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Equilibrium uniqueness in entry games with
private information
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We study equilibria in static entry games with single-dimensional private information. Our frame-
work embeds many models commonly used in applied work, allowing for firm heterogeneity and
selective entry. We introduce the notion of strength, which summarizes a firm’s ability to endure
competition. In environments of applied interest, an equilibrium in which entry strategies are
ordered according to the firms’ strengths always exists. We call this equilibrium herculean. We
derive simple and testable sufficient conditions guaranteeing equilibrium uniqueness and, con-
sequently, a unique counterfactual prediction.

1. Introduction

� Understanding firms’ market entry decisions is a key element of economic policy and regu-
lation. Predicting whether there will be timely entry after a merger or regulatory change requires
a framework that determines the number and types of competitors. More broadly, a model with
endogenous entry, prices, product characteristics, and welfare outcomes can be used to evaluate
policies prospectively. When performing such analyses, researchers use the counterfactual equi-
librium of an estimated model to assess the impact of the policy under consideration. A common
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challenge is the existence of multiple equilibria. Under multiplicity, the model may not yield
a unique prediction to the applied question, hindering policy analysis (Berry and Tamer, 2006;
Borkovsky et al., 2015). Computing multiple equilibria may also prove challenging when using
numerical methods, which may limit the researcher’s ability to gain a complete understanding of
the impacts of a policy of interest (Iskhakov et al., 2016).

We study equilibrium uniqueness in static binary-action entry games with single-
dimensional private information. Our framework accommodates a large variety of entry games,
allowing for rich forms of firm heterogeneity and selective entry. Our main contribution is to
provide a sufficient condition that guarantees equilibrium uniqueness. The condition is solely
based on the model’s fundamentals and verifying it does not require equilibrium computation. In
many common applications, we can check the condition by performing a simple calculation. For
example, Roberts and Sweeting (2013) and Grieco (2014) use numerical methods to show that
their fitted models have a unique equilibrium. Using their estimates and our sufficient condition,
we can confirm equilibrium uniqueness in their fitted models, highlighting the usefulness of our
results. Our findings provide new tools for applied researchers studying entry.

We characterize firms’ equilibrium behavior using a simple index, called strength, sum-
marizing a firm’s ability to endure competition. The strength of a firm is the unique symmetric
cutoff strategy that makes the firm indifferent between entering and not entering the market. Fac-
ing equal competition, a stronger firm is more willing to enter the market than a weaker one.
For the class of models studied, we show that there always exists an equilibrium in which entry
strategies are ordered according to strength. We call this a herculean equilibrium. When our suf-
ficient condition for equilibrium uniqueness holds, only one herculean equilibrium exists, and no
non-herculean equilibrium is possible.

Our proposed framework encompasses static entry models commonly used in applied work.
The approach accommodates a large variety of post-entry models, including auctions and com-
petitions in price or quantity; it also allows for rich forms of firm heterogeneity, as firms are
allowed to differ in their payoff functions or their distribution of types, capturing that firms might
be heterogeneous in their public characteristics (e.g., firms might vary in their product character-
istics, geographic locations, or levels of vertical integration). Payoffs might depend on the entry
decisions and realized types of competitors, allowing a level of strategic interaction often ignored
by the entry literature (auctions being an exception). For example, if firms are privately informed
about their marginal costs of production, facing a competitor with a lower marginal cost will
lead to a lower post-entry profit. The magnitude of this decrease depends on the firms’ realized
marginal costs, their degree of product substitutability, and the number of entrants. We enrich the
set of models available to applied researchers by including these environments.

In the theoretical literature on market entry, Mankiw and Whinston (1986) study welfare in
a symmetric model under complete information. Brock and Durlauf (2001) examine a symmetric
coordination game with privately informed agents. Our modelling shares the idea that both the
action and type of an agent affects the payoffs of other agents but differs in that entry decisions
are strategic substitutes and in that we allow for asymmetric agents. Our article generalizes the
existing literature on costly entry into second-price auctions (SPAs). Samuelson (1985) studies
ex ante symmetric bidders. Tan and Yilankaya (2006) study two groups of asymmetric bidders
ordered by first-order stochastic dominance (FOSD), whereas in Cao and Tian (2013) the two
groups are ordered by entry costs. In Ye (2007), bidders are partially informed at entry and fully
learn their valuations after entry occurs. Our framework allows for more general forms of bidder
heterogeneity and, at the same time, embeds both informational environments. A firm’s private
information might correspond to its type or a signal about its type.

In the empirical literature, Bresnahan and Reiss (1990, 1991) and Berry (1992) developed
the first empirical models of market entry that explicitly account for the strategic interaction
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between post-entry market competition and firms’ entry decisions.1 Under complete informa-
tion, the entry game often contains multiple equilibria. Tamer (2003) shows that, without further
assumptions, multiple equilibria can lead to set, rather than point, identification.2 Using numer-
ical methods, Seim (2006) shows that firms having private information may solve the problem
of equilibrium multiplicity. Berry and Tamer (2006), however, construct examples of multiple
equilibria under private information, raising the question of when uniqueness can be achieved.
Glaeser and Scheinkman (2003) show that games of strategic complements in which competi-
tors’ types do not directly affect payoffs have a unique equilibrium when they satisfy a moderate
social influence (MSI) condition.3 We contribute to this discussion by identifying a testable con-
dition guaranteeing equilibrium uniqueness in the context of games of strategic substitutes and
general payoffs structures.

The importance of allowing for private information in entry models lies beyond the possi-
bility of solving the multiple equilibria problem. Using complementary methodologies, Grieco
(2014) and Magnolfi and Roncoroni (2023) test and reject the hypothesis that firms possess
complete information at the moment of entry. Furthermore, compared to models that allow for
private information, they show that assuming complete information delivers estimates that can
lead to qualitatively different predictions. Roberts and Sweeting (2013, 2016) provide evidence
of selection at entry, which cannot be accounted for by complete information models.

The article is organized as follows. For illustrative purposes, Section 2 presents our results in
the context of a SPA. The section introduces and discusses the notions of strength and herculean
equilibrium, developing key intuitions. Section 3 introduces the general model and extends the
results showing that the existence of a herculean equilibrium is guaranteed and provides a suffi-
cient condition for when the herculean equilibrium is the unique equilibrium of the game. Finally,
Section 4 concludes. All the proofs are relegated to the Appendix.

2. An illustrative example

� We begin by illustrating our results in the context of entry into an asymmetric SPA with
independent private values. We generalize our results to a richer set of entry models in Section 3.

� Second-price auction with entry costs.

Set up. Consider an SPA with reservation price r ≥ 0. The auction consists of one seller, n
potential bidders, and one indivisible good. Before making any entry decision, each bidder
i ∈ {1, 2, . . . , n} observes her valuation for the object, vi, which is drawn from an atomless dis-
tribution function Fi with full support on [0,∞).4 Each Fi is continuously differentiable and has
a finite expectation. After observing vi, each bidder, independently and simultaneously, decides
whether to enter the auction. If bidder i decides to enter, she incurs in an entry cost Ki > 0. The
tuple (Fi, Ki)

n
i=1, which includes the number of potential bidders n, is commonly known to all the

bidders. Observe that bidders may differ in their distribution of valuations and entry costs. After
bidders make their entry decisions, a participating bidder bids their valuation (i.e., its weakly
dominant strategy).

Strategies, payoffs, and equilibrium. An entry strategy for bidder i is called cutoff if there is a
threshold xi such that bidder i enters the auction when its valuation is higher than xi (vi ≥ xi) and

1 See also Ciliberto et al. (2020) in the context of entry and Bresnahan (1987), Berry (1994), and Berry et al. (1995)
when the number of competitors is exogenous

2 Sweeting (2009) shows that multiplicity can help with the model’s identification in the context of coordination
games. De Paula and Tang (2012) show that multiplicity can be used to infer the signs of strategic interactions. Marcoux
(forthcoming) provides a statistical test for whether firms play the same equilibrium across a sample of entry decisions.

3 The MSI condition has been used to establish uniqueness in the context of linear-payoffs models by Lee et al.
(2014), Lin and Xu (2017), Xu (2018), and Lin et al. (2021).

4 Our results still apply if the support of Fi were an interval [0, b] with b > 0. We chose the current formulation to
avoid the existence of corner solutions in which a bidder never enters.
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stays out otherwise. Online Appendix C shows that focusing on cutoff strategies is without loss
of generality.

To ease the notation, we order bidders’ identities according to their cutoffs, with x1 being
the bidder with the lowest cutoff and xn the highest. For a given vector of cutoff strategies x =
(x1, x2, . . . , xn) define: (i) Ak

i = ∏k
j>i Fj(xj ), the probability that bidders playing cutoffs greater

than (or above) bidder i, up to bidder k, do not enter the auction; and, (ii) Bi(v) = ∏
j<i Fj(v), the

probability that bidders playing cutoffs lower than (below) bidder i obtain valuations lower than
v. Let xi = (x1, x2, . . . , xi) be a vector containing the cutoff strategies up to bidder i. Bidder i’s
expected revenue of entering with a valuation vi = xi, when there are only i potential bidders, and
the other i − 1 bidders play cutoffs lower than xi is: 5

Ri(xi; xi−1) = xiBi(xi) − rAi−1
0 −

i−1∑
j=1

(
Ai−1

j

∫ x j+1

x j

max{r, s}dBj+1(s)

)
.

This revenue consists of bidder i’s value, xi, times the probability of being the highest valuation
bidder, Bi(xi), minus the expected price paid. The expected price consists of the reserve price, r,
when no competitor enters, which occurs with probability Ai−1

0 , and the maximum between the
reserve price and the highest competitors’ bid when entry occurs. A price in the interval [xj, xj+1)
is observed only if opponents playing cutoffs higher or equal to xj+1 stay out of the auction, which
occurs with probability Ai−1

j . Thus, the price in such interval distributes according to Bj+1.
Given the opponents’ entry cutoff x−i, bidder i’s expected profit of entering the auction with

a valuation xi is equal to

�i(xi; x−i) = An
i Ri(xi; xi−1) − Ki. (1)

The expected profit consists of the expected revenue minus the entry costs Ki. Bidder i loses the
auction whenever an opponent with a higher valuation than xi enters the auction. Thus, bidder
i obtains a positive payoff only when opponents playing cutoffs larger than xi stay out, which
happens with probability An

i . In this event, bidder i competes in an auction with i potential bidders,
all of which play cutoffs lower than xi, thus receiving the expected revenue Ri(xi; xi−1).

The function �i(xi; x−i) is strictly increasing in each argument. A bidder’s expected profit
increases in its valuation xi and in the opponents’ entry cutoff xj (i.e., when opponents enter
less often). Because of this monotonicity, we can define bidder i’s best response to x−i, a cutoff
strategy, to be the unique valuation χi(x−i) that solves �i(χi(x−i); x−i) = 0. The best response
function χi(x−i) is continuous and satisfies χi(x−i) ≥ r + Ki, that is, bidders do not enter the
auction if their valuation cannot cover the reservation price plus their entry cost, regardless of
what their opponents are playing. Using implicit differentiation, we can show that bidder i’s best
response is monotonically decreasing in the opponents’ cutoffs, ∂χi(x−i)/∂xj < 0; that is, when
an opponent enters less often (higher xj) a bidder is more willing to enter the auction (lower xi).

A Bayesian equilibrium is a vector of cutoff strategies x such that every bidder i is indif-
ferent to enter the auction when it draws a valuation equal to its cutoff strategy. That is, x is an
equilibrium vector if and only if �i(x) ≡ �i(xi; x−i) = 0 or, equivalently, χi(x−i) = xi, for every
bidder i. Online Appendix C shows that a Bayesian equilibrium always exists.

� Strength and herculean equilibrium. We now introduce our two main definitions: bidder
strength and herculean equilibrium. Strength uses the game fundamentals, (Fi, Ki)n

i=1, to rank
bidders’ relative competitiveness. We use strength to identify an equilibrium that exists in every
entry game—the herculean equilibrium. This equilibrium is the starting point to find conditions
for equilibrium uniqueness.

5 The following notation is being used throughout the article:
∑

∅ = 0 and
∏

∅ = 1.

C© The RAND Corporation 2023.

 17562171, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1756-2171.12449 by Y

ale U
niversity, W

iley O
nline L

ibrary on [16/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ESPÍN-SÁNCHEZ, PARRA, AND WANG / 5

Definition 1 (Strength). The strength of bidder i, is the unique number si that solves
�i(si; si, . . . , si) = 0; that is, the unique si satisfying:

(si − r)
∏
j 	=i

Fj(si) = Ki. (2)

We say that bidder i is stronger than bidder j if si < s j.

Strength is well defined. It assigns a unique scalar si to each bidder i, delivering a complete
ranking of the bidders.6 The strength of bidder i is the unique cutoff si that is a best response
to the other bidders playing the same cutoff strategy si, that is, the unique value si satisfying
χi(si, . . . , si) = si. Strength ranks bidders by using the unique symmetric strategy that makes a
given bidder indifferent to entering the auction. When bidders are asymmetric, the strategy si

might differ across bidders. The importance and usefulness of strength relies on summarizing
the multidimensional characteristics of bidders, (Fi, Ki)n

i=1, into a single scalar.7

In intuitive terms, strength ranks firms according to their ability to endure competition. The
strength of bidder i encompasses information about a bidder’s willingness to enter the auction,
relative to that of its competitors. A lower cutoff strategy for bidder i means that bidder i is more
willing to enter the auction, as it enters for lower valuations. A lower entry cutoff by competitors,
on the other hand, implies that bidder i faces more competition, as competitors are entering
more often. Thus, bidder i being stronger than j (si < s j) indicates that i, despite facing more
competition than j, is more willing to enter the auction. The next lemma shows that strength
generalizes common notions of relative competitiveness used in the entry literature.

