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Abstract

We develop a dynamic model of input-output networks that incorporates adjustment

costs of changing inputs. Our closed-form solution for the dynamics of the economy

shows that temporary shocks to upstream sectors, whose output travels through long

supply chains, have disproportionately significant welfare impact compared to affected

sectors’ Domar weights. We conduct a spectral analysis of the U.S. production network

and reveal that the welfare impact of temporary sectoral shocks can be represented by

a low-dimensional, 4-factor structure.
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1 Introduction

We develop a dynamic model of input-output networks that generalizes the static setting

of Acemoglu et al. (2012). The key feature of our environment is the adjustment costs of

changing inputs, which result in a gradual recovery in the input-output linkages following a

productivity shock. This gradual recovery introduces rich dynamics in the transmission of

shocks across sectors, where even temporary shocks may have long-lasting effects. We derive

a closed-form expression for the dynamic path of shock propagation through input-output

linkages, enabling a detailed analytical characterization of the factors that influence output

trajectory and welfare impact. We show that, due to dynamic adjustments, sectors critical for

temporary shocks differ from those important for permanent shocks and for the static model,

and that the exact structure of the input-output network is essential for examining both

shock propagation and welfare impact. Specifically, the economy takes longer to recover from

temporary shocks to upstream sectors, as their output goes through lengthy supply chains

before reaching the final consumer. Consequently, these shocks have disproportionately

significant welfare impact compared to the affected sectors’ Domar weights.

Our tractable formulation of the dynamic model allows us to derive explicit, closed-form

solution for the time path of efficient input-output allocations.1 We first characterize the

transition path of sectoral output and aggregate consumption. To isolate the dynamics that

arise from adjustment costs of the endogenous state variables, we examine an economy that

have experienced temporary negative sectoral TFP shocks, disrupting input-output linkages.

We derive the recovery dynamics of these linkages after TFP recovers. Due to adjustment

costs, the use of intermediate goods can only recover gradually over time. The gradual

recovery of inputs then translates into the gradual recovery of the output in sectors that

use those inputs. As the transition takes time, the speed of which is determined by the

magnitude of adjustment costs, the path of adjustment has non-trivial welfare implications
1The primary technical challenge that we address is the incorporation of input-output adjustment cost

which results in slow-moving input-output quantities and the model therefore features an entire matrix of
endogenous state variables, one for each input-output pair of sectors.
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for a consumer who discounts the future.

The steady state of our economy features the same production technology as the static

model. Hence, when shocks are permanent, the Domar weight—a measure of sectoral size in

the static model of Acemoglu et al. (2012)—reflects the elasticity of the steady-state output to

TFP shocks. By contrast, when shocks are temporary, the welfare impact of sectoral shocks

during the recovery depends crucially on the particular details of the network structure.

We show the Domar weight alone is insufficient for characterizing the welfare impact of

temporary shocks in our dynamic model. Instead, the welfare impact is determined by the

product of the Domar weight and a measure of upstreamness. A sector is more upstream

if a larger fraction of its output passes through long supply chains before reaching the final

consumer. Intuitively, shocks have greater welfare consequences if they generate both large

and long-lasting impact. Shocks to high Domar weight sectors generate large short-run

impact during the recovery while shocks to upstream sectors generate long-lasting impact

due to adjustment costs. In other words, the Domar weight is the main determinant of the

short-run impact, and the upstreamness is the main determinant of the persistent dynamic

impact.

While the main part of the paper assumes exponential adjustment costs, we extend our

model to a general constant-returns-to-scale formulation. Our closed-form characterization

continues to hold in this general setting as a first-order approximation of the general economy

around its steady-state. We further extend our baseline analysis to production networks

featuring 1) heterogeneous adjustment costs across sectors, 2) gradual contraction as well as

expansion of inputs, and 3) continuous recovery of productivity shocks.

We conduct an empirical analysis of the U.S. input-output network using our model. We

compute the welfare impact of temporary shocks, and we show that our measure of sectoral

importance given by the product of the Domar weight and upstreamness differs significantly

from simply the Domar weights. While Domar weights emphasize large sectors such as

hospitals, restaurants, and retail, our measure selects both large and upstream sectors such as
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motor vehicle parts manufacturing, basic chemical manufacturing, and sectors that provides

services to commercial activities (agencies, brokerages, and insurance). We then show that,

given the rich structure of the U.S. input-output network, sectoral shocks have significantly

heterogeneous dynamic properties. The GDP recovers quickly from shocks to finance, oil

and gas extraction, and petroleum and coal products manufacturing—three large sectors that

are traditionally viewed as important because of their high Domar weights—with half-lives

averaging to 4.6 months. By contrast, the average half-life is more than twice as long for GDP

recovery from shocks to the manufacturing of communication equipments, motor vehicles,

and motor vehicle parts—three heavy-manufacturing sectors that are relatively upstream.

We next characterize the main driving forces of the welfare impact of temporary shocks.

Since we have shown the importance of the higher-round network effects, this leads us to

analyze the spectral decomposition of the input-output matrix—its eigenvectors and eigen-

values. When the direct impact of TFP shocks coincides with an eigenvector, each round

of the network effect of the shock is a proportionally decayed version of the initial impact,

with the rate of decay governed by the eigenvalue. An important corollary of this logic

shows a marked contrast with the Domar weights, and thus with the static economy. The

dynamic adjustment costs significantly down-weight the importance of the direct and initial

rounds of network effects along the recovery path, as these effects recover quickly and are not

long-lasting. This implies that significantly fewer factors are needed to represent the welfare

impact of temporary shocks in a dynamic economy. By contrast, almost all eigenvectors are

needed to explain the variation in the Domar weights. This is because the Domar weights

does not discount the direct and initial rounds of network effects, and even eigenvectors with

small eigenvalues may have a sizable contribution in explaining TFP shocks in the static

model.

We conduct a spectral analysis of the U.S. production network. We first show that 95

percent of the welfare effect of temporary sectoral shocks can be represented by the low-

dimensional projection onto four eigenvectors (out of 171). That is, the U.S. input-output
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network has a low-dimensional (4-factor) structure. In contrast, for the Domar weight almost

all of the 171 eigenvectors are important. We identify the groups of sectors that form the four

key eigenvectors. The first eigenvector represents shocks to the heavy manufacturing sectors.

The second eigenvector additionally represents sectors relating to agencies, brokerages, and

insurance and sectors covering the manufacturing of consumer goods. The third eigenvector

picks up sectors representing chemicals. The fourth eigenvector represents entertainment,

including radio and television broadcasting. Summarizing, we find that the welfare impact

of any negative temporary shocks can be represented by only four (out of 171) eigenvectors.

Literature

There is a modern revival of the literature on production networks (see, e.g., reviews in

macroeconomics of Carvalho (2014), Carvalho and Tahbaz-Salehi (2019), and Grassi and

Sauvagnat (2019)). Carvalho (2010), Gabaix (2011) and Acemoglu et al. (2012) show id-

iosyncratic sectoral productivity shocks may have aggregate impact. Jones (2011, 2013)

develops a model of production networks with distortions. A number of papers develop

important aspects of the macroeconomic implications of the input-output and production

structure of the economy: for example, Grassi (2017), Baqaee (2018), Oberfield (2018), Liu

(2019), Baqaee and Farhi (2019, 2020), Golub et al. (2020), vom Lehn and Winberry (Forth-

coming). Our contribution to the literature is to develop a model of dynamic production

networks. The welfare impact of productivity shocks in our setting differs from Acemoglu

et al. (2012) due to adjustment costs and the slow-recovery of input-output linkages. This

is distinct from other departures of the static setting studied in the literature such as non-

linearities in the production technology (Baqaee and Farhi, 2019) and allocative inefficiency

(Liu 2019, Baqaee and Farhi 2020). Liu and Ma (2021) adapt our framework and build an

endogenous growth model with an innovation network featuring dynamic R&D spillovers

across technological fields.

Methodologically, our paper is closest to Galeotti et al. (2020) and Galeotti et al. (2021).
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These papers use the spectral approach and focus on the importance of the local versus

the global structure of the network games. As in our paper, the higher-order eigenvalues

and eigenvectors beyond the first one are important (see also Golub and Sadler (2016) for a

survey of work in which the second eigenvalue is important).

A dynamical structure similar to our work appears in the context of the foundations of the

gravity equation of Chaney (2018). In the dynamic network of the importers and exporters,

the evolution of the contacts propagates from the local to the more distant neighbors governed

by a differential equation. Chaney (2018) uses the Fourier theory to study this evolution

while we use the spectral methods.

In a model of endogenous network formation of Taschereau-Dumouchel (2020), the plan-

ner optimally chooses to cluster firms. This creates a structure that is locally different from

the models with the fixed networks. In particular, these densely built communities slow

the propagation of the shocks. While Taschereau-Dumouchel (2020) studies these proper-

ties quantitatively, the spectral theory that we develop, albeit for a fixed network, allows

to theoretically describe the properties of such regions. Similarly, in the asset-pricing appli-

cations such as Herskovic et al. (2020) understanding the determinants of the clusters that

create comovement of the firms returns and volatilities may be important. In recent work,

Kleinman et al. (2023) apply spectral analysis in a dynamic spatial network setting. Kikuchi

et al. (2021) study a static production network using dynamic methods. They provide a

general methodology of using dynamic programming by reinterpreting time as an index over

decision making entities.

Our theory shows that temporary shocks to upstream sectors have outsized welfare im-

pact. Our notion of upstreamness relates to the upstreamness measure of Antràs et al. (2012)

and the distortion centrality measure of Liu (2019), as all three measures are derived from

placing an increasing sequence of weights to higher-order terms in the power series of the

input-output matrix.
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2 Model

In this section we develop a dynamic input-output network model. Specifically, we generalize

the static production network model of Acemoglu et al. (2012) by introducing dynamic

adjustment costs in input-output linkages.

There is a representative consumer with exogenous labor supply ¯̀ and N production

sectors that produce from labor and intermediate inputs. The consumer has utility

V ≡
∫ ∞

0

e−ρt ln c (t) dt (1)

where c (t) is a Cobb-Douglas aggregator over sectoral goods j = 1, . . . , N :

c (t) = χc
∏N

j=1 (cj (t))βj ,
∑N

j=1βj = 1, (2)

where χc ≡
∏N

j=1 β
−βj
j is a normalizing constant. We refer to c (t) as aggregate consumption

and GDP interchangeably.

At each time t, the output of production sector i satisfies

qi (t) = χizi (t) (`i (t))
αi
∏N

j=1 (mij (t))σij ,
∑N

j=1σij + αi = 1, (3)

where 0 ≤ αi, σij ≤ 1, χi ≡ α−αii

∏N
j=1 σ

−σij
ij is a normalizing constant, zi (t) is sectoral

total factor productivity, li (t) is the amount of labor used, and mij (t) is the amount of the

intermediate good of the sector j used in the production of the good i.

From now on, wherever it does not cause confusion, we suppress dependence on time t

in the notation.

To use input mij at time t, sector i needs to buy

sij ≡ mij × exp (δṁij/mij) (4)

units of input j. The term ṁij ≡ dmij (t) /dt is the rate of expansion in the quantity

of intermediate input j used by sector i. The term exp (δṁij/mij) represents the iceberg

adjustment cost that producer i has to incur when it raises the quantity of input j. The

cost does not arise in steady-state: when ṁij = 0, equation (4) implies that quantity of
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inputs purchased is equal to the quantity of inputs used for production (sij = mij). The

parameter δ captures the ease of adjustment when input expands; as δ → 0, adjustment

costs vanish. The formulation captures the notion that, following temporary negative shocks

that destroyed input-output linkages, the recovery of these input-output linkages must be

gradual. Dynamics are thus introduced through the expansion of intermediate inputs across

producers, and temporary shocks therefore may have lasting impact on the economy.

