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We present an approach to analyse learning outcomes in a broad class of misspecified environments,
spanning both single-agent and social learning. We introduce a novel “prediction accuracy” order
over subjective models and observe that this makes it possible to partially restore standard martingale
convergence arguments that apply under correctly specified learning. Based on this, we derive general
conditions to determine when beliefs in a given environment converge to some long-run belief either
locally or globally (i.e. from some or all initial beliefs). We show that these conditions can be applied, first,
to unify and generalize various convergence results in previously studied settings. Second, they enable us
to analyse environments where learning is “slow”, such as costly information acquisition and sequential
social learning. In such environments, we illustrate that even if agents learn the truth when they are correctly
specified, vanishingly small amounts of misspecification can generate extreme failures of learning.
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1. INTRODUCTION

1.1. Motivation and overview

Motivated in part by empirical evidence that individuals face numerous systematic cognitive biases
and limitations, a growing literature recognizes the need to enrich classic economic models of
single-agent and social learning by allowing for the possibility that agents may hold an incorrect,
simplified, or, for short, misspecified view of the data generating process. Many papers have
demonstrated how various forms of misspecification alter learning outcomes in a wide range of
economic applications, from learning about the return to effort by a worker who is overconfident
in her ability, to social learning about the quality of a new product by consumers who are incorrect
about others’ preferences.

The editor in charge of this paper was Andrea Galeotti.

Review of Economic Studies (2023) 90, 781–814
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Learning dynamics of such models tend to be non-trivial to analyse. A primary reason is that
when agents are misspecified, their belief (i.e. posterior ratio) process is no longer a martingale
(with respect to the true data generating process), so standard convergence arguments do not apply.
The analysis is further complicated by the fact that in most aforementioned settings information
depends endogenously on agents’ actions and hence may be influenced by their misspecification.1

As a result, much existing work has derived learning outcomes using approaches tailored
specifically to each application, while only recently the focus has turned to develop general tools
to analyse the asymptotics of misspecified learning dynamics (see Section 1.2 for a discussion of
related literature).

This article contributes to the latter goal by presenting an approach to analyse learning
outcomes in a broad class of misspecified environments, spanning both single-agent and social
learning. We introduce novel “prediction accuracy” orderings over subjective models that allow
one to partially restore the standard martingale convergence method. Based on this, we derive
general conditions to determine when beliefs in a given environment converge to some long-
run belief either locally or globally (i.e. from some or all initial beliefs). We show that these
conditions can be applied, first, to unify and generalize various convergence results in previously
studied settings. Second, they enable us to analyse a natural class of environments, including
costly information acquisition and sequential social learning, where learning is “slow”. In such
environments, we illustrate that even if agents learn the truth when they are correctly specified,
vanishingly small amounts of misspecification can generate extreme failures of learning.

To nest a wide range of applications and make the logic of belief convergence transparent,
Section 2 sets up an abstract environment, where agents, actions, and preferences are not explicitly
modelled. Instead, we consider a belief process μt over some set of states of the world, which
from any initial belief μ0 evolves in the following manner. Each period t =0,1,..., a signal zt is
drawn according to a true signal distribution Pμt that—capturing endogeneity of signals—may
depend on the current belief μt . Following the realization of zt , belief μt is updated to μt+1
via Bayes’ rule based on the perception that the signal distribution at each state ω and belief μt
is P̂μt (·|ω). Capturing potential misspecification, the true signal distribution need not coincide
with any of the perceived distributions. Remark 1 illustrates how leading economic models of
single-agent and social learning map into this environment.

Section 3 analyses belief convergence. We begin by introducing an order over states that
compares how well they predict the true signal distribution at any given belief: for any q>0, we
say that state ω q-dominates state ω′ at belief μ if the perceived signal distribution P̂μ(·|ω) in
state ω comes “closer” to the true distribution Pμ than does the perceived distribution P̂μ(·|ω′)
in state ω′. Here, closeness is measured using the moment-generating function (evaluated at
q) of the perceived log-likelihood ratio of states. This order refines the usual comparison
based on Kullback–Leibler (KL) divergence, which features prominently in existing analyses
of misspecified learning. A simple but key observation is that, throughout any range of beliefs
where q-dominance obtains, the qth power of the posterior ratio process becomes a non-negative
supermartingale. This allows one to locally restore standard martingale convergence arguments
from the correctly specified setting, providing a useful approach to analyse asymptotic beliefs.

Building on this observation, we derive conditions that ensure that a given point-mass belief
δω is (i) locally stable, (ii) globally stable, or (iii) unstable, in the sense that the belief process
μt converges to δω either (i) from any initial belief that is sufficiently close to δω, or (ii) from all
initial full-support beliefs, or (iii) escapes any small enough neighbourhood of δω.

1. This contrasts with a literature in statistics that studies learning by a passive observer who receives exogenous
signals about which he is misspecified (e.g. Berk, 1966).
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By applying the above martingale observation, Theorem 1 shows that δω is locally stable if
state ω strictly q-dominates all other states ω′ at all beliefs μ in a neighbourhood of δω, except
possibly at the belief μ=δω. We provide an analogous condition for instability. The fact that
these conditions do not impose q-dominance at the point-mass belief δω is essential for analysing
environments with slow learning, a property we explain below.

Using martingale arguments, we also obtain two conditions for global stability that strengthen
the local stability criterion in Theorem 1 in complementary ways. Theorem 2 shows that δω is
globally stable if state ω uniquely survives the iterated elimination of (globally) strictly dominated
states. Proposition 1 restricts the prediction accuracy ranking only near point-mass beliefs but
imposes more structure on how states are ordered.

Section 4 applies the preceding stability results to two classes of economic applications.
Section 4.1 considers single-agent active learning in rich one-dimensional state spaces, as in
many important applications in the literature. We show that the iterated elimination criterion in
Theorem 2 is straightforward to verify in this setting and can be used to unify and generalize
convergence results in applications such as monopoly pricing with a misspecified demand
curve (e.g. Esponda and Pouzo, 2016; Heidhues, Kőszegi and Strack, 2021), effort choice by
an overconfident agent (Heidhues, Kőszegi and Strack, 2018), and optimal stopping under the
gambler’s fallacy (He, 2022).

Section 4.2 studies environments that feature slow learning: That is, as agents grow confident
in any state, their behaviour generates less and less informative new signals, so the speed of
belief convergence vanishes near point-mass beliefs. This is a well-known property of several
important economic applications: For example, under sequential social learning, later agents’
actions reveal less and less about their private information, as they increasingly base their action
choices on the information conveyed by earlier agents’ actions; likewise, under costly information
acquisition, an agent may acquire increasingly less precise signals the more confident she
becomes. Existing approaches to analyse learning outcomes under misspecification (Section 1.2)
do not in general apply to such settings, as these approaches measure prediction accuracy using KL
divergence, which can be too coarse to determine stability/instability when signal informativeness
vanishes near point-mass beliefs (see Remark 2). In contrast, our stability results based on q-
dominance apply to these settings, and we highlight that slow learning can lead to fragility against
misspecification: Even if agents learn the true state when they are correctly specified, vanishingly
small amounts of misspecification can generate extreme failures of learning. For example, under
social learning about the safety of a new product, if agents even slightly underestimate others’
risk tolerance, then, regardless of the product’s actual safety, long-run beliefs always become
confident in the highest possible safety level (Section 4.2.2); similarly, if an agent has even a
slight tendency to distort feedback about her ability in an “ego-biased” manner and if acquiring
feedback is even slightly costly, then her long-run beliefs will display drastic overconfidence in
her ability (Section 4.2.1).

1.2. Related literature

Our article builds on Esponda and Pouzo (2016), who define a general steady-state notion for
misspecified learning dynamics, Berk–Nash equilibrium (BeNE), nesting other influential steady-
state concepts that capture more specific forms of misspecification (e.g. Eyster and Rabin, 2005;
Jehiel, 2005; Esponda, 2008; Spiegler, 2016). It is known that, while any locally stable belief is a
BeNE (Lemma 1 establishes this in our setting), the converse is not in general true (e.g. Nyarko,
1991). We provide stability criteria that determine which BeNE learning dynamics in a given
environment converge to locally or globally. We also point to natural settings where the set of
stable equilibria is not robust to the details of agents’ misspecification. Our martingale approach
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relies on measuring prediction accuracy using q-dominance, which refines the measure based on
KL divergence that underlies BeNE.

Several important earlier papers have examined the convergence of misspecified learning
dynamics in a variety of single-agent (e.g. Nyarko, 1991; Schwartzstein, 2014; Fudenberg,
Romanyuk and Strack, 2017; Heidhues et al., 2018, 2021, Bushong and Gagnon-Bartsch, 2019;
Cong, 2019; He, 2022) and social learning settings (e.g. Eyster and Rabin, 2010; Bohren, 2016;
Gagnon-Bartsch, 2017; Bohren, Imas and Rosenberg, 2019). The approaches in these papers are
either tailored to particular environments and forms of misspecification or apply in more general
settings but rely on specific parametric assumptions (e.g. Gaussian signals in Fudenberg et al.,
2017; Heidhues et al., 2021).

Our article contributes to a recent focus in the literature on developing more unified
approaches to establish convergence under misspecified learning. In binary-state environments,
Bohren and Hauser (2021) provide general conditions for local and global stability of beliefs
based on Kullback–Leiber divergence. A key challenge they address is to allow for heterogeneous
models across different agents (as is natural under social learning), which we do not consider
in this article.2 Instead, relying on our martingale approach based on q-dominance, we derive
results that apply to rich state spaces (e.g. Section 4.1) and environments with slow learning
(e.g. Section 4.2), to which their methods do not apply. In settings that do not feature slow
learning, Bohren and Hauser (2021) show that successful learning is robust to small amounts of
misspecification; complementary to this, Section 4.2 sheds light on ways in which slow learning
can lead to fragility against misspecification.

In general-state environments, Esponda, Pouzo and Yamamoto (2021) (EPY) and
Fudenberg, Lanzani and Strack (2021a) (FLS) analyse action convergence under single-
agent learning. Unlike our article, the convergence results in EPY and FLS do not apply to
social learning settings or environments with infinite actions;3 at the same time, both papers
address important settings/questions to which our results do not apply. In particular, EPY
develop a methodology to analyse asymptotic action frequencies based on approximating these
by a differential inclusion. Unlike our article, their paper also characterizes asymptotic action
frequencies when beliefs/actions do not converge. FLS provide tight conditions that relate action
convergence to the agent’s payoffs, while our conditions for belief convergence do not explicitly
involve the agent’s incentives; their convergence proofs build on the martingale approach we
introduce in this article. To analyse the agent’s forward-looking incentives, FLS also derive
results on the rate at which beliefs concentrate (see also Fudenberg, Lanzani and Strack, 2021b).
The approaches in EPY and FLS are again based on KL divergence; as noted, this measure
can be too coarse to identify long-run outcomes in settings such as slow learning environments
(Remark 2).

Some environments in the literature are not nested by the current framework, notably
models with intertemporally correlated signals and social learning settings with private action
observations.4 The latter includes our previous paper, Frick, Iijima and Ishii (2020a), which,
similar to Section 4.2.2, highlights the fragility of social learning against misspecification about
others’ preferences. As we discuss (Section 4.2.3), the logic and nature of this fragility result
differs from the current article, as the setting in Frick et al. (2020a) does not display slow learning.

2. Some of our results can be extended to heterogeneous models; see Supplementary Appendix G of the previous
version Frick, Iijima and Ishii (2020b).

3. The more recent paper by Murooka and Yamamoto (2021) extends EPY to settings with infinite actions and/or
strategic externalities but also does not consider social learning.

4. See, e.g., Rabin (2002), Ortoleva and Snowberg (2015), Esponda and Pouzo (2021), Molavi (2019), and
Cho and Kasa (2017) for the former, and Dasaratha and He (2020) and Levy and Razin (2018) for the latter.
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2. MODEL

2.1. Setup

We conduct our general analysis in the following abstract environment, where agents, actions,
and preferences are not explicitly modelled. This allows us to simultaneously nest a variety of
single-agent and social learning models and makes the logic of belief convergence transparent.
For any topological space X, we endow X with its Borel σ -algebra, and let �(X) denote the space
of Borel probability measures on X.

There is a set of states �. For the analysis in the main text, we assume that � is finite;
Appendix B provides results for infinite state spaces. At the beginning of each period t =0,1,...,
there is a belief μt ∈�(�); we endow �(�)⊆R

|�| with the sup norm. The initial belief μ0
is exogenous and has full support.5 The evolution of beliefs is determined as follows: At the
end of each period t, a signal zt from a topological space Z is drawn according to Pμt , where
Pμ ∈�(Z) denotes the true signal distribution at current belief μ. After signal zt realizes, belief
μt is updated to μt+1 via Bayes’ rule according to a collection of conditional perceived signal
distributions: Specifically, at each current belief μ, the perceived signal distribution conditional
on state ω is P̂μ(·|ω)∈�(Z). We assume that, for each ω and μ, Pμ and P̂μ(·|ω) admit continuous
Radon–Nikodym derivatives pμ and p̂μ(·|ω) with respect to some σ -finite measure ν on Z; as
usual, when Z is finite (respectively Z =R), we take ν to be the counting (respectively Lebesgue)
measure. The updated belief following signal zt satisfies

μt+1(ω)= μt(ω)p̂μt (zt |ω)∑
ω′∈�μt(ω′)p̂μt (zt |ω′) , ∀ω∈�.

By allowing the true and perceived signal distributions to depend on the current belief,
the model can nest applications where signals depend endogenously on agents’ actions, which
depend on their current beliefs; see Remark 1. Capturing possible misspecification, the true signal
distribution need not coincide with any of the perceived signal distributions. We refer to the case
where for some true state ω∗, Pμ = P̂μ(·|ω∗) for all μ, as the correctly specified benchmark.
Throughout, we impose the following regularity assumption:

Assumption 1.

1. (Absolute continuity). For each ω∈� and μ∈�(�), suppPμ ⊆suppP̂μ(·|ω).
2. (Well-behaved likelihood ratios). There exist a ν-integrable function h :Z →R+ and q∗ >0

such that sup
μ,ω,ω′

(
p̂μ(z|ω)

p̂μ(z|ω′)

)q∗

pμ(z)≤h(z) for all z∈Z.6

3. (Belief continuity near point-mass beliefs). For each ω∈�, there is a neighbourhood B	δω

such that for all ω′,ω′′ ∈�, μ∈B and z∈Z, we have that pμ(z), p̂μ(z|ω′)
p̂μ(z|ω′′) , and pμ(z) p̂μ(z|ω′)

p̂μ(z|ω′′)
are continuous in μ.

Assumption 1.1 is standard in the literature and rules out belief-updating after signals that are
perceived to realize with zero probability. The remaining assumptions are technical conditions that
are satisfied in most applications in the literature: Assumption 1.2 is a regularity condition on the

5. The full-support assumption is without loss; if μ0 assigns zero probability to some states, the same analysis
and results below apply up to eliminating those states from �.

6. Throughout the article, we use the convention that 0
0 =0, 1

0 =∞, 0log0=0, and log∞=∞.
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integrability of perceived likelihood ratios, which will be important for our martingale approach
based on moment-generating functions in Section 3.1. This rules out that the distribution of

perceived log-likelihood ratios log p̂μ(z|ω)
p̂μ(z|ω′) , when z is drawn from Pμ, is heavy tailed (i.e. the

moment-generating function is infinite at all non-zero arguments); commonly used parametric
distributions (e.g. Gaussian) are not heavy tailed. Assumption 1.3 imposes continuity with respect
to beliefs on signal densities, but is only assumed near point-mass beliefs; this simplifies the
statements of our stability results.