Lemma 1.

1) If bidders have identical entry costs but the bidders’ values are ordered by FOSD, the domi-
nating bidder is stronger.

2) If bidders have identical distributions of valuations, but different entry costs, the bidder with
the lower entry costs is stronger.

The ranking provided by strength coincides with that provided by common heuristics used
to determine the relative competitiveness of bidders, such as FOSD or entry-cost order. Strength,
however, extends the ranking to scenarios in which relative competitiveness is not self-evident.
Take, for example, a bidder whose distribution of valuations first-order stochastically dominates
the other bidder but has a higher entry cost. This scenario may arise when “smaller” firms have
subsidized entry (Marion, 2007). In this case, the former bidder might be stronger, as it is likely
to draw a higher valuation, but it might also be weaker given its higher entry cost. Strength not
only ranks bidders in this (or any other) scenario but also, as shown below, provides meaningful
information about equilibrium behavior.

Definition 2 (Herculean Equilibrium). An equilibrium is called herculean if the equilibrium cut-
offs are ordered by strength, with the stronger bidder playing the lower cutoff. That is, xi < xj if
and only if si < s j.

Because stronger bidders are able to endure competition more, they should be more inclined
to enter the auction. In terms of equilibrium behavior, the previous intuition translates to stronger
bidders playing lower entry cutoffs. In symmetric games, on the other hand, every bidder is
equally strong. The herculean equilibrium consists of symmetric strategies in which each bidder

6 The function (si − r)
∏

j 	=i Fj (si ) is increasing, unbounded, and equal to 0 when si = r.
7 Strength has advantages over other candidates to rank firms, such as expected payoff or entry probability. Online

Appendix D presents examples illustrating the advantages of strength over these measures in obtaining information about
the bidders’ equilibrium behavior.

C© The RAND Corporation 2023.
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FIGURE 1

CONSTRUCTION OF A HERCULEAN EQUILIBRIUM FROM ITERATED BEST RESPONSES

Note: Starting from firm 2’s strength, s2, firm 1’s best response, χ1(s2 ), is lower than its strength, s1 = χ1(s1 ). Simi-
larly, firm 2’s best response to χ1(s2 ) is higher than s2 = χ2(s2 ). Iterating these mutual best responses, create bounded
monotonic sequences that converge to a herculean equilibrium.

plays a cutoff equal to its strength. Thus, in symmetric games, the herculean and symmetric
equilibriums coincide.

Herculean equilibrium and strength are incomplete information analogs to risk-dominant
equilibrium and risk factor in complete information games (Harsanyi and Selten, 1988). Both
scalars, risk factor and strength, are found by computing an “indifferent entry” condition. In the
context of complete information, a bidder’s risk factor is the opponent’s highest entry probability
for which the bidder is willing to enter. On the other hand, a bidder’s strength is the opponent’s
highest entry probability (lowest entry cutoff) for which the bidder enters if it obtains a valuation
equal to said cutoff. Whereas in a herculean equilibrium, a stronger bidder is more likely to enter,
the bidder with the lower risk factor enters a risk-dominant equilibrium.

� Auctions with two potential bidders. We now illustrate our main results in the context
of two potential bidders: a herculean equilibrium always exists and, under a weak cumulative
distribution function (CDF)-concavity condition, it is the only equilibrium of the game. From
now on, unless otherwise noted, we order bidders’ identities by their strength, with bidder 1
being the strongest bidder.

Proposition 1. There always exists a herculean equilibrium. Moreover, the entry game has a
unique equilibrium if, for each bidder i, the following condition holds:8

v fi(v)

Fi(v)
< 1 for all v ∈ [vi, vi], (3)

where vi = Ki + r is bidder i’s smallest entry cutoff that may lead to positive profits and vi =
χi(vj ) is bidder i’s best response to vj (i.e., bidder i’s highest entry cutoff that she may play in an
equilibrium.)

Proposition 1 provides two results. First, it establishes the existence of a herculean equi-
librium, confirming the intuition that an equilibrium in which the strong bidder plays a lower
entry cutoff should exist. To see the intuition, consider bidder 1’s best response to the opponent’s
strength relative to its own strength. That is, χ1(s2) relative to χ1(s1) = s1, see Figure 1. Because
bidder 1 is stronger, s1 < s2, bidder 1 faces less competition when bidder 2 plays s2 instead of s1.
Consequently, bidder 1 enters more often, χ1(s2) < s1 = χ1(s1). Similarly, relative to s2, bidder 2
faces more competition when bidder 1 plays χ1(s2) < s2. Thus, bidder 2 needs a higher valuation
than its own strength to enter the auction, best responding with an entry cutoff that is higher than
s2, χ2(χ1(s2)) > χ2(s2) = s2.

8 Condition (3) can hold with equality if one firm is strictly stronger than the other.

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 7

These incentives reinforce each other. Iterating mutual best responses starting from the bid-
ders’ strength generate two monotonic sequences of cutoffs that are, in each iteration, further
apart. Because bidder 1’s best response is bounded below by v1 and bidder 2’s best response is
bounded above by v2, this process converges to cutoffs x1 < x2 that are mutual best responses,
that is, a herculean equilibrium. This iteration process can be used in applied research to find a
herculean equilibrium when multiple equilibria exist.

Perhaps more importantly, Proposition 1 provides a sufficient condition on the CDFs’ shape
for the game to have a unique equilibrium. The uniqueness result is significant for applied work,
as it provides a testable condition that guarantees that counterfactual equilibria will also be
unique.9 In intuitive terms, condition (3) is an equilibrium-stability condition. It guarantees that
bidders do not overreact to a small change in the opponent’s cutoff. We show that this lack of
overreaction implies that a bidder’s expected profit is monotonically increasing in its entry cut-
off, even after considering the opponent’s best response. In turn, this monotonicity implies that
only one valuation makes a bidder indifferent to enter the auction, leading to a unique equilib-
rium.

To show that condition (3) implies equilibrium stability, let xi < xj. Using equation (1) when
n = 2, bidder i’s best response to xj is χi(xj ) = r + Ki/Fj(xj ). Differentiating χi(xj ) with respect
xj, substituting for Ki, and using xi = χi(xj ), we find

−χ ′
i (xj ) = (xi − r)

f j(xj )

Fj(xj )
< xj

f j(xj )

Fj(xj )
≤ 1,

where the first inequality follows from xi < xj (and r ≥ 0), and the last inequality from sufficient
condition (3). That is, when bidder j increases its cutoff, bidder i best responds by decreasing
its cutoff less than proportionally. Similarly, using implicit differentiation and analogous argu-
ments, we can also show −χ ′

j(xi) = (xi − r) fi(xi)/Fi(xj ) < 1. Sufficient condition (3), then, guar-
antees that every pair of cutoff strategies satisfies the local stability condition χ ′

1(x2)χ ′
2(x1) < 1

(see Fudenberg and Tirole, 1991, p. 24). This implies equilibrium uniqueness. Graphically, an
equilibrium is defined by a point at which best response functions cross. Best response func-
tions are continuous and monotone. Thus, stable and unstable equilibria must alternate along the
best response function. By condition (3), however, every equilibrium must be locally stable and,
consequently, at most one equilibrium exists. As an equilibrium always exists, the game has a
unique equilibrium.

Although the stability argument provides good intuition, we prove uniqueness directly by
showing that a bidder’s payoff is monotone in its own strategy even after considering the op-
ponent’s best response. Later, we scale this method to prove uniqueness under a larger set of
players. For any strength order among bidders, define �̂i(x) = �i(x;χ j(x)) to be bidder i’s ex-
pected profit when their valuation is x, and the opponent best responds to the cutoff strategy x,
χ j(x). By definition, x is an equilibrium strategy when �̂i(x) = 0.10 We show that ∂�̂i(x)/∂x > 0
for every x, implying that �̂i(x) crosses zero only once, that is, a unique equilibrium exists. Let
x = min{x, χ j(x)} and x = max{x, χ j(x)}, differentiating �̂i(x) with respect to x we obtain:

∂�̂i(x)

∂x
= Fj(x) + (x − r) f j(χ j(x))χ ′

j(x) = Fj(x)
(
1 − χ ′

i (χ j(x))χ ′
j(x)

)
> 0,

9 In applied work, the distribution of values might have the structure Fi(v) = F (v|X ′
i β ) where X ′

i β is a vector of
bidder and auction characteristics (which may include auctions fixed effects). If X ′

i β is observed by an econometrician,
condition (3) needs to apply conditional on X ′

i β. If some of the elements in X ′
i β are unobserved, condition (3) delivers a

set of unobserved values for which the game would have a unique equilibrium.
10 A concise, albeit less intuitive, proof of existence of herculean equilibrium can be constructed using the func-

tion �̂i(x). Observe: (i) �̂1(x) < 0 for x ≤ v1; and (ii) because s1 < s2 and χ2(x) is decreasing, 0 = �1(s1; s1 ) <

�1(s1;χ2(s1 )) = �̂1(s1 ). By the intermediate value theorem, there exists x1 ∈ (v1, s1 ) such that �̂1(x1 ) = 0, a her-
culean equilibrium.

C© The RAND Corporation 2023.
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8 / THE RAND JOURNAL OF ECONOMICS

FIGURE 2

SUFFICIENCY WITH LOG-NORMAL VALUATIONS

Note: Panel (a) shows that log-normal CDFs are not concave. Panel (b) depicts the minimal threshold κ under which
uniqueness condition (3) is guaranteed to hold, as a function of σ . The shaded area represents the set of entry costs under
which the entry game has a unique equilibrium. Pr[v ≥ κ] represents the proportion of valuations above κ .

where we used the expressions for χ ′
k (x) derived above. The inequality follows from noting (as

shown above) that condition (3) implies −χ ′
k (x−k ) ∈ (0, 1), proving the result.

Equation (3), however, is not a necessary condition. It captures one of the possible mecha-
nisms inducing a unique equilibrium. In particular, the condition ensures that the shape of best
responses is such that they only cross once. Example 1c, below, illustrates another mechanism,
not captured by (3), that will generate uniqueness: the degree of bidder asymmetry. Asymmetric
bidders might have best responses at a different scale, ensuring that best responses cross once.
For instance, if a bidder has a significantly lower expected valuation (or high entry cost), it will
require an extreme (unlikely high) valuation for entry, and the game might have a unique equi-
librium despite violating condition (3).

Lemma 2. (1) If (F1, F2) are concave, then (3) is satisfied and the equilibrium is unique. (2) If the
distributions (F1, F2) become concave for high valuations, there exists a pair (κ1, κ2) such that,
whenever vi = r + Ki ≥ κi for both bidders, the game has a unique equilibrium.11

Lemma 2 further characterizes sufficient condition (3). Lemma 2.1 shows that condition
(3) is a weak form of CDF concavity. In particular, auctions with concave distributions of val-
uations (e.g., exponential or generalized Pareto) always have a unique equilibrium. Other distri-
butions, such as beta, gamma, or Weibull, are concave for certain parameters, making condition
(3) testable. Many distributions used in applications (such as the log-normal distribution) are
concave for sufficiently high valuations. Lemma 2.2 shows that, for these eventually concave dis-
tributions, there exist sufficiently high entry costs, or reservation price, guaranteeing equilibrium
uniqueness. This last result stands in contrast with traditional complete information intuitions,
where large entry costs make entry by both firms unprofitable, leading to coordinated entry and
equilibrium multiplicity. With private values, high entry costs (or reservation price) shifts the
domain of feasible strategies [vi, vi] to the concave segment of the CDFs, inducing equilibrium
uniqueness.

Example 1 (Log-normal valuations). To illustrate the intuition behind strength, herculean equilib-
rium, and sufficient condition for uniqueness (3), consider a scenario with no reservation price,

11 The proof of the lemma shows how to find the value κi for a given Fi.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 9

FIGURE 3

STRENGTH AND HERCULEAN EQUILIBRIUM UNDER LOG-NORMAL VALUATIONS

Note: The figure depicts bidders’ best response function χi(x j ), their strength si, and the herculean equilibrium H , when
valuations distribute log-normal in four different scenarios. Panels (a) and (b) depict symmetric auctions, whereas (c)
and (d) asymmetric. Scenarios (a) and (c) have multiple equilibria. Sufficient condition for equilibrium uniqueness (3)
does not hold between points A and B. In scenarios (b) and (d), condition (3) does hold and the game has a unique, the
herculean, equilibrium.

r = 0, two entrants with identical entry cost, K, and valuations that are distributed log-normal
with parameters (μi, σ ). As illustrated by Figure 2a, this distribution family is not concave. De-
pending on its parameters, the entry game might have multiple or a unique equilibrium.

