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Abstract

This paper investigates a two-agent mechanism design problem without transfers, where the principal 
must decide one action for each agent. In our framework, agents only care about their own adaptation, and 
any deterministic dominant incentive compatible decision rule is equivalent to contingent delegation: the 
delegation set offered to one agent depends on the other’s report. By contrast, the principal cares about both 
adaptation and coordination. We provide sufficient conditions under which contingent interval delegation is 
optimal and solve the optimal contingent interval delegation under fairly general conditions. Remarkably, 
the optimal interval delegation is completely determined by combining and modifying the solutions to a 
class of simple single-agent problems, where the other agent is assumed to report truthfully and choose his 
most preferred action.
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1. Introduction

This paper presents an analysis of a mechanism design problem with a principal (she) and two 
agents (he), and without monetary transfers. The principal needs to make two decisions, one for 
each agent, but the relevant information is dispersed between the agents. While each agent only 
cares about the decision for himself, the principal also cares about the interactions of the two 
decisions.

An application of our analysis is to the delegation problem within multidivisional organiza-
tions. As pointed out by Roberts (2004) and Alonso et al. (2008), multidivisional organizations 
exist primarily to coordinate the activities of their divisions. Coordinated decision making by the 
headquarter manager requires aggregation of the relevant information, which is usually dispersed 
among the individual division managers as they are best informed of their local conditions. But 
there is a conflict of interest between the headquarter manager, who cares more about coordi-
nation, and the division managers, who care more about adaptation: more coordinated decisions 
are less adapted to the local conditions of each division. In such an environment, how should the 
headquarter manager delegate to the division managers to reflect the trade-off between adapta-
tion and coordination? This question is unexplored in the prior literature on authority allocation 
within multidivisional organizations.1 Our paper fills the gap as a direct application of our main 
result can shed light on the optimal design of delegation rules.

Formally, each of the two agents in our model has a quadratic-loss payoff function that only 
depends on his own state and the decision for him. Each agent’s most preferred decision is equal 
to his state. By contrast, the principal’s payoff function consists of three additively separable 
components. Two of them are called adaptation payoffs, which represent her potentially dif-
ferent preferences over each agent’s decision and the corresponding state. In general, we allow 
incentive misalignment in the sense that these payoffs are different from the agents’ ones. The 
third component is a supermodular function that only depends on the agents’ actions. The com-
plementarity of the two actions captures the principal’s coordination motive: if one agent makes 
a higher decision, she would like the other agent to make a higher decision too. Thus, we refer to 
this component as the principal’s coordination payoff.

The principal can commit to any deterministic dominant strategy incentive compatible mech-
anism, which can be implemented by a contingent delegation mechanism. In such a mechanism, 
agents report their states to the principal and then the principal offers each agent a delegation set 
that depends on the other agent’s report. After reporting and receiving his own delegation set, 
each agent chooses his favorite action from it. Our goal is to understand the principal’s optimal 
contingent delegation.

To see the main problems faced by the principal in her design, consider the previously men-
tioned coordination problem in multidivisional organizations. If the headquarter manager only 
cared about whether the decisions of the local divisions were adapted to their local conditions 
and had no coordination concern at all, then she could simply grant full discretion and delegate 
all the decision rights to the local divisions, since their interests were perfectly aligned. However, 
this decision rule should not be optimal in the presence of the coordination motive, as the local 
divisions’ fully adapted decisions may not be well coordinated, leading to a large coordination 

1 See further elaboration in the literature review.
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Fig. 1. Optimal contingent interval delegation. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

loss. To mitigate such miscoordination, the headquarter manager can give less discretion to the 
local divisions. By ruling out some decisions for a division, she can induce this division to co-
ordinate with the other one at the cost of reduced adaptation of this division. Thus, the optimal 
level of discretion for each division must trade off the cost from reduced adaptation against the 
benefit from better coordination. The difficulty here is that each division’s trade-off depends on 
the other division’s decision, which in turn is determined by the discretion the other division is 
granted. Therefore, the optimal design must resolve both divisions’ trade-offs jointly.

Our first main result, Theorem 1, sheds light on how these trade-offs are resolved jointly at the 
optimum. It characterizes the optimal contingent interval delegations, under which the contin-
gent delegation sets that the principal offers to the agents are always intervals. We construct the 
optimal solution via a “two-step procedure.” The first step treats each agent’s trade-off separately, 
while the second step deals with the joint design problem.

In the first step, we consider the principal’s optimal interval contingent delegation problem 
for agent i, assuming that agent −i is granted full discretion. This involves a series of simple 
single-agent problems, in each of which the principal determines agent i’s delegation interval to 
maximize the expected sum of her adaptation payoff from agent i and her coordination payoff, 
given that agent −i’s state is s−i and he chooses a−i = s−i . We assume that for each s−i , the 
optimal interval [c∗

i (s−i ), d∗
i (s−i )] is uniquely determined and non-degenerate.2 Both boundary 

functions c∗
i and d∗

i are nondecreasing in s−i , because the principal would like agent i to take 
higher action to coordinate better with agent −i when −i takes a higher action. We refer to the 
pair of functions (c∗

i , d
∗
i ) as the unilaterally constrained delegation rule for agent i, because 

it is obtained by assuming that agent −i is never constrained. Panel (a) in Fig. 1 provides an 
illustration of the unilaterally constrained delegation rules for both agents. The square is the 
s1, s2-plane.3 The blue and red curves represent the unilaterally constrained delegation rules for 
agents 1 and 2, respectively.

2 This is Condition U in Section 3.2. Sufficient conditions on the model primitives are provided in Lemma 3.
3 For ease of exposition, we assume that the state space and the action space are the same for both agents.
3
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These two unilaterally constrained delegation rules together give the principal a contingent in-
terval delegation ((c∗

1, d
∗
1 ), (c∗

2, d∗
2 )). But intuitively it is not optimal, precisely because it neglects 

the joint design problem: changing from full discretion to delegation rule (c∗−i, d
∗−i ) changes 

agent −i’s behavior, which in turn affects agent i’s coordination problem and makes (c∗
i , d

∗
i ) for 

agent i suboptimal. To see this, consider, for example, a sufficiently low s2 so that action s2 is 
never available to agent 2 under (c∗

2, d∗
2 ). Under this contingent delegation rule, agent 2’s action 

will always be higher than what he would take under full discretion, i.e., s2. This implies that the 
delegation interval [c∗

1(s2), d∗
1 (s2)] for agent 1 is no longer optimal, because the principal would 

like to move this interval upward for better coordination.
Nonetheless, we resolve this issue in the second step by modifying ((c∗

1, d
∗
1 ), (c∗

2, d∗
2 )), un-

der the additional assumption that c∗
1 and d∗

1 intersect c∗
2 and d∗

2 , respectively, only once in the 
s1, s2-plane, as is the case in panel (a).4 Theorem 1 states that an optimal contingent interval del-
egation is immediately obtained by bounding the unilaterally constrained delegation rules with 
the intersections. The resulting contingent delegation is illustrated in panel (b).5 The curve 

¯
φ∗

i is 
the lower bound and φ̄∗

i is the upper bound so that the delegation interval for agent i when −i

reports s−i is [
¯
φ∗

i (s−i ), φ̄∗
1 (s−i )].

To gain some intuition on the construction of the optimal mechanism, consider again the 
example where s2 is sufficiently low so that action s2 is never available to agent 2 under 
(c∗

2(s1), d∗
2 (s1)). We employ an iterative process of modifications in this case by first increasing 

agent 2’s action, a2, to the lower bound c∗
2(s1). This change of a2 implies that the delega-

tion interval [c∗
1(s2), d∗

1 (s2)] for agent 1 is no longer optimal, and intuitively we change it to 
[c∗

1(c∗
2(s1)), d∗

1 (c∗
2(s1))]. If s1 is contained in the interval [c∗

1(c
∗
2(s1)), d∗

1 (c∗
2(s1))], we can stop 

further modifications and let a1 = s1. This is how we use the arrow to modify point A in panel 
(c) in Fig. 1. But if s1 is outside the interval, we need to change a1 to the boundary, and this trig-
gers further modifications of agent 2’s delegation interval. This iterative process continues until it 
converges to (s̄1, ̄s2), as illustrated by the arrow starting from point B in panel (c). Consequently, 
the optimal delegation is flat over the corner.

Our second main result, Theorem 2, establishes sufficient conditions for the optimal con-
tingent interval delegation in Theorem 1 to be optimal among all the contingent delegation 
mechanisms. These sufficient conditions are expressed in terms of the principal’s adaptation and 
coordination payoffs and the state distributions. A more general result, which provides sufficient 
conditions for any given contingent interval delegation to be optimal and on which Theorem 2
is based, is also provided in Theorem 3 in the appendix. It extends the main sufficiency result in 
Amador and Bagwell (2013) to our two-agent setting.

Finally, we apply the above general results to study the previously mentioned optimal de-
sign problem within a multidivisional organization. Under the quadratic-loss specification of the 
principal’s payoff function and log-concavity of the state distributions, all the conditions for 
Theorems 1 and 2 are satisfied. Therefore, the optimal contingent interval delegation we found 
in Theorem 1 is indeed an optimal mechanism. Due to the simple structure of this optimal con-
tingent interval delegation, a set of intuitive comparative statics results are easily obtained. For 
one example, if coordination becomes more important to the principal, then both divisions will 
receive less discretion. For another example, if one division becomes more important to the prin-

4 This is Condition R in Section 3.2. Sufficient conditions on the model primitives are provided in Lemma 4.
5 The dashed curves correspond to the unilaterally constrained delegation rules.
4
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cipal, then this division must be better off in that it will be granted larger discretion. But the other 
division will suffer as it will receive less discretion.

Related literature Our work relates to two main strands of the literature. The first is the research 
on mechanism design without contingent transfers. In the single-agent setting, it is well known 
that such a problem is equivalent to the delegation problem. Holmström (1977, 1984) was the first 
to pose the general class of delegation problems. Since then, a number of other researchers, in-
cluding Melumad and Shibano (1991), Martimort and Semenov (2006), Alonso and Matouschek 
(2008), Amador and Bagwell (2013), and Amador et al. (2018), have studied and characterized 
the solution to the single-agent delegation problem under various assumptions on the preferences 
and state distributions. This literature places particular emphasis on the optimality of interval del-
egation since it is the most natural form and is commonly observed in reality. By focusing on 
dominant strategy incentive compatible mechanisms, we establish a similar equivalence between 
mechanism design and delegation in our general framework with two actions and two agents.

To our knowledge, Alonso et al. (2014) were the first to study optimal mechanism design 
without contingent transfers in an environment with multiple actions and multiple agents. In their 
model, a principal allocates limited resources to three agents. Two of them are privately informed 
of their own ideal demand, and the ideal demand of the third agent is known to the principal. 
Agents are biased only in one direction so only a cap will be used in the optimal unilaterally 
constrained delegation rules and consequently in the optimal mechanism. Our analysis points out 
that the decomposition result holds with general functional form and, in particular, in the presence 
of biases in both directions.6 There are two other papers studying optimal non-monetary design 
with two agents and one action: Martimort and Semenov (2008) and Fuchs et al. (2022). Because 
the policy chosen by the principal is only one-dimensional, the models are more closely related 
to the single-agent case. For example, Fuchs et al. (2022) point out that when agents’ type spaces 
are disjoint, the principal might find it optimal to delegate the decision right to just one agent.

The second strand studies authority allocation within multidivisional organizations. Similar to 
our setting, this literature assumes that multiple decisions must be coordinated and the relevant 
information for decision making is horizontally dispersed. However, related studies including 
Alonso et al. (2008), Rantakari (2008), Dessein et al. (2010), Friebel and Raith (2010), and Li 
and Weng (2017), assume a lack of commitment power in the sense that the organization can 
commit only to an ex ante allocation of decision rights, and explore strategic communication 
equilibria given an authority allocation mechanism in such settings.7 For example, Alonso et al. 
(2008) compare the efficiency of centralization, in which case the division managers communi-
cate vertically with the headquarter manager who will make the decisions, and decentralization, 
in which case the division managers who will make their own individual decisions communicate 
horizontally with each other. While all these papers study equilibria under certain exogenously 
given mechanisms, we apply our main result to this environment to investigate the optimal mech-
anism under full commitment power. To the best of our knowledge, our paper is the first to study 
the optimal design of delegation rules to reflect the trade-off between adaptation and coordina-
tion in multidivisional organizations, although admittedly our framework simplifies the setup by 

6 When the principal has enough resources so that it is always feasible to meet the two privately informed agents’ ideal 
demands, their model becomes a special case of ours after substituting the allocation of the third agent by the resource 
constraint. See also footnote 8.

7 There are also related models where the communication is not strategic. See, for instance, Aoki (1986), Hart and 
Moore (2005), Dessein and Santos (2006), and Cremer et al. (2007).
5
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assuming that division managers only care about themselves, while papers such as Alonso et al. 
(2008) allow agents also to care about coordination (just to a lesser degree).

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 contains 
the analysis and our main results. In Section 4, we apply our general results to the multidivisional 
organization problem. Section 5 concludes. The proofs for Section 3 are deferred to the appendix. 
The proofs for Section 4 can be found in the online appendix.

2. Model setting

There are one principal and two agents. The principal needs to make one decision for each 
agent. She can commit to a deterministic decision rule but is unable to commit to contingent 
transfers.

Preferences The principal’s and the agents’ payoffs depend on both the decision and the state 
of the world. A decision consists of a pair of actions, a1 ∈ [0, 1] for agent 1 and a2 ∈ [0, 1] for 
agent 2. A state of the world is a pair (s1, s2) ∈ [0, 1]2, with the interpretation that si is agent i’s 
state.

Agent i’s payoff only depends on his own state si and the decision ai for him. In particular, 
we assume that i’s payoff function takes the quadratic loss form vi(ai, si) = 1

2 (ai − si)
2. That is, 

each agent always wants the decision for him to be as close to his state as possible.
The principal, in contrast, cares about both decisions for the two agents and their states. Her 

payoff function is denoted by u(a1, a2, s1, s2). Throughout the paper, we assume that u takes the 
following form:

u(a1, a2, s1, s2) ≡ u0(a1, a2) + u1(a1, s1) + u2(a2, s2).

All the components u0, u1 and u2 are twice continuously differentiable and concave in (a1, a2). 
The principal’s payoff is a generalization of the literature on adaptation versus coordination in 
multidivisional organizations, for example, Alonso et al. (2008), Rantakari (2008), Alonso et al. 
(2014), and Li and Weng (2017). In particular, ui(ai, si) for i = 1, 2 can be viewed as an adapta-
tion payoff that measures how ai is adapted to state si . This includes the case where ui(ai, si) is 
proportional to −(ai − si)

2, which is the specification in our application in Section 4. More gen-
erally, we can allow incentive misalignment in the sense that the principal values the adaptation 
payoff in a way that is different from the agents. Following the literature, we introduce u0(a1, a2)

as a coordination payoff that measures how well the decisions are coordinated. For this interpre-
tation, we assume that u0 is supermodular so that the two decisions are complementary to each 
other.8 This additively separable form of the principal’s payoff function makes the interaction 
between the two decisions state-independent. As we shall see, this assumption implies that agent 
−i’s state s−i has no direct effect on the design of agent i’s decision. Its effect is only indirect 
through its effect on agent −i’s decision.

