim
n→∞

[
Fn
(
Φ−1(1− α/2)

)
− Fn

(
Φ−1(α/2)

)]
= 1− α/2− α/2 = 1− α.

S4 Miscellaneous Results

S4.1 Plug-In Interpretation of the Riesz Estimator

One can interpret the Riesz representation estimator as being motivated by a type plug-in
principle for the design-based inference framework. We believe this interpretation will be
more familiar to some people.

The idea is that the experimenter constructs an estimator for the potential outcome
function yi for each unit, denoted ŷi. Note that the whole function is estimated, meaning
that the estimated potential outcome function ŷi(z) can be evaluated at any z ∈ Z. By
plugging in the estimated potential outcome function into the linear functional, we arrive
at an estimate of each unit’s treatment effect τ̂i = θi(ŷi). The average of these individual
treatment effects is an estimate of the overall treatment effect τ :

τ̂ =
1

n

n∑
i=1

θi(ŷi).

Any individual ŷi or τ̂i will typical be too imprecise to be useful by themselves, even
in large samples. Indeed, these individual estimators will generally not concentrate in any
meaningful sense. Still, the aggregation will result in lower variance, provided that the
individual estimators are sufficiently uncorrelated.

Formally speaking, we will estimate the equivalence class in the outcome model space
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L(Mi). Although the basic idea of the plug-in principle holds whenever L(Mi) is separable,
suppose for sake of presentation that each model space Mi is finite-dimensional so that
there exists an orthonormal basis {φi,`}d`=1 for each outcome model space L(Mi).

Under the correctly specified assumption, the equivalence class of the true potential
outcome function admits the unique decomposition yi(Z) =

∑d
`=1 αi,`φi,`(Z). Thus, the

problem of estimating the equivalence class containing yi can be recast as the problem of es-
timating the coefficients {αi,`}d`=1. One choice of estimated coefficients is α̂i,` = yi(Z)φi,`(Z),
which yields the estimated potential outcome function

ŷi =
d∑
`=1

α̂i,`φi,` =
d∑
`=1

(
yi(Z)φi,`(Z)

)
φi,`

This will lead to an unbiased estimator of the equivalence class containing the potential
outcome function.

Proposition S4.1. Under Assumptions 1 and 2, the plug-in estimator for the potential
outcome function described above is unbiased: E[ŷi] = yi.

Proof. By linearity of expectation, the expectation of the estimated potential outcome
function can be decomposed in the following way:

E[ŷi] = E
[ d∑
`=1

α̂i,`φi,`

]
=

d∑
`=1

E[α̂i,`]φi,` .

Under the correctly specified assumption, the equivalence class containing the true observed
potential outcome admits the decomposition yi(Z) =

∑d
`=1 αi,`φi,`(Z). Thus, the expected

value of the estimated coefficients may be calculated as

E[α̂i,`] = E[yi(Z)φi,`(Z)] = E
[( d∑

k=1

αi,kφi,k(Z)
)
φi,`(Z)

]
=

d∑
k=1

αi,k E[φi,k(Z)φi,`(Z)] = αi,`.

This completes the proof, as

E[ŷi] = E
[ d∑
`=1

α̂i,`φi,`

]
=

d∑
`=1

E[α̂i,`]φi,` =
d∑
`=1

αi,`φi,` = yi .

Strictly speaking, the plug-in estimator has only unbiasedly estimated an equivalence
class in the outcome model space L(Mi). In order to make sense of the plug-in θi(ŷi), we
have to select a representative function u ∈ Mi from the estimated equivalence class [ŷi]

and plug it into the effect functional θi. Under the positivity assumption (Assumption 2),
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this yields the same result no matter the representative function chosen. This completes
the unbiased estimation method based on the plug-in principle.

The following proposition shows that this plug-in estimator is equivalent to the Riesz
estimator, due to a simple changing of terms.

Proposition S4.2. The Riesz estimator and the plug-in estimator described above coincide.

Proof. It suffices to show that the individual effect estimators will coincide. Let us start
with the individual effect estimator derived using the plug-in principle and let us show that
it recovers the individual effect estimator derived using Riesz representation.

τ̂i = θi(ŷi)

= θi

( d∑
`=1

α̂i,`φi,`

)
=

d∑
`=1

α̂i,`θi(φi,`)

=
d∑
`=1

yi(Z)φi,`(Z)θi(φi,`)

= yi(Z)
( d∑
`=1

θi(φi,`)φi,`(Z)
)

= yi(Z)ψi(Z) .

S4.2 Estimands from Coefficients

In this section, we discuss how coefficients of a basis representation can be used to define
estimands. For simplicity, we focus on finite-dimensional model spaces. Let i ∈ [n] be a
unit with model space Mi. Suppose that Mi admits a basis {gi,`}d`=1. By definition of
a basis, every function u ∈ Mi admits a unique decomposition in terms of the basis, i.e.
u =

∑d
`=1 α`gi,`.

For a fixed coefficient k ∈ [d], The mapping θ(u) = αk is a well-defined functional
because the coefficient αk is uniquely defined given the basis. Additionally, one can verify
that this functional is linear. In particular, let u, v ∈ Mi have the basis expansions u =∑d

`=1 α`gi,` and v =
∑d

`=1 β`gi,`. Note that θi(u) = αk and θi(v) = βk. Then, the sum u+ v

as the basis expansion

u+ v =
d∑
`=1

α`gi,` +
d∑
`=1

β`gi,` =
d∑
`=1

(α` + β`)gi,`
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So that θi(u+v) = αk+βk = θi(u)+θi(v), which establishes that the functional θi is additive.
A similar argument shows that the mapping is homogeneous, i.e. θi(c · u) = c · θi(u).

Thus, functionals of the form θi(u) = αi,` are linear functionals on Mi. Additionally,
any linear combination of these functionals are linear functionals onMi. That means that
θ(u) =

∑d
`=1 c`α` is a linear functional onMi for any real coefficients {c`}d`=1.
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