(a) Uniqueness under sufficiently high entry costs: Suppose symmetric bidders with μi = 1.
Because the log-normal distribution becomes concave for high values, by Lemma 2.2, for
each value of σ we can find a threshold κ such that, for every K ≥ κ , sufficient condition (3)
holds. Figure 2b depicts the threshold κ and the mass of valuations above κ , as a function of
σ . The shaded area represents the set of entry costs K under which the sufficient condition for
uniqueness (3) holds. The relation between κ and σ is nonmonotonic, with κ converging to
zero when σ is high enough. The proportion of valuations above κ , Pr[v ≥ κ], monotonically
increases in σ . That is, the larger the dispersion of the distribution, the less demanding the
condition for uniqueness becomes. When σ → 0, the mass of valuations above κ converges
to zero. That is, as the game converges to a complete information game—where equilibrium
multiplicity is known to exist—the sufficient condition for uniqueness is never met.

(b) Multiplicity and uniqueness under symmetry: We now illustrate the differences between
multiple equilibria versus a unique equilibrium. Assume symmetric bidders, with K = 1

C© The RAND Corporation 2023.
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10 / THE RAND JOURNAL OF ECONOMICS

and μi = 1. Figure 3a,b illustrates bidders’ best response functions and equilibria when σ ∈
{1/2, 3/2} (see Figure 2a for the CDFs). When σ = 1/2 (Figure 3a), the auction has three
equilibria, as the best responses cross at three different points. The segment between the
points A and B highlights bidder 2’s violation of the sufficient condition for uniqueness (3),
as −χ ′

2(x1) > 1. Because bidders are symmetric, the herculean equilibrium, denoted by H ,
is symmetric and equal to the bidders’ strength.
In contrast, when σ = 3/2 (Figure 3b), sufficient condition (3) holds—the tuple (K, σ ) is
in the shaded area of Figure 2b. Best responses are flatter, satisfying χ ′

i (xj ) < 1 throughout.
The game has a unique equilibrium (the herculean), which is also stable.

(c) Asymmetric auctions: We now illustrate strength and the herculean equilibrium in an asym-
metric context. We repeat the previous analysis but now allow bidders to differ in μ. Bidder
1 is stronger, as it has higher expected valuations (μ1 = 1.1 > 1 = μ2). Figure 3c,d depicts
the bidders’ best response functions and the strength of each bidder. Strength is computed
where a bidder’s best response crosses the 45◦ line; that is, when χi(si) = si. Because bid-
der 1 is stronger, a herculean equilibrium must lie above the 45◦ line. Figure 3c shows that
when σ = 1/2, only one equilibrium is herculean, which is stable. The middle equilibrium is
non-herculean and unstable. The other non-herculean equilibrium is stable. Figure 2a shows
that as σ increases, the CDF becomes more concave. This flattens best responses and the
sufficient condition for equilibrium uniqueness holds (see Figure 3d).
To conclude this example, it is interesting to observe what happens when μ1 increases. Com-
paring Figure 3a,c, we can see that increasing the mean of bidder 1’s distribution shifts bidder
2’s best response upward (same shift can be observed comparing Figure 3b,d). This shift im-
plies that the non-herculean equilibria get closer to each other. When μ1 is sufficiently high,
the upward shift of bidder 2’s best response leads best responses to no longer cross to the
right of the 45◦ line, inducing a unique equilibrium. As explained above, sufficient condition
(3) fails to capture this mechanism for equilibrium uniqueness. Condition (3) is about the
shape of best responses, whereas μi affect their scale.

� Auctions with n potential bidders. We now extend Proposition 1 to auctions with n po-
tential bidders. First, we illustrate that the result generalizes to environments in which bidders
can be divided into two asymmetric groups. We then explain why our methods do not generally
extend to an arbitrary number of groups. We extend the result to environments with an arbitrary
number of groups by imposing further structure to the model.

Lemma 3. In an auction with n potential entrants, if two symmetric firms meet sufficient condi-
tion (3), they must play the same cutoff strategy in any equilibrium.

Two firms are called symmetric if they have identical entry cost K and distribution of valu-
ations F . In a herculean equilibrium, symmetric firms must play symmetric strategies. Lemma 3
says that, under condition (3), restricting the uniqueness analysis to strategies in which symmet-
ric firms play symmetric strategies is without loss of generality. A corollary of Lemma 3 is that
condition (3) guarantees uniqueness in symmetric games with an arbitrary number of bidders.

A sketch of the proof of the Lemma is as follows. Let x be an equilibrium vector of cutoffs
in which symmetric bidders i and j play xi < xj. Because of symmetry, bidders i and j have iden-
tical best response functions, χ (x−k ). Fix the competitors’ strategies x−i, j and, using symmetry,
define �̂(x) = �k (x;χ (x, x−i, j ), x−i, j ) for k ∈ {i, j}. A necessary condition for a cutoff x to be an
equilibrium is �̂(x) = 0. Using the same steps as in the proof of Proposition 1, we can show that
condition (3) implies ∂�̂(x)/∂x > 0 for all x. If �̂(xi) = 0, then �̂(xj ) > 0, contradicting that x
is an equilibrium.

Two groups of bidders. Consider n bidders divided into two groups g ∈ {1, 2}. Each group
g consists of ng bidders, n1 + n2 = n, characterized by two tuples (Fg, Kg). Although bidders

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 11

are symmetric within groups, bidders can be asymmetric across groups. The two-group model
has been used in applied work when bidders can be divided by exogenous factors. Examples
include mills and loggers in the timberwood industry (e.g., Athey et al., 2011), and favored and
nonfavored bidders in highway procurement auctions (Krasnokutskaya and Seim, 2011).

Proposition 2. In the two-group model, there always exists a herculean equilibrium. If suffi-
cient condition (3) holds for each group of bidders g, the herculean equilibrium is the unique
equilibrium of the game.

Proposition 2 extends Proposition 1 to the two-group scenario. Because a herculean equi-
librium prescribes symmetric firms to play symmetric strategies (i.e., group-symmetric strate-
gies) the proof of existence mimics the two-bidder scenario. We define the group-symmetric best
response as the best response of a bidder when every bidder in its group plays the same best-
response strategy.12 This definition generates one best response function per group. As before,
iterating mutual (group-symmetric) best responses, starting from the bidders’ strengths, pulls
cutoffs further apart, converging to a herculean equilibrium.

By Lemma 3, restricting the analysis of uniqueness to group-symmetric strategies is without
loss of generality. Following the uniqueness proof when n = 2, we use sufficient condition (3)
to show that the expected profit of a bidder is strictly increasing in its group-symmetric strategy,
even after taking into account the opponents’ group-symmetric best response. Consequently, the
expected profit of a bidder can cross zero once, inducing a unique equilibrium.

Asymmetric bidders. A herculean equilibrium might not exist in environments with n ≥ 3
asymmetric bidders. We provide an example of nonexistence in Online Appendix D. This lack of
existence precludes us from obtaining a general result about equilibrium uniqueness.

Our method of showing that iterated best responses are further apart than the bidders’
strength does not extend to environments with n ≥ 3 asymmetric bidders. The strength order
between two bidders might reverse with the behavior of a third bidder. This reversal implies that,
when iterating best responses of bidders, the best responses are no longer getting further apart,
and the process might converge to a non-herculean equilibrium or not converge at all.

Consider an auction with no reservation price, r = 0, and three asymmetric bidders sat-
isfying s1 < s2 < s3. The bidders differ in their distribution of valuations but have identical
entry costs, K. Using equation (2), bidder i ∈ {1, 2} strength is determined by the solution to
siFj(si) = K/F3(si), see Figure 4. Iterating best responses between bidder 1 and 2 fixing x3 = s3,
will produce best responses that are further apart as in the previous scenarios. Bidder 1’s best
response decreases in each iteration, and bidder 2’s best response increases (as in Figure 1).

Consider now starting the iteration with bidder 3. Its best response to (s1, s2) is χ3(s1, s2) >

s3. Recompute the strength of bidders 1 and 2, but assuming that bidder 3 plays χ3(s1, s2), that is,
siFj(si) = K/F3(χ3(s1, s2)), see Figure 4 . Iterating best responses between bidders 1 and 2, fixing
the behavior of bidder 3 at χ3(s1, s2), might have different outcomes depending on the shape of
Fi(v). Panel (a) depicts a situation in which bidders are ordered by FOSD. In this example, the
relative strength of bidders 1 and 2 remains invariant. As before, the iteration will mimic the
process depicted in Figure 1. Panel (b) shows a scenario where the CDFs of bidders 1 and 2
cross. In contrast to the previous situation, iterating best responses will lead to a sequence of best
responses in which bidder 2 will decrease in each iteration and bidder 1 will increase. That is,
the process of iterating mutual best responses might not converge or converge to a non-herculean
equilibrium. To reestablish our results, we need to impose further structure to the model.

12 Formally, let x̃ = (x1, . . . , x1, x2, . . . , x2 ) be a vector of group-symmetric strategies. Pick any bidder in group
g ∈ {1, 2} and let �̃g(x1, x2 ) = �g(x̃) represent the expected profit of a bidder in group g, entering under valuation xg,
when group-symmetric strategies x1 and x2 are played. Define group g’s group-symmetric best response χg(x) to be the
function that solves �̃g(χg(x), x) = 0.

C© The RAND Corporation 2023.
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12 / THE RAND JOURNAL OF ECONOMICS

FIGURE 4

STRENGTH AND COMPETITION

Note: Bidder i ∈ {1, 2} strength versus strength when bidder 3’s behavior is fixed at χ3(s1, s2 ). Panel (a) shows that when
the bidders’ CDFs are ordered by FOSD, the strength order between bidders 1 and 2 is robust to bidder 3’s behavior.
Panel (b) shows that when the CDFs cross, the strength order can change with the behavior of the third bidder.

Ordered bidders. We now show that a herculean equilibrium exists in scenarios in which the
ranking provided by strength is robust to the opponents’ behavior. We call these environments
ordered.

Definition 3 (Ordered Auction). Let v = min{vi}n
i=1 and v = max{vi}n

i=1, where vi = Ki + r and
vi = χi(v−i). An auction is ordered if for any two bidders i and j, with i < j, the following
condition holds:

Fi(v)Ki ≤ Fj(v)Kj for all v ∈ [v, v]. (4)

Lemma 4. If condition (4) holds, bidders are ordered by strength with bidder 1 being the
strongest bidder.

Ordered environments include, as particular cases, situations in which bidders have: (i) iden-
tical entry costs, but distributions of valuations that are ordered by FOSD; or, (ii) identical distri-
butions of valuations and different entry cost. It also allows, with certain restrictions, for bidders
that stochastically dominate others but have higher entry costs, as illustrated in the next example.

Example 2. Consider a scenario in which the bidders’ distribution of valuations belong to the
exponentiated family (see Gupta et al., 1998); that is, Fi(x) = F (x)θi for any distribution F and
θi > 0. Observe that bidder i first-order stochastically dominates j if and only if θi > θ j. Let
θi > θ j, using v we find that every entry cost Ki ≤ KjF (v)θ j−θi satisfies condition (4) and bidder
i is stronger than j, that is, si < s j. In particular, when Ki ∈ (Kj, KjF (v)θ j−θi ], firm i first-order
stochastically dominates j and has a higher entry cost.

Proposition 3. In an auction with n asymmetric bidders. If condition (4) holds, a herculean
equilibrium exists. In addition, if sufficient condition (3) holds for each bidder i, the herculean
equilibrium is the unique equilibrium of the entry game.

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 13

Proposition 3 is neither a particular case nor a generalization of Proposition 2. Although the
proposition extends the existence and uniqueness results to the case with n potential bidders, it
also requires condition (4).13

We prove existence constructively using induction. To sketch the proof, order bidders by
strength, with bidder 1 being the strongest. In each step i we show that, taking the best response
functions of bidders {1, . . . , i − 1} and cutoffs xi+1 ≡ (xi+1, . . . , xn) as given, bidder i has a best
response χi(xi+1) satisfying χi(xi+1) > χi−1(χi(xi+1), xi+1) for every xi+1. Thus, regardless of the
cutoffs xi+1 chosen by weaker bidders in subsequent steps, the order between bidder’s i − 1 and i
cutoffs will remain. This construction uses condition (4) to show the order among best-response
functions is robust, delivering a herculean equilibrium at the last step.

We use sufficient condition (3) in the previous iteration to show uniqueness. In each induc-
tion step, we show that bidder i’s expected payoff is strictly increasing in its cutoff valuation,
even after considering best responses of stronger bidders. This monotonicity delivers a unique
best-response function χi(xi+1) in each iteration step. We use this property to show that no other
herculean equilibrium exists, and that no non-herculean equilibrium is possible.

Sufficient condition (3) has to be checked for each potential bidder, translating into n condi-
tions that need to be satisfied. In ordered environments, however, there are cases in which condi-
tion (3) only needs to be checked for a single bidder. First, consider a scenario in which bidders
are ordered by entry costs, that is, the distribution of valuations, F , is symmetric among bidders.
In this situation, because entry costs do not directly enter condition (3), if the condition holds on
[v, v], the condition would hold for every bidder in the entry game. Consider, also, the scenario
in which firms are ordered by FOSD and belong to the exponentiated family Fi(v) = F (v)θi (see
Example 2). In this scenario, sufficient condition (3) for bidder i becomes

v fi(v)

Fi(v)
= θi

v f (v)

F (v)
< 1.

