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Abstract

By relaxing the stable unit treatment value assumption, I study the “difference-in-
differences” (DID) type of estimators that allow interference. When spillover effects are
of interest, we often sample the entire population. Thus, I adopt a finite population
perspective in the sense that the estimands are defined as population averages and
inference is conditional on the attributes of all population units. The general and
unified approach in this paper relaxes common restrictions in the literature, such as
partial interference and correctly specified spillover functions. I propose doubly robust
estimators for the direct average treatment effect on the treated as well as spillover
effects under a modified parallel trends assumption. Moreover, robust inference is
discussed based on the asymptotic distribution of the proposed estimators. Using the
two time period DID estimator as a building block, I then extend the setting to multiple
time periods with constant treatment timing.

1 Introduction

In the fields of environmental economics, urban economics, criminal justice, and many other

fields of social sciences, place-based policies often generate spillover effects. One example

studied by Jardim, Long, Plotnick, Van Inwegen, Vigdor, and Wething (2022) is minimum

∗ruonan.xu@rutgers.edu, Rutgers University

1



wage increase in Seattle. Through the channels of competition in the regional labor market

for workers and the possibility of relocation of businesses, they find that significant spillover

effects on wages and hours are seen up to a 40-minute drive from Seattle city limits.

When spillover effects are of interest, we often need to observe the entire population.

For example, we can typically collect information about all counties in the United States.

In the example above, Jardim et al. (2022) use administrative employment records in

the state of Washington. As pointed out by Manski (1993), “it does not make sense in

studies of neighborhood and other large-group social effects, where the sample members

are randomly chosen individuals. Taken at face value, equation (7) implies that the sample

members know who each other are and choose their outcomes only after having been

selected into the sample.” If we take sampling from the superpopulation approach literally,

what we are estimating turns out to be the spillover effect in a researcher’s sample rather

than in the population from which the sample is drawn unless interactions are restricted

within clusters of friends or household members.

By relaxing the stable unit treatment value assumption (SUTVA), I study the “difference-

in-differences” (DID) type of estimators that allow interference from a finite population

perspective, where the entire population is observed. Having said that, the approach I take

is different from the design-based approach. In the literature of finite population causal

inference, there are many choices of the conditioning variables. Here only the attributes of

the entire population are conditioned on and hence the conditional means of potential out-

comes are allowed to be flexibly modeled. As a result, our approach can be considered as a

middle ground between superpopulation and design-based frameworks. The upside is that

I can make the proposed estimators more robust to model specification with straightfor-

ward causal interpretation. Meanwhile, I still maintain the flavor of conditional inference

in the design-based approach, which can provide guidance on robust inference.
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The spatial setting here is different but close to that in Xu and Wooldridge (2022). A

finite population in a spatial space is characterized by fixed attributes containing intrinsic

locational information and neighborhood characteristics. Meanwhile, potential outcome

functions can be stochastic, partly due to measurement errors. With the entire population

observed, the sampling probability is essentially one, which shows up in the conditional

asymptotic variance-covariance matrix derived below. The inference becomes more precise

when the interest on the finite population is recognized. Our hybrid approach can be

considered as an application of the conditional inference discussed by Abadie, Imbens, and

Zheng (2014) to DID type estimators.

Most of the literature studies spillover effects in a single cross section with experimental

data and assumes partial interference or limits interference to immediate neighbors. Addi-

tionally, they assume that the function of dependence on neighbors’ treatments is known

and correctly specified. See, for instance, Hudgens and Halloran (2008) and Aronow and

Samii (2017). Delgado and Florax (2015), Clarke (2017), and Butts (2021) allow inter-

ference in DID estimation in a two-way fixed effects (TWFE) framework (often without

covariates) from a superpopulation perspective. All three papers mentioned above share

some or all limitations of the general interference literature. Design-based DID estima-

tion has been studied by Athey and Imbens (2022), Rambachan and Roth (2022), and

Arkhangelsky, Imbens, Lei, and Luo (2021) but they keep the SUTVA.

I work with observational data in this paper since it is the most common type of data in

economics. I consider the expected direct treatment effect at certain neighborhood exposure

levels or the expected spillover effect at different neighborhood exposure levels. As a result,

the causal estimands are well defined even when the spillover function is misspecified. In

terms of relaxing the assumption of a fixed neighborhood boundary, I apply the device of

approximate neighborhood interference (ANI) in Leung (2022) to spatial data, in which
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treatments assigned to units further from i have a smaller, but possibly nonzero, effect on

i’s response. In addition, the assignment variables are allowed to be spatially correlated

as is often the case in practice with spatial data. To sum up, our approach is the most

general one so far and is closest to empirical settings.

Our contribution is fourfold. First, I lay the basis for studying direct and spillover

effects in a DID context with the entire population observed. Second, I study the identifi-

cation of canonical DID estimators available in the literature. I provide conditions under

which canonical estimators still identify meaningful causal estimands. This discussion alone

would be of interest to practitioners. Third, I clarify what toolkit practitioners can use

by comparing various dimension reduction approaches in the interference literature. Last

and most importantly, I provide solutions to the question under study by proposing doubly

robust estimators for the direct treatment effect and spillover effect. Our doubly robust

estimator is a modified version of the augmented inverse probability weighting (AIPW)

estimator, which only requires correct specification of either the propensity score of treat-

ment or the conditional mean of the outcomes. Sant’Anna and Zhao (2020) has proposed

AIPW estimators in the DID context, maintaining SUTVA and the superpopulation frame-

work. Once interference is allowed for, one of the biggest challenges is incorporating it in

a general and flexible manner. On top of the different estimands I target, our conditional

inference approach also leads to a different variance-covariance matrix which requires a

new variance estimator when necessary.
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2 Setup

2.1 Environment

I start with the relatively simple setting of panel data with two time periods; t = 1, 2

stands for the time period before and after treatment respectively. Let D ⊆ Rd, d ≥ 1,

be a lattice of (possibly) unevenly placed locations in Rd. Consider a sequence of finite

subsets of D, {DM}, where M indexes the sequence of finite populations. |DM | diverges to

infinity in deriving the asymptotic properties, where |V | denotes the cardinality of a finite

subset V ⊆ D.

For each unit i in the population, there is a stochastic assignment variable Wi ∈ {0, 1},

and a vector of fixed attributes zi. The potential outcome function is defined to be a

mapping from the treatment vector of the entire population yit(wi,w−i), where w−i =

{wj , j ∈ DM , j 6= i}. The realized potential outcomes are denoted by Yit = yit(W ). Notice

that (W , z,Y ) = {(Wi, zi, Yit(·)), i ∈ DM ,M ≥ 1} are triangular arrays of random fields

defined on a probability space (Ω,F , P ). Exposure mapping is defined by the function

Gi = G(i,w−i) ∈ G, where G is a discrete set.

The setup is closest to that in Xu and Wooldridge (2022). The main difference here

is that I allow the potential outcome functions to be random. In addition, no sampling

process is involved since the entire population is observed. In other words, the sampling

probability is one. The key to the finite population perspective is to allow positive sampling

probabilities.

It is worth explaining the construction of the G(·) function here. Given a fixed K,

define the K-neighborhood of unit i as

N (i,K) = {j ∈ DM : ρ(i, j) ≤ K, j 6= i}
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Let wN (i,K) = (wj : j ∈ N (i,K)) be the treatment vector of units within i’sK-neighborhood.

There exists K < ∞ such that for all w−i and w′−i such that wN (i,K) = w′N (i,K),

G(i,w−i) = G(i,w′−i). As a result, the specified exposure mapping function restricts

spillover effects within the immediate K-neighborhood of each unit. Having said that,

the actual potential outcome function places no restriction on the interference structure.

Treatments of units outside of i’s K-neighborhood can legitimately influence i’s potential

outcome as long as treatments assigned to units further from i have a smaller, but pos-

sibly nonzero, effect on i’s response. A detailed description of the assumptions is given

in Section 4 below. This way, the exposure mapping function is allowed to be arbitrarily

misspecified. The G(·) function is allowed to be multidimensional, in which the K distance

would be the largest distance that interference is allowed under the specification across the

fixed dimensions of G(·).

I briefly summarize the notation used throughout the paper. I adopt the metric ρ(i, j) =

max1≤l≤d |jl−il| in space Rd, where il is the l-th component of i. The distance between any

subsets K,V ⊆ D is defined as ρ(K,V ) = inf{ρ(i, j) : i ∈ K and j ∈ V }. For any random

vector W , ‖W‖p =
[
E(‖W‖p |z)

]1/p
, p ≥ 1, denotes its Lp-norm. Lastly, C denotes a

generic positive constant that may vary under different circumstances.

2.2 Estimands of Interest

To allow for flexible modeling of the conditional mean of potential outcomes, I adopt a

hybrid of model-based and design-based frameworks. This paper is interested in the ex-

pected finite population average, i.e., the average of the expected potential outcome across

all units in the finite population. In other words, I focus on conditional inference given

fixed attributes zi; see Abadie et al. (2014) and Jin and Rothenhäusler (2023) for detailed

discussion of conditional parameters and conditional inference. I take the finite population
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perspective in the sense that the entire population is observed with fixed attributes.

There are two types of estimands of interest. The first parameter is the expected direct

average treatment effect on the treated (EDATT) at exposure level g.

τ(g) =
1

|DM |
∑
i∈DM

E
[
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = g, zi

]
(1)

The key ingredient of the definition is the expected potential outcome at exposure level g,

E
[
yi2(1,w−i)|Wi = 1, Gi = g, zi

]
=

∑
W−i∈Ω

E
[
yi2(1,W−i)|Wi = 1,W−i = W−i, zi

]
P (W−i = W−i|Gi = g,Wi = 1, zi),

where the expectation is taken over all possible realizations of W−i given the specified

exposure mapping G(i,w−i) and Ω = {0, 1}|DM |−1.

In terms of the interpretation of EDATT, if the spillover effect and the direct effect are

additively separable, we can identify the exact direct ATT even if the spillover function is

misspecified. Without additivity, we can still identify the direct ATT that would realize in

expectation at the specified exposure level.