Remark 1. We illustrate how two leading classes of applications map into this model.
Single-agent learning: The state space � represents an agent’s uncertainty about the

environment (e.g. a monopolist’s uncertainty about market conditions). Each period t =0,1,...,
the agent chooses an action at (e.g. a price) from a discrete or continuous space A and observes a
signal zt ∈Z (e.g. realized demand). Each action a induces a true signal distribution Ga ∈�(Z), but
the agent updates her belief μt ∈�(�) based on the perceived signal distributions Ĝa(·|ω)∈�(Z)
(e.g. the monopolist may hold a misspecified model of the demand function). The agent’s action
choice at =a(μt) is Markovian in her belief, for example, because she maximizes subjective
expected discounted payoffs (e.g. revenue).

Active learning environments of this form map into our model by setting Pμ =Ga(μ) and

P̂μ(·|ω)= Ĝa(μ)(·|ω). The above assumptions on P, P̂ translate into assumptions on G, Ĝ, and
a(·) in a direct manner. For example, Assumption 1.3 holds if a(·) is continuous in μ near point-
mass beliefs, and Ga, Ĝa(·|ω) admit densities that satisfy the corresponding continuity conditions
with respect to a.7

In addition to monopoly pricing, Section 4 will analyse several other concrete active learning
problems, including costly information acquisition and effort choice. Beyond active learning,
our model can also capture single-agent learning settings where true signal distributions are
exogenous, but perceived signal distributions depend on μ due to certain belief-dependent
departures from Bayesian updating, such as confirmation bias.

Social learning: Consider a sequential social learning setting à la Smith and Sørensen (2000).
There is a fixed and unknown stateω∗ ∈� (e.g. the safety of a new product). Each period t =0,1,...,
agent t chooses a one-shot action zt ∈Z ={0,1} (e.g. whether or not to adopt the product) after
observing the public sequence (z0,...,zt−1) of predecessors’ actions and a private signal st ∈R

that is drawn i.i.d. conditional on state ω∗ according to a cdf �(·|ω∗). Agents have private
preference types θt ∈R (e.g. risk attitudes), which are drawn independently across agents, states,
and signals according to a cdf F. Starting with some full-support common prior μ0 ∈�(�), agent
t chooses zt to maximize her expected utility,

zt ∈z(μt,θt,st) :=argmax
z∈Z

Eμt [u(z,θt,ω)|θt,st],

where μt denotes the public belief, i.e., the Bayesian update of μ0 based solely on the public action
sequence (z0,...,zt−1). In Section 4.2.2, we will analyse this setting when agents are misspecified
about others’ preferences: In updating beliefs to μt , all agents misperceive the type distribution
F in the population to be some other cdf F̂.8

7. Note that if A is discrete, then a(·) is not in general globally continuous (unless there is a dominant action), but
Assumption 1.3 is satisfied as long as, for each ω, there is a neighbourhood Bω 	δω such that a(μ) is constant across all
beliefs μ∈Bω . The formulation also allows A to be a set of mixed actions; in this case, we treat Z as the product space
of realized signals and actions.

8. Alternatively or additionally, agents might misperceive the private signal distributions �(·|ω).
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To map this into our model, consider the public belief process μt and identify signals with
actions zt . Given μt , zt is stochastic due to the random realization of agent t’s type θt and private
signal st . The true probability of each action z given public belief μ is9

pμ(z)=pμ(z|ω∗)=Prθ∼F,s∼�(·|ω∗) [z∈z(μ,θ,s)];

however, because agents misperceive the type distribution F to be F̂, public beliefs are updated
according to the perceived action probabilities

p̂μ(z|ω)=Pr
θ∼F̂,s∼�(·|ω) [z∈z(μ,θ,s)].

Beyond this particular setting, our model also nests any other social learning environment in
which agents’ actions are Markovian in a public belief, including learning from market prices
(e.g. Vives, 1993) or strategic experimentation (e.g. Bolton and Harris, 1999). �

2.2. Stability notions

Given any true and perceived signal distributions and initial belief μ0, our model generates a
Markov process over beliefs. Let Pμ denote the induced probability measure over sequences of
beliefs (μt) with μ0 =μ. We seek to analyse which states ω long-run beliefs can grow confident
in, in the sense that process μt converges to the point-mass belief δω either locally or globally as
a function of initial beliefs. Formally, we consider the following stability notions:10

Definition 1. Consider any ω∈�. Belief δω is:

1. locally stable if for any γ <1, there exists a neighbourhood B	δω such that Pμ[μt →
δω]≥γ for each initial belief μ∈B;

2. globally stable if Pμ[μt →δω]=1 for each initial belief μ;
3. unstable if there exists a neighbourhood B	δω such that Pμ[∃t,μt �∈B]=1 for each initial

belief μ∈B.

Local stability requires that beliefs converge with positive probability to δω from any initial
belief in some open set B around δω, where the probability of converging to δω can be made
arbitrarily close to 1 as long as B is small enough.11 More strongly, global stability requires that
beliefs converge to δω with probability 1 from any initial belief (recall that initial beliefs are
assumed full support). By contrast, δω is unstable if starting from any initial belief μ in some
small enough neighbourhood B of δω, beliefs eventually escape B with probability 1. Clearly, if
δω is unstable, it is not locally stable.12

By focusing on the stability/instability of point-mass beliefs δω, this article does not analyse
when long-run beliefs are mixed, i.e., assign positive probability to multiple states. Long-run
beliefs are never mixed in environments that satisfy an identification condition, whereby at any
mixed μ, there is a possible signal realization that leads beliefs to update in favour of one state
in the support of μ rather than some other state (see Lemma 10 in Appendix A for the formal

9. We assume that the true and perceived probability that the set of interim-optimal actions z(μ,θ,s) is single-valued
is 1. The additional restrictions imposed in Section 4.2.2 will ensure that this is the case.

10. Similar stability notions are considered by Smith and Sørensen (2000) and Bohren and Hauser (2021).
11. We do not consider a stronger version of local stability that allows for γ =1. Unless global stability holds,

this notion is too demanding in most settings (due to the possibility of signal realizations that push beliefs outside
neighbourhood B).

12. Note that it is possible that δω is neither unstable nor locally stable, for example, if, for every neighbourhood
B	δω , whether or not beliefs converge to δω varies across initial beliefs μ0 ∈B.
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statement). This condition is satisfied in most existing settings studied in the misspecified learning
literature, including all applications in this article. At the same time, this rules out some important
applications, such as active learning settings where agents stop observing informative signals at
some mixed belief (e.g. McLennan, 1984, bandit problems) and social learning settings that feature
herding or confounded learning (Banerjee, 1992; Bikhchandani, Hirshleifer and Welch, 1992;
Smith and Sørensen, 2000). Section 5 briefly discusses how our techniques might be extended to
such settings, which have thus far been studied mostly without misspecification.

2.3. Berk-Nash equilibrium and slow learning

A necessary condition for stability has been proposed by Esponda and Pouzo (2016). For any
P,P̂∈�(Z) with densities p,p̂, define the KL divergence of P̂ relative to P by KL(P,P̂) :=∫

log p(z)
p̂(z) dP(z). When signals are drawn repeatedly according to the distribution P, this measures

how close P̂ comes to predicting the long-run signal distribution, by considering the expected
log-likelihood ratio of signals between P and P̂. Given any true and perceived signal distributions,
we call belief δω a Berk-Nash equilibrium (BeNE) if

ω∈argmin
ω′∈�

KL
(

Pδω
,P̂δω

(·|ω′)
)
. (1)

Condition (1) is a fixed-point requirement, which says that at belief δω, the perceived signal
distribution that comes closest to the true signal distribution Pδω

is the distribution P̂δω
(·|ω)

in state ω. Thus, if beliefs converge to δω, then state ω itself best predicts the induced long-
run signal distribution. This is a straightforward adaptation of Esponda and Pouzo (2016) to our
setting, focusing only on point-mass beliefs.13 Analogous to Esponda and Pouzo (2016), we show
that this is a necessary condition for δω to be locally stable:

Lemma 1. If δω is not a BeNE, then δω is unstable.

While condition (1) is necessary for local stability, it is not in general sufficient, as many
environments feature multiple BeNE, some of which are stable while others are unstable. Thus,
our sufficient conditions for stability will take the form of refinements of BeNE.

A class of environments with a particularly stark multiplicity of BeNE is the following. We
say that slow learning obtains if, for any ω,ω′,ω′′ ∈� and ν-almost all z,

lim
μ→δω

p̂μ(z|ω′)= lim
μ→δω

p̂μ(z|ω′′). (2)

That is, the (perceived) information content of each signal z vanishes as the belief μ grows
confident in any particular state ω. Under (2), the expected change in log-posterior ratios,

EPμt
[log μt+1(ω′)

μt+1(ω′′) −log μt(ω′)
μt(ω′′) ]=

∫
log

p̂μt (z|ω′)
p̂μt (z|ω′′) dPμt (z), vanishes as beliefs μt approach any point-

mass belief δω, capturing the sense in which learning is slow. Under Assumption 1, slow learning
implies that p̂δω

(z|ω′) is constant in ω′ at each δω. From this it is immediate that every point-mass
belief δω is a BeNE.

13. Esponda and Pouzo (2016) consider settings where multiple agents choose actions given their beliefs about a
payoff-relevant parameter and about other agents’ behaviour. A BeNE requires agents’ beliefs to minimize KL-divergence
relative to the feedback about the parameter and others’ behaviour that is generated by their optimal actions at these beliefs.
They also allow for mixed BeNE and show that if beliefs converge to μ∗ with positive probability, then μ∗ must be a
BeNE belief (see their Lemma 2 and Theorem 2).
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As a large literature highlights (for surveys, see Chamley, 2004; Vives, 2010), slow learning is
a central feature of many social learning models (e.g. the sequential social learning environment
in Remark 1): In these settings, new action observations convey less and less information as the
public belief grows confident, because agents base their action choices increasingly on the public
belief rather than their private information.14 As we illustrate in Section 4.2.1, slow learning also
arises naturally in single-agent settings if information acquisition is costly, in which case the
agent acquires less and less informative signals as she grows confident in any state. By contrast,
if every action chosen by the agent generates non-vanishingly informative signals about the state
(as in the applications in Section 4.1), then learning is not slow.

3. STABILITY ANALYSIS

3.1. Prediction accuracy orders and martingale approach

Before presenting our conditions for local stability, instability, and global stability of beliefs, we
introduce orders over states that compare how well they predict the true signal distribution at
each belief μ. These prediction accuracy orders will play a central role in our stability analysis
and the martingale arguments on which it relies.

Given any belief μ, say that state ω KL-dominates ω′ at μ, denoted ω�KL
μ ω′, if

KL
(

Pμ,P̂μ(·|ω)
)
−KL

(
Pμ,P̂μ(·|ω′)

)
:=
∫

log

(
p̂μ(z|ω′)
p̂μ(z|ω)

)
dPμ(z)≤0. (3)

That is, at belief μ, the perceived signal distribution in state ω achieves lower KL-divergence
relative to the true distribution than does the perceived signal distribution in state ω′. Write
ω�KL

μ ω′ if inequality (3) is strict. Note that δω is a BeNE if and only if ω�KL
δω

ω′ for all ω′.
Our analysis relies on the following refinement of �KL

μ . Given any q>0, say that ω q-

dominates ω′ at μ, denoted ω�q
μ ω′, if∫ (

p̂μ(z|ω′)
p̂μ(z|ω)

)q

dPμ(z)≤1, (4)

and write ω�q
μ ω′ if inequality (4) is strict. To see the connection between q-dominance and KL-

dominance, consider the random variable X = log
(

p̂μ(z|ω′)
p̂μ(z|ω)

)
, i.e., the perceived log-likelihood

ratio of states ω′ vs. ω, when signals z are drawn according to the true signal distribution Pμ.
Then, the left-hand side of (3) is the expectation of X, while the left-hand side of (4) is the
moment-generating function MX (q)=E[eqX ] of X evaluated at q.

Whereas �KL
μ is complete (by the representation on the L.H.S. of (3)), �q

μ is in general
incomplete. However, the q-dominance orders are nested and approximate KL-dominance as
q→0:

Lemma 2. Fix any belief μ and states ω,ω′.

1. If ω�q
μ ω′ for some q>0, then ω�KL

μ ω′ and ω�q′
μ ω′ for all q′ ∈ (0,q).

2. If ω�KL
μ ω′, then there exists q>0 such that ω�q

μ ω′.

14. Herding is an extreme form of slow learning, where belief-updating ceases completely at some mixed
belief. But even absent herding, sequential social learning is generally slow, as quantified by Vives (1993),
Hann-Caruthers, Martynov and Tamuz (2018), and Rosenberg and Vieille (2019). These papers employ different
quantifications of learning speed, but all the settings studied satisfy (2).
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To understand the role that q-dominance will play in our analysis, first consider the correctly
specified benchmark, where for some true state ω∗, Pμ = P̂μ(·|ω∗) for all μ. In this case, ω∗ �1

μ ω

for all μ and ω; indeed, (4) holds with equality when q=1.15 This implies a well-known property
of correctly specified learning: The posterior ratio process μt(ω)

μt(ω∗) is a non-negative martingale
with respect to Pμ0 and the filtration generated by (μt), as

EPμ0

[
μt+1(ω)

μt+1(ω∗)
|(μs)s≤t

]
= μt(ω)

μt(ω∗)

∫ (
p̂μt (z|ω)

p̂μt (z|ω∗)

)
dPμt (z)= μt(ω)

μt(ω∗)
.

The martingale property is central to analysing long-run beliefs under correctly specified learning.
In particular, it implies that, by Doob’s convergence theorem, μt(ω)

μt(ω∗) converges almost surely (a.s.)
to a non-negative random limit.

Under misspecified learning, there is in general no state that globally 1-dominates all other
states. As a result, the martingale property is lost. However, the definition of �q

μ immediately
implies a key observation: Throughout any region of beliefs where q-dominance obtains, the qth
power of the posterior ratio process becomes a non-negative supermartingale.

Lemma 3. Suppose there exist q>0 and B⊆�(�) such that ω�q
μ ω′ for all μ∈B. Then, for

any initial belief μ0, the process �t defined by

�t :=
(

μmin{t,τ }(ω′)
μmin{t,τ }(ω)

)q

with τ := inf{s :μs �∈B} (5)

is a non-negative supermartingale with respect to Pμ0 and the filtration generated by μt .

Proof. Observe EPμ0
[�t+1|(μs)s≤t]=

{
�t
∫ ( p̂μt (z|ω′)

p̂μt (z|ω)

)q
dPμt (z)≤�t if μs ∈B∀s≤ t

�t otherwise.
�

Under the assumptions in Lemma 3, standard martingale methods from the correctly specified
setting, such as Doob’s convergence theorem and Markov’s inequality, can be applied locally, to
the stopped process �t . Such arguments will play a key role throughout our stability analysis, by
providing useful information on the asymptotic behaviour of the original belief process μt . As
we discuss in Remark 2, q-dominance is essential to this approach, as analogous arguments do
not apply under KL-dominance.

