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a b s t r a c t

This paper studies high-dimensional vector autoregressions (VARs) augmented with
common factors that allow for strong cross-sectional dependence. Models of this type
provide a convenient mechanism for accommodating the interconnectedness and tem-
poral co-variability that are often present in large dimensional systems. We propose
an ℓ1-nuclear-norm regularized estimator and derive the non-asymptotic upper bounds
for the estimation errors as well as large sample asymptotics for the estimates. A
singular value thresholding procedure is used to determine the correct number of
factors with probability approaching one. Both the LASSO estimator and the conservative
LASSO estimator are employed to improve estimation precision. The conservative LASSO
estimates of the non-zero coefficients are shown to be asymptotically equivalent to the
oracle least squares estimates. Simulations demonstrate that our estimators perform
reasonably well in finite samples given the complex high-dimensional nature of the
model. In an empirical illustration we apply the methodology to explore dynamic
connectedness in the volatilities of financial asset prices and the transmission of ‘investor
fear’. The findings reveal that a large proportion of connectedness is due to the common
factors. Conditional on the presence of these common factors, the results still document
remarkable connectedness due to the interactions between the individual variables,
thereby supporting a common factor augmented VAR specification.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In a pathbreaking study, Mann and Wald (1943) introduced vector autoregressions (VARs) and developed the limit
heory for estimation and inference.1 The VAR approach was further developed and promoted for empirical macroeco-
nomic research in an influential paper by Sims (1980). Since then, the methodology has become one of the most heavily

✩ The authors thank Serena Ng, an associate editor and three anonymous referees for their constructive comments. Miao and Su thank the National
Natural Science Foundation of China for financial support under the Grant Numbers 72103046 and 72133002, respectively. Phillips acknowledges
support from the National Science Foundation under Grant No. SES 18-50860, and a Kelly Fellowship from the University of Auckland, New Zealand.
∗ Correspondence to: School of Economics and Management, Tsinghua University, Beijing, 100084, China.

E-mail address: sulj@sem.tsinghua.edu.cn (L. Su).
1 The extension to the structural VAR (SVAR) case was developed in the final section of Mann and Wald (1943); but this contribution seems to
ave passed unnoticed in the vast literature on SVAR modeling. For further discussion, see Hurn et al. (2020).
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sed tools in applied finance and macroeconomics. It offers a simple and useful method to capture rich dynamics and
nterconnectedness in multiple time series. Unrestricted VARs can be efficiently estimated by least squares regression,
hich makes them particularly attractive in applied research. But low dimensional VARs often suffer from the notorious
mitted variable bias problem, which makes the approach vulnerable to misleading inferences on both coefficients and
mpulse responses. In a series of articles (e.g., Sims (1992, 1993), and Leeper et al. (1996)) Sims and his coauthors have
xplored options to include more variables in VARs to improve forecasting performance.
Over the last decade, high-dimensional VARs have been frequently employed to conduct large dimensional time series

nvestigations in economics, finance, and other social sciences. Inspired by the influential works of Tibshirani (1996),
hao and Yu (2006), Zou (2006), Candes and Tao (2007) and Huang et al. (2008), researchers in this area have frequently
tilized Lasso-type regularized estimation to address the difficulties of over-parameterization in large dimensions. For
xample, Haufe et al. (2010) propose the use of high-dimensional VARs to estimate causal interactions in multivariate time
eries via group-Lasso; Guibert et al. (2019) propose to improve the forecast of mortality rates by using the elastic-net to
stimate a high-dimensional VAR; BB (2019), Barigozzi and Hallin (2017), and Demirer et al. (2018) apply Lasso, adaptive
asso or elastic-net methods to high-dimensional VARs or generalized dynamic factor models to estimate networks
nd construct measures of financial sector connectedness. All these papers focus on empirical applications rather than
heory development. In theoretical work, BM (2015) study deviation bounds for Gaussian processes and investigate the
1-regularized estimation of transition matrices in sparse VAR models; KC (2015) establish oracle inequalities for high-
imensional VAR models; Han et al. (2015) propose a generalized Dantzig selector in high-dimensional VARs; Guo et al.
2016) study a class of VAR models with banded coefficient matrices. These studies have opened up new avenues for
andling high-dimensional VAR models in practical work.
All the aforementioned studies assume that the VAR errors exhibit at most weak cross-sectional dependence (c.f., Chudik

t al. (2011)). However, as the number of cross section units becomes large relative to the number of time periods,
he cross-sectional dependence in the error terms is often strong.2 It is well known that ignoring strong cross-sectional
dependence in the error terms typically leads to inaccurate estimation and misleading inferences. In response to this
limitation, the present paper proposes a new high-dimensional VAR model in which some common factors (CFs) feature
in the determination of each time series besides the idiosyncratic errors and lagged values of the time series themselves.
This high-dimensional VAR model with CFs allows for serial correlation among the CFs, which in turn leads to correlations
between the CFs and the lagged time series. To properly control for the presence of CFs in this model it is necessary to
estimate the factor component and the transition matrices simultaneously. Practical implementation also requires the
determination of the number of factors and lag length.

A mentioned above, we choose to model strong cross-sectional dependence through a latent factor structure. In
principle our analysis is closely related to certain dynamic factor models, especially the generalized dynamic factor model
(GDFM) of Forni et al. (2000) that generalizes the dynamic factor model proposed by Geweke (1977). The proposed model
has a GDFM representation with certain restrictions on the coefficients.3 In recent decades, the approximate static and
dynamic factor models have been extensively studied. Examples of theoretical work include Forni et al. (2000), Bai and
Ng (2002), Bai (2003), and Hallin and Liška (2007), among others. Applied finance and macroeconomic examples include
Fama and French (1993), Stock and Watson (1999, 2002), Giannone et al. (2004), Bernanke et al. (2005), Ludvigson and Ng
(2007), and Cheng and Hansen (2015). The success of factor models in these empirical analyses arguably establishes that
strong cross-sectional dependence is pervasive in real financial and macroeconomic data. In these applications, dynamic
factor model methods are utilized to summarize information from a large panel data. Specifically, the estimated dynamic
factors serve as predictors or regressors to study univariate or fixed-dimensional time series. In contrast, our model
is a generalization of the pure VAR model that seeks to study the complicated time series dynamics and cross-section
interactions in high-dimensional time series. The latent factor structure is employed to control for strong cross-sectional
dependence and the factors themselves are regarded as systematic shocks. Chudik and Pesaran (2011) also consider a
factor-augmented infinite dimensional VAR model. For simplicity, they construct a model in which the factor-induced
strong cross-sectional dependence is explicitly separated from other sources of cross-sectional dependence. They mention
the possibility of using high-dimensional VARs with CFs but do not explicitly analyze the model. In an earlier work, Stock
and Watson (2005) proposed a factor-structural VAR (FSVAR) model that appears similar to ours except that it is a fixed
dimensional system and requires factors to be serially uncorrelated over time. In the panel data literature, Bai (2009)
proposes to use a latent factor structure to capture unobserved heterogeneity and strong cross sectional dependence. Lu
and Su (2016) and Moon and Weidner (2017) consider dynamic panel regressions with interactive fixed effects (IFEs). Our
high-dimensional VAR model with IFEs includes both homogeneous and heterogeneous pure dynamic panels with IFEs as
special cases.

2 For example, one can follow Forni et al. (2000) and look at the largest eigenvalues of the spectral density matrices of the N-dimensional error
erm, or study the eigenvalues of their covariance matrix. In many empirical datasets, it is commonly found that these diverge to infinity at rate N ,
hich is highly suggestive of strong cross-sectional dependence as defined in Chudik et al. (2011).
3 Since our model is proposed to capture the dynamic mechanism of high-dimensional time series through VAR modeling, it assists in both
etwork and spillover effect analyses. In contrast, the GDFM is proposed to distill information from high-dimensional time series with the estimated
actors often assisting in studying dynamics in univariate time series or low dimensional time series.
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To estimate a high-dimensional VAR model with CFs, we propose a three-step procedure. In the first step, we consider
n ℓ1-nuclear-norm regularized least squares estimation problem that minimizes the sum of squared residuals with an ℓ1-
orm penalty imposed on the transition matrices and a nuclear norm penalty on the low rank matrix Θ representing the
ommon component. Imposing the ℓ1-norm penalty helps to estimate the sparse transition matrices, and the nuclear-norm
enalty helps to estimate the low rank matrix arising from the CFs and factor loadings. The nuclear-norm regularization
as recently become popular in the estimation of low rank matrices in statistics and econometrics; see, Negahban and
ainwright (2011), Rohde and Tsybakov (2011), Negahban et al. (2009, 2012), Bai and Ng (2019), Belloni et al. (2019),

an et al. (2019), Feng (2019), Koltchinskii et al. (2011), Moon and Weidner (2019), Chernozhukov et al. (2019), and Ma
t al. (2021), among others. All these previous works focus on the error bounds (in Frobenius norm) for the nuclear-
orm regularized estimates, except Moon and Weidner, 2019, Chernozhukov et al. (2019) and Ma et al. (2021) who study
nference problems in linear or nonlinear panel data models with a low-rank structure. Like the latter authors, we simply
se the nuclear-norm regularization to obtain consistent initial estimates. Under some regularity conditions, we establish
he non-asymptotic bounds for the estimation error of the transition matrices and the low rank matrix Θ . Applying a
ingular value thresholding (SVT) procedure on the singular values of the estimate of Θ , we obtain a consistent estimate
f the number of factors. Then, given the estimated factor number, preliminary estimates of the CFs can be obtained.
In the second step, we include the estimated CFs as regressors and consider a generalized Lasso estimator to obtain

n updated estimate of the transition matrices. We show that the estimation errors can be uniformly controlled, which
acilitates the construction of weights for subsequent estimation by conservative Lasso in the third step. Under some
egularity conditions, we show that this third step conservative Lasso estimator of the transition matrices achieves sign
onsistency (see, e.g., Zhao and Yu (2006)). Besides, the third step estimator of the transition matrices, factors and factor
oadings are asymptotically equivalent to the corresponding oracle least squares estimators that are obtained by using
etailed information about the form of the true regression model. We also study the asymptotic distributions of the
racle efficient estimators of the transition matrices.
The usefulness of our methodology is demonstrated in a real-data example. The illustration revisits the financial

onnectedness measures proposed by DY (2014) and the results document strong evidence for the existence of CFs in
he volatilities of 23 sector exchange traded funds (ETFs). The findings show that CFs account for a large proportion of
he variation in these volatilities; and, conditional on the CFs, a high level of connectedness remains present among the
diosyncratic components. This empirical application demonstrates the particularly useful features of the high-dimensional
AR model with CFs that enable this model to capture the dynamic evolution of time series with strong cross-sectional
ependence while distinguishing variations that originate from different sources.
The present paper contributes to the fields of both high-dimensional time series analysis and regularized estimation.

irst, a new high-dimensional VAR model with CFs is proposed for which there are four main advantages: (i) it provides a
onvenient tool to study rich dynamics in high-dimensional time series while controlling for the presence of strong cross-
ectional dependence; (ii) taking into account the influence of unobserved common factors helps to alleviate potential
ndogeneity issues due to serial correlation in the unobserved common factors; (iii) the common factor structure can
e consistently estimated and used to identify systematic shocks, which are of interest in empirical work; and (iv) the
odel framework follows the lead of Demirer et al. (2018) in studying spillover effects via constructing a measure of
onnectedness in a VAR-based network. Second, our analysis of regularized estimation is new in three directions: (i) we
elax the Gaussianity assumptions that are commonly assumed in the existing literature (see, e.g., BM (2015), and KC
2015)); (ii) we establish sharp probability bounds for processes with serial dependence, utilizing techniques developed
y Wu (2005) and Wu and Wu (2016); and (iii) our methodology utilizes a combination of different types of regularization
n the estimation procedure and establishes non-asymptotic error bounds.

The remainder of the paper is organized as follows. Section 2 introduces the model and provides conditions for
tationarity in the analysis of the high-dimensional system. Section 3 develops the three-step estimation procedure and
xamines its theoretical properties. In Section 4, we conduct Monte Carlo experiments to evaluate the finite sample
erformance of our estimators. The model and methods are applied to study financial connectedness in Section 5. Section 6
oncludes. Proofs of the main results in the paper are given in Appendix A. Further technical details are provided in the
nline Supplementary Material.

otation

To proceed, we introduce some notation. Let A = (aij) ∈ RM×N and v = (v1, . . . , vN )′ ∈ RN be a matrix and vector.
enote vI as the subvector of v whose entries are indexed by a set I ⊂ [N] ≡ {1, . . . ,N} and denote AI,J as the submatrix

of A whose rows and columns are indexed by I and J , respectively. Let A∗,J ≡ A[M],J be the submatrix of A whose columns
are indexed by J , AI,∗ ≡ AI,[N] be the submatrix of A whose rows are indexed by I . For notational simplicity, we also write
the individual columns and rows of A respectively as A∗,j ≡ A∗,{j} for j ∈ [N] and Ai,∗ ≡ A{i},∗ for i ∈ [M].

Define the ℓ0, ℓq (q ≥ 1), and ℓ∞ norms of a vector v ∈ RN as follows

|v|0 ≡

N∑
1(vi ̸= 0), |v|q ≡

( N∑
|vi|

q
)1/q

, and |v|∞ ≡ max
1≤i≤N

|vi|,
i=1 i=1
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here 1(·) is the indicator function. In the special case q = 2, | · |2 denotes the Euclidean norm of v and can be rewritten
s |v| for notational simplicity.
For 1 ≤ q <∞, define the ℓq, ℓmax, Frobenius (F), and nuclear (∗) norms of the matrix A as follows

∥A∥q ≡ max
|v|q=1
∥Av∥q, ∥A∥max ≡ max

i,j
|aij|, ∥A∥F ≡

(∑
i,j

|aij|2
)1/2

and ∥A∥∗ ≡
min(N,M)∑

k=1

ψk(A),

here ψk(A) denotes the kth largest singular value of A for k = 1, . . ., min(N,M). Denote the largest and smallest singular
alues of A as ψmax(A) and ψmin(A). In the special case q = 2, the ℓ2 matrix norm is also denoted as the operator

norm: ∥A∥ op ≡ ∥A∥2 = ψmax(A). For a random variable or vector x, we denote its expectation and ℓp-norm as E(x)
and |||x|||p ≡ [E(|x|pp)]

1/p.
For a T × R full rank matrix F with T > R, we denote the corresponding orthogonal projection matrices as

PF = F (F ′F )−1F ′ and MF = IT − PF , where IT denotes the T × T identity matrix. Let vec(·) denote the (columnwise)
vectorization operator, and ⊗ be the (right hand) Kronecker operator. Let ∨ and ∧ denote the max and min operators,
viz., a ∨ b = max (a, b) and a ∧ b = min (a, b).

2. Model

For an N-dimensional vector-valued time series {Yt} = {(y1t , . . . , yNt )′}, the high-dimensional VAR model of order p
ith CFs is given by

Yt =

p∑
j=1

A0
j Yt−j +Λ

0f 0t + ut , t = 1, . . . , T , (2.1)

here A0
1, . . . , A

0
p are N × N transition matrices, Λ0

= (λ01, . . . , λ
0
N )
′ is an N × R0 factor loading matrix, f 0t is an R0-

imensional vector of common factors, and ut ≡ (u1t , . . . , uNt)
′ is an N-dimensional vector of unobserved idiosyncratic

rrors. Throughout this paper we use the superscript 0 to denote true values. The coefficients of interest are the A0
j ’s,

0, and F 0
≡ (f 01 , . . . , f

0
T )
′. In practice, we need to determine the number of factors and the VAR order p. We propose

method to consistently determine p in Section 3.5. The number of factors can be determined in the first step of our
stimation procedure introduced in Section 3.1. The analytic framework allows for both the number of cross-sectional
nits N and the number of time periods T to pass to infinity. The lag length is also allowed to (slowly) grow to infinity
ith (N, T ). Estimation is then a natural high-dimensional problem with the number of parameters, N2p + R0N + R0T ,
rowing linearly with T and quadratically with N .
It is convenient to reformulate model (2.1) in multivariate regression form as⎡⎢⎣Y ′1

...

Y ′T

⎤⎥⎦
  

Y

=

⎡⎢⎣ Y ′0 · · · Y ′1−p
...

. . .
...

Y ′T−1 · · · Y ′T−p

⎤⎥⎦
  

X

⎡⎢⎣A0′
1
...

A0′
p

⎤⎥⎦
  

B0

+

⎡⎢⎣f 0′1
...

f 0′T

⎤⎥⎦
  

F0

⎡⎢⎣λ
0′
1
...