The goods and labor market clearing conditions are

qj = cj +
∑N

i=1sij for all j, ¯̀=
∑N

i=1`i. (5)

For simplicity, we assume goods delivered to the consumer are not subject to adjustment

costs, and neither is the use of labor across production sectors.2

Discussion of the Adjustment Cost Formulation The specific form of adjustment

costs merits some discussion. First, adjustment costs in (4) take an exponential form. This

is for analytic tractability. As we show, the exponential adjustment cost formulation implies

a log-linear law of motion for the state variables (intermediate input quantities used, mij),

and we can then explicitly derive the closed-form solution for the entire dynamic path of

all endogenous variables in the economy. In Section 3.4.1 we extend our main result to

buyer-seller-specific adjustment costs. In Section 3.4.2 we extend our main result to a more

general environment environment where both the production networks and adjustment costs

are non-parametric, and we show our main result holds as a first-order approximation around

the steady-state.

Second, our baseline analysis focuses on the recovery path of the economy after temporary

negative TFP shocks; along the recovery path, inputs always weakly expands. In essence, the

negative shocks provide the initial condition of the input-output linkages, which are below
2These choices are made for expositional simplicity and are without loss of generality. We can always

accommodate adjustment costs in the purchase of labor or the consumption good by creating a fictitious
production sector that buys the consumption bundle and sells to the consumer or buys labor and sells to
other producers.
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the steady-state levels, and all subsequent dynamics arise due to the expansion of input-

output linkages as they recover towards the steady-state. We can thus isolate the dynamics

that arise due to adjustment costs and abstract away from the direct impact of TFP. In

Section 3.4.3, we extend the analysis to the more general case where inputs change gradually

during both the contraction and the recovery phases.

Domar Weights and Permanent TFP Shocks In what follows, we use boldface to

denote vectors (lower case) and matrices (upper case). Let Σ ≡ [σij] denote the matrix

of input-output elasticities, and let β denote the N × 1 vector of consumption elasticities.

Let α be the vector of sectoral value-added shares. Let γ ′ ≡ β′ (I −Σ)−1 be the vector of

Domar weights.

When δ = 0, the economy does not feature adjustment costs, and the model becomes a

repeated version of the static economy in Acemoglu et al. (2012). When δ > 0, the economy

features adjustment costs. However, adjustment costs are zero in steady-states (as ṁij = 0),

and the production technology in equations (2) through (5) again coincides with the static

model. As we show later, the result of Acemoglu et al. (2012) holds across steady-states when

shocks are permanent: the Domar weight γi of sector i characterizes the cross-steady-state

consumption differences resulting from permanent TFP shocks.

We now turn to the analysis of temporary shocks.

3 Recovery Dynamics After Negative TFP Shocks

Consider a production network affected by temporary negative TFP shocks to some sectors.

These shocks reduce sectoral production and may propagate through input-output linkages

and affect the output in other sectors. We show, when production linkages take time to

recover, the structure of a production network is a key determinant of its resilience to negative

shocks and the time to recovery.
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Figure 1. Two stylized example networks

To illustrate the intuition, consider two example networks. In Figure 1, panel (a) shows

the network structure of a horizontal production economy. Here, labor is the only factor

of production in each sector i ∈ {1, . . . , N}, and sectors i does not use any of the goods

j ∈ {1, . . . , N} in production. All of the goods are part of the consumption bundle c. In

this setting without input-output linkages, adjustment costs are irrelevant, and traditional

static analysis holds. Negative TFP shocks to larger sectors—those with higher Domar

weights—have greater effects on the GDP.

Now consider panel (b), which shows the network structure of a vertical production chain.

In this case, labor is the only factor of production of sector 1, and each subsequent sector i

uses inputs only of the sector i−1. Only good N contributes to final consumption c. Consider

a temporary decline in sector 1’s productivity z1. Sector 1’s output declines; moreover,

because sector 2 requires good 1 as inputs, the output of sector 2 declines as well, and in

fact output declines in all sectors i ∈ {1, . . . , N}. After the initial TFP shock dissipates and

as z1 reverts, output in sector 1 recovers immediately. However, because of adjustment costs

in the recovery of input-output linkages, sectoral output for all i ≥ 2 may stay extendedly

depressed. Thus, the economy as a whole, measured by the consumption aggregator c (t)

(i.e., GDP), may take a long time to recover. By contrast, a temporary reduction in sector

N ’s TFP zN has no lasting impact on the economy, which recovers immediately after the

shock dissipates. More generally, in the vertical network of panel (b), the economy recovers

more slowly from negative shocks that affect relatively upstream sectors. This is despite the
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fact that all sectors along the supply chain may have identical Domar weights.

We now formalize this intuition and analyze the recovery of a production network after

negative shocks from our dynamic perspective.

3.1 Negative TFP Shocks and Transitional Dynamics

We analyze an economy in an initial steady-state with sectoral log-productivities {ln zi}Ni=1

and consider temporary, negative TFP shocks that reduce productivities in logs by {z̃i} at

t = 0− . When the economy reaches the low-TFP steady-state, the log-GDP declines by γ ′z̃

relative to its original level, where γ ′ is the Domar weights, consistent with Hulten (1978)

and Acemoglu et al. (2012). We assume sectoral TFP reverts back to the pre-shock levels

at t = 0, and we analyze the dynamic path of sectoral output and GDP during the recovery

from t = 0 onwards.

Even as TFP recovers at t = 0, the use of intermediate inputs can only grow gradually

over time and cannot jump discontinuously. Hence, sectoral output increases exactly in

proportion to the TFP recovery at t = 0, and the total output in sector j exceeds the

total quantity of good j used as production inputs. The excess output is dispensed as the

adjustment costs required to expand input j for the future. With passage of time, sectors

continue to expand the use of inputs, sectoral output continues to expand even though TFP

is constant. Eventually the economy converges back to the initial steady-state as t→∞.

The discussion above reflects the solution to the planner’s problem, which we formalize

now. The primary difficulty in the analysis is as follows. Given that the quantity of interme-

diate inputs {mij} cannot jump upwards, the entire matrix of input-output quantities are

the state variables of the economy. Moreover, input allocations in each sector at time t has

dynamic consequences and affect the output trajectory of potentially all other sectors of the

economy for all future times. Nevertheless, despite the large N ×N state space, and the rich

network effects, we can completely solve the entire efficient transitional path in closed-form.

Formally, the planner’s problem is defined as follows. The planner chooses the path
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of production (labor and intermediate) input allocations in order to maximize consumer

welfare, taking time-0 allocations of intermediate inputs as given:

(Planner’s problem) V ({mij (0)}) = max
{`i(·),sij(·)}

∫
e−ρt

∑
jβj ln cj dt (6)

subject to cj = zj`j (t)αj
∏

kmjk (t)σjk −∑isij (t) , (7)

ṁij/mij = δ−1 (ln sij − lnmij) , (8)

and the labor market clearing condition (5). Equation (7) is derived from the market clearing

condition (5) for good j, and equation (8) reflects the law of motion for an expanding path of

intermediate inputs under adjustment costs. A steady-state is defined by the state variables

given which the planner’s solution is time-invariant. We assume the time-0 allocations of

intermediate inputs (i.e., the initial state of the planner’s problem) correspond to allocations

in the low-TFP steady-state when the negative shocks were in place at t = 0−.3

Lemma 1. For any initial condition {mij (0)}, the solution to the planner’s problem features

a constant fraction of each good j being sent to the consumer and to each input user i along

the entire transitional path: cj (t) /qj (t) and sij (t) /qj (t) are time invariant for all i, j,

t ≥ 0. The solution also features a constant labor allocation along the entire transition path,

as `j (t) /¯̀ is also time invariant for all j.

Proof. See Appendix A.1.

It is well known that in a static model with Cobb-Douglas preferences and production

functions, the fraction of each good j sent to each input user i is invariant to sectoral TFP

shocks. Lemma 1 shows that under a log-linear law of motion (8) for the state variables,

which is derived from our formulation of exponential adjustment costs (4), the fraction of
3Choosing the low-TFP steady-state as the initial state when TFP recovers at t = 0 is an expositional

device that enables us to study the dynamic path of the economy over t ≥ 0 as it converges back to the initial,
high-TFP steady-state. Another way to interpret this is that inputs must contract instantaneously when the
shock arrives at t = 0− and can only expand gradually after the shock recedes at t = 0. In Section 3.4.3,
we extend the analysis to the more general case where inputs change gradually during both the contraction
and the recovery phase.
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each good sold to each buyer is invariant along the entire transition path and is independent

of the initial state variables. This is the key property that leads to tractability of our

subsequent analysis despite the large state space of our model.

We now use Lemma 1 to provide a closed-form solution to the transition dynamics. Define

xj (t) ≡ ln
∑N

i=1sij (t)− ln
∑N

i=1mij (t) . (9)

xj (t) is the log-ratio between the quantity of good j supplied to and used by other producers.

In a steady-state, the ratio
∑
i sij∑
imij

is equal to one, and xj = 0 for all j. Away from a steady-

state, the ratio captures the proportional adjustment costs incurred for expanding input j

in production. A temporary shock always generates a common proportional decline in mij

across input users i for any input j. Lemma 1 and the law of motion (8) further imply

that (see Appendix A.2) both mij (t) and sij (t) grow at rates independent of i during the

transition, so δ−1xj (t) is the rate at which all sectors expand their use of input j.

We are now ready to derive the law of motion for sectoral output and GDP.

Lemma 2. Laws of Motion for Sectoral Output and GDP. Consider the economy

recovering at time 0 from a TFP shock vector z̃.

1. The law of motion for sectoral output vector q is

d ln q

dt
= δ−1Σx (t) , with initial condition ln q (0) = ln qss −Σ (I −Σ)−1 z̃, (10)

where I is the identity matrix and Σ ≡ [σij] is the matrix of input-output elasticities.

2. The law of motion for GDP is

d ln c (t)

dt
= δ−1β′Σx (t) , with initial condition ln c (0) = ln css − β′Σ (I −Σ)−1 z̃. (11)

3. The path of the log-ratio between inputs supplied and used satisfies

dx (t)

dt
= −δ−1 (I −Σ)x (t) , with the initial condition x (0) = z̃.
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To understand this Lemma, first suppose the negative TFP shocks were permanent.

Output declines in sectors directly affected by the shocks. Moreover, because of production

linkages, output also declines in sectors that purchase inputs—directly or indirectly—from

the shocked sectors. The total impact of negative shocks on sectoral output is captured by

− (I −Σ)−1 z̃, where the Leontief inverse (I −Σ)−1 ≡ I+Σ+Σ2+ · · · captures the infinite

rounds of higher order effects through input-output linkages. This is indeed the finding of

Acemoglu et al. (2015) in the standard, static production network model.

Lemma 2 instead pertains to the persistent impact of temporary shocks. We now discuss

these laws of motion’s intuitions, which help illustrate the model forces. As sectoral TFP

recovers, log-output directly recovers by z̃; hence, at time t = 0, sectoral output satisfies

ln q (0) = ln qss︸ ︷︷ ︸
initial steady state

− (I −Σ)−1 z̃︸ ︷︷ ︸
effect of permanent
negative shocks

+ z̃︸︷︷︸
recovery of TFP

.

The input-output linkages destroyed by the negative shocks take time to recover. Because

δ−1xj (t) = ṁij/mij captures the rate at which all producers expand their use of input j, the

output of sector i grows at rate

q̇i/qi = δ−1
N∑

j=1

σijxj (t) , (12)

which is equation (10) in scalar form. Importantly, after time t = 0, the expansion in output

is entirely due to the recovery of input-output linkages and not because of TFP changes. The

impact of input j’s recovery on i’s output is captured by σij, the elasticity of i’s output with

respect to input j. The law of motion (11) for GDP follows from the fact that a constant

fraction of each good is sent to the consumer (Lemma 1); hence, log-GDP’s deviation from

the initial steady-state is the consumption share β-weighted log-deviation in sectoral output.