3.2. Local stability and instability

Based on the preceding observations, our first main result provides sufficient conditions for belief
δω to be locally stable or unstable:

Theorem 1. Consider any ω∈�. Belief δω is:

1. locally stable if there exists q>0 and a neighbourhood B	δω such that

ω�q
μ ω′ for all ω′ �=ω and μ∈B\{δω}. (6)

15. That is,
∫ ( p̂μ(z|ω)

p̂μ(z|ω∗)

)
dPμ(z)=∫ ( p̂μ(z|ω)

pμ(z)

)
pμ(z)dν(z)=1.
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2. unstable if there exists q>0 and a neighbourhood B	δω such that

for some ω′ �=ω, we have ω′ �q
μ ω for all μ∈B\{δω}. (7)

By the first part, δω is locally stable if for some q, state ω strictly q-dominates all other states at
all beliefs in some neighbourhood of δω, except possibly at the belief δω, where this dominance
need only be weak.16 Thus, condition (6) strengthens BeNE, which requires that ω weakly KL-
dominates all other states at the belief δω, in two ways: First, by comparing the prediction accuracy
of ω against other states at beliefs in a neighbourhood B of δω; second, by imposing strict q-
dominance rather than weak KL-dominance throughout B\{δω}. The second part provides an
analogous condition for instability; combined with Lemma 2, this result also implies Lemma 1.

The proof of Theorem 1 is a simple application of the martingale construction in the previous
section. To see the idea, suppose that �={ω,ω′} is binary. For the first part, consider the stopped

process �t(ω′) :=
(

μmin{t,τ }(ω′)
μmin{t,τ }(ω)

)q
with τ := inf{s :μs �∈B}. By Lemma 3, this is a non-negative

supermartingale. Thus, by Doob’s convergence theorem, �t converges a.s. to a non-negative
random limit �∞. Based on this, we first show that if the belief process μt remains in B forever
with positive probability, then conditional on this event, μt converges to δω a.s.: Otherwise,
the random limit belief μ∞ ∈B would be mixed with positive probability, which we show is
impossible by (6). Second, by applying Markov’s inequality to �∞, we show that the probability
that μt remains in B forever can be made arbitrarily close to 1 by restricting to initial beliefs μ0
in a small enough sub-neighbourhood B′ ⊆B around δω. Combining these observations implies
that δω is locally stable. For the second part of Theorem 1, we apply Doob’s theorem to the

non-negative supermartingale �t(ω′) :=
(

μmin{t,τ }(ω)
μmin{t,τ }(ω′)

)q
with τ := inf{s :μs �∈B}, to show that μt

a.s. leaves B.
The fact that conditions (6) and (7) do not impose strict dominance at the point-mass belief

δω is essential for applying Theorem 1 to environments with slow learning: Indeed, under (2), the
difference in prediction accuracy across states vanishes as μ approaches any point-mass belief.17

Note that conditions (6) and (7) feature existential quantifiers over q and B. The following
example illustrates how q and B can be found straightforwardly from the relationship between P
and P̂; we will apply similar observations to analyse the economic applications in Section 4.2.

Example 1. Consider Z ={0,1} and any δω. Under slow learning, perceived signal probabilities
p̂μ(1|ω′) become independent of ω′ as μ approaches δω. Suppose these perceptions understate
the truth in any small enough neighbourhood B of δω, i.e., p̂μ(1|ω′)≤pμ(1) for all ω′ and μ∈B
(the opposite case is analogous). Consider two possibilities near δω:

• Perceived signal probabilities in state ω are closest to the truth: That is, p̂μ(1|ω′)< p̂μ(1|ω)
for all ω′ �=ω and μ∈B\{δω}. Then, ω�q

μ ω′ for any q∈ (0,1).18 Thus, δω is locally stable
by (6).

• Perceived signal probabilities in some other state ω′ are closer to the truth: That is, for
some ω′ �=ω, p̂μ(1|ω′)> p̂μ(1|ω) for all μ∈B\{δω}. Then, analogously, ω′ �q

μ ω for all
q∈ (0,1). Thus, δω is unstable by (7). �

16. The weak dominance ω�q
δω

ω′ follows from (6) and Assumption 1.
17. That is, (3) and (4) hold with equality when μ=δω .

18. Indeed, p̂μ(1|ω′)< p̂μ(1|ω)≤pμ(1) implies
∑

z pμ(z)
(

p̂μ(z|ω′)
p̂μ(z|ω)

)q ≤∑z p̂μ(z|ω)
(

p̂μ(z|ω′)
p̂μ(z|ω)

)q
<1 for any q∈ (0,1),

where the final inequality follows from Jensen’s inequality and the concavity of f (x)=xq.
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At the same time, an immediate corollary of Theorem 1 is the following more demanding
sufficient condition for local stability, which is easy to verify in environments that do not feature
slow learning (or other ties in prediction accuracy). Call δω a strict BeNE if ω�KL

δω
ω′ for all

ω′ �=ω. By Lemma 2 and Assumption 1, any strict BeNE satisfies (6).

Corollary 1. If δω is a strict BeNE, then δω is locally stable.

Bohren (2016) (extended by Bohren and Hauser (2021) to heterogeneous beliefs) derived
an analogue of Corollary 1 under binary states |�|=2 and finite Z . Their proofs use a “local
approximation” argument that is different from our martingale approach and does not extend to
settings that feature slow learning.19

While Corollary 1 is not applicable under slow learning, a convenient feature is that it only
involves considering KL-prediction accuracy differences at the single belief δω. Under slow
learning, Theorem 1 can be used to derive a condition for local stability with a similar feature:
This condition only involves computing the derivative of the KL-prediction accuracy differences
at the belief δω; see Supplementary Appendix D.1.

Remark 2. To understand the importance of refining KL-dominance to q-dominance, suppose
(6) is weakened to the assumption that in some neighbourhood B	δω,

ω�KL
μ ω′ for all ω′ �=ω and μ∈B\{δω}. (8)

Then, the stopped processes log
(

μmin{t,τ }(ω′)
μmin{t,τ }(ω)

)
with τ := inf{s :μs �∈B} are supermartingales.

However, since these supermartingales are unbounded below as μt approaches δω, the above
arguments based on Doob’s convergence theorem and Markov’s inequality no longer apply.
Indeed, Supplementary Appendix D.2 provides an example where (8) holds but δω is unstable.
This illustrates that KL-dominance conditions are not in general enough to determine local
stability/instability. �

Finally, we note that when � is infinite, strict BeNE need not be locally stable, as shown
by Proposition 1 in Heidhues et al. (2021). Appendix B.2 provides conditions for local stability
under infinite states.

3.3. Global stability

Global stability is significantly more demanding than local stability. For instance, even if δω is the
unique locally stable belief, it need not be globally stable. In this section, we use our martingale
approach to obtain two sufficient conditions for global stability that strengthen the local stability
criterion in Theorem 1 in complementary ways. Both conditions place some additional restrictions
on the environment, but we illustrate their usefulness with the applications in Section 4.

3.3.1. Iterated elimination of dominated states. Our first approach extends the previous
local stability arguments by constructing supermartingales that apply not only near δω but more
globally.

19. Specifically, they locally bound the log-likelihood ratio process under (P,P̂) by the corresponding process under
a different environment (Q,Q̂) with the property that Qμ, Q̂μ are independent of μ and that beliefs converge to δω a.s.
(by the law of large numbers). The construction of (Q,Q̂) requires the log-likelihood ratio process under (P,P̂) to have
non-vanishing drift near δω , which implies that ω�KL

δω
ω′ for ω′ �=ω.
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We employ a generalization of global stability to sets of beliefs: Call M ⊆�(�) a globally
stable set if Pμ[infν∈M ‖μt −ν‖→0]=1 for every initial belief μ. Note that �(�) is trivially
globally stable. We show that global stability is preserved under the following process of iterated
elimination of dominated states, defined similarly to the iterated elimination of dominated
strategies in games: For each subset �′ ⊆�, let

S(�′) :={ω∈�′ :� ∃ω′ ∈�′ s.t. ω′ �KL
μ ω for all μ∈�(�′)}.

Then recursively define S0(�) :=�, Sk+1(�) :=S(Sk(�)) for all k =0,1,..., and S∞(�) :=⋂
k∈NSk(�). We say that belief continuity holds if Assumption 1.3 is satisfied not only near

point-mass beliefs but at all beliefs μ∈�(�).20

Theorem 2. Assume belief continuity holds. Then, �
(
S∞(�)

)
is globally stable. In particular,

if S∞(�)={ω} for some ω∈�, then belief δω is globally stable.

To prove Theorem 2, we show inductively that �
(
Sk(�)

)
is globally stable for all k. Since

�(�) is globally stable, it suffices to show that whenever �(�′) is globally stable for some
�′ ⊆�, then so is �

(
S(�′)

)
. This can again be established using martingale arguments. To see

the idea, suppose that S(�′)=�′ \{ω′}. Then, by Lemma 2 and belief continuity, there exist q>0
and ω′′ ∈�′ such that ω′′ �q

μ ω′ for all μ∈�(�′), and hence also ω′′ �q
μ ω′ for all μ in any small

enough neighbourhood B⊇�(�′).21 Thus, by Lemma 3,

(
μmin{t,τ }(ω′)
μmin{t,τ }(ω′′)

)q

with τ = inf{s :μs �∈B} (9)

is a non-negative supermartingale. Similar to Theorem 1, this implies that (i) from any initial μ∈B,
μt remains forever in B with positive probability; and (ii) μt(ω′) converges to 0 a.s. conditional on
remaining in B. We show that combined with the assumption that �(�′) (and hence B⊇�(�′))
is globally stable, this yields that �(�′ \{ω′}) is globally stable.

Note that although the definition of iterated elimination uses strict KL-dominance, q-
dominance again plays an essential role in the proof, by allowing us to construct the nonnegative
supermartingale (9). Appendix B.1 shows that Theorem 2 remains true unchanged in arbitrary
compact metric state spaces, by extending the above martingale arguments.

At a high level, the iterated elimination approach can be seen as an abstract generalization of
arguments in Heidhues et al. (2018) and He (2022), who analyse specific single-agent settings
with one-dimensional states and actions.22 Their analysis considers the largest interval of states
that is contained in the support of the agent’s long-run belief and shows, using iterated contraction
arguments, that this must collapse to a singleton. While their proofs involve analysing the slope
of the agent’s perceived log-likelihood functions with respect to the one-dimensional state, our
proof is based on constructing the non-negative supermartingales (9), which does not require any
order structure over states.

20. That is, for each ω,ω′ ∈�, μ∈�(�), and z∈Z , we have that pμ(z), p̂μ(z|ω)
p̂μ(z|ω′) , and pμ(z) p̂μ(z|ω)

p̂μ(z|ω′) are continuous

in μ. Belief continuity can be dropped in Theorem 2 and Proposition 1, up to slightly strengthening the corresponding
dominance requirements; see also footnote 31.

21. Call B a neighbourhood of a set M ⊆�(�) if there exists ε>0 such that Bε(μ)⊆B for all μ∈M.
22. He (2022) allows for two-dimensional states but proves that the analysis can be reduced to the one-dimensional

case in the long run. As noted, Theorem 2 extends to any compact metric space of states.
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3.3.2. Global stability via uniform local dominance. Theorem 2 requires that
eliminated states are dominated at all beliefs in a subsimplex �(Sk(�)), which is restrictive in
some applications. In such settings, an alternative approach to obtain global stability is to restrict
the prediction accuracy order only locally, near point-mass beliefs, but to impose more structure
on how states are ranked. The following result provides one formalization of this approach that
is useful for our applications in Section 4.2:

Proposition 1. Suppose that belief continuity holds and states �={ω1,...,ωN } can be
enumerated in such a way that

1. for each ω, there exists q>0 and a neighbourhood B	δω such that for all m and n with
m>n, we have ωn �q

μ ωm for all μ∈B\{δω};
2. for all n �=N and mixed μ, there is z∈suppPμ with p̂μ(z|ωn)> p̂μ(z|ωm) for all m>n.

Then, δω1 is globally stable.

Condition (i) requires that, near all point-mass beliefs δω, the prediction accuracy ranking
is the same: states with a lower index dominate higher states.23 For binary �, (i) amounts to
imposing the local stability condition (6) from Theorem 1 on δω1 and the instability condition
(7) on δω2 . However, when |�|>2, (i) is more demanding than imposing local stability on δω1

and instability on all other δωn ; we explain the role of this added strength below. Condition (ii) is
relatively weak, in that it does not restrict the prediction accuracy ranking. One natural condition
that implies (ii) is if perceived signal distributions satisfy the monotone likelihood ratio property,
as is the case in many applications.

When � is binary, the logic behind Proposition 1 is analogous to Bohren (2016), who derived
a similar result (under a strengthening of condition (i) that requires strict KL-dominance at point-
mass beliefs, ruling out slow learning). By condition (i), there are neighbourhoods B1 	δω1 and
B2 	δω2 such that from any initial belief in B1, μt converges to δω1 with positive probability,
while from any initial belief in B2, μt a.s. leaves B2. By condition (ii), one can find some T such
that with positive probability, μt reaches B1 within T periods from any initial belief μ �∈B1 ∪B2.
Combining these observations, a simple recursive argument shows that μt converges to δω1 a.s.
from any initial belief.

Beyond binary states, say if �={ω1,ω2,ω3}, a complication with the above argument is the
following:24 Even if δω1 is locally stable and δω2 and δω3 are unstable, condition (ii) is consistent
with beliefs getting stuck in a neighbourhood of the subsimplex �({ω2,ω3}) and cycling forever
between δω2 and δω3 . However, this is ruled out by the uniform ranking over states that condition
(i) imposes near point-mass beliefs. Indeed, as we show using similar martingale arguments as
before, the latter ensures that whenever beliefs approach δω2 or δω3 , they must escape in the
direction of δω1 with positive probability.

Finally, one might also be interested in a weak form of global stability, which only requires
that from all initial beliefs, process μt converges to δω1 with positive probability (rather than
with probability one, as ensured by our results). Using similar arguments as above, it can be
shown that δω1 is globally stable in this weak sense if it satisfies the local stability condition
(6) and if condition (ii) in Proposition 1 is only imposed for n=1. Note that under this weak

23. For example, if Z ={0,1}, then by the same logic as in Example 1, this is the case if near all δω , we have
pμ(1)≤ p̂μ(1|ω1)<...< p̂μ(1|ωN ); as we will see, this arises naturally in the applications in Section 4.2.

24. Bohren and Hauser (2021) address related challenges under binary states but heterogeneous models.
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notion, multiple beliefs δω can be globally stable (for specific examples, see e.g. Bohren, 2016;
Fudenberg et al., 2017).

4. APPLICATIONS

We now apply the preceding stability results to two classes of economic applications.

4.1. Active learning under one-dimensional states

First, we consider single-agent active learning under rich one-dimensional states, �⊆R, as in
many important applications in the literature. We show how the iterated elimination criterion in
Theorem 2 is straightforward to verify in this setting, providing a simple and unified method to
establish global stability.