Information Agent i perfectly knows his own state si , but not the other agent’s state s−i . The 
principal knows neither s1 nor s2. She believes that s1 and s2 are independently distributed over 
the interval [0, 1], with cumulative distribution function F1 and F2. We assume that state si has 

8 Our analysis can also deal with the case where u0 is submodular by the simple trick of changing variables in (3): 
s̃2 = 1 − s2 and ã2 = 1 − a2. In this way, ũ0(a1, ̃a2) ≡ u0(a1, 1 − a2) is supermodular in (a1, ̃a2). In this case, all the 
conditions that we impose later on u0 should be understood as conditions on ũ0.
6



T. Gan, J. Hu and X. Weng Journal of Economic Theory 208 (2023) 105597
full support and continuous density fi . Because we focus on mechanisms that are dominant 
strategy incentive compatible, we do not need to specify each agent’s belief about the other 
agent’s state. Even the principal’s prior belief can be completely subjective. It need not reflect 
the true distribution of the states.

Mechanism design problem Throughout this paper we focus on deterministic mechanisms that 
are dominant strategy incentive compatible (DSIC), which requires that reporting truthfully is 
always optimal regardless of the other agent’s report. Invoking the revelation principle, we can 
focus on direct mechanism (a1, a2), where each ai is a measurable function that maps the re-
ported states (s1, s2) ∈ [0, 1]2 to the action ai(s1, s2) ∈ [0, 1] for agent i.9 The design problem 
can be expressed as:

max
(a1, a2)

1∫
0

1∫
0

u (a1(s1, s2), a2(s1, s2), s1, s2)dF1(s1)dF2(s2) (1)

s.t. vi(ai(si , s−i ), si) ≥ vi(ai(ŝi , s−i ), si) ∀i, si , ŝi , s−i .

3. Optimal mechanism

In this section, we solve the principal’s mechanism design problem (1) under some additional 
conditions. Section 3.1 introduces the notion of contingent delegation mechanisms, and estab-
lishes its equivalence to DSIC mechanisms in our setting. Sections 3.2 - 3.5 focus on contingent 
interval delegations, in which the delegation set offered to each agent is always an interval, and 
find an optimal contingent interval delegation. Section 3.6 provides conditions for this optimal 
contingent interval delegation to be optimal among all DSIC mechanisms.

3.1. Contingent delegation mechanisms

In single-agent settings, it is well known that the principal’s direct mechanism design problem 
is equivalent to the delegation problem where the principal offers the agent a delegation set, 
from which the agent chooses his most preferred action (Holmström (1977, 1984), Melumad and 
Shibano (1991), Alonso and Matouschek (2008)). The following lemma essentially establishes a 
similar equivalence in our two-agent setting.

Lemma 1. A direct mechanism (a1, a2) is a DSIC mechanism if and only if there exist closed-
valued correspondences Di : [0, 1] ⇒ [0, 1] for i = 1, 2 such that, for all i, si , and s−i ,

ai(si , s−i ) ∈ arg max
a′
i∈Di(s−i )

vi(a
′
i , si). (2)

Lemma 1 states that any DSIC mechanism (a1, a2) is equivalent to a contingent delegation 
mechanism (D1, D2). In such a mechanism, the agents report their states to the principal. Instead 
of making decisions for the agents according to (a1, a2), the principal offers each agent i a 

9 The revelation principle for the deterministic DSIC mechanisms holds if DSIC means each agent’s report best replies 
to any strategies of other agents (in contrast to the definition of ex-post mechanisms). See Jarman and Meisner (2017)
for details.
7
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delegation set Di(s−i ), which is contingent on −i’s report and from which i is free to choose his 
favorite action. In this mechanism, every agent is willing to report truthfully because his payoff 
is completely determined by his own action. Equation (2) then states that the same decisions 
will be implemented under the DSIC mechanism and this corresponding contingent delegation 
mechanism.

In single-agent settings, interval delegation, where the principal offers an interval as the dele-
gation set, is the most salient class of delegation mechanisms. This notion can also be naturally 
generalized to the current two-agent setting. A contingent delegation mechanism (D1, D2) is a 
contingent interval delegation if there exist measurable functions 

¯
φ1, φ̄1, ¯

φ2, φ̄2 : [0, 1] → [0, 1]
such that, for all i, 

¯
φi ≤ φ̄i and

Di(s−i ) = [
¯
φi(s−i ), φ̄i (s−i )], ∀s−i ∈ [0,1].

In such a mechanism, the delegation set that the principal offers to each agent is always an 
interval, and this interval varies with the other agent’s report. From now on, we directly write 
this contingent interval delegation as (φ1, φ2), where φi = (

¯
φi, φ̄i ) is referred to as the interval 

delegation rule for agent i.
For i = 1, 2 and 0 ≤ c ≤ d ≤ 1, define

σi(si; c, d) ≡

⎧⎪⎨
⎪⎩

c, if si < c,

si, if c ≤ si ≤ d,

d, if si > d.

Given agent i’s quadratic-loss payoff function, σi(si; c, d) is just i’s most preferred decision at 
state si , when he is restricted to choose from the interval [c, d]. Given any contingent interval 
delegation (φ1, φ2), the corresponding DSIC mechanism, denoted by (σφ1

1 , σφ2
2 ), is then given 

by10,11

σ
φi

i (si , s−i ) ≡ σi(si; ¯
φi(s−i ), φ̄i (s−i )), ∀i, si , s−i .

3.2. Unilaterally constrained delegation rule

By Lemma 1, solving the principal’s DSIC mechanism design problem (1) is equivalent to 
finding out the principal’s optimal contingent delegation. For this, we first restrict our attention to 
contingent interval delegations and characterize the optimal contingent interval delegation (The-
orem 1). Then, we show that under certain conditions, this optimal contingent interval delegation 
is optimal among all contingent delegations (Theorem 2).

The design of optimal contingent interval delegation can be written as

max
(φ1, φ2)

1∫
0

1∫
0

u
(
σ

φ1
1 (s1, s2), σ

φ2
2 (s1, s2), s1, s2

)
dF1(s1)dF2(s2), (3)

s.t.
¯
φi(s−i ) ≤ φ̄i (s−i ), ∀s−i .

10 Measurability of σφi
i

is guaranteed by measurability of φi .
11 Conversely, any DSIC mechanism (a1, a2) that is continuous in one’s own state, i.e., ai is continuous in si for 
i = 1, 2, is equivalent to the contingent interval delegation defined by 

¯
φi (s−i ) = ai (0, s−i ) and φ̄i (s−i ) = ai (1, s−i ) for 

i = 1, 2. This is analogous to the well-known result in the single-agent delegation literature that a direct mechanism is 
equivalent to an interval delegation if and only if it is continuous.
8
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To solve this problem, we need to impose two additional conditions and introduce a special inter-
val delegation rule for each agent. The basic purpose of doing so is to decompose the principal’s 
design problem into two classes of single-agent delegation problems. These additional conditions 
will guarantee that the solutions to these single-agent delegation problems are nicely behaved. 
As Theorem 1 will show, a certain modification of the solutions to these single-agent problems 
becomes an optimal contingent interval delegation.

Suppose agent −i’s state is s−i and he chooses his most preferred action a−i = s−i . Given 
agent −i’s behavior, consider the principal’s optimal interval delegation problem for agent i. We 
can write it as

max
0≤c≤d≤1

1∫
0

[
u0(σi(si; c, d), s−i ) + ui(σi(si; c, d), si)

]
dFi(si). (4)

By continuity of u0 and ui , an optimal solution to (4) always exists. The first condition we impose 
requires that the optimal delegation interval for this single agent problem be always unique and 
non-degenerate.

Condition U. For every s−i ∈ [0, 1], there is a unique solution (c∗
i (s−i ), d∗

i (s−i )) to (4). It satis-
fies c∗

i (s−i ) < d∗
i (s−i ).

Sufficient conditions on the payoff and distribution functions for Condition U to hold are pro-
vided in Section 3.5. Viewing both c∗

i and d∗
i as boundary functions, (c∗

i , d
∗
i ) forms a delegation 

rule for agent i. It is indeed the principal’s optimal interval delegation rule for agent i if agent 
−i is always free to choose his most preferred action. For this reason, we refer to (c∗

i , d
∗
i ) as the 

unilaterally constrained delegation rule for agent i.
Condition U and supermodularity of u0 give us two basic properties of the unilaterally con-

strained delegation rules.

Lemma 2. Under Condition U, both c∗
i , d∗

i : [0, 1] → [0, 1] are continuous and increasing, for 
i = 1, 2.

Continuity is standard. Monotonicity comes from complementarity between the two actions 
under supermodularity of u0. When −i takes a higher action, the principal would like i to take a 
higher action as well. Hence, both the lower and upper bounds of the optimal delegation interval 
for i increase.

The second condition is a regularity condition for the two agents’ unilaterally constrained 
delegation rules.

Condition R. In the s1, s2-plane, the graphs of c∗
1 and d∗

1 intersect those of c∗
2 and d∗

2 only once, 
respectively.

Similar to Condition U, sufficient conditions on the primitives for Condition R are provided in 
Section 3.5. Fig. 2 provides an illustration of typical pairs of unilaterally constrained delegation 
rules that satisfy Condition R, which requires that any red curve and blue curve intersect only 
once. There are in total four intersections. We carefully label them in the graph and will follow 
this notation throughout the paper.
9
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Fig. 2. Unilaterally constrained delegation rules.

3.3. Optimal contingent interval delegation

Based on the unilaterally constrained delegation rules, we are now ready to state our first 
main result. We say that a contingent interval delegation (φ1, φ2) is increasing if all the boundary 
functions 

¯
φ1, φ̄1, ¯

φ2, and φ̄2 are increasing. For example, (c∗
1, d

∗
1 , c∗

2, d∗
2 ) is increasing according 

to Lemma 2. Let M be the set of all increasing contingent interval delegations. The following 
theorem constructs an optimal contingent interval delegation by modifying the unilaterally con-
strained delegation rules in a certain way according to their intersections. Moreover, this optimal 
contingent interval delegation is in M, and it is essentially unique in M.

Theorem 1. Suppose Conditions U and R hold. Denote the intersection of c∗
1 and c∗

2 by ( ¯L1, ¯L2), 
that of c∗

1 and d∗
2 by ( ¯H1, L̄2), that of d∗

1 and c∗
2 by (L̄1, ¯H2), and that of d∗

1 and d∗
2 by (H̄1, H̄2). 

For i = 1, 2, define

¯
φ∗

i (s−i ) ≡

⎧⎪⎨
⎪⎩

¯Li, if s−i ∈ [0, ¯L−i],
c∗
i (s−i ), if s−i ∈ ( ¯L−i , L̄−i ),

¯Hi, if s−i ∈ [L̄−i , 1],
(5)

and

φ̄∗
i (s−i ) ≡

⎧⎪⎨
⎪⎩

L̄i , if s−i ∈ [0, ¯H−i],
d∗
i (s−i ), if s−i ∈ ( ¯H−i , H̄−i ),

H̄i , if s−i ∈ [H̄−i , 1].
(6)

Then, (φ∗
1 , φ∗

2 ) is an optimal contingent interval delegation, that is, it solves (3). Moreover, 
(φ∗

1 , φ∗
2 ) ∈ M and if (φ1, φ2) ∈ M is also optimal, then (φ1, φ2) = (φ∗

1 , φ∗
2 ) over (0, 1).

The construction of the optimal mechanism is illustrated by Fig. 3. Panels (a) and (b) depict 
the resulting delegation rules (

¯
φ∗

1 , φ̄∗
1 ) and (

¯
φ∗

2 , φ̄∗
2 ) for the two agents, respectively. Take panel 

(a) as an example. The blue curves represent φ∗ and φ̄∗. As (5) defines, φ∗ coincides with c∗

¯ 1 1 ¯ 1 1

10
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Fig. 3. Optimal mechanism.

when s2 ∈ ( ¯L2, L̄2). It remains constant ¯L1 when s2 ∈ [0, ¯L2] and constant ¯H1 when s2 ∈ [L̄2, 1]. 
Analogously, φ̄∗

1 coincides with d∗
1 when s2 ∈ ( ¯H2, H̄2). It remains constant L̄1 when s2 ∈ [0, ¯H2]

and constant H̄1 when s2 ∈ [H̄2, 1].
Panel (c) depicts the outcome, or equivalently the corresponding direct mechanism (σ

φ∗
1

1 , σ
φ∗

2
2 ), 

under the optimal contingent interval delegation. The arrows indicate how a state is mapped to an 
action profile. The optimal mechanism divides the state space into four kinds of regions accord-
ing to who is constrained. Region I is the unconstrained region in the sense that both agents are 
able to choose their own most preferred actions. Regions II and III are the unilaterally constrained 
regions. In these regions, one agent (agent 2 in region II and agent 1 in region III) chooses his 
most preferred action, but the other agent will choose either the lower bound or the upper bound 
of the delegation interval for him, depending on whether his state is too low or too high. Lastly, 
region IV is the jointly constrained region. At each of these states, no one is able to choose his 
most preferred action.

The particular structure of the direct mechanism makes it group strategy-proof. That is, there 
is no joint misreporting that can make one agent strictly better off without hurting the other. For 
example, if s belongs to region II or III, one agent, say i, takes his most preferred action under 
truthful reporting. It is easy to see from panel (c) that there is no other decision within region 
I (including the boundaries) that delivers the same action for i but at the same time makes −i

strictly better off. If s is in region IV, the decision σφ∗
(s) is just at one of the “vertices” of region 

I. It is again easy to see from the graph that there is no other decision within region I that Pareto 
improves upon σφ∗

(s).12 The following proposition summarizes the above observation.

Proposition 1 (Group strategy-proofness). The direct mechanism (σ
φ∗

1
1 , σ

φ∗
2

2 ) is group strategy-

proof. That is, for any states (s1, s2) and (ŝ1, ̂s2), if vi(σ
φ∗

i

i (ŝi , ̂s−i ), si) > vi(σ
φ∗

i

i (si , s−i ), si), 

then we must have v−i(σ
φ∗−i

−i (ŝi , ̂s−i ), s−i ) < v−i (σ
φ∗−i

−i (si , s−i ), s−i ).

12 The above argument only applies to the direct mechanism. In the indirect contingent delegation mechanism, because 
the range of action pairs that can arise under misreporting is strictly larger than region I, it is possible to make both agents 
strictly better off by joint misreporting.
11
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3.4. A nontechnical explanation

The proof of Theorem 1 is quite involved. To explain the basic idea behind the result, we 
provide an informal analysis that is based on the first-order conditions. A necessary condition for 
(φ∗

1 , φ∗
2 ) to be an optimal contingent interval delegation is that, for any s−i , [¯

φ∗
i (s−i ), φ̄∗

i (s−i )]
is an optimal single-agent delegation interval for agent i, given the other agent’s behavior 

σ
φ∗−i

−i ( · , s−i ). Taking i = 1 as an example, this means that for any s2, the pair (
¯
φ∗

1 (s2), φ̄∗
1 (s2))

must be a solution to

max
0≤c≤d≤1

1∫
0

[
u0(σ1(s1; c, d), σ

φ∗
2

2 (s1, s2)) + u1(σ1(s1; c, d), s1)
]

dF1(s1). (7)

If σ
φ∗

2
2 ( · , s2) ≡ s2, then this problem reduces to the unilaterally constrained delegation problem 

(4), and we immediately know that the solution to (7) is (c∗
1(s2), d∗

1 (s2)) by Condition U. Given 
φ∗

2 from Theorem 1, this situation corresponds to the case when s2 takes intermediate values, 
i.e., ¯H2 ≤ s2 ≤ L̄2 from panel (b) of Fig. 3. For these values of s2, Theorem 1 indeed states that 

¯
φ∗

1 (s2) = c∗
1(s2) and φ̄∗

1 (s2) = d∗
1 (s2).