In addition to EDATT, empirical researchers might also be interested in spillover effects

defined in equations (2) and (3).

1

|DM |
∑
i∈DM

(
E
[
yi2(1,w−i)|Wi = 1, Gi = g, zi

]
−E

[
yi2(1,w′−i)|Wi = 1, Gi = g′, zi

])
(2)

1

|DM |
∑
i∈DM

(
E
[
yi2(0,w−i)|Wi = 0, Gi = g, zi

]
−E

[
yi2(0,w′−i)|Wi = 0, Gi = g′, zi

])
(3)

The spillover effect contrasts the expected potential outcomes between levels g and g′ and

could differ with or without direct treatment. A leading case would be setting g′ to 0. The
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identification of the spillover effect is more straightforward because the potential outcomes

under direct assignment and the specified exposure are observable.

3 Identification

The first question when relaxing SUTVA is whether it matters if spillover effects are ignored

when estimating the treatment effect. Namely, will the canonical DID estimator consis-

tently estimate ATT when interference occurs? To facilitate the discussion of identification,

I impose the following assumptions.

Assumption 1 (Overlap) ∀ i ∈ DM , there exists ε > 0 such that ε < p(zi) < 1 − ε,

π1g(zi) > ε, and π0g(zi) > ε, where

p(zi) = P (Wi = 1|zi), (4)

π1g(zi) = P (Gi = g|Wi = 1, zi), (5)

and

π0g(zi) = P (Gi = g|Wi = 0, zi). (6)

To simplify the notation, I assume that the overlap assumption applies to every unit in

the population. With certain exposure mapping specifications, this might not be plausible.

An easy fix is to change the estimand by averaging over the subpopulation where Gi can

take on the value g. Also, please see Man, Sant’Anna, Sasaki, and Ura (2023) for trimming

propensity scores with bias correction when the overlap condition holds weakly.

Assumption 2 (No Anticipation)

1

|DM |
∑
i∈DM

E
[
yi1(wi,w−i)|Wi, zi

]
=

1

|DM |
∑
i∈DM

E
[
yi1(0, 0)|Wi, zi

]
8



Assumption 2 requires that the expected potential outcome in the first time period be-

fore treatment is always equal to the expected potential outcome without treatment nor

spillover. The no anticipation assumption is quite standard in the literature, sometimes

implicitly.

To identify EDATT, I impose the following parallel trends assumption:

Assumption 3 (Parallel Trends)

1

|DM |
∑
i∈DM

[
E
(
yi2(0,w−i)|Wi = 1, Gi = g, zi

)
−E

(
yi1(0, 0)|Wi = 1, zi

)]
=

1

|DM |
∑
i∈DM

[
E
(
yi2(0,w−i)|Wi = 0, Gi = g, zi

)
−E

(
yi1(0, 0)|Wi = 0, zi

)] (7)

A sufficient condition for Assumption 3 is that for any g∗ ∈ G∗,

1

|DM |
∑
i∈DM

[
E
(
yi2(0, g∗)|Wi = 1, G∗i = g∗, zi

)
−E

(
yi1(0, 0)|Wi = 1, zi

)]
=

1

|DM |
∑
i∈DM

[
E
(
yi2(0, g∗)|Wi = 0, G∗i = g∗, zi

)
−E

(
yi1(0, 0)|Wi = 0, zi

)]
,

(8)

where G∗ stands for the unknown true exposure mapping and G∗ is the set of values that

G∗ can take. If equation (8) holds, then Assumption 3 is satisfied by the law of iterated

expectations invariant of the specified exposure mapping function.

If we remove the outer average, and assume that equality holds for each unit i ∈ DM ,

then Assumption 3 becomes the conditional parallel trends. Further notice that in the

parallel trends assumption, we do not condition on the exposure level g in the first time

period as no one is treated at t = 1. Accordingly, there is no spillover in the potential

outcome function in the first time period. Assumptions 2 and 3 can be relaxed if we

observe multiple time periods before treatment or one is willing to model the differential

time trends among the control and treatment groups. However, to fix idea I keep them in
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the standard form in the literature.

There is a growing literature on justification and falsification of the parallel trends

assumption under SUTVA; see, for instance, Roth and Sant’Anna (2023) and Ghanem,

Sant’Anna, and Wüthrich (2022). When parallel trends might be violated, Rambachan

and Roth (2023) present confidence sets for the identified set of treatment effects. The

extension of these analyses to parallel trends with interference is out of the scope of this

paper. Readers can refer to the references above for intuition. Since no units are treated

prior to the treatment, there is no spillover effect before t = 2. Therefore, the feasible

classical pre-trends test here is reduced to the standard case without interference. The

interpretation of the pre-trends test requires caution, though; see Roth (2022).

3.1 Canonical DID

The usual ATT under the SUTVA is

τ̃ =
1

|DM |
∑
i∈DM

E
(
yi2(1)− yi2(0)|Wi = 1, zi

)
.

Here, the potential outcomes are determined solely by unit i’s own treatment. Suppose

the canonical DID estimator consistently estimates

τcanonic =
1

|DM |
∑
i∈DM

[
E(Yi2 − Yi1|Wi = 1, zi)−E(Yi2 − Yi1|Wi = 0, zi)

]
.

Examples include the TWFE linear estimating equation in Remark 1 in Sant’Anna and

Zhao (2020) under the additional restrictions of the data generating process there and the

inverse probability weighting (IPW) estimator in Abadie (2005). If the usual (conditional)

parallel trends assumption holds without interference, τcanonic would be equivalent to τ̃ .

If SUTVA is violated, EDATT is generally determined by the specific exposure level.
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As a result, I use the overall direct effect as a benchmark for comparison.

τ =
∑
g∈G

τ(g)P (Gi = g|Wi = 1, zi)

The overall direct effect is comparable to the expected average treatment effect (EATE)

studied by Sävje, Aronow, and Hudgens (2021), which in our notation is equal to

τEATE =
1

|DM |
∑
i∈DM

[
E
(
yi2(1,w−i)

)
−E

(
yi2(0,w−i)

)]
=

1

|DM |
∑
i∈DM

[∑
g∈G

E
(
yi2(1,w−i)− yi2(0,w−i)|Gi = g

)
P (Gi = g)

]

The difference between τ and τEATE is that the expected potential outcome and the propen-

sity score is further conditional on Wi = 1 and zi because of the DID setting. With abuse

of notation, I get rid of the finite population average for the parameters τ and τcanonic for

now as it does not affect the comparison.

I first suppose that the parallel trends assumption (7) holds. Using the law of iterated

expectations, τ and τcanonic can be decomposed in the following way:

τ =
∑
g∈G

E(Yi2|Wi = 1, Gi = g, zi)P (Gi = g|Wi = 1, zi)−E(Yi1|Wi = 1, zi)

−
[∑
g∈G

E(Yi2|Wi = 0, Gi = g, zi)P (Gi = g|Wi = 1, zi)−E(Yi1|Wi = 0, zi)
]

τcanonic =
∑
g∈G

E(Yi2|Wi = 1, Gi = g, zi)P (Gi = g|Wi = 1, zi)−E(Yi1|Wi = 1, zi)

−
[∑
g∈G

E(Yi2|Wi = 0, Gi = g, zi)P (Gi = g|Wi = 0, zi)−E(Yi1|Wi = 0, zi)
]
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Proposition 1 Under Assumptions 1-3, τcanonic 6= τ in general unless P (Gi = g|Wi =

0, zi) = P (Gi = g|Wi = 1, zi).

Notice that if the direct effect and the spillover effect are separately additive, the canonical

DID estimator can still identify the direct effect. For a generic potential outcome function, a

sufficient condition for equality would be Gi ⊥⊥Wi | zi. However, conditional independence

can be easily violated if either of the following is true: (i) Gi and Wi are linked through

covariates not included in zi; (ii) neighbors’ behavior affects unit i’s treatment uptake;

(iii) similar neighborhood characteristics drive the assignment mechanism; see Forastiere,

Airoldi, and Mealli (2021) for a parallel discussion allowing interference on networks under

unconfoundedness.

Secondly, suppose parallel trends (7) fails but a modified version holds conditional on

additional attributes.

1

|DM |
∑
i∈DM

[
E
(
yi2(0,w−i)|Wi = 1, Gi = g, zi, ui

)
−E

(
yi1(0, 0)|Wi = 1, zi, ui

)]
=

1

|DM |
∑
i∈DM

[
E
(
yi2(0,w−i)|Wi = 0, Gi = g, zi, ui

)
−E

(
yi1(0, 0)|Wi = 0, zi, ui

)]
,

(9)

where ui are additional attributes. Similarly, τ and τcanonic can be rewritten as

τ =
∑
g∈G

∑
u∈U

E(Yi2|Wi = 1, Gi = g, zi, ui = u)P (ui = u|Wi = 1, Gi = g, zi)

· P (Gi = g|Wi = 1, zi)−
∑
u∈U

E(Yi1|Wi = 1, zi, ui = u)P (ui = u|Wi = 1, zi)

−
[∑
g∈G

∑
u∈U

E(Yi2|Wi = 0, Gi = g, zi, ui = u)P (ui = u|Wi = 1, Gi = g, zi)

· P (Gi = g|Wi = 1, zi)−
∑
u∈U

E(Yi1|Wi = 0, zi, ui = u)P (ui = u|Wi = 1, zi)
]
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τcanonic =
∑
g∈G

∑
u∈U

E(Yi2|Wi = 1, Gi = g, zi, ui = u)P (ui = u|Wi = 1, Gi = g, zi)

· P (Gi = g|Wi = 1, zi)−
∑
u∈U

E(Yi1|Wi = 1, zi, ui = u)P (ui = u|Wi = 1, zi)

−
[∑
g∈G

∑
u∈U

E(Yi2|Wi = 0, Gi = g, zi, ui = u)P (ui = u|Wi = 0, Gi = g, zi)

· P (Gi = g|Wi = 0, zi)−
∑
u∈U

E(Yi1|Wi = 0, zi, ui = u)P (ui = u|Wi = 0, zi)
]

Proposition 2 Under Assumption 1, the modified no anticipation assumption conditional

on (Wi, zi, ui), and the modified parallel trends (9), τcanonic 6= τ unless

P (Gi = g|Wi = 0, zi) = P (Gi = g|Wi = 1, zi)

and

P (ui = u|Wi = 1, Gi = g, zi) = P (ui = u|Wi = 0, Gi = g, zi).