λ0′N

⎤⎥⎦
′

  
Λ0′

+

⎡⎢⎣u′1
...

u′T

⎤⎥⎦
  

U

, (2.2)

here Y ∈ RT×N , X ∈ RT×Np, B0
∈ RNp×N , and U ∈ RT×N . Let Θ0

≡ F 0Λ0′ denote the common component. A key
observation here is that Θ0 is a low rank matrix. However, due to the presence of XB0, the direct use of principal
component analysis (PCA) on Y cannot deliver a consistent estimate of the common factors. Note that under some
regularity conditions,

Θ0

op = OP (

√
NT ) and ∥U∥op = OP (

√
N +
√
T ).4 For the pure factor model as in Bai (2003), the

separation ofΘ0 from U hinges on this order difference. The exact probability order of
XB0


op depends on the underlying

ata generating process but is in general not of smaller order than OP (
√
NT ),5 which makes it difficult to separate the

ow rank matrix Θ0 from Y without information about B0. Besides, when the common factors are themselves serially
orrelated, pure VAR(p) estimation generally suffers from endogeneity bias issues.

4 The nonzero singular values of Θ0 are the eigenvalues of (F 0′F 0Λ0′Λ0)1/2 . Assuming F 0′F 0/T
p
→ ΣF and Λ0′Λ0/N

p
→ ΣΛ with ΣF and ΣΛ both

nonsingular ensures the first part of the stated claim. Theorem 4.4.5 of Vershynin (2018) shows that the operator norm of a T × N random matrix
with independent, mean zero, and sub-gaussian entries is OP (

√
N +
√
T ).

5 Let ιN and ιT be N- and T - vectors of ones. Suppose that λmin(B0B0′) ≥ c > 0 and p = 1. Then

∥XB0
∥op =

[
λmax

(
XB0B0′X′

)]1/2
≥ c

[
λmax

(
XX′

)]1/2
= c ∥X∥op .

By definition of the operator norm, ∥X∥op ≥ (NT )−1/2ι′TXιN = (NT )−1/2
∑

i,t yi,t−1 ≍
√
NT provided 1

NT

∑
i,t yi,t−1

p
→ cy ̸= 0 which may occur, say,

hen the common component λ0′i f
0
t does not have mean zero. Here aNT ≍ bNT denotes that aNT and bNT are of the same probability order. Then

∥XB0
∥ is at least of probability order

√
NT .
op
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.1. Stationarity analysis

Let Xt ≡ X′t,∗. The N-dimensional VAR(p) process {Yt} can be rewritten in a companion form as an Np-dimensional
AR(1) process with CFs, viz.,⎡⎢⎢⎣

Yt
Yt−1
...

Yt−p+1

⎤⎥⎥⎦
  

Xt+1

=

⎡⎢⎢⎢⎢⎣
A0
1 A0

2 · · · A0
p−1 A0

p
IN 0 · · · 0 0
0 IN · · · 0 0
...

...
. . .

...
...

0 0 · · · IN 0

⎤⎥⎥⎥⎥⎦
  

Φ

⎡⎢⎢⎣
Yt−1
Yt−2
...

Yt−p

⎤⎥⎥⎦
  

Xt

+

⎡⎢⎢⎣
Λ0f 0t
0
...

0

⎤⎥⎥⎦
  

Ft

+

⎡⎢⎢⎣
ut
0
...

0

⎤⎥⎥⎦
  

Ut

. (2.3)

f one treats Ft + Ut as an impulse at period t , the process {Xt+1} in (2.3) can be regarded as a high-dimensional VAR(1)
rocess. We can write the reverse characteristic polynomial (see, e.g., p.16 of Lütkepohl (2005)) of Yt as

A(z) ≡ IN −
p∑

j=1

A0
j z

p.

n the low-dimensional framework, the process is stationary if A(z) has no roots in and on the complex unit circle, or
quivalently the largest modulus of the eigenvalues of Φ is less than 1. To achieve identification, we need to study the
ram or signal matrix SX ≡ X′X/T and its population version ΣX ≡ E(XtX ′t ). Basu and Michailidis (2015; hereafter BM)
tudy the deviation bounds for the Gram matrix, using a Gaussianity assumption and boundedness of the spectral density
unction. Following this approach we impose some conditions that ensure SX is well behaved.

To proceed, write Xt+1 as a moving average process of infinite order (MA(∞)) as

Xt+1 =

∞∑
j=0

Φ j(Ft−j + Ut−j) ≡ X (f )
t+1 + X (u)

t+1, (2.4)

where X (f )
t+1 ≡

∑
∞

j=0Φ
jFt−j and X (u)

t+1 ≡
∑
∞

j=0Φ
jUt−j. Then, the stationarity of Yt can be studied by considering X (f )

t+1 and
X (u)
t+1. First, consider X (f )

t+1, the component due to the common factors. Note that the covariance matrix of Ft is a high-
dimensional matrix with rank R0 and explosive nonzero eigenvalues. Even if the largest modulus of the eigenvalues of Φ
is smaller than 1, the variances of the entries of X (f )

t+1 are not assured to be uniformly bounded. Specifically, we consider
y(f )it , which is the ith entry of X (f )

t+1. Let ej,M be the jth column of IM . Noting that y(f )it = (e1,p ⊗ ei,N )′X
(f )
t+1, we can write y(f )it

as the MA(∞) process

y(f )it =

∞∑
j=0

(e1,p ⊗ ei,N )′Φ j(e1,p ⊗Λ0)f 0t−j ≡
∞∑
j=0

α
(f )
iN (j)f 0t−j,

in which the f 0t are allowed to be serially correlated. To ensure y(f )it = OP (1), the coefficients α(f )
iN (j) need to be well-

behaved. Note that we generally do not have ∥Φ∥op ≤ 1, as explained in the supplement of BM (2015). In Assumption A.1,
we impose sufficient conditions that ensure the y(f )it are well-behaved. The online supplementary material provides a
discussion of these conditions.

For the process {X (u)
t+1}, stationarity is assured if we assume the covariance matrix of ut is well-behaved and ut is serially

uncorrelated as in BM (2015) and Kock and Callot (2015; hereafter KC). Similarly to y(f )it , we define y(u)it such that

yit ≡ y(f )it + y(u)it , (2.5)

with explicit form

y(u)it =

∞∑
j=0

α
(u)
iN (j)ut−j and α

(u)
iN (j) ≡ (e1,p ⊗ ei,N )′Φ j(e1,p ⊗ IN ).

Again, imposing zero serial correlation and weak cross-sectional correlation across the uit is insufficient to ensure that
y(u)it = OP (1) uniformly.

Let c and c̄ denote generic positive constants that may vary across their occurrences. Throughout the paper, we will
reat Λ0 as nonrandom. To ensure the stationarity of {Yt}, we impose the following assumption.

Assumption A.1. (i) ut = C (u)ϵ
(u)
t , where ϵ(u)t = (ϵ(u)1,t , . . . , ϵ

(u)
m,t )′, the ϵ

(u)
i,t are i.i.d. random variables across (i, t) with mean

zero and variance 1, and C (u) is an N ×m matrix such that C (u)C (u)′
= Σ and c ≤ ψ (Σ ) ≤ ψ (Σ ) ≤ c̄;
u min u max u
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(ii)
{
f 0t
}
follows a strictly stationary linear process given by

f 0t − µf =

∞∑
j=0

C (f )
j ϵ

(f )
t−j,

here ϵ(f )t ≡ (ϵ(f )1,t , . . . , ϵ
(f )
R0,t

)′ are i.i.d. with mean 0 and covariance matrix IR0 across t , supm≥1(m + 1)α
∑
∞

j=m ∥C
(f )
j ∥max

c̄ <∞ for some constant α > 1;
(iii) max1≤r≤R0 |||ϵ

(f )
r,t |||q < c̄ and max1≤i≤m |||ϵ

(u)
i,t |||q < c̄ for some q > 4;

(iv) {ϵ(u)t } is independent of {ϵ(f )t };
(v) the largest modulus of the eigenvalues of Φ is bounded uniformly in (N, p) by some constant ρ ∈ (0, 1);
(vi) supN,p ∥(Φ j)[N],[N]∥op ≤ c̄ρ j and supN,p |α

(f )
iN (j)| < c̄ρ j;

(vii) supN,p max|z|=1 ψmax(A∗(z)A(z)) ≤ c̄ , where |z| denotes the modulus of z in the complex plane, and A∗(z) denotes
he conjugate transpose of A(z).

Assumption A.1(i) is frequently made in high-dimensional time series analysis; see, e.g., Bai and Saranadasa (1996),
hen and Qin (2010) and Ma et al. (2020). At the cost of more complicated notations, one can allow ψmin(Σu) to converge
o zero and ψmax(Σu) to diverge to infinity, both at a slow rate. Assumption A.1(ii) assumes the common factors to
e stationary and allows for weak serial correlation. The factors can have nonzero mean so that the yit can also have
onzero mean. Assumption A.1(iii) requires that both ϵ(u)i,t and ϵ(f )i,t have finite qth order moments, which is a weak
ssumption compared to the Gaussian distribution assumption of BM (2015) and KC (2015). Assumption A.1(iv) requires
ndependence between {ϵ(u)t } and {ϵ

(f )
t }, which facilitates separate study of y(f )it and y(u)it .6 Assumption A.1(v) is a standard

ssumption to ensure stationarity. Assumption A.1(vi) is a high level condition to ensure that E(y2it ) is uniformly bounded.
ssumption A.1(vii) helps to bound the minimum eigenvalue of ΣX . From the inequalities

max
|z|=1

ψmax(A∗(z)A(z)) ≤ (max
|z|=1
∥A(z)∥op)2 ≤ 1+

p∑
k=1

∥A0
j ∥op,

t is evident that requiring all the A0
j ’s to have finite operator norms is a sufficient condition for (vii).

The online Supplementary Material provides further discussion on Assumption A.1(vi)–(vii). The following proposition
nsures the stationarity of the process Yt and establishes a lower bound for ψmin(ΣX ).

roposition 2.1. Suppose that Assumption A.1 holds. (i) Then Yt is a stationary process, supi E(y2it ) <∞, and

ψmin(ΣX ) ≥
ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

ii) Let ΣXF ≡ E(Xt f 0′t ), and Σ ≡ ΣX −ΣXFΣ
−1
F Σ ′XF . We also have ψmin(Σ) ≥ ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z)) .

Proposition 2.1(ii) is a direct consequence of Proposition 2.3 and equation (2.6) of BM (2015). With the presence of
ommon factors, we only have the well-behaved lower bounds for the eigenvalues of ΣX and Σ : they are bounded away
rom 0 under Assumption A.1(i) and (vii), but the largest eigenvalues of ΣX and Σ still diverge to infinity at rate N .

. Estimation method and theory

This section develops a three-step estimation procedure for the model and establishes its non-asymptotic and
symptotic properties. For the moment, we assume that the VAR order p is known but the true number of factors R0

s unknown. In practice, we can determine p via a data-driven method as introduced in Section 3.5.
The three-step estimation procedure can be summarized as follows:
Step 1: Initial estimates of the low rank matrix Θ0, the transition matrix B0 and the factor matrix F 0. This step

stimates the low rank matrix Θ0 together with the transition matrix B0 via an ℓ1-nuclear-norm regularization procedure.
he ℓ1-penalty is imposed on the transition matrix B to encourage sparsity and the nuclear-norm penalty is imposed on
he common component matrixΘ for its low rank structure. Since the nuclear norm of a matrix is given by the summation
f its singular values, the nuclear-norm can be regarded intuitively as a matrix version of the usual ℓ1-norm imposed on
he singular values and thereby assists in achieving a low rank estimate. The approach has two advantages: one is that
t does not require the specification of the number of factors a priori, and the other is that the minimization problem is
convex problem due to the fact both the ℓ1-norm and nuclear-norm are convex in their respective matrices. We will
how that the resulting estimators B̃ and Θ̃ are consistent for B0 and Θ0, respectively, up to certain scale in terms of
he Frobenius norm. Given the preliminary estimate Θ̃ , it is possible to estimate R0 consistently via a hard singular value

6 As discussed in Section E of the online supplement, the process Xt has a generalized dynamic factor representation. The orthogonality between
ϵ
(u)
} and {ϵ(f )} serves as a part of the identification conditions.
t t
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hresholding (SVT) procedure and to obtain a consistent estimator F̃ of F 0 in terms of the Frobenius norm up to a certain
otation matrix via singular value decomposition (SVD). Nevertheless, in this step we are unable to establish pointwise
onsistency for the elements of B̃, Θ̃ and F̃ .
Step 2: Initial estimates of the elements of the factor loadings and transition matrix. This step applies plain Lasso

o estimate the elements of the factor loadings and transition matrix. Specifically, we run the ℓ1-regularized time series
egression of Y∗,i on (X,F̃ ) to obtain an updated estimate Ḃ∗,i of the ith column (B0

∗,i) of the transition matrix B0 along
ith estimates of the factor loadings λ0i for i = 1, . . . ,N . Here, the plain ℓ1-penalty is imposed on the transition matrix
nly, and we cannot apply the adaptive Lasso here because we do not have the element-wise rates yet. We will establish
he uniform consistency for the elements of Ḃ, which is required for the construction of the weights to be used for the
onservative Lasso in the third step. As is well known, despite the fact the Lasso used in this step encourages sparsity in
he estimate, it does not deliver selection/sign consistency (see Zhao and Yu (2006)) or oracle-efficient estimation.

Step: 3: Final estimates of the transition matrix, factors and factor loadings. With the uniform elementwise rates
or the loadings and transition matrix estimates, we apply iterative conservative Lasso to obtain updated estimates of the
ransition matrix, factors and factor loadings. Like adaptive Lasso, conservative Lasso can yield sign consistency and oracle
fficient estimates.

.1. First-step estimator

In the first step, we propose an ℓ1-nuclear-norm regularized estimator to estimate the coefficient matrix B0 and the
ow rank matrix Θ0 simultaneously. We impose a sparsity condition on B0 and use ℓ1-norm regularization to achieve the
election of regressors. We adopt nuclear norm regularized estimation to obtain the initial consistent estimate of the low
ank matrix Θ0. The first step estimator is given by the following procedure.

First-step estimator: Let γ1 = γ1(N, T ) = c1T−1/2 logN and γ2 = γ2(N, T ) = c2(N−1/2 + T−1/2) for some positive
onstants c1 and c2.

1. Estimate the coefficient matrix B0 and the low rank matrix Θ0by running the following ℓ1- nuclear-norm regularized
regression:

(B̃, Θ̃) = argmin
(B,Θ)

L(B,Θ), where

L(B,Θ) ≡
1

2NT
∥Y− XB−Θ∥2F +

γ1

N
|vec(B)|1 +

γ2
√
NT
∥Θ∥∗. (3.1)

2. Estimate the number of factors R0 by singular value thresholding (SVT) as follows:

R̂ =
N∧T∑
i=1

1{ψi(Θ̃) ≥ (γ2
√
NT∥Θ̃∥op)1/2},

where ψi(Θ̃) are the singular values of Θ̃ .
3. Obtain a preliminary estimate of F 0. Let the singular value decomposition (SVD) of Θ̃ be Θ̃ = ŨD̃Ṽ ′, where D̃ =

diag(ψ1(Θ̃), . . . , ψN∧T (Θ̃)). Set F̃ =
√
T Ũ
∗,[R̂].

emark 3.1. The objective function L(B,Θ) is the sum of squared residuals with both the nuclear-norm regularization on
and ℓ1-norm regularization on B. To obtain the numerical solution, we can apply an EM type algorithm. In the E-step,

we fix B and update the estimate of Θ . The solution can be obtained following the result of Lemma 1 of MW (2019).7
n the M-step, we fix Θ and update B. The optimization problem can be decomposed to N Lasso-type linear regression
problems.