However, when s2 takes a value outside this intermediate range, σ
φ∗

2
2 ( · , s2) is no longer a 

constant. To fix ideas, consider an extremely low state s2 so that s2 < ¯L2. At this state, agent 

2’s constrained optimal action σ
φ∗

2
2 (s1, s2) = ¯

φ∗
2 (s1) for every s1 is always higher than his uncon-

strained optimal action s2. As we have mentioned in the introduction, the principal’s coordination 
concern then would like to induce agent 1 to take higher actions. This can be done by shift-
ing the delegation interval for agent 1 to the right of [c∗

1(s2), d∗
1 (s2)], as is indeed the case of 

[
¯
φ∗

1 (s2), φ̄∗
1 (s2)] = [ ¯L1, L̄1] from panel (a) of Fig. 3.13

But why is this particular interval optimal? The fundamental driving force behind this opti-
mality is the fact that the optimal delegation interval for agent 1 is determined only by agent 2’s 
behavior at the extreme s1’s. Intuitively, when determining the delegation interval for agent 1, 
the principal is considering which agent 1’s extreme states to pool. From coordination point of 
view, this means that what matters most is agent 2’s behavior at these extreme s1’s, rather than 
that at intermediate s1’s. Consequently, if agent 2 behaves the same at the extreme s1’s under two 
different contingent delegation rules, the principal’s optimal action bounds for agent 1 should be 
the same. In particular, if agent 2’s behavior is constant at the extreme s1’s, the optimal bounds 
for agent 1 should be the same as in the unilaterally constrained delegation problem. This is 

exactly the case of σ
φ∗

2
2 ( · , s2): σ

φ∗
2

2 (s1, s2) = ¯L2 when s1 ∈ [0, ¯L1] and σ
φ∗

2
2 (s1, s2) = ¯H2 when 

s1 ∈ [L̄1, 1]. Therefore, the optimal lower bound for agent 1 is c∗
1( ¯L2) = ¯L1 and the optimal 

upper bound is d∗
1 ( ¯H2) = L̄1, which is just the construction of 

¯
φ∗

1(s2) and φ̄∗
1 (s2).

To see this intuition more precisely, let us first consider the determination of c∗
1( ¯L2) in the 

principal’s unilaterally constrained delegation problem. Its first order condition is

c∗
1( ¯L2)∫
0

[
∂u0

∂a1
(c∗

1( ¯L2), ¯L2) + ∂u1

∂a1
(c∗

1( ¯L2), s1)

]
dF1(s1) = 0. (8)

13 Lemma 6 in Appendix B.1 provides a formal comparative statics result of this intuition. It also deals with potential 
multiplicity of the optimal intervals.
12
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To understand this first order condition, note that a change in the lower bound has two effects. 
First, it changes the pooling interval. Second, it changes agent 1’s action over the original pooling 
interval. Marginally speaking, the first effect is of second order, and what really matters is the 
second effect. The left hand side of (8) measures this second effect. It is the change in the prin-
cipal’s payoff due to a marginal increase in agent 1’s action over the interval s1 ∈ [0, c∗

1( ¯L2)]. If 
c∗

1( ¯L2) is the optimal lower bound, this payoff change must be zero. That is, (8) must hold. It is 
important to note that this particular payoff change only depends on how agent 2 behaves over 
interval s1 ∈ [0, c∗

1( ¯L2)], and is independent of agent 2’s behavior when s1 > c∗
1( ¯L2).

Now, consider the above s2 < ¯L2. Although agent 2’s overall behavior under φ∗
2 at this state 

may differ from that when his state is ¯L2 and he is given full discretion, they coincide when 

s1 ∈ [0, c∗
1( ¯L2)] by construction, i.e., σ

φ∗
2

2 (s1, s2) = ¯L2 for all s1 ∈ [0, c∗
1( ¯L2)]. Therefore, given 

σ
φ∗

2
2 ( · , s2), the principal should not find changing agent 1’s action away from c∗

1( ¯L2) profitable 
either. Using c∗

1( ¯L2) = ¯L1 =
¯
φ∗

1 (s2) by construction, we have

¯
φ∗

1 (s2)∫
0

[
∂u0

∂a1
(
¯
φ∗

1 (s2), σ
φ∗

2
2 (s1, s2)) + ∂u1

∂a1
(
¯
φ∗

1 (s2), s1)

]
dF1(s1) = 0. (9)

That is, 
¯
φ∗

1 (s2) satisfies one of the first order conditions for (7). Similarly, φ̄∗
1(s2) also satisfies 

the other first order condition, suggesting that [
¯
φ∗

1(s2), φ̄∗
1 (s2)] is indeed optimal.14

This derivation also explains why the boundaries of region IV (recall panel (c) of Fig. 3) are 
all straight since it holds for any s2 < ¯L2. The fundamental reason is the additively separable 
form of the principal’s payoff function. Under this form, the optimal delegation interval for agent 
1 depends only on agent 2’s behavior. Agent 2’s state affects the optimal boundaries for agent 1
only through its effect on the behavior.

The above explanation is based on the first order conditions, which is suggestive but far from 
rigorous. For instance, proving the optimality of φ∗

i given φ∗−i requires checking the second order 
conditions. Moreover, the fact that φ∗

i is optimal given φ∗−i is not enough for the optimality of 
joint design. To deal with these difficulties, we take a different technical approach in the formal 
proof, which does not explicitly rely on the first order conditions. The proof consists of two 
major steps. First, we indeed show that φ∗

i is optimal given φ∗−i . More importantly, we show 
that (φ∗

1 , φ∗
2 ) is the unique one in M that satisfies this property. Second, we show that among 

all the contingent interval delegations, there always exists an optimal one in M. These two steps 
together immediately imply the optimality of (φ∗

1, φ∗
2 ).

Throughout the proof, complementarity of the two agents’ decisions, i.e., supermodularity of 
u0, guarantees that the optimal interval for one agent is monotonically increasing with respect to 
the other agent’s behavior.15 This property allows us to restrict attention to increasing contingent 
interval delegations, and it is repeatedly used in establishing both uniqueness and existence. 
Condition R also plays a crucial role in establishing the uniqueness.16

14 See Lemma 11 in Appendix B.3 for a formal and general statement of this result.
15 See footnote 13.
16 Otherwise, each set of the corresponding four intersections induces a delegation rule that can potentially satisfy this 
property because it also satisfies the first order conditions that we discussed above.
13
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3.5. Sufficient conditions for Conditions U and R

We now provide easy-to-check sufficient conditions on the payoff functions and the distri-
butions of the states for Conditions U and R to hold. These conditions are also important for 
(φ∗

1 , φ∗
2 ) to be optimal among all the DSIC mechanisms.

The following lemma provides the conditions for Condition U.

Lemma 3. Condition U holds if the following conditions are jointly satisfied:

(U1) For all i and s−i , both

x 
→
x∫

0

[u0(x, s−i )) + ui(x, si)]dFi(si) +
1∫

x

[u0(si , s−i )) + ui(si , si)]dFi(si),

x 
→
x∫

0

[u0(si , s−i )) + ui(si , si)]dFi(si) +
1∫

x

[u0(x, s−i )) + ui(x, si)]dFi(si),

are strictly quasi-concave.

(U2) For all i, ai, si , 
∂2ui

∂ai∂si
(ai, si) > 0.

(U3) For all i and s−i , 
∂u0
∂ai

(0, s−i ) + ∂ui

∂ai
(0, 0) ≥ 0 and ∂u0

∂ai
(1, s−i ) + ∂ui

∂ai
(1, 1) ≤ 0.

The first condition implies that if the principal is restricted to imposing only a floor (cap) 
on an agent’s action in the unilaterally constrained delegation problem, the optimal floor (cap) 
is unique. The second condition states that if only agent i is concerned, the principal’s most 
preferred action for agent i is strictly increasing with his state. The last condition guarantees 
that delegating the degenerate interval {0} or {1} is never a solution to the principal’s unilaterally 
constrained delegation problem. Conditions U2 and U3 together ensure that any solution to (4)
is non-degenerate, based on which condition U1 then implies that the solution is unique.

The next lemma provides the conditions for Condition R on top of U.17

Lemma 4. Suppose Condition U is satisfied. Condition R holds if the following conditions are 
jointly satisfied:

(R1) For all i, the density function fi is log-concave.
(R2) For all i, a and s,

∂2u0

∂a1∂a2
(a1, a2) ≤ −∂2u0

∂a2
i

(a1, a2). (10)

(R3) For all i, a and s,

0 <
∂2ui

∂ai∂si
(ai, si) ≤ −∂2ui

∂a2
i

(ai, si). (11)

17 Weaker sufficient conditions that are more difficult to check are given in Lemma 15 in the appendix.
14
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For example, uniform distribution, which is frequently used in the delegation literature, is 
log-concave.18 Conditions R2 and R3 are about how sensitive the principal’s most preferred 
action is with respect to the parameters. If the principal only cares about the interaction of the 
two actions, inequality (10) implies that her most preferred action for agent i, given that −i

chooses s−i , is in fact not very sensitive to s−i . This is because inequality (10) implies that the 
derivative of this action with respect to s−i is bounded above by 1. Similarly, (11) implies that 
if the principal only cares about agent i’s decision, her most preferred action given si is not 
very sensitive to si . These three conditions together guarantee that this insensitivity is inherited 
by the unilaterally constrained delegation rules. We indeed show that all the derivatives of the 
unilaterally constrained delegation rules c∗

1, d∗
1 , c∗

2 , and d∗
2 are strictly less than 1, which in turn 

guarantees the unique intersection of each corresponding pair in the s1, s2-plane. Note also that 
the strict inequality in (11) is just condition U2 in Lemma 3.

3.6. Optimality of contingent interval delegation

Our second main result provides conditions for the optimal contingent interval delegation 
(φ∗

1 , φ∗
2 ) in Theorem 1 to be optimal among all DSIC mechanisms.

Theorem 2. Assume conditions U1 - U3 and R1 - R2 are satisfied. If, in addition, the following 
conditions are jointly satisfied, then the optimal contingent interval delegation (φ∗

1, φ∗
2 ) is an 

optimal DSIC mechanism.

(O1) For all i, fi(si)
∂ui

∂ai
(si , si) is decreasing.

(O2) For all i, fi is differentiable, and f ′
i (si)

∂ui

∂ai
(si , si) ≥ 0 for all si .

(O3) For all i, infai ,si − ∂2ui

∂a2
i

(ai , si) ≥ supai ,si
∂2ui

∂ai∂si
(ai, si).

Condition O1 is one of the conditions in Proposition 5 of Alonso and Matouschek (2008), 
which provides sufficient conditions for interval delegation to be optimal in single-agent envi-
ronments. Condition O2 requires that if only agent i is concerned, the direction of the principal’s 
bias is the same as the direction in which f increases. Condition O3 is a strengthened version 
of condition R3. Conditions O1 and O2 hold simultaneously, for instance, if ∂ui

∂ai
(si , si) = 0 for 

all si , in which case the conflict of interests between the principal and agent i in the absence of 
the coordination motive essentially disappears. They also hold if fi is the uniform distribution, 
in which case the monotonicity of ∂ui

∂ai
(si , si) is guaranteed by condition O3.

To prove Theorem 2, we first establish a more general result, Theorem 3 in Appendix D.1. 
It is a verification theorem that provides sufficient conditions for a given contingent interval 
delegation to be optimal among all DSIC mechanisms. It is built on the main sufficiency result in 
Amador and Bagwell (2013), which provides sufficient conditions for a given interval delegation 
to be optimal in single-agent delegation problems. Theorem 3 extends their analysis to the current 
two-agent setting.

For Theorem 2, we show that the proposed conditions guarantee that the optimal contingent 
interval delegation (φ∗

1 , φ∗
2 ) from Theorem 1 satisfies all the sufficient conditions needed in The-

orem 3. Therefore, (φ∗
1 , φ∗

2 ) is an optimal DSIC mechanism.

18 For instance, Melumad and Shibano (1991), Martimort and Semenov (2006, 2008), and Alonso et al. (2008), to name 
a few. See Bagnoli and Bergstrom (2005) for more examples of log-concave densities.
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4. Application to delegation in multidivisional organizations

4.1. Adaptation versus coordination

This application concerns multidivisional organizations where multiple decisions must be co-
ordinated but the relevant information for decision making is dispersed among the divisions.

Consider an organization that consists of a headquarter and two divisions. The headquarter 
manager is the principal, while the two division managers are the agents. As we have assumed 
that each agent has a quadratic loss payoff function, vi(ai, si) = 1

2 (ai − si)
2, we interpret it as 

that he only cares about his own adaptation loss. The principal, by contrast, cares about both the 
adaptation losses of the two agents and the coordination loss. Following Alonso et al. (2008), 
we measure the coordination loss of the two agents’ actions by −(a1 − a2)

2 and assume that the 
principal’s payoff function is19

u(a1, a2, s1, s2) ≡ −λ0(a1 − a2)
2 − λ1(a1 − s1)

2 − λ2(a2 − s2)
2.

Here, λ0 > 0 measures how important the coordination among the two agents is to the principal, 
while λi > 0 for i = 1, 2 is a parameter reflecting the importance of agent i’s adaptation loss. 
The smaller λ0 is or the larger λ1 and λ2 are, the more important the agents’ adaptation loss is to 
the principal, and hence the less is the conflict of interest between the principal and the agents. 
Under this specification of the principal’s payoff function, the following proposition shows that 
contingent interval delegation is optimal, provided that the densities of the state distributions are 
differentiable and log-concave.

Proposition 2. Suppose that the density functions f1 and f2 of the two states s1 and s2, respec-
tively, are differentiable and log-concave. Then, all the sufficient conditions in Theorem 2 are 
satisfied. Therefore, the optimal contingent interval delegation (φ∗

1 , φ∗
2 ) is an optimal contin-

gent delegation. Moreover, ( ¯L1, ¯L2) = (0, 0) and (H̄1, H̄2) = (1, 1), and for i ∈ {1, 2}, we have 
0 < c∗

i (s−i ) < s−i < d∗
i (s−i ) < 1 for all s−i ∈ (0, 1).

For a concrete example, consider the case where fi is the uniform distribution over [0, 1]. We 
can obtain the closed form solutions for both c∗

i and d∗
i

20:

c∗
i (s−i ) = 2λ0s−i

2λ0 + λi

and d∗
i (s−i ) = 2λ0s−i + λi

2λ0 + λi

.

Panel (a) of Fig. 4 illustrates these solutions for λ0 = λ1 = λ2. The unique intersection of c∗
1 and 

c∗
2 is (0, 0) and that of d∗

1 and d∗
2 is (1, 1). Moreover, c∗

i and d∗
i always lie on different sides of the 

diagonal, as is claimed by Proposition 2. This is intuitive, as the principal always wants to ensure 
that agent i is able to choose the same action as agent −i, in which case perfect coordination is 
achieved.