For ease of exposition, we assume that �=[ω,ω] is a compact interval; as noted, Appendix B.1
shows that Theorem 2 remains valid in this case.25 Consider an active learning environment as
in Remark 1. Recall that Ga and (Ĝa(·|ω))ω∈� denote the true and perceived signal distributions
when action a is chosen. Assume that the agent’s action set A⊆R is an interval, that her action
choices a :�(�)→A are FOSD-increasing and continuous, and that KL(Ga, Ĝa(·|ω)) is strictly
quasi-convex in ω and continuous in (a,ω).26

These assumptions ensure that for each ω, there is a unique state m(ω) that is KL-dominant
at δω, i.e., m(ω)�KL

δω
ω′ for all ω′ �=m(ω). Observe that ω is a fixed point of the one-dimensional

map m :�→� if and only if δω is a strict BeNE.
The following result shows that iterated elimination of dominated states corresponds to the

iterated application of the map m. Moreover, simple conditions that only involve considering the
fixed points of the maps m or m2 yield that S∞(�)={ω̂} is a singleton, which by Theorem 2
implies that δω̂ is globally stable. When m is increasing, iterated elimination yields a unique state
ω̂ if and only if m has a unique fixed point; this is analogous to the classical result in games
with strategic complements, where dominance solvability is equivalent to the uniqueness of Nash
equilibrium (Milgrom and Roberts, 1990). When m is decreasing, iterated elimination yields a
unique state if and only if m2 has a unique fixed point; this is analogous to Zimper’s (2007) result
that, under strategic substitutes, dominance solvability is equivalent to the stronger requirement
that a twofold iteration of best-responses has a unique fixed point.

Proposition 2. For all k =1,2,...,∞, we have Sk(�)=mk(�). Moreover,

1. Suppose m is weakly increasing. Then, S∞(�)={ω̂} if and only if ω̂ is the unique fixed
point of m.

2. Suppose m is weakly decreasing. Then, S∞(�)={ω̂} if and only if ω̂ is the unique fixed
point of m2.

Deriving m is straightforward in many applications in the literature, and many natural forms
of misspecification that are considered induce an increasing or decreasing m. To nest these

25. Similar analysis goes through whenever � is a finite but sufficiently dense subset of [ω,ω], as in this case
S∞(�) approximates S∞([ω,ω]) (see Supplementary Appendix F of the previous version, Frick et al., 2020b).

26. A natural setting that satisfies strict quasi-convexity is the following. Suppose Ga =Hφ(a) and Ĝa(·|ω)=H
φ̂(a,ω)

for some family (Hθ )θ∈� ∈�(R) of distributions that satisfy the strict monotone likelihood ratio property with respect to
the parameter θ ∈�⊆R. Given this, standard arguments show that if φ̂ is strictly increasing in ω, then −KL(Hφ(a),Hφ̂(a,ω))
is strictly single-peaked in ω, and hence KL(Hφ(a),Hφ̂(a,ω)) is strictly quasi-convex in ω.
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applications, assume further that Z =R and that action a induces the true signal distribution
according to z=g(a)+ε, but the agent perceives signals in state ω to follow z= ĝ(a,ω)+ε,

where g :A→R and ĝ :A×�→R are continuously differentiable with ∂ ĝ
∂ω >0, and the mean-

zero noise term ε is distributed according to a log-concave and strictly positive density on R.27

Then, letting a(ω) :=a(δω), any interior m(ω)∈ (ω,ω) solves

ĝ(a(ω),m(ω))=g(a(ω)), (10)

i.e., m(ω) perfectly explains the observed signal distribution and hence must be the KL-minimizer.

Thus, m is weakly increasing if and only if dg
da (a(ω))≥ ∂ ĝ

∂a (a(ω),m(ω)), and decreasing if and only

if dg
da (a(ω))≤ ∂ ĝ

∂a (a(ω),m(ω)) for all ω, capturing that the agent either under- or overstates the
marginal effect of her actions on signals.

For example, based on this, one can establish global stability in the following applications:

• Misspecified monopoly pricing: Consider a monopolist who is learning about his demand
function. Here, z=g(a)+ε represents the true demand faced by the monopolist when he
sets price a∈A=R+, where g(a)=g(a,ω∗)=ω∗−βa. The true intercept of demand ω∗ ∈
[ω,ω]⊆R+ is unknown to the monopolist. In updating beliefs about ω∗, he misperceives
the slope of demand β to be β̂, where β,β̂ >0. Thus, ĝ(a,ω)=ω−β̂a for each ω. Each
period t, the monopolist myopically maximizes expected revenue, i.e., his price at as a
function of his belief is a(μt), where

a(μ)=argmax
a∈R+

a×
(
Eμ[ω]−β̂a

)
= Eμ[ω]

2β̂
.

In particular, a(ω)= ω

2β̂
. By the above, map m is increasing/decreasing if the monopolist

over-/underestimates the slope of demand β, and m(ω)=ω∗+ ω

2β̂
(β̂−β) when this is

interior. If | β̂−β

2β̂
|<1, then m and m2 are contractions and thus admit a unique fixed point

ω̂, where ω̂= 2β̂ω∗
β̂+β

when this is interior. Hence, δω̂ is globally stable by Proposition 2

and Theorem 2. While Esponda and Pouzo (2016) and Heidhues et al. (2021) establish
analogous results using stochastic approximation arguments that rely on Gaussian signal
distributions, our approach does not require this parametric assumption.

• Effort choice under overconfidence: In Heidhues et al. (2018) (HKS), g and ĝ take
the form g(a)=Q(a,β,ω∗) and ĝ(a,ω)=Q(a,β̂,ω) for some function Q. Here, signals
z can be interpreted as output, actions a as effort choice, states ω as project quality
(with true quality ω∗), and β and β̂ as the agent’s true and perceived ability. The agent
chooses a(μ) to maximize expected output. When the agent is overconfident (β̂ >β), the
natural assumptions that HKS impose on the output function Q ensure that m is increasing
with a unique fixed point ω̂, where ω̂<ω∗ (see Supplementary Appendix C.2.1). Thus,
Proposition 2 and Theorem 2 immediately imply HKS’s result that the pessimistic belief
δω̂ is globally stable.

27. The assumption that signals can take any real values is not essential. For example, the same conclusion holds
under binary signals, Z ={0,1}, where the true and perceived probabilities of signal 1 are respectively g(a) and ĝ(a,ω)
for each a and ω.
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• Optimal stopping under the gambler’s fallacy: Similar reasoning yields the global
stability result in He (2022), where m can again be seen to be increasing and admit a
unique fixed point (see Supplementary Appendix C.2.2).

Esponda et al. (2021) (Section 7) consider a similar one-dimensional state setting and
provide conditions for local/global stability and instability.28 While we consider continuous
actions in this section, their results assume finite actions; however, the more recent paper by
Murooka and Yamamoto (2021) extends their approach to continuous actions. The approaches in
Esponda et al. (2021) and Murooka and Yamamoto (2021) are based on characterizing limiting
action frequencies by means of a differential inclusion; different and complementary to this, we
provide an approach based on iterated elimination that uses martingale arguments to establish
belief convergence.

4.2. Slow learning and fragility of long-run beliefs

Next, we present two applications that illustrate how to apply our results to environments with
slow learning. Our analysis highlights how slow learning can render long-run beliefs fragile
against misspecification. Section 4.2.3 contrasts these findings with other recent work that has
examined the robustness of learning outcomes to misspecification.

Throughout, we consider finite state spaces �={ω1,...,ωN }⊆R+, with ω1 <...<ωN .

4.2.1. Costly information acquisition. Consider a single-agent active learning setting,
where the agent learns about some state (e.g. her ability) by acquiring costly information (e.g.
seeking out expert feedback). The fixed and unknown true state is ω∗ ∈�. Each period t, the agent
chooses a precision parameter γt ∈[0,γ ] at cost C(γt). She then observes a signal zt that is 1 (“good
news”) with probability γtω

∗+β and 0 (“bad news”) otherwise; here, β is the state-independent
base rate of the high signal, over which the agent has no control. In updating her beliefs μt ∈�(�),
the agent misperceives the base rate β to be β̂. For example, if β̂ <β, this implies a form of “ego-
biased” belief-updating: the agent overreacts to good news about her ability, but under-reacts to
bad news (e.g. Eil and Rao, 2011; Mobius, Niederle, Niehaus and Rosenblat, 2014).

Note that true and perceived signal distributions are (Blackwell-)more informative the greater
γt and are uninformative when γt =0. Assume the agent has positive value to information, as
captured by a utility v :�(�)→R that is continuous and strictly convex in her current belief.29

Each period, she chooses γt as a function of her current belief μt to myopically maximize expected
utility net of the cost (myopia is assumed for simplicity):30

γt =γ
β̂

(μt)∈argmax
γ∈[0,γ ]

Êμt [v(μt+1(γ ))]−C(γ ), (11)

where μt+1(γ ) denotes the agent’s random posterior following period t signal realizations and
the expectation Êμt is with respect to the perceived signal distribution. Assume γ ∈ (0,1) and

28. Our iterated elimination approach can also be extended to study local stability in the current setting; see
Appendix B.2.

29. For example, suppose that v(μ)=maxa∈REμ[−(a−ω)2] is the indirect utility to a prediction problem that the
agent must solve at the end of each period (where realized payoffs are not observed until some exogenously distributed
stopping time).

30. All results generalize to forward-looking agents, where the continuation value remains strictly convex since the
instantaneous term is strictly convex. In particular, note that Lemma 5 (slow learning) remains valid with the same proof,
as the continuation value is continuous in μ.
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β,β̂ ∈ (0,1−γ ) are such that true and perceived signal probabilities pμ(1|ω∗)=γ
β̂

(μ)ω∗+β and

p̂μ(1|ω)=γ
β̂

(μ)ω+β̂ are always well-defined and non-degenerate. We also assume that γ
β̂

(μ)

is continuous in μ.31

First, suppose that the agent incurs the same constant cost C(γ )=c for any precision choice
γ , so information is effectively costless. Then, learning is successful when the agent is correctly
specified (β̂ =β) and successful learning is robust to small amounts of misspecification. Formally,
say that learning is successful at ω∗ if, when the true state is ω∗, we have Pμ[μt →δω∗ ]=1 for
all beliefs μ∈�(�) with μ(ω∗)>0.

Lemma 4. Suppose C is constant. For any β, there exists ε>0 such that for any β̂ with |β̂−β|≤
ε, learning is successful in all true states ω∗.

When information is costless, then for all β̂, the agent always chooses the maximal precision
γ . This implies that when β̂ =β, the true state ω∗ strictly dominates all other states ω at all beliefs

μ, where, importantly, the relative prediction accuracy
∑

z pμ(z)
(

p̂μ(z|ω)
p̂μ(z|ω∗)

)q
<1 is independent of

μ. Given this, the same is true whenever β̂ is sufficiently close to β, based on which we conclude
that learning is successful.

Next, suppose information is costly, in the sense that C is strictly increasing in γ . The key
departure this introduces is the following:

Lemma 5. Suppose C is strictly increasing. For any β̂, limμ→δω
γ
β̂

(μ)=0 for every ω.

That is, if information is (even slightly) costly, then the agent stops acquiring information in the
limit as she becomes confident in any particular state ω, because her value to information vanishes
as she grows confident. Lemma 5 implies that costly information leads to slow learning, since
the agent’s perceived signal probabilities satisfy

lim
μ→δω

p̂μ(1|ω′)= lim
μ→δω

γ
β̂

(μ)ω′+β̂ = β̂, ∀ω,ω′.

Based on this, we show that learning under costly information is fragile against misspecifi-
cation: Suppose learning is successful whenever the agent is correctly specified. Then, in sharp
contrast with Lemma 4, arbitrarily small amounts of misspecification not only break successful
learning, but indeed render the agent’s long-run belief independent of the true state ω∗: If β >β̂

(respectively β <β̂), then regardless of ω∗, she becomes confident in the highest (respectively
lowest) possible state.

Proposition 3. Suppose C is strictly increasing and for any β,β̂ with β = β̂, learning is
successful at all states ω∗. Then:

1. For any β,β̂ with β >β̂, δωN is globally stable in all true states ω∗.
2. For any β,β̂ with β <β̂, δω1 is globally stable in all true states ω∗.

31. Without continuity, the main result (Proposition 3) remains valid under the following assumption: for any
compact set K of mixed beliefs, infμ∈K γ

β̂
(μ)>0. This is slightly stronger than the current assumption (“successful

learning at all states when β̂ =β”), which is equivalent to the requirement that γ
β̂

(μ)>0 for all mixed μ (Lemma 6). The
robustness of costless learning (Lemma 4) does not rely on continuity.
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Figure 1

Prediction accuracy ranking of ω1 vs. ω2 as a function of μ when ω∗ =ω1. Left: β̂ =β. Right: β >β̂. Here,

DKL
μ (ω2,ω1) :=KL(Pμ(·|ω∗),P̂μ(·|ω2))−KL(Pμ(·|ω∗),P̂μ(·|ω1)).

When feedback is costless, then, by Lemma 4, a small propensity for ego-biased interpretation
of signals does not prevent the agent from learning her ability. In contrast, Proposition 3 shows that
if obtaining feedback requires just a slight amount of effort, then even arbitrarily small amounts
of this bias are greatly amplified over time, leading to drastic overconfidence in the long run.

To see the idea, suppose that �={ω1,ω2} and the true state is ω1. For any β̂, the fact that
learning is successful at all states when β = β̂ means that γ

β̂
(μ)>0 for all mixed μ; otherwise,

the agent’s belief would get stuck at some initial mixed beliefs. At the same time, by Lemma 5,
limμ→δω

γ
β̂

(μ)=0. As a result, when β = β̂, the true state ω1 strictly dominates ω2 at all mixed
beliefs, but in contrast with costless learning, the gap in prediction accuracy now vanishes as
beliefs approach δω1 or δω2 . As shown in Figure 1, this makes the prediction accuracy ranking
near point-mass beliefs highly sensitive to misspecification.32

Indeed, if β >β̂, the ranking between ω1 and ω2 is reversed: Since γ is very small near point-
mass beliefs, the true probability γω1 +β of the high signal exceeds the perceived probabilities
γω2 +β̂, γω1 +β̂ in both states, but because ω2 >ω1, the perceived probability in state ω2 comes
closer to the truth. By the logic in Example 1, this implies ω2 �q

μ ω1 for all q∈ (0,1) and μ near
δω1 and δω2 . Intuitively, if signals are precise (γ is high), the true state always explains the agent’s
observations best, but if signals are sufficiently imprecise (γ is low), then overestimating the
state can partly compensate for underestimating the base rate of the high signal. Finally, since
ω2 strictly dominates ω1 near both point-mass beliefs and the probabilities of the high signal are
increasing in states, Proposition 1 applies up to relabeling states in decreasing order. Thus, when
β >β̂, δω2 is globally stable.33

Finally, to understand when Proposition 3 applies, we clarify which cost functions lead to
successful learning when the agent is correctly specified. To state this, we slightly strengthen the
requirement that the utility v :�(�)→R is strictly convex, as follows:

Lemma 6. Suppose v is twice continuously differentiable with a positive-definite Hessian. Fix
any β̂. For any twice continuously differentiable cost function C with C′(0)=C′′(0)=0,

γ
β̂

(μ)>0 for all mixed μ. (12)

Moreover, (12) is necessary and sufficient for learning to be successful at all ω∗ when β = β̂.