Finally, to derive the law of motion for xj (t), the log-ratio between quantity supplied

and quantity used of each input j, note that by Lemma 1, a constant share of qj (t) is sent

to each sector as inputs sij (t); hence, equation (9) implies

dxj (t)

dt
=

d ln qj (t)

dt
− d ln (

∑
imij (t))

dt
.
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The first term captures the rate at which sectoral output expands; the second term is the

rate at which the quantity of good j as intermediate inputs expands. By (8), the second

term is equal to δ−1xj (t); hence, in the vector form,

dx

dt
= δ−1Σx− δ−1x.

The ODE system for x (t) has an explicit solution in terms of the matrix exponential:

x (t) = e−δ
−1(I−Σ)tz̃, (13)

where matrix exponential for any generic matrix M is defined as eM ≡∑∞k=0
Mk

k!
.

Intuitively, immediately after TFP recovers at time 0, since inputs cannot jump discon-

tinuously, the log-ratio between quantity supplied and quantity used as intermediate inputs

for each good j is exactly captured by the magnitude of TFP recovery in sector j, i.e.,

x (0) = z̃. As production linkages recover over time and as the economy converges back to

the initial steady-state, x (t) converges to the zero vector. The term δ modulates the rate of

convergence; the system converges at a faster rate if adjustment cost δ is small. The next

proposition describes the time paths or the flow of the sectoral outputs and consumption.

Proposition 1. Flow of Output and Consumption. The flow of sectoral output satisfies

ln q (t) = ln qss −Σ (I −Σ)−1 e−δ
−1(I−Σ)tz̃

and the flow of aggregate consumption satisfies

ln c (t) = ln css − β′Σ (I −Σ)−1 e−δ
−1(I−Σ)tz̃.

Proof. See Appendix A.3.

When productivity in sector j recovers, the sector’s output expands immediately, which

gradually translates into the expansion of input j used in other sectors i, thereby causing i’s

output to expand gradually over time. The vector
(
− (I −Σ)−1 z̃ + z̃

)
= −Σ (I −Σ)−1 z̃

captures the extent to which log-sectoral outputs at t = 0 are below their initial steady-state
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levels; it can be re-written as

−Σ (I −Σ)−1 z̃ = −
( ∞∑

s=1

Σs

)
z̃

where each successive term in the summation captures a higher round of input-output link-

ages to be recovered from the initial shock. The expression
(
−Σ (I −Σ)−1 e−δ

−1(I−Σ)t
)
is

the log-deviation in output relative to initial steady-state levels at time t; it is the contin-

uous time analogue of the discrete partial sum −∑∞s=t Σs that goes from s = t to s = ∞.

By varying t, the expression captures the fact that input-output linkages recover gradually,

and higher rounds of linkages take longer to recover. Intuitively, a discrete sum would have

implied that after t periods of recovery, the loss in output is entirely attributable to the

input-output linkages higher than the t-th round, as all all prior rounds of input-output

linkages have recovered. As we show below, our continuous formulation implies that every

round of linkages recovers continuously as time passes, but higher rounds of linkages recover

more slowly.

The rate of recovery is inversely related to δ. As δ → 0, the convergence towards the

initial steady-state becomes instantaneous, as limδ→0 e
−δ−1(I−Σ)t = 0 for any t > 0.

More broadly, this proposition shows that the properties of the dynamical system de-

scribed by the gradual adjustment of the economy are tightly related to the properties of

the input-output matrix via the sequence of its powers Σs. The parameter δ modulates the

speed of adjustment.

3.2 Welfare Impact of Sectoral Shocks

We now characterize the impact of sectoral TFP shocks on consumer welfare. Let V ss denote

consumer welfare in the initial steady state.

Proposition 2. Welfare Impact of Temporary TFP Shocks. Let

v′ ≡ 1

ρ

[
β′ (I −Σ)−1 − β′

(
I − Σ

1 + ρδ

)−1]
. (14)
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At time t = 0, the impact of temporary TFP shocks z̃ on welfare is

V (z̃)− V ss =

∫ ∞

0

e−ρs (ln c (s)− ln css) ds = −v′z̃.

Proof. See Appendix A.4.

The vector v captures the welfare impact of temporary shocks due to the slow recovery of

input-output linkages (referred to as “welfare impact” henceforth). When δ = 0, recovery is

instantaneous, and temporary shocks have no welfare impact. The first term, 1
ρ
β′ (I −Σ)−1,

is proportional to the sectoral Domar weight and captures the impact on welfare of permanent

negative TFP shocks. The second term 1
ρ
β′
(
I − Σ

1+ρδ

)−1
captures the effect of input-output

recovery.

It is informative to rewrite v′ as

v′ =
1

ρ
β′

∞∑

s=0

(
1− (1 + ρδ)−s

)
Σs (15)

and compare the expression with sectoral Domar weights:

γ ′ = β′
∞∑

s=0

Σs. (16)

The Domar weight captures the impact of permanent TFP shocks on steady-state consump-

tion, and each term β′Σs in the power series captures the s-th round of network effect.

That is, β′ captures the first round, direct effect of TFP on consumption, β′Σ captures the

indirect effect of sectoral TFP on other producers who supply to the consumer, and so on.

In our dynamic model, temporary shocks may have lasting effect on output and welfare

after TFP recovery at t = 0 precisely because of higher-order linkages Σs, s > 0. With

adjustment costs (δ > 0), input-output linkages are slow to recover, and
(
1− (1 + ρδ)−s

)
Σs

captures the utility loss due to the slow recovery of the s-th order linkages. Effectively, the

power series in (15) disproportionately removes the initial entries in (16) while keeping the

tail entries unchanged:

v′ =
1

ρ
β′
[
(1− 1) Σ0 +

(
1− (1 + ρδ)−1

)
Σ1 +

(
1− (1 + ρδ)−2

)
Σ2 + ...

]
. (17)
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Note the weight on Σ0 is 0 and the weight on Σs converges to 1 as s→∞.4

We now summarize this proposition: in the presence of adjustment frictions, shocks to

sectors that sell through distant linkages to the consumer are disproportionately damaging

relative to the Domar weight of the affect sectors. These shocks have large and lasting impact

on GDP even as sectoral TFP recovers.

Welfare Impact and Upstreamness We now show that the welfare impact measure vi

can be written as the product between sector i’s Domar weight (γi) and a natural notion

of upstreamness, which relates closely to the upstreamness measure of Antràs et al. (2012)

and captures the network-adjusted distance of sectoral supply to the final consumer. Hence,

temporary shocks are more damaging to the economy if they affect large sectors that are also

upstream and supply disproportionate fractions of outputs to other upstream producers.

Formally, let ηi ≡ vi
/
γi be the welfare impact of a temporary shock to sector i relative

to the Domar weight. We show ηi captures upstreamness.

First note that Domar weights can be written as γ ′ = β′
∑∞

s=0 Σs (c.f. equation16).

Antràs et al. (2012) interprets the i-th component of β′Σs as the sales of sector i that reaches

the final consumer through s-rounds of input-output linkages and defines an upstreamness

measure that captures the average number of rounds it takes for sectoral output to reach

the final consumer:

Upi = 1 · βi
γi

+ 2 · [β′Σ]i
γi

+ 3 · [β′Σ2]i
γi

+ · · · =
∞∑

s=0

as · [β′Σs]i
γi

, with as = s+ 1.

More generally,
∑∞

s=0
as·[β′Σs]i

γi
is a measure of sector i’s upstreamness for any increasing

and convergent sequence {as}∞s=0 because such a sequence up-weights the components of

Domar weight that are more distant to the consumer. Our notion of upstreamness η can

also be written in this form using the sequence as = ρ−1
(
1− (1 + ρδ)−s

)
.5

4See also Appendix A.4.1 for additional interpretations.
5η is also isomorphic to the distortion centrality of Liu (2019) in a production network with a constant

wedge representing market imperfections. Liu (2019) shows that in such a setting, the distortion centrality
aligns very strongly with the upstreamness measure of Antràs et al. (2012).
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Another way interpret η as upstreamness is through the input-output demand matrix Θ

whose in-th entry is θin ≡ σniγn/γi. In the static environment of Acemoglu et al. (2012), θin

is the fraction of sector i’s output sold to sector n. η can be re-written implicitly as (see

Appendix A.5) η = 1
1+ρδ

Θ (η + δ), or, in scalar form,

ηi =
1

1 + ρδ

N∑

n=1

θin (ηn + δ) .

Hence, a sector i is upstream if it supplies disproportionately (high θin) to other relatively

upstream producers (high ηn).

3.3 Vertical Example Revisited

We now revisit the examples in Figure 1. In the horizontal economy of panel (a), there are

no input-output linkages; consequently, v is the zero vector, and temporary shocks have zero

impact on this economy after t = 0. By contrast, temporary shocks may have lasting impact

in the vertical economy of panel (b), with the network diagram reproduced below, along

with input-output table of this economy. Sector 1 is the most upstream and sector N is the

most downstream.

along with input-output table of this economy. Sector 1 is the most upstream and sector N is the
most downstream.
1
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By construction, the Domar weight is identically one for all sectors, γ ′ ≡ β′ (I −Σ)−1 = 1′.
TFP shocks in every sector has identical impact on GDP in a static model. In our dynamic economy,
however, the welfare impact of sectoral shocks is no longer constant; in fact, the impact of temporary
shocks follow

v′ = ρδ

[
1−∑N

s=1 (1 + ρδ)−s , 1−∑N−1
s=1 (1 + ρδ)−s , · · · , 1−

(
1

1+ρδ +
(

1
1+ρδ

)2)
, 1− 1

1+ρδ , 0

]

Hence, temporary shocks to sector i are more damaging than to sector j > i, despite all sectors
having the same Domar weight.

Connection to Measures of Upstreamness An economy is more susceptible to temporary
shocks that hit sectors with signifcant sales through distant linkages to the consumer. Under
a general network structure—including the real-world input-output tables we investigate in later
sections—the welfare elasticity to sectoral shocks tends to be higher if the sector is large and is
more upstream.

In fact, the welfare elasticity vi can be written as the product between sector i’s Domar weight
and a notion of upstreamness. Recall from (4) that the sectoral Domar weight can be written as
γ ′ = β′

∑∞
s=0 Σs, where the i-th component of β′Σs captures the sales of sector i (relative to GDP)

that reaches the final consumer through s-rounds of input-output linkages. Antras et al. (2012)
defines an “upstreamness” measure Upi that satisfies:

Upi = 1 · βi
γi

+ 2 · [β′Σ]i
γi

+ 3 ·
[
β′Σ2

]
i

γi
+ 4 ·

[
β′Σ3

]
i

γi
+ · · ·

=

∞∑

s=0

as · [β′Σs]i
γi

, with as = s+ 1.

9

In this vertical economy, each successive power of the input-output matrix contains a

smaller identity sub-matrix in the bottom-left and zeros otherwise, and the Leontief-inverse

is a lower-triangular matrix of ones. For example, when N = 4,

by defining it as
ι̃′ ≡ β′

[
a0Σ

0 + a1Σ
1 + a2Σ

2 + ...
]
,

for some sequence {a0, a1 . . . }. Assuming that such weighted power series converge, this
measure weights the walks of length k with the parameter ak. In the case of alpha centrality
with α < 1, ak = αk and is geometrically decreasing from a0 = 1 and a∞ = 0. The
welfare measure v′ is also a (modified version of) alpha centrality with ak = 1−αk2 and thus
increasing between a0 = 0 and a∞ = 1. One can thus think of it as being conceptually similar
to the usual alpha centrality, where the welfare measure, however, relatively prioritizes the
longer walks or higher order input output linkages and thus the global over local influences.

The term (1 + ρδ)−1 also defines a one-parameter family of the economies that can be
thought of as a multi-scale representation of the static input output matrix. Specifically, the
speed of adjustment and the discount factor of the agent determine the scale—the relative
importance of the higher-order links and thus the importance of the global versus local
structures.