The corresponding optimal contingent interval delegation (φ∗
1, φ∗

2 ) is illustrated in panel (b) 
of Fig. 4. Noticeably, the diagonal is completely contained in the unconstrained region. When the 

19 In Alonso et al. (2008), each agent may also care about the coordination but to a lesser degree. Our model makes a 
simplification in this regard.
20 Equations (C.1) and (C.2) in the online appendix provide a characterization of c∗

i
(s−i ) and d∗

i
(s−i ) for general 

log-concave density.
16
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Fig. 4. Optimal mechanism for adaptation versus coordination.

realized state (s1, s2) is on the diagonal, along which the conflict of interest between the agents 
and the principal vanishes, perfect adaptation and coordination are achieved simultaneously.

4.2. Comparative statics

Relative importance and optimal discretion One of the central questions in the single-agent 
delegation literature is how the conflict of interests between the principal and the agent affects 
the principal’s optimal mechanism. In general, less conflict of interest leads to more discretion for 
the agent, for example, as in Holmström (1984), Armstrong (1995), and Alonso and Matouschek 
(2008). In our two-agent setting, conflict of interests is measured by how important the principal 
thinks the agents’ adaptation is relative to coordination, and it is represented by parameters λ0, λ1
and λ2. The following two propositions analyze how the agents’ discretion under the principal’s 
optimal contingent delegation changes as these parameters vary. They generalize the classical 
single-agent result to our two-agent setting.

Proposition 3. As coordination becomes more important to the principal, i.e., λ0 increases, both 
agents will suffer from less discretion, i.e., 

¯
φ∗

i shifts upward and φ̄∗
i shifts downward.

This result should be very intuitive. In the special case λ0 = 0, the principal does not care 
about coordination at all. Her delegation problem becomes two independent single-agent prob-
lems, in which the two parties’ preferences are perfectly aligned. Therefore, the principal will 
give both agents full discretion. When λ0 > 0, coordination between the two agents matters for 
the principal. It is then optimal for the principal to limit the agents’ action choices for coordina-
tion. As λ0 becomes larger, coordination becomes more important to the principal. In this case, 
she is willing to sacrifice more of the agents’ adaptation in exchange for better coordination. 
Consequently, under the optimal contingent delegation, she gives both agents less discretion.

While a change in λ0 changes the principal’s overall trade-off between coordination and adap-
tation, the relative importance of the two agents’ adaptation remains unchanged. The following 
17
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proposition analyzes how this relative importance affects the agents’ discretion under the optimal 
contingent delegation.

Proposition 4. As agent i’s adaptation becomes more important to the principal, i.e., λi in-
creases, he will be granted more discretion, i.e., 

¯
φ∗

i shifts downwards and φ̄∗
i shifts upwards. In 

contrast, agent −i will suffer from less discretion, i.e., 
¯
φ∗−i shifts upward and φ̄∗−i shifts down-

ward.

This first part of this proposition should also be very intuitive. When λi increases, the prin-
cipal cares more about agent i’s adaptation. Hence, it is optimal for the principal to grant more 
discretion to this agent for his better adaptation. As for the second part, notice that when agent i
gains more discretion, he is more likely to choose his most preferred action. To avoid miscoordi-
nation, agent −i then must carry more of the coordination burden. This is done by granting agent 
−i less discretion. In the other direction, when λi decreases, agent i will be given less discretion 
but agent −i will enjoy more discretion. In the limit when λi decreases to 0, agent −i will get 
full discretion while agent i will lose his decision right completely: a2 will always be set to equal 
agent −i’s decision.

As a simple corollary of Proposition 4, consider the case where state distributions of the 
agents are identical. If they are equally important to the principal, i.e., λ1 = λ2, the optimal 
delegation rules for them will be symmetric. But if one agent is more important than the other 
to the principal, then she will favor the more important agent by granting more discretion at the 
other agent’s cost of receiving less discretion.

State distribution and optimal delegation rules Another aspect that affects the principal’s op-
timal mechanism is her belief about the state distributions. For instance, if one agent’s state 
distribution shifts to the right, how will the optimal mechanism respond? The next proposition 
provides the answer. It compares the optimal mechanisms when one agent’s state distribution 
changes in the sense of the monotone likelihood ratio property (MLRP).

Proposition 5. When one agent’s state distribution increases in the sense of the MLRP, the opti-
mal delegation rules for both agents shift upward.

Intuitively, if agent i’s state becomes more likely to be high, pooling his low states leads to 
smaller adaptation loss, while pooling his high states results in larger adaptation loss. Thus, it 
is optimal for the principal to pool more of the low states but less of the high states. That is, 
agent i’s contingent delegation interval should move to the right. But then, it is also optimal for 
the principal to move agent −i’s contingent delegation interval to the right for coordinating with 
agent i’s behavior.21

5. Conclusion

This paper studied the optimal DSIC mechanism without contingent transfers in an environ-
ment where there are two privately informed agents and the principal must decide one action for 

21 We note that all the comparative statics results in this subsection can be extended to general coordination payoff 
function u0 = λ0ũ0, where ũ0 is supermodular and λ0ũ0 satisfies all the sufficient conditions for Theorem 2. The 
intuition remains the same.
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each of them. In this environment, any DSIC mechanism is equivalent to contingent delegation. 
We provided sufficient conditions under which contingent interval delegation is optimal, and 
solved the optimal contingent interval delegation under fairly general conditions. This optimal 
mechanism is determined by decomposing the two agents’ joint delegation problem into single-
agent ones, assuming that the other agent is free to choose his most preferred action. We also 
applied our results to study the delegation problem in multidivisional organizations where the 
two privately informed division managers only care about local adaptation but the headquarter 
manager also cares about coordination between the two divisions. The simple structure of the op-
timal mechanism enables us to analyze how conflicts of interest and state distributions affect the 
principal’s optimal mechanism. Although we have focused on the two-agent case throughout the 
paper, we believe that it would not be difficult to extend our analysis to multiple agents, because 
the intuition of local determination can easily carry over.

One interesting question for future research is how to find the optimal Bayesian mechanism. 
Although the DSIC mechanism has its own conceptual advantages and makes the problem more 
tractable by transforming it into a contingent delegation problem, it is possible that Bayesian 
mechanisms can do better than DSIC mechanisms.22 However, due to the lack of a tractable 
characterization of Bayesian mechanisms, it is not clear how the optimal Bayesian mechanism 
could be characterized. Another interesting question is whether stochastic mechanisms can im-
prove the principal’s expected payoff in our two-agent setting. In single-agent settings, it is well 
known that restricting attention to deterministic mechanism is in general not without loss of 
generality.23 However, in a setting with quadratic preferences, Kovac and Mylovanov (2009)
provide a sufficient condition for the optimal mechanism to be deterministic. It would be inter-
esting to investigate whether a similar result holds in our setting. Since stochastic mechanisms 
under quadratic preferences have similar features as money burning, one possible avenue for 
such research is to utilize the result with money burning in Amador and Bagwell (2013).24 We 
leave it for future work.

Data availability
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Appendix A. Proofs of Lemmas 1 and 2

Proof of Lemma 1. Suppose (a1, a2) is a DSIC mechanism. For all i and s−i , let D̃i(s−i ) ≡
{ai(si , s−i ) | si ∈ [0, 1]}, and Di(s−i ) be its closure. By DSIC, for all i, si and s−i , ai(si , s−i ) ∈
arg max

a′
i∈D̃i (s−i )

vi(a
′
i , si). By continuity of vi , we know (2) holds.

Suppose (2) holds. Consider any i, si , s′
i , and s−i . Because (2) implies that ai(s

′
i , s−i ) ∈

Di(s−i ), it also implies that vi(ai(si , s−i ), si) ≥ vi(ai(s
′
i , s−i ), si), proving that (a1, a2) is a DSIC 

mechanism. �
Proof of Lemma 2. Continuity is standard. It comes from the maximum theorem and Con-
dition U. Monotonicity mainly comes from supermodularity of u0. Lemma 6 in Section B.1

22 The equivalence result in Gershkov et al. (2013) does not apply since vi and ui are not linear in ai and we do not 
allow monetary transfers.
23 See Section 8.3 in Alonso and Matouschek (2008) for a discussion.
24 We thank an anonymous referee for pointing out this direction.
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provides a more general statement, of which the current result is a direct corollary. See also 
Corollary 2. �
Appendix B. Proof of Theorem 1

Throughout this section, suppose that Conditions U and R hold.

B.1. One-sided optimal delegation

We begin with a generalization of unilaterally constrained delegation rules. It plays the central 
role throughout the whole analysis. Lemmas 5 and 6 below give its two important and useful 
properties.

Definition 1. Let y : [0, 1] → [0, 1] be a Borel measurable function. The pair (c, d) is called a 
one-sided optimal delegation for i given y, if

(c, d) ∈ �i(y) ≡ arg max
0≤c̃≤d̃≤1

1∫
0

[
u0(σi(si; c̃, d̃), y(si)) + ui(σi(si; c̃, d̃), si)

]
dFi(si). (12)

By continuity of u0 and ui , �i(y) �= ∅ for every y. Observe also that the pair (c∗
i (s−i ), d∗

i (s−i ))

is simply the one-sided optimal delegation for i given the constant function y(si) ≡ s−i .
The following lemma points out a simple but crucial property of one-sided optimal delega-

tions. Loosely speaking, when we consider a one-sided optimal delegation (c, d) given y, the 
joint optimization problem in (12) can be decomposed into two separate optimization problems, 
one for the lower bound c and one for the upper bound d . Most importantly, c is completely 
determined by the lower part of y and d is completely determined by the upper part of y.

Lemma 5 (Local determination). Suppose (c, d) ∈ �i(y). For any x such that c ≤ x ≤ d , we 
have

c ∈ arg max
0≤c̃≤x

x∫
0

[
u0(σi(si; c̃, x), y(si)) + ui(σi(si; c̃, x), si)

]
dFi(si), (13)

d ∈ arg max
x≤d̃≤1

1∫
x

[
u0(σi(si;x, d̃), y(si)) + ui(σi(si;x, d̃), si)

]
dFi(si). (14)

If, in addition, (c, d) is unique, then both (13) and (14) hold with equality.

Proof. Fix i ∈ {1, 2}. To simplify the exposition, for every pair 0 ≤ c ≤ d ≤ 1 and y, let 
Hi(c, d, y) be the function from [0, 1] to R defined as

Hi(c, d, y)(si) ≡ u0 (σi(si; c, d), y(si)) + ui (σi(si; c, d), si) , ∀si ∈ [0,1].
Hence, �i(y) = arg max0≤c≤d≤1

∫ 1
0 Hi(c, d, y)dFi .

Suppose (c, d) ∈ �i(y) and consider any x ∈ [c, d]. En route to a contradiction, assume at 
least one of (13) and (14) does not hold. Pick c′ ∈ arg max0≤c̃≤x

∫ x

0 Hi(c̃, x, y)dFi and d ′ ∈
arg max ˜

∫ 1
Hi(x, d̃, y)dFi . Then, we must have
x≤d≤1 x
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x∫
0

Hi(c, x, y)dFi +
1∫

x

Hi(x, d, y)dFi <

x∫
0

Hi(c
′, x, y)dFi +

1∫
x

Hi(x, d ′, y)dFi. (15)

Because c, c′ ≤ x ≤ d, d ′, we can easily see that the left hand side of (15) is simply ∫ 1
0 Hi(c, d, y)dFi and the right hand side is 

∫ 1
0 Hi(c

′, d ′, y)dFi . This contradicts the assump-
tion that (c, d) ∈ �i(y).

From the above argument, we can also see that any pair (c′, d ′) that satisfies c′ ∈
arg max0≤c̃≤x

∫ x

0 Hi(c̃, x, y)dFi and d ′ ∈ arg max
x≤d̃≤1

∫ 1
d̃

Hi(x, d̃, y)dFi must also be in �i(y). 
Therefore, if (c, d) is unique, we must have (c′, d ′) = (c, d). �

Let Y be the set of all Borel measurable functions from [0, 1] to itself. We endow Y with the 
usual partial order ≥, where y′ ≥ y if y′(s) ≥ y(s) for all s ∈ [0, 1]. Similarly, endow R2 with 
the standard product order ≥, where (c′, d ′) ≥ (c, d) if c′ ≥ c and d ′ ≥ d . Applying the standard 
results on comparative statics, we obtain the following monotonicity result.

Lemma 6 (Monotonicity). For i = 1, 2, the one-sided optimal delegation correspondence �i :
Y ⇒ [0, 1]2 is increasing in the strong set order.25 Moreover, there exists an increasing selection 
of �i .

Proof. We continue to use the notation Hi(c, d, y) defined in the proof of Lemma 5. Let 
πi(c, d, y) ≡ ∫ 1

0 Hi(c, d, y)(si)dFi(si). By Theorem 2.8.3 in Topkis (1998), to show monotonic-
ity of �i , we only need to verify that (i) for every y, πi is supermodular in (c, d), and (ii) πi has 
increasing differences in ((c, d), y).

Fix y and consider any (c, d) and (c′, d ′). Without loss of generality, assume d ≤ d ′. If c ≤ c′, 
we clearly have π(c, d, y) + π(c′, d ′, y) = π(c ∨ c′, d ∨ d ′, y) + π(c ∧ c′, d ∧ d ′, y). Assume 
c > c′. We thus have c′ < c ≤ d ≤ d ′. For any si , we can see

Hi(c
′, d ′, y)(si) − Hi(c ∧ c′, d ∧ d ′, y)(si)

=Hi(c
′, d ′, y)(si) − Hi(c

′, d, y)(si)

=
{

0, if si ≤ d,

Hi(c, d
′, y)(si) − Hi(c, d, y)(si), if si > d,

=Hi(c, d
′, y)(si) − Hi(c, d, y)(si)

=Hi(c ∨ c′, d ∨ d ′, y)(si) − Hi(c, d, y)(si).

Therefore, πi(c, d, y) + πi(c
′, d ′, y) = πi(c ∨ c′, d ∨ d ′, y) + πi(c ∧ c′, d ∧ d ′, y), implying that 

πi is supermodular (and submodular) in (c, d) for every y.
Next, consider (c′, d ′) ≥ (c, d). For any y, we can easily calculate

Hi(c
′, d ′, y)(si) − Hi(c, d, y)(si)

=u0(σi(si; c′, d ′), y(si)) − u0(σi(si; c, d), y(si)) + �,

25 That is, if y′ ≥ y, (c, d) ∈ �i(y) and (c′, d ′) ∈ �i(y
′), then (c ∧ c′, d ∧ d ′) ∈ �i(y) and (c ∨ c′, d ∨ d ′) ∈ �i(y

′), 
where c ∧ c′ ≡ min{c, c′} and c ∨ c′ ≡ max{c, c′}.
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where � = ui(σi(si; c′, d ′), si) − ui(σi(si; c, d), si) is independent of y. Because (c′, d ′) ≥
(c, d), we know σi(si; c′, d ′) ≥ σi(si; c, d). Hence, by the supermodularity of u0, we have, for 
all y′ ≥ y,

Hi(c
′, d ′, y′)(si) − Hi(c, d, y′)(si) ≥ Hi(c

′, d ′, y)(si) − Hi(c, d, y)(si), ∀si .

Consequently, πi(c
′, d ′, y′) − πi(c, d, y′) ≥ πi(c

′, d ′, y) − πi(c, d, y), proving that πi has in-
creasing differences in ((c, d), y). �

Lemma 6 has two useful corollaries. Corollary 1 is used for the existence result in Section B.2, 
while Corollary 2 is used in the proof of uniqueness in Section B.3.

Corollary 1. For any contingent interval delegation (φ1, φ2), there exists an increasing 
(φ′

1, φ
′
2) ∈ M that yields weakly higher payoff to the principal.