3.1.1. Non-asymptotic results for the first-step estimator
In this subsection we establish the non-asymptotic properties of the first step estimator. In particular, for B̃ and Θ̃ , we

establish a non-asymptotic inequality for their estimation errors. For R̂, we show that R̂ = R0 with a high probability.
To proceed, we introduce a key invertibility condition for the linear operator (∆(1),∆(2)) ↦→ X∆(1)

+ ∆(2) when
(∆(1),∆(2)) is restricted to lie in a ‘cone’. We follow the lead of Negahban et al. (2012) and refer to the condition as
‘restricted strong convexity’.8 Our condition imposed here takes a form related to that of MW (2019) and Chernozhukov

7 Let the SVD of A be A = USV ′ , where S =diag(s1, . . . , sq), with q =rank(A). Then argminΘ
( 1
2 ∥A−Θ∥

2
F + γ ∥Θ∥∗

)
is given by U ·diag((s1 −

)+, . . . , (sq − γ )+) · V ′ , where (s)+ = max(0, s).
8 As remarked by Negahban et al. (2012), the loss function is often not strongly convex for high-dimensional regressions. This failure leads to a
ifficulty in showing the desired convergence rate for the estimators. In this context, a suitable choice of the regularization parameter helps ensure
hat the estimate lies in a restricted set in the parameter space. Consequently, it suffices to assume that the function is strongly convex over this
estricted set.
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t al. (2019). To define the ‘cone’, let Ji ⊂ [Np] be an index set such that j ∈ Ji if and only if B0
ji ̸= 0. Let Jci = [Np]\Ji. Let

the SVD of Θ0 be Θ0
= U0D0V 0′, where U0

∈ RT×R0 and V 0
∈ RN×R0 . For a T × N matrix ∆(2), define the operators

P(∆(2)) ≡ U0
∗,[R0]U

0′
∗,[R0]∆

(2)V 0
∗,[R0]V

0′
∗,[R0] and M(∆(2)) ≡ ∆(2)

− P(∆(2)).

Hence, the operator P(·) projects a matrix onto a ‘low-rank’ space which contains Θ0. For some c > 0, the ‘cone’
NT (c) ⊂ RNp×N

× RT×N is a set of (∆(1),∆(2)) satisfying the restriction:

γ1
∑N

i=1 |∆
(1)
Jci ,i
|
1

N
+
γ2
M(∆(2))


∗

√
NT

≤ c
γ1
∑N

i=1 |∆
(1)
Ji,i
|
1

N
+ c

γ2
P(∆(2))


∗

√
NT

.

We impose the following condition.

Assumption A.2 (Restricted Strong Convexity). Let

Φγ1,γ2 (∆
(1),∆(2)) ≡

γ1

N

N∑
i=1

|∆
(1)
Ji,i
|
1
+

γ2
√
NT
∥P(∆(2))∥∗

be a tolerance function. If (∆(1),∆(2)) ∈ CNT (3), then there exist positive constants κ , κ ′and κ ′′ such thatX∆(1)
+∆(2)

2
F ≥ T · κ ′

∆(1)
2
F + κ

∆(2)
2
F − κ

′′Φγ1,γ2 (∆
(1),∆(2))

ith probability 1− εNT and εNT → 0 as (N, T )→∞.

Assumption A.2 is a high level condition whose verification is challenging without imposing further conditions on the
arameter space. In Section F of the online supplement, we provide some discussion of Assumption A.2. In particular, we
ive two conditions that are sufficient for Assumption A.2. The second condition can be relatively easier to verify and the
irst condition can be argued on intuitive grounds. See also the discussion in MW (2019) following their Assumption 1.

Let ki = |Ji|, KJ ≡ sup
i
ki and Ka ≡

1
N

∑N
i=1 ki. The next assumption involves a regularity condition on the errors:

Assumption A.3. ∥U∥ op /
√
NT ≤ γ2/2, where γ2 is the tuning parameter for the nuclear norm regularization.

Recall that γ2 = c2(N−1/2 + T−1/2). Assumption A.3 requires that the error matrix have an operator norm of order
P (
√
N +
√
T ). This condition is standard in the literature; see, e.g., Lu and Su (2016), Moon and Weidner (2017), Su and

Wang (2017), MW (2019), and Chernozhukov et al. (2019). Moon and Weidner (2017) provide examples to ensure the
above assumption holds. In particular, it is satisfied when the ϵ(u)it are i.i.d. sub-Gaussian (see, e.g., Vershynin (2018)).

heorem 3.1. Suppose that Assumptions A.1–A.3 hold. Then we have

N−1/2
B̃− B0


F
≤ c̄(γ1

√
Ka ∨ γ2) and (NT )−1/2

Θ̃ −Θ0

F ≤ c̄(γ1

√
Ka ∨ γ2),

ith probability at least 1− εNT − c̄ ′(pN2T 1−q/4(logN)−q/2 + pN2−c logN ) for some finite positive constants c, c̄, and c̄ ′.

Theorem 3.1 establishes non-asymptotic inequalities for the estimation errors of B̃ and Θ̃ in terms of the Frobenius
norm. Note that B0 and Θ0 are both high-dimensional matrices with N2p and NT entries, respectively, and the Frobenius
orms are normalized correspondingly by

√
N and

√
NT . Without any sparsity or approximate sparsity assumption, ∥B0

∥
2
F

an be as large as O(N2). Assumption A.4(iii) below specifies an average control on the sparsity of the columns of B0, which
nsures that 1

N ∥B
0
∥
2
F =

1
N

∑N
i=1 |B

0
∗,i|

2
= O (Ka) provided the elements in B0 are uniformly bounded from the above. This

otivates the use of N−1/2 to normalize ∥B̃− B0
∥F. The first result in Theorem 3.1 ensures that

1
N
∥B̃− B0

∥
2
F =

1
N

N∑
i=1

|B̃∗,i − B0
∗,i|

2
≤ c̄2(((γ1

√
Ka) ∨ γ2)2) with high probability.

That is, on average, the Euclidean distance between the columns of B̃ and B0 is bounded by a small term c̄((γ1
√
Ka)∨ γ2).

imilarly,Θ0 has Frobenius norm of order
√
NT , which motivates the use of (NT )−1/2 to normalize

Θ̃ −Θ0

F. The second

result in the theorem ensures that the large dimensional matrix estimate Θ̃ is sufficiently close to the truth Θ0 in terms
of Frobenius norm: the entries of Θ̃ converge to those of Θ0 at rate (γ1

√
Ka) ∨ γ2 on average.

The probability in Theorem 3.1 converges to one when εNT , pN2T 1−q/4(logN)−q/2 and pN2−c logN all converge to zero. In
eneral, the second term dominates the third one for finite q and divergent (N, T ). If the error terms are sub-exponential,

we can allow q to diverge to infinity in which case the third term could dominate the second one. To prove the above
theorem, we need to establish a bound for T−1∥U′X∥max. Specifically, we need a sharp probability bound for a partial
sum like T−1

∑T
t=1 yi,t−kujt . To achieve such a bound we resort to a Nagaev-type inequality, as introduced by Wu (2005)

and Wu and Wu (2016), allowing for both dependence among summands and non-Gaussianity. The summand y u
i,t−k jt
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as a nonlinear Wold presentation yi,t−kujt = gijk(. . . , ϵt−1, ϵt ), where the ϵt ≡ (ϵ(u)′t , ϵ
(f )′
t )′ are i.i.d. random variables

nder Assumption A.1. Then one can verify that the dependence-adjusted norm (see Wu and Wu (2016)) of yi,t−kujt is well
ounded so that one can obtain a sharp probability bound using the Nagaev-type inequality for nonlinear processes.9
Next, we impose an assumption on the common factor and the factor loadings and a sparsity condition on B0:

ssumption A.4. (i) There exists an N̄ such that for all N > N̄ , ∥Λ0′Λ0/N − ΣΛ∥max ≤ c̄N−1/2 for an R0
× R0 matrix

Λ > 0 and ∥Λ0
∥max ≤ c̄;

(ii) LetΣF = E(f 0t f
0′
t ). There are constants s1 > · · · > sR0 > 0 so that sj equals the jth largest eigenvalue ofΣ1/2

F ΣΛΣ
1/2
F ;

(iii) Ka = o(T
(
N−1/2 + T−1/2

)
/(logN)2).

Assumption A.4(i)–(ii) requires that the factors and the factor loadings are strong/pervasive with well-behaved sample
econd moments. Assumption A.4(ii) requires distinct eigenvalues of Σ1/2

F ΣΛΣ
1/2
F in order to identify the corresponding

igenvectors. Assumption A.4(iii) imposes a sparsity condition on the transition matrix. We allow Ka (and thus KJ ) to
iverge to infinity at a rate slower than T

(
N−1/2 + T−1/2

)
/(logN)2 here, which ensures accuracy of Θ̃ . Such a strict

parsity condition can be relaxed to an approximate sparsity condition as in Belloni et al. (2012) but that extension is not
ursued here.
Assumption A.4(iii) ensures γ1

√
Ka = o(N−1/4 + T−1/4). Consequently, Theorem 3.1 implies that both N−1/2∥B̃− B0

∥F
nd (NT )−1/2∥Θ̃ − Θ0

∥F are oP (N−1/4 + T−1/4). This rate can be improved to OP (N−1/2 + T−1/2 logN) if we restrict our
ttention to the case where Ka = O (1). These error bounds help us to establish the following result which establishes the
onsistency of R̂ and the mean-square convergence rate of F̃ .

heorem 3.2. Suppose Assumptions A.1–A.4 hold. There exist positive constants c, c̄ and c̄ ′ and a random matrix H̃
depending on (F 0,Λ0) such that (i) R̂ = R0 and (ii) ∥F̃ − F 0H̃∥F/

√
T ≤ c̄(γ1

√
Ka ∨ γ2), both with probability larger than

− εNT − c̄ ′(pN2T 1−q/4(logN)−q/2 + pN2−c logN ).

Theorem 3.2(i) establishes the consistency of R̂ and the mean-square convergence rate of F̃ in large samples. Intuitively,
ince Θ̃ is a consistent estimator of Θ0

≡ F 0Λ0′ with well-controlled estimation errors, we expect the first R0 singular
values of Θ̃ to be OP (

√
NT ) and the other singular values to be OP [

√
NT (γ1

√
Ka ∨ γ2)]. Then the hard SVT procedure can

istinguish the
√
NT -order singular values from those of smaller order. Alternatively, given the consistency of B̃ established

in Theorem 3.1, the ‘residual’ Y − XB̃ is an approximation of F 0Λ0′
+ U. One can also apply the methods of Bai and Ng

(2002), Onatski (2010) and Ahn and Horenstein (2013) to determine the number of factors. Theorem 3.2(ii) establishes
the convergence rate of F̃ . The R0

× R0 transformation matrix H̃ is similar to the transform matrix H in Bai (2003) but
only depends on the true values whereas H in Bai (2003) also depends on the estimator.

Despite the fact that we can establish weak consistency of B̃, Θ̃ and F̃ in terms of the Frobenius norm in Theorems 3.1–
.2, we cannot obtain pointwise consistency or asymptotic distributions for the elements of these estimators. The major
ole for the first-step procedure is to obtain an initial estimator that can be used subsequently to enhance estimation
roperties.

.2. Second-step estimator

In the second-step of the procedure we run a time series regression of Y∗,i on (X,F̃ ) for each i ∈ [N] by imposing an
1-norm penalty on the coefficient of X. The goal is to obtain an estimator of B0 whose elements uniformly converge to the
rue values.10 Given the uniform convergence property, the second-step estimator indicates how likely the corresponding
rue parameter value is to zero or not. The estimator can then be employed to construct adaptive- or conservative-Lasso
eights in a third step with further enhanced properties.
Second-step estimator: Let γ3 = c3(γ1

√
Ka ∨ γ2) for some constant c3. For each i ∈ [N], solve the minimization problem:

(Ḃ′
∗,i, λ̇

′

i)
′
= argmin

(v′,λ′)′∈RNp+R0

1
2T
∥Y∗,i − Xv − F̃λ∥2F + γ3|v|1, (3.2)

where the Lasso penalty is only imposed on the coefficients of X. The second-step estimators of B0 and Λ0 are given by
Ḃ = (Ḃ∗,1, . . . , Ḃ∗,N ) and Λ̇ = (λ̇1, . . . , λ̇N )′.

Remark 3.2. Note that the ℓ1-norm penalty is only imposed on the coefficient of X. In the proof of Theorem 3.3, we show
that Ḃ∗,i solves the Lasso problem with dependent variable MF̃Y∗,i and regressors MF̃X.

9 Both KC (2015) and BM (2015) impose i.i.d. and Gaussianity assumptions on the error terms and derive exponential probability bounds for the
partial sums. In contrast, we only assume the existence of finite qth order moments of uit and allow for serial correlations in the error term. The
term pN2T 1−q/4(logN)−q/2 in the probability bound reflects the price of relaxing the Gaussianity assumption.
10 By contrast the first-step estimator B̃ converges to B0 in Frobenius norm after normalization; but this convergence does not ensure either the
ointwise convergence or uniform convergence (max |B̃ − B̃ | = o (1)).
i,j ij ij P
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.2.1. Non-asymptotic results for the second step estimator
The following theorem establishes non-asymptotic properties for Ḃ by delivering an ℓmax-norm bound for the estima-

tion error of Ḃ.

Theorem 3.3. Suppose that Assumptions A.1–A.4 hold and 32KJγ3 ≤ ψmin(Σ). Then

∥Ḃ− B0
∥max ≤ max

1≤i≤N
|Ḃ∗,i − B0

∗,i|1 ≤
48

[ψmin(ΣX )]2
KJγ3

with probability larger than 1 − εNT − c̄[p2N2T 1−q/4(logN)−q/2 + pNe−cT + p2N2−c logN
] for some finite positive constants c

and c̄.

Theorem 3.3 establishes uniform convergence rates for the elements of Ḃ. Compared to Theorems 3.1–3.2, one
additional term pNe−cT appears in the probability bound. This term decays in the exponential rate of T and is in general
dominated by p2N2T 1−q/4(logN)−q/2 when T →∞.

A key step in the proof of Theorem 3.3 is to establish a restricted eigenvalue condition (REC) as in Bickel et al. (2009)
and KC (2015). Due to the presence of common factors in the model, one needs to establish the REC on Σ̃ = X′MF̃X/T .
ecall that ψmin(Σ) is bounded away from 0 by Proposition 2.1, but the sample analog Σ̃ does not have such a property.
n fact, if Np > T , Σ̃ is always singular, which leads to min|v|̸=0 v′Σ̃v

|v|2
= 0. The minimum has to be replaced by a minimum

over a smaller set in order to obtain a nonzero lower bound. Let J ⊂ [Np] be an index set and Jc = [Np]\J . We say the
REC is satisfied for some K ∈ [Np] if

min
|J|≤K

min
|v|̸=0

|vJc |1
≤3|vJ |1

v′Σ̃v

|vJ |
2 ≡ κΣ̃ (K ) > 0, (3.3)

here J has cardinality no bigger than K . In (3.3), the minimum is restricted to those vectors for which |vJc |1 ≤ 3|vJ |1,
here J has cardinality no larger than K . In this restricted space, we establish that (3.3) is satisfied with a high probability

or K = KJ in Lemma A.4(v). See also the proof of Lemma A.4(v) in the Online Supplement.

.3. Third-step estimator

In the first and second steps, we impose penalties on the elements in the coefficient matrix B. These penalties introduce
symptotic bias into the estimator of the transition matrix. Zou (2006) proposed an adaptive Lasso technique in a
inear regression framework that penalizes the true zero parameters more than the non-zero ones. Zou shows that the
daptive Lasso estimator is asymptotically equivalent to the oracle least-squares estimator that is obtained using the true
nformation concerning the relevant regressors in the regression model. KC (2015) explored the use of the adaptive Lasso
ethod in a high-dimensional VAR framework.
In practice, the regressors with zero coefficient estimates in the preliminary stage, which are usually plain Lasso

stimates, are excluded in the adaptive Lasso. Hence, any incorrect regressor exclusion by the preliminary stage estimates
irectly leads to invalid regressor selection in adaptive Lasso. To solve this problem, the conservative Lasso, which gives
he regressors that are excluded by the initial estimator a second chance, is introduced (e.g., Caner and Kock (2018)).
n this subsection, we extend the conservative Lasso estimator to the framework of high-dimensional VAR with CFs. To
nsure stationarity in the high-dimensional VAR, most nonzero entries of the transition matrices have to be bounded
bove by one in absolute value. Some of them may even shrink to zero as N goes to infinity. In finite samples, the first
nd second step estimates may be wrongly estimated to be zero, leading to poor finite sample performance. This is the
eason that we recommend the use of conservative Lasso in this step. In the Monte Carlo simulations reported later we
ind that the conservative Lasso tends to outperform the adaptive Lasso.

Third-step estimator (Conservative Lasso): Implement the following procedure:

1. (Set weights) Let γ4 = γ4(N, T ). Let W be a Np× N matrix with entries

wki =

{
1 if |Ḃki| < αγ4
0 if |Ḃki| ≥ αγ4

, (3.4)

where k ∈ [Np], i ∈ [N], and α > 0. Set F̂ (0)
= F̃ .