As a result, even if Gi ⊥⊥ Wi | zi or SUTVA holds, the canonical DID estimator is still

biased because of the exclusion of ui. Assuming away interference, the omitted attributes

often can be the attributes of unit i’s neighbors.

3.2 Modified Two-Way Fixed Effects

Another approach to estimate the spillover effect suggested in the literature is to augment

the TWFE DID regression with another binary indicator Si equal to one if a unit is close

to the treated unit; see, for instance, Di Tella and Schargrodsky (2004) and Butts (2021).

Using our notation, the estimating equation becomes

Yit = β1Wit + β2(1−Wit)Si + β3WitSi + αi + λt + εit, (10)
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where Wit = Wi ∗ 1{t = 2}. β̂1 estimated from equation (10) would be consistent for the

EDATT defined by

τ̄(0) =
1

|DM |
∑
i∈DM

[
E
(
yi2(1, 0)− yi2(0, 0)|Wi = 1, Si = 0

)]

under the parallel trends assumption

1

|DM |
∑
i∈DM

[
E
(
yi2(0, 0)− yi1(0, 0)|Wi = 1, Si = 0

)]
=

1

|DM |
∑
i∈DM

[
E
(
yi2(0, 0)− yi1(0, 0)|Wi = 0, Si = 0

)]
.

Similarly β̂1 + β̂3 − β̂2 would be consistent for the EDATT defined by

τ̄(1) =
1

|DM |
∑
i∈DM

[
E
(
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Si = 1

)]

under the parallel trends assumption

1

|DM |
∑
i∈DM

[
E
(
yi2(0,w−i)− yi1(0, 0)|Wi = 1, Si = 1

)]
=

1

|DM |
∑
i∈DM

[
E
(
yi2(0,w−i)− yi1(0, 0)|Wi = 0, Si = 1

)]
.

τ̄(0) and τ̄(1) are the direct ATT without neighborhood exposure and EDATT with

neighborhood exposure respectively only if the distance cutoff, d̄, for the interference struc-

ture is correctly chosen. Namely, units with Si = 1 indeed receive spillover and those with

Si = 0 indeed receive no spillover at all. If the cutoff is chosen too small, then τ̄(0) becomes
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the EDATT,

τ̄(0) =
1

|DM |
∑
i∈DM

[
E
(
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = 0

)]
,

where G(i,w−i) = 1{AsW > 0} and As is the adjacency matrix with units being neighbors

if their distance is less than or equal to ds < d̄. Analogously,

τ̄(1) =
1

|DM |
∑
i∈DM

[
E
(
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = 1

)]

with the exposure mapping G(i,w−i) = 1{AsW > 0} no matter the cutoff ds is chosen

too small or too large.

We can see that given the estimating equation of the augmented TWFE, the specified

exposure mapping is fixed as 1{AsW > 0}. Only when the interference structure coincides

with the indicator function 1{AsW > 0} along with the correct distance cutoff, can we

identify the exact direct ATT. In contrast, our approach instead can identify the EDATT,

τ(g), with varying levels of neighborhood exposure g allowing for misspecification of the

spillover structure. We can also identify the exact direct ATT when the exposure mapping

is correctly specified allowing for various interference structure. Meanwhile, we can flexibly

account for covariates by assuming the conditional parallel trends. Furthermore, the basic

augmented TWFE regression linear in covariates,

Yit = β0 + β1Wit + β2(1−Wit)Si + β3WitSi + β4Wi + ziγ + λt + εit,

suffers from the same drawbacks of the usual canonical TWFE regression for DID estima-

tion as pointed out by Remark 1 in Sant’Anna and Zhao (2020). Adding interactions of

the covariates with the treatment and time indicators can help.
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3.3 Doubly Robust Estimand

Since ignoring the spillover effect is only harmless under special scenarios, we need to

propose new estimators for the EDATT. Under parallel trends and overlap assumptions,

the EDATT can be identified by inverse weighting using propensity scores.

τ(g) =
1

|DM |
∑
i∈DM

E

[
Wi − p(zi)

p(zi)(1− p(zi))

(
1{Gi = g}

Wiπ1g(zi) + (1−Wi)π0g(zi)
Yi2 − Yi1

)∣∣∣∣zi
]

=ED

[
Wi − p(zi)

p(zi)(1− p(zi))

(
1{Gi = g}

Wiπ1g(zi) + (1−Wi)π0g(zi)
Yi2 − Yi1

)] (11)

To simplify notation, I use ED to denote the finite population average conditional on the

attributes z from now on.

Without the indicator for G and the additional propensity scores for spillover, the IPW-

DID estimand is the same as the estimand proposed in Abadie (2005). To allow for more

robustness against misspecification of the propensity scores, the IPW-DID estimand can

be extended to an AIPW estimand in the similar spirit of Ning, Peng, and Tao (2020).

Define the conditional means of the potential outcome as

µit,wg(zi) = E(Yit|Wi = w,Gi = g, zi) (12)

or

µit,w(zi) = E(Yit|Wi = w, zi). (13)

Let mit,wg(zi) and mit,w(zi) denote the model for equations (12) and (13), respectively.

Denote ∆mi2,g(zi) = mi2,1g(zi)−mi2,0g(zi) and ∆mi1(zi) = mi1,1(zi)−mi1,0(zi). Further-

more, let η(zi), η1g(zi), and η0g(zi) be the models for the propensity scores in equations

(4)-(6), respectively.
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The doubly robust estimand is

τ(g) =ED

[
Wi

η(zi)

(
1{Gi = g}
η1g(zi)

(
Yi2 −mi2,1g(zi)

)
−
(
Yi1 −mi1,1(zi)

))
− 1−Wi

1− η(zi)

(
1{Gi = g}
η0g(zi)

(
Yi2 −mi2,0g(zi)

)
−
(
Yi1 −mi1,0(zi)

))
+ ∆mi2,g(zi)−∆mi1(zi)

]
.

(14)

Proposition 3 Under Assumptions 1-3, equation (14) recovers the EDATT, τ(g), as long

as either the propensity scores or the conditional means of the outcome are correctly spec-

ified.

Although DID estimators identify the ATT, the doubly robust estimand here formulates

the AIPW in the same way as the ATE rather than the ATT estimand. In addition to

the extra weighting of the exposure level, this difference to the doubly robust estimand in

Sant’Anna and Zhao (2020) is due to the fixed attributes.

It is worth explaining what we mean by correct specification of the propensity scores

and the conditional means of outcomes. The specification of p(zi) and µit,w(zi) is more

straightforward; the only difference from usual practice without interference is the choice

of zi, which may include neighbors’ attributes. As for the specification of πwg(zi) and

µit,wg(zi), it is easier to fix ideas using a simple example.

Suppose the spatial units are located on a square grid at locations {(d1, d2) : d1, d2 =

1, 2, . . . , l}. Units immediately to the left or right of i are classified as neighbors of i. Each

unit is assigned to treatment independently according to a Bernoulli trial with probability

p(zi). The potential outcome function is yit(wi,w−i) = wi + AiW + ei, where Ai is the

ith row of the adjacency matrix and ei is the standard normal independent of everything

else. Nevertheless, the spillover function is misspecified as Gi = 1{AiW > 0}. I use z∗i
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and zi to differentiate neighborhood attributes for i and individual attributes for i alone.

In this example, z∗i = {zj : j ∈ Ni}. Then π1g(z
∗
i ) = π0g(z

∗
i ) = 1 − Πj∈Ni

(
1 − p(zj)

)
and

µit,wg(z
∗
i ) = w + g

(∑
j∈Ni

p(zj)
)
/
[
2
(
1−Πj∈Ni

(
1− p(zj)

))]
for units with two neighbors.

We hope to correctly specify πwg(z
∗
i ) and µit,wg(z

∗
i ) along with the correct spillover function.

Nonetheless, even if the spillover function is misspecified, we might still be able to correctly

specify the propensity scores and conditional expected potential outcomes at exposure g.

Analogously, the doubly robust estimands for the spillover effects are

ED

[
Wi

η(zi)

1{Gi = g}
η1g(zi)

(
Yi2 −mi2,1g(zi)

)
+mi2,1g(zi)

− Wi

η(zi)

1{Gi = g′}
η1g′(zi)

(
Yi2 −mi2,1g′(zi)

)
−mi2,1g′(zi)

] (15)

and

ED

[
1−Wi

1− η(zi)

1{Gi = g}
η0g(zi)

(
Yi2 −mi2,0g(zi)

)
+mi2,0g(zi)

− 1−Wi

1− η(zi)

1{Gi = g′}
η0g′(zi)

(
Yi2 −mi2,0g′(zi)

)
−mi2,0g′(zi)

]
.

(16)

4 Asymptotic Properties of the Parametric Estimator

I focus on the estimation of the EDATT since the estimation of spillover effects would be

similar. I propose a GMM estimator combining equation (14) with moment conditions for

the propensity scores and conditional means of outcomes chosen by the empirical researcher.

To make our estimator more robust to misspecification of these functions, one can use

various moment conditions to identify the propensity scores. One option is the covariate

balancing propensity scores (CBPS), which can be locally more robust than the propensity

scores based on maximum likelihood estimation (MLE); see, for instance, Imai and Ratkovic

(2014). The alternative would be estimating all functions nonparametrically, which is left
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as future work.