Proof. It is clear that σ2(s
′
2; ¯

φ2( · ), φ̄2( · )) ≥ σ2(s2; ¯
φ2( · ), φ̄2( · )) whenever s′

2 > s2. Thus, by 
Lemma 6, there exists φ′

1 = (
¯
φ′

1, φ̄
′
2) such that (i) φ′

1 is a one-sided optimal delegation rule for 1
given φ2, and (ii) both 

¯
φ′

1 and φ̄′
1 are increasing. Then, (φ′

1, φ2) clearly yields an ex ante expected 
payoff no lower than (φ1, φ2) to the principal.26 Applying the same argument, we can show that 
there exists φ′

2 = (
¯
φ′

2, φ̄
′
2) such that (i) φ′

2 is a one-sided optimal delegation rule for agent 2
given φ′

1, and (ii) both 
¯
φ′

2 and φ̄′
2 are increasing. Then (φ′

1, φ
′
2) is the desired contingent interval 

delegation. �
Corollary 2. Suppose y ≤ (≥) y′ and (c, d) ∈ �i(y).

(i) If there exists ĉ such that every (c′, d ′) ∈ �i(y
′) satisfies c′ = ĉ, then c ≤ (≥) ĉ.

(ii) If there exists d̂ such that every (c′, d ′) ∈ �i(y
′) satisfies d ′ = d̂ , then d ≤ (≥) d̂ .

Proof. The results directly come from the definition of strong set order. �
We can also naturally extend the notion of one-sided optimal delegation to mechanisms, which 

will give us a necessary condition for a mechanism to be optimal.

Definition 2. Consider a mechanism (φ1, φ2). We say φi is a one-sided optimal delegation rule
for i given φ−i , if, for F−i -almost all s−i , (¯

φi(s−i ), φ̄i (s−i )) is a one-sided optimal delegation 
for i given σ−i (s−i; ¯

φ−i ( · ), φ̄−i ( · )). We say (φ1, φ2) is a pair of mutual one-sided optimal 
delegation rules if, for both i = 1, 2, φi is a one-sided optimal delegation for i given φ−i .

Being mutually one-sided optimal is a necessary condition for optimality.

Lemma 7. If (φ1, φ2) is an optimal mechanism, then it is a pair of mutual one-sided optimal 
delegations.

Proof. Suppose, by contradiction, that (φ1, φ2) is not a pair of mutual one-sided optimal del-
egation rules. Without loss of generality, assume that φ1 is not a one-sided optimal delegation 

26 Monotone functions are Borel measurable.
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rule for 1 given φ2. Consider the φ′
1 constructed in the proof of Corollary 1. Then it is clear that 

(φ′
1, φ2) yields strictly higher ex ante expected payoff than (φ1, φ2) to the principal. This proves 

that (φ1, φ2) is not optimal. �
Before we proceed, it is helpful to briefly discuss the main idea behind the proof of Theorem 1. 

Instead of directly showing that (φ∗
1 , φ∗

2 ) performs no worse than any other contingent interval 
delegation, our proof takes an indirect approach. The fundamental idea of our proof is to show 
(i) existence — an optimal mechanism that is in M exists, and (ii) uniqueness — (φ̄∗

1 , φ̄∗
2 ) is the 

essentially unique pair of mutual one-sided optimal delegations in M. These two results, together 
with Lemma 7, immediately imply the optimality of (φ∗

1 , φ∗
2 ). The following two sections prove 

these two results, respectively.

B.2. Existence of optimal contingent interval delegation

By Corollary 1, any optimal contingent interval delegation within M is optimal for the prin-
cipal. Because we can show that an optimal contingent interval delegation within M exists, we 
can obtain the desired existence result.

Lemma 8 (Existence). Among all the contingent interval delegations, there exists an optimal one 
in M.

Proof of Lemma 8. We follow the standard line of proof that a continuous function over a com-
pact set attains its maximum.

Consider the probability space ([0, 1]2, B[0, 1]2, μ1 ×μ2), where B[0, 1]2 is the Borel mea-
surable sets over [0, 1]2. Each μi is the probability measure induced by Fi and μ1 × μ2 is the 
product measure. Consider the following set of four dimensional random vectors over this prob-
ability space:

N ≡
⎧⎨
⎩( ¯ψ1, ψ̄1, ¯

ψ2, ψ̄2
) : [0,1]2 → [0,1]4

∣∣∣∣∣∣
¯
ψ1, ψ̄1 are constant in s1 and increasing in s2;
¯
ψ2, ψ̄2 are increasing in s1 and constant in s2;
∀i,

¯
ψi(s, s) ≤ ψ̄i(s, s), ∀s ∈ [0,1].

⎫⎬
⎭

Denote a generic element in N by ψ . Define the distance between ψ, ψ ′ ∈N as

δ(ψ,ψ ′) ≡
2∑

i=1

1∫
0

1∫
0

(|
¯
ψi −

¯
ψ ′

i | + |ψ̄i − ψ̄ ′
i |)d(μ1 × μ2).

As long as we regard any two random vectors ψ and ψ ′ as being equivalent whenever ψ = ψ ′
a.s., δ is indeed a metric over N .

We first show that (N , δ) is compact. For this, it suffices to show that it is sequentially 
compact. Consider any sequence {ψn}n ⊂ N . Because of the monotonicity properties of each 
ψn, by Helly’s selection theorem, there exists a pointwise convergent subsequence {ψn }k of 
k
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{ψn}n.27 Let ψ ≡ limk ψnk
. Clearly, ψ ∈ N . Then, by the bounded convergence theorem, we 

have limk δ(ψnk
, ψ) = 0, proving that (N , δ) is sequentially compact.

Next, we show that the mapping � : (N , δ) → R, defined as

�(ψ) ≡
1∫

0

1∫
0

{
u0
(
σ1(s1; ¯

ψ1(s1, s2), ψ̄1(s1, s2)), σ2(s2; ¯
ψ2(s1, s2), ψ̄2(s1, s2))

)

+
2∑

i=1

ui

(
σi(si; ¯

ψi(s1, s2), ψ̄i(s1, s2)), si
)}

d(μ1 × μ2),

is continuous. For this, we only need to show that, for any ψ ∈ N and a sequence {ψn} ⊂ N
converging to ψ in δ, there is a subsequence {ψnk

}k such that �(ψnk
) → �(ψ). Because 

limn δ(ψn, ψ) = 0, we know that there exists a subsequence {ψnk
}k that converges to ψ a.s. 

By the bounded convergence theorem again, we know �(ψnk
) → �(ψ).

Finally, as � is a continuous function over a compact set, it attains its maximum at some 
ψ ∈N . Define φ = (

¯
φ1, φ̄1, ¯

φ2, φ̄2) : [0, 1] → [0, 1]4 as

¯
φ1(s2) ≡

¯
ψ1(0, s2), φ̄1(s2) ≡ ψ̄1(0, s2), ∀s2 ∈ [0,1],

¯
φ2(s1) ≡

¯
ψ2(s1,0), φ̄2(s1) ≡ ψ̄2(s1,0), ∀s1 ∈ [0,1].

Clearly, φ ∈ M and is an optimal one among all the contingent interval delegations in M. By 
Corollary 1, φ is also an optimal one among all contingent interval delegations. �
B.3. Uniqueness of mutual one-sided optimal delegations in M

Lemmas 10 and 12 below provide two necessary conditions that every pair of mutual one-
sided optimal delegation rules must satisfy. Based on these two conditions, we can obtain the 
uniqueness.

To prove Lemma 10, we need the following lemma.

Lemma 9. Consider i ∈ {1, 2}.

(i) c∗
i (c

∗−i (si)) > si if si < ¯Li and c∗
i (c

∗−i (si)) < si if si > ¯Li .
(ii) d∗

i (d∗−i (si)) > si if si < H̄i and d∗
i (d∗−i (si)) < si if si > H̄i .

Proof. We show part (i). Take i = 1 for example. It is obvious that (s1, c∗
2(s1)) is an inter-

section of c∗
1 and c∗

2 if and only if c∗
1(c

∗
2(s1)) = s1. Therefore, because of continuity of c∗

1
and c∗

2 , c∗
1(c∗

2(s1)) − s1 must have the same sign, either positive or negative, over [0, ¯L1). 
Because c∗

1(c∗
2(0)) ≥ 0, we know c∗

1(c∗
2(s1)) − s1 must be positive over [0, ¯L1). Similarly, 

c∗
2 , c∗

1(c∗
2(s1)) − s1 must have the same sign over ( ¯L1, 1]. Because c∗

1(c∗
2(1)) ≤ 1, we know 

c∗
1(c∗

2(s1)) − s1 must be negative over ( ¯L1, 1]. �
Lemma 10 (Global bounds). Suppose (φ1, φ2) ∈ M is a pair of mutual one-sided optimal dele-
gation rules. For i = 1, 2, we have ¯Li ≤

¯
φi ≤ φ̄i ≤ H̄i over (0, 1).

27 See, for instance, Rudin (1976), p. 167.
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Proof. For both i = 1, 2, we assume without loss of generality that (
¯
φi(s−i ), φ̄i (s−i )) is a one-

sided optimal delegation for i given σ−i (s−i; ¯
φi( · ), φ̄i ( · )) for s−i = 0, 1. Otherwise, redefine 

(
¯
φi(0), φ̄i (0)) ≡ lims−i↓0(¯

φi(s−i ), φ̄i (s−i )) and (
¯
φi(1), φ̄i (1)) ≡ lims−i↑1(¯

φi(s−i ), φ̄i (s−i )). 
Because (

¯
φi(s−i ), φ̄i (s−i )) is a one-sided optimal delegation for i given σ−i (s−i; ¯

φi( · ), φ̄i ( · ))
for F−i -almost all s−i and F−i has full support, such limits are also one-sided optimal delega-
tions given the corresponding behavior.

Because φ̄2 is increasing, we know σ2(1; 
¯
φ2(s1), φ̄2(s1)) = φ̄2(s1) ≤ φ̄2(1). By Corollary 2, 

we know

φ̄1(1) ≤ d∗
1 (φ̄2(1)) and φ̄2(1) ≤ d∗

2 (φ̄1(1)).

Combining these two inequalities, we obtain

φ̄1(1) ≤ d∗
1 (d∗

2 (φ̄1(1))). (16)

By Lemma 9, we know φ̄1(1) ≤ H̄1, which in turn implies φ̄1 ≤ H̄1 by monotonicity of φ̄1. 
Similarly, we have φ̄2 ≤ H̄2.

The other inequalities 
¯
φi ≥ ¯Li for i = 1, 2 can be proved analogously. �

To prove Lemma 12, we need the following lemma.

Lemma 11. Consider i ∈ {1, 2}. Suppose ¯L−i ≤ ¯s−i ≤ s̄−i ≤ H̄−i . Let y(si) be an increasing 
function that satisfies

y(si) =
{

¯s−i , if si ∈ [0, c∗
i (¯s−i )],

s̄−i , if si ∈ [d∗
i (s̄−i ), 1], (17)

and

c∗
i (y(si)) < si < d∗

i (y(si)), ∀si ∈ (c∗
i (¯s−i ), d∗

i (s̄−i )). (18)

Then the unique one-sided optimal delegation for i given y is (c∗
i (¯s−i ), d∗

i (s̄−i )).

Proof. Consider i = 1. We show that the optimal lower bound must be c∗
1(¯s2). The proof for the 

upper bound is similar. Define

S ≡ {
s2 ∈ [¯s2, s̄2]

∣∣ every (c, d) ∈ �1(max{s2, y(s1)}) satisfies c = c∗
1(s2)

}
.

By construction of y, max{s̄2, y(s1)} ≡ s̄2. Because �1(s̄2) = {(c∗
1(s̄2), d∗

1 (s̄2))} by Condition U, 
we know s̄2 ∈ S �= ∅. Let ŝ2 = infS. For all s2 ∈ S, we have ŝ2 ≤ max{ŝ2, y(s1)} ≤ max{s2, y(s1)}
for all s1 ∈ [0, 1]. Thus, by Corollary 2, any (c, d) ∈ �1(max{ŝ2, y(s1)}) must satisfy c∗

1(ŝ2) ≤
c ≤ c∗

1(s2) for any s2 ∈ S, which implies c = c∗
1(ŝ2) by continuity of c∗

1. Thus, ŝ2 ∈ S.
The desired result will follow if we show ŝ2 = ¯s2. Suppose, by contradiction, that ŝ2 > ¯s2. 

In the remainder of the proof, we proceed to derive a contradiction. The analysis is divided into 
several small steps for clarity. In Fig. 5, we carefully label the important quantities involved in 
the following analysis, which greatly facilitates understanding.

Step 1: c∗(s2) < c∗(ŝ2) < d∗(s̄2).
1 ¯ 1 1
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Fig. 5. Proof of Lemma 11.

Because c∗
1 is increasing, we know c∗

1(¯s2) ≤ c∗
1(ŝ2). But we can not have c∗

1(¯s2) = c∗
1(ŝ2). To 

see this, note that ¯s2 ≤ y(s1) = max{¯s2, y(s1)} ≤ max{ŝ2, y(s1)} for all s1 ∈ [0, 1]. Then, for any 
(c, d) ∈ �1(y), Condition U, Corollary 2 and the fact ŝ2 ∈ S together imply c∗

1(¯s2) ≤ c ≤ c∗
1(ŝ2). 

Consequently, equality c∗
1(¯s2) = c∗

1(ŝ2) would imply ¯s2 ∈ S, which contradicts the definition of 
ŝ2 and the assumption ŝ2 > ¯s2. Therefore, we must have c∗

1(¯s2) < c∗
1(ŝ2).

The other inequality comes directly from Condition U and monotonicity of d∗
1 : c∗

1(ŝ2) <
d∗

1 (ŝ2) ≤ d∗
1 (s̄2).

Step 2: c∗
1(y(c∗

1(ŝ2))) < c∗
1(ŝ2) < d∗

1 (y(c∗
1(ŝ2))).

This is immediate from Step 1 and the construction of y, i.e., (18).

Step 3: ¯s2 ≤ y(c∗
1(ŝ2)) < ŝ2.

For the first inequality, note that ¯s2 = y(c∗
1(¯s2)) ≤ y(c∗

1(ŝ2)), where the equality comes from 
the construction of y and the inequality comes from monotonicity of both c∗

1 and y. The second 
inequality is immediate from the first inequality in Step 2 and monotonicity of c∗

1.

Step 4: (c, d) ∈ �1(max{y(c∗
1(ŝ2)), y(s1)}) implies c ≤ c∗

1(ŝ2) ≤ d .

By Step 3, we know max{y(c∗
1(ŝ2)), y(s1)} ≤ max{ŝ2, y(s1)}. Because ŝ2 ∈ S, we know c ≤

c∗
1(ŝ2) by Corollary 2. On the other hand, because max{y(c∗

1(ŝ2)), y(s1)} ≥ y(c∗
1(ŝ2)), we know 

d ≥ d∗
1 (y(c∗

1(ŝ2))) by Corollary 2 again. By Step 2, we know d > c∗
1(ŝ2).

Step 5: y(c∗
1(ŝ2)) ∈ S.

Consider any (c, d) ∈ �1(max{y(c∗
1(ŝ2)), y(s1)}). Because y is increasing by construction, 

max{y(c∗(ŝ2)), y(s1)} = y(c∗(ŝ2)) for all s1 ∈ [0, c∗(ŝ2)]. By Step 4 and Lemma 5, we know
1 1 1
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Fig. 6. Separation property.

c ∈ arg max
0≤c̃≤c∗

1(ŝ2)

c∗
1(ŝ2)∫
0

[
u0(σ1(s1; c̃, c∗

1(ŝ2)), s1) + u1(σ1(s1; c̃, c∗
1(ŝ2)), y(c∗

1(ŝ2))
]

dF1(s1).