32. The figure uses KL-dominance for the sake of graphical illustration, but the proof relies on q-dominance.
33. Proposition 3 does not rely on the specific true and perceived signal distributions in the text: Indeed, writing

signal probabilities as functions of the agent’s choice γ and assuming slow learning, part 1 (respectively 2) generalizes
as long as (i) p̂γ (1|ωN )<pγ (1|ω∗) (respectively p̂γ (1|ω1)>pγ (1|ω∗)) for all ω∗ ∈� and small enough γ >0 and (ii)
p̂γ (1|ωn) is strictly increasing in n at each γ >0. Unlike the specification in the text, this allows for specifications where
the true and perceived long-run signal distributions (i.e. at γ =0) coincide.
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Lemma 6 provides “Inada” conditions on C which ensure that small amounts of information are
very cheap. Thus, the agent remains willing to acquire a positive amount of information whenever
she is not completely certain about the state. These conditions are satisfied, for example, by any
power function C(γ )=γ d with d >2.34

4.2.2. Sequential social learning. Consider the sequential social learning setting from
Remark 1, with the following additional assumptions. Private signals st at each state ω are drawn
according to a positive and continuous density φ(·|ω) that satisfies the monotone likelihood ratio
property. True and perceived type distributions F and F̂ admit positive densities over R. The
utility difference v(θ,ω) :=u(1,θ,ω)−u(0,θ,ω) between the two actions is strictly increasing
and continuous in types and states (θ,ω), with limθ→−∞v(θ,ω)<0 and limθ→+∞v(θ,ω)>0;
that is, sufficiently low (risk-averse) types always prefer action 0 (not adopt) and sufficiently high
(risk-tolerant) types always prefer action 1 (adopt).

Then, the true and perceived probabilities of observing action 0 at public belief μ are

pμ(0|ω∗)=
∫

F(θ∗(μs))φ(s|ω∗)ds, p̂μ(0|ω)=
∫

F̂(θ∗(μs))φ(s|ω)ds,

where μs ∈�(�) denotes the Bayesian update of μ following private signal realization s, and
θ∗(ν) denotes the type who is indifferent between action 0 and 1 at belief ν. Note that θ∗(ν) exists
and is unique for each ν by the above assumptions. We write θ∗

ω :=θ∗(δω) and θ∗
i :=θ∗

ωi
. Observe

that θ∗
i is strictly decreasing in i, as ω1 <...<ωN .

We first note that when agents are correctly specified, learning is successful:

Lemma 7. Suppose that F̂ =F. Then learning is successful in all true states ω∗.

An analogous result is established by Goeree, Palfrey and Rogers (2006). Observe that herding
is ruled out here due to rich preference heterogeneity (in particular, the existence of dominant
types), despite the fact that private signals need not have unbounded precision.

However, we observe next that sequential social learning leads to slow learning:

Lemma 8. For all F̂, ω, and ω′, we have limμ→δω

∫
F̂(θ∗(μs))φ(s|ω′)ds= F̂(θ∗

ω).

Lemma 8 shows that as the public belief becomes confident in any given state ω, the perceived
probability of observing action 0, limμ→δω

p̂μ(0|ω′)= F̂(θ∗
ω), is the same in all states ω′; that is,

(2) holds. This reflects the familiar slow-learning logic under sequential social learning that we
discussed in Section 2.3.

Similar to costly information acquisition, this again leads successful learning to be highly
fragile against misspecification. The following result classifies possible learning outcomes:

Proposition 4. Fix any F and F̂. In each true state ω∗:

1. δωN is globally stable if F(θ∗
i )< F̂(θ∗

i ) for all i, locally stable if F(θ∗
N )< F̂(θ∗

N ), and unstable

if F(θ∗
N )> F̂(θ∗

N ).

34. The restriction C′′(0)=0 on the second derivative is related to the Radner–Stiglitz non-concavity in the value
of information (Chade and Schlee, 2002). Since the agent’s marginal value of information is zero at γ =0, the restriction
C′(0)=0 on the first derivative is not enough to ensure a positive choice of γ .
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2. δω1 is globally stable if F(θ∗
i )> F̂(θ∗

i ) for all i, locally stable if F(θ∗
1 )> F̂(θ∗

1 ), and unstable

if F(θ∗
1 )< F̂(θ∗

1 ).

3. For each n∈{2,...,N −1}, δωn is unstable if F(θ∗
n ) �= F̂(θ∗

n ).

Depending on the nature of misspecification, Proposition 4 highlights three general
possibilities. First, beliefs might converge globally to a point-mass on the highest (respectively
lowest) state. Similar to Proposition 3, this occurs if agents systematically underestimate
(respectively overestimate) the type distribution (e.g. extent of risk tolerance in the population),
no matter how close F̂ is to F and regardless of the true state ω∗. Second, the extreme beliefs
δω1 and/or δωN might be locally stable, if agents overestimate the share of very high types (above
θ∗

1 ) and/or of very low types (below θ∗
N ). Finally, if agents underestimate both the shares of very

high types and of very low types (i.e. underestimate type heterogeneity), then generically all
point-mass beliefs are unstable, so beliefs cycle.35

To see the idea, consider any ωi. If F(θ∗
i )< F̂(θ∗

i ), then Lemma 8 implies that at all public

beliefs μ close to the point-mass belief δωi , the perceived probability of action 0, p̂μ(0|ω)≈ F̂(θ∗
i ),

is strictly higher in all states ω than the actual probability pμ(0|ω∗)≈F(θ∗
i ). At the same time, by

the assumptions on signals and utilities, p̂μ(0|ω) is strictly decreasing in ω at all mixed μ. Thus,
at all mixed μ close to δωi , the perceived action distribution comes closest to the actual one at
the highest state ωN . Analogously, if F(θ∗

i )> F̂(θ∗
i ), then the lowest state ω1 dominates all other

states near δωi . Based on this, the local stability and instability results follow from Theorem 1,
while Proposition 1 implies the global stability results.

4.2.3. Discussion. Our finding that slow learning can lead to fragility against misspec-
ification complements other recent work. Bohren and Hauser (2021) (BH) establish a general
robustness result for misspecified learning in their setting: If learning is successful under correct
specification, then learning is also successful whenever agents’ perceptions are close enough to
the true model. The key difference is that they consider environments that do not feature slow
learning, because, even near point-mass beliefs, agents take actions that generate non-vanishingly
informative signals. For instance, this is naturally the case under costless learning as well as the
examples analysed in Section 4.1. Intuitively, robustness in these settings results from the fact that,
under correct specification, the difference in prediction accuracy between the true state ω∗ and
all other states is bounded away from zero; given this, the same remains true under small enough
amounts of misspecification, similar to the logic in Lemma 4. By contrast, when learning is slow,
as in Sections 4.2.1–4.2.2, then differences in prediction accuracy vanish near point-mass beliefs.
As illustrated above, this renders the prediction accuracy ranking, and hence stable beliefs, highly
sensitive to small amounts of misspecification.

Even under costly information acquisition or social learning, the usual slow-learning logic
might hold only approximately if other offsetting forces are introduced: For example, agents
might have access to small amounts of exogenous costless information each period (similarly,
under social learning, BH introduce a small fraction of “autarkic” agents, who act solely based on
their private information, ignoring others’ actions). For a fixed positive amount of such exogenous
information, the results in BH imply that learning is successful whenever agents’ perceptions are
within some small enough threshold ε>0 of the true model. Complementary to this, our analysis

35. Relatedly, Gagnon-Bartsch (2017) considers sequential social learning with “taste projection” and shows that a
point-mass on the true state can be unstable under arbitrarily small misspecification. His environment can be seen to also
feature slow learning, but due to the difference in the nature of misspecification, his setting requires large misspecification
in order for a point-mass on an incorrect state to be locally/globally stable.
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implies that the smaller the amount of exogenous information, the smaller is ε (i.e. the more
sensitive is learning to misspecification), and in the limit, as there is no exogenous information,
vanishingly small amounts of misspecification can generate extreme failures of learning. The
following example illustrates this point:

Example 2. Consider the setting in Section 4.2.1. Suppose that true and perceived probabilities
are β+(γ (μ)+α)ω∗ and β̂+(γ (μ)+α)ω, where α>0 captures exogenous information. Then
for any β̂ >β (resp. β̂ <β), there exists α>0 such that whenever α<α, then δωN (respectively
δω1 ) is globally stable at all ω∗. Here, α can be chosen to be decreasing in ε=|β̂−β|, with
α(ε)→0 as ε→0. �

Taken together, these results suggest that some policy interventions, such as releasing additional
public signals or shutting down some agents’ observations of others’ actions, might be used to
“robustify” learning against misspecification, but that the effectiveness of such interventions
would depend on the relative strength of additional information and agents’ amount of
misspecification.

The slow learning channel we highlight also complements other fragility results in the
literature. Frick et al. (2020a) (FII20) study a different social learning model, with a continuum
of states and continuum of agents, who each privately observe the action of a random other agent
each period. Importantly, the fact that action observations are private means that the setting in
FII20 is not nested by the current article, nor by BH, as these papers require a public belief process.
As a result, the preceding discussion on robustness/fragility without/with slow learning does not
apply. Indeed, as FII20 show, their setting does not feature slow learning: Agents view their
new private action observations as non-vanishingly informative, no matter how confident they
themselves have become in a particular state.36 Yet, despite the absence of slow learning, FII20
establish that arbitrarily small misspecification about the type distribution F can lead beliefs to
converge to a state-independent point-mass, similar to the current fragility result in Proposition 4.
The mechanism behind the two fragility results is quite different.37 One notable manifestation
of this difference is that the fragility result in FII20 relies on a continuous state space: FII20
show that, in their setting, successful learning is robust if the state space is finite, in contrast with
Proposition 4.

Cho and Kasa (2017) consider single-agent learning under a Markovian fundamental. Their
setting is also not nested by ours and does not feature slow learning, but they show that long-run
beliefs can be discontinuous against the details of the agent’s misspecification. Their discontinuity
result holds away from the correctly specified benchmark and relies on intertemporal correlation
in the signal process.

5. CONCLUDING REMARKS

This article presents an approach to analyse belief convergence in a broad class of misspecified
learning environments, including single-agent and social learning. The key ingredients underlying
our approach are (i) a novel prediction accuracy order over subjective models, q-dominance and

36. This is because, under random matching in a continuum population, the history observed by an agent’s new
match in each period almost surely has no overlap with her own history of observations.

37. Specifically, in Section 4.2.2, slow learning implies that all point-mass beliefs are BeNE, and the logic behind
Proposition 4 is that misspecification can discontinuously change which of these beliefs are stable. By contrast, FII20
highlight a discontinuity at the level of the equilibrium correspondence: all point-mass beliefs are BeNE under correct
specification, but misspecification can discontinuously shrink the BeNE set to a single state-independent point mass.
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(ii) the observation that throughout any region of beliefs where q-dominance obtains, standard
martingale arguments from the correctly specified setting can be applied locally. Based on this, we
obtain conditions for local/global stability or instability of long-run beliefs. One difference with
existing approaches is that our results can be applied to study the impact of misspecification when
learning is slow. When this is the case, as is natural under costly information acquisition or social
learning, we illustrate that successful learning can be highly fragile against misspecification. We
also apply our results to unify and generalize various convergence results in previously studied
settings.

Fruitful directions in which to extend our results include multi-agent settings with
heterogeneous beliefs (partially addressed in Supplementary Appendix G of the previous version,
Frick et al., 2020b) and Markov decision problems. Another important direction that we leave
open is to analyse when a mixed belief (or region of mixed beliefs) μ∗ is stable: This can be seen
as an extreme form of slow learning, where belief-updating ceases completely before agents have
become confident in any given state, and arises in some important economic applications (see
Section 2.2). We expect that stability conditions for this case might be obtained by again requiring
a suitable transformation of the posterior ratio process to be a non-negative supermartingale
near μ∗.38

APPENDIX

Appendix A contains all proofs for Section 3 (Lemma 1 is immediate from Theorem 1). Appendix B extends the stability
analysis to infinite state spaces. The proofs for the applications in Section 4, as well as all supplemental material referenced
in the text, appear in Supplementary Appendices C and D.

A. PROOFS FOR SECTION 3

A.1. Preliminary results

Say belief continuity holds at M ⊆�(�) if for each ω,ω′ ∈�, μ∈M, and z∈Z , we have that pμ(z), p̂μ(z|ω)
p̂μ(z|ω′) , and

pμ(z) p̂μ(z|ω)
p̂μ(z|ω′) are continuous in μ.

Lemma 9. Assume belief continuity holds at M ⊆�(�). Pick q∗ >0 as in Assumption 1.2. For all ω, ω′, and q with

0<q≤min{q∗,1}, ∫ ( p̂μ(z|ω)
p̂μ(z|ω′)

)q
pμ(z)dν(z) is continuous in μ on M.

Proof. Fix ω, ω′, and q. Consider μ∈M and a sequence μn →μ. Observe that belief continuity implies that, for each z,(
p̂μn (z|ω)

p̂μn (z|ω′)

)q

pμn (z)→
(

p̂μ(z|ω)

p̂μ(z|ω′)

)q

pμ(z).

When pμ(z)>0, the claim is clear. When pμ(z)=0, this holds because p̂μn (z|ω)
p̂μn (z|ω′) pμn (z)→ p̂μ(z|ω)

p̂μ(z|ω′) pμ(z)=0 and q≤1.

Given the above observation, the desired continuity holds by the dominated convergence theorem, as
(

p̂μ(·|ω)
p̂μ(·|ω′)

)q
pμ(·)

is dominated by the ν-integrable h(·) (by Assumption 1.2 and q≤q∗). �

The following result shows that mixed beliefs are unstable under an identification condition. The argument is similar
to Theorem B.1 in Smith and Sørensen (2000):

38. More specifically, our q-dominance condition for local stability of δω in Theorem 1 ensures that f (μt)=
(

μt (ω′)
μt (ω)

)q

is a non-negative supermartingale at beliefs near δω . To establish the local stability of a mixed belief μ∗, a similar approach
would be to construct a function f that is minimized at μ∗ and such that f (μt) strictly decreases in expectation near μ∗
(similar arguments establish the stability of a region of mixed beliefs μ∗). The key new step would be to identify suitable
conditions on P and P̂ that yield such a function f .
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Lemma 10. Take any compact set K ⊆�(�) at which belief continuity holds. Suppose there exist ω,ω′ such that for
each μ∈K, we have (i) μ(ω),μ(ω′)>0 and (ii) p̂μ(z|ω) �= p̂μ(z|ω′) for some z∈supp(Pμ). Then for any initial belief μ0,

Pμ0 [∃τ <∞ s.t. μt ∈K ∀t ≥τ, and ∃limt
μt (ω)
μt (ω′) ]=0.

Proof. For each μ∈K , (ii) yields some zμ ∈supp(Pμ) such that
∣∣∣log p̂μ(zμ|ω)

p̂μ(zμ|ω′)

∣∣∣>0. Since perceived signal densities are

continuous in z, there exists a neighbourhood Zμ 	zμ with

inf
z∈Zμ

∣∣∣∣log
p̂μ(z|ω)

p̂μ(z|ω′)

∣∣∣∣>0, Pμ(Zμ)>0.

By belief continuity at K , there exists a neighbourhood Bμ 	μ such that

inf
z∈Zμ,μ′∈Bμ

∣∣∣∣log
p̂μ′ (z|ω)

p̂μ′ (z|ω′)

∣∣∣∣>0, inf
μ′∈Bμ

Pμ′ (Zμ)>0.

By compactness of K , there is a finite subcover (Bμi )n
i=1 of K . Thus, there is γ >0 such that

inf
z∈Z

μi ,μ
′∈B

μi

∣∣∣∣log
p̂μ′ (z|ω)

p̂μ′ (z|ω′)

∣∣∣∣>γ, inf
μ′∈B

μi

Pμ′ (Zμi )>γ, for all i=1,...,n.

Suppose for a contradiction that Pμ0 [∃τ <∞ s.t. μt ∈K ∀t ≥τ, and ∃limt
μt (ω)
μt (ω′) ]>0 for some initial belief μ0.

Since the belief process is Markov, there exists an initial belief μ′
0 ∈K such that Pμ′

0
[μt ∈K ∀t, and ∃limt

μt (ω)
μt (ω′) ]>0.