I denote the generic moment condition for the propensity scores as

ED

[
qi1(Wi, zi, γ

∗
1)
]

= 0 (17)

and

ED

[
qi2(Wi, Gi, zi, γ

∗
2)
]

= 0, (18)

where zi can contain neighbors’ attributes within K-neighborhood. For instance, the mo-

ment conditions for CBPS are

ED

[
Wi

P (Wi = 1|zi)
zi −

(1−Wi)

1− P (Wi = 1|zi)
zi

]
= 0 (19)

and for g = 1, 2, . . . , G, G− 1

ED

[
1{Gi = g}

P (Gi = g|Wi, zi)
(Wi, zi)−

1{Gi = g − 1}
P (Gi = g − 1|Wi, zi)

(Wi, zi)

]
= 0, (20)

where P (Wi = 1|zi) is some probability for a binary response, such as exp(ziγ1)
1+exp(ziγ1) , and

P (Gi = g|Wi, zi) is some probability for discrete choices. Similarly, the generic conditional

moment conditions are denoted by

ED

[
qi3(Yi1,Wi, zi, γ

∗
3)
]

= 0 (21)

and

ED

[
qi4(Yi2,Wi, Gi, zi, γ

∗
4)
]

= 0. (22)

Alternatively, one can model the conditional mean for ∆Yi = Yi2 − Yi1 and formulate the
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moment condition as

ED

[
q̃i3(∆Yi,Wi, Gi, zi, γ̃

∗
3)
]

= 0. (23)

If there are only a few possible values that the exposure levels Gi can take, one can

alternatively model the conditional outcomes for the subpopulation with Wi = w and

Gi = g as a function of zi, separately. Lastly, the moment condition for τ(g) is a restatement

of equation (14)1. Denote θ∗M = (γ∗1
′, γ∗2

′, γ∗3
′, γ∗4

′, τ(g))′.

ED

[
qi5(Yit,Wi, Gi, zi, θ

∗
M )
]

=ED

[
Wi

η(zi)

(
1{Gi = g}
η1g(zi)

(
Yi2 −mi2,1g(zi)

)
−
(
Yi1 −mi1,1(zi)

))
− 1−Wi

1− η(zi)

(
1{Gi = g}
η0g(zi)

(
Yi2 −mi2,0g(zi)

)
−
(
Yi1 −mi1,0(zi)

))
+ ∆mi2,g(zi)−∆mi1(zi)− τ(g)

]
= 0

(24)

Let Xi = {Yi,Wi, Gi, zi}, qi(Xi, θ) = (q′i1(γ1), q′i2(γ2), q′i3(γ3), q′i4(γ4), qi5(θ))′, and Ψ̂ as

the weighting matrix with dimensions larger or equal to that of θ.

θ̂ = arg min
θ∈Θ

1

|DM |
∑
i∈DM

qi(Xi, θ)
′Ψ̂

1

|DM |
∑
i∈DM

qi(Xi, θ) (25)

The GMM estimator is the solution to the finite population minimization problem in

equation (25). And the estimator of τ(g) is the last element of θ̂.

I impose the following assumptions to study the asymptotic distribution of the GMM

estimator.

1In practice, it is recommended to normalize the weights for IPW type of estimators. Changing the
moment condition with normalized propensity scores – where the weights sum to unity – does not affect
asymptotic normality of the GMM estimator. In fact, estimators with normalized weights consistently show
better finite sample performance in the simulations below.
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Assumption 4 Suppose {DM} is a sequence of finite subsets of D such that |DM | → ∞

as M →∞, where the lattice D ⊆ Rd, d ≥ 1, is infinitely countable. All elements in D are

located at distances of at least ρ0 > 0 from each other, i.e., for all i, j ∈ D: ρ(i, j) ≥ ρ0;

w.l.o.g. we assume that ρ0 > 1.

Consistent with the increasing domain asymptotics, the assumption of the minimum dis-

tance ensures the expansion of the finite population region.

Assumption 5 (Approximate Neighborhood Interference) Let W (i,s) = (WN (i,s),W
′
DM\N (i,s)),

where W ′ is an independent copy of W , W (i,s,0) = (WN (i,s), 0), i.e., W ′
DM\N (i,s) = 0, and

κM (s) = max
i∈DM

E

[
yi2(W )− yi2

(
W (i,s,0)

)∣∣z].
Suppose that supM κM (s)→ 0 as s→∞.

Assumption 5 is a modified version of Assumption 4 in Leung (2022). Essentially, treat-

ments of units from s distance away from i should become minimal as the distance s

gets larger. This way, we can allow interference outside the immediate K-neighborhood

while still being able to derive the asymptotic properties of our estimator. Leung (2022)

has shown that several interference structures satisfy the ANI assumption, including the

linear-in-means model with endogenous peer effects. Section 5 gives an overview of the

different approaches to model interference taken by the literature and compares them to

ANI.

I adopt ψ-dependence in Kojevnikov, Marmer, and Song (2021) as our notion of weak

dependence throughout the paper. Notice that α-mixing is a special case of ψ-dependence.

Let Lν,h denote the collection of bounded Lipschitz real functions f(·) on Rν×h with the

Lipschitz constant Lip(f) < ∞ and ‖f‖∞ < ∞, where ‖f‖∞ = supx |f(x)|. Denote the
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collection of subset pairs as

PM (h, h′; s) = {(H,H ′) : H,H ′ ⊆ DM , |H| = h, |H ′| = h′, ρ(H,H ′) ≥ s}.

Definition 1 A triangular array {Vi, i ∈ DM ,M ≥ 1}, Vi ∈ Rν , is called ψ-dependent

if there exist uniformly bounded constants {κ̃M,s}s≥0 with κ̃M,0 = 1, and a collection of

nonrandom functions {ψh,h′}h,h′∈N with ψh,h′ : Lν,h × Lν,h′ → [0,∞) such that for all

(H,H ′) ∈ PM (h, h′; s) with s > 0 and all f ∈ Lν,h and f ′ ∈ Lν,h′,

∣∣Cov(f(VH), f ′(VH′)
)∣∣ ≤ ψh,h′(f, f ′)κ̃M,s, (26)

where VH = (Vi : i ∈ H).

I require κ̃M,s to approach zero as s grows. ψ-dependence is used to bound the covariances

of any two subsets of observations distant from each other.

Assumption 6 Let yit = φ(Wi,W−i, zi, Ui), where φ(·) is some generic function and Ui

denotes the unobservables. Let εi = (Wi, Ui). The random field ε = {εi, i ∈ DM ,M ≥ 1}

is α-mixing under Definition 2 in Jenish and Prucha (2012). The mixing coefficient is

denoted by αε(u, v, r) ≤ (u+ v)α̂ε(r).

On top of possible interference, Assumption 6 allows assignment variables to be spatially

correlated as well.

Lemma 4.1 Under Assumptions 4, 5, 6, and Assumption A.1 in Appendix A, for each

θ ∈ Θ, each element of qi(Xi, θ) and ∇θqi(Xi, θ) is ψ-dependent with κ̃M,s =
(
κM (s/3) +

sdα̂εM (s/3)
)
1(s > 3 max{K, 1})+1(s ≤ 3 max{K, 1}). Equation (26) holds with h = h′ = 1

and f = f ′ being the identity function.
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To adapt the limit theorems in Kojevnikov et al. (2021) to spatial data, I replace the

network denseness with the cardinality of the spatial sets implied by Lemma A.1 in Jenish

and Prucha (2009). As a result, Assumption 3.2 in Kojevnikov et al. (2021) is modified as

Assumption 7
∞∑
s=1

sd−1κ̃M,s <∞

Assumption 7 is in the similar spirit of Assumption 3(b) in Jenish and Prucha (2009) for

α-mixing random fields.

Let σ2
M = V

[∑
i∈DM

λ′qi(Ui, θ)|z
]

for a nonzero vector λ. Similarly, Assumption 3.4

in Kojevnikov et al. (2021) is modified as

Assumption 8 There exists a positive sequence rM →∞ such that for k = 1, 2

1

σ2+k
M

∑
i∈DM

∞∑
s=1

sd−1 max
j∈DM ,s≤ρ(i,j)<s+1

∣∣N (i; rM ) \ N (j; s− 1)
∣∣kκ̃1− 2+k

p

M,s → 0

and
|DM |2κ̃1−(1/p)

M,rM

σM
→ 0

as M →∞, where p > 4 is that appears in Assumption A.1 in Appendix A.

The rate of κ̃M,s is implicitly implied by Assumption 8. A sufficient condition for the first

part of the assumption is

|DM |
σ2+k
M

rkdM

∞∑
s=1

sd−1κ̃
1− 2+k

p

M,s → 0,

Analogous conditions – equations (B.18) and (B.19) – can be found in Jenish and Prucha

(2009). Leung (2022) provides an example data generating process of spatial networks that

satisfies Assumption 8.
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Define

ΩM = ∆ehw,M + ∆spatial,M −∆E,M −∆ES,M , (27)

where

∆ehw,M =
1

|DM |
∑
i∈DM

E
[
qi(Xi, θ

∗
M )qi(Xi, θ

∗
M )′|z

]
, (28)

∆E,M =
1

|DM |
∑
i∈DM

E
[
qi(Xi, θ

∗
M )|z

]
E
[
qi(Xi, θ

∗
M )|z

]′
, (29)

∆spatial,M =
1

|DM |
∑
i∈DM

∑
j∈DM ,j 6=i

E
[
qi(Xi, θ

∗
M )qj(Xj , θ

∗
M )′|z

]
, (30)

∆ES,M =
1

|DM |
∑
i∈DM

∑
j∈DM ,j 6=i

E
[
qi(Xi, θ

∗
M )|z

]
E
[
qj(Xj , θ

∗
M )|z

]′
. (31)

Denote

R∗M = ED

[
∇θqi(Xi, θ

∗
M )
]

and

VM =
(
R∗M

′ΨMR
∗
M

)−1
R∗M

′ΨMΩMΨMR
∗
M

(
R∗M

′ΨMR
∗
M

)−1
, (32)

where Ψ̂−ΨM
p→ 0.

Theorem 4.2 Under Assumptions 1-8, and Assumption A.1 in Appendix A, if either equa-

tions (4)-(6) or equations (12) and (13) are correctly modeled,

V
−1/2
M

√
|DM |(θ̂ − θ∗M )

d→ N (0, Ik).