The condition, thus, only needs to hold for the strongest bidder (highest θi).

3. A model of market entry

� We now generalize the previous framework to include entry games used in the applied
literature. We extend the previous results to environments with two groups of firms, with no
restrictions on the degree of asymmetry across groups. In Online Appendix G, we extend the
results to environments with an arbitrary number of ordered groups.

� The baseline model.

Set up. Consider n firms simultaneously deciding on whether to enter a market. Firms are pri-
vately informed about their type vi (a scalar), summarizing the firm’s information about its prof-
itability upon entering the market. Firm i’s post-entry profit depends on: (i) the entry decision
of every firm; (ii) firm i’s type; and (iii) the types of other entrants. We assume that the type of
firms not entering the market is payoff irrelevant. The type vi is drawn according to a cumulative
distribution function Fi, a continuously differentiable atomless distribution, with full support on
[a, b] where a, b ∈ R (the extended reals). The distributions of types, Fi, are independent across
firms but not (necessarily) identically distributed.

Let E = {1, 2, . . . , n} be the set of all potential entrants and E its power set. The set E
contains every potential market structure that we can observe after entry decisions are made. We
denote a (realized) market structure by e ∈ E . The set e lists all the firms participating in a given
market structure, whereas the set ec = E\e lists all the firms that stay out. Similarly, for any firm
j ∈ e, we use e\ j to denote the market structure without firm j. Let Ei = {e ∈ E : i ∈ e} be the

13 Proposition 3 is a generalization of the existence of an ordered equilibrium result in Miralles (2008), which
studied a scenario with n bidders ordered by FOSD and symmetric entry costs.
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14 / THE RAND JOURNAL OF ECONOMICS

set of market structures in which firm i enters. Denote by ve = (vj ) j∈e the vector of realized types
for every firm participating in market structure e. For example, vE = (v1, v2, . . . , vn) denotes the
vector with the realized types of every firm. As a shortcut, we denote by v−i the realized types of
every firm except firm i and we write vi instead of v{i} when i is the sole entrant.

Let πi(ve) be a real valued function representing firm i’s post-entry profit when the realized
market structure is e and the realized types of the participating firms are ve. To illustrate the
workings of the notation, observe that πi(vi) represents firm i’s post-entry profit when i is the
sole entrant and its type is vi. Similarly, πi(vE ) = πi(vi, v−i) represents firm i’s profit when every
firm enters the market and the vector of realized types is given by vE . In the SPA example,
πi(ve) = max{0, vi − max{r, ve\i}} − Ki. We normalize the payoff of a nonentrant to zero. Finally,
we assume that πi(ve) is continuous, integrable (with finite expectation) in each dimension of
ve, and differentiable almost everywhere with respect to its first argument vi. We denote such a
derivative by π ′

i (ve).
The timing of the game is as follows. Before making any entry decision, each firm privately

observes vi. After observing vi, each firm independently and simultaneously decides whether to
enter the market. After entry decisions are made, market structure e is realized and each firm
entering the market gets a payoff πi(ve). The tuple (Fi, πi)

n
i=1—which includes the number of

potential entrants n—is commonly known to every potential entrant.

Main assumptions. For a given market structure e in which firm i enters the market (e ∈ Ei),
firm i’s profit function satisfies the following three properties.

A 1 (Monotonicity). The profit function πi(ve) is (i) weakly increasing in vi; and (ii) strictly
increasing in vi when firm i is the sole entrant.

Assumption A1 gives economic meaning to the firms’ type. Upon entering the market, firm
i’s profit (weakly) increases in vi in any market structure e. A higher vi can represent a lower
marginal cost of production, a lower entry cost, a higher product quality, a better managerial
ability, or a higher valuation for a good in an auction. In the SPA example, payoffs are monotone;
they increase in vi when bidder i is the entrant with the highest valuation and are constant in
vi otherwise.

For any market structure e ∈ Ei, types ve, and competitor j ∈ e, define firm i’s profit gain
induced by j’s exit to be

δi, j(ve) = πi(ve\ j ) − πi(ve). (5)

The function δi, j(ve) represents the increase in profit that firm i attains if firm j exits market struc-
ture e under types ve. In two-player games, δi, j(ve) represents the difference between monopoly
and duopoly profits. In an SPA, with two potential bidders and valuations over the reserve price,
δi, j(vi, vj ) = min{vi, vj} − r.

A 2 (Substitutes). For each market structure e and competitor j ∈ e:

(i) πi(ve) is weakly decreasing in vj.
(ii) δi, j(ve) ≥ 0.

(iii) There exists v̂ j such that vj ≥ v̂ j implies δi, j(ve) > 0.

Assumption A2 concerns the impact of competition on profits. It states that firms’ entry actions
are strategic substitutes, as competition decreases profits. In particular, the assumption states
that πi(ve) decreases when bidder i faces: (i) a more productive competitor (higher type vj),
or (ii) entry (δi, j(ve) ≥ 0). Condition (iii) is a strengthening of (ii). It indicates that, for every
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 15

competitor j and market structure e in which j participates, when j exits with a sufficiently high
type, vj ≥ v̂ j, firm i’s payoffs are strictly larger.14 An SPA satisfies (i), (ii), and (iii).

Let φ(ve) = ∏
j∈e f j(vj ) be the joint density of types of every firm participating in market

structure e.

A 3 (Costly and Interior Entry). There exist values vi < vi in the interior of the support of Fi(vi)—
that is, vi, vi ∈ (a, b)—such that:

(i) πi(vi) = 0.
(ii) ∫ b

(v j ) j∈E\i

πi(vi, v−i)φ(v−i)d
n−1v−i = 0,

where the multiple integral is over each of the n − 1 dimensions of v−i.

Assumption A3 concerns the nature of the entry problem. Condition (i) simply states that
entry is costly. Firms need a sufficiently good type, vi > a, to enter the market as the sole entrant.
In an SPA, vi = r + Ki, the reserve price plus the bidder’s entry cost. Jointly with assumption A2,
A3 implies that, when vi < vi, firm i would never choose to enter the market under any market
structure. That is, the value vi represents the minimal type required to enter the market.

Condition (ii) states that any firm will enter the market if its type is sufficiently high. There
exists a value vi < b such that drawing vi > vi ensures entry, even if every potential competitor
enters the market whenever vj ≥ vj. The assumption that [vi, vi] ⊂ (a, b) guarantees that every
equilibrium is interior; that is, no firm chooses to either never enter or always enter the market.

Partial revelation of information. Reinterpreting vi as a signal and adding an affiliation assump-
tion between the signal and the firms’ type, the previous framework also accommodates models
in which, before entry, private information is partially revealed to firms. The partial information
framework allows for outcomes commonly observed in applied research but precluded in a full
information model, such as ex post regret.15

Let Fi(vi, ti) be firm i’s joint cumulative distribution of signals vi and types ti with support on
[a, b] × [c, d] with c, d ∈ R. The distributions Fi are independent across firms. Before making
their costly entry decisions, a firm privately observes its signal vi, allowing the firm to make
inferences about its true type, ti. Firms learn their type after entering the market. Let Fi(vi) =∫ d

c
Fi(vi, s)ds and let Fi(ti|vi) = Fi(vi, ti)/Fi(vi) be the CDF of ti conditional on vi.

A 4 (Affiliated Signals). For v′
i > vi, Fi(ti|v′

i) < Fi(ti|vi) for all ti.

Assumption A4 states that higher signals lead to a higher expected type in terms of FOSD
(cf. Gentry and Li, 2014; Marmer et al., 2013). Let π̃i(te) be firm i’s profit under market structure
e and vector of types for participating firms te = (t j ) j∈e. Let ne be the number of entrants in market
structure e. Then, we reinterpret πi(ve) as

πi(ve) =
∫ d

c

π̃i(te)
∏
k∈e

fk (tk|vk )dnete,

where the multidimensional integral is across each of the ne dimensions of te. Given the properties
of FOSD, if the profit function π̃i(te) satisfies analogous conditions to A1–A3, then πi(ve) satisfies
A1–A3 and the results below will hold.

14 We could dispense of A2(iii) for our results, but we adopt it for brevity in the proofs.
15 An example of ex post regret is bidders that pay the entry cost and submit bids below the reserve price (or do not

submit bids), after updating their beliefs downward upon learning their true type.

C© The RAND Corporation 2023.
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16 / THE RAND JOURNAL OF ECONOMICS

Example 3. To illustrate the breadth of models captured by assumptions A1–A4, we show it
embeds two frameworks commonly used in applied work.

(a) Linear model: We say that the profit function is linear when

πi(ve) = ηi − δi · (ne − 1) + vi,

where ηi is a scalar summarizing both market and firm characteristics, and δi > 0 is a param-
eter capturing how entry affects firm i’s profits. 16 In this model, only firm j’s entry decision,
not its type, affects firm i’s payoff. A common interpretation of the private information in the
linear model is that −vi represents firm i’s entry cost.17

(b) SPA with partial information: Consider an SPA in which bidders are partially informed
about their valuations before entry.18 Bidder i’s valuation (or type) is given by ti = viεi, where
vi ∼ Fi is the signal observed before the entry decision is made and εi is the noise observed
after entry but before submitting a bid. We assume εi ∼ G with support in [0,∞) and is
independent from vi.
The expected payoff of a bidder entering with a signal vi, when participating competitors
observe signals ve\i is:

πi(ve) =
∫ ∞

r/vi

(∫ viεi

0

(viεi − max{r, s})d�i(s, ve)

)
dG(εi) − Ki.

Given the signal vi, bidder i values the good in ti = viεi, where εi has a cumulative distribu-
tion function of G(εi). Entrants submit a bid equal to their valuation. Bidder i obtains the
good when it is the highest valuation firm and pays the maximum between the opponents’
valuation, s, and the reserve price, r. Conditional on ve\i, the maximal valuation among i’s
opponents has a CDF equal to �i(s, ve) = ∏

j∈e\i G(s/vj ).

� Strategies, payoffs, and equilibrium.

Payoffs and strategies. A cutoff strategy for firm i is a threshold xi such that firm i enters the
market whenever vi ≥ xi and stays out otherwise. Firm i’s expected profit of entering the market
with type vi when facing opponents playing cutoffs x−i is

�i(vi; x−i) = EEi

[
Ev−i

[πi(ve)|v−i ≥ x−i]|x−i

]
=
∑
e∈Ei

{(∏
j∈ec

Fj(xj )

)∫ b

xe\i

πi

(
vi, ve\i

)
φ(ve\i)d

ne−1ve\i

}
, (6)

where ne is the number of entrants in market structure e.
Firm i’s expected profit consists of an iterated expectation. First, given the opponents’ strat-

egy x−i, the outer expectation is over each market structure in which firm i participates, e ∈ Ei.
Then, for a given market structure e, the inner expectation is over the realization of types for
every competitor v−i, conditional on their type being above their entry cutoff. Expression (6) is
the general analog of equation (1). Appendix B shows that (6) is strictly increasing in firm i’s type
vi and in an opponent’s cutoff, xj. A higher entry cutoff xj lowers the competitor’s probability of
entry, inducing firm i to face less competition.

16 Although the term ηi is commonly known by the firms’, an econometrician may not observe some elements in
ηi. Typically, ηi = Xiβi + ζi, where Xi is a vector of observed firm and market characteristics and ζi is unobserved by
the econometrician.

17 Examples linear entry models with private information include: Seim (2006); Aguirregabiria and Mira (2007);
Bajari et al. (2007); Pakes et al. (2007); Pesendorfer and Schmidt-Dengler (2008); Sweeting (2009); Aradillas-Lopez
(2010); Bajari et al. (2010); Krasnokutskaya and Seim (2011); De Paula and Tang (2012); Vitorino (2012); Mazzeo et al.
(2016).

18 In the context of auctions, the partial information model been studied by Roberts and Sweeting (2013, 2016),
Gentry and Li (2014), and Sweeting and Bhattacharya (2015).
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 17

Let x = (x1, x2, . . . , xn) be a vector with cutoff strategies for every firm. A Bayesian equilib-
rium is a vector x such that �i(x) ≡ �i(xi; x−i) = 0 for every firm i. Online Appendix C shows
that an equilibrium always exists and that every equilibrium is in cutoff strategies; that is, focus-
ing on cutoff strategies is without loss of generality. We denote the partial derivative of �i(x)
with respect to xi by �′

i(x).

Strength and herculean equilibrium. We now extend the notion of strength to the general frame-
work. Strength uses the game fundamentals, (Fi, πi)n

i=1, to rank firms according to their ability to
endure competition. As before, we use the firms’ strength to identify the equilibrium that remains
when the game has a unique equilibrium, the herculean equilibrium.

Definition 4 (Strength). The strength of firm i is the unique number si ∈ R that solves
�i(si; si, . . . , si) = 0, where �i(x) is given by (6). We say that firm i is stronger than firm j
if si < s j.

Lemma 5. �i(si; si, . . . , si) is strictly increasing in si, crossing zero once.