Given this initial belief μ′
0, take � from the support of the distribution of limt

μt (ω)
μt (ω′) conditional on the event

{μt ∈K ∀t, and ∃limt
μt (ω)
μt (ω′) }. Then,

Pμ′
0

[
μt ∈K ∀t and ∃T <∞ s.t.

∣∣∣∣log
μt(ω)

μt(ω′)
−�

∣∣∣∣≤γ /2∀t ≥T

]
>0. (A.1)

But for any t, if μt ∈K and
∣∣∣log μt (ω)

μt (ω′) −�

∣∣∣≤γ /2, then there exists i such that μt ∈Bμi . Hence, by construction, there is

probability at least γ >0 that
∣∣∣log μt+1(ω)

μt+1(ω′) −�

∣∣∣>γ/2. Since the process is Markov, this implies that the event in (A.1)

occurs with zero probability, a contradiction. �

A.2. Proof of Lemma 2

Consider the random variable log p̂μ(z|ω′)
p̂μ(z|ω) , where z is distributed according to Pμ. The corresponding moment-

generating function M(q) :=∫ ( p̂μ(z|ω′)
p̂μ(z|ω)

)q
dPμ(z) is well-defined for q∈[−q∗,q∗] by Assumption 1.2. Note that M ′(0)=∫

log p̂μ(z|ω′)
p̂μ(z|ω) dPμ(z) and that M is convex with M(0)=1.

Part 1. If ω�q
μ ω′ for some q>0, then M(q)<1=M(0). Thus, convexity of M implies for all q′ ∈ (0,q) that M(q′)≤

q′
q M(q)+(1− q′

q )M(0)<1, i.e., ω�q′
μ ω′. By convexity of M, we also have M ′(0)≤ 1

q (M(q)−M(0))<0, whence ω�KL
μ ω′.

Part 2. If ω�KL
μ ω′, then M ′(0)<0. Thus, for all small enough q>0, M(q)<M(0)=1, i.e., ω�q

μ ω′. �

A.3. Proof of Theorem 1

First part: Suppose there exist q>0 and B	δω such that (6) holds. We can (i) choose B small enough that belief continuity
holds at B (by Assumption 1.3) and (ii) assume that q<1 (by Lemma 2). For any initial belief μ0 with induced probability

measure Pμ0 over sequences of beliefs and each ω′ �=ω, define the stochastic process �t(ω′) :=
(

μmin{t,τ }(ω′)
μmin{t,τ }(ω)

)q
, where

τ := inf{s :μs �∈B}. By (6) and Lemma 3, each �t(ω′) is a non-negative supermartingale. Thus, by Doob’s convergence
theorem, there exists an L∞-random variable �∞(ω′) such that �t(ω′)→�∞(ω′) occurs a.s.

To prove that δω is locally stable, it suffices to show the following two claims:

Claim 1: For any initial belief μ0, Pμ0 [μt ∈B∀t and μt →δω]=Pμ0 [μt ∈B∀t].
Proof of Claim 1. Consider any initial belief μ0 such that Pμ0 [μt ∈B,∀t]>0. We show that Pμ0 [μt →δω|μt ∈B∀t]=1.

Conditional on the event {μt ∈B,∀t}, we have τ =∞, so the fact that �t(ω′)→�∞(ω′) a.s. implies that each μt (ω′)
μt (ω) converges

a.s. to a finite value. Suppose for a contradiction that for some ω′ �=ω, Pμ0 [limt
μt (ω′)
μt (ω) >0 |τ =∞]>0. Then, there exists
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a compact K ⊆B such that μ(ω′),μ(ω)>0 for all μ∈K and Pμ0 [∃T s.t. μt ∈K∀t ≥T and ∃limt
μt (ω′)
μt (ω) |τ =∞]>0. But

this contradicts Lemma 10, because for any μ∈B\{δω}, (6) yields some z∈suppPμ with p̂μ(z|ω) �= p̂μ(z|ω′). Hence, we

have Pμ0 [limt
μt (ω′)
μt (ω) =0 |τ =∞]=1 for all ω′ �=ω. Thus, Pμ0 [μt →δω |τ =∞]=1, as claimed. �

Claim 2: For any γ >0, there exists a neighbourhood B′ ⊆B of δω such that Pμ0 [μt ∈B,∀t]≥γ for any initial belief
μ0 ∈B′.

Proof of Claim 2. Fix any γ >0. Pick ε+ >0 such that {μ∈�(�) :∑ω′ �=ω

(
μ(ω′)
μ(ω)

)q
<ε+}⊆B. Pick ε− >0 such that

ε−
ε+ ≤1−γ . For any μ0 ∈B′ :={μ∈�(�) :∑ω′ �=ω

(
μ(ω′)
μ(ω)

)q
<ε−}, we have

Pμ0 [∃t,μt �∈B]≤Pμ0 [
∑
ω′ �=ω

�∞(ω′)≥ε+]≤Eμ0 [
∑
ω′ �=ω

�∞(ω′)]/ε+ ≤ ε−
ε+

,

where the second inequality uses Markov’s inequality and the third follows from Fatou’s lemma and the fact that each
�t(ω′) is a non-negative supermartingale. Thus, Pμ0 [μt ∈B,∀t]≥γ . �

Second part: Suppose there exist q>0 and a neighbourhood B	δω such that (7) holds for some ω′ �=ω, where we
again assume without loss that belief continuity holds at B and q<1. Up to restricting to a subneighbourhood of B, we can
assume that there exists ε>0 such that μ(ω)>ε for all μ∈B. Fix any initial belief μ0 ∈B\{δω}. Let τ := inf{s :μs �∈B}.
To prove instability of δω , it suffices to show that Pμ0 [τ <∞]=1. Consider the process �t :=

(
μmin{t,τ }(ω)
μmin{t,τ }(ω′)

)q
, which is a

non-negative supermartingale by (7) and Lemma 3. Hence, Doob’s convergence theorem yields an L∞-random variable
�∞ such that �t →�∞ a.s.

Suppose for a contradiction that with positive probability, we have τ =∞. Conditional on τ =∞, we have
(

μt (ω)
μt (ω′)

)q =
�t for all t. Thus, conditional on τ =∞, μt (ω)

μt (ω′) converges a.s. to an L∞ random limit limt
μt (ω)
μt (ω′) , which must be strictly

positive since μ(ω)>ε for all μ∈B. Hence, there exists some compact set K ⊆B\{δω} such that μ(ω),μ(ω′)>0 for all
μ∈K and Pμ0 [∃T s.t. μt ∈K∀t ≥T and ∃limt

μt (ω)
μt (ω′) |τ =∞]>0. But this contradicts Lemma 10, because (7) implies that

for each μ∈K , there exists z∈suppPμ with p̂μ(zμ|ω) �= p̂μ(zμ|ω′). �

A.4. Proof of Theorem 2

This result is a special case of Theorem 3 in Appendix B.

A.5. Proof of Proposition 1

We call K ⊆�(�) an unstable set if there exists a neighbourhood B of K such that Pμ0 [∃t,μt �∈B]=1 for every initial belief
μ0 ∈B\K . We call K ⊆�(�) transient if Pμ0 [∃t s.t. μt �∈K]=1 for any initial belief μ0 ∈K . We invoke the following
lemma, which we prove in Appendix A.5.1.

Lemma 11. Suppose that belief continuity holds. Consider �={ω1,...,ωN } and suppose that

1. δω1 satisfies the condition for local stability in Theorem 1;

2. �({ω2,...,ωN }) is unstable;

3. for any mixed μ∈�(�), there is z∈supp(Pμ) with p̂μ(z|ω1)> p̂μ(z|ωn) for all n �=1.

Then, δω1 is globally stable.

To prove Proposition 1, we verify the assumptions in Lemma 11. Assumptions (i) and (iii) in Lemma 11 follow from
assumptions (i) and (ii) in Proposition 1 applied with n=1. Thus, it remains to show that �({ω2,...,ωN }) is unstable. We
prove inductively that �({ωN−m,...,ωN }) is unstable for all m=0,...,N −2. For m=0, this holds since δωN is unstable
by assumption (i) in Proposition 1 and Theorem 1. For the inductive step, we prove the following lemma; this completes
the proof, because assumptions (i)–(ii) in Proposition 1 imply assumptions (i)–(iii) in the lemma.

Lemma 12. Fix any n∈{2,...,N −1}. Suppose that the set �({ωn+1,...,ωN }) is unstable and belief continuity holds at
some neighbourhood of this set. Assume that (i) there exist q>0 and a neighbourhood Bn 	δωn such that ωn �q

μ ωk for all
k >n and μ∈Bn \{δωn }; (ii) δωn is unstable; and (iii) for each mixed belief μ∈�({ωn,...,ωN }), there exists z∈supp(Pμ)
such that p̂μ(z|ωn)> p̂μ(z|ωk) for all k >n. Then, �({ωn,...,ωN }) is unstable.
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Proof. Note first that since �({ωn+1,...,ωN }) is unstable, there exists εn+1 >0 such that �n+1 :={μ∈�(�) :
μ({ωn+1,...,ωN })≥1−εn+1} is transient. Moreover, we can assume that Bn in assumption (i) takes the form {μ∈�(�) :
μ(ωn)>1−κ} for some κ >0, where, by choosing κ sufficiently small, assumption (ii) ensures that Bn is transient.

We claim that we can choose ε>0, γ ∈ (0,1), and εn ∈ (0,εn+1) such that, defining

�n :={μ∈�(�) :μ({ωn,...,ωN })≥1−εn}, B′
n :={μ∈�n :

∑
k>n

(
μ(ωk)

μ(ωn)

)q

≤ε},

the following three properties are satisfied:
B′

n ⊆Bn (A.2)

∀μ∈�n \(�n+1 ∪B′
n),∃Zμ ⊆Z with Pμ(Zμ)≥γ and inf

z∈Zμ

p̂μ(z|ωn)

p̂μ(z|ωk)
−1≥γ for all k >n (A.3)

εn+1

εn+1 −εn
≤1+γ. (A.4)

Indeed, first pick ε>0 sufficiently small that μ(ωn)≥1−κ/2 holds for every μ∈�({ωn,...,ωN }) with∑
k>n

(
μ(ωk )
μ(ωn)

)q ≤ε. Then, (A.2) is satisfied for all sufficiently small εn ∈ (0,εn+1). To show (A.3), note that by assumption

(iii) and continuity of signal densities in z, for all μ∈�({ωn,...,ωN })\{δωn ,...,δωN }, there exists Zμ ⊆Z with Pμ(Zμ)>0

and infz∈Zμ

p̂μ(z|ωn)
p̂μ(z|ωk ) −1>0 for all k >n. By belief continuity, for each such μ, there exists an open neighbourhood Bμ 	μ

such that infμ′∈Bμ
Pμ′ (Zμ)>0 and infz∈Zμ,μ′∈Bμ

p̂μ′ (z|ωn)

p̂μ′ (z|ωk ) −1>0 for all k >n. Moreover, given ε>0, but independent

of the choice of εn, μ(ωn),...,μ(ωN ) are bounded away from 1 for all μ∈�({ωn,...,ωN })\(�n+1 ∪B′
n). Thus,

�({ωn,...,ωN })\(�n+1 ∪B′
n) is contained in some compact set K ⊂�({ωn,...,ωN })\{δωn ,...,δωN }. Hence, by taking

a finite subcover (Bμi )i=1,...,I of K , there is γ ∈ (0,1) such that infμ′∈Bμi
Pμ′ (Zμi )≥γ and infz∈Zμi ,μ

′∈Bμi

p̂μ′ (z|ωn)

p̂μ′ (z|ωk ) −1≥γ

for all k >n and i∈1,...,I . For all small enough εn, we can then ensure that (A.3) and (A.4) hold, where the former is
guaranteed by requiring �n \(�n+1 ∪B′

n) to be included in the cover (Bμi )i=1,...,I .
For ε, γ , and εn as chosen above, we establish the following two claims:

Claim 1: There exists T ∈N such that Pμ0 [∃t ≤T s.t. μt ∈B′
n ∪�c

n]≥γ T for every initial belief μ0 ∈�n \�n+1.

Proof of Claim 1. Observe first that μ0(ωn+1)
μ0(ωn) ,...,

μ0(ωN )
μ0(ωn) are uniformly bounded from above for all μ0 ∈�n \�n+1, as

μ0(ωn)≥εn+1 −εn >0. Thus, there exists T with
∑

k>n

(
μ0(ωk )
μ0(ωn) (1+γ )−T

)q ≤ε.

Starting with any initial belief μ0 ∈�n \�n+1, we recursively construct sequences of signal realizations z0,z1,...,zT ′
with T ′ ≤T −1 and corresponding updated beliefs μ1,μ2,...,μT ′+1. Suppose we have constructed z0,...,zt−1 for some
t ∈{0,...,T}. We distinguish two cases:

(a) If μt ∈B′
n ∪�c

n, set T ′ = t−1 and terminate the construction of the signal sequence.

(b) Suppose μt ∈�n \(�n+1 ∪B′
n). Then by (A.3), we can pick any signal zt ∈Zμt , which satisfies

p̂μt (zt |ωn)
p̂μt (zt |ωk ) −1≥γ

for all k >n. We claim that the updated belief μt+1 satisfies μt+1({ωn+1,...,ωN })≤μt({ωn+1,...,ωN }), so μt+1 �∈�n+1.
Indeed, suppose to the contrary that μt+1({ωn+1,...,ωN })>μt({ωn+1,...,ωN }). By choice of zt , we have μt+1(ωn)

μt+1(ωk ) ≥
μt (ωn)
μt (ωk ) (1+γ ) for each k >n. Thus, μt+1(ωn)

μt (ωn) ≥maxk>n
μt+1(ωk )
μt (ωk ) (1+γ )≥ μt+1({ωn+1,...,ωN })

μt ({ωn+1,...,ωN }) (1+γ )>1+γ . At the same time,

μt+1(ωn)

μt(ωn)
≤ 1−μt+1({ωn+1,...,ωN })

1−μt({ωn+1,...,ωN })−εn
<

1−μt({ωn+1,...,ωN })
1−μt({ωn+1,...,ωN })−εn

≤ εn+1

εn+1 −εn
,

where the first inequality holds because μt ∈�n and the third because μt �∈�n+1. Thus, εn+1
εn+1−εn

≥ μt+1(ωn)
μt (ωn) >1+γ , which

contradicts (A.4).
Note that the construction above ensures that case (a) must occur at the latest at t =T , so that T ′ ≤T −1. Indeed, if

(b) holds for all t <T , then μT ∈B′
n, as

∑
k>n

(
μT (ωk )
μT (ωn)

)q ≤∑k>n

(
μ0(ωk )
μ0(ωn) (1+γ )−T

)q ≤ε by (b) and the choice of T . This

proves Claim 1, as by construction and (A.3), signal realizations (z0,...,zT ′ ) of the above form occur with probability at
least γ T ′+1. �

Claim 2: Let τ := inf{t :μt �∈B′
n}. There exists ξ ∈[0,1) such that Pμ0 [τ <∞]=1 and Pμ0 [μτ ∈�n \B′

n]≤ξ for every
initial belief μ0 ∈B′

n.