Vertical Economy Revisited. It is now instructive to revisit the examples in Figure 1.
In the horizontal economy of panel (a), there are no input-output linkages; consequently, v is
the zero vector, and temporary shocks that recover instantaneously have zero impact on this
economy. By contrast, temporary shocks may have lasting impact in the vertical economy
of panel (b), with the network diagram reproduced below, along with input-output table of
this economy. Sector 1 is the most upstream and sector N is the most downstream.

along with input-output table of this economy. Sector 1 is the most upstream and sector N is the
most downstream.
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By construction, the Domar weight is identically one for all sectors, γ ′ ≡ β′ (I −Σ)−1 = 1′.
TFP shocks in every sector has identical impact on GDP in a static model. In our dynamic economy,
however, the welfare impact of sectoral shocks is no longer constant; in fact, the impact of temporary
shocks follow

v′ = ρδ

[
1−∑N

s=1 (1 + ρδ)−s , 1−∑N−1
s=1 (1 + ρδ)−s , · · · , 1−

(
1

1+ρδ +
(

1
1+ρδ

)2)
, 1− 1

1+ρδ , 0

]

Hence, temporary shocks to sector i are more damaging than to sector j > i, despite all sectors
having the same Domar weight.

Connection to Measures of Upstreamness An economy is more susceptible to temporary
shocks that hit sectors with signifcant sales through distant linkages to the consumer. Under
a general network structure—including the real-world input-output tables we investigate in later
sections—the welfare elasticity to sectoral shocks tends to be higher if the sector is large and is
more upstream.

In fact, the welfare elasticity vi can be written as the product between sector i’s Domar weight
and a notion of upstreamness. Recall from (4) that the sectoral Domar weight can be written as
γ ′ = β′

∑∞
s=0 Σs, where the i-th component of β′Σs captures the sales of sector i (relative to GDP)

that reaches the final consumer through s-rounds of input-output linkages. Antras et al. (2012)
defines an “upstreamness” measure Upi that satisfies:

Upi = 1 · βi
γi

+ 2 · [β′Σ]i
γi

+ 3 ·
[
β′Σ2

]
i

γi
+ 4 ·

[
β′Σ3

]
i

γi
+ · · ·

=

∞∑

s=0

as · [β′Σs]i
γi

, with as = s+ 1.

9

In this vertical economy, each successive power of the input-output matrix contains a
smaller identity sub-matrix in the bottom-left and zeros otherwise, and the Leontief-inverse
is a lower-triangular matrix of ones.

Σ =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0



, Σ2 =




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0



, Σ3 =




0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



, (I −Σ)−1 =




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1



.

For example, when N = 4,
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Figure 2. Time path of GDP losses from sectoral shocks in the vertical economy
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By construction, the Domar weight is identically one for all sectors, γ ′ ≡ β′ (I −Σ)−1 =

1′. Permanent TFP shocks in every sector has identical impact on welfare. The welfare

impact v of temporary shocks is no longer constant, however:

v′ = ρδ

[
1− (1 + ρδ)−N , · · · , 1−

(
1

1+ρδ

)2
, 1− 1

1+ρδ
, 0

]

Hence, temporary shocks to an upstream sector i are more damaging than to a downstream

sector j > i, despite all sectors having the same Domar weight.

Figure 2 shows the path of GDP for t ≥ 0 when each sector in the vertical economy

(with N = 4 sectors) is separately affected by a TFP shock. As the figure demonstrates,

because adjustment costs compound—sector i’s production needs to recover before sector

i+1’s inputs can expand—shocks to relatively upstream sectors have long-lasting effects: the

economy takes the longest time to recover from shocks to sector 1—the most upstream—and

recovers instantaneously from shocks to sector 4. Consequently, v1 > v2 > v3 > v4 as the

measure v integrates the entire path of output losses for t ≥ 0, discounting the future at

rate ρ.

Our model also has rich predictions on the recovery path of sectoral output following

temporary shocks. Figure 3 shows the path of sectoral output over time when sector 1 in
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Figure 3. Time path of sectoral output losses from temporary shocks to sector 1
(upstream) in the vertical economy
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the vertical economy (with N = 4 sectors) is affected by a TFP shock. The figure shows

that the more downstream a sector is from the original shock, the longer it takes for this

sector’s output to recover. After t = 0, sector 1’s output recovers immediately once the TFP

recovers, but the output loss lasts longer in sector 2, and even longer in sectors 3, and so on.

This is because each round of input-output linkages take time to recover, and the further

downstream a sector is from the original shock, the more rounds of linkages were destroyed

by the initial shock and therefore need additional time to recover.

3.4 Extensions

3.4.1 Heterogeneous Adjustment Costs

In the baseline model, we assume a common adjustment cost parameter δ for all sector-pairs.

We now extend our analysis to a setting with buyer-seller-pair specific adjustment costs, δij.

That is, during the recovery following a temporary TFP shock, the law of motion for input

j used in sector i follows

ṁij/mij = δ−1ij (ln sij − lnmij) ,
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replacing the law of motion (8) in the planner’s problem. In Appendix A.6, we show that

the impact of temporary negative TFP shocks z̃ on welfare is captured by the vector

v′ ≡ 1

ρ
β′
[
(I −Σ)−1 − (I −Ω)−1

]
. (18)

Intuitively, the formula in (18), which encodes heterogeneous adjustment costs, is similar

to the homogeneous adjustment cost formulation in Proposition 2, simply replacing Σ
1+ρδ

≡
[
σij
1+ρδ

]
by Ω ≡

[
σij

1+ρδij

]
. The welfare impact v can be re-written as

v′ =
1

ρ

[
Σ0 −Ω0 +

(
Σ1 −Ω1

)
+
(
Σ2 −Ω2

)
+ · · ·

]

which also has a similar interpretation to (17).

The Domar-weight-adjusted welfare impact ηi ≡ vi/γi can be written as

ηi =
∑

n

δni
1 + ρδni

θin +
∑

n

θin
1 + ρδni

ηn (19)

where recall Θ is the input-output demand matrix whose in-th entry is θin ≡ σniγn/γi. It

is a generalized version of the upstreamness measure that accounts for the heterogeneity

in adjustment costs δni. Sector i has high η if it supplies disproportionately to buyers n

with high η and if these buyers are subject to substantial adjustment costs. In other words,

high-η sectors are those whose output travels through many high-adjustment-cost producers,

directly and indirectly, before reaching the consumer.

In general, heterogeneity in the adjustment costs do play a role in determining the size-

adjusted welfare impact of temporary shocks. However, in a vertical network as in Section

3.3, a more upstream sector always has a higher η, regardless of the magnitude of the

adjustment costs. Specifically, from equation (19), the size-adjusted welfare impact in the
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4-sector vertical network follows



η1

η2

η3

η4



∝




1− 1
(1+ρδ43)(1+ρδ32)(1+ρδ21)

1− 1
(1+ρδ43)(1+ρδ32)

1− 1
1+ρδ43

0



.

For any adjustment cost parameters δ43, δ32, δ21 > 0, we always have η1 > η2 > η3 > η4, that

size-adjusted welfare impact aligns in rank order with upstreamness. This is because input

flows are one directional, such that a more upstream sector’s output is always subject to

more compounding of adjustment costs. In Section 4.1, we show that this insight extends to

the production network of the U.S. economy: the size-adjusted welfare impact of temporary

shocks align very well with sectoral upstreamness, and in fact the heterogeneity in adjustment

costs is quantitatively less important.

3.4.2 General Production Functions and Adjustment Costs

Our baseline model is tractable, as we obtain closed-form solution for the entire recovery

path of the economy. Such tractability is achieved through a combination of log-linearity in

the Cobb-Douglas production functions and in the law of motion for intermediate inputs. In

this section, we extend our main welfare result (Proposition 2) to a non-parametric setting,

where a version of our welfare formulas continues to hold locally (to first-order) around the

initial steady-state.

Specifically, consider an economy environment in which we replace the Cobb-Douglas

consumption and production functions in (2) and (3) with non-parametric aggregators that

are homogeneous of degree one:

c (t) ≡ c
(
{cj (t)}Nj=1

)
, qi (t) = fi

(
zi (t) , `i (t) , {mij (t)}Nj=1

)
.

Likewise, we consider a non-parametric adjustment cost process

ṁij = gij (sij,mij) ,
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with the requirement that ṁij = 0 when sij = mij, and that gij (·) is locally homogeneous

of degree one when sij = mij.6

Suppose we observe the economy in the initial steady-state. Let βj ≡ ∂ ln c
(
{ci}Ni=1

)
/∂ ln cj

denote the steady-state consumption elasticity with respect to good j (β ≡ [βj] is the cor-

responding vector), and σij ≡ ∂ ln qi/∂ lnmij is producer i’s output elasticity with respect

to input j in steady-state (Σ ≡ [σij] is the corresponding matrix). Let ω−1ij ≡ ∂ ln gij
∂ ln sij

denote

the rate at which purchased inputs sij expand the quantity of production inputs mij, again

evaluated at the steady-state. Finally, let Ω be the matrix whose ij-th entry is σij
1+ρωij

.

In Appendix A.7, we show that, to first-order around the initial steady-state, the welfare

impact of temporary shocks is

dV (z̃)

dz̃

∣∣∣∣∣
z̃≡0

= −1

ρ

[
β′ (I −Σ)−1 − β′ (I −Ω)−1

]
. (20)

The reduced-form object ωij, which parametrizes the rate at which purchased inputs sij

expand production inputs mij, has a similar interpretation to the adjustment cost parameter

in our baseline model. When ωij is common across all i, j, the formula (20) coincides with

Proposition 2; when ωij is sector-pair specific, the formula coincides with the heterogeneous

adjustment costs case in Section 3.4.1 if ωij is replaced by δij.

3.4.3 When the Contraction and Expansion of Inputs Are Both Gradual

Our baseline analysis assumes that the initial conditions {mij (0)} for the economy at t = 0

are provided by the low-TFP steady-state at time t = 0−, and all subsequent dynamics for

t > 0 arise due to the recovery and expansion of input-output linkages. Another way to

interpret the initial condition is that inputs must contract instantaneously when the shock

arrives at t = 0− and can only expand gradually after the shock recedes at t = 0.

In this section, we generalize the analysis and derive the output path and welfare impact

when both the contraction and expansion of inputs are gradual. Specifically, we consider a

6That is, dgij(s,m)
ds s+

dgij(s,m)
dm m = gij (s,m) when s = m.
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negative TFP shock z̃ that arrives at time 0 and recovers at time T . We characterize the

efficient allocation under perfect foresight for t ≥ 0. Note that our characterization of the

planner’s problem in Lemma 1 continues to hold under time-varying TFP, but the differential

equations in Lemma 2 require different boundary conditions at time 0 and T , when TFP

jumps discontinuously. Specifically,

1. The law of motion for sectoral output vector q is

d ln q

dt
= δ−1Σx (t)

with boundary conditions ln q (0) = ln qss − z̃ and ln q (T ) = limt→T− ln q (t) + z̃.

2. The law of motion for GDP is

d ln c (t)

dt
= δ−1β′Σx (t)

with boundary conditions ln c (0) = ln css − β′z̃, ln c (T ) = limt→T− ln c (t) + β′z̃.

3. The law of motion for the log-ratio between inputs supplied and used is

dx (t)

dt
= −δ−1 (I −Σ)x (t)

with boundary conditions x (0) = −z̃ and x (T ) = limt→T− x (t) + z̃.