Let us compare ΩM with the middle term of the variance-covariance matrix in Xu and
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Wooldridge (2022):2

SM =∆ehw,M (θ∗M ) + ρuM∆cluster,M (θ∗M ) + ρuMρcM∆spatial,M (θ∗M )

− ρuMρcM∆E,M − ρuMρcM∆EC,M − ρuMρcM∆ES,M (33)

ΩM echos SM without explicit cluster partition. The key difference is that the composite

sampling probabilities ρuMρcM are equal to one, since we acquire the entire population here

to estimate the population spillover effect and the direct treatment effect. In addition, the

extra terms, ∆E,M and ∆ES,M are only conditional on observed attributes but not potential

outcomes. According to the guidance in Xu and Wooldridge (2022), with the consideration

of interference, we need to make inference robust to spatial correlation.

As a common approach to adjust the variance estimator for spatial correlation, the

usual spatial heteroskedasticity and autocorrelation consistent (SHAC) variance estimator

is defined as

Ṽ =
(
R̂′Ψ̂R̂

)−1
R̂′Ψ̂Ω̃(θ̂)Ψ̂R̂

(
R̂′Ψ̂R̂

)−1
,

where

R̂ =
1

|DM |
∑
i∈DM

∇θqi(Xi, θ̂)

and

Ω̃(θ) =
1

|DM |

∞∑
s=0

ω
( s

bM

) ∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

qi(Xi, θ)qj(Xj , θ)
′.

I impose the following assumption for the estimation of the variance-covariance matrix.

Assumption 9 The weights satisfy:

(i) ω(0) = 1, ω
(
s
bM

)
= 0 for any s > bM ,

∣∣ω( s
bM

)∣∣ <∞, ∀ M ;

2Please see Xu and Wooldridge (2022) for detailed explanation of notation.
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(ii)
∞∑
s=1

∣∣∣ω( s

bM

)
− 1
∣∣∣sd−1κ̃

1−2/p
M,s → 0;

(iii)

1

|DM |2
∑
i∈DM

∞∑
s=1

sd−1 max
j∈DM ,s≤ρ(i,j)<s+1

∣∣N (i; bM )
∣∣2κ̃1−4/p

M,s → 0

as M → ∞, where bM = o
(
|DM |1/2d

)
and p > 4 is that appears in Assumption A.1 in

Appendix A.

Assumption 9(ii) is a high-level condition, which requires that the kernel weights ω
(
s
bM

)
converge to one sufficiently fast as M → ∞. Assumption 9(iii) regulates the growth rate

of the bandwidth {bM}.

Theorem 4.3 Under Assumptions 4-9, and Assumption A.1 in Appendix A,

Ṽ − (VM + VE)
p→ 0,

where

VE =
(
R∗M

′ΨMR
∗
M

)−1
R∗M

′ΨMΩEΨMR
∗
M

(
R∗M

′ΨMR
∗
M

)−1

and

ΩE =
1

|DM |

∞∑
s=0

ω
( s
bM

) ∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

E
[
qi(Xi, θ

∗
M )|z

]
E
[
qj(Xj , θ

∗
M )|z

]′
.

Remark 1 The usual SHAC variance estimator is generally conservative for the condi-

tional SHAC variance-covariance matrix.

Remark 1 is similar to Remark 3 in Xu and Wooldridge (2022) without sampling consid-

eration. The conservativeness of the usual variance estimator for conditional variance has
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also been investigated in Abadie et al. (2014) under the independence assumption for the

heteroskedasticity-robust variance matrix. I extend it to the case with spatial correlation

here.

That said, I would like to highlight a few points. First, because Ω̃(θ̂) is a conservative

estimator for ΩM , even if we choose ΨM as the optimal weighting matrix Ω−1
M , using

Ψ̂ = Ω̃(θ̂) in estimation is not going to achieve the most efficient GMM estimator. The

usual variance estimator is therefore conservative not only because of the neglect of the

additional terms in the variance-covariance matrix but also because the optimal weighting

matrix is not consistently estimated. Of course, when the model is just identified, the

weighting matrix choice is irrelevant.

Second, unlike the finite population variance-covariance matrix in Xu and Wooldridge

(2022), the conditional SHAC variance matrix is consistently estimable because it is no

longer conditional on the unobserved potential outcomes. There are different approaches

we can take. However, since the usual SHAC variance estimator is known to suffer from

downward bias especially when the spatial correlation is high, it is not always necessary to

estimate the smaller conditional variance matrix.

5 Different Approaches to Dimension Reduction

Manski (2013) and Basse and Airoldi (2018) formally point out that there exist no consis-

tent treatment effect estimators under arbitrary interference. It is therefore necessary to

make dimension reduction assumptions about the interference structure in order to iden-

tify meaningful treatment effect parameters. There are different approaches to dimension

reduction in the literature; see, for instance, Auerbach and Tabord-Meehan (2021), Agar-

wal, Cen, Shah, and Yu (2022), Emmenegger, Spohn, and Bühlmann (2022), and Qu,

Xiong, Liu, and Imbens (2022). In this paper, I provide an overview of some of the leading
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approaches in the literature and show how the recent literature development relates to

our general framework. Each article referenced proposes different estimation methods for

various causal effect estimands. Our focus here is to compare the different approaches to

modeling spillover effect.3

5.1 Partial Interference

The most popular approach to dimension reduction of the interference structure is partial

interference restricted within disjoint clusters. In Qu et al. (2022), their potential outcome

function is modeled as4

yc,i(wc,i,wc,(i),1, · · · ,wc,(i),m) ≡ yc,i(wc,i, gc,1, · · · , gc,m), (34)

where c is the index of a cluster, yc,i and wc,i is the potential outcome and treatment

assignment of unit i in cluster c, and wc,(i),j is the treatment assignment of unit i’s neighbors

in the disjoint subset j of cluster c. Units within each of the m disjoint subsets are

exchangeable. As a result, the impact of wc,(i),j can be summarized by gc,j , which measures

the number of treated neighbors in subset j of cluster c. Compared with the assumption

of fully exchangeable neighbors in cluster c, the partition of m subsets allows for more

heterogeneity of neighbors’ influence and hence a more flexible interference structure.

If (34) is correctly specified, we can choose K to be maxc=1,...,C maxi,j∈c ρ(i, j). Given

bounded cluster sizes, K is finite. For all s > K and any i, yi(W )−yi(W i,s) = 0. Therefore,

potential outcomes in the form of (34) can be accommodated in the approach we take. A

trickier question is how to partition the m subsets within each cluster c. On top of that,

partial interference might be too strong an assumption. If either the exchangeability or the

3It is not supposed to be a comprehensive survey.
4The potential outcome is defined for a single cross section.

28



partial interference assumption does not hold, our approach can still identify the expected

exposure effect as long as the interference from units further away is increasingly negligible.

5.2 Immediate Neighbors

A slightly different approach to dimension reduction is to restrict interference within im-

mediate neighbors. For instance, in Emmenegger et al. (2022), the spillover function is

specified as (
f1({wj}j∈DM ,j 6=i), · · · , f r({wj}j∈DM ,j 6=i)

)
(35)

of fixed dimensions r. Each such function is specified by empirical researchers and describes

a one-dimensional spillover effect that unit i receives from its neighbors. In Example 2.1

in Emmenegger et al. (2022), the functions f l has been specified as the average number of

treated neighbors of unit i and the average number of treated neighbors of neighbors of i,

respectively, for r = 2. In this case, if we define neighbors of i as units within distance K̄

from i, then ANI holds for any s > 2K̄.

In Agarwal et al. (2022), they impose network SUTVA, i.e., the potential outcome only

depends on treatment assigned to the unit’s neighbors but not other units outside the

neighborhood. In addition, they assume interference is additive across neighbors. Their

potential outcome is therefore modeled as

yit({wj}j∈N (i,K)) =
∑

k∈N (i,K)

u′k,ilwk,t + εit, (36)

where u and l represents r-dimensional latent factors and ε is the error term. Factor

analysis is apparently different from our estimation methods. Nevertheless, ANI holds for

any s > K.

Equations (34) and (35) have recently been proposed in the literature allowing for a
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more flexible interference structure. The purpose of the discussion is to show that if empir-

ical researchers assume these specifications of the spillover function are correct, they can

be well accommodated in our framework. Even if some dimension reduction assumptions

fail, applied researchers are still able to identify causal estimands as long as ANI is true.

5.3 Local Configuration

A more interesting discussion is the comparison of the local configuration approach pro-

posed by Auerbach and Tabord-Meehan (2021) and ANI. In a spatial setting, unit i’s local

configuration of radius r, denoted by Gri , refers to the units within the distance r of i

and their characteristics. Units within a local configuration remain anonymous, similar

to the exchangeability assumption. ANI and the expected exposure mapping are initially

proposed to allow for misspecification of the spillover function. The local configuration

approach instead assumes the correct specification of the spillover function, but uses local

configurations of various radiuses r to approximate the effective treatment according to the

spillover function. Below, I provide another interpretation of the ANI assumption. Under

correct specification of the spillover function, the ANI approach is not too different from

the local configuration approach.

According to the metric definition in Auerbach and Tabord-Meehan (2021), for effective

treatment g and g̃, if d(g, g̃) ≤ 1
1+r then Gri = G̃ri . Under Assumption 4.5 there,

∣∣h(g0)− h(g̃)
∣∣ ≤ φ(d(g0, g̃)

)
, (37)

where φ(x) → 0 as x → 0, h(g) = E[h(g, Ui)], and Yi = h(Gi, Ui). Therefore, we can see

that (37) goes to 0 as r →∞, which is analogous to the ANI assumption in Leung (2022).

sup
M

max
i∈DM

E

[∣∣Yi(W )− Yi
(
W (i,r)

)∣∣]→ 0, as r →∞ (38)
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Examples 2.1 and 2.2 in Auerbach and Tabord-Meehan (2021) are essentially examples

of Sections 5.1 and 5.2, and hence I focus on their Example 2.3 – the linear-in-means peer

effects model. Assuming correct specification,

Yi = α+ δ
1

ni

∑
j∈Pi

Yj +Wiγ + ei,

where Pi is the peer group of unit i with size ni. As usual, |δ| < 1. The reduced form of

the potential outcome is solved to be

Yi = lim
S→∞

S∑
s=1

hs(G
s
i , Ui) = h(Gi, Ui).

for some functions hs and h. Hence, for d(g, g̃) ≤ 1
1+r ,

∣∣h(g)− h(g̃)
∣∣ ≤ C|β|r for some |β| < 1,

which is exactly the ANI coefficient given in Proposition 1 in Leung (2022).5

Therefore, under correct specification of the spillover function, if we choose a large

enough r neighborhood, the ANI approach can be thought of as using the units with the

effective treatment closest to the actual effective treatment g to estimate the policy effect.