The strength of firm i is the unique cutoff si that best responds to every competitor playing
the same cutoff strategy si. A lower value of strength for firm i (si < s j) indicates that firm i,
despite facing more competition than j (i faces competitors with lower entry cutoffs), is more
likely than j to enter the market (i plays a lower entry cutoff). Lemma 5 shows that strength
is well defined, as it assigns a unique scalar si to each firm i, delivering a complete ranking of
the firms. We call an equilibrium herculean if equilibrium cutoffs are ordered by strength, with
stronger firms playing lower cutoffs.

The next definition is instrumental to characterize the sufficient conditions for equilibrium
uniqueness.

Definition 5 (Expected Profit Gain). For any vector of cutoff strategies x define firm i’s expected
profit gain induced by firm j’s exit to be

�̂i, j(x) =
∑

e∈Ei\E j

{(∏
k∈ec\ j

Fk (xk )

)∫ b

(xk )k∈e\i

δi, j

(
xi, xj, ve\i

)
φ(ve\i)d

ne−1ve\i

}
, (7)

where δi, j(ve) ≥ 0 is firm i’s profit gain induced by firm j’s exit in market structure e with realized
types ve, as defined in (5).

Given a vector of cutoff strategies x, firm i’s expected profit gain induced by firm j’s exit,
�̂i, j(x), is the probability weighted sum over market structures that firm j can exit of firm i’s
profit gains due to j’s exit, δi, j(ve), integrated over every feasible realization of the competitors’
type. The expected profit gain relates to the increase in profit that a firm experiences when a com-
petitor (firm j) marginally increases its entry cutoff.19 Expression (7) will help us characterize
the shape of best responses and, consequently, when the entry game has a unique equilibrium.
In an environment with two potential entrants, the expected profit gain equals the profit gain
due to firm j not participating. In the context of an SPA, �̂i, j(x) = δi, j(xi, xj ) = min{xi, xj} − r.
Although assumption A2(ii) only implies that δi, j(ve) ≥ 0, together with assumption A2(iii) we
have that �̂i, j(x) > 0.

� Uniqueness with two groups of firms. We now generalize our results to games where
entrants can be divided into two groups according to their public characteristics. Firms are sym-
metric within their group. Across groups, firms can differ in their distribution of types and profit

19 In particular, Lemma B2 shows that ∂�i(x)/∂x j = f j (x j )�̂i, j (x). An increase in x j leads firm j to change its
entry behavior with probability f j (x j ), inducing firm i to gain �̂i, j (x).

C© The RAND Corporation 2023.
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18 / THE RAND JOURNAL OF ECONOMICS

functions. The two-group structure may arise naturally in applications where firms can be divided
into incumbents and entrants, high- and low-quality firms, local and international producers, dis-
count and traditional retailers, or legacy and low-cost airlines, among other examples.

Firms belong to one of two groups g ∈ {1, 2}. Group g consists of ng potential entrants
(n1 + n2 = n) described by the pair (πg, Fg). For any firm i, let g(i) represent firm i’s group. We
assume that profits are symmetric and anonymous within a group. That is, for every firm i, its
profit under market structure e and realized types ve is equal to πi(ve) = πg(i)(vi, vr, vk ), where r
and k are the number of entrants in e, other than i, from group g(i) and −g(i), respectively. The
vectors vr and vk represent the types of such entrants. A strategy is called group symmetric if for
each firm i, xi = xg(i). Without loss of generality, let group 1 be the strongest group.

Proposition 4. Let �i, j(x) = Fj(xj )�̂i, j(x). A herculean equilibrium always exists. The herculean
equilibrium satisfies x1 < s1 < s2 < x2, where sg and xg are the strength and the equilibrium cutoff
of group g. Furthermore, the game has a unique equilibrium if, for every firm i and each opponent
j, conditions20

fi(xi)

Fi(xi)

�i, j(x)

�′
i(x)

< 1 if g( j) = g(i), (8)

n−g(i)

fi(xi)

Fi(xi)

�i, j(x)

�′
i(x)

< 1 if g( j) 	= g(i), (9)

hold for every vector x such that each dimension k satisfies xk ∈ [vg(k), vg(k)].

Proposition 4 extends the existence of a herculean equilibrium result to the general frame-
work in the two-group model. The proposition also provides bounds on the herculean equilibrium
cutoffs, x1 ∈ (v1, s1) and x2 ∈ (s2, v2). As in the auction example, iterating mutual best responses,
starting from the firms’ strengths, will lead to a herculean equilibrium.

Proposition 4 also provides four conditions that need to be satisfied for equilibrium
uniqueness—two conditions per group. The within-group condition (8) guarantees that, in equi-
librium, firms only play group-symmetric strategies. The cross-group condition (9), on the other
hand, guarantees that the herculean equilibrium is the only group-symmetric equilibrium of the
game. Condition (9) bounds firm i’s best response due to a group-symmetric deviation from the
opposing group, −g(i). Observe that the left-hand side of condition (9) is multiplied by the num-
ber of firms in group −g(i). In group-symmetric strategies, there are n−g(i) opponents deviating
simultaneously; thus, the condition needs to bound n−g(i) deviations at the same time. Comparing
conditions (8) and (9), we can see that the former condition does not directly depend on ng(i). We
can exploit the within-group symmetry among firms to obtain a bound that does not depend on
the number of participants in the firm’s group.

The following corollary is an immediate implication of Proposition 4 in the context of sym-
metric entry games.

Corollary 1. If sufficient condition (8) holds, a symmetric entry game has a unique equilibrium.

Example 4. Below we illustrate how to apply Proposition 4 in the context of the models intro-
duced in Example 3.

(a) Linear model: When studying entry of supercenters into rural grocery markets, Grieco
(2014) estimates a symmetric linear model with incomplete information and two poten-
tial entrants and vi ∼ N (0, 1) (see Example 3a). In the smallest market, where coordination
among entrants is more relevant and equilibrium multiplicity is more likely to emerge, the

20 Conditions (8) and (9) can hold with equality if one group is strictly stronger than the other.

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 19

model estimates are given by η = −3.838 and δ = 0.851.21 In this context, conditions (8)
and (9) collapse into one, becoming

δF (xj )
f (xi)

F (xi)
< 1 for xi, xj ∈ [v, v].

Because the normal distribution is log-concave, f (xi)/F (xi) decreases in xi.22 Consequently,
it is sufficient to check the condition at xi’s lower bound and xj’s upper bound. Using the
model estimates, we find δF (v) f (v)/F (v) = 10−4 < 1. The condition is satisfied, and the
equilibrium is unique.

(b) SPA with partial information: Roberts and Sweeting (2013, 2016) use an SPA with partial
revelation of information model to study the United States Forest Service (USFS) timber
auctions (see Example 3b). The auction consists of two groups of potential entrants, millers
and loggers (groups 1 and 2, respectively). Before entry, each firm observes a signal vi. For
the representative (mean) auction, they estimate ln vi ∼ N (μg(i), 1.19), with μ1 = 3.9607
and μ2 = 3.5824. The estimated (symmetric) entry cost is $2.0543/mfb (dollars per thou-
sand board foot) and the auction’s reserve price is $27.77/mfb.23 Searching numerically, they
found a single equilibrium. We prove that the representative auction indeed has a unique
equilibrium when n1 = n2 = 1. In Online Appendix F, we show that condition (3) implies
conditions (8) and (9) in this context. Under log normality vi fi(vi)/Fi(vi) is decreasing in
vi. Thus, condition (3) only needs to hold at vi. Then, v1 f1(v1)/F1(v1) = 0.9436 < 1 and
v2 f2(v2)/F2(v2) = 0.7568 < 1, and the game has a unique equilibrium.

Extensions. The Online Appendix presents two extensions of the previous result.
A weaker sufficient condition. Observe that sufficient condition (9) becomes more demand-

ing with an increase in the number of potential entrants—that is, ignoring the effects that the
number of entrants has on the expected profit gain, �̂i, j(x). In Online Appendix E, we show that
if the expected profit gain satisfies a condition analogous to supermodularity, we can relax Propo-
sition 4 to only require sufficient condition (8) for every competitor, regardless of the group they
belong to. In the Appendix, we also show that the supermodularity condition is satisfied in SPAs
(Section 2) and in the linear model introduced in Example 3a. Consequently, in those environ-
ments the sufficient condition for uniqueness does not become more demanding as the number
of potential entrants increase.

N groups of ordered entrants. Online Appendix G also extends our existence of herculean
equilibrium and uniqueness results to an arbitrary number of entrants if, similar to the analysis
at the end of Section 2, the environments are ordered. The Appendix also discusses scenarios in
which the set of sufficient conditions can be reduced into a single condition, providing examples.

4. Concluding remarks

� This article studies equilibrium uniqueness in static entry games with single-dimensional
private information. To this end, we introduce the notions of strength and herculean equilibrium.
We show that a herculean equilibrium always exists and develop sufficient conditions guarantee-
ing equilibrium uniqueness. The proposed framework embeds many models studied in the ap-
plied entry literature, accommodating firm heterogeneity and selection. With the aid of strength,
we identify the herculean equilibrium. Strength can reduce the computational burden of calcu-
lating equilibria with heterogeneous firms, as it provides bounds for the herculean equilibrium.

21 See Table 7, page 329: η = μ0 − μ4 = −1.222 − 2.158 = −3.838. The sufficient also holds for every other
specification in the article.

22 If G(x) = ln(F (x)) is concave, then G′′(x) = ∂ ( f (x)/F (x))/∂x < 0.
23 In their model, vi = θiεi where ln θi ∼ N (μg(i), 0.3321) and ln εi ∼ N (0, 0.8579). See Tables 3 or 4 in Roberts

and Sweeting (2013, 2016), respectively.
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We use our sufficient conditions jointly with the estimates in empirical studies on the litera-
ture to illustrate the application of these conditions. We show that their empirical models have a
unique equilibrium.

This article focuses on entry games when firms’ entry decisions are strategic substitutes.
In games of strategic complements (i.e., when entry becomes more desirable when other firms
enter), the restriction to cutoff strategies remains without loss of generality. However, a symmet-
ric entry game under strategic complementarity might have multiple symmetric equilibria (see
Brock and Durlauf, 2001; Sweeting, 2009). Consequently, because strength coincides with sym-
metric equilibrium cutoffs in symmetric games, strength might not be uniquely defined in these
types of games. Strategic complementarity also hinders the existence of a unique equilibrium.
We can show that a strategic complement analogous to sufficient condition (8) delivers a unique
equilibrium in the context of two firms. However, our methods do not directly extend to those
cases when more than two competitors are present.

The focus of this article is on static entry games with private information. We emphasize
developing a framework that embeds most of the applied work on endogenous market formation.
Beyond the presented results, we see these new developments as the starting point for studying
equilibrium uniqueness in dynamic entry games with incomplete information. We hope the tools
developed here enable further research in dynamic environments.

Appendix A: Omitted Proofs

Proof of Lemma 1. The result follows from Lemma 4, as both scenarios satisfy condition (4). �

Proof of Proposition 1. It follows from Proposition 2 when n1 = n2 = 1. �

Proof of Lemma 2. The proof of both statements make use that a concave differentiable function is bounded above by its
first-order Taylor approximation; that is, for every x and y such that x > y

F (x) − F (y) ≥ (x − y) f (x). (A1)

The first claim follows from taking y = 0 and using F (0) = 0.
For the second statement, let y in equation (A1) be the inflection point under which Fi(v) becomes concave. Because

of concavity, F ′′
i (x) ≤ 0, and fi(x) is nonincreasing for every x ≥ y. Because Fi(v) is bounded above by 1, fi(x) converges

to zero as x goes to infinity. If Fi(y) ≤ fi(y)y, let κi ≥ y be the valuation that satisfies Fi(y) = fi(κi )y. Then, for every
x ≥ κi ≥ y we have:

Fi(x) ≥ x fi(x) + Fi(y) − y fi(x) ≥ x fi(x) + Fi(y) − y fi(κi ) = x fi(x),

and the inequality hods. If Fi(y) > fi(y)y, let κi = y and for every x ≥ κi we have: Fi(x) ≥ x fi(x) + Fi(y) − y fi(x) ≥
x fi(x), proving the result. �

Proof of Lemma 3. It follows from Lemma B3 in Appendix B. �

Proof of Proposition 2. Using equation (1) and the definition of equilibrium we begin by observing that every herculean
equilibrium is characterized by cutoffs x1 ≤ x2 that jointly solve

(x1 − r)F1(x1 )n1−1F2(x2 )n2 = K1

F2(x2 )n2−1

[
x2F1(x2 )n1 − rF1(x1 )n1 −

∫ x2

x1

vd(F1(v)n1 )

]
= K2.

Existence. By construction. If s1 = s2 = s there is a herculean equilibrium with cutoffs x1 = x2 = s. Assume s1 < s2. By
Lemma 3, focusing on group-symmetric strategies is without loss of generality. Let χ1(x) be group 1’s group-symmetric
best response to group 2 playing the group-symmetric strategy x. By definition of strength, χ1(s1 ) = s1. Using implicit
differentiation it can be checked that χ ′

1(x) < 0 (see uniqueness proof below). Define �̂2(x) = �2(χ1(x); x) to be the
expected profit of a firm in group 2 when it draws valuation x, every other firm in group 2 plays the group-symmetric
strategy x, and group 1 best responds with the group-symmetric cutoff χ1(x), that is

�̂2(x) = F2(x)n2−1

[
xF1(x)n1 − rF1(χ1(x))n1 −

∫ x

χ1 (x)

vd(F1(v)n1 )

]
− K2,

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 21

where x = max{χ1(x), x}. An equilibrium (x1, x2 ) is given when �̂2(x2 ) = 0 and x1 = χ1(x2 ). Observe that x2 ∈ (s1, ∞)
is necessary and sufficient for a herculean equilibrium (i.e., for x1 < x2). This follows from χ1(x) being decreasing in x
and χ1(s1 ) = s1. Then, x1 = χ1(x2 ) < x2 if and only if x2 ∈ (s1, ∞).