In Appendix A.8, we show that the path of sectoral output satisfies

ln q (t) =





ln qss − (I −Σ)−1 z̃ + Σ (I −Σ)−1 e−δ
−1(I−Σ)tz̃ t ∈ [0, T )

ln qss −Σ (I −Σ)−1 e−δ
−1(I−Σ)(t−T )

(
e−δ

−1(I−Σ)T − I
)
z̃ t ≥ T

and the welfare impact is

V (z̃;T )− V ss = −1

ρ
β′
(
I − 1

1 + ρδ
Σ

)−1 (
1− e−ρT

)
z̃ (21)

In this formulation, the short-run impact of the negative shock depends on the duration T

of the shock; the recovery takes longer if the negative shock lasts longer.
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Figure 4. Time path of GDP losses from sectoral shocks in the vertical economy

0        time

0

G
D

P
 lo

ss
es

T

shock to sector 4
shock to sector 3
shock to sector 2
shock to sector 1

Figure 4 demonstrates the time paths of GDP losses in the vertical economy of Section 3.3

for different sectoral shocks. First consider a negative shock to the downstream sector 4. The

path of GDP is depicted by the dotted blue line. Because the shock does not destroy input-

output linkages—no production sector uses good 4 as inputs—the GDPmoves in tandem with

sector 4’s TFP; the GDP collapses when the negative shock arrives at t = 0 and recovers

completely at time T once the negative shock recedes. By contrast, consider a negative

shock to the upstream sector 1. The path of GDP is depicted by the solid line. When the

shock arrives at t = 0, the GDP does not collapse immediately—because production inputs

contract gradually even as purchased inputs collapse—but instead declines gradually over

time. Analogously, the GDP recovers gradually after the shock recedes at time T .

Our earlier analysis shows that, starting from the low-TFP steady-state, the economy

recovers more slowly from negative shocks to the upstream sector. Figure 4 demonstrates

that, conversely, starting from a high-TFP steady-state, shocks to the upstream sector takes

longer to negatively affect GDP.7

7Equation (21) can also be used to analyze the welfare cost of permanent shocks, taking into account

the transitional dynamics: limT→∞ V (z̃;T ) − V ss = −1
ρβ
′
(
I − Σ

1+ρδ

)−1
z̃. Relative to the Domar

weight, which reflects the cross steady-state impact of permanent shocks and ignores the transitional
dynamics, the welfare elasticity here down-weights higher rounds of network effects because they
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3.4.4 Continuous TFP Recovery

Our baseline model assumes a discontinuous recovery of TFP at time t = 0. This section

extends the analysis to the case where the TFP recovery is gradual. Specifically, suppose

that after t = 0, the negative TFP shock recovers smoothly back to zero, with log-deviation

in TFP from the initial steady-state level being ln zit − ln zi ≡ e−φtz̃i. That, z̃ continues to

capture the t = 0− impact of the shock, but the TFP recovers at a constant rate φ for t ≥ 0

and goes back to the steady-state level as t → ∞. In Appendix A.9, we analytically solves

for the path of sectoral output and the welfare impact. When the matrix ((1− φδ) I −Σ)

is invertible,8 the path of sectoral output follows

ln q (t) = ln qss + ((1− φδ) I −Σ)−1
[
Σφδ (I −Σ)−1 e−δ

−1(I−Σ)t − (1− φδ) e−φt
]
z̃. (22)

The welfare impact is

V (z̃;φ)− V ss = β′ ((1− φδ) I −Σ)−1
[
φδ

ρ

(
(I −Σ)−1 −

(
I − Σ

1 + ρδ

)−1)
− 1− φδ

ρ+ φ
I

]
z̃. (23)

We make two observations. First, this result nests as special cases both our baseline

model—which features discontinuous recovery of TFP at time 0—and the repeated static

model with permanent TFP shocks. As φ → ∞, the speed of TFP recovery becomes

instantaneous at t = 0, and the expressions in (22) and (23) converge to those in the

baseline model (as in Propositions 1 and 2). On the other hand, as φ → 0, the TFP shock

becomes permanent, and the expressions converge to those in the repeated static model,

with ln q (t) = ln qss + (I −Σ)−1 z̃ and V (z̃; 0)− V ss = 1
ρ
β′ (I −Σ)−1 z̃.

Second, equations (22) and (23) can be derived directly from our baseline model by aug-

menting the production network Σ with fictitious sectors. To see this, consider an economy

materialize more gradually in the presence of adjustment costs.
8We also analyze the case where ((1− φδ) I −Σ) is non-invertible in Appendix A.9. The matrix

((1− φδ) I −Σ) is non-invertible when φ coincides with an eigenvalue λ of Σ. Nevertheless, the path of
sectoral output and the welfare impact vary continuously in φ and, in case ((1− φδ) I −Σ) is non-invertible,
can be derived by setting φ ≡ λ + ε in (22) and (23) and then taking the limit as ε → 0, as we show in
Appendix A.9.
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with TFP shocks that recover exponentially at rate φ ≡ δ−1 (the “original” economy). We

now create an alternative economy with fictitious sectors and an discontinuous recovery of

TFP. Specifically, for each sector i with production function qit = χizit`
αi
it

∏N
j=1m

σij
ijt in the

original economy, we create two sectors i and i2 in the alternative economy with production

functions

qit = χizitζ
αi
i2t

N∏

j=1

m
σij
ijt , ζi2t = z

1/αi
i2t

`i2t.

That is, in the alternative economy, each sector i does not use labor as production inputs; in-

stead, it uses inputs produced by sector i2, which in turn requires labor as the only input. It

is easy to see that a discontinuous recovery of zi2t generates identical impact on sectoral out-

put {qjt} in the alternative economy as a continuous recovery of zit in the original economy.

This is because even though in the alternative economy, TFP zi2t recovers discontinuously,

the input ζi2t is slow to recover due to the adjustment cost. By construction, the recovery

path of ζαii2t in the alternative economy mimics precisely the recovery path of TFP zit in

the original economy; hence, we can apply our baseline results on the alternative economy

to understand the impact of shocks in the original economy. Our results on heterogeneous

adjustment costs in Section 3.4.1 can also be applied to study any TFP recovery rate φ.

4 Analysis of the U.S. Input-Output Table

We now turn to the 2012 U.S. input-output table published by the U.S. Bureau of Labor

Statistics. We first provide an analysis of v, the welfare impact of temporary shocks. We

show v differs significantly from Domar weights γ: while the latter is an indication of sectoral

size, the former instead selects industries that are not only large but also upstream. We show

that the high-dimensional input-output table—171 by 171 sectors under broad categories of

agriculture, mining, manufacturing, and services9—has a low-dimensional, 4-factor structure
913 sectors from the original 184-by-184 BLS input-output table do not use or supply any intermediate

inputs and therefore do not interact with the rest of the network. These sectors are all in services, including
offices of dentists, individual family services, home health care services, etc. We drop these sectors when
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in terms of its susceptibility to temporary shocks: the v′ vector essentially loads on only four

eigenvectors of the Σ matrix.

4.1 Assessing the Welfare Impact v of Temporary Shocks

Calibrating Adjustment Costs To compute the welfare impact measure v, we set ρ =

4% as the annual discount rate. To calibrate the adjustment cost, we show in Appendix

A.12 that the law of motion (8) implied by our exponential adjustment cost is first-order

equivalent to a time-to-build model that is the continuous-time analogue of Long and Plosser

(1983). Under this interpretation, δ corresponds to the average delay between when inputs

are ordered and when they are delivered. The delay can be measured using the backlog ratio,

i.e., the ratio between the stock value of unfilled orders and the flow value of goods delivered

(Zarnowitz (1962), Meier (2020)). We further rely on our analysis in Section 3.4.1 and

allow for input (i.e., seller) specific adjustment costs . We measure the each sector’s backlog

ratio using the seasonally-adjusted value from the U.S. Census M3 survey of manufacturers’

shipments, inventories, and orders, which provides broad-based, monthly statistical data on

economic conditions in the manufacturing sector. For each sector, we compute the average

backlog ratio between the years 2010 and 2019, excluding the spike in backlogs due to the

COVID-19 pandemic. We impute the backlog ratio using the sample average for input-output

sectors that are not in the M3 survey. The cross-sector average backlog ratio is about 3.2

months, corresponding to δj = 0.27 at the annual frequency. The standard deviation is 2.55

months. Sectors with the highest backlog ratios are ship and boat building (11.3 months),

manufacturing of transportation equipment (10.3 months), and communications equipment

manufacturing (8.2 months).

Interpreting the Welfare Impact Measure Table 1 lists the top-10 most important

and least important sectors for the U.S. in terms of the welfare impact of temporary sectoral

performing the eigendecomposition.
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Table 1. Welfare impact v of temporary sectoral shocks in the U.S.

5.1 Computing and Interpreting the Welfare Sensitivity Measure

Calibrating Adjustment Costs To compute the welfare sensitivity measure v, we set
ρ = 4% as the annual discount rate. To calibrate the adjustment cost, we rely on the time-
to-build microfoundation in Section 3.5, under which δ corresponds to the average delay
between order and delivery and can be measured using the backlog ratio, i.e., the ratio
between the stock value of unfilled orders and the flow value of goods delivered (Zarnowitz
(1962), Meier (2020)). We further rely on our analysis in Section 3.6 and allow for input
(i.e., seller) specific adjustment costs . We measure the each sector’s backlog ratio using
the seasonally-adjusted value from the U.S. Census M3 survey of manufacturers’ shipments,
inventories, and orders, which provides broad-based, monthly statistical data on economic
conditions in the manufacturing sector. For each sector, we compute the average backlog
ratio between the years 2010 and 2019, excluding the spike in backlogs due to the COVID-19
pandemic. We impute the backlog ratio using the sample average for input-output sectors
that are not in the M3 survey. The cross-sector average backlog ratio is about 3.2 months,
corresponding to δj = 0.27 at the annual frequency. The standard deviation is 2.55 months,
indicating substantial substantial variation in δj across suppliers. Sectors with the highest
backlog ratios are ship and boat building (11.3 months), manufacturing of transportation
equipment (10.3 months), and communications equipment manufacturing (8.2 months).

Table 1. welfare sensitivity to temporary sectoral shocks in the U.S.

10 sectors with the highest vi 10 sectors with the smallest vi

Real estate Community and vocational rehabilitation services

Motor vehicle parts manufacturing Other furniture related product manufacturing

Wholesale trade Gambling industries (except casino hotels)

Agencies, brokerages, and other insurance related activities Personal care services

Oil and gas extraction Amusement parks and arcades

Management of companies and enterprises Grantmaking, giving services, social advocacy organizations

Advertising, public relations, and related services Food and beverage stores

Basic chemical manufacturing Tobacco manufacturing

Employment services Household appliance manufacturing

Petroleum and coal products manufacturing Furniture and kitchen cabinet manufacturing

Interpreting the Welfare Sensitivity Measure Table 2 lists the top-10 most important
and least important sectors for the U.S. in terms of v, the welfare sensitivity to temporary
sectoral shocks. As intuitions suggest, the most important ones are large sectors that supply
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shocks. As our intuitions suggest, the most important sectors are large and supply to many

other producers. The top-10 list includes very large sectors such as real estate and wholesale

trade, whose sales-to-GDP ratios add to 24%. The list also includes much smaller but very

upstream manufacturing sectors such as chemical and metal sectors, with sales-to-GDP ratio

of only 1.9% and 1.2%, respectively. In static models, their small Domar weights would imply

these sectors are unimportant; in our dynamic environment, by contrast, shocks to these

sectors could create long-lasting impact because of their network positions. On the right

side of the table, sectors with low welfare impact are those that are small and downstream,

including many service sectors.

The left panel of Table 2 lists the top-10 sectors in terms of Domar weights γ, which

capture the welfare impact of permanent shocks. Compared with v, the Domar weight γ

captures sectoral size but disregards upstreamness. There are three sectors (wholesale trade,

real estate, and petroleum and coal products manufacturing) that are on both top-10 lists,

whereas seven out of ten sectors do not overlap.

The right panel of Table 2 lists the top-10 sectors in terms of size-adjusted welfare impact

of temporary shocks, ηi ≡ vi/γi. High-ηi sectors are those whose products travel through

many high-adjustment-cost producers, directly and indirectly, before reaching the consumer.
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Table 2. Welfare impact of temporary v.s. permanent shocks

to many other producers. The top-10 list includes very large sectors such as real estate and
wholesale trade, whose sales-to-GDP ratios add to 24%. The list also includes much smaller
but very upstream manufacturing sectors such as chemical and metal sectors. On the right
side of the table, sectors with low welfare impact are those that are small and downstream,
including many service sectors.