2. (Update B̂(ℓ)) For integer ℓ ≥ 1 , update the estimates of B and Λ using

(B̂(ℓ)′
∗,i , λ̂

(ℓ)′
i )′ = argmin

(v′,λ′)′∈RNP+R̂

1
2T

Y∗,i − Xv − F̂ (ℓ−1)λ

2
F
+ γ4

pN∑
k=1

wki |vk| ,

where vk is the kth entry of v, i ∈ [N]. Let B̂(ℓ)
≡ (B̂(ℓ)

∗,1, . . . , B̂
(ℓ)
∗,N ).

3. (Update F̂ (ℓ)) Obtain the SVD of Y − XB̂(ℓ) as Y − XB̂(ℓ)
= Û (ℓ)D̂(ℓ)V̂ (ℓ)′. Obtain an updated estimate of F 0 as

F̂ (ℓ)
=
√
T Û (ℓ)
∗,[R̂]

. Set ℓ = ℓ+ 1.

4. Iterate steps 2–3 for a finite times ℓ∗. Denote the final estimators by B̂ = B̂(ℓ∗), F̂ = F̂ (ℓ∗−1) and Λ̂ = Λ̂(ℓ∗).
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emark 3.3. Note that the weights do not change with iterations in the above procedure. It is worth mentioning that the
eights wki can take other forms. For example, Caner and Kock (2018) also consider wki ≡

γprec
|Ḃki|∨γprec

, where γprec = αγ4.

Recall that F̂ (0)
= F̃ , which is estimated in the first step and has slower convergence rate. Iterations help to improve

he factor estimates. In our simulations, the iterations often numerically converged in less than ten steps.

.3.1. Asymptotic properties of the third-step estimator
We establish two results: (i) the conservative Lasso estimator B̂(ℓ) achieves variable-selection or sign consistency; and

ii) B̂ is asymptotically equivalent to the oracle least squares estimator. Following Zhao and Yu (2006) and Huang et al.
2008), we say that B̂(ℓ)

=s B0, or B̂(ℓ) is sign-consistent for B0, if and only if sgn(B̂(ℓ)
∗,i) =sgn(B

0
∗,i) for all i ∈ [N], where

sgn(B∗,i) ≡ [sgn(B1,i), . . .,sgn(BNp,i)]′, and

sgn(Bk,i) ≡

{ 1 if Bk,i > 0
0 if Bk,i = 0
−1 if Bk,i < 0.

Assumption A.5. (i) As (N, T )→∞ , the magnitude of nonzero coefficients are of larger asymptotic order than γ4 where
γ4 = o(mini∈[N]mink∈Ji |B

0
ki|) and (K 3/2

J T−1/2 logN + KJN−1/2) = o(γ4);
(ii) N−1

∑N
i=1 k

2
i = O(1) and KJ logN · (N−1/2 ∨ T−1/2) = o(1);

(iii) N2T 1−q/4(logN)−q/2 → 0 and T/N2
→ 0 as (N, T )→∞.

Assumption A.5(i) assumes the nonzero entries of B0 are not too small, a standard condition in the adaptive Lasso
literature. The lower bound mini∈[N]mink∈Ji |B

0
ki| has to be larger than γ4 in order to separate the nonzero entries from

zeros. By Assumption A.5(i) and Theorem 3.3, we can show that maxk∈Ji wki = 0 and mink∈Jci
wki = 1 with probability

approaching one (w.p.a.1). In this case, we only place a penalty on the true zero entries asymptotically. Assumption A.5(ii)
imposes some conditions on KJ and the ki to ensure that ∥X(B̂(ℓ)

−B0)∥F has a desired convergence rate. The first restriction
is imposed to simplify the asymptotic analysis and it implies Ka = O (1) so that we can drop Ka in subsequent asymptotic
orders. Assumption A.5(ii) can be satisfied if most columns in B0 have a finite number of nonzero coefficients while some
columns in B0 can have o[(

√
N ∧
√
T )/ logN] nonzero coefficients. Assumption A.5(iii) imposes conditions on the relative

rates at which N and T pass to infinity and these depend on the number (q) of moments for the innovation processes
in the errors and factors.11 In the special case where N and T pass to infinity at the same rate, this condition requires
q ≥ 12.

The following theorem establishes the variable selection consistency of B̂(ℓ) and the preliminary convergence rates of
B̂(ℓ) and F̂ (ℓ).

Theorem 3.4. Suppose that Assumptions A.1–A.5 hold. Then for a fixed ℓ, we have
(i) P(B̂(ℓ)

=s B0)→ 1 as (N, T )→∞;
(ii) ∥X(B̂(ℓ)

− B0)∥F/
√
NT = OP (γ1 + γ2);

(iii) ∥F̂ (ℓ)
− F 0H̃∥F/

√
T = OP (γ1 + γ2).

Theorem 3.4(i) shows that B̂(ℓ) has the oracle property in that it selects the correct variables w.p.a.1. Due to the presence
f common factors and the possibly divergent number (ki) of nonzero coefficients in B0

∗,i, we can only obtain a preliminary
ate OP (γ1 + γ2) in Theorem 3.4(ii)–(iii).

To improve the rate of convergence, we study the final estimators B̂, F̂ and Λ̂. Now, F̂ corresponds to the first R̂
igenvectors of (Y − XB̂)(Y − XB̂)′, rescaled by

√
T , and one can expand the estimation error F̂ − F 0H̃ as in Bai and Ng

2002) and Bai (2009). Then, by examining the product of F̂−F 0H̃ with other terms, a sharper bound for some intermediate
stimates can be obtained. Finally we can improve the probability order of each element in B̂Ji,i − B0

Ji,i
to O(T−1/2).

The following theorem reports the asymptotic distribution of B̂Ji,i.

heorem 3.5. Suppose that Assumptions A.1–A.5 hold. Let Si denote an L× ki selection matrix such that SiS ′i = IL and L is a
ixed integer. Suppose that as (N, T )→∞ or (N, T , p)→∞ in the case p→∞, the limit of Si(ΣJi,Ji )

−1S ′i exists and is given
y Ωi. Conditional on the event {B̂ =s B0

}, for each i ∈ [N], we have
√
TSi(B̂Ji,i − B0

Ji,i
)

d
→ N(0, σ 2

i Ωi) where σ 2
i = E

(
u2
it

)
.

Note that a selection matrix Si is used in Theorem 3.5 that is not needed if ki is fixed. Intuitively, since ki is allowed
to diverge to infinity as (N, T ) → ∞, asymptotic normality of B̂Ji,i can be obtained directly when ki → ∞. Instead, we
follow standard practice for estimation and inference with a divergent number of parameters (see, e.g., Fan and Peng
(2004), Lam and Fan (2008), and Qian and Su (2016)) and prove asymptotic normality for an arbitrary but finite number

11 The first requirement assumes T q/4−1 dominates N2 . For a VAR system, T is the number of observations and N is the dimension of the system.
Large T compared to N is desirable for good regression results. The second requirement implies that N cannot be too small compared to T . Because

affects the estimation accuracy of the factors, only when the estimation errors for the factors are well controlled can the asymptotic oracle
roperties in Theorems 3.4–3.5 be established.
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f linear combinations of the elements of B̂Ji,i. In the special case where ki is fixed, we can take Si = I|Ji| and obtain the
sual joint asymptotic normal distribution for all elements of B̂Ji,i.
As mentioned in the Introduction section, our model includes the pure dynamic panels with IFEs as special cases. For

larity, consider the high dimensional VAR(1) model with IFEs. If one finds that VAR(1) coefficient matrix is diagonal, then
he model can be written as a heterogeneous dynamic panel of the form: yit = ρ0

i yi,t−1+λ
0′
i f

0
t +uit . Clearly, the key strict

tationarity condition in Assumption A.1(v) now becomes supN≥1 max1≤i≤N
⏐⏐ρ0

i

⏐⏐ ≤ ρ ∈ (0, 1). Our final estimator of ρ0
i

njoys the same first order asymptotic property as the usual PCA estimator based on such a pure dynamic panel model
pecification. Furthermore, if one has prior knowledge that these AR(1) coefficients are common across all cross sectional
nits and given by ρ0, one can average our last stage estimates on ρ0

i to obtain a
√
NT -consistent estimate of ρ0, after

roper bias correction. But due to the space limitation, we do not conduct formal asymptotic analyses here.

.4. Tuning parameter selection

In practice, we need to select the tuning parameters γℓ, for ℓ = 1, . . . , 4. For γ2, which is the tuning parameter for the
nuclear norm penalty, we adopt a simple plug-in approach similar to that introduced in Chernozhukov et al. (2019). An
ideal tuning parameter for γ2 is one such that

∥U∥op/
√
NT ≤ (1− c)γ2

for some c > 0 with high probability. Suppose U is a random matrix with i.i.d. sub-Gaussian entries that have mean zero
and variance σ 2

u , its operator norm is bounded by Cσu(
√
N +
√
T ) for some C > 0 with high probability (see Vershynin

(2018)). One can first use γ2 =
σ̂y
C (
√
N +
√
T )/
√
NT for some C > 1 and σ̂y is the sample standard deviation of Y . After

obtaining an estimate σ̂u of σu, we can calculate a suitable γ2 via simulation. Specifically, we can simulate the random
matrices U with i.i.d. N(0, σ̂ 2

u ). Then we let γ2 = Q (∥U∥op, 0.95)/
√
NT , where Q (x, α) denotes the αth quantile of x.

For γ1, γ3, and γ4, we propose to use the 5-fold cross validation (CV) process. Let γ = (γ1, γ3, γ4)′. For the first-step
stimation, the procedure goes as follows:

1. Partition the data into 5 separate sets along the time dimension: T1, . . . , T5 ⊂ [T ];
2. For k = 1, . . . , 5, fit the model to the training set by excluding the k th fold data. Denote the estimators by B̃(γ ,k)

and Λ̃(γ ,k), where Λ̃(γ ,k) is a N × R matrix containing the first R right singular vectors of Θ̃ . Calculate the sum of
squared prediction errors

cv(γ , k) = tr[(YTk,∗ − XTk,∗B̃
(γ ,k))MΛ̃(γ ,k) (YTk,∗ − XTk,∗B̃

(γ ,k))′];

3. Compute the CV error for a fixed tuning parameter by CV (γ ) =
∑5

k=1 cv(γ , k).
4. Select γ ∗ = argminγ CV (γ ).

Remark 3.4. Once the sample Tk is excluded, we cannot obtain an estimate of FTk,∗. Hence we cannot obtain the residuals
by deducting the estimate of FTk,∗Λ

′. For this reason, we multiply YTk,∗−XTk,∗B̃
(γ ,k) by MΛ̃(γ ,k) to project out FTk,∗Λ

′ in the
above procedure.T

For the second and third step estimators, the CV procedure can be constructed in a similar way.

3.5. Lag length selection

In the above estimation procedure, we have so far assumed that the lag length p is known. In practice, the lag length
p is usually unknown and requires estimation. To address this uncertainty we propose a procedure to determine the lag
length p. Suppose we estimate the model with a lag setting pmax ≥ p0, where we use the superscript ‘0’ to denote the
true parameter. The model with pmax lags continues to be a correctly specified model except that A0

k = 0 for k > p0. Due
to Lasso regularization, the elements of the estimator Âp for p > p0 should converge to zero. For this reason, we propose
to determine the lag length by the following procedure:

1. Given pmax, obtain the estimates Âk for k ∈ [pmax];

2. Calculate ak = ∥Âk∥
2
F ∨ c for some small positive constant c and k ∈ [pmax];

3. The criterion function we consider is given by the ratio

GR(p) =

∑pmax
k=p ak∑pmax

k=p+1 ak
, p = 1, . . . , pmax − 1.

The term GR refers to the growth ratio of
∑pmax

k=p ak.
4. Obtain the estimator of p0 as p̂ = argmax GR k .
1≤k<pmax ( )

166



K. Miao, P.C.B. Phillips and L. Su Journal of Econometrics 233 (2023) 155–183
Fig. 1. Structure of the transition matrices in the simulations.

Remark 3.5. Some remarks on this procedure are in order. First, one can also simply run an ℓ1-nuclear-norm penalized
regression with pmax, which is the first step of the estimation procedure given in Section 3.1. We only require that
∥Âk − A0

k∥F converge to zero at a certain rate. Second, in practice one may obtain a very small or even zero value for
∥Âk∥

2
F when k > p0. In this case, if we directly use ak = ∥Âk∥

2
F , the growth ratio may possibly choose a larger p than p0.

To solve this problem, we bound ak below by some constant c > 0. Third, the GR(p) criterion function is constructed to
allow some A0

k with k < p0 to be a matrix of zeros. If we believe all the A0
k are nonzero matrices for k ∈

[
p0
]
, one can also

consider the criterion function FR(p) = ap/ap+1, where the term FR refers to the Frobenius norm ratio. Fourth, in order to
allow p0 to be divergent, one should allow pmax to go to infinity.

4. Monte Carlo simulations

This section reports the results of a set of Monte Carlo experiments designed to evaluate the finite sample performance
of the estimation procedures given above.

4.1. Data generating processes

We consider three cases with p = 1. For each data generating process (DGP), we generate data from the following
high-dimensional VAR(1) system with CFs

Yt = A0
1Yt−1 +Λ

0f 0t + ut , (4.1)

where A0
1 varies across different DGPs,Λ0

= (λ01, . . . , λ
0
N )
′. The factor loadings λ0ri, for r = 1, . . . , R0, are independently and

identically distributed (i.i.d.) standard normal random variables. The factors f 0tr , for r = 1, . . . , R0, follow the autoregressive
process

f 0tr = ρf · f
0
t−1,r + ϵ

(f )
tr ,

where ρf = 0.6 and ϵ(f )tr are i.i.d. N (0, 1). The idiosyncratic errors are generated as uit = s · ϵ(u)it , where s controls the
signal-to-noise ratio, and the ϵ(u)it are i.i.d. N(0, 1).

DGP 1 (Tridiagonal transition matrix): (A0
1)ij = 0.3 · 1(|i− j| ≤ 1).

DGP 2 (Block-diagonal transition matrix): We generate a block-diagonal matrix A0
1 = bdiag(S1, . . . , SK ), where the Sk’s

are 5 × 5 random matrices. The diagonal entries of Sk are fixed with (Sk)i,i = 0.3. In each column of Sk, we randomly
choose 2 out of 4 off-diagonal entries and set them to be −0.3.

DGP 3 (Random transition matrix): We fix the diagonal entries of A0
1 to be 0.3 (i.e. (A0

1)ii = 0.3). In each row of A0
1, we

randomly choose 3 out of N − 1 entries and set them to be −0.3.
Fig. 1 illustrates the structure of the random transition matrices used in our simulation. For each DGP, we consider

N = 30, 60, and T = 100, 200, 400, leading to six combinations of cross-sectional and time series dimensions. The number
of replications is set to be 500.

4.2. Implementation and estimation results

For each DGP, we consider the feasible estimator proposed in this paper and the oracle least squares estimator. The

oracle estimators are obtained by using information regarding the true number of factors and the true regressors.
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Table 1
Model selection accuracy.
DGP N T Number of factors Step 1 Step 2 Step 3

UER OER TPR FPR TPR FPR TPR FPR

1 30 100 0.0% 0.0% 97.4% 19.3% 98.8% 18.5% 93.7% 8.0%
30 200 0.0% 0.0% 99.6% 19.1% 99.9% 18.1% 99.4% 5.8%
30 400 0.0% 0.0% 99.9% 21.8% 100.0% 19.5% 99.9% 4.9%
60 100 0.0% 0.0% 96.8% 12.7% 98.2% 12.2% 90.5% 5.1%
60 200 0.0% 0.0% 99.9% 12.2% 100.0% 11.7% 99.1% 2.6%
60 400 0.0% 0.0% 100.0% 11.9% 100.0% 11.1% 99.9% 1.7%

2 30 100 0.0% 0.0% 86.2% 21.8% 83.9% 18.9% 94.0% 15.7%
30 200 0.0% 0.0% 95.3% 28.0% 93.7% 24.8% 99.4% 12.8%
30 400 0.0% 0.0% 99.2% 37.0% 98.7% 33.3% 99.9% 8.2%
60 100 0.0% 0.0% 76.7% 10.3% 76.5% 9.4% 90.6% 10.7%
60 200 0.0% 0.0% 88.9% 12.5% 89.7% 12.0% 99.2% 8.9%
60 400 0.0% 0.0% 96.4% 17.7% 95.8% 16.7% 100.0% 5.5%

3 30 100 0.0% 0.0% 93.2% 24.9% 92.3% 22.0% 96.5% 17.4%
30 200 0.0% 0.0% 98.1% 31.4% 97.6% 27.6% 99.6% 11.7%
30 400 0.0% 0.0% 99.5% 38.4% 99.3% 34.4% 99.7% 7.3%
60 100 0.0% 0.0% 88.1% 12.8% 88.4% 11.8% 95.9% 11.8%
60 200 0.0% 0.0% 96.1% 15.6% 95.5% 13.9% 99.8% 9.4%
60 400 0.0% 0.0% 98.9% 19.5% 98.6% 17.9% 100.0% 4.5%

Note: We report the under/over-estimation rate (UER and OER) of the number of factors in the UER and OER columns, respectively. The TPR (true
positive rate) columns report the average shares of relevant variables included. The FPR (false positive rate) columns report the average shares of
irrelevant variables included.