Proof of Claim 2. Note that Pμ0 [τ <∞]=1 is immediate from (A.2) and the fact that Bn is transient. To show the

existence of ξ , define �t :=∑k>n

(
μmin{t,τ }(ωk )
μmin{t,τ }(ωn)

)q
. By (A.2) and assumption (ii), �t is a non-negative supermartingale, and

in particular Eμ0 [�1]<�0 ≤ε for every initial belief μ0 ∈B′
n. Since Eμ0 [�1] is continuous in μ0 by Lemma 9 and B′

n is
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compact, there exists ξ ∈[0,1) such that Eμ0 [�1]≤ξε holds for every initial belief μ0 ∈B′
n. Hence,

Pμ0 [μτ ∈�n \B′
n]ε+Pμ0 [μτ �∈�n \B′

n]·0≤Eμ0 [�τ ]≤Eμ0 [�1]≤ξε,

where the first inequality holds by definition of B′
n. Thus, Pμ0 [μτ ∈�n \B′

n]≤ξ . �

To complete the proof of Lemma 12, for each initial belief μ0, define g(μ0) :=Pμ0 [μt ∈�n∀t]. We verify that
supμ0∈�n

g(μ0)=0. First, take any μ0 ∈�n ∩�n+1 and set τ ′ := inf{t :μt �∈�n+1}, which satisfies Pμ0 [τ ′ <∞]=1 since
�n+1 is transient. By the Markov property,

g(μ0)=Pμ0 [μτ ′ ∈�n]Eμ0 [g(μτ ′ )|μτ ′ ∈�n]+Pμ0 [μτ ′ /∈�n]·0≤ sup
μ∈�n\�n+1

g(μ).

This implies that
sup

μ0∈�n

g(μ0)= sup
μ0∈�n\�n+1

g(μ0). (A.5)

Next, take any μ0 ∈B′
n and define τ := inf{t :μt �∈B′

n} as in Claim 2. By the Markov property,

g(μ0)=Pμ0 [μτ ∈�n]Eμ0 [g(μτ )|μτ ∈�n]≤ξ sup
μ∈�n

g(μ)=ξ sup
μ∈�n\�n+1

g(μ),

where the inequality holds by Claim 2 and the equality by (A.5). Thus,

sup
μ∈B′

n

g(μ)≤ξ sup
μ∈�n\�n+1

g(μ). (A.6)

Last, take μ0 ∈�n \�n+1 and let τ ′′ := inf{min{t :μt ∈�c
n ∪B′

n},T +1}. By the Markov property,

g(μ0) = Pμ0 [τ ′′ ≤T ]Eμ0 [g(μτ ′ )|τ ′′ ≤T ]+Pμ0 [τ ′′ >T ]Eμ0 [g(μτ ′ )|τ ′′ >T ]
≤ Pμ0 [τ ′′ ≤T ] sup

μ∈B′
n

g(μ)+Pμ0 [τ ′′ >T ] sup
μ∈�n

g(μ)

≤ γ T sup
μ∈B′

n

g(μ)+(1−γ T ) sup
μ∈�n

g(μ)≤ (γ T ξ +1−γ T ) sup
μ∈�n\�n+1

g(μ),

where the second inequality follows from Claim 1 and the fact that supμ∈B′
n
g(μ)≤supμ∈�n

g(μ) by (A.6), and the final
inequality holds by (A.5)–(A.6). Thus, supμ∈�n\�n+1

g(μ)=0 and the desired conclusion follows from (A.5). �

A.5.1. Proof of Lemma 11. Fix any γ ∈ (0,1). Given assumption (i), Claims 1 and 2 in the proof of Theorem 1
ensure that there exist neighbourhoods B1 ⊇B′

1 	δω1 such that

Pμ0 [μt ∈B1∀t]=Pμ0 [μt ∈B1∀t, and μt →δω1 ]≥γ for all initial beliefs μ0 ∈B′
1. (A.7)

By assumption (ii), �({ω2,...,ωN }) admits a neighbourhood �2 such that Pμ0 [∃t s.t. μt /∈�2]=1 for all initial beliefs
μ0 ∈�2 \�({ω2,...,ωN }). Since initial beliefs have full support, we equivalently have that Pμ0 [∃t s.t. μt /∈�2]=1 for all
initial beliefs μ0 ∈�2. Thus, �2 is transient.

Observe that there exist T ∈N and η>0 such that, for every initial belief μ0 �∈�2,

Pμ0 [∃t ≤T s.t. μt ∈B′
1]≥η (A.8)

Indeed, pick L>1 large enough that (i) μ∈B′
1 for all μ with log μ(ω1)

μ(ωn) ≥L for each n>1, and (ii) log μ(ω1)
μ(ωn) ≥1/L for

all μ �∈�2 and n>1. By continuity of pμ(z), p̂μ(z|ω1)
p̂μ(z|ωn) in (z,μ) and assumption (iii), there exists ε>0 such that for all μ

in the compact set {μ∈�(�) :L≥minn>1 log μ(ω1)
μ(ωn) ≥1/L}, there is Zμ ⊆Z such that Pμ(Zμ)>ε and log p̂μ(z|ω1)

p̂μ(z|ωn) >ε for

all n �=1 and z∈Zμ. Starting from any initial belief μ0 �∈�2, consider any realization of signals (zt) and corresponding
beliefs (μt) such that zt ∈Zμt . This ensures log μt (ω1)

μt (ωn) ≥1/L+tε for each n>1 and t. Along this sequence, μt′ ∈B′
1 for

some t′ ≤ L−1/L
ε

. Thus, claim (A.8) holds by choosing T ≥ L−1/L
ε

and η=εT .
For each initial belief μ0, define h(μ0) :=Pμ0 [μt →δω1 ]. To show global stability of δω1 , we will prove that

infμ∈�◦(�) h(μ)=1. Note first that for any initial belief μ0, τ := inf{t :μt �∈�2} satisfies Pμ0 [τ <∞]=1 as �2 is transient.
Thus, by the Markov property of μt , we have h(μ0)=Eμ0 [h(μτ )]≥ infμ∈�◦(�)\�2 h(μ), whence

inf
μ∈�◦(�)

h(μ)= inf
μ∈�◦(�)\�2

h(μ). (A.9)
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Next, take any initial belief μ0 ∈B′
1 and τ ′ := inf{t :μt �∈B1}. By the Markov property and (A.7),

h(μ0) = Pμ0 [τ ′ =∞]Pμ0 [μt →δω1 |τ ′ =∞]+Pμ0 [τ ′ <∞]Eμ0 [h(μτ ′ )|τ ′ <∞]
= Pμ0 [τ ′ =∞]+Pμ0 [τ ′ <∞]Eμ0 [h(μτ ′ )|τ ′ <∞]≥γ +(1−γ ) inf

μ∈�◦(�)
h(μ).

Combining this with (A.9) yields
inf

μ∈B′
1

h(μ)≥γ +(1−γ ) inf
μ∈�◦(�)\�2

h(μ). (A.10)

Finally, consider any initial belief μ0 �∈�2 and let τ ′′ :=min{inf{t :μt ∈B′
1},T +1}. Then, by the Markov property

and (A.8)–(A.10), we have

h(μ0) = Pμ0 [τ ′′ ≤T ]Eμ0 [h(μτ ′′ )|τ ′′ ≤T ]+Pμ0 [τ ′′ >T ]Eμ0 [h(μτ ′′ )|τ ′′ >T ]
≥ Pμ0 [τ ′′ ≤T ] inf

μ∈B′
1

h(μ)+Pμ0 [τ ′′ >T ] inf
μ∈�◦(�)

h(μ)

≥ η inf
μ∈B′

1

h(μ)+(1−η) inf
μ∈�◦(�)

h(μ)≥ηγ +(1−ηγ ) inf
μ∈�◦(�)\�2

h(μ).

This holds for all μ0 �∈�2, so infμ∈�◦(�)\�2 h(μ)=1. By (A.9), infμ∈�◦(�) h(μ)=1. �

B. GENERAL STATES

We provide local and global stability conditions for infinite state spaces, by extending the martingale approach in the main
text. Assume � is a compact metric space and endow �(�) with the Prokhorov metric d. In addition to Assumption 1,
we impose the following standard assumption, which is automatically satisfied if � is finite:

Assumption 2 (Continuity in states) For each μ∈�(�) and z∈Z, p̂μ(z|ω) is continuous in ω.

As in Section 2, given any full-support initial belief μ0, the belief process μt is induced by (Pμ) and (P̂μ(·|ω))
using Bayes’ rule. In particular, after signal zt is drawn according to pμt , μt is updated to μt+1 by setting μt+1(�′)=∫

�′ p̂μt (zt |ω)dμt (ω)∫
� p̂μt (zt |ω)dμt (ω)

for each measurable �′ ⊆�.

B.1. Global iterated dominance

For global stability, we extend Theorem 2. For each non-empty �′ ⊆�, let

S(�′) :={ω∈�
′ :� ∃ω′ ∈�

′
s.t. ω′ �KL

μ ω for all μ∈�(�
′
)},

where �
′

denotes the closure of �′ in �. Under belief continuity, S(�′) is non-empty and compact (Lemma 14). Thus,
S∞(�′) :=⋂k∈N

Sk(�′) is non-empty and compact by Cantor’s intersection theorem. The following result shows that
Theorem 2 remains true unchanged:

Theorem 3. Assume belief continuity holds. Then �(S∞(�)) is globally stable.

We prove Theorem 3 in Appendix B.4. All proofs in Appendix B rely on Lemma 15, which extends our supermartingale
construction via q-dominance to infinite state spaces.

B.2. Local iterated dominance

To obtain a condition for local stability, we also use the above iterated dominance approach. We consider a set-valued
notion of local stability: M ⊆�(�) is a locally stable set if for any γ <1, there exists a neighbourhood B of M such
that Pμ0 [infν∈M d(μt,ν)→0]≥γ from each initial belief μ0 ∈B. We also generalize the notion of strict BeNE to sets of

beliefs: For each non-empty measurable �′ ⊆�, call �(�′) a strict BeNE set if for all ω �∈�′, there exists ω′ ∈�
′

such
that

ω′ �KL
μ ω for all μ∈�(�

′
).

Note that if �′ ={ω′} is a singleton, this definition reduces to δω′ being a strict BeNE. We prove the following result in
Appendix B.5:
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Theorem 4. Suppose �′ is open and belief continuity holds at some neighbourhood of �(�′). If �(�′) is a strict BeNE
set, then �(Sk(�′)) is locally stable for all k =0,1,...,∞.

Theorem 4 implies Corollary 1 when � is finite. However, a strict BeNE δω need not be locally stable under general
�, as {ω} need not be open.

Similar to the application of Theorem 3 in Section 4.1, Theorem 4 is straightforward to apply under one-dimensional
states, because in this case local iterated dominance again corresponds to the iterated application of the map m:

Example 3. Consider the environment in Section 4.1. Proposition 5 (Supplementary Appendix C.1) generalizes
Proposition 2 by showing that if �′ ⊆� is an open interval such that m(�

′
)⊆�′, then Sk(�′)=mk(�

′
) for all

k =0,1,...,∞. For any such �′, the fact that S(�′)=m(�
′
)⊆�′ implies that �′ is a strict BeNE set. Thus, by Theorem 4,

�(m∞(�
′
)) is locally stable.

For example, consider any BeNE δω̂ . Then, if m is continuously differentiable near ω̂ with |m′(ω̂)|<1, this implies
that δω̂ is locally stable, because for some small enough open interval �′ 	 ω̂, we have m(�

′
)⊆�′ and m∞(�

′
)={ω̂}. �

B.3. Preliminary results for the proofs of Theorems 3 and 4

Lemma 13. Pick q∗ as in Assumption 1.2. For each μ and q∈ (0,q∗], ∫ ( p̂μ(z|ω)
p̂μ(z|ω̃)

)q
pμ(z)dν(z) is continuous in ω and ω̃.

Proof. For all z such that pμ(z)>0, p̂μ(z|ω)
p̂μ(z|ω̃) is continuous in ω,ω̃ by Assumptions 1.1 and 2. Thus,

∫ ( p̂μ(z|ω)
p̂μ(z|ω̃)

)q
pμ(z)dν(z)

is continuous in ω and ω̃ by the dominated convergence theorem, as
(

p̂μ(·|ω)
p̂μ(·|ω̃)

)q
pμ(·) is dominated by the ν-integrable

function h(·) (Assumption 1.2). �

Lemma 14. Take any non-empty �′ ⊆� such that belief continuity holds at �(�
′
). Then, S(�′) is non-empty and

compact.

Proof. Take any ω∈�
′ \S(�′). Then, by definition of S(�′), there is φ(ω)∈�

′
such that

∫
log p̂μ(z|ω)

p̂μ(z|φ(ω)) dPμ(z)<0 for

each μ∈�(�
′
). Thus, for each μ∈�(�

′
), Lemma 2 yields qμ ∈ (0,q∗] such that, for all q∈ (0,qμ],∫ (

p̂μ(z|ω)

p̂μ(z|φ(ω))

)q

pμ(z)dν(z)<1.

By belief continuity, the L.H.S. is continuous in μ at �(�
′
) (Lemma 9). Thus,

∫ ( p̂μ′ (z|ω)

p̂μ′ (z|φ(ω))

)qμ

pμ′ (z)dν(z)<1 for all μ′

in some neighbourhood Bμ of μ. Since �(�
′
) is compact, by taking a finite subcover of {Bμ :μ∈�(�

′
)}, we can choose

qμ =:q to be independent of μ. Thus, at ω′ =ω, we have

max
μ∈�(�

′
)

∫ (
p̂μ(z|ω′)

p̂μ(z|φ(ω))

)q

pμ(z)dν(z)<1. (B.1)

Since the L.H.S. of (B.1) is continuous in ω′ by Lemma 13 and the maximum theorem, there is a neighbourhood Bω 	ω

such that for all ω′ ∈Bω ∩�
′
, max

μ∈�(�
′
)

∫ ( p̂μ(z|ω′)
p̂μ(z|φ(ω))

)q
pμ(z)dν(z)<1. By Lemma 2, this implies φ(ω)�KL

μ ω′ for all

μ∈�(�
′
) and ω′ ∈Bω ∩�

′
. Thus, �

′ \S(�′) is open in �
′
, which implies that S(�′) is closed in �

′
and hence compact.

Next, suppose that S(�′) is empty. Then the above observation shows that for each ω∈�
′
, there exists φ(ω)∈�

′
and

a neighbourhood Bω of ω such that φ(ω)�KL
μ ω′ for all μ∈�(�

′
) and ω′ ∈Bω ∩�

′
. By compactness of �

′
, {Bω :ω∈�

′}
admits a finite subcover {Bωi : i=1,...,I}. Then, for each i∈{1,...,I}, there exists j∈{1,...,I} such that φ(ωj)�KL

μ φ(ωi)

for all μ∈�(�
′
). By transitivity of KL-dominance, this yields i∈{1,...,I} such that φ(ωi)�KL

μ φ(ωi), which is impossible.
Thus, S(�′) is non-empty. �

The following lemma extends the supermartingale construction via q-dominance to general �. For any M ⊆�(�)

and ε>0, let Bε(M) :={ν ∈�(�) : infμ∈M d(μ,ν)<ε}. Note that (B.2) below ensures that each �i
t :=

(
μmin{t,τ }(Ai)
μmin{t,τ }(A′

i)

)qi
with

τ := inf{s :μs �∈Bε(D)} is a non-negative supermartingale. Moreover, the lemma shows that �i
t →0 a.s. conditional on

τ =∞.