The left panel of Table X lists the top-10 sectors in terms of Domar weights (sectoral
sales).

The right panel of Table X lists the top-10 sectors in terms of size-adjusted welfare
sensivitity, ηi ≡ vi/γi. The measures

10 sectors with the highest Domar weight 10 sectors with the highest vi rel. to Domar weight

Wholesale trade Nonferrous metal (excl. aluminum) production

Real estate Forestry

Construction Basic chemical manufacturing

Hospitals Agencies, brokerages, insurance related activities

Retail Metal ore mining

Food services and drinking places Processed steel products

Petroleum and coal products manufacturing Support activities for agriculture and forestry

Insurance carriers Logging

Scientific R&D Iron and stell mills and ferroalloy manufacturing

Finance (securities, commodity contracts, funds) Alumina and aluminum production and processing

6 Factor Structure of the U.S. Input-Output Table

We now turn to the 2012 U.S. input-output table published by the U.S. Bureau of La-
bor Statistics. We show that the high-dimensional input-output table—171 by 171 sectors
under broad categories of agriculture, mining, manufacturing, and services12—has a low-
dimensional, 4-factor structure in terms of its susceptibility to temporary shocks: the v′

vector essentially loads on only four eigenvectors of the Σ matrix. These correlated eigen-
vectors explain almost the entire variations in v′ and they jointly capture five clusters of
sectors in the economy: 1) heavy manufacturing sectors including iron, steel, and machiner-

1213 sectors from the original 184-by-184 BLS input-output table do not use or supply any intermediate
inputs and therefore do not interact with the rest of the network. These sectors are all in services, including
offices of dentists, individual family services, home health care services, etc. We drop these sectors when
performing the eigendecomposition.
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The table shows that many basic manufacturing sectors have high η’s: shocks to these sectors

are especially damaging relative to sectoral size because these sectors are very upstream.

Under our calibration, we find the average half-life of GDP recovery from sectoral shocks—

calculated as the minimum time needed for the GDP to recover 50% of the initial loss—to

be 4.8 months, with a standard deviation of 1.8 months.

Figure 5 shows the time path of GDP losses in the calibrated model from temporarily

shocking six sectors, one at a time. The six sectors are separated into two groups: the first

group (grey lines) consists of finance, oil and gas extraction, petroleum and coal products

manufacturing; the second group (black lines) consists of the manufacturing of communica-

tion equipments, motor vehicles, and motor vehicle parts. Sectors in the first group have

high Domar weights and are traditionally viewed as “important”—their (3 sectors out of 171)

Domar weights add to about 12% of GDP—whereas the latter three heavy-manufacturing

sectors (black lines in the figure) are relatively upstream. To control for sectoral size differ-

ences and isolate the dynamic effects, we normalize the GDP losses at time-zero to be -100%

for the shock to each sector.10

10Note that the magnitude of the time-zero GDP loss from a shock to sector i is equal to the size of
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Figure 5. Time path of GDP losses after sectoral shocks
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The figure shows that, because adjustment costs compound, upstream sectors do expe-

rience marked real-world differences in the recovery dynamics from sectoral shocks. The

half-lives of sectoral shocks to the first group average to 4.6 months, whereas the half-lives of

the second group is more than twice as long and average to 9.5 months. For TFP shocks to

the first group, the GDP loss one year after TFP recovery averages to 17% of the initial loss,

whereas the GDP loss remains at 41% of the initial loss one year after TFP recovery of the

second group. That is, conditioning on the same initial impact, the one-year GDP loss after

TFP recovery from shocks to the second group is 2.4 times as large as the corresponding loss

from shocks to the first group. The relative impact widens as time progresses: the three-year

GDP loss after TFP recovery from shocks to the second group is 7.6 times as large as the

corresponding loss from shocks to the first group.

the shock times the sector’s Domar weight (ln c (0) − ln css = γi × z̃i). The two sectors, “motor vehicle
manufacturing” and “oil and gas extraction”, have near-identical Domar weights; hence, TFP shocks of the
same magnitude to these two sectors would produce near identical short-run effects but qualitatively different
dynamic effects, as shown in Figure 5.
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Quantitative Evaluation of Adjustment Cost Heterogeneity Our baseline model

features a homogeneous adjustment cost parameter δ, whereas our calibration so far is based

on the heterogeneous adjustment cost extension in Section 3.4.1 and exploits the sectoral

heterogeneity in 3M survey. We now show that the heterogeneity in adjustment costs is not

quantitatively important; most variations in the welfare impact of temporary shocks arise

from the network structure.

To demonstrate this, we construct a welfare impact measure vbase with homogeneous

adjustment cost δ = 0.27 for all input-pairs (calibrated to match the mean backlog ratio of

3.2 months in the 3M survey), and define ηbasei = vbasei /γi. All cross-sector variations in the

ηbasei arise from the network structure.

Table 3 shows the pair-wise correlations (Pearson’s and Spearman’s rank correlations

below and above the diagonal, respectively) among η (heterogeneous adjustment cost), ηbase

(constant adjustment cost), and the upstreamness measure of Antràs et al. (2012). All three

measures are near-perfectly correlated, showing that, even with heterogeneous adjustment

costs, most variations in the size-adjusted welfare impact arises from the network structure.

Table 3. Size-adjusted welfare impact correlates strongly with upstreamness

η ηbase Up

η - 0.96 0.96
ηbase 0.92 - 1.0
Up 0.92 1.0 -

Notes. This table shows the pair-wise correlations among η (heterogeneous adjustment cost), ηbase (constant
adjustment cost), and the upstreamness measure of Antràs et al. (2012). Pearson correlations are shown
below the diagonal, and Spearman’s rank correlation are shown above the diagonal.

High-η sectors are those whose output travels through many high-adjustment-cost pro-

ducers, directly and indirectly, before reaching the consumer. Why is the heterogeneity in

adjustment costs δ quantitatively unimportant? The answer lies in the structure of the U.S.

input-output network. As discussed in Section 3.4.1, because adjustment costs compound

through input-output linkages, a relatively upstream sector in a vertical network always has

higher η, regardless of the heterogeneity in adjustment costs. Even though the U.S. economy
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Figure 6. The input-output demand matrix of the U.S. economy
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is not a vertical network, the “compounding” intuition still applies. Figure 6 visualizes the

U.S. input-output demand matrix Θ, with sectors sorted by descending upstreamness. For

ease of visualization, entries are drawn in proportion to θij and are truncated below at 4%,

so that only important linkages are shown.

Figure 6 shows a striking feature of the U.S. input-output network. Once sectors are

sorted by upstreamness, the network appears hierarchical: sectors exhibit a clear pecking

order and have highly asymmetric input-output relationships. The downstream sectors pur-

chase heavily from the upstream ones—but not the reverse—as the matrix is dense below the

diagonal and sparse above. A hierarchical structure is also evident below the diagonal, as

upstream inputs are used more heavily by relatively upstream producers than by downstream

producers.

In such a hierarchical network, the bulk of input flows are one directional, such that

the most upstream sector’s output is also subject to the most compounding of adjustment
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costs. This is why the size-adjusted welfare sensitivity aligns very well with sectoral up-

streamness, and the heterogeneity in adjustment costs matter little. Perhaps interestingly,

the hierarchical feature is not special of the U.S. production network: Liu (2019) notes the

similar hierarchical feature in the input-output tables of China and South Korea, and Dhyne

et al. (2022) show the Belgium production network can be well-approximated by an acyclic

network, which is a network with a lower-triangular input-output demand matrix Θ.

In summary, most variations in the welfare impact—size-adjusted or not—arise from the

network structure and not from the heterogeneity in adjustment costs. For expositional

simplicity and to further isolate the role of the network structure, in subsequent analysis we

adopt vbase as our baseline measure of the welfare impact of temporary shocks, with a single,

economy-wide adjustment cost parameter δ = 0.27.

4.2 Factor Structure of the U.S. Input-Output Matrix

Spectral Decomposition Our preceding analysis shows that temporary shocks to large

and upstream sectors are disproportionately damaging because input-output linkages are

slow to recover from these shocks. We now examine determinants of the welfare impact using

the spectral point of view. Spectral analysis enables us to identify which properties of the

input-output network as well as how the nature of adjustment costs matter quantitatively.

Specifically, we undertake an eigendecomposition of the input-output table, Σ = UΛW ,

where Λ is a diagonal matrix of eigenvalues {λk}Nk=1 arranged in decreasing order by absolute

values, andW = U−1. For each eigenvalue λh, the h-th column of U (uh) and the h-th row

of W (w′h) are the right- and left-eigenvectors of Σ, respectively, such that

Σuh = λhuh, w′hΣ = λhw
′
h.

That is, uh (w′h) is the vector that, when left-multiplied (right-multiplied) by Σ, is propor-

tional to itself but scaled by the corresponding eigenvalue λh.11

11We construct the right-eigenvectors such that the 2-norm of uh is equal to 1 for all h.
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Now consider a TFP shock whose direct impact is equal to an eigenvector uh. The second

round network effect is Σuh = λhuh; the third round effect is Σ2uh = λ2huh, and so on.

The impact of each round of network effect decays proportionally by a factor equal to the

eigenvalue λh. Generically, all square matrices are diagonalizable over C, and any TFP shock

vector z̃ can be written as a linear combination {ak}Nk=1 of the right-eigenvectors:12

z̃ =
∑N

k=1akuk,

where the weights ak = w′kz̃ can be recovered using the left-eigenbasis W .

We now use the eigenbases U and W to further decompose the aggregate impact of

sectoral shocks. In Appendix A.11, we show the Domar weight γ can be written as

γ ′ = β′
∑N

k=1

1

1− λk
ukw

′
k (24)

and the welfare sensitivity v to temporary shocks can be written as

v′ = β′
∑N

k=1

δλk
(1− λk) (1 + ρδ − λk)

ukw
′
k. (25)

The eigendecomposition turns the infinite-sum-of-power-series representation of γ and v in

(16) and (15) into finite sums over N eigencomponents. To understand the implication, first

consider the static model. Note that w′`uk = 1 if ` = k and is zero other wise; hence, the

welfare impact of a shock profile z̃ = uk in the static model is captured by

γ ′uk = β′
∑N

`=1

1

1− λ`
u`w

′
`uk =

1

1− λk
β′uk. (26)

That is, the shock uk affects consumption only through the k-th eigen component, with

the direct effect being β′uk, the s-th round indirect network effect being λskβ
′uk, and a

12In general, these eigenvectors and eigenvalues can be complex-valued. If the direct impact of a TFP shock
is the real part of a complex eigenvector uh (z̃ = Re (uh)), then Σsuh = Re (λshuh) 6= Re (λh) ·Re

(
λs−1h uh

)
.

That is, the s-th round of network effect is captured by Re (λshuh), which no longer decays at a constant rate
Re (λh). Instead, the complex eigenvalues introduce oscillatory motion as the dynamical system converges
to the new steady-state. Empirically, we find that the imaginary components of the input-output table’s
eigenvalues are very small, implying that oscillatory effects are negligible relative to the effects that decay
exponentially, so we abstract away from these complex components for expositional brevity.

35



cumulative effect of
∑∞

s=0 λ
s
kβ
′uk = 1

1−λkβ
′uk. By contrast, v′uk can be re-written as

v′uk =
1

ρ
β′uk

(∑∞
s=0

(
1− (1 + ρδ)−s

)
λsk
)

=
δλk

(1− λk) (1 + ρδ − λk)
β′uk. (27)

The term
(
1− (1 + ρδ)−s

)
assigns zero weight to the direct effect of the shock (s = 0) and

an increasing sequence of weights to higher-order network effects.