We prove existence by the intermediate value theorem. By the bounded expectation assumption, �̂2(x) is un-
bounded above. Hence, because �̂2(x) is continuous, it is sufficient to show that �̂2(s1 ) < 0. This follows from observ-
ing

�̂2(s1 ) = �2(s1; s1 ) < �2(s2; s2 ) = 0,

where the inequality follows from �2(s; s) being increasing in s (by Lemma B2) and the definition of strength, s2.
Uniqueness. We show that the function �̂2(x) is strictly increasing, thus it can cross zero only once. We derive the

proof in two parts: (i) There exists a unique herculean equilibrium, that is, �̂2(x) is strictly increasing in x when x > s1;
and (ii) There is no equilibrium in which x2 < x1, that is, �̂2(x) is strictly increasing in x when x < s1.24

To prove part (i) we start differentiating �̂2(x) in the scenario when x > s1

�̂′
2(x) = F2(x)n2−1

{
F1(x)n1 + n1χ

′
1(x)(χ1(x) − r) f1(χ1(x))F1(χ1(x))n1−1

+(n2 − 1)
f2(x)

F2(x)

[
xF1(x)n1 − rF1(χ1(x))n1 −

∫ x

χ1 (x)

yd(F1(y)n1 )

]}
.

Because F2(x)n2−1 > 0, it is sufficient to show that the term in braces is nonnegative for all x ≥ s1. Implicitly differentiat-
ing χ1(x) using �1(χ1(x); x) = 0

χ ′
1(x) = − n2(χ1(x) − r)F1(χ1(x))

F1(χ1(x)) + (n1 − 1)(χ1(x) − r) f1(χ1(x))

f2(x)

F2(x)
< 0

replacing into the expression in braces delivers

(n2 − 1)
f2(x)

F2(x)

[
xF1(x)n1 − rF1(χ1(x))n1 −

∫ x

χ1 (x)

yd(F1(y)n1 )

]

+
[

F1(x)n1 − n1n2(χ1(x) − r)2 f1(χ1(x))F1(χ1(x))n1

F1(χ1(x)) + (n1 − 1)(χ1(x) − r) f1(χ1(x))

f2(x)

F2(x)

]
. (A2)

We show that a lower bound for the expression above is always positive. Maximize the subtracting integral term in the
first square brackets by taking the upper bound x

∫ x

χ1 (x) dF1(y)n1 in the integral to obtain

xF1(x)n1 − rF1(χ1(x))n1 − x(F1(x)n1 − F1(χ1(x))n1 ) = (x − r)F1(χ1(x))n1 > 0.

Because r ≥ 0, sufficient condition (3) implies

(x − r) fi(x) ≤ x fi(x) ≤ Fi(x). (A3)

Using this observation, we maximize the subtracting term in the second square brackets by substituting F1(χ1(x)) for
(χ1(x) − r) f1(χ1(x)) in the denominator. Then, equation (A2) becomes

F1(χ1(x))n1

[(
F1(x)n1

F1(χ1(x))n1
− 1

)
+ (n2 − 1)(x − χ1(x))

f2(x)

F2(x)

]
> 0,

where x > χ1(x) for x > s1 was used to obtain the inequality. Hence the lower bound of (A2) is positive and �̂2(x) is
increasing in x.

To prove part (ii) we differentiate �̂2(x) when x < s1 (i.e., x < χ1(x))

�̂′
2(x) = F1(χ1 )n1 F2(x)n2−1

[
1 + (x − r)

(
(n2 − 1)

f2(x)

F2(x)
+ n1χ

′
1

f1(χ1 )

F1(χ1 )

)]
,

where we used χ1 instead of χ1(x) to ease the notation. We show that a lower bound of �̂′
2(x) is positive. We start by

deriving a lower bound for χ ′
1(x). Implicitly differentiating χ1(x) using �1(χ1(x); x) = 0 we get that χ ′

1(x) is equal to:

−n2(x − r)F2(x)n2−1 f2(x)

F2(χ1 )n2 + (n1 − 1)
(
χ1F2(χ1 )n2 − rF2(x)n2 − ∫ χ1

x vd(F2(v)n2 )
)

f1 (χ1 )
F1 (χ1 )

< 0.

First, maximize the subtracting integral term in the denominator by taking the upper bound χ1(x)
∫ χ1 (x)

x dF2(y)n2 =
χ1(x)(F2(χ1(x))n2 − F2(x)n2 ). Then, rearranging, the denominator becomes

F2(χ1 )n2

(
1 + (n1 − 1)(χ1 − r)

f1(χ1 )

F1(χ1 )

)
≥ n1(χ1 − r)

f1(χ1 )

F1(χ1 )
F2(χ1 )n2 ,

24 By s1 < s2, we already know that x2 = s1 is not an equilibrium.

C© The RAND Corporation 2023.
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22 / THE RAND JOURNAL OF ECONOMICS

where in the inequality we used property (A3), which is implied by sufficient condition (3). Then, substituting in the
denominator

0 > χ ′
1(x) ≥ − n2

n1

(x − r)

(χ1(x) − r)

F1(χ1(x))

f1(χ1(x))

f2(x)

F2(x)
> − n2

n1

F1(χ1(x))

f1(χ1(x))

f2(x)

F2(x)
,

where in the last inequality we used that, by assumption, x < χ1(x). Replacing χ ′
1(x) into �̂′

2(x), we obtain

�̂′
2(x) > F1(χ1 )n1 F2(x)n2−1

[
1 − (x − r)

f2(x)

F2(x)

]
≥ 0,

where in the last inequality we used that sufficient condition (3) implies 1 ≥ (x − r) f2(x)/F2(x), proving the result. �

Proof of Lemma 4. By definition of i’s strength (si − r)
∏

j 	=i Fj (si ) = Ki. Equation (4) implies Ki+1Fi+1(si )/Fi(si ) ≥
Ki. Substituting for Ki on the RHS of i’s strength and rearranging: (si − r)

∏
j 	=i+1 Fj (si ) ≤ Ki+1. Because the LHS is

increasing in si, si+1 ≥ si. �

Proof of Proposition 3. Existence: For a given vector v = (v1, . . . , vn ), let vi = (v1, . . . , vi ) represent the elements of v
from the 1st to the ith dimension and vi = (vi, . . . , vn ) the elements from the ith to the nth. Start by ordering bidders by
strength, with bidder 1 being the strongest and n the weakest. Recall equation (1), �i(xi; x−i ) = An

i Ri(xi; xi−1 ) − Ki. An
equilibrium x = (x1, . . . , xn ) exists if and only if �i(x) ≡ �i(xi; x−i ) = 0 holds for every i.

We construct a herculean equilibrium x recursively. We start by constructing x1 as a function of x2. For any vector
x2, define χ1(x2 ) to be the value of x1 that solves �1(x1; x2 ) = 0; that is, x1 = r + K1/An

1.
Construct x2 using χ1(x2 ). By substituting χ1(x2 ) in for the value of x1 in �2(x), we can write �̂2(x2 ) =

�2(x2;χ1(x2 ), x3 ) which is a function of x2 only. That is, with a slight abuse of notation, �̂2(x2 ) = An
2R2(x2 ) − K2 where

R2(x2 ) = R2(χ1(x2 ); x2 ) = x2F1(x2 ) − rF1(χ1(x2 )) −
∫ x2

χ1 (x2 )

vdF1(v)

is the revenue function R2(x2 ) after replacing the function χ1(x2 ) for the value of x1. The finite expectation assumption
implies that �̂2(x2, x3 ) is unbounded above in x2. Fix any x3. Define x̂2 to be the largest value of x2 that satisfies x̂2 =
χ1(x̂2, x3 ). Observe that x̂2 always exists, as x2 ∈ R+ and χ1(x2, x3 ) is a continuous function of x2 with range in (r +
K1, v1 ). Also, for every x2 > x̂2, x2 > χ1(x2, x3 ). Otherwise, x2 and χ1(x2, x3 ) would cross again and x̂2 would not be the
largest crossing point.

Using x̂2 = χ1(x̂2, x3 ) = r + K1/(F2(x̂2 )An
2 ), we find

�̂2(x̂2, x3 ) = (x̂2 − r)An
2F2(x̂2 ) = K1F1(x̂2 )/F2(x̂2 ) − K2.

If the bidders are equally strong, that is, condition (4) holds with equality, �̂2(x̂2, x3 ) = 0. Then, we can define
χ2(x3 ) = x̂2. If bidder 2 is strictly weaker, condition (4) implies �̂2(x̂2, x3 ) < 0. Thus, by the intermediate value the-
orem, there exists χ2(x3 ) > x̂2 such that �̂2(χ2(x3 ), x3 ) = 0. Because χ2(x3 ) > x̂2, we have χ2(x3 ) > χ1(χ2(x3 ), x3 ) for
any x3, implying that the order will not reverse when constructing cutoffs for weaker firms (though, the actual values of
χ1 and χ2 do change with x3). Observe that, by replacing x2 = χ2(x3 ) into χ1(x2 ), we can write χ1 and χ2 as a function
of x3. That is, χ1(x3 ) = χ1(χ2(x3 ), x3 ).

Suppose we have shown that, for any vector xi, χ1(xi ) ≤ χ2(xi ) ≤ · · · ≤ χi−1(xi ) (strict whenever sk−1 < sk). For
each step k ≤ i − 1, χk (xk+1 ) has been recursively constructed by: (i) replacing the previous-step solution χk−1(xk ) into
χ j (xk−1 ) for j ≤ k − 2, so that χ j (xk ) = χ j (χk−1(xk ), xk ); (ii) defining

�̂k (xk ) = �k (xk; χ1(xk ), . . . , χk−1(xk ), xk+1 );
and, (iii) defining χk (xk+1 ) to be the highest value xk that solves �̂k (xk, xk+1 ) = 0. We show that there exists
χi(xi+1 ) ≥ χi−1(χi(xi+1 ), xi+1 ) (strict if si > si−1) solving �̂i(χi(xi+1 ), xi+1 ) = 0. By equation (1), �̂i−1(xi−1 ) = 0 implies
Ri−1(xi−1 ) = Ki−1/An

i−1. Substituting the vector of solutions (χ j (xi ))i−1
j=1 we can write �i(x) as �̂i(xi ) = An

i Ri(xi ) − Ki.

Because of the finite expectation assumption, �̂i(xi ) is unbounded above in xi. Fix any vector xi+1. Take x̂i to be the
largest value of xi that satisfies x̂i = χi−1(x̂i, xi+1 ). This value exists by the same argument given to find x̂2 and it also
satisfies xi > χi−1(xi, xi+1 ) for xi > x̂i. Using x̂i = χi−1(x̂i, xi+1 ) and Lemma B.1.2 (see the Auxiliary Result section) we
know25

Ri(x̂i; xi+1 ) = Fi−1(χi−1(x̂i, xi+1 ))Ri−1(χi−1(x̂i, xi+1 ); x̂i, xi+1 ).

Then, using the property Ri−1(χi−1(xi ); xi ) = Ki−1/An
i−1 and x̂i = χi−1(x̂i, xi+1 ), we can write �̂i(x̂i, xi+1 ) =

Ki−1Fi−1(x̂i )/Fi(x̂i ) − Ki. If bidders i − 1 and i are equally strong, �̂i(x̂i, xi+1 ) = 0 by condition (4) and we define

25 The equation above uses the recursion notation. The formulation from the lemma is

Ri(x̂i; xi−2, χi−1(x̂i, xi+1 )) = Fi−1(χi−1(x̂i, xi+1 ))Ri−1(χi−1(x̂i, xi+1 ); xi−2 ).

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 23

χi(xi+1 ) = x̂i. If bidder i is strictly weaker than i − 1, condition (4) implies �̂i(x̂i, xi+1 ) < 0. Then, by the intermedi-
ate value theorem, there exists χi(xi+1 ) > x̂i such that �̂i(χi(xi+1 ), xi+1 ) = 0. Finally, because χi(xi+1 ) > x̂i, we have
χi(xi+1 ) > χi−1(χi(xi+1 ), xi+1 ) for any xi+1, and the order between the cutoffs will be robust to the construction of the
equilibrium cutoffs for weaker firms. �

Uniqueness: We begin by outlining the induction argument. We order bidders from strongest to weakest. We first
show that the strongest bidder has a unique best response to any vector of cutoffs by weaker opponents, x2. Then, we
show that bidder 2 has a unique best response to weaker opponents’ cutoffs, x3, taking bidder 1’s unique best response
function as given. We also show that these best responses are ordered: bidder 2 always play a higher entry cutoff. Finally,
assuming that we have shown that the k − 1 strongest bidders have a unique best response and that these best responses
are ordered, we show that bidder k has a unique best response to any cutoff by weaker bidders, xk+1, and that bidder k
always play a higher cutoff than bidder k − 1. This shows that there is a unique herculean equilibrium. We, then, use the
previous argument to show that it also implies that no non-herculean equilibrium exists. Conditions (3) and (4) are used
throughout the proof.