Table 1 reports the model selection accuracy. For each combination of N and T in each DGP, the fourth and fifth
olumns report the under- and over-estimation rate of R̂, respectively. The TPR (true positive rate) columns report the
verage shares of relevant variables included. The FPR (false positive rate) columns report the average shares of irrelevant
ariables included. We summarize some important findings from
Table 1. First, the proposed hard singular value thresholding (SVT) procedure can correctly determine the number of

actors for each case. Second, with N fixed, the TPR increases with T in all cases as expected. All three-step estimators can
nclude almost all the true regressors when T = 400. Third, among the three estimators, the third-step conservative Lasso
stimator includes the least irrelevant regressors in almost all settings. In addition, only the conservative Lasso estimators
end to exclude more irrelevant regressors as T increases, while the FPRs of the first and second step estimators increase
s T grows.
Table 2 reports the estimation errors of both the feasible estimators and the oracle least squares estimators. We report

he root mean squared errors (RMSEs) for all entries and nonzero entries, respectively. We summarize some important
indings from Table 2. First, as expected, the oracle least squares estimator uniformly outperforms the feasible estimators.
his is mainly due to the fact that the FPRs of the feasible estimators were never zero. Second, the RMSE of the oracle
stimator for nonzero entries decreases with T at the

√
T -rate and alters with N slightly. This is consistent with our

heoretical prediction that the oracle least squares estimator converges to the true values at the
√
T -rate. Third, the

conservative Lasso outperforms the other two feasible estimators in terms of RMSEs in all cases.
For all DGPs, we also consider estimation of a misspecified VAR(1) model, Yt = A0

1Yt−1+ut , where the common factors
are ignored. We first estimate the model with a Lasso penalty as in KC (2015). Then we construct the weights as in (3.4)
and use conservative Lasso to estimate the misspecified model. Table 3 reports the performance of these two estimators.
We summarize some findings from Table 3. First, the FPRs for both estimators are quite high. This indicates that the
misspecification may lead to non-sparse estimates of the transition matrices when the presence of strong cross-sectional
dependence is not properly accounted for. Second, the estimators for the misspecified model also have higher RMSEs.
Third, in many cases, the conservative Lasso estimator performs even worse than the Lasso estimator in terms of RMSEs.
These findings show that it is important to take into account the presence of a factor structure in the estimation of a VAR
with CFs.

5. Empirical application

5.1. Evaluating a network of financial assets volatilities

In recent years, financial asset connectedness has been an active topic in financial econometrics. Examples of
contributions to this literature include Barigozzi and Brownlees (2019; hereafter BB), Barigozzi and Hallin (2017), Billio
et al. (2012), Diebold and Yılmaz (2014; hereafter DY), Diebold and Yılmaz (2015), and Hautsch et al. (2014). Some of these
authors directly model the large panels of time series they are studying as a VAR process without the potential presence
of common factors. In this work a Lasso-type method has been employed to estimate the transition matrices. However,
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Table 2
Root mean squared errors of the feasible and oracle transition matrix estimators.
DGP N T All entries Nonzero entries

Oracle Step 1 Step 2 Step 3 Oracle Step 1 Step 2 Step 3

1 30 100 0.019 0.063 0.059 0.050 0.062 0.145 0.132 0.117
30 200 0.014 0.055 0.051 0.033 0.044 0.118 0.106 0.066
30 400 0.010 0.052 0.049 0.029 0.033 0.100 0.092 0.047
60 100 0.013 0.044 0.041 0.038 0.061 0.150 0.138 0.131
60 200 0.010 0.035 0.032 0.021 0.043 0.108 0.098 0.066
60 400 0.007 0.033 0.031 0.016 0.032 0.089 0.080 0.041

2 30 100 0.018 0.065 0.065 0.057 0.056 0.177 0.184 0.154
30 200 0.012 0.055 0.055 0.038 0.039 0.142 0.150 0.103
30 400 0.009 0.047 0.047 0.027 0.028 0.110 0.119 0.070
60 100 0.012 0.050 0.049 0.044 0.054 0.204 0.205 0.179
60 200 0.008 0.042 0.041 0.028 0.038 0.170 0.168 0.114
60 400 0.006 0.035 0.035 0.019 0.027 0.138 0.143 0.081

3 30 100 0.019 0.065 0.064 0.055 0.051 0.150 0.155 0.127
30 200 0.013 0.053 0.053 0.035 0.035 0.117 0.123 0.082
30 400 0.009 0.047 0.047 0.027 0.025 0.095 0.100 0.058
60 100 0.013 0.050 0.049 0.042 0.049 0.173 0.173 0.146
60 200 0.009 0.039 0.040 0.024 0.034 0.135 0.140 0.085
60 400 0.006 0.033 0.033 0.015 0.024 0.109 0.113 0.056

Note: We report the root mean squared errors (RMSEs) of the feasible and oracle transition matrix estimators. Columns 4–7 report the RMSEs of
all entries, and Columns 8–11 report the RMSEs of non-zero entries.

Table 3
Results of misspecified estimates.
DGP N T LASSO Conservative LASSO

TPR FPR RMSEa RMSEb TPR FPR RMSEa RMSEb

1 30 100 78.7% 34.9% 0.115 0.208 78.4% 45.2% 0.178 0.227
30 200 88.9% 37.7% 0.094 0.178 88.1% 43.3% 0.129 0.173
30 400 95.3% 45.0% 0.083 0.150 94.5% 43.0% 0.103 0.134
60 100 71.0% 22.6% 0.086 0.216 72.8% 39.5% 0.161 0.240
60 200 86.7% 25.7% 0.070 0.179 87.0% 38.9% 0.114 0.175
60 400 94.9% 30.2% 0.058 0.148 95.3% 37.9% 0.083 0.128

2 30 100 86.2% 59.6% 0.150 0.202 81.9% 54.8% 0.211 0.233
30 200 95.0% 61.5% 0.107 0.152 91.7% 51.4% 0.139 0.159
30 400 98.9% 66.3% 0.080 0.113 97.7% 50.5% 0.098 0.110
60 100 77.0% 46.6% 0.135 0.218 74.1% 48.9% 0.222 0.263
60 200 91.6% 51.9% 0.100 0.165 86.8% 44.6% 0.143 0.175
60 400 98.3% 56.1% 0.072 0.120 96.7% 44.4% 0.097 0.116

3 30 100 89.2% 59.2% 0.139 0.186 85.7% 55.9% 0.196 0.215
30 200 96.2% 61.4% 0.102 0.141 94.0% 54.3% 0.133 0.148
30 400 99.1% 67.1% 0.079 0.107 98.3% 53.2% 0.096 0.106
60 100 82.0% 46.1% 0.126 0.203 79.8% 50.6% 0.208 0.247
60 200 94.0% 51.7% 0.093 0.151 90.5% 46.6% 0.135 0.164
60 400 98.8% 55.5% 0.068 0.110 97.6% 45.0% 0.091 0.109

Note: We report the true positive rate (TPR), false positive rate (FPR), root mean squared errors of all entries (RMSEa) and nonzero entries (RMSEb)
of misspecified estimates. We consider the LASSO estimator as in Kock and Callot (2015) and a conservative LASSO estimator. The LASSO estimator
was used to construct weights for the conservative LASSO.

Barigozzi and Hallin (2017) and Barigozzi and Brownlees document evidence for the existence of a factor structure in
volatility. Barigozzi and Hallin (2017) consider controlling for the presence of common factors by means of a dynamic
factor model. BB (2019) use the regression residuals of individual volatilities on observed factors (e.g., market volatility
or sector-specific volatility) to represent the idiosyncratic components of the volatilities. Neither of these papers provides
a theoretical justification for the procedures employed.

In this empirical application, we extend the measure of connectedness of DY (2014) and study the connectedness of
financial assets. More specifically, we explore connectedness in a panel of volatility measures. As remarked in DY (2014),
the volatilities of financial assets can be interpreted as a form of ‘investor fear’. Volatility connectedness may then be
interpreted as representing ‘fear connectedness’ across assets. In this context it is natural to take into account common
factors, which reflect confidence in the market. Spillover effects across assets is another reason for connectedness. We
use the econometric methodology derived in the present work to analyze a panel of return volatilities of 23 sector ETF
funds. The findings show that common factors account for 56.1% of the overall variability. Conditioning on these factors,
the interdependence across individuals still captures a relatively high proportion of the variation.
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.1.1. Data description and empirical framework
We collect the weekly ‘open price’, ‘close price’, ‘high price’ and ‘low price’ of a series of sector ETF funds from Yahoo

inance. The fund names and tickers are listed in Table S1 in the online supplement. The funds fall into 11 categories. The
Energy’, ‘Financial’ and ‘Consumer cyclical’ are three large categories, each of which contains three to four funds. Each of
he other categories contain at most two funds. The sample spans July 2007 to August 2019, which corresponds to 688
eeks. As volatility is unobserved, we use observed price data to estimate it. Specifically, we follow Garman and Klass
1980) and Alizadeh et al. (2002) to measure asset volatility as follows:

σ̃ 2
it = 0.511(Hit − Lit )2 − 0.019[(Cit − Oit )(Hit + Lit − 2Oit )− 2(Hit − Oit )(Lit − Oit )]
− 0.383(Cit − Oit )2,

here Oit , Cit , Hit , and Lit are natural logarithms of weekly ‘open price’, ‘close price’, ‘high price’ and ‘low price’,
espectively. Some descriptive statistics of the volatilities are presented in Table S2 in the online supplement. As in DY
2014) we normalize the data by taking natural logarithms and then center each time series. That is, our panel data
ariable yit is given by log(σ̃ 2

it )− log(σ̃ 2
i· ).

Given the panel of volatilities, we fit the data to our VAR model with CFs in (2.1). From the decomposition (2.5),
we have yit = y(f )it + y(u)it , where y(f )it is due to the common factors and y(u)it is due to the idiosyncratic errors.
hen νi ≡ var(y(f )it )/var(yit ) measures the proportion of variance in yit that is due to common factors and ν̄ ≡∑N
i=1var(y

(f )
it )/

∑N
i=1var(yit ) measures the corresponding object across the whole panel.

For the idiosyncratic component y(u)it we calculate the measure of connectedness proposed by DY (2014). As discussed
in Section 2, we have y(u)it =

∑
∞

j=0 α
(u)
iN (j)C (u)ϵ

(u)
t−j, where α(u)

iN (j) = (e1,p⊗ ei,N )′Φ j(e1,p⊗ IN ) and ϵ
(u)
t ∼ (0, Im). For simplicity,

suppose that m = N . Then one can treat ϵ(u)it as the idiosyncratic shock to individual i. The variance of the H-step ahead
prediction error due to {ϵ(u)j,t+h}

H
h=1 is sHij =

∑H−1
h=0 ([α

(u)
iN (h)C (u)

]j)2. If we can identify both Φ and C (u), we can easily estimate
the variance decomposition matrix ĎH with (i, j)th entry sHij /

∑N
k=1 s

H
ik. However, C (u) is not identified without further

assumption. Although we cannot identify C (u), the matrix Σu = C (u)C (u)′ is identified. DY (2014) propose to calculate the
H-step generalized variance decomposition matrix12 DH

= [dHij ]N×N , where

dHij =
σ−1jj

∑H−1
h=0 (α

(u)
iN (h)Σuej,N )2∑H−1

h=0 α
(u)
iN (h)Σuα

(u)
iN (h)′

, and ej,N is the jth column of IN .

Unlike ĎH , the row sums of DH are not necessarily unity. We normalize DH to D̃H with (i, j)th entry d̃Hij = dHij /
∑N

k=1 d
H
ik so

that
∑N

j=1 d̃
H
ij = 1 and

∑N
i,j=1 d̃

H
ij = N . Hence, the overall connectedness in the y(u)it ’s can be measured as d̃H =

∑
i̸=j d̃

H
ij /N .

In addition, we let d̃Hi← ≡
∑

j̸=i d̃
H
ij . Following DY (2014), we call d̃Hi← the ‘FROM’ index, as it measures the proportion of

generalized variance decomposition that is due to other individuals. Similarly, we let d̃H
←j ≡

∑
i̸=j d̃

H
ij and call this the ‘TO’

index.

5.1.2. Estimation results
We use the procedure proposed in Section 3.4 to determine the lag length with pmax = 8. The result gives p̂ = 4. When

we run the regression with p = 4, the number of factors is determined to be one (R̂ = 1).
Fig. 2 reports the heat map representing the estimates of the Âk’s. The element value is represented by color intensity

on the scale shown in the figure. In total, 330 out of 2116 entries are nonzero. There are three interesting findings. First,
most of the nonzero entries are estimated to be positive. The positive coefficients represent propagation of investor fear
across assets. Second, the diagonal elements of the Âk are mostly nonzero. The magnitude of the diagonal elements is
larger than that of the off diagonal elements on average. Third, the number of nonzero coefficients in Âk decreases as k
increases and the average magnitude of the entries also decreases. These results suggest that more recent investor fear
is more influential in raising present investor fear.

Next, we calculate the statistics introduced in the last subsection. The upper panel of Table 4 provides the estimates of
νi, d̃Hi←, and d̃H

←j. Almost all the νi’s are above 50%, and the overall variation due to the common factors is ν̄ = 56.1%. These
results imply that market level investor fear plays a dominant roll in investor trading behavior. After conditioning on the
factors, we consider the idiosyncratic part by looking at d̃Hi←, d̃H

←j and the H-step generalized variance decomposition
matrix D̃H . The ‘FROM’ index ranges between 27.7% and 71.7%. Interestingly, the ‘energy’ and ‘finance’ funds have higher
‘FROM’ index compared to other funds. A similar observation applies for the ‘TO’ index. Specifically, the ‘TO’ index of
XLE and IYE are close to 100% and both are ‘energy’ funds. The energy industry is therefore instrumental in transmitting
considerable investor fear to the entire market. This finding has a strong intuitive basis as oil prices have been extremely
volatile in recent years and energy prices affect all industries. The fund GDX (VanEck Vectors Gold Miners ETF) has the

12 The generalized variance decomposition (GVD) framework was introduced by Koop et al. (1996) and Pesaran and Shin (1998). It provides an
order-invariant framework to estimate the variance decomposition. For more details see Section 2.3 of DY (2014).
170



K. Miao, P.C.B. Phillips and L. Su Journal of Econometrics 233 (2023) 155–183

v

l
o
o
m
a

e
I
t
i

p
g
t
o
c

6

w
t
c
t
v

Fig. 2. Heat map of the transition matrices Ak ’s. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

east connectedness. It receives only 27.7% connectedness from other assets and transmits only 19.1% connectedness to
thers. The overall connectedness measure is 49.8%. Conditioning on the factors, there is still substantive transmission
f investor fear across individual assets. Fig. 3 reports the heat map of the H-step generalized variance decomposition
atrix D̃H at H = 12. We observe that the interconnections within the same category are high, whereas connectedness
cross categories is relatively low.
The lower panel of Table 4 provides measures of connectedness based on pure VAR model estimation as in Demirer

t al. (2018). Without controlling for common factors, the ‘FROM’ and ‘TO’ index of each fund becomes much larger.
mportantly, little heterogeneity is now observed across categories. These results indicate that all the connectedness due
o common factors is now absorbed and interpreted as individual level connectedness, leading to potentially misleading
nferences.

In sum, our framework extends traditional VAR analyses of financial asset connectedness to control for the presence
ossible common factors in the determination of volatility. This extension leads to new interpretations of the data that
ive a prominent role to the presence of a single common factor in volatility connectedness. Our results show that
his common factor accounts for more than a half of the variation in the data, thereby contributing substantially to
bserved connectedness. But even allowing for the influence of this common factors there is still a remarkable degree of
onnectedness arising from spillover channels that operate among the assets themselves.