6 Multiple Time Periods with Common Treatment Timing

Extension to multiple time periods is straightforward. With common treatment timing,

the simplest approach is to aggregate the time periods prior to and post treatment into a

single time period, again denoted t = 1, 2. With the aggregated data, we can directly apply

5I refer the readers to Auerbach and Tabord-Meehan (2021) for the introduction to notation and more
detailed derivation.
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the results above. Alternatively, we might be interested in the EDATT at different time

periods. Denote the time periods by {−T , . . . ,−1, 0, 1, . . . , T}. Without loss of generality,

suppose treatment starts at t = 2. For any t ≥ 2, the EDATT at time period t at exposure

level g is defined as

τt(g) =
1

|DM |
∑
i∈DM

E
[
yit(1,w−i)− yit(0,w−i)|Wi = 1, Gi = g, zi

]
(39)

Spillover effects at time period t can be defined analogously.

It is worth discussing different ways to formalize the parallel trends assumption. We

can either pick one time period before treatment, say t = 1, as the comparison time period.

Or, we can use the average potential outcomes across the time periods prior to treatment

as a comparison. The latter can potentially improve efficiency since data from more time

periods are used in estimation. On the other hand, if the parallel trends assumption only

holds for the time periods closest to the treatment period, the second approach is less

robust. Hence, there is a typical robustness and efficiency tradeoff.

Other than the slight modification of the estimands of interest, the estimation and

asymptotic properties remain the same as long as we contrast the appropriate time periods,

for instance, using data from any t ≥ 2 and t = 1. This way, we can estimate the dynamic

treatment effects when the duration under treatment progresses.

7 Conclusion

I propose doubly robust estimators for the expected direct treatment effect and spillover

effect in a DID context. Our approach is general in the sense that misspecification of

exposure mapping is allowed and interference is not restricted within a fixed boundary of

neighborhoods. Given arbitrary spillover effect, one needs to account for spatial correla-

32



tion when conducting inference. With the entire population observed, the usual spatial

correlation robust variance estimator could be conservative.

If one is interested in estimating the spillover effect in the sample or the spillover is

restricted within clusters, the current framework can be extended to incorporate sampling

from a finite population, which is the setup adopted by Xu and Wooldridge (2022). With

sampling, we need to consider pooled cross sections along with panel data, which are the

two types of datasets DID can be applied to. Another difference would be inference, since

now sampling probabilities also play a role.

Since the limit theorems from Kojevnikov et al. (2021) are applied to derive the asymp-

totic distribution, our analysis can be extended to DID with interference in network data.

Given the inclusion of neighbors’ treatments and attributes in the propensity score and

the conditional mean functions, nonparametric estimation is attractive to allow for arbi-

trary functional forms. This is left as future work. In a follow-up research, I extend the

framework to multiple time periods with uncommon timing of treatment adoption.

References

Abadie, A. (2005), Semiparametric difference-in-differences estimators. The review of eco-

nomic studies 72(1), 1–19.

Abadie, A., Imbens, G.W., and Zheng, F. (2014), Inference for misspecified models with

fixed regressors. Journal of the American Statistical Association 109(508), 1601–1614.

Agarwal, A., Cen, S., Shah, D., and Yu, C.L. (2022), Network synthetic interventions:

A framework for panel data with network interference. Tech. rep., arXiv preprint

arXiv:2210.11355.

33



Arkhangelsky, D., Imbens, G.W., Lei, L., and Luo, X. (2021), Double-robust two-way-

fixed-effects regression for panel data. Tech. rep., arXiv preprint arXiv:2107.13737.

Aronow, P.M. and Samii, C. (2017), Estimating average causal effects under general in-

terference, with application to a social network experiment. Annals of Applied Statistics

11(4), 1912–1947.

Athey, S. and Imbens, G.W. (2022), Design-based analysis in difference-in-differences set-

tings with staggered adoption. Journal of Econometrics 226(1), 62–79.

Auerbach, E. and Tabord-Meehan, M. (2021), The local approach to causal inference under

network interference. Tech. rep., arXiv preprint arXiv:2105.03810.

Basse, G.W. and Airoldi, E.M. (2018), Limitations of design-based causal inference and

a/b testing under arbitrary and network interference. Sociological Methodology 48(1),

136–151.

Butts, K. (2021), Difference-in-differences estimation with spatial spillovers. Tech. rep.,

arXiv preprint arXiv:2105.03737.

Clarke, D. (2017), Estimating difference-in-differences in the presence of spillovers. Tech.

rep., MPRA Paper No. 81604.

Delgado, M.S. and Florax, R.J. (2015), Difference-in-differences techniques for spatial data:

Local autocorrelation and spatial interaction. Economics Letters 137, 123–126.

Di Tella, R. and Schargrodsky, E. (2004), Do police reduce crime? estimates using the

allocation of police forces after a terrorist attack. American Economic Review 94(1),

115–133.

34
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Jin, Y. and Rothenhäusler, D. (2023), Tailored inference for finite populations: conditional

validity and transfer across distributions. Biometrika p. asad022.

Kojevnikov, D., Marmer, V., and Song, K. (2021), Limit theorems for network dependent

random variables. Journal of Econometrics 222(2), 882–908.

Leung, M.P. (2022), Causal inference under approximate neighborhood interference. Econo-

metrica 90(1), 267–293.

Man, Y., Sant’Anna, P.H., Sasaki, Y., and Ura, T. (2023), Doubly robust estimators with

weak overlap. Tech. rep., arXiv preprint arXiv:2304.08974.

Manski, C.F. (1993), Identification of endogenous social effects: The reflection problem.

The review of economic studies 60(3), 531–542.

Manski, C.F. (2013), Identification of treatment response with social interactions. The

Econometrics Journal 16(1), S1–S23.

Newey, W.K. (1991), Uniform convergence in probability and stochastic equicontinuity.

Econometrica 59, 1161–1167.

Newey, W.K. and McFadden, D. (1994), Large sample estimation and hypothesis testing.

Handbook of Econometrics 4, 2111–2245.

Ning, Y., Peng, S., and Tao, J. (2020), Doubly robust semiparametric difference-

in-differences estimators with high-dimensional data. Tech. rep., arXiv preprint

arXiv:2009.03151.

Qu, Z., Xiong, R., Liu, J., and Imbens, G. (2022), Efficient treatment effect estimation in

observational studies under heterogeneous partial interference. Tech. rep., arXiv preprint

arXiv:2107.12420.

36



Rambachan, A. and Roth, J. (2022), Design-based uncertainty for quasi-experiments. Tech.

rep., arXiv preprint arXiv:2008.00602.

Rambachan, A. and Roth, J. (2023), A more credible approach to parallel trends. Review

of Economic Studies p. rdad018.

Roth, J. (2022), Pretest with caution: Event-study estimates after testing for parallel

trends. American Economic Review: Insights 4(3), 305–22.

Roth, J. and Sant’Anna, P.H. (2023), When is parallel trends sensitive to functional form?

Econometrica 91(2), 737–747.

Sant’Anna, P.H. and Zhao, J. (2020), Doubly robust difference-in-differences estimators.

Journal of Econometrics 219(1), 101–122.
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A Regularity Conditions for the GMM Estimator

Definition 2 The random function gi(Xi, θ) is said to be Lipschitz in the parameter θ on

Θ if there is h(u) ↓ 0 as u ↓ 0 and b(·) : W → R such that supM,i∈DM
E
[
|bi(Xi)|

]
< ∞,

and for all θ̃, θ ∈ Θ,
∣∣gi(Xi, θ̃)− gi(Xi, θ)

∣∣ ≤ bi(Xi)h(‖θ̃ − θ‖), i ∈ DM ,M ≥ 1.

Assumption A.1 (i) Ψ̂ − ΨM
p→ 0, where ΨM is positive semidefinite; (ii) Θ is com-

pact; (iii) let QM (θ) = ED

[
qi(Xi, θ)

]′
ΨED

[
qi(Xi, θ)

]
. {QM (θ)} has identifiably unique

minimizers {θ∗M} on Θ as in Definition 3.2 in Gallant and White (1988); (iv) qi(Xi, θ)
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is continuously differentiable on int(Θ), ∀ i,M ; (v) qi(Xi, θ) is Lipschitz in θ on Θ; (vi)

supM,i∈DM
E
[

supθ∈Θ ‖qi(Xi, θ)‖p
∣∣z] <∞ for some p > 4; (vii) θ∗M ∈ int(Θ) uniformly in

M , and ED
[
qi(Xi, θ

∗
M )
]

= 0; (viii) infM λmin(ΩM ) > 0, where λmin(·) is the smallest eigen-

value; (ix) ∇θqi(Xi, θ) is Lipschitz in θ on Θ; (x) supM,i∈DM
E
[

supθ∈Θ ‖∇θqi(Xi, θ)‖2
∣∣z] <

∞; (xi) R∗M
′ΨMR

∗
M is nonsingular; (xii) for each θ ∈ Θ, let fi(Xi, θ) be a generic function

standing for each element of either qi(Xi, θ) or ∇θqi(Xi, θ). fi(Xi, θ) is Lipschitz in Xi on

the domain of Xi such that supM,i∈DM
Lip(fi) <∞ and supM,i∈DM

‖fi‖∞ <∞.