Preliminaries. Define �k : Rn → Rk to be a function equal to �i(x) (see equation (1)) in the i ≤ k dimension.26

Fix k, by the existence proof we know that, for every j ≤ k, there exists recursively defined functions χ j (xk+1 ) satisfy-
ing �k (χ1(xk+1 ), . . . , χk (xk+1 ), xk+1 ) = 0. For any i ≤ k, the total differential of �i(χ1(xk+1 ), . . . , χk (xk+1 ), xk+1 ) with
respect to x j , j > k, is:

An
i

[
i−1∑
s=1

Ai−1
s Rs(xs ) fs(xs )

dχs

dx j

+ Bi(xi )
dχi

dx j

+ Ri(xi )

(
k∑

s>i

hs(xs )
dχs

dx j

+ hj (x j )

)]
, (A4)

where hi(v) = fi(v)/Fi(v) is the reversed hazard rate of Fi (see Online Appendix D.3 for a step-by-step deriva-
tion of A4). Using (A4) and the implicit differentiation of �k , we can write the vector of derivatives dk =
(dχ1/dxk+1, . . . , dχk/dxk+1 )T (T denotes transpose), as the solution to the following system of linear equations:

An
i [Mkdk + Rkhk+1(xk+1 )] = 0, (A5)

where Rk = (R1(x1 ), R2(x2 ), . . . , Rk (xk ))T and Mk is equal to

⎛
⎜⎜⎜⎜⎜⎝

B1(x1 ) R1(x1 )h2(x2 ) R1(x1 )h3(x3 ) · · · R1(x1 )hk (xk )
A1

1R1(x1 ) f1(x1 ) B2(x2 ) R2(x2 )h3(x3 ) · · · R2(x2 )hk (xk )
A2

1R1(x1 ) f1(x1 ) A2
2R2(x2 ) f2(x2 ) B3(x3 ) · · · R3(x3 )hk (xk )

...
...

...
. . .

...
Ak−1

1 R1(x1 ) f1(x1 ) Ak−1
2 R2(x2 ) f2(x2 ) Ak−1

3 R3(x3 ) f3(x2 ) · · · Bk (xk )

⎞
⎟⎟⎟⎟⎟⎠ .

If Mk is invertible, the solution to (A5) is given by:

dk = −M−1
k Rkhk+1(xk+1 ). (A6)

We will show that Mk is invertible. Then, using the derivatives in (A6), we show that d�̂k+1(xk+1 )/dxk+1 > 0. This implies
that �̂k+1(xk+1 ) single-crosses zero in the xk+1 dimension, and χk+1(xk+2 ) is uniquely defined. By the existence proof,
we also know that χk (χk+1(xk+2 ), xk+2 ) < χk+1(xk+2 ). Then, by the induction argument, each step of the construction
χk+1(xk+2 ) is ordered and uniquely defined. Thus, the herculean equilibrium is unique.

Claim A1. There exists a unique herculean equilibrium.

Proof. Fix a step k and let (χ j (xk+1 ))k
j=1 be the vector of functions constructed until step k in the recursion in the existence

proof above. For ease in notation, for any xk+1 we write (χ j (xk+1 ))k
j=1 = xk . We need to show that there is a unique value

of xk+1 that solves �̂k+1(xk+1 ) = 0 for any vector xk+2. In particular, we show d�̂k+1(xk+1 )/dxk+1 > 0, so that �̂k+1(xk+1 )
single crosses zero from below.

Using (A4),

d�̂k+1(xk+1 )

dxk+1

= An
k+1(mkdk + Bk+1(xk+1 ))

where mk = (Ak
1R1(x1 ) f1(x1 ), Ak

2R2(x2 ) f2(x2 ), . . ., Ak
kRk (xk ) fk (xk )). Using (A6), if Mk is invertible we can write dk =

−M−1
k Rkhk+1(xk+1 ) and

d�̂k+1(xk+1 )

dxk+1

= An
k+1(Bk+1(xk+1 ) − qkhk+1(xk+1 ))

26 For ease in notation, we use �i(x) and Ri(xi ) to refer to �i(xi; x−i ) and Ri(xi; xi−1 ).

C© The RAND Corporation 2023.
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24 / THE RAND JOURNAL OF ECONOMICS

where qk = mkM−1
k Rk is a scalar. Because An

k+1 > 0, it is sufficient to show that the term inside the parenthesis is positive
for all relevant values of xk+1. We prove the previous statement and the invertibility of Mk by induction.

Observe �1(x) = An
1(x1 − r) − K1, thus d�1(x)/dx1 > 0 and bidder 1 has a unique best response (given by

χ1(x2 ) = r + K1/An
1). For bidder 2, observe M1 = B1(x1 ) = 1 is invertible and q1 = (x1 − r)2 f1(x1 ) is well defined. Then,

B2(x2 ) − q1h2(x2 ) = F1(x2 ) − (x1 − r)2 f1(x1 )h2(x2 ). Using condition (3) twice, x1F1(x1 )/x2 is an upper bound for the sub-
tracting term. Because, by construction, we are interested in x2 ≥ x1, B2(x2 ) − q1h2(x2 ) > 0. Then, d�̂2(x2 )/dx2 > 0 and
χ2(x3 ) is uniquely defined.

Suppose we have shown that Mj−1 is invertible and Bj (x j ) − qj−1hj (x j ) > 0 for all j ≤ k. Let lk = (Bk (xk ) −
qk−1hk (xk ))−1 and observe that lk > 0 by induction hypothesis; then, by the definition of Mk

Mk =
(

Mk−1 Rk−1hk (xk )
mk−1 Bk (xk )

)
.

Using blockwise inversion,

M−1
k =

(
M−1

k−1 + hk (xk )lk (M−1
k−1Rk−1mk−1M−1

k−1 ) −hk (xk )lk (M−1
k−1Rk−1 )

−lk (mk−1M−1
k−1 ) lk

)

and the inverse of Mk is well defined. We need to show Bk+1(xk+1 ) − qkhk+1(xk+1 ) > 0. Observing that Rk =
(Rk−1, Rk (xk ))T , mk = (mk−1Fk (xk ), Rk (xk ) fk (xk )), and using the definition of M−1

k and lk we can write:

qk = Fk (xk )qk−1 + fk (xk )(Rk (xk ) − qk−1 )2
/

(Bk (xk ) − qk−1hk (xk )). (A7)

Thus, Bk+1(xk+1 ) − qkhk+1(xk+1 ) > 0 is equivalent to show:(
Bk (xk+1 )Fk (xk+1 )

fk (xk )hk+1(xk+1 )
− qk−1

hk (xk )

)
(Bk (xk ) − qk−1hk (xk )) > (Rk (xk ) − qk−1 )2

where Bk+1(xk+1 ) = Bk (xk+1 )Fk (xk+1 ) was used. By the existence proof we are only interested in xk+1 ≥ xk ; using this
condition, that Bk (v) is decreasing in v, and condition (3) we find that (Bk (xk )xk − qk−1 )2 is a lower bound for the LHS
of the expression above. Lemma B.1.1 shows Bi(xk )xk ≥ Rk (xk ). Thus we just need to show that Bk (xk )xk − qk−1 ≥ 0,
which is done by proving Rk (xk ) − qk−1 ≥ 0. We do this by induction. Because q0 is not defined, we begin with i = 2.
Integrating by parts R2(x2 ), R2(x2 ) − q1 is equal to

(x1 − r)F1(x1 ) +
∫ x2

x1

F1(v)dv − (x1 − r)2 f1(x1 ) >

∫ x2

x1

F1(v)dv ≥ 0

where x1 ≥ x1 − r and condition (3) was used in the last step. Suppose we have shown Rj (x j ) ≥ qj−1 for j ≤ i. We show
Ri+1(xi+1 ) ≥ qi. Using equation (A7), this is equivalent to:

Ri+1(xi+1 )/Fi(xi ) − qi−1 − (Ri(xi ) − qi−1 )2/(Bi(xi )

hi(xi )
− qi−1

)
≥ 0.

Lemma B.1.2 shows Ri+1(xi+1 )/Fi(xi ) ≥ Ri(xi ). By the induction hypothesis Ri(xi ) ≥ qi−1 and we can rewrite the condi-
tion as

1 ≥ (Ri(xi ) − qi−1 )
/(Bi(xi )

hi(xi )
− qi−1

)
.

The result follows from condition (3) and Lemma B.1.1. Thus Ri+1(xi+1 ) ≥ qi, which proves d�̂k+1(xk+1 )/dxk+1 > 0 for
all xk+1 ≥ xk and a unique herculean equilibrium exists.

Claim A2. There is no non-herculean equilibria.

Proof. Let x = (x1, x2, . . . , xn ) be an ordered vector of equilibrium cutoffs. beginning from the lower cutoff, let i be the
first bidder to play a smaller cutoff than a stronger bidder i + 1; that is, xi < xi+1 but si > si+1. In other words, every bidder
k ≤ i have their cutoffs in the same order as their strength. Because of this, we can use our recursive construction in the
existence proof and our induction argument in the uniqueness proof up to bidder i, so that best responses are uniquely
defined for any vector xi+1 that bidders may play.

Let us analyze �̂i+1(xi+1 ). Because �̂i(xi ) = 0 we know Ri(xi ) = Ki/An
i . Writing �̂i+1(xi+1 ) = An

i+1Ri+1(xi+1 ) −
Ki+1. Take xi+1 to be the value that satisfies xi+1 = χi(xi+1, xi+2 ) = xi and notice that Lemma B.1.2 implies Ri+1(xi, xi+2 ) =
Fi(xi )Ri(xi, xi, xi+2 ). Then, using Ri(xi ) = Ki/An

i , we can write �̂i+1(xi, xi+2 ) = KiFi(xi )/Fi+1(xi ) − Ki+1 > 0; which is
positive under (4) and the condition that bidder i + 1 is stronger than bidder i. We need to show that there is no x∗

i+1 > xi

such that �̂i+1(x∗
i+1, xi+2 ) = 0. This follows from the proof of uniqueness, as condition (3) implies d�̂i+1(xi+1 )/dxi+1 > 0

for x∗
i+1 > xi, implying the result. �

Proof of Lemma 5. We show that si exists and that σi(s) ≡ �i(s; s, . . . , s) single crosses zero.

C© The RAND Corporation 2023.
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ESPÍN-SÁNCHEZ, PARRA, AND WANG / 25

Existence: Observe that assumptions A3 and A2 jointly imply σi(vi ) < 0. Similarly, assumption A3 and Lemma B2
(see Appendix B) imply, σi(vi ) ≥ �i(vi; a−i ) > 0 (where a is the lower bound of the support of Fi). Then, by the interme-
diate value theorem, there exist ŝ such that σi(ŝ) = 0.

Uniqueness: By Lemma B2 and the chain rule, we have that σ ′
i (s) > 0. Thus, σi(s) single crosses zero; that is, there

is a unique value si satisfying σi(si ) = 0. �

Proof of Proposition 4. Proof preliminaries: If s1 = s2 the herculean equilibrium corresponds to the strength of the firms.
Assume, without loss of generality, that s1 < s2. Let x̂ = (x1, x1, . . . , x1, x2, x2, . . . , x2 ) be a vector of group-symmetric
cutoff strategies. Pick any firm in group i ∈ {1, 2} and let �

gs
i (x1, x2 ) = �i(x̂) —where gs stands for group symmetric—

represent the expected profit of a firm belonging to group i entering with a valuation xi, when opponents play group-
symmetric strategies x1 and x2. Observe that the function �

gs
i (x1, x2 ) has a two-dimensional domain, taking as input the

group-symmetric strategy of each group.
Lemma B3 in the Auxiliary Results section implies that, under condition (8), restricting to group-symmetric strate-

gies is without loss. If there is another type of equilibrium, it must be that symmetric firms play asymmetric cutoffs, con-
tradicting the Lemma. Define χ1(x) to be the function that solves �

gs
1 (χ1(x), x) = 0. Thus, χ1(x) corresponds to group

1’s symmetric best response to group 2 playing the group-symmetric cutoff x. By Lemma B2, �
gs
1 (x1, x2 ) is increasing in

each argument, and the value χ1(x) exists and is unique; that is, χ1(x) is well defined. �

Lemma A1. χ1(s1 ) = s1 and, under condition (9), 0 > χ ′
1(x) > − f2 (x)

F2 (x)
F1 (χ1 (x))
f1 (χ1 (x))

.