. Conclusion

This paper proposes a methodology to study the properties of regularized estimates of high-dimensional VARs
ith unobserved common factors. The presence of common factors introduces strong cross sectional dependence into
he process. Incorporating such dependence is particularly important in high-dimensional disaggregated data where
onnectedness between the variables may arise through different channels. Dependence and connectedness are found
o be especially relevant in studying the transmission of investor fear across financial assets in our study of asset price
olatility.
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Table 4
Connectedness measures across funds.
Connectedness measures by estimates of VAR with CFs model

TICKER XLE XOP IYE OIH XLF KBE KRE XLY

νi 64.9% 59.1% 65.4% 58.0% 65.2% 56.8% 56.6% 72.0%
FROM 71.4% 65.4% 71.7% 64.3% 61.7% 61.3% 62.3% 51.8%
TOi 106.8% 86.0% 103.9% 71.5% 57.8% 72.6% 51.4% 37.3%

TICKER XHB ITB XRT IYR VNQ XLB XME XLK

νi 53.6% 49.5% 60.1% 50.7% 49.7% 67.2% 56.9% 70.5%
FROMi 60.5% 58.3% 36.5% 57.9% 58.6% 37.5% 44.1% 39.0%
TOi 56.3% 41.7% 19.0% 79.7% 74.4% 26.3% 37.2% 37.3%

TICKER SMH XLV IBB XLP XLU XLI GDX Average

νi 54.8% 64.3% 50.7% 61.3% 50.6% 67.7% 31.0% ν̄ = 56.1%
FROMi 31.9% 38.3% 28.8% 30.7% 29.7% 40.9% 27.7% d̄12 = 49.8%
TOi 23.3% 34.1% 33.0% 21.2% 19.6% 20.7% 19.1%

Connectedness measures by estimates of pure VAR model

TICKER XLE XOP IYE OIH XLF KBE KRE XLY

FROMi 89.3% 87.1% 89.4% 87.0% 89.6% 86.8% 87.6% 90.9%
TOi 105.0% 79.5% 103.0% 77.7% 112.9% 97.0% 89.1% 110.5%

TICKER XHB ITB XRT IYR VNQ XLB XME XLK

FROMi 87.3% 86.3% 88.8% 85.7% 86.2% 90.1% 88.8% 89.8%
TOi 95.8% 80.8% 79.1% 94.0% 89.6% 105.6% 80.1% 103.8%

TICKER SMH XLV IBB XLP XLU XLI GDX Average

FROMi 87.6% 88.1% 83.8% 88.4% 85.7% 89.8% 76.5% d̄12 = 87.40%
TOi 74.8% 81.2% 60.8% 80.0% 60.0% 104.3% 45.8%

Note: Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate, natural resource, technology, health care, consumer
defensive, utilities, industrials and equity precious metals, respectively.

Fig. 3. Heat map of D̃12 .

In practice, our procedure is implemented as follows. First, given the order p of the VAR process, which can be estimated
ia a growth ratio criterion, we obtain preliminary estimates of the transition matrices and common component via ℓ1-
uclear norm regularizations, with which one can estimate the number of factors consistently and obtain a preliminary
onsistent estimate of the common factors. Second, we estimate the model using a generalized Lasso procedure by
ncluding the preliminary estimate of the common factors as regressors. In the third stage conservative Lasso is used
o obtain the final estimates, which are shown to be asymptotically equivalent to the oracle least squares estimates

The methods and results in this paper open up multiple avenues for further research. First, following BB (2019) it
ay be useful in practice to impose some sparsity assumptions on the large dimensional error variance matrix and
evelop estimation methods to achieve this. Second, the model studied here does not allow for structural change in
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he transition matrices or the factor loadings (c.f., Su and Wang (2017)). It will also be interesting and challenging to
tudy high-dimensional VAR models with common factors that may involve time-varying transition matrices and factor
oadings, which can help capture empirical evolution in institutional and regulatory frameworks. Third, the framework and
ethods provide the facility to implement Granger-causality testing in the presence of common factors. Existing Granger-
ausality tests mainly focus on low-dimensional VAR models, most often bivariate or trivariate VAR models. Exceptions
nclude Hecq et al. (2020) and Fan et al. (2020) who consider Granger causality tests in high-dimensional VARs based
n post-double-selection and debiased estimators, respectively, but do not allow for strong cross-sectional dependence.
hese avenues of future work provide many options for further technical and applied research on high-dimensional VAR
ystems.

ppendix A. Proofs of the main results

roof of Proposition 2.1. (i) By Assumption A.1(iv), the y(u)it and y(f )it are mutually independent. It suffices to study them
eparately. By Assumption A.1(i), we can write y(u)it as the linear process

y(u)it =

∞∑
j=0

α
(u)
iN (j)ut−j =

∞∑
j=0

α
(u)
iN (j)C (u)ϵ

(u)
t−j ≡

∞∑
j=0

C (i,u)
j ϵ

(u)
t−j,

where C (i,u)
j ≡ α

(u)
iN (j)C (u). Under Assumption A.1(vi), one can bound |(e1,p ⊗ ei,N )′Φ j

| by ψmax([Φ j
][N],[N]) ≤ c̄ρ j. It follows

that |α(u)
iN (j)| ≤ c̄ρ j. Then the MA(∞) representation of y(u)it is valid with E(y(u)it ) = 0 and Var(y(u)it ) =

∑
∞

j=0 α
(u)
iN (j)Σuα

(u)
iN (j)′ <

∞.
Under Assumption A.1(vi), we can also show that E(|y(f )it |) ≤

∑
∞

j=0 |α
(f )
iN (j)|

⏐⏐µf
⏐⏐ <∞. The MA(∞) representation of y(f )it

is

y(f )it = E(y(f )it )+
∞∑
j=0

α
(f )
iN (j)(f 0t−j − µf ) = E(yit )+

∞∑
j=0

C (i,f )
j ϵ

(f )
t−j,

where C (i,f )
j ≡

∑j
k=0 α

(f )
iN (k)C (f )

j−k. Under Assumption A.1(vi), |C (i,f )
j | ≤

∑j
k=0 |α

(f )
iN (k)| · ∥C (f )

j−k∥op. In addition, by Assump-
tion A.1(ii),

∞∑
j=0

j∑
k=0

ρk
∥C (f )

j−k∥max =

∞∑
k=0

ρk
∞∑
j=k

∥C (f )
j−k∥ max ≤ c̄

∞∑
k=0

ρk(k+ 1)−α ,

for some constant c̄ < ∞. Hence C (i,f )
j is absolutely summable, Var(y(f )it ) =

∑
∞

j=0 C
(i,f )
j C (i,f )′

j < ∞, and the MA(∞)
representation of y(f )it is valid.

Similar to the decomposition (2.5), we can write Xt = X (u)
t + X (f )

t . For ΣX , due to the independence between X (u)
t

and X (f )
t , we can also write ΣX = Σ

(f )
X + Σ

(u)
X , where Σ (u)

X ≡ E(X (u)
t X (u)′

t ) and Σ (f )
X ≡ E(X (f )

t X (f )′
t ). Since Σ (f )

X is positive
semi-definite, we have ψmin(ΣX ) ≥ ψmin(Σ

(u)
X ). It suffices to show ψ(Σ (u)

X ) is bounded below. By Proposition 2.3 of BM
(2015), we have

ψmin(Σ
(u)
X ) ≥

ψmin(Σu)
max|z|=1 ψmax(A∗(z)A(z))

.

Given Assumption A.1(vii), we have that ψmin(Σ
(u)
X ) is bounded below by some constant.

(ii) By virtue of the independence between X (u)
t and X (f )

t , it can also be shown that ψmin(Σ) ≥ ψmin(Σ
(u)
X ). ■

.1. Analysis of the first-step estimators

To prove Theorem 3.1, we need the following two lemmas whose proofs can be found in the online supplement.

emma A.1. For the T × N matrices Θ0 and ∆, we have
(i)
Θ0
+M(∆)


∗
=
Θ0


∗
+ ∥M(∆)∥∗;

(ii) ∥∆∥2F = ∥M(∆)∥2F + ∥P(∆)∥2F ;
(iii) rank(P(∆)) ≤ 2R0;
(iv) ∥∆∥2F =

∑
j ψj(∆)2 and ∥∆∥2

∗
≤ ∥∆∥2F rank(∆);

For any conformable matrices M1 and M2, the following statement holds:
(v) |tr(M M )| ≤ ∥M ∥ |vec(M )| and |tr(M M )| ≤ ∥M ∥ ∥M ∥ .
1 2 1 max 2 1 1 2 1 op 2 ∗
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emma A.2. Suppose that Assumption A.1 hold. There exist absolute constants c, c, c̄ ∈ (0,∞) such that
(i)
U′Xmax /T ≤ γ1/2 with probability greater than 1− c̄(pN2T 1−q/4(logN)−q/2 + pN2−c logN );

(ii)
U′PF0X


max /T ≤ c · γ1 with probability greater than 1− c̄[pN(T 1−q/4(logN)−q/2 ∨ e−cT )+ pN1−c logN

].

roof of Theorem 3.1. Let ∆̃(1)
= B̃− B0 and ∆̃(2)

= Θ̃ −Θ0. Define the event

E (1)
NT = {

U′Xmax /T ≤ γ1/2, ∥U∥op /
√
NT ≤ γ2/2}.

y Lemma A.2(i) and Assumption A.3(i), E (1)
NT holds with probability at least 1 − c̄[pN2T 1−q/2(logN)−q/2 +pN2−c logN

]. By
he definition of (B̃, Θ̃), we have

0 ≥ L(B̃, Θ̃)− L(B0,Θ0)

=
1

2NT
(∥Y− XB̃− Θ̃∥2F − ∥U∥

2
F)+

γ1

N
(|vec(B̃)|1 − |vec(B

0)|1)+
γ2
√
NT

(∥Θ̃∥∗ − ∥Θ0
∥∗)

≡ d1 + d2 + d3. (A.1)

o establish the asymptotic properties of B̃ and Θ̃ , we study d1, d2 and d3 in turn.
First, consider d1. By the identity Y = XB0

+Θ0
+ U, we haveY− XB̃− Θ̃

2
F
− ∥U∥2F =

X∆̃(1)
+ ∆̃(2)

2
F − 2 tr[U′(X∆̃(1)

+ ∆̃(2))].

For tr[U′(X∆̃(1)
+ ∆̃(2))], conditional on E(1)NT , we apply the triangle inequality and Lemma A.1(v) to obtain

1
NT
|tr[U′(X∆̃(1)

+ ∆̃(2))]| ≤
1
NT
∥U′X∥max|vec(∆̃(1))|1 +

1
NT
∥U∥op ∥∆̃(2)

∥∗

≤
γ1

2N
|vec(∆̃(1))|1 +

γ2

2
√
NT
∥∆̃(2)
∥∗.

t follows that

d1 ≥
1

2NT
∥X∆̃(1)

+ ∆̃(2)
∥
2
F −

γ1

2N
|vec(∆̃(1))|1 −

γ2

2
√
NT
∥∆̃(2)
∥∗

≥
1

2NT
∥X∆̃(1)

+ ∆̃(2)
∥
2
F −

γ1

2N

N∑
i=1

(
|∆̃

(1)
Ji,i
|
1
+ |∆̃

(1)
Jci ,i
|
1

)
−

γ2

2
√
NT

(
∥P(∆̃(2))∥∗ + ∥M(∆̃(2))∥∗

)
. (A.2)

Next, consider d2. By the identities |B̃∗,i|1 = |B̃Ji,i|1 + |B̃Jci ,i
|
1
and |B0

∗,i|1
= |B0

Ji,i
|
1
, we have

d2 =
γ1

N

N∑
i=1

(|B̃Ji,i|1 + |B̃Jci ,i
|
1
− |B0

Ji,i|1
) ≥

γ1

N

N∑
i=1

(|∆̃(1)
Jci ,i
|
1
− |∆̃

(1)
Ji,i
|
1
), (A.3)

here we use the fact that |B̃Ji,i|1 + |∆̃
(1)
Ji,i
|
1
≥ |B0

Ji,i
|
1
by the triangle inequality and that |B̃Jci ,i

|
1
= |∆̃

(1)
Jci ,i
|
1
as B0

Jci ,i
= 0.

Now, consider d3. By the triangle inequality and Lemma A.1(i), we have

∥Θ̃∥∗ = ∥∆̃
(2)
+Θ0

∥∗ = ∥Θ
0
+ P(∆̃(2))+M(∆̃(2))∥∗

≥ ∥Θ0
+M(∆̃(2))∥∗ − ∥P(∆̃(2))∥∗

= ∥Θ0
∥∗ + ∥M(∆̃(2))∥∗ − ∥P(∆̃(2))∥∗.

t follows that

d3 ≥
γ2
√
NT

(∥M(∆̃(2))∥∗ − ∥P(∆̃(2))∥∗). (A.4)

Combining the results in (A.1)–(A.4), we have

1
2NT
∥X∆̃(1)

+ ∆̃(2)
∥
2
F +

γ1

2N

N∑
i=1

∥∆̃
(1)
Jci ,i
∥1 +

γ2

2
√
NT
∥M(∆̃(2))∥∗

≤
3γ1
2N

N∑
∥∆̃

(1)
Ji,i
∥1 +

3γ2
√ ∥P(∆̃(2))∥∗. (A.5)
i=1 2 NT
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he above inequality indicates that (∆̃(1), ∆̃(2)) ∈ CNT (3). By Assumption A.2, with probability 1− εNT we have
1
N
∥∆̃(1)
∥
2
F +

1
NT
∥∆̃(2)
∥
2
F − κ2Φγ1,γ2 (∆̃

(1), ∆̃(2)) ≤ κ1
1
NT
∥X∆̃(1)

+ ∆̃(2)
∥
2
F , (A.6)

here κ1 =
(
κ ∧ κ ′

)−1 and κ2 = κ1κ ′′. By the inequality (A.5), we have

1
NT
∥X∆̃(1)

+ ∆̃(2)
∥
2
F ≤ 3Φγ1,γ2 (∆̃

(1), ∆̃(2)) =
3γ1
N

N∑
i=1

|∆̃
(1)
Ji,i
|
1
+

3γ2
√
NT
∥P(∆̃(2))∥∗

≤ 3γ1
√
Ka
∥∆̃(1)
∥F

√
N
+ 3
√

2R0γ2
∥∆̃(2)
∥F

√
NT

≤ 3
√
2(γ1

√
Ka ∨ (

√

2R0γ2))

√
1
N
∥∆̃(1)∥2F +

1
NT
∥∆̃(2)∥2F, (A.7)

here the second inequality holds by Lemma A.1(ii)–(iv) and the fact that
∑N

i=1 |∆̃
(1)
Ji,i
|
1
≤
√
NKa(

∑N
i=1 |∆̃

(1)
Ji,i
|
2
)1/2 ≤

NKa∥∆̃
(1)
∥F, where recall that Ka = N−1

∑N
i=1 ki and ki ≡ |Ji| denotes the cardinality of the set Ji. Combining (A.6)–(A.7),

we have with probability at least (1− εNT ) (1− c̄[pN2T 1−q/2(logN)−q/2 +pN2−c logN
]) ≥ 1− εNT − c̄[pN2T 1−q/2(logN)−q/2

+pN2−c logN
],

1
N
∥∆̃(1)
∥
2
F +

1
NT
∥∆̃(2)
∥
2
F ≤ (3κ1 + κ2)

√
2[(γ1

√
Ka) ∨ (

√

2R0γ2)]

√
1
N
∥∆̃(1)∥2F +

1
NT
∥∆̃(2)∥2F,

hich implies that 1
√
N
∥∆̃(1)
∥F ≤ c̄(γ1

√
Ka ∨ γ2) and 1

√
NT
∥∆̃(2)
∥F ≤ c̄(γ1

√
Ka ∨ γ2) with c̄ = (3κ1+ κ2)

√
2(1∨

√
2R0) <∞.

This completes the proof. ■

To prove Theorem 3.2, we need the following lemma which is proved in the online supplement.

Lemma A.3. Suppose that Assumptions A.1 and A.3 hold. Let SF ≡ F 0′F 0/T . Then for any x > 0,

P(T 1/2
∥SF −ΣF∥max > x) ≤ C1x−q/2T 1−q/4

+ C2 exp
(
−C3x2

)
for some absolute constants Cℓ, ℓ = 1, 2, 3.