(19)

But by Step 2, Lemma 5 and Condition U, we know that the unique solution to (19) is 
c∗

1(y(c∗
1(ŝ2))). Hence, c = c∗

1(y(c∗
1(ŝ2))), implying y(c∗

1(ŝ2)) ∈ S.

The above Steps 3 and 5 together contradict the definition of ŝ2. Therefore, we must have 
ŝ2 = ¯s2, completing the proof. �
Lemma 12 (Separation). There exists a pair of mutually inverse functions h1 and h2 such that, 
for i ∈ {1, 2},

(i) hi : [ ¯L−i , H̄−i] → [¯Li, H̄i] is strictly increasing with hi( ¯L−i ) = ¯Li and hi(H̄−i ) = H̄i ;
(ii) c∗

i < hi < d∗
i over ( ¯L−i , H̄−i );

and

(iii) if (φ1, φ2) ∈ M is a pair of mutual one-sided optimal delegation rules, then 
¯
φi ≤ hi ≤ φ̄i

over [ ¯L−i , H̄−i] for both i = 1, 2.

Proof. Panel (a) of Fig. 6 provides an illustration of parts (i) and (ii). It is very intuitive that we 
can find a strictly increasing curve (the black solid curve) that connects the two points ( ¯L1, ¯L2)

and (H̄1, H̄2) and that separates c∗
i and d∗

i in the sense that c∗
i < hi < d∗

i . We leave its formal 
proof to the online appendix. Here, we show that any such h1 and h2 must also satisfy part (iii).

Suppose (φ1, φ2) is a pair of mutual one-sided optimal delegation rules. Define

S ≡
{
s1 ∈ [L1, H̄1]

∣∣∣∣ ¯
φ1(s

′
2) ≤ h1(s

′
2), ∀s′

2 ∈ [h2(s1), H̄2],
φ (s′ ) ≤ h (s′ ), ∀s′ ∈ [s , H̄ ]

}
.
¯ ¯ 2 1 2 1 1 1 1
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For i = 1, 2, we know 
¯
φi(H̄−i ) ≤ H̄i = hi(H̄−i ), where the inequality comes from Lemma 10. 

Therefore, H̄1 ∈ S �= ∅. Let ŝ1 ≡ infS. It is easy to verify that ŝ1 ∈ S. The desired result will 
follow if we show ŝ1 = ¯L1.

Suppose, by contradiction, ŝ1 > ¯L1. When s1 ∈ [ŝ1, H̄1], we have 
¯
φ2(s1) ≤ h2(s1). When 

s1 ∈ (H̄1, 1), we have 
¯
φ2(s1) ≤ H̄2 by Lemma 10. These two cases are illustrated in Fig. 6. 

When s1 ∈ [0, ̂s2), we know 
¯
φ2(s1) ≤ ¯

φ2(ŝ1) ≤ h2(ŝ1), where the first inequality comes from 
monotonicity of 

¯
φ2. In summary, for all s1, we have

¯
φ2(s1) ≤ y(s1) ≡

⎧⎪⎨
⎪⎩

h2(ŝ1), if s1 ∈ [0, ŝ1),

h2(s1), if s1 ∈ [ŝ1, H̄1],
H̄2, if s1 ∈ (H̄1,1).

This y function is represented by the thick red curve in panel (b) of Fig. 6. Consequently, for all 
s2 ∈ [0, h2(ŝ1)], we have

σ2(s2; ¯
φ2(s1), φ̄2(s1)) ≤ max{s2, ¯

φ2(s1)} ≤ max{h2(ŝ1), y(s1)} ≤ y(s1). (20)

Because of parts (i) and (ii), it is easy to verify that function y satisfies conditions (17)
and (18) in Lemma 11. Hence, the unique one-sided optimal delegation for 1 given y is 
(c∗

1(h2(ŝ1)), d∗
1 (H̄2)). Because φ1 is a one-sided optimal delegation rule given φ2, we know 

that (
¯
φ1(s2), φ̄1(s2)) is a one-sided optimal delegation for 1 given σ2(s2; ¯

φ2( · ), φ̄2( · )) for F2-
almost all s2 ∈ [0, h2(ŝ1)]. Therefore, by (20) and Corollary 2, we know 

¯
φ1(s2) ≤ c∗

1(h2(ŝ1))

for F2-almost all s2 ∈ [0, h2(ŝ1)]. Because 
¯
φ1 is increasing and F2 has full support, we actually 

must have 
¯
φ1(s2) ≤ c∗

1(h2(ŝ1)) for all s2 ∈ [0, h2(ŝ1)). In panel (b) of Fig. 6, this means that (the 
relevant part of) 

¯
φ1 is to the left of the vertical dashed blue line of value c∗

1(h2(ŝ1)). By part (ii), 
we know c∗

1(h2(ŝ1)) < h1(h2(ŝ1)) = ŝ1, where the equality comes from h1 = h−1
2 . This in turn 

implies h2(c
∗
1(h2(ŝ1))) < h2(ŝ1) since h2 is strictly increasing, and

¯
φ1(s2) ≤ c∗

1(h2(ŝ1)) = h1(h2(c
∗
1(h2(ŝ1)))) ≤ h1(s2), ∀s2 ∈ [h2(c

∗
1(h2(ŝ1))), h2(ŝ1)).

These inequalities can also be seen in panel (b) of Fig. 6, as 
¯
φ1 over the interval [h2(c

∗
1(h2(ŝ1))),

h2(ŝ1)) is to the left of h1.
Initially, we know 

¯
φ1(s2) ≤ h1(s2) for all s2 ∈ [h2(ŝ1), H̄2]. Now, we know 

¯
φ1(s2) ≤ h1(s2)

for all s2 ∈ [h2(ŝ
′
1), H̄2], where ŝ′

1 ≡ c∗
1(h2(ŝ1)) < ŝ1. Similarly, using the fact that 

¯
φ1(s2) ≤

h1(s2) for all s2 ∈ [h2(ŝ1), H̄2], we can also show that there exists ŝ′′
1 < ŝ1 such that 

¯
φ2(s1) ≤

h2(s1) for all s1 ∈ [ŝ′′
1 , H̄1]. This means max{ŝ′

1, ŝ
′′
1 } ∈ S, which contradicts the definition of ŝ1. 

We therefore must have ŝ2 = ¯L1. Equivalently, for both i = 1, 2, 
¯
φi ≤ hi over [ ¯L−i , H̄−i].

The proof of the result that φ̄i ≥ hi over [ ¯L−i , H̄−i] for i = 1, 2 is similar. �
To prove uniqueness in Lemma 14, we need the following lemma, which is analogous to 

Lemma 9. Its proof is omitted.

Lemma 13. Consider i ∈ {1, 2}.

(i) d∗
i (c∗−i (si)) > si if si < L̄i and d∗

i (c∗−i (si)) < si if si > L̄i .
(ii) c∗

i (d
∗−i (si)) > si if si < ¯Hi and c∗

i (d
∗−i (si)) < si if si > ¯Hi .

We are now ready to prove uniqueness.
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Lemma 14 (Uniqueness). Suppose (φ1, φ2) ∈ M is a pair of mutual one-sided optimal delega-
tion rules. Then, we have (φ1, φ2) = (φ∗

1 , φ∗
2 ) over (0, 1).

Proof. Similarly as the proof of Lemma 10, assume (
¯
φi(s−i ), φ̄i (s−i )) is a one-sided optimal 

delegation for i given σ−i (s−i; ¯
φ−i ( · ), φ̄−i ( · )) for both s−i = 0, 1. Let h1 and h2 be the ones 

found in Lemma 12. The whole proof is divided into several small steps.

Step 1: For i = 1, 2, 
¯
φi(s−i ) = ¯Li for all s−i ∈ (0, ¯L−i], and φ̄i(s−i ) = H̄i for all s−i ∈ [H̄−i , 1).

For s−i ∈ (0, ¯L−i ), we have ¯Li ≤
¯
φi(s−i ) ≤ ¯

φi( ¯L−i ) ≤ hi( ¯L−i ) = ¯Li , where the first in-
equality is from Lemma 10. The second inequality comes from monotonicity of 

¯
φi . The third 

inequality comes from Lemma 12. The proof for φ̄i is similar.

Step 2: For i = 1, 2, 
¯
φi(s−i ) = c∗

i (s−i ) for all s−i ∈ ( ¯L−i , φ̄−i (0)), and φ̄i (s−i ) = d∗
i (s−i ) for 

all s−i ∈ (
¯
φ−i (1), H̄−i ).

Take 
¯
φ2 as an example. Consider any s1 ∈ ( ¯L1, φ̄1(0)) and any s2 ≤ h2(s1). Such a pair (s1, s2)

is a point in the shaded area in panel (a) in Fig. 7. Note that

¯
φ1(s2) ≤ h1(s2) ≤ h1(h2(s1)) = s1 < φ̄1(0) ≤ φ̄1(s2),

where the first inequality comes from Lemma 12. The second inequality comes from mono-
tonicity of h1. The last inequality comes from monotonicity of φ̄1. This implies that, for all 
s1 ∈ ( ¯L1, φ̄1(0)),

σ1(s1; ¯
φ1(s2), φ̄1(s2)) = s1, ∀s2 ∈ (0, h2(s1)]. (21)

Consider any s1 ∈ ( ¯L1, φ̄1(0)) such that (
¯
φ2(s1), φ̄2(s1)) is a one-sided optimal delegation 

given σ1(s1; ¯
φ1( · ), φ̄2( · )). Because 

¯
φ2(s1) ≤ h2(s1) ≤ φ̄2(s1) by Lemma 12, Lemma 5 states 

that 
¯
φ2(s1) is completely determined by σ1(s1; ¯

φ1( · ), φ̄1( · )) over (0, h2(s1)], i.e.,

φ2(s1) ∈ arg max
0≤c̃≤h2(s1)

h2(s1)∫
0

[
u0(s1, σ2(s2; c̃, h2(s1))) + u2(σ2(s2; c̃, h2(s1)), s2)

]
dF2(s2).

(22)

Note that we have applied (21) in the above expression. Because c∗
2(s1) ≤ h2(s2) ≤ d∗

2 (s1) by 
Lemma 12, Condition U and Lemma 5 then imply that the unique solution to the optimization 
problem in (22) is c∗

2(s1). Therefore, φ2(s1) = c∗
2(s1).

Because (
¯
φ2(s1), φ̄2(s1)) is a one-sided optimal delegation given σ1(s1; ¯

φ1( · ), φ̄2( · )) for F1-
almost all s1 ∈ ( ¯L1, φ̄1(0)), we know from the above analysis that 

¯
φ2(s1) = c∗

2(s1) for F1-almost 
all s1 ∈ ( ¯L1, φ̄1(0)). Because 

¯
φ2 is increasing, c∗

2 is continuous and F1 has full support, we have 

¯
φ2(s1) = c∗

2(s1) for all s1 ∈ ( ¯L1, φ̄1(0)).

Step 3: For i = 1, 2, we must have φ̄i(0) ≥ L̄i and 
¯
φi(1) ≤ ¯Hi .

We take φ̄1(0) ≥ L̄1 as an example. Other inequalities are similar. Suppose, by contradiction, 
that φ̄1(0) < L̄1. This situation is illustrated in panel (b) of Fig. 7. The thick gray curve is φ2. By 
¯
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Fig. 7. Proof of Lemma 14.

Steps 1 and 2, we know 
¯
φ2 is constant ¯L2 over (0, ¯L1] and coincides with c∗

2 over ( ¯L1, φ̄1(0)). 
Because 

¯
φ2 is increasing, for all s1 ∈ [φ̄1(0), 1], we know

¯
φ2(s1) ≥ lim

s′
1↑φ̄1(0) ¯

φ2(s
′
1) = lim

s′
1↑φ̄1(0)

c∗
2(s′

1) = c∗
2(φ̄1(0)).

Therefore, we have

¯
φ2(s1) ≥ y(s1) ≡

⎧⎪⎨
⎪⎩

¯L2, if s1 ∈ (0, ¯L1],
c∗

2(s1), if s1 ∈ ( ¯L1, φ̄1(0)),

c∗
2(φ̄1(0)), if s1 ∈ (φ̄1(0), 1].

This in turn implies that

σ2(0;φ2(s1), φ̄2(s1)) = φ2(s1) ≥ y(s1), ∀s1 ∈ [0,1]. (23)

¯ ¯
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It is easy to check that this y function satisfies conditions (17) and (18) in Lemma 11. Hence, 
the unique one-sided optimal delegation rule for agent 1 given y is ( ¯L1, d∗

1 (c∗
2(φ̄1(0)))). Be-

cause (
¯
φ1(0), φ̄1(0)) is a one-sided optimal delegation given σ2(0; 

¯
φ2( · ), φ̄2( · )), we know 

φ̄1(0) ≥ d∗
1 (c∗

2(φ̄1(0))) by inequality (23) and Corollary 2. By Lemma 13, we know φ̄1(0) ≥ L̄1, 
contradicting our assumption that φ̄1(0) < L̄1. Therefore, we must have φ̄1(0) ≥ L̄1.

Step 4: For i = 1, 2, we must have φ̄i(0) = L̄i and 
¯
φi(1) = ¯Hi .

Panel (c) of Fig. 7 illustrates what would happen if φ̄1(0) > L̄1 when c∗
2 is strictly increas-

ing. Again, the thick gray curve represents 
¯
φ2. By Step 2, we know 

¯
φ2 will go above ¯H2 over 

(L̄1, φ̄1(0)) as c∗
2 does. But Step 3 claims that 

¯
φ2(1) ≤ ¯H2. Therefore, this is impossible because 

¯
φ2 is increasing.

More formally, note that the following chain of inequalities must hold

φ̄1(0) ≤ φ̄1(¯
φ2(1)) ≤ d∗

1 ( ¯H2) = L̄1 ≤ φ̄1(0),

where the first inequality comes from monotonicity of φ̄1. The second inequality comes from 
Steps 2 and 3. The last one comes from Step 3. Therefore, we have φ̄1(0) = L̄1. The other 
equalities can be similarly proved.

Step 5: For i = 1, 2, 
¯
φi(s−i ) = ¯Hi for all s−i ∈ [L̄−i , 1] and φ̄i(s−i ) = L̄i for all s−i ∈ [0, ¯H−i].

This is obvious now. For example, we have

¯H2 = c∗
2(L̄1) ≤

¯
φ2(L̄1) ≤

¯
φ2(1) = ¯H2,

where the first inequality comes from Steps 2 and 4. The second inequality comes from mono-
tonicity of 

¯
φ2. Therefore, we have 

¯
φ2(L̄1) = ¯

φ2(1) = ¯H2. By monotonicity of 
¯
φ2 again, we know 

¯
φ2(s1) ≡ ¯H2 for s1 ∈ [L̄1, 1].

Combining Steps 1, 2 and 5 yields the desired result. �
Proof of Theorem 1. Lemmas 7, 8, and 14 together prove Theorem 1. �
Appendix C. Proofs of Lemmas 3 and 4

C.1. Proof of Lemma 3

Proof. For notational simplicity, let

¯
gi(x, s−i ) ≡

x∫
0

[u0(x, s−i )) + ui(x, si)]dFi(si) +
1∫

x

[u0(si , s−i )) + ui(si , si)]dFi(si),

ḡi(x, s−i ) ≡
x∫

0

[u0(si , s−i )) + ui(si , si)]dFi(si) +
1∫

x

[u0(x, s−i )) + ui(x, si)]dFi(si).