Proof. By definition of strength we know �
gs
1 (s1, s1 ) = 0, therefore χ1(s1 ) = s1. Let Gi be the set of firms belonging to

group i. Using implicit differentiation, the chain rule, that groups members are symmetric, and Lemma B2

χ ′
1(x) = −

∂�
gs
1 (χ1 (x),x)

∂x2

∂�
gs
1 (χ1 (x),x)

∂x1

= −
∑

j∈G2

∂�1 (x̂)
∂x j∑

j∈G1

∂�1 (x̂)
∂x j

=
−n2

f2 (x)
F2 (x)

�1,2(x̂)

�′
1(x̂) + (n1 − 1) f1 (χ1 (x))

F1 (χ1 (x))
�1,1(x̂)

,

where �i, j (x̂) = Fj (x j )�̂i, j (x̂) is defined by equation (7). Because numerator and denominator are positive, the equa-
tion above proves χ ′

1(x) < 0 for all x. For the lower bound of χ1(x) observe that �1,1(x̂) > 0. Take a lower bound for
χ ′

1(x) by making �1,1(x̂) zero. The lower bound χ ′
1(x) > − f2 (x)

F2 (x)
F1 (χ1 (x))
f1 (χ1 (x))

follows by using sufficient condition (9). �

Existence of a herculean equilibrium: Define �̂2(x) = �
gs
2 (χ1(x), x). This function is continuous and corresponds

to the expected profit of a firm in group 2 when it enters the market under valuation x, group 2 plays the group-symmetric
cutoff x, and group 1 plays their group-symmetric best response χ1(x). Define x2 to be the value satisfying �̂2(x2 ) = 0
and let x1 = χ1(x2 ). Observe that x2 ∈ (s1, ∞) is necessary and sufficient for x1 < x2. This is so, as χ1(x) is decreasing
in x and χ1(s1 ) = s1. The next claim proves that a herculean equilibrium (x1 < x2) exists, x1 < s1 and x2 > s2.

Claim A3. �̂2(s2 ) < 0 and there exists x̃ > s2 such that �̂2(x̃) > 0. Thus, by the intermediate value theorem, the her-
culean equilibrium cutoff x2 ∈ (s2, x̃) exists.

Proof. Because group two is weak, and χ1(x) is decreasing in x, we know that χ1(s2 ) < χ1(s1 ) = s1 < s2 (where
Lemma A1 was used in the equality). Lemma B2 and the definition of strength implies �̂2(s2 ) = �

gs
2 (χ1(s2 ), s2 ) <

�
gs
2 (s2, s2 ) = 0, proving �̂2(s2 ) < 0. For the second part of the claim, observe that, by Lemma B2, �

gs
2 (x1, x2 ) is in-

creasing in x1; then, �
gs
2 (χ1(x), x) ≥ �

gs
2 (a, x) for all x. Take x̃ = v2 and observe that, by assumption A3, �

gs
2 (a, x̃) > 0,

proving the result. �

Uniqueness of equilibrium: Observing that, under condition (8), Lemma B3 applies. Therefore, it is without loss
to restrict the analysis to group-symmetric strategies. To prove uniqueness, then, we need to show that no other herculean
equilibrium exists and that we can not have an equilibrium where x2 < x1.

Claim A4. There exists a unique herculean equilibrium.

Proof. To prove uniqueness within the herculean class, we show �̂′
2(x) > 0 so that �̂2(x) single crosses zero from below.

Recall x̂ = (χ1(x), . . . , χ1(x), x, . . . , x). Differentiating �̂2(x), using the chain rule, and that firms play group-symmetric
strategies, we obtain

�̂′
2(x) =

∑
j∈G2

∂�2(x̂)

∂x j

+ χ ′(x)
∑
j∈G1

∂�2(x̂)

∂x j

>�′
2(x̂) + (n2 − 1)

f2(x)

F2(x)
�2,2(x̂) − n1

f2(x)

F2(x)
�2,1(x̂)
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>(n2 − 1)
f2(x)

F2(x)
�2,2(x̂) > 0.

The first inequality follows from using equation (B2) and the bound for χ ′
1(x) in Lemma A1. The second inequality

follows from sufficient condition (9). Proving that the derivative is positive and uniqueness within the herculean class. �

Claim A5. There is no group-symmetric equilibrium in which the strong group plays a higher cutoff than the weak group.

Proof. We show that no non-herculean equilibrium-that is, x1 > x2 but s1 < s2—can exist. Define χ2(x) to be the function
that satisfies �

gs
2 (x, χ2(x)) = 0; χ2(x) corresponds to group two’s best response to the cutoff of group one when x1 = x.

Using the same arguments as for χ1(x), χ2(x) is also well defined. Similarly, following the steps of Lemma A1, it can be
shown: χ2(s2 ) = s2, χ ′

2(x) < 0 , and under condition (9), χ ′
2(x) is bounded below by − f1 (x)F2 (χ2 (x))

F1 (x) f2 (χ2 (x))
.

Define the continuous function �̂1(x) = �
gs
1 (x, χ2(x)) which corresponds to the expected profit of a firm in group

1 when entering the market under valuation x and its opponents play the pair of group-symmetric strategies (x, χ2(x)).
We show that there is no x satisfying x1 = x > χ2(x) = x2 and �̂1(x) = 0; that is, no non-herculean equilibrium exists.
Start by observing that x > χ2(x) if and only if x ∈ (s2, ∞). In Lemma 5 we showed the function σ1(s) = �

gs
1 (s, s) is

strictly increasing in s. By the definition of strength and by firm 2 being weak (s1 < s2),

σ1(s1 ) = �
gs
1 (s1, s1 ) = 0 < σ1(s2 ) = �

gs
1 (s2, s2 ) = �

gs
1 (s2, χ2(s2 )) = �̂1(s2 ),

showing that �̂1(s2 ) > 0. Following analogous steps to those in Claim A4, which requires the using lower bound for
χ ′

2(x) and sufficient condition (9), we can show that �̂′
1(x) > 0. Then, because �̂1(s2 ) > 0 and �̂′

1(x) > 0 for all x, �̂1(x)
never crosses zero when x > s2 and the result follows. �

Appendix B: Auxiliary Results

Lemma B1. In a second-price auction, let (x1, x2, . . . , xn ) be an ordered vector of cutoff strategies (i.e., x1 ≤ x2 ≤ · · · xn).
Then, the following properties hold:

1. xiBi(xi ) ≥ Ri(xi ) and strict if r > 0 or if exists j < i such that x j < xi.
2. Ri(xi ) > Fi−1(xi−1 )Ri−1(xi−1 ) and with equality if xi = xi−1.

Proof. Recall the definition of Ri(xi ) in equation (1). For the first claim simply observe,

xiBi(xi ) − Ri(xi ) = rAi−1
0 +

i−1∑
k=1

(
Ai−1

k

∫ xk+1

xk

sdBk+1(s)

)

which is strictly positive if r > 0 or if there exists a bidder j < i such that x j < xi. For the second claim we show that
Ri(xi ) = Fi−1(xi−1 )Ri−1(xi−1 ) + ∫ xi

xi−1
Bi(s)ds, which proves the claim. Rewriting Ri(xi ) using definition in (1):

Ri(xi ) = xiBi(xi ) − Fi−1(xi−1 )

[
rAi−2

0 −
i−2∑
k=1

(
Ai−2

k

∫ xk+1

xk

sdBk+1(s)

)]
−
∫ xi

xi−1

sdBi(s).

Integrating by parts the last term, Ri(xi ) becomes:

xi−1Bi(xi−1 ) − Fi−1(xi−1 )

[
rAi−2

0 −
i−2∑
k=1

(
Ai−2

k

∫ xk+1

xk

sdBk+1(s)

)]
+
∫ xi

xi−1

Bi(s)ds.

Because, by definition, Bi(xi−1 ) = Bi−1(xi−1 )Fi−1(xi−1 ), the result follows. �

Lemma B2. �i(x) is strictly increasing in every dimension of x.

Proof of Lemma B2. Start with the derivative of �i with respect to xi, then

∂�i

∂xi

≡ �′
i(x) =

∑
e∈Ei

{(∏
j∈ec

Fj (x j )

)∫ b

{x j } j∈e\i

π ′
i

(
xi, ve\i

)
φ(ve\i )d

ne−1ve\i

}
> 0, (B1)

which is positive as, by assumption A3, there is a positive probability that firm i is the sole entrant. To compute ∂�i/∂x j ,
pick a market structure e in which j stays out ( j ∈ ec). Conditional on e, the derivative of �i with respect to x j is equal
to

f j (x j )

(∏
k∈ec\ j

Fk (xk )

)∫ b

{xk }k∈e\i

πi

(
xi, ve\i

)
φ(ve\i )d

ne−1ve\i.
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Now take market structure e, from above, and use Leibnitz differentiation, to compute ∂�i/∂x j conditional on market
structure e ∪ j; that is, entry decisions by every firm remain the same as in e except firm j, which now participates

− f j (x j )

(∏
k∈ec\ j

Fk (xk )

)∫ b

{xk }k∈e\i

πi

(
xi, x j, ve\i

)
φ(ve\i )d

ne−1ve\i.

Observe that both expressions from above only differ in sign and in the profit function that is integrated over. Summing
both equations delivers

f j (x j )

(∏
k∈ec\ j

Fk (xk )

)∫ b

{xk }k∈e\i

δi, j

(
xi, x j, ve\i

)
φ(ve\i )d

ne−1ve\i,

where δi, j (ve ) ≥ 0 is defined in equation (5). Summing across every market structure in which j stays out and using
equation (7) we obtain

∂�i

∂x j

= f j (x j )�̂i, j (x) = f j (x j )

Fj (x j )
�i, j (x) > 0. (B2)

Thus, the derivative is positive. �

Lemma B3. Under condition (8), two symmetric firms that best respond to each other must play the same cutoff strategy.

Proof. Consider two symmetric firms, p and q, and fix any profile of cutoffs strategies xE\{p,q} for the rest of the firms. The
equilibrium condition for firm p holds whenever there exists xp and xq such that �p(xp; xq, xE\{p,q} ) = 0. Define χ (xp) to
be firm q’s best response to xp (and to xE\{p,q}, which is fixed throughout the proof). By Lemma B2, �p(xp; xq, xE\{p,q} )
is strictly increasing in both xp and xq, which implies that χ (xp) exists and is uniquely defined for each xp. To prove the
Lemma, we need to prove three claims. �

Claim B1. There exists a unique pair of symmetric cutoffs, xp = xq = z, such that �p(z; z, xE\{p,q} ) = 0.

Proof. Suppose firms p and q play a symmetric cutoff, xp = xq = z. Define σ̂ (z) = �p(z; z, xE\{p,q} ) = �q(z; z, xE\{p,q} ),
where the last equality follows from symmetry among firms. Thus, if the equilibrium condition is satisfied by firm p, it is
also satisfied by firm q. We want to show there exists a unique value ẑ such that σ̂ (ẑ) = 0. Following analogous steps to
those in Lemma 5, it is easy to show σ̂ (vp) < 0 and σ̂ (vp) > 0; so that, there exists ẑ such that σ̂ (ẑ) = 0. Similarly, using
Lemma B2 and the chain rule, we can show that σ̂ ′(z) > 0. Hence, the value ẑ is unique. �

Claim B2. Under condition (9):27 0 > χ ′(xp) > − f (xp )

F (xp )

F (χ (xp ))

f (χ (xp ))
.

Proof. Let x = (xp, χ (xp), xE\{p,q} ). Using implicit differentiation and equations (B1) and (B2) from Lemma B2, we
obtain

χ ′(xp) = −
∂�q (χ (xp );xp,xE\{p,q} )

∂xp

∂�q (χ (xp );xp,xE\{p,q} )

∂xq

= − f (xp)

F (xp)

�q,p(x)

�′
q(x)

< 0,

which is negative as the denominator and numerator are positive. To obtain the lower bound for χ ′(xp) simply use
condition (8). �

Claim B3. An increase in xp, when firm q best responds by playing χ (xp), leads firm p to strictly increase its profit; that
is, �p(xp; χ (xp), xE\{p,q} ) is increasing in xp.

Proof. Differentiating �p(xp; χ (xp), xE\{p,q} ) with respect to xp, using the chain rule, and equations (B1) and (B2) we
obtain

d�p(x)

dxp

= ∂�p(x)

∂xp

+ ∂χ (xp)

∂xp

∂�p(x)

∂xq

= �′
p(x) + ∂χ (xp)

∂xp

f (χ (xp))

F (χ (xp))
�p,q(x) > �′

p(x) − f (xp)

F (xp)
�p,q(x) > 0,

where x = (x, χ (x), xE\{p,q} ). The first inequality follows from Claim B2, whereas the second from condition (8); which
proves the claim. �

27 For ease in notation, we use symmetry, and drop the subindexes from F when referring to firms p and q.
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We prove Lemma B3 by contradiction. Recall that xE\{p,q} is fixed throughout the proof. Suppose, without loss
of generality, that there exists xq < xp constituting an equilibrium. By Claim B1 there exists a unique value ẑ such that
σ̂ (ẑ) = 0.

Suppose first xq < ẑ < xp. Because

σ̂ (ẑ) = �p(ẑ; ẑ, xE\{p,q} ) = �p(ẑ; χ (ẑ), xE\{p,q} ) = 0,

and xp > ẑ, Claim B3 implies that we must have �p(xp; χ (xp) = xq, xE\{p,q} ) > 0; which contradicts (xp, xq ) being
an equilibrium.

Suppose now xq < xp < ẑ. Lemma B2 and Claim B1 imply

0 = σ̂ (ẑ) > σ̂ (xp) = �p(xp; xp, xE\{p,q} ) > �p(xp; χ (xp) = xq, xE\{p,q} )

which contradicts (xp, xq ) being an equilibrium. Analogous arguments can be constructed for the case ẑ < xq < xp, prov-
ing the Lemma.
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