Notice that a necessary condition for Assumption A.1(xii) is supM,i∈DM
|Yit| ≤ C <∞ and

supM,i∈DM
‖zi‖ ≤ C < ∞, which can often imply Assumption A.1(vi) and (x). Hence, in

the proofs below, I maintain the assumption that Yit and zi are bounded.

B Proofs

Proof of Proposition 3:

Identification of the doubly robust estimand:

When the propensity scores are correctly specified, η(z) = p(z), η1g(z) = π1g(z), and

η0g(z) = π0g(z).

E

[
Wi

p(zi)

(
1{Gi = g}
π1g(zi)

(
Yi2 −mi2,1g(zi)

)
−
(
Yi1 −mi1,1(zi)

))∣∣∣∣zi
]

=E

[
Wi

p(zi)

(
1{Gi = g}
π1g(zi)

(
Yi2 −mi2,1g(zi)

)
−
(
Yi1 −mi1,1(zi)

))∣∣∣∣zi,Wi = 1

]
P (Wi = 1|zi)

=E

[
1{Gi = g}
π1g(zi)

(
Yi2 −mi2,1g(zi)

)∣∣∣∣zi,Wi = 1, Gi = g

]
P (Gi = g|Wi = 1, zi)

−E
(
Yi1 −mi1,1(zi)

)∣∣zi,Wi = 1
)

=E(Yi2|zi,Wi = 1, Gi = g)−E(Yi1|zi,Wi = 1)−
[
mi2,1g(zi)−mi1,1(zi)

]
(B.1)

38



Similarly,

E

[
1−Wi

1− p(zi)

(
1{Gi = g}
π0g(zi)

(
Yi2 −mi2,0g(zi)

)
−
(
Yi1 −mi1,0(zi)

))∣∣∣∣zi
]

=E(Yi2|zi,Wi = 0, Gi = g)−E(Yi1|zi,Wi = 0)−
[
mi2,0g(zi)−mi1,0(zi)

] (B.2)

Hence,

E

[
Wi

p(zi)

(
1{Gi = g}
π1g(zi)

(
Yi2 −mi2,1g(zi)

)
−
(
Yi1 −mi1,1(zi)

))∣∣∣∣zi
]

−E

[
1−Wi

1− p(zi)

(
1{Gi = g}
π0g(zi)

(
Yi2 −mi2,0g(zi)

)
−
(
Yi1 −mi1,0(zi)

))∣∣∣∣zi
]

+ ∆mi2,g(zi)−∆mi1(zi)

=E(Yi2|zi,Wi = 1, Gi = g)−E(Yi1|zi,Wi = 1)−
[
E(Yi2|zi,Wi = 0, Gi = g)−E(Yi1|zi,Wi = 0)

]
−
([
mi2,1g(zi)−mi1,1(zi)

]
−
[
mi2,0g(zi)−mi1,0(zi)

])
+ ∆mi2,g(zi)−∆mi1(zi)

=E
[
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = g, zi

]
(B.3)

When conditional means are correctly specified, mit,wg(z) = µit,wg(z) and mit,w(z) =

µit,w(z).

E

[
Wi

η(zi)

(
1{Gi = g}
η1g(zi)

(
Yi2 − µi2,1g(zi)

)
−
(
Yi1 − µi1,1(zi)

))∣∣∣∣zi
]

=E

[
Wi

η(zi)

(
1{Gi = g}
η1g(zi)

(
Yi2 − µi2,1g(zi)

)
−
(
Yi1 − µi1,1(zi)

))∣∣∣∣zi,Wi = 1

]
P (Wi = 1|zi)

=
p(zi)

η(zi)
E

[
1{Gi = g}
η1g(zi)

(
Yi2 − µi2,1g(zi)

)∣∣∣∣zi,Wi = 1, Gi = g

]
P (Gi = g|zi,Wi = 1)

− p(zi)

η(zi)
E
(
Yi1 − µi1,1(zi)

∣∣zi,Wi = 1
)

=
p(zi)

η(zi)

π1g(zi)

η1g(zi)

[
E(Yi2|zi,Wi = 1, Gi = g)− µi2,1g(zi)

]
− pi(zi)

η(zi)

[
E(Yi1|zi,Wi = 1)− µi1,1(zi)

]
= 0

(B.4)
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Analogously,

E

[
1−Wi

1− η(zi)

(
1{Gi = g}
η0g(zi)

(
Yi2 − µi2,0g(zi)

)
−
(
Yi1 − µi1,0(zi)

))∣∣∣∣zi
]

= 0 (B.5)

As a result,

E

[
Wi

η(zi)

(
1{Gi = g}
η1g(zi)

(
Yi2 − µi2,1g(zi)

)
−
(
Yi1 − µi1,1(zi)

))∣∣∣∣zi
]

−E

[
1−Wi

1− η(zi)

(
1{Gi = g}
η0g(zi)

(
Yi2 − µi2,0g(zi)

)
−
(
Yi1 − µi1,0(zi)

))∣∣∣∣zi
]

+ ∆µi2,g(zi)−∆µi1(zi)

=∆µi2,g(zi)−∆µi1(zi)

=E
[
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = g, zi

]
(B.6)

Proof of Lemma 4.1:

Let fi(·) be a generic function standing for each element of either qi(Xi, θ) or∇θqi(Xi, θ).

Denote f
(r)
i = fi

(
X

(r)
i

)
= fi

(
yit
(
W (i,r,0)

)
, G
(
i,W

(i,r,0)
−i

)
,Wi, zi

)
. First, for s ≤ 3 max{K, 1},

we have

|Cov(fi, fj)| ≤ 2 sup
M,i∈DM

‖fi‖2∞ ≤ C1 <∞ (B.7)

Next, consider s > 3 max{K, 1}.

|Cov(fi, fj)| = |Cov(fi − f (s/3)
i + f

(s/3)
i , fj)|

≤|Cov(fi − f (s/3)
i , fj)|+ |Cov(f

(s/3)
i , fj − f (s/3)

j )|+ |Cov(f
(s/3)
i , f

(s/3)
j )|

≤2 ‖fj‖∞E
[∥∥fi − f (s/3)

i

∥∥∣∣∣z]+ 2 ‖fi‖∞E
[∥∥fj − f (s/3)

j

∥∥∣∣∣z]+
∣∣∣Cov(f (s/3)

i , f
(s/3)
j

)∣∣∣
(B.8)
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For the first two terms in equation (B.8),

‖fj‖∞E
[∥∥fi − f (s/3)

i

∥∥∣∣∣z]+ ‖fi‖∞E
[∥∥fj − f (s/3)

j

∥∥∣∣∣z]
≤2 sup

M,i∈DM

‖fi‖∞ sup
M,i∈DM

Lip(fi) sup
M,i∈DM

E

[∥∥Xi −X(s/3)
i

∥∥∣∣∣z]. (B.9)

Since s/3 ≥ K,

(
Yi1, yi2

(
W (i,s/3,0)

)
, G
(
i,W

(i,s/3,0)
−i

)
,Wi, zi

)
=
(
Yi1, yi2

(
W (i,s/3,0)

)
, G
(
i,W−i

)
,Wi, zi

)
.

As a result,

E

[∥∥Xi −X(s/3)
i

∥∥∣∣∣z] = E

[
yi2(W )− yi2

(
W (i,s/3,0)

)∣∣z] ≤ κM (s/3). (B.10)

For any fixed s, f
(s/3)
i is α-mixing under Assumption 6. By Proposition 2.2 in Ko-

jevnikov et al. (2021), the last term in equation (B.8) is bounded by

C2α
f (s/3)(1, 1, s) ≤ C2α

ε
M

(
C3

(s
3

)d
, C3

(s
3

)d
,
s

3

)
. (B.11)

Putting these together, equation (B.8) is bounded by

C
(
κM (s/3) + sdα̂εM (s/3)

)
. (B.12)

Proof of Theorem 4.2:

I prove the theorem by verifying Theorem 2.1 and Theorem 3.2 in Newey and McFadden

(1994). I first show θ̂ − θ∗M
p→ 0.
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Under Assumption A.1(vi) and Assumption 7

1

|DM |
∑
i∈DM

qi(Xi, θ)−ED
[
qi(Xi, θ)

] p→ 0 (B.13)

follows from Lemma 4.1 and Theorem 3.1 in Kojevnikov et al. (2021). Next,

sup
θ∈Θ

∥∥∥∥∥∥ 1

|DM |
∑
i∈DM

qi(Xi, θ)−ED
[
qi(Xi, θ)

]∥∥∥∥∥∥ p→ 0 (B.14)

follows from Corollary 3.1 in Newey (1991) and equation (B.13) under condition (v). Also,

ED

[
qi(Xi, θ)

]
is uniformly equicontinuous. Let

Q̂(θ) =
1

|DM |
∑
i∈DM

qi(Xi, θ)
′Ψ̂

1

|DM |
∑
i∈DM

qi(Xi, θ).

Finally, we need to show

sup
θ∈Θ
|Q̂(θ)−QM (θ)| p→ 0 (B.15)

and QM (θ) is uniformly equicontinuous. The proof of equation (B.15) and the equicon-

tinuity is standard. One can follow, for instance, the proof of Theorem 3 in Jenish and

Prucha (2012).

Next, I prove the asymptotic normality. The key steps are to prove

Ω
−1/2
M

1√
|DM |

∑
i∈DM

qi(Xi, θ
∗
M )

d→ N (0, Ik) (B.16)

and

sup
θ∈Θ

∥∥∥∥∥∥ 1

|DM |
∑
i∈DM

∇θqi(Xi, θ)−ED
[
∇θqi(Xi, θ)

]∥∥∥∥∥∥ p→ 0. (B.17)

Equation (B.16) is implied by Theorem 3.2 in Kojevnikov et al. (2021), Lemma 4.1, and
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the Cramer-Wold device under Assumption A.1(vi) and (viii) and Assumption 8. By anal-

ogous argumentation for the proof of consistency, equation (B.17) holds under Assumption

A.1(ix) and (x).