Fix s−i . It is easy to note that (4) can be equivalently written as
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max
0≤c≤d≤1 ¯

gi(c, s−i ) + ḡi (d, s−i ). (24)

We proceed to show that this optimization problem has a unique solution, which is non-
degenerate.

Consider any solution (ĉ, d̂) to (24). We first claim that

∂
¯
gi

∂x
(ĉ, s−i ) =

ĉ∫
0

(
∂u0

∂ai

(ĉ, s−i ) + ∂ui

∂ai

(ĉ, si)

)
dFi(si) ≥ 0, (25)

∂ḡ

∂x
(d̂, s−i ) =

1∫
d̂

(
∂u0

∂ai

(d̂, s−i ) + ∂ui

∂ai

(d̂, si)

)
dFi(si) ≤ 0. (26)

For instance, if (25) is violated, i.e., 
∂
¯
gi

∂x
(ĉ, s−i ) < 0, we know ĉ > 0 because 

∂
¯
gi

∂x
(0, s−i ) =

0. Then, there exists c ∈ [0, ĉ) such that 
¯
gi(c, s−i ) > ¯

gi(ĉ, s−i ). This, in turn, implies that 

¯
gi(c, s−i ) + ḡi (d̂, s−i ) > ¯

gi(ĉ, s−i ) + ḡi (d̂, s−i ). Because (c, d̂) is also feasible to (24), we know 

(ĉ, d̂) is not a solution, which is a contradiction. Therefore, (25) must hold. Using a similar 
argument, we can see that (26) must hold too.

Next, we claim that ĉ < d̂ . Suppose, by contradiction, ĉ = d̂ ≡ x̂. (U2) implies that, for all x, 
∂u0
∂ai

(x, s−i ) + ∂ui

∂ai
(x, si) is strictly increasing in si . Hence, (U3) then implies that 

∂
¯
gi

∂x
(1, s−i ) < 0

and ∂ḡi

∂x
(0, s−i ) > 0. By (25) and (26), we know ĉ < 1 and d̂ > 0, implying that x̂ ∈ (0, 1). Then, 

(25) and (U2) together imply ∂u0
∂ai

(x̂, s−i ) + ∂ui

∂ai
(x̂, x̂) > 0. Likewise, (26) and (U2) together imply 

∂u0
∂ai

(x̂, s−i ) + ∂ui

∂ai
(x̂, x̂) < 0, a contradiction.

Finally, we show that (ĉ, d̂) is the unique solution to (24) (and hence to (4)). Because 

¯
gi( · , s−i ) is strictly quasi-concave by (U1), max0≤c≤1 ¯

gi(c, s−i ) has a unique solution. Denote 

this solution by c̃. If c̃ < ĉ, we know (c̃, d̂) is feasible to (24), and 
¯
gi(c̃, s−i ) + ḡi (d̂, s−i ) >

¯
gi(ĉ, s−i ) + ḡi (d̂, s−i ), contradicting the optimality of (ĉ, d̂). If c̃ > ĉ, we know 

¯
gi( · , s−i ) is 

strictly increasing over [ĉ, c̃] by strict quasi-concavity. Pick c ∈ (ĉ, min{c̃, d̂}). Then, (c, d̂) is 
feasible to (24), and 

¯
gi(c, s−i ) + ḡi (d̂, s−i ) > ¯

gi(ĉ, s−i ) + ḡi (d̂, s−i ), contradicting the optimal-

ity of (ĉ, d̂) again. Therefore, we must have ĉ = c̃. Similarly, using the strict quasi-concavity of 
ḡi ( · , s−i ), we can show that d̂ is the unique solution to max0≤d≤1 ḡi (x, s−i ), completing the 
proof. �
C.2. Proof of Lemma 4

To prove Lemma 4, we first prove Lemmas 15 and 16 below. Lemma 15 itself can be consid-
ered as weaker sufficient conditions for Condition R.

Lemma 15. Suppose Condition U is satisfied. If the following conditions are satisfied, Condi-
tion R holds: for all i, ai ∈ (0, 1) and s−i ,(

∂2u0

∂ai∂a−i

(ai, s−i ) + ∂2u0

∂a2 (ai, s−i )

)
Fi(ai)
i
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<

ai∫
0

(
− fi(ai)

Fi(ai)

Fi(si)

fi(si)

∂2ui

∂ai∂si
(ai, si) − ∂2ui

∂a2
i

(ai, si)

)
dFi(si), (27)

(
∂2u0

∂ai∂a−i

(ai, s−i ) + ∂2u0

∂a2
i

(ai, s−i )

)
(1 − Fi(ai))

<

1∫
ai

(
− fi(ai)

1 − Fi(ai)

1 − Fi(si)

fi(si)

∂2ui

∂ai∂si
(ai, si) − ∂2ui

∂a2
i

(ai, si)

)
dFi(si). (28)

Proof. We first claim that, for all i, c∗
i is differentiable at s−i such that c∗

i (s−i ) > 0, and 
dc∗

i (s−i )

ds−i
< 1. Because c∗

i (s−i ) < d∗
i (s−i ) by Condition U, from the first two paragraphs of the 

proof of Lemma 3, we know the first order condition is satisfied:

∂
¯
gi

∂x
(c∗

i , s−i ) =
c∗
i∫

0

(
∂u0

∂ai

(c∗
i , s−i ) + ∂ui

∂ai

(c∗
i , si)

)
dFi(si) = 0, (29)

where we write c∗
i instead of c∗

i (s−i ) for short. It is easy to calculate

− ∂2

¯
gi

∂x2 (c∗
i , s−i )

= −
(∂u0

∂ai

(c∗
i , s−i ) + ∂ui

∂ai

(c∗
i , c

∗
i )
)
fi(c

∗
i ) −

c∗
i∫

0

(
∂2u0

∂a2
i

(c∗
i , s−i ) + ∂2ui

∂a2
i

(c∗
i , si)

)
dFi(si)

=
c∗
i∫

0

(
fi(c

∗
i )

Fi(c
∗
i )

(∂ui

∂ai

(c∗
i , si) − ∂ui

∂ai

(c∗
i , c

∗
i )
)

− ∂2u0

∂a2
i

(c∗
i , s−i ) − ∂2ui

∂a2
i

(c∗
i , si)

)
dFi(si)

=
c∗
i∫

0

(
− fi(c

∗
i )

Fi(c
∗
i )

Fi(si)

fi(si)

∂2ui

∂ai∂si
(c∗

i , si) − ∂2ui

∂a2
i

(c∗
i , si)

)
dFi(si) − ∂2u0

∂a2
i

(c∗
i , s−i )Fi(c

∗
i )

>
∂2u0

∂ai∂a−i

(c∗
i , s−i )Fi(c

∗
i ) ≥ 0, (30)

where the second equality comes from the first order condition (29). The third equal-

ity comes from 
∫ c∗

i

0 (
∂ui

∂ai
(c∗

i , si) − ∂ui

∂ai
(c∗

i , c
∗
i ))dFi(si) = − 

∫ c∗
i

0

∫ c∗
i

si

∂2ui

∂ai∂si
(c∗

i , ̃si)ds̃idFi(si) =
− 
∫ c∗

i

0
∂2ui

∂ai∂si
(c∗

i , ̃si)
(∫ s̃i

0 dFi(si)
)

ds̃i = − 
∫ c∗

i

0
Fi(si )
fi (si )

∂2ui

∂ai∂si
(c∗

i , si)dFi(si). The first inequality

comes from (27). The last inequality comes from ∂2u0
∂a1∂a2

≥ 0. Therefore, by the implicit function 
theorem, we know c∗

i (s−i ) is differentiable when it is positive, and

dc∗
i (s−i )

ds−i

=
∂2

¯
gi

∂x∂s−i
(c∗

i , s−i )

− ∂2

¯
gi

(c∗, s )

=
∂2u0

∂ai∂a−i
(c∗

i , s−i )Fi(c
∗
i )

− ∂2

¯
gi

(c∗, s )

< 1,
∂x2 i −i ∂x2 i −i
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where the inequality comes from (30).
Similarly, using the first order condition ∂ḡi

∂x
(d∗

i , s−i ) = 0 and (28), we can show that d∗
i (s−i )

is also differentiable at s−i such that d∗
i (s−i ) < 1, and 

dd∗
i (s−i )

ds−i
< 1.

Next, we claim that, for all i, c∗
i (s

′−i ) −c∗
i (s−i ) < s′−i −s−i and d∗

i (s′−i ) −d∗
i (s−i ) < s′−i −s−i

for all s′−i > s−i . Take c∗
i as an example. Because c∗

i ≥ 0 is increasing by Lemma 2, it takes one 
of the following three forms: (i) c∗

i ≡ 0 over [0, 1]; (ii) c∗
i > 0 over [0, 1]; and (iii) there exists 

ŝ ∈ [0, 1) such that c∗
i = 0 over [0, ̂s] and c∗

i > 0 over (ŝ, 1]. From the above analysis, we can see 
that, in all cases, c∗

i is absolutely continuous and its derivative is strictly less than 1. Therefore 

c∗
i (s

′−i ) − c∗
i (s−i ) =

∫ s′−i
s−i

dc∗
i (s̃−i )

ds−i
ds̃−i < s′−i − s−i for all s′−i > s−i . The argument for d∗

i is 
similar.

Finally, for any s′
i > si , we have c∗

i (c
∗−i (s

′
i )) − c∗

i (c
∗−i (si)) ≤ c∗−i (s

′
i ) − c∗−i (si) < s′

i − si and 
c∗
i (d

∗−i (s
′
i )) −c∗

i (d
∗−i (si)) ≤ d∗−i (s

′
i ) −d∗−i (si) < s′

i −si . Therefore, each of c∗
1 ◦c∗

2 , c∗
1 ◦d∗

2 , d∗
1 ◦c∗

2 , 
and d∗

1 ◦ d∗
2 has a unique fixed point. �

The following lemma summarizes some useful properties of the distribution functions derived 
from log-concavity of the density function. Some of these properties are used in the proof of 
Lemma 4. Some are used later in the proof of Theorem 2.

Lemma 16. If fi is log-concave, then Fi , 1 − Fi , 
∫ si

0 Fi(x)dx, and 
∫ 1
si
(1 − Fi(x))dx are all log-

concave. Consequently, 
f ′

i

fi
, fi

Fi
, −fi

1−Fi
, Fi(si )∫ si

0 Fi(x)dx
, and −(1−Fi(si ))∫ 1

si
(1−Fi(x))dx

are all decreasing. Moreover,

(i) limsi↓0
fi(si )
Fi (si )

= limsi↑1
fi(si )

1−Fi(si )
= +∞.

(ii)
f ′

i (si )

fi (si )

∫ si
0 Fi(s̃i )ds̃i

Fi (si )
, 

−f ′
i (si )

fi (si )

∫ 1
si

(1−Fi(s̃i ))ds̃i

1−Fi(si )
, 

fi(si )
∫ si

0 Fi(x)dx

F 2
i (si )

, and 
fi(si )

∫ 1
si

(1−Fi(x))dx

(1−Fi(si ))
2 are all bound-

ed above by 1.

Proof. Because fi is log-concave, it is well-known that all these derived functions are log-
concave.28 Monotonicity of the first order derivatives of the logarithm of these functions follow 
directly.

Consider part (i). Because limsi↓0
∫ 1

2
si

fi (s̃i )
Fi (s̃i )

ds̃i = logFi(
1
2 ) − limsi↓0 logFi(si) = +∞, mono-

tonicity of fi

Fi
implies limsi↓0

fi (si )
Fi (si )

= +∞. The other limit is analogous.
Consider part (ii). It is easy to observe that

sign

(
1 − f ′

i (si)

fi(si)

∫ si
0 Fi(s̃i )ds̃i

Fi(si)

)
= sign

(∫ si
0 Fi(x)dx

fi(si)

)′

= sign

(
Fi(si)

fi(si)

∫ si
0 Fi(x)dx

Fi(si)

)′
≥ 0.

The other inequalities can be similarly proved. �
28 See, for instance, An (1998) and Bagnoli and Bergstrom (2005).
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Proof of Lemma 4. By Lemma 15, we only need to verify that conditions R1 - R3 imply (27)
and (28). Inequalities (10) and (11) imply that, for all i, ai and s−i ,(

∂2u0

∂ai∂a−i

(ai, s−i ) + ∂2u0

∂a2
i

(ai, s−i )

)
Fi(ai)

≤
ai∫

0

(
− ∂2ui

∂ai∂si
(ai, si) − ∂2ui

∂a2
i

(ai, si)

)
dFi(si).

For all ai ∈ (0, 1), the first inequality in (11) and Lemma 16 together imply that

− ∂2ui

∂ai∂si
(ai, si) ≤ − fi(ai)

Fi(ai)

Fi(si)

fi(si)

∂2ui

∂ai∂si
(ai, si), ∀si < ai,

with strict inequality when si is sufficiently small. Thus,

ai∫
0

− ∂2ui

∂ai∂si
(ai, si)dFi(si) <

ai∫
0

− fi(ai)

Fi(ai)

Fi(si)

fi(si)

∂2ui

∂ai∂si
(ai, si)dFi(si).

Therefore, (27) holds. We can similarly show that (28) holds too. �
Appendix D. Proof of Theorem 2

D.1. Optimality of contingent interval delegation

Theorem 2 in the main text provides sufficient conditions for the particular optimal contingent 
interval delegation (φ∗

1 , φ∗
2 ) from Theorem 1 to be optimal among all DSIC mechanisms. As we 

have explained in the main text, it is based on a more general result that provides conditions for 
a given contingent interval delegation to be optimal. Because this result has its own interest, we 
state it below as a theorem. It generalizes the main sufficiency result in Amador and Bagwell 
(2013).

Theorem 3. Consider a contingent interval delegation (φ1, φ2). For each i, define

wi(ai, si , s−i ) ≡ ui(ai, si) + u0(ai, σ
φ−i

−i (si , s−i )),

κi ≡ inf
ai ,si∈[0,1]−

∂2ui

∂a2
i

(ai, si). (31)

If the conditions C1, C2, C2′, C3 and C3′ are satisfied, then (σφ1
1 , σφ2

2 ) is an optimal DSIC 
mechanism.

(C1) For any s−i ∈ [0, 1],

κiFi(si) − fi(si)
∂wi

∂ai

(si , si , s−i )

is increasing in si for si ∈ [φi(s−i ), φ̄i (s−i )].
¯
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(C2) If 
¯
φi(s−i ) > 0,

(si −
¯
φi(s−i ))κi ≤

si∫
0

∂wi

∂ai

(
¯
φi(s−i ), s̃i , s−i )

fi(s̃i )

Fi(si)
ds̃i , ∀si ∈ [0,

¯
φi(s−i )],

with equality at 
¯
φi(s−i ).

(C2′) If 
¯
φi(s−i ) = 0, ∂wi

∂ai
(0, 0, s−i ) ≤ 0.

(C3) If φ̄i (s−i ) < 1,

(si − φ̄i (s−i ))κi ≥
1∫

si

∂wi

∂ai

(φ̄i(s−i ), s̃i , s−i )
fi(s̃i )

1 − Fi(si)
ds̃i , ∀si ∈ [φ̄i (s−i ),1],

with equality at φ̄i(s−i ).
(C3′) If φ̄i (s−i ) = 1, ∂wi

∂ai
(1, 1, s−i ) ≥ 0.