Lemma 15. Suppose belief continuity holds at a neighbourhood of some non-empty compact set D⊆�(�). Let �′ ⊆�

be a compact set such that for any ω′ ∈�′, there exists ω∈� with ω�KL
μ ω′ for all μ∈D. Then there exist a family of
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measurable sets of states {Ai}I
i=1, a family of open sets of states {A′

i}I
i=1, ε>0, and qi >0 for each i such that

⋃
i Ai =�′

and ∫ (∫
Ai

p̂μ(z|ω)dμ(ω)/μ(Ai)∫
A′

i
p̂μ(z|ω)dμ(ω)/μ(A′

i)

)qi

dPμ(z)≤1−ε (B.2)

for each i and μ∈Bε(D) with μ(Ai),μ(A′
i)>0. Moreover, for any initial belief μ0,

Pμ0 [μt(�
′)→0,μt ∈Bε(D)∀t]=Pμ0 [μt ∈Bε(D)∀t]. (B.3)

Proof. By assumption, for each ω∈�′, there exists φ(ω)∈� such that, for all μ∈D,∫
log

p̂μ(z|ω)

p̂μ(z|φ(ω))
pμ(z)dν(z)<0. (B.4)

Claim 1: For each ω∈�′, there exist qω ∈ (0,q∗] and ζω >0 such that, for all μ∈Bζω (D),∫ (
p̂μ(z|ω)

p̂μ(z|φ(ω))

)qω

pμ(z)dν(z)≤1−ζω. (B.5)

Proof of Claim 1. For each ω∈�′ and μ∈D, (B.4) and Lemma 2 yield qω,μ ∈ (0,q∗] such that∫ (
p̂μ(z|ω)

p̂μ(z|φ(ω))

)q

pμ(z)dν(z)<1

for all q∈ (0,qω,μ]. By belief continuity, the L.H.S. is continuous in μ in a neighbourhood of D (Lemma 9). Thus,∫ ( p̂μ′ (z|ω)

p̂μ′ (z|φ(ω))

)qω,μ

pμ′ (z)dν(z)<1 for all μ′ in some neighbourhood Bμ of μ. Since D is compact, by taking a finite

subcover of {Bμ :μ∈D}, we can choose qω,μ =:qω to be independent of μ. Since the subcover of D is open, (B.5) holds
for ζω >0 sufficiently small. �

Claim 2: For each ω∈�′, there exists εω >0 such that, for any μ∈Bζω (D) with μ(Bεω (ω)∩�′),μ(Bεω (φ(ω)))>0, we
have ∫ (∫

Bεω (ω)∩�′ p̂μ(z|ω′)dμ(ω′)/μ(Bεω (ω)∩�′)∫
Bεω (φ(ω)) p̂μ(z|ω′)dμ(ω′)/μ(Bεω (φ(ω)))

)qω

pμ(z)dν(z)≤1−ζω/2. (B.6)

Proof of Claim 2. Fix ω∈�′. For each μ∈Bζω (D), we first observe that

max
μ̂∈�(Bε (ω)),μ̂′∈�(Bε (φ(ω)))

∫ ( ∫
p̂μ(z|ω′)dμ̂(ω′)∫
p̂μ(z|ω′)dμ̂′(ω′)

)qω

pμ(z)dν(z) (B.7)

is continuous in ε by the maximum theorem: Indeed,
( ∫

p̂μ(z|ω′)dμ̂(ω′)∫
p̂μ(z|ω′)dμ̂′(ω′)

)qω

is continuous in μ̂,μ̂′, since for each z, p̂μ(z|·) is

continuous and bounded (by Assumption 2 and compactness of �). Thus,
∫ ( ∫ p̂μ(z|ω′)dμ̂(ω′)∫

p̂μ(z|ω′)dμ̂′(ω′)

)qω

pμ(z)dν(z) is continuous

in μ̂,μ̂′ by the dominated convergence theorem, as
( ∫

p̂μ(·|ω′)dμ̂(ω′)∫
p̂μ(·|ω′)dμ̂′(ω′)

)qω

pμ(·) is dominated by h(·) (Assumption 1.2).

Therefore, by (B.5), there exists εω,μ >0 such that (B.7) is strictly less than 1−ζω/2 for all ε∈ (0,εω,μ].
Moreover, (B.7) is continuous in μ by the maximum theorem, as

∫ ( ∫ p̂μ(z|ω′)dμ̂(ω′)∫
p̂μ(z|ω′)dμ̂′(ω′)

)qω

pμ(z)dν(z)

is continuous in μ by belief continuity (using the same argument as in Lemma 9). Therefore,

maxμ̂∈�(Bεω,μ (ω)),μ̂′∈�(Bεω,μ (φ(ω)))

∫ ( ∫
p̂μ′ (z|ω′)dμ̂(ω′)∫
p̂μ′ (z|ω′)dμ̂′(ω′)

)qω

pμ′ (z)dν(z)<1−ζω/2 for all μ′ in some neighbourhood

Bμ of μ. Since Bζω (D) is compact, by taking a finite subcover of {Bμ :μ∈Bζω (D)}, we can choose εω,μ =:εω to be
independent of μ. This establishes (B.6). �

Since {Bεω (ω)∩�′ :ω∈�′} covers the compact set �′, there is a finite subcover {Bεωi
(ωi)∩�′ : i=1,...,I}. Thus by

setting Ai :=Bεωi
(ωi)∩�′, A′

i :=Bεωi
(φ(ωi)), qi :=qωi for each i, and ε :=mini min{εωi ,ζωi /2}, we obtain (B.2) for each

i and any μ∈Bε(D) with μ(Ai),μ(A′
i)>0.

For the “moreover” part, define �i
t :=

(
μmin{t,τ }(Ai)
μmin{t,τ }(A′

i)

)qi
for each i=1,...,I , where τ := inf{s :μs �∈Bε(D)}. For any initial

belief μ0, �i
t is a non-negative supermartingale by (B.2). Thus, Doob’s convergence theorem yields an L∞ random variable

�i∞ such that �i
t →�i∞ a.s. Observe that, for any initial belief μ0 ∈Bε(D), Markov’s inequality and (B.2) imply

Pμ0 [�i
1 ≥ (1−ε/2)�i

0]≤
Eμ0 [�i

1]
(1−ε/2)�i

0

≤ 1−ε

1−ε/2
.

Thus, conditional on any μt ∈Bε(D), the probability that �i
t+1 is less than (1−ε/2)�i

t is at least ε/2
1−ε/2 . This implies that

Pμ0 [�i∞ >0,τ =∞]=0 for any initial belief. Since, conditional on τ =∞, we have �i
t = μt (Ai)

μt (A′
i)

for each i and t, this ensures

the desired claim. �
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B.4. Proof of Theorem 3

Call M ⊆�(�) Lyapunov stable if for any neighbourhood B of M and γ <1, there exists a neighbourhood B′ of M such
that Pμ0 [μt ∈B∀t]≥γ for every initial belief μ0 ∈B′. We start with a preliminary lemma:

Lemma 16. Let �′ ⊆� be a non-empty and measurable set such that �(�′) is Lyapunov stable and belief continuity
holds at a neighbourhood of �(�′). Then �(S(�′)) is Lyapunov stable.

Proof. Write �′′ :=S(�′), which is non-empty and compact by Lemma 14. If �′′ =�′, the claim is immediate, so assume
�′′ ��′. Take any neighbourhood B of �(�′′) and any γ <1. Pick N large enough that �(B1/N (�′′))⊆B. By Lemma 15,
there exist a family of measurable sets of states {Ai}I

i=1, a family of open sets of states {A′
i}I

i=1, ε>0, and qi >0 for each

i such that
⋃

i Ai =�
′ \B1/N (�′′) and (B.2) holds for each i and μ∈Bε(�(�

′
)) with μ(Ai),μ(A′

i)>0.

Define C :={μ∈Bε′ (�(�
′
)) :∑i

(
μ(Ai)
μ(A

′
i)

)qi ≤ε′}, where by construction of {Ai}I
i=1, we can choose ε′ ∈ (0,ε) small

enough that C ⊆B. Set τ := inf{t :μt �∈C}. Then from any initial belief, each �i
t :=

(
μmin{t,τ }(Ai)
μmin{t,τ }(A′

i)

)qi
is a non-negative

supermartingale by (B.2), and thus a.s. converges to an L∞ limit �i∞.

For each η>0, define C′
η :={μ∈�(�) :∑i

(
μ(Ai)
μ(A′

i)

)qi
,μ(�\�

′
)≤η}, which is a neighbourhood of �(�′′). For any

initial belief μ0 ∈C′
η , we have

Pμ0 [τ <∞]≤Pμ0 [∃t s.t. μt �∈Bε′ (�(�
′
))]+Pμ0 [∃t s.t.

∑
i

(
μt(Ai)

μt(A′
i)

)qi

>ε′,μs ∈Bε′ (�(�
′
))∀s≤ t].

By Lyapunov stability of �(�′), we can pick η sufficiently small that the first term is less than 1−γ
2 for all μ0 ∈C′

η .

Moreover, the second term is less than Pμ0 [
∑

i�
i∞ >ε′]≤Eμ0 [

∑
i�

i
1]/ε′ ≤η/ε′ by Markov’s inequality, Fatou’s lemma

and the fact that
∑

i�
i
t is a non-negative supermartingale. Thus, by taking η sufficiently small, Pμ0 [μt ∈B∀t]≥Pμ0 [μt ∈

C∀t]≥γ for every initial belief μ0 ∈C′
η . �

Proof of Theorem 3. Let �k :=Sk(�) for k =0,1,..., which is a nested sequence of non-empty compact sets (Lemma 14).
We inductively show that Pμ0 [μt(�k)→1]=1 for all initial beliefs μ0 and every k ≥0. Case k =0 is true by definition.

Suppose the claim is true for all k =0,1,...,κ−1 and consider k =κ . Take any N with �\B1/N (�κ ) non-empty.
By Lemma 15 applied with �′ =�\B1/N (�κ ) and D=�(�κ−1), there exists ε>0 such that (B.3) holds for each initial
belief μ0.

Take any γ <1. Then, by Lyapunov stability of �(�κ−1) (Lemma 16), there exists a neighbourhood B of �(�κ−1)
such that Pμ0 [μt ∈Bε(�(�κ−1))∀t]≥γ for every initial belief μ0 ∈B. Thus, for any initial belief μ0, (B.3) and the
inductive hypothesis that Pμ0 [μt(�κ−1)→1]=1 imply

Pμ0 [μt(�\B1/N (�κ ))→0]≥Pμ0 [∃t s.t. μt ∈B]γ =γ.

Since this holds for all γ <1 and N large enough, we have

Pμ0 [μt(�
κ )→1]=Pμ0 [μt(B1/N (�κ ))→1∀N]=1,

for all initial beliefs μ0, completing the inductive step. Finally, for all initial beliefs μ0,

Pμ0 [μt(S
∞(�))→1]=Pμ0 [μt(�

k)→1∀k]=1.

Thus, �(S∞(�)) is globally stable. �

B.5. Proof of Theorem 4

Lemma 17. Suppose �′′ is open and belief continuity holds at some neighbourhood of �(�′′). If �(�′′) is a strict BeNE
set, then �(�′′) is locally stable and Lyapunov stable.

Proof. Based on the fact that �(�′′) is a strict BeNE set, we can apply Lemma 15 with �′ =�\�′′ and D=�(�
′′
). This

yields measurable sets of states {Ai}I
i=1 with

⋃
i Ai =�\�′′, open sets of states {A′

i}I
i=1, ε>0, and qi >0 for each i such

that (B.2) holds for each i and μ0 ∈Bε(�(�
′′
)) with μ(Ai),μ(A′

i)>0, and (B.3) holds for each initial belief μ0.
To show Lyapunov stability of �(�′′), take any γ <1 and neighbourhood B of �(�′′). Given any η>0, consider the

neighbourhood of �(�′′) of the form

Cη :=
{

μ∈�(�) :
∑

i

(
μ(Ai)

μ(A′
i)

)qi

<η

}
.
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Pick η+,η− >0 small enough that Cη+ ⊆B∩Bε(�(�′′)) and η−
η+ ≤1−γ . For any i and any initial belief μ0, �i

t :=(
μmin{t,τ }(Ai)
μmin{t,τ }(A′

i)

)qi
with τ := inf{s :μs �∈Cη+} is a non-negative supermartingale by (B.2), so Doob’s convergence theorem

yields an L∞ random variable �i∞ such that �i
t →�i∞ a.s. For any initial belief μ0 ∈Cη− ,

Pμ0 [∃t,μt �∈B]≤Pμ0

[∑
i

�i∞ ≥η+

]
≤Eμ0

[∑
i

�i∞

]
/η+ ≤ η−

η+
,

where the second inequality uses Markov’s inequality and the third follows from Fatou’s lemma and the fact that each �i
t

is a non-negative supermartingale. Thus, Pμ0 [μt ∈B∀t]≥γ for all μ0 ∈Cη− , proving that �(�′′) is Lyapunov stable.
To show that �(�′′) is locally stable, take any γ <1. Since �(�′′) is Lyapunov stable, there exists a neighbourhood

B of �(�′′) such that Pμ0 [μt ∈Bε(�(�′′))∀t]≥γ for any initial belief μ0 ∈B. Thus, (B.3) implies that for any initial
belief μ0 in B,

Pμ0 [μt(�
′′)→1]≥Pμ0 [μt(�

′′)→1,μt ∈Bε(�(�′))∀t]≥γ,

showing that �(�′′) is locally stable. �

Proof of Theorem 4. For �′ as in the theorem, let �k :=Sk(�′) for each k =0,1,...,∞. Suppose �(�′) is a strict BeNE
set. Then �(�′) is Lyapunov stable (Lemma 17), which combined with Lemma 16 implies that �(�k) is Lyapunov stable
for each k ∈N.

Fix any γ <1. By Lemma 17, �(�′) is locally stable. Thus, there exists a neighbourhood B0 of �(�′) such that
Pμ0 [μt(�′)→1]≥γ for any initial belief μ0 ∈B0. We show inductively that for each k ∈N, Pμ0 [μt(�k)→1]≥γ for any
initial belief μ0 ∈B0.

For k =0, the claim is true by choice of B0. Thus, suppose the claim holds for k ≤κ−1 and consider the case k =κ .
Take any N >0 such that �\B1/N (�κ ) is non-empty. By Lemma 15 applied with D=�(�κ−1), there exists ε>0 such
that for all initial beliefs μ0,

Pμ0 [μt(�\B1/N (�κ ))→0,μt ∈Bε(D)∀t]=Pμ0 [μt ∈Bε(D)∀t]. (B.8)

Since �(�κ−1) is Lyapunov stable, for any η<1, there exists a neighbourhood C of �(�κ−1) such that, for any initial
belief μ0 ∈C, Pμ0 [μt ∈Bε(�(�κ−1))∀t]≥η. Thus, for any initial belief μ0 ∈B0,

Pμ0 [μt(B1/N (�κ ))→1]≥Pμ0 [∃t s.t. μt ∈C]η≥γ η,

where the first inequality uses (B.8) and the second uses the inductive hypothesis that Pμ0 [μt(�κ−1)→1]≥γ . Since η

can be chosen arbitrarily close to 1, Pμ0 [μt(B1/N (�κ ))→1]≥γ . Since N can be chosen arbitrarily large, this implies
Pμ0 [μt(�κ )→1]=Pμ0 [μt(B1/N (�κ ))→1∀N ∈N]≥γ , as claimed.

This shows that �(Sk(�′)) is locally stable for all k ∈N. Finally, to complete the proof, observe that, for any initial
belief μ0 ∈B0,

Pμ0 [μt(S
∞(�′))→1]=Pμ0 [μt(�

k)→1∀k]≥γ.

Thus, �(S∞(�′)) is also locally stable. �
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