The U.S. Input-Output Matrix We now describe the next empirical results of the

paper: the welfare impact v of temporary shocks in the U.S. can be well-approximated in a

low-dimensional factor representation. Four eigencomponents (out of N = 171) capture most

of the variation in v, suggesting that these eigenvectors are all that is needed to summarize

the welfare impact of temporary shocks in the U.S. input-output network through the lens

of our dynamic model. This is not the case for permanent shocks in our model (or shocks in

static models): the Domar weight does not have a low-dimensional representation.

Specifically, let v′(h) ≡ δβ′
∑h

k=1
λk

(1−λk)(1+ρδ−λk)ukw
′
k denote the partial sum of the first h

eigencomponents in (25), with v = v(171). v(h) captures the welfare impact of sectoral shocks

through the first h eigencomponents. We show that v(4) approximates v very well.

Table 4 shows the regression of v(h) on v for h ∈ {1, . . . , 6} and reports the slope coeffi-

cients and adjusted R2. The first 3 eigenvectors capture 76% of the variation in v; the first 4

eigenvectors capture 95% of the variation. That is, most of the welfare impact of any sectoral

shock can by explained by the loading of the shock on the first four eigenvectors. Appendix

Figure 7 scatterplots v(h) against v for h ≤ 6. The figure shows that v′(4) approximates v′

very well, and additional eigencomponents do not seem to significantly improve the fit.

Table 4. Regression of v(h) on v

h 1 2 3 4 5 6

slope 0.53 0.82 1.01 0.97 0.97 0.96

R2 0.39 0.58 0.76 0.95 0.96 0.94

Table 5 conducts the analogous exercise for the Domar weight. We compute the partial
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sum γ ′(h) = β′
∑h

k=1
1

1−λkukw
′
k as the first h eigencomponents of Domar weights (with the

actual Domar weight γ = γ(171) c.f. equation 24). Table 5 shows that the first four eigen-

components explain almost no variation in Domar weights, with an R2 close to zero. In fact,

the R2 remains close to zero even with 160 eigencomponents of the largest eigenvalues, and

almost all eigencomponents are needed to explain variations in Domar weights. Appendix

Figure 8 shows that Domar weights are almost orthogonal to approximations of up to h ≤ 6

dimensions.

Table 5. Regression of γ(h) on γ

h 1 2 3 4 · · · 160 170

slope 0.02 0.03 0.04 0.04 · · · 0.47 1.14

R2 0.00 0.00 0.00 0.00 · · · 0.03 0.62

These results imply that, to understand the dynamic impact of temporary shocks, only

four eigenvectors are needed to approximate the impact of all (171 dimensional) network

effects. By contrast, such a low-dimensional representation does not exists for the Domar

weights; hence, to understand the impact of permanent shocks, one needs information of the

entire input-output table.13

Equations (24) and (25) give intuition for this result. Intuitively, the Domar weight

represents an non-discounted summation through the infinite rounds of network effects

(I + Σ + Σ2 + · · · ); the initial rounds are equally important as the later rounds. By con-

trast, the welfare impact of temporary shocks represents a weighted summation ((1− 1) I +
(

1− 1
1+ρδ

)
Σ +

(
1− 1

(1+ρδ)2

)
Σ2 + · · · ) with increasing weights on later rounds of network

effects, as they represent long-lasting damages due to adjustment costs, and initial rounds are

heavily under-weighted. An eigencomponent with a small eigenvalue—meaning it represents

a dimension of network effect that decays quickly over iterative powers of the input-output

matrix—has little impact on welfare if the shocks are temporary (for the component’s lack of
13See Appendix Figure 9 for an additional visualization that contrasts the contribution of each eigencom-

ponent to the Domar weight γ and to v.
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impact at higher rounds) and but is potentially very important if the shocks are permanent.

Specifically, consider two distinct eigenvectors uk and u` with |λk| < |λ`|. Let |γ ′uk|
/
|γ ′u`|

denote the relative importance of these components in the static model. In our dynamic

model, their relative importance is (as implied by 26 and 27)

|v′uk|
|v′u`|

=
|λk| |1 + ρδ − λ`|
|λ`| |1 + ρδ − λk|︸ ︷︷ ︸

<1

×|γ
′uk|
|γ ′u`|

. (28)

That is, relative to the static model, our dynamic model up-weights the relative importance

of slow-decay eigenvectors (those with greater eigenvalues) and, conversely, down-weights

fast-decay eigenvectors (those with lower eigenvalues). These differences could be signifi-

cant: as we show below, for the U.S. economy, the dominant eigenvalue is λ1 ≈ 0.54, and

the 100th is λ100 ≈ 0.03. Hence, relative to the dominant eigencomponent, the 100-th com-

ponent is at least 18 times more important in the static model than in our dynamic model.

This qualitative fact, that fast-decay eigencomponents are significantly less important in the

dynamic model than in the static model, holds regardless of the parametrization of ρ and

δ and is the reason behind the low-dimensional representation of input-output tables in our

dynamic economy.

Which Sectors Do the First Four Eigenvectors Represent? We now describe the

first four eigenvectors.14 The first eigenvector u1 represents the heavy manufacturing sectors,

including metal products, foundries, forging and stamping, and as well as the production

of boiler tanks, machinery, electrical and transportation equipment. This eigenvector cap-

tures the vector of TFP shocks under which the economic damage occurs disproportionately

through higher rounds of network effects.

The second eigenvector u2 negatively correlates with the first (Pearson correlation coef-

ficient of −0.59). u2 represents shocks to three groups of industries. First and most notably,

u2 has large positive entries for the two sectors relating to agencies, brokerages, and insur-
14Appendix Figure 10 visualizes the first four eigenvectors.
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ance. Second, u2 has positive entries for the manufacturing of consumer goods including

food, textile, paper products, and furniture. Third, u2 has negative entries on the heavy

manufacturing industries, partly neutralizing the first eigenvector.

The third eigenvector u3 correlates positively with u2—correlation coefficient 0.36—by

having positive entries on the manufacturing of consumer goods. In addition, u3 also includes

sectors that manufacture chemicals, plastic, and rubber products.

The fourth eigenvector has close-to-zero correlations with the previous three eigenvectors.

The new sector picked up by u4 is radio and television broadcasting; in addition, u4 also

has negative entries on the manufacturing of chemicals, plastic, and rubber products, partly

neutralizing u3.

Altogether, the eigenvectors u1 through u4 form a 4-dimensional subspace of the 171-

dimensional vector space in which the U.S. input-output table lies.

5 Conclusion

We develop a tractable dynamic model of input-output networks that incorporates adjust-

ment costs of changing inputs. The model is solved in closed form and provides analytical

insights into the gradual recovery from temporary productivity shocks and their welfare

implications. The model demonstrates the critical role of input-output network structure

in understanding shock propagation and its welfare consequences. Our findings also reveal

the importance of upstream sectors in shock recovery and emphasizes the low-dimensional

representation of the network for capturing the welfare impact of sectoral shocks.
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Appendix

A Proofs and Additional Theoretical Results

A.1 Proof to Lemma 1

Consider the planner’s problem in (6). We use the following change of variables: let vij (t) ≡
sij (t) /qj (t) denote the fraction of good j sent to sector i at time t. Then consumption of
good j is cj (t) = (1−∑i vij (t)) qj (t). Taking logs of the production function in (3) and
recognizing that TFP is constant during the recovery path, we can equivalently write the
planner’s problem as

V ({lnmij (0)}) = max
{`j(·),vij(·)}

∫
e−ρt

∑
jβj

(
αj ln `j (t) +

∑

k

σjk lnmjk (t) + ln

(
1−

∑

i

vij (t)

))
dt

s.t.
d lnmij (t)

dt
= δ−1

(
ln vij (t) + ln zj + αj ln `j (t) +

∑

k

σjk lnmjk (t)− lnmij (t)

)

∑

j

`j (t) = ¯̀

In what follows, we omit the time argument whenever the context is clear. Form the current-

value Hamiltonian, where for notational simplicity we suppress the dependence on time for

the control, state, and co-state variables:

H ({`j} , {lnmjk} , {vij} , t) =
∑

jβj

(
αj ln `j +

∑

k

σjk lnmjk + ln

(
1−

∑

i

vij

))

+δ−1
∑

ij

µij

(
ln vij + ln zj + αj ln `j +

∑

k

σjk lnmjk − lnmij

)

+λ


¯̀−

∑

j

`j


 .

By the maximum principle,

H`j = 0 ⇐⇒ αj (βj + δ−1
∑

i µij)

`j
= λ for all j. (29)
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Hvij = 0 ⇐⇒ βj
1−∑i vij

=
µijδ

−1

vij
(30)

Hlnmjk = ρµjk − µ̇jk ⇐⇒ βjσjk − µjkδ−1 + δ−1
∑

i

µijσjk = ρµjk − µ̇jk (31)

We now show that the transversality condition limt→∞ e−ρtH ({`j} , {lnmjk} , {vij} , t) = 0

implies µ̇jk (t) = 0 for all j, k, t; the Lemma is then immediate, i.e., vij and `j are time-
invariant for all i, j.

To show µ̇jk (t) = 0 for all j, k, t, we proceed in two steps. In the first step, we define
ξk ≡

∑
j µjk and show ξ̇k (t) = 0 for all k, t. We then show µ̇jk (t) = 0.

Using the definition of ξk, we sum both sides of equation (31) across j and get
∑

j

βjσjk − ξkδ−1 + δ−1
∑

j

ξjσjk = ρξk − ξ̇k

In vector notation,
ξ̇ = δ−1 (I −Σ′ + ρδ) ξ −Σ′β

Thus

ξ (t) = eδ
−1(I−Σ′+ρδ)tξ0 −

∫ t

0

eδ
−1(I−Σ′+ρδ)(t−s)dsΣ′β

= eδ
−1(I−Σ′+ρδ)tξ0 − δ

(
eδ
−1(I−Σ′+ρδ)t − I

)
(I −Σ′ + ρδ)

−1
Σ′β

Transversality implies

0 = lim
t→∞

e−ρtξ (t)

= lim
t→∞

eδ
−1(I−Σ′)t

[
ξ0 − δ (I −Σ′ + ρδ)

−1
Σ′β

]

which is true only if
ξ0 = δ (I −Σ′ + ρδ)

−1
Σ′β

thereby implying ξ̇ (t) = 0 for all t.
We now show µ̇ij (t) = 0 for all t. Note equation (31) can be written as

βjσjk − µjkδ−1 + δ−1ξjσjk = ρµjk − µ̇jk

or in matrix form
µ̇ =

(
δ−1 + ρ

)
µ−Diag

(
β + δ−1ξ

)
Σ

Following the same strategy above, we can integrate and write

µ (t) = e(δ
−1+ρ)tµ0 −

(
δ−1 + ρ

)−1 (
e(δ
−1+ρ)t − 1

)
Diag

(
β + δ−1ξ

)
Σ
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The transversality condition 0 = limt→∞ e−ρtµ (t) again implies
(
δ−1 + ρ

)
µ (0) = Diag

(
β + δ−1ξ

)
Σ

and thus µ̇ (t) = 0 for all t.
We now characterize the model further using the planner’s solution and provide an al-

ternative proof to our main result, Proposition 2. This characterization will be useful in
Section A.7 below, where we consider non-parametric production and adjustment cost func-
tions. First, note that µij is the marginal value of an additional unit of mij in place at time
0. Under the log-linear baseline model, µij is time-invariant. We can actually solve for µij
in closed-form. Using (31), note

δβj +
∑

i

µij = (1 + ρδ)µjk/σjk

Which shows µjk/σjk is independent of k. Define ζj ≡ µjk/σjk; then

δβj +
∑

i

ζiσij = (1 + ρδ) ζj

In matrix notation,

(1 + ρδ) ζ ′ = δβ′ + ζ ′Σ ⇐⇒ ζ ′ = δβ′ ((1 + ρδ) I −Σ)−1 .