Proof of Theorem 3.2. We operate conditional on the event that

E (2)
NT = {

U′Xmax /T ≤ γ1/2, ∥U∥op /
√
NT ≤ γ2/2 and ∥SF −ΣF∥op ≤ c

√
logNT−1/2},

here c is a large positive constant. One can verify that for some positive constants c̄ ′ and c ,

P(E (2)
NT ) ≥ 1− c̄ ′(pN2T 1−q/4(logN)−q/2 + pN2−clogN )

by Lemmas A.2–A.3. From Theorem 3.1, we have with probability at least 1− εNT − c̄ ′(pN2T 1−q/4(logN)−q/2 +pN2−c logN ),

(NT )−1/2∥Θ̃ −Θ0
∥op ≤ (NT )−1/2∥Θ̃ −Θ0

∥F ≤ c̄(γ1
√
Ka ∨ γ2).

Next, we show that E (2)
NT implies the desired results.

tep 1: Bound the eigenvalues.
Let SΛ = Λ0′Λ0/N and SF = F 0′F 0/T . Let ŝ1 ≥ · · · ≥ ŝR0 be the R0 nonzero eigenvalues of 1

NTΘ
0Θ0′
=

1
T F

0′SΛF 0. Note
that ŝ1, . . . , ŝR0 are the same as the eigenvalues of S1/2F SΛS

1/2
F . Conditional on the event E (2)

NT and by Assumption A.4(i)–(ii),
we have

|ŝj − sj| ≤ c̄(
√
logNT−1/2 + N−1/2) for some c̄ <∞ andj ∈ [R0

].

his also implies that ∥Θ0
∥op =

√
(s1 + oP (1))NT . For j > R0, simply define ŝj = sj = 0.

Let s̃1 ≥ · · · ≥ s̃N∧T be the eigenvalues of 1
NT Θ̃Θ̃

′. Again by the Weyl’s theorem, we have for j = 1, 2, . . .

|s̃j − sj| ≤ |s̃j − ŝj| + |ŝj − sj|

≤
1
NT
∥Θ̃Θ̃ ′ −Θ0Θ0′

∥op + |ŝj − sj|

≤
2
NT
∥Θ0
∥op∥Θ̃ −Θ

0
∥op +

1
NT
∥Θ̃ −Θ0

∥
2
op + |ŝj − sj|,

implying |s̃j − sj| ≤ c̄(γ1
√
Ka ∨ γ2) for j = 1, 2, . . . Then for j ∈ [R0

], w.p.a.1,

|ŝ − s̃ | ≥ |ŝ − ŝ | −
⏐⏐ŝ − s̃

⏐⏐ ≥ (s − s )/2 and
j−1 j j−1 j j j j−1 j
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|s̃j − ŝj+1| ≥ |ŝj − ŝj+1| − |s̃j − ŝj| ≥ (sj − sj+1)/2, (A.8)

ith ŝR0+1 = sR0+1 = 0.

tep 2: Prove the consistency of R̂.
Note that ψr (Θ̃) =

√
NT s̃r . By the result in Step 1, we have that ψr (Θ̃) ≥

√
[sR0 − oP (1)]NT for all r ≤ R0, and

ψR0+1(Θ̃) ≤ ψR0+1(Θ
0)+

Θ̃ −Θ0

op ≤

Θ̃ −Θ0

F ≤
√
NT c̄(γ1

√
Ka ∨ γ2) =

√
NTo(γ 1/2

2 )

here we use the condition that γ1
√
Ka = o(γ 1/2

2 ) under Assumption A.4(iii). These results, in conjunction with the fact
hat (γ2

√
NT∥Θ̃∥op)1/2 ≍

√
NT
√
γ2 with γ2 = c2(N−1/2 + T−1/2),13 imply that

min
r≤R0

ψr (Θ̃) ≥ (γ2
√
NT∥Θ̃∥op)1/2 and ψR0+1(Θ̃) < (γ2

√
NT∥Θ̃∥op)1/2

ith probability at least 1 − εNT − c̄ ′(N2T 1−q/4(logN)−q/2 + N2−c logN ) for sufficiently large (N, T ). Then we have R̂ = R0

ith probability at least 1− εNT − c̄ ′(N2T 1−q/4(logN)−q/2 + N2−c logN ) for sufficiently large (N, T ).

Step 3: Characterize the eigenvectors.
Next, we show that there is an R0

×R0 matrix H̃ , such that the columns of 1
√
T
F 0H̃ are the first R0 eigenvectors ofΘ0Θ0′.

et v be the R0
×R0 matrix whose columns are the eigenvectors of S1/2F SΛS

1/2
F . Then D = v′S1/2F SΛS

1/2
F v is a diagonal matrix

of the eigenvalues of S1/2F SΛS
1/2
F that are distinct by Assumption A.4(ii). Let H̃ = S−1/2F v. Then

1
NT
Θ0Θ0′F 0H̃ =

1
T
F 0SΛF 0′F 0H̃ = F 0SΛSF H̃ = F 0SΛS

1/2
F v

= F 0S1/2F S−1/2F SΛS
1/2
F v = F 0S1/2F vv′S−1/2F SΛS

1/2
F v

= F 0H̃D.

n addition, we have (F 0H̃)′F 0H̃/T = v′S−1/2F
F0′F0
T S−1/2F v = v′v = IR0 . So the columns of 1

√
T
F 0H̃ are the eigenvectors of

Θ0Θ0′, with corresponding eigenvalues in D.

Step 4: Prove the convergence.
We bound

F̃ − F 0H̃

F
conditional on the event R̂ = R0. By the Davis–Kahan sin(Θ) theorem (see, e.g., Yu et al. (2014))

and (A.8),

1
√
T
∥F̃ − F 0H̃∥F ≤

1
NT ∥Θ̃Θ̃

′
−Θ0Θ0′

∥op

minj≤R0min{|ŝj−1 − s̃j|, |s̃j − ŝj+1|}

≤ c̄
1
NT
∥Θ̃Θ̃ ′ −Θ0Θ0′

∥op ≤ c̄(γ1
√
Ka ∨ γ2).

ext we havePF̃ − PF0

F =

 1T F̃ F̃ ′ − PF0


F
≤ 2c̄

 1
√
T
F̃ −

1
√
T
F 0H̃


F
+

F 0H̃H̃ ′F 0′

T
− PF0


F

≤ c̄(γ1
√
Ka ∨ γ2),

where the second equality is from the fact that H̃H̃ ′ = S−1/2F vv′S−1/2F = S−1F . This proves the second result in the
heorem. ■

.2. Theoretical analysis of the second-step estimators

To prove Theorem 3.3, we need to add a further lemma.

emma A.4. Suppose that Assumptions A.1–A.3 hold. Let Σ̃ ≡ T−1X′X−T−2X′F̃ F̃ ′X. Then there exist some constants c, c̄ and
c̄ ′ such that with probability larger than 1− c̄ ′[p2N2T 1−q/4(logN)−q/2 + pNe−cT + p2N2−c logN

] we have
(i) ∥H̃∥max ≤ ∥H̃∥∞ ≤ c̄ and ∥H̃−1∥F ≤ c̄;
(ii) max1≤j≤pN |X∗,j|/

√
T < c̄ and max1≤j≤N |U∗,j|/

√
T < c̄;

(iii) ∥F 0′U∥max/T ≤ logN · T−1/2/(16c̄2) and
T−1X′F 0

−ΣXF

max ≤ c̄T−1/2 logN;

(iv) ∥Σ̃ −Σ∥max ≤ γ3;

13 Write a ≍ b to denote that both a/b and b/a are stochastically bounded.
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(v) Suppose 16KJγ3 ≤ ψmin(Σ)/2. Then Σ̃ satisfies the restricted eigenvalue condition for KJ in (3.3) and κΣ̃ (KJ ) ≥
min(Σ)/2.

roof of Theorem 3.3. Fix c̄ as in Lemma A.4. In this proof, we choose a large enough constant c3 such that γ3 =
3(γ1
√
Ka ∨ γ2) with c3 ≥ 2 ∨ (16c̄2) ∨ (16c̄4). Let E (3)

NT be the joint events of

(1) T−1
U′Xmax ≤ γ3/4; (2) max1≤j≤pN |X∗,j|/

√
T ≤ c̄;

(3) max1≤j≤N |U∗,j|/
√
T ≤ c̄; (4) ∥F̃ − F 0H̃∥F/

√
T ≤ γ3/(16c̄3);

(5) ∥F 0′U∥max/T ≤ γ3/(16c̄2); (6) ∥H̃∥∞ ∨ ∥H̃−1∥F ≤ c̄;

(7) R̂ = R0
;

nd (8) Σ̃ satisfies the restricted eigenvalue condition for KJ in (3.3) with κΣ̃ (KJ ) ≥ ψmin(Σ)/2. Under Assumptions A.1–
.3, by Lemmas A.2 and A.4, E (3)

NT holds with probability larger than 1 − εNT− c̄ ′[p2N2T 1−q/4(logN)−q/2 + pNe−cT +
p2N2−c logN

]. Conditional on the event E (3)
NT , we also have the event that

(9) T−1∥F̃ ′U∥max ≤ T−1∥(F̃ − F 0H̃)′U∥max + T−1∥H̃ ′F 0′U∥max

≤ T−1∥F̃ − F 0H̃∥F ·max1≤j,N∥U∗,j∥ + ∥H̃ ′∥∞T−1∥F 0′U∥max

≤ γ3/(8c̄),

and that

(10) max
1≤i≤N

T−1/2|λ0′i F
0′MF̃ | ≤ max

1≤i≤N
|λ0i | · T

−1/2
∥(F 0
− F̃ H̃−1)′MF̃∥F

≤ c̄T−1/2∥F̃ − F 0H̃∥F
H̃−1

F
≤ γ3/(8c̄).

onditional on the event E (3)
NT , we establish the bound of |∆̇∗,i|1 ≡ |Ḃ∗,i − B0

∗,i|1
for i ∈ [N].

Step 1. Concentrate out λ.
The objective function (3.2) is a least squares objective function with respect to λ. Given Ḃ∗,i, we have that

λ̇i = (F̃ ′F̃ )−1F̃ ′(Y∗,i − XḂ∗,i) = T−1F̃ ′(Y∗,i − XḂ∗,i),

here the second equality holds by the identity F̃ ′F̃/T = IT . After concentrating out λi, the optimization problem becomes

Ḃ∗,i = argmin
v∈RNp

1
2T
∥MF̃ (Y∗,i − Xv)∥2F + γ3|v|1, (A.9)

here MF̃ = IT − F̃ F̃/T .

tep 2. Compare the objective functions at Ḃ∗,i and B0
∗,i.

By the identity Y∗,i = XB0
∗,i + F 0λ0i + U∗,i and the definition of Ḃ∗,i, we have

0 ≥
1
2T
[∥MF̃ (Y∗,i − XḂ∗,i)∥2F − ∥MF̃ (F

0λ0i + U∗,i)∥2F] + γ3(|Ḃ∗,i|1 − |B
0
∗,i|1)

=
1
2T
∥MF̃X∆̇∗,i∥

2
F −

1
T
tr[(F 0λ0i + U∗,i)′MF̃X∆̇∗,i] + γ3(|Ḃ∗,i|1 − |B

0
∗,i|1),

where ∆̇ ≡ Ḃ− B0 and ∆̇∗,i denotes the ith column of ∆̇. Then by Lemma A.1(v), we have

1
T
∥(F 0λ0i + U∗,i)′MF̃X∥max|∆̇∗,i|1 ≥

1
T
tr[(F 0λ0i + U∗,i)′MF̃X∆̇∗,i]

≥
1
2T
∥MF̃X∆̇∗,i∥

2
F + γ3(|Ḃ∗,i|1 − |B

0
∗,i|1)

≥
1
2T
∥MF̃X∆̇∗,i∥

2
F + γ3|∆̇Jci ,i

|
1
− γ3|∆̇Ji,i|1,

here the last inequality follows because

|Ḃ∗,i|1 − |B
0
∗,i|1 = |∆̇∗,i + B0

∗,i|1 − |B
0
∗,i|1 = |∆̇

0
Jci ,i
|
1
+ |∆̇Ji,i + B0

∗,i|1 − |B
0
∗,i|1

≥ |∆̇Jci ,i
|
1
− |∆̇Ji,i|1.

tep 3. Bound T−1max [∥(F 0λ0 + U )′M X∥ ] , conditional on the event E (3).
i i ∗,i F̃ max NT
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By the triangle and Cauchy Schwartz inequalities and the fact that T−1/2∥F̃∥op = 1, we have

T−1∥(F 0λ0i + U∗,i)′MF̃X∥max

≤ T−1∥λ0′i F
0′MF̃X∥max + T−1∥U′

∗,iMF̃X∥max

≤ max
1≤j≤Np

T−1/2|X∗,j| · T−1/2|λ0′i F
0′MF̃ | + max

1≤j≤Np
T−1|U′

∗,iX∗,j| + T−2∥U′
∗,iF̃ F̃

′X∥max

≤ max
1≤j≤Np

T−1|U′
∗,iX∗,j| +

{
T−1|U′

∗,iF̃ | + T−1/2|λ0′i F
0′MF̃ |

}
max
1≤j≤Np

T−1/2|X∗,j|.

ombining events (1), (9) and (10), the right hand side of the above inequality is bounded by γ3/2 conditional on the
vent E (3)

NT .

tep 4. Obtain the final bound for |Ḃ∗,i − B0
∗,i|1

.
Combining the results in Steps 2–3 and using the identity |∆̇∗,i|1 = |∆̇Ji,i|1 + |∆̇Jci ,i

|
1
, we have that conditional on the

vent E (3)
NT ,

3γ3|∆̇Ji,i|1 ≥
1
T
∥MF̃X∆̇∗,i∥

2
F + γ3|∆̇Jci ,i

|
1
.

t follows that |∆̇Jci ,i
|
1
≤ 3|∆̇Ji,i|1 and conditional on E (3)

NT ,

∆̇′
∗,iΣ̃∆̇∗,i ≤ 3γ3|∆̇Ji,i|1 ≤ 3γ3

√
ki|∆̇Ji,i| ≤

6
√
ki

ψmin(Σ)
γ3

√
∆̇′
∗,iΣ̃∆̇∗,i,

where the last inequality holds by event (8) in E (3)
NT . It follows that

√
∆̇′
∗,iΣ̃∆̇∗,i, ≤

6
√

ki
ψmin(Σ)γ3 and |∆̇Ji,i|1 ≤

2
√

ki
ψmin(Σ)√

∆̇∗,iΣ̃∆̇∗,i, ≤
12ki

(ψmin(Σ))2
γ3. Consequently, we have established that

|∆̇∗,i|1 = |∆̇Ji,i|1 + |∆̇Jci ,i
|
1
≤ 4|∆̇Ji,i|1 ≤

48
(ψmin(Σ))2

kiγ3.

Then the conclusion in Theorem 3.3 follows. ■

A.3. Theoretical analysis of the third-step estimators

To prove Theorems 3.4 and 3.5, we need the following lemma.

Lemma A.5. Suppose that Assumptions A.1–A.5 hold. Then uniformly over i = 1, . . . ,N, the following results hold w.p.a.1:

(i) ψmin(Σ̃Ji,Ji ) ≥ c;

(ii) ∥Σ̃Jci ,Ji
∥max ≤ c̄ and ψmax(Σ̃Jci ,Ji

) ≤ c̄ki,

or some finite constant c̄.

roof of Theorem 3.4. For any n-dimensional vector v = (v1, . . . , vn)′, denote abs(v) = (|v1|, . . . , |vn|)′. We say that v < ṽ

f and only if vi < ṽ′i for all i ∈ [n]. Let W
(i)
= diag(w1i, . . . , wNp,i), W (1,i)

= W (i)
Ji,Ji

and W (0,i)
= W (i)

Jci ,J
c
i
. The following proof

s by induction. Based on the error bounds for F̂ (ℓ)’s, we show that results (i)–(iii) hold for the (ℓ+ 1)th-step estimators.
Then the results follow as we have already established that ∥F̂ (0)

− F 0H̃∥F/
√
T = OP (γ1

√
Ka + γ2).