Proof of Theorem 4.3:

Using analogous arguments in the proof of Theorem 4.2, R̂ − R∗M
p→ 0. The key step

is to show that Ω̃(θ̂)− ΩM − ΩE
p→ 0.

Notice that

ΩM =
1

|DM |
∑
i∈DM

∑
j∈DM

E
{(

qi(Xi, θ
∗
M )− E

[
qi(Xi, θ

∗
M )|z

])
·
(
qj(Xj , θ

∗
M )− E

[
qj(Xj , θ

∗
M )|z

])′∣∣∣z}
=

1

|DM |
∑
i∈DM

∑
j∈DM

E
(
q̃i(Xi, θ

∗
M )q̃j(Xj , θ

∗
M )′
)
, (B.18)

where

q̃i(Xi, θ
∗
M ) = qi(Xi, θ

∗
M )− E

[
qi(Xi, θ

∗
M )|z

]
(B.19)

with E
[
q̃i(Xi, θ

∗
M )|z

]
= 0.

Since any sequence of symmetric matrices {AN} converges to a symmetric matrix {A0}

if and only if c′ANc → c′A0c for any vectors c, we can reach our conclusion by taking

an arbitrary linear combination of qi(Xi, θ). From now on, we focus on the case of scalar

qi(Xi, θ).

∥∥∥Ω̃(θ̂)− ΩM − ΩE

∥∥∥ ≤ ∥∥∥Ω̃(θ̂)− Ω̃(θ∗M )
∥∥∥+

∥∥∥Ω̃(θ∗M )− ΩM − ΩE

∥∥∥ . (B.20)

For the first term in the right hand side of (B.20), take a mean value expansion of Ω̃(θ̂)

around θ∗M . Let θ̌ denote the mean value from this expansion.

|Ω̃(θ̂)− Ω̃(θ∗M )|
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=

∣∣∣∣∣(θ̂ − θ∗M )
1

|DM |

∞∑
s=0

ω
( s

bM

) ∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

[
∇θqi(Xi, θ̌)qj(Xj , θ̌) + qi(Xj , θ̌)∇θqj(Xj , θ̌)

]∣∣∣∣∣
≤C1

∣∣√|DM |(θ̂ − θ∗M )
∣∣ 1

|DM |3/2

bM∑
s=1

∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

sup
θ∈Θ

∣∣∇θqi(Xi, θ)qj(Xj , θ)
∣∣

≤C
∣∣√|DM |(θ̂ − θ∗M )

∣∣ 1√
|DM |

bM∑
s=1

sd−1 1

|DM |
∑
i∈DM

sup
θ∈Θ

∣∣∇θqi(Xi, θ)qj(Xj , θ)
∣∣ (B.21)

Since

E
[ 1

|DM |
∑
i∈DM

sup
θ∈Θ

∣∣∇θqi(Xi, θ)qj(Xj , θ)
∣∣∣∣∣z] ≤ sup

M,i∈DM

E
[

sup
θ∈Θ

∣∣∇θqi(Xi, θ)qj(Xj , θ)
∣∣∣∣∣z]

≤ sup
M,i∈DM

E
[

sup
θ∈Θ

∣∣∇θqi(Xi, θ)
∣∣2∣∣∣z]1/2

· sup
M,i∈DM

E
[

sup
θ∈Θ

∣∣qi(Xi, θ)
∣∣2∣∣∣z]1/2

<∞, (B.22)

1

|DM |
∑
i∈DM

sup
θ∈Θ

∣∣∇θqi(Xi, θ)qj(Xj , θ)
∣∣ = Op(1) (B.23)

by Markov’s inequality. Given bM = o
(
|DM |1/2d

)
, 1√
|DM |

∑bM
s=1 s

d−1 = o(1). Also,
√
|DM |(θ̂−

θ∗M ) = Op(1) by Theorem 4.2. Hence, |Ω̃(θ̂)− Ω̃(θ∗M )| = op(1).

Let

Ω̌M =
1

|DM |

∞∑
s=0

ω
( s

bM

) ∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

q̃i(Xi, θ
∗
M )q̃j(Xj , θ

∗
M ). (B.24)

Applying Proposition 4.1 in Kojevnikov et al. (2021), we have

∥∥Ω̌M − ΩM

∥∥ = op(1). (B.25)
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What is left is to show

∥∥∥Ω̃(θ∗M )− ΩE − Ω̌M

∥∥∥
≤2

∥∥∥∥∥∥ 1

|DM |

∞∑
s=0

ω
( s

bM

) ∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

E
[
qj(Xj , θ

∗
M )|z

]
q̃i(Xi, θ

∗
M )

∥∥∥∥∥∥
=op(1).

(B.26)

Let Bi =
∑∞

s=0 ω
(
s
bM

)∑
j∈DM ,s≤ρ(i,j)<s+1E

[
qj(Xj , θ

∗
M )|z

]
.

∥∥∥∥∥∥ 1

|DM |

∞∑
s=0

ω
( s

bM

) ∑
i∈DM

∑
j∈DM ,s≤ρ(i,j)<s+1

E
[
qj(Xj , θ

∗
M )|z

]
q̃i(Xi, θ

∗
M )

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥ 1

|DM |
∑
i∈DM

q̃i(Xi, θ
∗
M )Bi

∥∥∥∥∥∥
2

≤
[ 1

|DM |2
∑
i∈DM

E
(
q̃i(Xi, θ

∗
M )2|z

)
B2
i +

1

|DM |2
∑
i∈DM

∑
j∈DM ,j 6=i

E
(
q̃i(Xi, θ

∗
M )q̃j(Xj , θ

∗
M )|z

)
BiBj

]1/2

≤
[ C1

|DM |
b2dM +

C2

|DM |2
∑
i∈DM

∞∑
s=1

∑
j∈DM ,s≤ρ(i,j)<s+1

κ̃M,sBiBj

]1/2

≤
[
o(1) +

C2

|DM |

∞∑
s=1

sd−1b2dM κ̃M,s

]1/2
= o(1). (B.27)

Hence, equation (B.26) follows from Markov’s inequality. Theorem 4.3 follows by continuity

of matrix inversion and multiplication.

C Online Appendix

C.1 Additional Proofs

Proof of Proposition 1:
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Compare the native DID estimand with EDATT:

τ =
∑
g∈G

τ(g)P (Gi = g|Wi = 1, zi)

=
∑
g∈G

E
[
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = g, zi

]
P (Gi = g|Wi = 1, zi)

=
∑
g∈G

{
E
(
yi2(1,w−i)|Wi = 1, Gi = g, zi

)
−E

(
yi1(0, 0)|Wi = 1, zi

)
−
[
E
(
yi2(0,w−i)|Wi = 0, Gi = g, zi

)
−E

(
yi1(0, 0)|Wi = 0, zi

)]}
P (Gi = g|Wi = 1, zi)

=
∑
g∈G

E(Yi2|Wi = 1, Gi = g, zi)P (Gi = g|Wi = 1, zi)−E(Yi1|Wi = 1, zi)

−
[∑
g∈G

E(Yi2|Wi = 0, Gi = g, zi)P (Gi = g|Wi = 1, zi)−E(Yi1|Wi = 0, zi)
]

(C.1)

τcanonic =E(Yi2 − Yi1|Wi = 1, zi)−E(Yi2 − Yi1|Wi = 0, zi)

=
∑
g∈G

E(Yi2|Wi = 1, Gi = g, zi)P (Gi = g|Wi = 1, zi)−E(Yi1|Wi = 1, zi)

−
[∑
g∈G

E(Yi2|Wi = 0, Gi = g, zi)P (Gi = g|Wi = 0, zi)−E(Yi1|Wi = 0, zi)
]

(C.2)

Proof of Proposition 2:

τ =
∑
g∈G

E
[
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = g, zi

]
P (Gi = g|Wi = 1, zi)

=
∑
g∈G

∑
u∈U

E
[
yi2(1,w−i)− yi2(0,w−i)|Wi = 1, Gi = g, zi, ui = u

]
· P (ui = u|Wi = 1, Gi = g, zi)P (Gi = g|Wi = 1, zi)
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=
∑
g∈G

∑
u∈U

{
E
(
yi2(1,w−i)|Wi = 1, Gi = g, zi, ui = u

)
−E

(
yi1(0, 0)|Wi = 1, zi, ui

)
−
[
E
(
yi2(0,w−i)|Wi = 0, Gi = g, zi, ui

)
−E

(
yi1(0, 0)|Wi = 0, zi, ui

)]}
· P (ui = u|Wi = 1, Gi = g, zi)P (Gi = g|Wi = 1, zi)

=
∑
g∈G

∑
u∈U

E(Yi2|Wi = 1, Gi = g, zi, ui = u)P (ui = u|Wi = 1, Gi = g, zi)

· P (Gi = g|Wi = 1, zi)−
∑
u∈U

E(Yi1|Wi = 1, zi, ui = u)P (ui = u|Wi = 1, zi)

−
[∑
g∈G

∑
u∈U

E(Yi2|Wi = 0, Gi = g, zi, ui = u)P (ui = u|Wi = 1, Gi = g, zi)

· P (Gi = g|Wi = 1, zi)−
∑
u∈U

E(Yi1|Wi = 0, zi, ui = u)P (ui = u|Wi = 1, zi)
]

(C.3)

τcanonic =E(Yi2 − Yi1|Wi = 1, zi)−E(Yi2 − Yi1|Wi = 0, zi)

=
∑
g∈G

∑
u∈U

E(Yi2|Wi = 1, Gi = g, zi, ui = u)P (ui = u|Wi = 1, Gi = g, zi)

· P (Gi = g|Wi = 1, zi)−
∑
u∈U

E(Yi1|Wi = 1, zi, ui = u)P (ui = u|Wi = 1, zi)

−
[∑
g∈G

∑
u∈U

E(Yi2|Wi = 0, Gi = g, zi, ui = u)P (ui = u|Wi = 0, Gi = g, zi)

· P (Gi = g|Wi = 0, zi)−
∑
u∈U

E(Yi1|Wi = 0, zi, ui = u)P (ui = u|Wi = 0, zi)
]

(C.4)
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