The conditions in Theorem 3 correspond to conditions c1 - c3′ in Amador and Bagwell (2013). 
In fact, our conditions are the contingent versions of theirs, as is indicated by the fact that all 
these conditions are indexed by s−i . A key reason that we can obtain this contingent version is 
because in our setting, DSIC constraints for agent i can be expressed as a series of independent 
single-agent IC constraints, indexed by s−i .

The proof follows a similar line of arguments as in Amador and Bagwell (2013). For the sake 
of space, we leave it to the online appendix. The main idea is to use the Lagrange method to 
transform the original constrained optimization problem (1) into a relaxed unconstrained prob-
lem. The major task is to show that the candidate mechanism is a solution to this relaxed problem, 
which in turn implies that it is also a solution to the original one. In doing so, one major step 
involves proving the concavity of the objective function of this relaxed problem, and this step is 
where the presence of the coordination payoff, i.e., u0, which is absent in single-agent settings, 
causes a difficulty. To deal with this difficulty, the trick is to make condition C1 more demanding 
than its counterpart in Amador and Bagwell (2013). This is done through the construction of κi . 

In fact, if we defined κi as infai ,si∈[0,1] − ∂2wi

∂a2
i

(ai , si , s−i ) as in Amador and Bagwell (2013), it 

would guarantee that the objective function is concave in each agent’s decision rule, which in 
turn would imply that the interval delegations φ1 and φ2 are a “mutual best response.” However, 
it is not enough to guarantee that the objective function is concave as a function of the pair of 
agents’ decision rules, which, in contrast, can be guaranteed by the smaller κi we give in (31). 
Clearly, this smaller κi makes condition C1 more demanding since Fi is increasing.29

D.2. Proof of Theorem 2

Proof. For notational simplicity, we write a∗
i (si , s−i ), instead of σ

φ∗
i

i (si , s−i ), to denote i’s de-
cision under (φ∗

1 , φ∗
2 ). It is easy to notice that, for every s−i , a∗−i (si , s−i ) is a piecewise function 

29 Another major step in proving that the candidate mechanism is a solution to the relaxed problem is to show that there 
is no profitable local deviation around the candidate mechanism. It turns out that we do not need to worry about joint 
local deviations. This is because the local effect can be captured by the Gateaux derivative, which can be expressed as 
the integration of partial derivatives with respect to a, after changing the order of the derivative and integration. When 
considering the partial derivative of ai , a−i is treated as given. Thus, we only need to deal with unilateral local deviation.
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in si : it partitions [0, 1] into finitely many intervals, and over each interval it is either a constant, 
c∗−i , or d∗−i . The proof of Lemma 15 shows that both c∗−i and d∗−i are differentiable for all but at 

most one point, and c∗′
−i < 1 and d∗′

−i < 1. Hence, a∗−i (si , s−i ) is differentiable with respect to si

for all but at most finitely many points, and 
∂a∗−i

∂si
(si , s−i ) < 1. Recall that we have explained in 

Section 3.4 that (9) must hold when 
¯
φ∗

i (s−i ) > 0. Using notation a∗−i , we can rewrite it as

¯
φ∗

i (s−i )∫
0

[
∂u0

∂ai

(
¯
φ∗

i (s−i ), a
∗−i (¯

φ∗
i (s−i ), s−i )) + ∂ui

∂ai

(
¯
φ∗

i (s−i ), si)

]
dFi(si) = 0. (32)

Similarly, when φ̄∗
i (s−i ) < 1, we have

1∫
φ̄∗

i (s−i )

[
∂u0

∂ai

(φ̄∗
i (s−i ), a

∗−i (φ̄
∗
i (s−i ), s−i )) + ∂ui

∂ai

(φ̄∗
i (s−i ), si)

]
dFi(si) = 0. (33)

With these preparations, we are ready to verify that conditions C1 - C3′ in Theorem 3 are all 
satisfied under the proposed conditions. Then, by Theorem 3, we know (φ∗

1 , φ∗
2 ) is optimal.

Step 1: Conditions C2′ and C3′ hold.

We only show condition C2′. Condition C3′ is analogous. These two conditions will be used 
in the verification of condition C1 below.

Fix s−i such that 
¯
φ∗

i (s−i ) = 0. Suppose, by contradiction, ∂wi

∂ai
(0, 0, s−i ) > 0. By continuity, 

there exists ĉ ∈ (0, φ̄∗
i (s−i )) such that ∂wi

∂ai
(c, si , s−i ) > 0 for all c, si ∈ [0, ĉ]. Thus, for all c ∈

[0, ĉ], we have
c∫

0

∂wi

∂ai

(c, si , s−i )fi(si)dsi =
c∫

0

(∂ui

∂ai

(c, si) + ∂u0

∂ai

(c, a∗−i (si , s−i ))
)
fi(si)dsi > 0,

which in turn implies that, given s−i and a∗−i , [ĉ, φ̄∗
i (s−i )] is a better delegation interval 

than [
¯
φ∗

i (s−i ), φ̄∗
i (s−i )] for the principal. This contradicts Theorem 1. Hence, we must have 

∂wi

∂ai
(0, 0, s−i ) ≤ 0.

Step 2: Condition C1 holds.

Fix s−i . We want to show that

κiFi(si) − fi(si)
∂wi

∂ai

(si , si , s−i ) = κiFi(si) − fi(si)

[
∂ui

∂ai

(si , si) + ∂u0

∂ai

(si , a
∗−i (si , s−i ))

]

is increasing over si ∈ [
¯
φ∗

i (s−i ), φ̄∗
i (s−i )]. From condition O1, it suffices to show that κiFi(si) −

fi(si)
∂u0
∂ai

(si , a∗−i (si , s−i )) is increasing. For every si at which a∗−i (si , s−i ) is differentiable, we 
have

∂
(
κiFi(si) − fi(si)

∂u0
∂ai

(si , a
∗−i (si , s−i ))

)
(34)
∂si
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=κifi(si) − f ′
i (si)

∂u0

∂ai

(si , a
∗−i (si , s−i ))

− fi(si)

(
∂2u0

∂a2
i

(si , a
∗−i (si , s−i )) + ∂2u0

∂ai∂a−i

(si , a
∗−i (si , s−i ))

∂a∗−i

∂si
(si , s−i )

)
.

Observe that

∂2u0

∂a2
i

(si , a
∗−i (si , s−i )) + ∂2u0

∂ai∂a−i

(si , a
∗−i (si , s−i ))

∂a∗−i

∂si
(si , s−i )

≤∂2u0

∂a2
i

(si , a
∗−i (si , s−i )) + ∂2u0

∂ai∂a−i

(si , a
∗−i (si , s−i )) ≤ 0, (35)

where the first inequality comes from ∂2u0
∂a1∂a2

≥ 0 and 
∂a∗−i (si ,s−i )

∂si
≤ 1. The second inequality 

comes from condition R2. Hence, to show that (34) is nonnegative, it suffices to show that

f ′
i (si)

fi(si)

∂u0

∂ai

(si , a
∗−i (si , s−i )) ≤ κi, ∀si ∈ [

¯
φ∗

i (s−i ), φ̄∗
i (s−i )].

If 
f ′

i (si )

fi (si )
and ∂u0

∂ai
(si , a∗−i (si , s−i )) have different signs, the desired inequality is obvious because 

f ′
i (si )

fi (si )
∂u0
∂ai

(si , a∗−i (si , s−i )) ≤ 0 ≤ κi . We now consider the cases where these two terms have the 
same sign.

First, suppose 
f ′

i (si )

fi (si )
> 0 and ∂u0

∂ai
(si , a∗−i (si , s−i )) > 0. Because fi is log-concave, we have 

f ′
i (¯

φ∗
i (s−i ))

fi (¯
φ∗

i (s−i ))
≥ f ′

i (si )

fi (si )
> 0. Because of (35), we know si 
→ ∂u0

∂ai
(si , a∗−i (si , s−i )) is decreasing. Thus, 

we have ∂u0
∂ai

(
¯
φ∗

i (s−i ), a∗−i (¯
φ∗

i (s−i ), s−i )) ≥ ∂u0
∂ai

(si , a∗−i (si , s−i )) > 0. These inequalities have 
two implications. First, we have

f ′
i (si)

fi(si)

∂u0

∂ai

(si , a
∗−i (si , s−i )) ≤ f ′

i (¯
φ∗

i (s−i ))

fi(¯
φ∗

i (s−i ))

∂u0

∂ai

(
¯
φ∗

i (s−i ), a
∗−i (¯

φ∗
i (s−i ), s−i )). (36)

Second, we have 
¯
φ∗

i (s−i ) > 0. To see this, suppose by contradiction, that 
¯
φ∗

i (s−i ) = 0. Then 
f ′

i (¯
φ∗

i (s−i ))

fi (¯
φ∗

i (s−i ))
> 0 implies ∂ui

∂ai
(0, 0) ≥ 0 by condition O2. But then ∂u0

∂ai
(0, a∗−i (0, s−i )) + ∂ui

∂ai
(0, 0) >

0, contradicting condition C2′. Thus, we can only have 
¯
φ∗

i (s−i ) > 0. Then, from (32), we have

∂u0

∂ai

(
¯
φ∗

i (s−i ), a
∗−i (¯

φ∗
i (s−i ), s−i ))

= 1

Fi(¯
φ∗

i (s−i ))

¯
φ∗

i (s−i )∫
0

(
− ∂ui

∂ai

(
¯
φ∗

i (s−i ), si)
)
fi(si)dsi

≤ 1

Fi(¯
φ∗

i (s−i ))

¯
φ∗

i (s−i )∫
0

(∂ui

∂ai

(
¯
φ∗

i (s−i ), ¯
φ∗

i (s−i )) − ∂ui

∂ai

(
¯
φ∗

i (s−i ), si)
)
fi(si)dsi

= 1

Fi(φ
∗
i (s−i ))

¯
φ∗

i (s−i )∫ ( ¯
φ∗

i (s−i )∫
∂2ui

∂ai∂si
(
¯
φ∗

i (s−i ), x)dx
)
fi(si)dsi
¯ 0 si
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= 1

Fi(¯
φ∗

i (s−i ))

¯
φ∗

i (s−i )∫
0

∂2ui

∂ai∂si
(
¯
φ∗

i (s−i ), x)Fi(x)dx

≤ κi

Fi(¯
φ∗

i (s−i ))

¯
φ∗

i (s−i )∫
0

Fi(x)dx, (37)

where the first inequality comes from ∂u0
∂ai

(
¯
φ∗

i (s−i ), ¯
φ∗

i (s−i )) ≥ 0 by condition O2. The second 
inequality comes from condition O3. Combining (36) and (37) yields

f ′
i (si)

fi(si)

∂u0

∂ai

(si , a
∗−i (si , s−i )) ≤ κi

f ′
i (¯

φ∗
i (s−i ))

fi(¯
φ∗

i (s−i ))

∫
¯
φ∗

i (s−i )

0 Fi(x)dx

Fi(¯
φ∗

i (s−i ))
≤ κi,

where the last inequality comes from part (ii) of Lemma 16.

Next, suppose 
f ′

i (si )

fi (si )
< 0 and ∂u0

∂ai
(si , a∗−i (si , s−i )) < 0. Similarly as above, we have

f ′
i (φ̄

∗
i (s−i ))

fi (φ̄
∗
i (s−i ))

≤ f ′
i (si )

fi (si )
< 0 and ∂u0

∂ai
(φ̄∗

i (s−i ), a∗−i (φ̄
∗
i (s−i ), s−i )) ≤ ∂u0

∂ai
(si , a∗−i (si , s−i )) < 0. Thus, 

we have

f ′
i (si)

fi(si)

∂u0

∂ai

(si , a
∗−i (si , s−i )) ≤ f ′

i (φ̄
∗
i (s−i ))

fi(φ̄
∗
i (s−i ))

∂u0

∂ai

(φ̄∗
i (s−i ), a

∗−i (φ̄
∗
i (s−i ), s−i )). (38)

Moreover, we also have φ̄∗
i (s−i ) < 1. Thus, using the first order condition (33) and applying 

conditions O2 and O3 as above, we can similarly show that

∂u0

∂ai

(φ̄∗
i (s−i ), a

∗−i (φ̄
∗
i (s−i ), s−i )) ≥ −κi

1 − Fi(φ̄
∗
i (s−i ))

1∫
φ̄∗

i (s−i )

(1 − Fi(x))dx. (39)

Combining (38) and (39) yields

f ′
i (si)

fi(si)

∂u0

∂ai

(si , a
∗−i (si , s−i )) ≤ κi

−f ′
i (φ̄

∗
i (s−i ))

fi(φ̄
∗
i (s−i ))

∫ 1
φ̄∗

i (s−i )
(1 − Fi(x))dx

1 − Fi(φ̄
∗
i (s−i ))

≤ κi,

where the last inequality comes again from part (ii) of Lemma 16.

Step 3: Conditions C2 and C3 hold.

We only show condition C2. Condition C3 is similar. Fix s−i such that 
¯
φ∗

i (s−i ) > 0. Let

g(si) ≡ (si −
¯
φ∗

i (s−i ))κi −
si∫

0

∂wi

∂ai

(
¯
φ∗

i (s−i ), s̃i , s−i )
fi(s̃i )

Fi(si)
ds̃i , ∀si ∈ [0,

¯
φ∗

i (s−i )].

It is straightforward to see that the first order condition (9) directly implies g(
¯
φ∗

i (s−i )) = 0. 
Hence, to show C2, it suffices to show that g′(si) ≥ 0 for si ∈ [0, 

¯
φ∗

i (s−i )]. We can calculate

g′(si) = κi − fi(si)

F 2
i (si)

si∫ [∂wi

∂ai

(
¯
φ∗

i (s−i ), si , s−i ) − ∂wi

∂ai

(
¯
φ∗

i (s−i ), s̃i , s−i )
]
fi(s̃i )ds̃i .
0
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Recall that
∂wi

∂ai

(ai, si , s−i ) = ∂ui

∂ai

(ai, si) + ∂u0

∂ai

(ai, a
∗−i (si , s−i )).

Because a∗−i (si , s−i ) = a∗−i (¯
φ∗

i (s−i ), s−i ) for all si ≤
¯
φ∗

i (s−i ) as explained previously, we know

∂wi

∂ai

(
¯
φ∗

i (s−i ), si , s−i ) − ∂wi

∂ai

(
¯
φ∗

i (s−i ), s̃i , s−i ) = ∂ui

∂ai

(
¯
φ∗

i (s−i ), si) − ∂ui

∂ai

(
¯
φ∗

i (s−i ), s̃i ),

implying

g′(si) = κi − fi(si)

F 2
i (si)

si∫
0

si∫
s̃i

∂2ui

∂ai∂si
(
¯
φi(s−i ), x, s−i )fi(s̃i )dxds̃i

≥ κi

⎛
⎜⎝1 − fi(si)

F 2
i (si)

si∫
0

si∫
s̃i

fi(s̃i )dxds̃i

⎞
⎟⎠= κi

⎛
⎝1 − fi(si)

F 2
i (si)

si∫
0

Fi(x)dx

⎞
⎠≥ 0,

where the first inequality comes from condition O3. The last inequality comes again from part 
(ii) of Lemma 16. �
Appendix E. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2022 .105597.
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