For notational simplicity, let Σ̃ (ℓ) denote T−1X′MF̂ (ℓ)X for ℓ = 0, 1, 2, . . .
(i) For all (k, i)’s such that B0

ki = 0, sup(k,i):B0ki=0
|Ḃki| ≤ ∥Ḃ − B0

∥max ≤ OP (KJγ3) = oP (γ4). It follows that W (0,i)
= I|Jci |

with w.p.a.1. For all (k, i)’s such that B0
ki ̸= 0,

min
k,i:B0ki ̸=0

|Ḃki| ≥ min
i∈[N]

min
k∈Ji
|B0

ki| − ∥Ḃ− B0
∥max = min

i∈[N]
min
k∈Ji
|B0

ki| − oP (γ4) ≥ αγ4 w.p.a.1

by Assumption A.5(i). It follows that W (1,i)
= 0 w.p.a.1. For each i ∈ [N], the estimator B̂(ℓ)

∗,i can be written as

B̂(ℓ)
∗,i = argmin

v∈RNP
L(i)(v, F̂ (ℓ−1)),

where L(i)(v, F ) ≡ 1
2T (Y∗,i−Xv)′MF̂ (ℓ−1) (Y∗,i−Xv)+ γ4

∑pN
k=1wki |vk|. Following the proof of Proposition 1 of Zhao and Yu

(2006), sgn(B̂(l)
∗,i) =sgn(B

0
∗,i) is implied by event Ei,1 ∩ Ei,2, where

E ≡

{
abs[T−1/2Σ̃−1X′ M (ℓ−1) (U + F 0λ0)] < T 1/2abs(B0 )− T 1/2γ abs[Σ̃−1W (1,i)sgn(B0 )]

}

i,1 Ji,Ji ∗,Ji F̂ ∗,i i Ji,i 4 Ji,Ji Ji,i
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nd

Ei,2 ≡ {abs[T−1/2(−Σ̃Jci ,Ji
Σ̃−1Ji,Ji
· X′
∗,Ji + X′

∗,Jci
)MF̂ (ℓ−1) (U∗,i + F 0λ0i )]

≤ T 1/2γ4W (0,i)
· ι|Jci |
− T 1/2γ4abs[Σ̃Jci ,Ji

Σ̃−1Ji,Ji
W (1,i)sgn(B0

Ji,i)]}.

e prove (i) by showing that Ei,1 and Ei,2 hold w.p.a.1.
First, we consider Ei,1. It suffices to show that each entry of T−1/2abs[Σ̃−1Ji,Ji

X′
∗,Ji

MF̂ (ℓ−1) (U∗,i + F 0λ0i )] is oP
√
T mini mink∈Ji |B

0
ki|). Applying the triangle inequality, one has

T−1/2abs[Σ̃−1Ji,Ji
X′
∗,JiMF̂ (ℓ−1) (U∗,i + F 0λ0i )]

≤ T−1/2abs(Σ̃−1Ji,Ji
X′
∗,JiMF̂ (ℓ−1)U∗,i)+ T−1/2abs(Σ̃−1Ji,Ji

X′
∗,JiMF̂ (ℓ−1)F

0λ0i )

≤ T−1/2abs(Σ̃−1Ji,Ji
X′
∗,JiMF0U∗,i)+ T−1/2abs[Σ̃−1Ji,Ji

X′
∗,Ji (PF0 − PF̂ (ℓ−1) )U∗,i]

+ T−1/2abs[Σ̃−1Ji,Ji
X′
∗,JiMF̂ (ℓ−1) (F̂

(ℓ−1)
− F 0H̃)H̃−1λ0i ]. (A.10)

Note that maxi ∥Σ̃−1Ji,Ji
∥op ≤ c̄ w.p.a.1 by Lemma A.5(i). This, in conjunction with Lemma A.2(i)–(ii), implies that the first

term on the right hand side of (RHS) of (A.10) is uniformly OP (logN). With ∥F̂ (ℓ−1)
− F 0H̃∥F/

√
T = OP (γ1

√
Ka + γ2) =

P ((logN)T−1/2
√
Ka + N−1/2),14 we have ∥PF0 − PF̂ (ℓ−1)∥op = OP ((logN)T−1/2

√
Ka + N−1/2). Note that Lemma A.4(ii)

nsures max1≤j≤pN∥X∗,j∥/
√
T and max1≤j≤N∥U∗,j∥/

√
T are both bounded by an absolute constant. It follows that each

entry of the second term on the RHS of (A.10) is OP (logN ·
√
Ka +

√
T/N). Similarly, each entry of the third term on

the RHS is OP (logN ·
√
Ka +

√
T/N). These results, along with the fact that logN · T−1/2

√
Ka = o(mini mink∈Ji |B

0
ki|) and

−1/2
= o(mini mink∈Ji |B

0
ki|) in Assumption A.5 imply that P(Ei,1)→ 1.

Next, we consider Ei,2. Similar to the analysis for Ei,1, we can use Lemma A.5(ii) to show that each entry of
T−1/2(−Σ̃Jci ,Ji

Σ̃−1Ji,Ji
·X′
∗,Ji
+X′

∗,Jci
)MF̂ (ℓ−1) (U∗,i+ F 0λ0i ) is OP (KJ logN ·

√
Ka+KJ

√
T/N) = o(

√
Tγ3). By the fact that γ3 = o(γ4),

e have P(Ei,2)→ 1, as (N, T )→∞.
(ii) Conditional on the event {B̂(ℓ)

=s B0
}, we can follow the proof of Lemma 1 in Zhao and Yu (2006) to establish the

irst order condition that

Σ̃Ji,Ji (B̂
(ℓ)
Ji,i
− B0

Ji,i) =
1
T
X′
∗,JiMF̂ (ℓ−1) (F

0λ0i + U∗,i),

for i ∈ [N]. Then⏐⏐⏐B̂(ℓ)
Ji,i
− B0

Ji,i

⏐⏐⏐ = ⏐⏐⏐⏐Σ̃−1Ji,Ji

1
T
X′
∗,JiMF̂ (ℓ−1) (F

0λ0i + U∗,i)
⏐⏐⏐⏐

≤ c−1
⏐⏐⏐⏐ 1T X′

∗,JiMF̂ (ℓ−1)F
0λ0i

⏐⏐⏐⏐+ c−1
⏐⏐⏐⏐ 1T X′

∗,JiMF̂ (ℓ−1)U∗,i

⏐⏐⏐⏐ ≡ c−1(A1i + A2i),

here we use the fact that maxi
Σ̃−1Ji,Ji


op
≤ c−1 w.p.a.1 by Lemma A.5(i). Note that uniformly in i ∈ [N],

A2
1i =

1
T 2

⏐⏐⏐X′∗,JiMF̂ (ℓ−1) (F̂
(ℓ−1)H̃−1 − F 0)λ0i

⏐⏐⏐2
=

1
T 2 tr

(
λ0′i (F̂

(ℓ−1)H̃−1 − F 0)′MF̂ (ℓ−1)X∗,JiX
′

∗,JiMF̂ (ℓ−1) (F̂
(ℓ−1)H̃−1 − F 0)λ0i

)
≤ ψmax

(
1
T
MF̂ (ℓ−1)X∗,JiX

′

∗,JiMF̂ (ℓ−1)

)
1
T

F̂ (ℓ−1)H̃−1 − F 0
2 λ0i 2

= ψmax

(
1
T
X′
∗,JiMF̂ (ℓ−1)X∗,Ji

)
1
T

F̂ (ℓ−1)H̃−1 − F 0
2 λ0i 2

≤ c̄ki
1
T

F̂ (ℓ−1)H̃−1 − F 0
2 = ki · OP[(γ1 + γ2)2],

and

A2
2i =

⏐⏐⏐⏐ 1T X′
∗,JiMF̂ (ℓ−1)U∗,i

⏐⏐⏐⏐2 ≤ 2
⏐⏐⏐⏐ 1T X′

∗,JiU∗,i

⏐⏐⏐⏐2 + 2
⏐⏐⏐⏐ 1T X′

∗,Ji F̂
(ℓ−1) 1

T
F̂ (ℓ−1)′U∗,i

⏐⏐⏐⏐2 .
14 This claim holds for ℓ = 1 by Theorem 3.2. Given this claim, we can show that ∥F̂ (ℓ)

− F 0H̃∥F/
√
T = OP ((logN)T−1/2

√
Ka + N−1/2) for each ℓ

sing the results below.
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t is standard to show that
⏐⏐⏐ 1T X′∗,JiU∗,i⏐⏐⏐ ≤ k1/2i OP (T−1/2 logN) uniformly in i. In addition,⏐⏐⏐⏐ 1T X′

∗,Ji F̂
(ℓ−1) 1

T
F̂ (ℓ−1)′U∗,i

⏐⏐⏐⏐2 = tr
(

1
T 2 F̂

(ℓ−1)′X∗,JiX
′

∗,Ji F̂
(ℓ−1) 1

T 2 F̂
(ℓ−1)′U∗,iU′∗,iF̂

(ℓ−1)
)

≤ ψmax

(
1
T 2 F̂

(ℓ−1)′X∗,JiX
′

∗,Ji F̂
(ℓ−1)

)
1
T 2

⏐⏐⏐F̂ (ℓ−1)′U∗,i
⏐⏐⏐2

≤ ψmax

(
1
T
X∗,JiX

′

∗,Ji

)
1
T 2

⏐⏐⏐F̂ (ℓ−1)′U∗,i
⏐⏐⏐2

= ki · OP[(γ1 + γ2)2] uniformly in i,

where the last equality follows from the fact ψmax( 1T X∗,JiX
′

∗,Ji
) ≤ c̄ w.p.a.1 and maxi 1

T |F̂
(ℓ−1)′U∗,i| = OP (γ1 + γ2) by

imilar arguments as used to obtain event (9) in the proof of Theorem 3.3. Then uniformly in i ∈ [N], we have
2
2i ≤ ki · OP[(γ1 + γ2)2] and⏐⏐⏐B̂(ℓ)

Ji,i
− B0

Ji,i

⏐⏐⏐2 ≤ ki · OP[(γ1 + γ2)2].

t follows that

∥X(B̂(ℓ)
− B0)∥2F

NT
=

1
N

N∑
i=1

⏐⏐⏐X(B̂(ℓ)
∗,i − B0

∗,i)
⏐⏐⏐2

T
=

1
N

N∑
i=1

1
T
(B̂(ℓ)

Ji,i
− B0

Ji,i)
′X′
∗,JiX∗,Ji (B̂

(ℓ)
Ji,i
− B0

Ji,i)
′

≤
1
N

N∑
i=1

⏐⏐⏐B̂(ℓ)
Ji,i
− B0

Ji,i

⏐⏐⏐2  1T X′
∗,JiX∗,Ji


op

=
1
N

N∑
i=1

k2i · OP[(γ1 + γ2)2].

Then the result in (ii) follows under Assumption A.5(iii).
(iii) Note that Y− XB̂(ℓ)

− F 0Λ0′
= U− X(B̂(ℓ)

− B0). By the result in (ii) and Assumption A.3(i),

1
√
NT

U− X(B̂(ℓ)
− B0)


op
≤

1
√
NT
∥U∥op +

1
√
NT

X(B̂(ℓ)
− B0)


op

≤ OP (γ2)+ OP (γ1 + γ2) = OP (γ1 + γ2).

One can apply analyses similar to proof of Theorem 3.2 to obtain the desired result. ■

Proof of Theorem 3.5. Let Σ̂ = X′MF̂X/T . From the proof of Theorem 3.4, we have

Σ̂Ji,Ji (B̂Ji,i − B0
Ji,i) =

1
T
X′
∗,JiMF̂ F

0λ0i +
1
T
X′
∗,JiMF̂U∗,i − γ4W

(1,i)sgn(B0
Ji,i). (A.11)

By Theorem 3.3 and Assumption A.5(i), maxk∈Ji wki = 0 w.p.a.1, which implies that γ4W (1,i)sgn(B0
Ji,i
) = op(T−1/2).

Noting that the columns of F̂/
√
T are the first R̂ eigenvectors of 1

NT (Y− XB̂(ℓ∗−1))(Y− XB̂(ℓ∗−1))′, we have

F̂VNT =
1
NT

(
Y− XB̂(ℓ∗−1)

)(
Y− XB̂(ℓ∗−1)

)′
F̂

=
1
NT

N∑
i=1

(
Y∗,i − X∗,Ji B̂

(ℓ∗−1)
Ji,i

)(
Y∗,i − X∗,Ji B̂

(ℓ∗−1)
Ji,i

)′
F̂ ,

where VNT is a diagonal matrix that consists of the R̂ largest eigenvalues of the matrix T×T matrix (NT )−1(Y−XB̂(ℓ∗−1))(Y−
B̂(ℓ∗−1))′, arranged in descending order along its diagonal line. One can use a similar expansion as in the Proof of
roposition S1.1, to study MF̂ . The estimation error of B̂(ℓ) depends on ℓ and the error of B̂(1), but part that is due to
ˆ (1) will decay fast. After finite steps, we have that

SiΣ̂Ji,Ji (B̂Ji,i − B0
Ji,i) =

1
T
SiX′∗,JiMF0U∗,i + oP (T−1/2).

By arguments as used in the proof of Lemma A.2, we can readily show that
 1

T X
′

∗,Ji
MF0X∗,Ji −ΣJi,Ji


F
= OP

(
KJT−1/2 logN

)
and | 1

√ X′ P U −
1
√ (F 0Σ−1 [Σ ] )′U | = O (K 1/2T−1/2 logN), where [Σ ] =

1 E
[
F 0′X

]
is a R0

× k matrix.

T ∗,Ji F0 ∗,i T F FX Ji,∗ ∗,i P J FX Ji,∗ T ∗,Ji i
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t follows that
√
TSi(B̂Ji,i − B0

Ji,i) =
1
√
T
Si(ΣJi,Ji )

−1(X∗,Ji − F 0Σ−1F [ΣFX ]Ji,∗)
′U∗,i + oP (1)

≡ T−1/2
T∑

t=1

z∗ituit + oP (1),

where z∗it = Si(ΣJi,Ji )
−1z0it and z0it denotes the tth column of the ki×T matrix (X∗,Ji−F

0Σ−1F [ΣFX ]Ji,∗)
′. Under Assumption A.1,

{z∗ituit , t ≥ 1} is a martingale difference sequence (m.d.s.) and we can readily verify the conditions of the martingale
central limit theorem by straightforward moment calculations and obtain

√
TSi(B̌Ji,i − B0

Ji,i
)

d
→ N(0, σ 2

i Ωi), where
σ 2
i = E

(
u2
it

)
. ■

Appendix B. Nagaev inequality for time series

In various places, we need to a sharp probability bound for partial sums like T−1
∑T

t=1 yi,t−kujt , which is nonlinear in
shocks {ujt} and non-Gaussian. Wu (2005) provides a simple functional measure to quantify the degree of dependence in
nonlinear systems. With the dependence measure, Wu and Wu (2016) establish a Nagaev-type inequality for nonlinear
processes, under mild conditions.

In Theorem B.1, we aim to bound a partial sum of the form Sn =
∑n

i=1 aiei, where the ai ∈ R are nonrandom, the scalar
process {ei} has the form ei = g(..., εi−1, εi), where the εi are independently and identically distributed (i.i.d.) random
ariables, and g(·) is a measurable function. Letting Fi ≡ (..., εi−1, εi), we write ei = g(Fi). Then a coupled process e∗i
an be defined as e∗i = g(F∗i ), where F∗i = (..., ε−1, ε∗0, ε1, . . . , εi−1, εi) and ε

∗

0 is an independent copy of ε0. Recall that
|| · |||q ≡ (E| · |qq)

1/q <∞. Assuming that |||ei|||q <∞ for some q ≥ 1, we define the functional dependence measure

δi,q(e·) ≡ |||ei − e∗i |||q = |||g(Fi)− g(F∗i )|||q,

where e∗i = g(F∗i ). The measure δi,q(e·) reflects the effect of shock ε0 on ei. Accordingly, we assume the cumulative effect
f ε0 on {ei}i≥m to be summable and given by

∆m,q(e·) ≡
∞∑
i=m

δi,q(e·) <∞.

We can then define the dependence-adjusted norm (DAN):

∥e·∥q,α ≡ supm≥0(m+ 1)α∆m,q(e·).

With these definitions we present the following Nagaev inequality for time series as a simplified version of Theorem 2 of
Wu and Wu (2016).

Theorem B.1. Let a = (a1, . . . , an)′ and |a|q = (
∑n

i=1 |ai|
q)1/q. Suppose that

∑n
i=1 a

2
i = n, E (ei) = 0, and ∥e·∥q,α < ∞ for

ome q > 2 and α > 1. Then for all x > 0,

P(|Sn| > x) ≤ C1
|a|qq∥e·∥

q
q,α

xq
+ C2exp

(
−

C3x2

n∥e·∥22,α

)
,

here C1, C2, C3 are constants that only depend of q and α.

The above lemma is used repeatedly in proving some technical lemmas that are needed in the proof of our main results.

Appendix C. Online supplement for ‘‘high dimensional var with common factors’’

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.02.002.
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