To figure out the welfare impact of a temporary TFP shock, note that the impact of
shock z̃ on state variables lnmij at time 0 is the j-th entry of vector (I −Σ)−1 z̃; that is,
the TFP shock affects mij to the same proportion as it affects the output of sector j. Hence,
the impact of z̃ on welfare is

V (z̃)− V ss = −
∑

ij

µij
[
(I −Σ)−1 z̃

]
j

= −
∑

ij

ζiσij
[
(I −Σ)−1 z̃

]
j

= −ζ ′Σ (I −Σ)−1 z̃

= −δβ′ ((1 + ρδ) I −Σ)−1 Σ (I −Σ)−1 z̃

= −1

ρ
β′
[
(I −Σ)−1 − ((1 + ρδ) I −Σ)−1

]
Σz̃

= −1

ρ
β′
[

(I −Σ)−1 −
(
I − Σ

1 + ρδ

)−1]
z̃,

as in Proposition 2.
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A.2 Rate of Input Recovery

Lemma 3. Consider a temporary TFP shock z̃ that recovers at time 0. In the planner’s
solution, along the entire transition path t ≥ 0 and for every input j, d lnmij(t)

dt
= δ−1xj (t)

for all i.

Proof. We need to show xj (t) = ln sij (t) − lnmij (t) for all i. First note that the time-0
impact of a negative TFP shock on the state variables (the quantity of intermediate inputs
{mij}) is proportional to the impact on the output of each intermediate supplier j. That
is, lnmij (0) − lnmss

ij is the same across all input-buyers i. Second, because sij (t) /qij (t) is
time-invariant (Lemma 1), we know ln sij (t) − ln sssij is the same for all i. Integrating the
law of motion (8), these two facts imply ln sij (t)− lnmij (t) is independent of i for all t, and
that mij(t)∑

i′ mi′j(t)
=

sij(t)∑
i′ si′j(t)

and both sides are time-invariant, implying ln sij (t)− lnmij (t) =

ln
∑

i′ si′j (t)− ln
∑

i′mi′j (t) for all i and t, establishing the Lemma.

A.3 Proof to Proposition 1

We have

ln q (t) = ln q (0) + δ−1Σ

∫ t

0

x (s) ds

= ln q (0) + δ−1Σ

[∫ t

0

e−δ
−1(I−Σ)sds

]
z̃

= ln qss − (I −Σ)−1 z̃ + z̃︸ ︷︷ ︸
q(0)

+ Σ (I −Σ)−1
(
I − e−δ−1(I−Σ)t

)
z̃

= ln qss −Σ (I −Σ)−1 e−δ
−1(I−Σ)tz̃.

The expression for c (t) is derived analogously.
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A.4 Proof to Proposition 2

We have

V (z̃)− V ss
0 =

∫ ∞

0

e−ρs (ln c (s)− ln css0 ) ds

= −β′Σ (I −Σ)−1
∫ ∞

0

e−δ
−1((1+ρδ)I−Σ)tdtz̃

= −δβ′Σ (I −Σ)−1 ((1 + ρδ) I −Σ)−1 z̃

= −1

ρ
β′Σ

[
(I −Σ)−1 − ((1 + ρδ) I −Σ)−1

]
z̃

= −1

ρ

[
β′ (I −Σ)−1 − β′

(
I − Σ

1 + ρδ

)−1]
z̃.

A.4.1 Alpha centrality and global versus local influence

The welfare impact measure v′ of temporary shocks is connected to the notion of alpha
centrality in a network represented by the input-output matrix. The alpha centrality for
α ∈ (0, 1] is defined as:

ι′α ≡ β′(I − αΣ)−1.

Intuitively, this is a centrality measure where a parameter α is used to weigh the higher
order input-output linkages, represented by the powers of the matrix Σ:

ι′α ≡ β′
[
Σ0 + αΣ1 + α2Σ2 + ...

]
.

The i-th entry in β′Σs captures the component of sector i’s Domar weight that is attributed
to s rounds of linkages.

A related way to think about centrality is in terms of a random walk on the network,
where Σij is the probability of reaching j from i in one walk. The ij-th entry in Σs then
measures the probability of reaching j from i in the walks of length s. As parameter (α ≤ 1)

decreases, shorter walks become more important, and local influences carry higher signifi-
cance. When α increases, longer walks become more important, and global influences carry
higher significance. In the limit case as α → 1, the walks of any length carry identical
weights, and the alpha centrality measure becomes the Domar weight. In this sense, alpha
centrality tunes between rankings based on short walks (local influence) and those based on
long walks (global influence).

The welfare impact measure v′ is thus proportional to the difference in the alpha cen-
tralities ι′α1

− ι′α2
, where α1 = 1 and α2 = (1 + ρδ)−1 . It corresponds to a generalized version
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of alpha centrality:
ι̃′ ≡ β′

[
a0Σ

0 + a1Σ
1 + a2Σ

2 + ...
]
,

for some sequence {a0, a1 . . . }. Assuming that such weighted power series converge, this
measure weights the walks of length k with the parameter ak. In the case of alpha centrality
with α < 1, ak = αk and is geometrically decreasing from a0 = 1 and a∞ = 0. The welfare
measure v′ is a generalized alpha centrality with ak = 1 − αk2 and thus increasing between
a0 = 0 and a∞ = 1. Because the measure v’ captures the welfare losses due to slow recovery
of inputs, it relatively prioritizes the longer walks or higher order input output linkages and
thus the global over local influences.

The term (1 +ρδ)−1 in (14) also defines a one-parameter family of economies that can be
thought of as a multi-scale representation of the static input output matrix. Specifically, the
speed of adjustment and the discount factor of the agent determine the scale—the relative
importance of the higher-order links and thus the importance of the global versus local
structures.

A.5 Welfare Impact and Upstreamness

Let r ≡ 1
1+ρδ

and a′ ≡ β′ (I − rΣ)−1. We have

ρηj = 1− aj/γj = 1− βj/γj − r
∑

i

σijai/γj =
∑

i

θji − r
∑

i

θji (1− ρηi)

=⇒ η = δrΘ1 + rΘη = δ (I − rΘ)−1 rΘ1 = δ

[ ∞∑

s=1

(
1

1 + ρδ
Θ

)s]
1

⇐⇒ η =
δ

1 + ρδ
Θ1 +

1

1 + ρδ
Θη.

A.6 Heterogeneous Adjustment Costs

Suppose adjustment cost is sector-pair-specific (δij). Let Ω denote the matrix whose ij-th
entry is σij

1+ρδij
. We now show the welfare impact v is

v′ ≡ 1

ρ
β′
[
(I −Σ)−1 − (I −Ω)−1

]
.

Following the proof to Lemma 1 in Appendix Section A.1, one can setup the Hamiltonian
and find

βj +
∑

i

δ−1ij µij =
(
δ−1jk + ρ

)
µjk/σjk (32)
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Let γ̃j ≡
(
δ−1jk + ρ

)
µjk/σjk, the previous equation becomes

βj +
∑

i

1

1 + ρδij
γ̃iσij = γ̃j ⇐⇒ γ̃ ′ = β′ (I −Ω)−1

where Ωij ≡ σij
1+ρδij

. Let δ ◦Ω be the matrix whose ij-th entry is δijσij
1+ρδij

. The welfare impact
is

V (z̃)− V ss = −
∑

ij

µij
[
(I −Σ)−1 z̃

]
j

= −
∑

ij

δij
1 + ρδij

γ̃iσij
[
(I −Σ)−1 z̃

]
j

= γ̃ ′ (δ ◦Ω) (I −Σ)−1 z̃

= β′ (I −Ω)−1 (δ ◦Ω) (I −Σ)−1 z̃

= −1

ρ
β′
[
(I −Σ)−1 − (I −Ω)−1

]
z̃.

A.7 General Production Functions and Adjustment Costs

Consider a steady-state of the economy. Let βj ≡ ∂ ln c
(
{ci}Ni=1

)
/∂ ln cj denote the steady-

state consumption elasticity with respect to good j (β ≡ [βj] is the corresponding vector),
and σij ≡ ∂ ln qi/∂ lnmij is producer i’s output elasticity with respect to input j in steady-
state (Σ ≡ [σij] is the corresponding matrix). Let ω−1ij ≡ ∂ ln gij

∂ ln sij
denote the rate at which

purchased inputs sij expand the quantity of production inputs mij, again evaluated at the
steady-state. Finally, let Ω be the matrix whose ij-th entry is σij

1+ρωij
. We now show that

around the steady-state, the welfare impact of temporary, negative TFP shocks is

dV (z̃)

dz̃

∣∣∣∣∣
z̃≡0

= −1

ρ

[
β′ (I −Σ)−1 − β′ (I −Ω)−1

]
.

We follow the proof strategy in Appendix Section A.1. Setup the planner’s problem as

V ({lnmij (0)}) = max
{`j(·),vij(·)}

∫
e−ρt ln c



{

ln fj (`j , {mjk}) + ln

(
1−

∑

i

vij

)}N

j=1


 dt

s.t.
d lnmij (t)

dt
= gij (ln vij + ln fj (`j , {lnmjk}) , lnmij)

∑

j

`j = ¯̀
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where recall vij ≡ sij/qj is the share of good j sent to producer i.15 Let us form the current-
value Hamiltonian:

H ({`j} , {lnmjk} , {vij} , t) = ln c



{

ln fj (`j, {mjk}) + ln

(
1−

∑

i

vij

)}

j




+
∑

ij

µijgij (ln vij + ln fj (`j, {lnmjk}) , lnmij) + λ

[
¯̀−
∑

j

`j

]
.

Let ξ−1ij ≡ ∂gij (ln vij + ln fj (`j, {lnmjk}) , lnmij) /∂ lnmij denote the second partial derivate
of g evaluated at the steady-state. Let αj ≡ ∂ ln fj

∂ ln `j
denote the labor elasticities evaluated at

the steady-state.
By the maximum principle,

H`j = 0 ⇐⇒
αj
(
βj +

∑
i µijω

−1
ij

)

`j
= λ for all j. (33)

Hvjk = 0 ⇐⇒ βj
1−∑i vij

=
µijω

−1
ij

vij
(34)

Hlnmjk = ρµjk − µ̇jk ⇐⇒ βjσjk + µjkξ
−1
jk +

∑

i

µijω
−1
ij σjk = ρµjk − µ̇jk (35)

Evaluating the planner’s problem at the steady-state
{
m∗ij
}
, µ̇ij = 0 for all i, j, and

g (ln vij + ln f (`j, {xjk}) , xij) = 0.

Given that s∗ij = m∗ij in a steady-state—hence ln s∗ij = x∗ij—and by local-homogeneity and
Euler’s theorem,

ω−1ij ln s∗ij + x∗ijξ
−1
ij = 0 =⇒ ωij = −ξij for all i, j.

Equation (35) implies
βj +

∑

i

µijω
−1
ij =

µjk
σjk

(
ρ+ ω−1jk

)
,

which coincides with (32) and we can simply interpret ωij as the local adjustment costs.
Specifically, let Ω denote the matrix whose ij-th entry is σij

1+ρωij
, then around the steady-

state, the non-parametric welfare elasticity to temporary shocks is

dV (z̃)− V ss

dz̃

∣∣∣∣∣
z̃≡0

= −1

ρ
β′
[
(I −Σ)−1 − (I −Ω)−1

]
, (36)

15Note that writing the law of motion in logs is without loss of generality; the only requirement on g is
that it is locally homogeneous of degree one when the two arguments are equal; the property holds in logs
if and only if it also holds in levels.
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which follows the same logic as in Appendix Section A.6.

A.8 Welfare Impact under Two-Sided Adjustment Costs

We now derive the impact of a temporary, negative TFP shock z̃ that affects the economy
during t ∈ [0, T ) on welfare, assuming that both the contraction and expansion of inputs
must be gradual. Integrating the law of motion for x (t), we get

x (t) =





−e−δ−1(I−Σ)tz̃ t < T

e−δ
−1(I−Σ)(t−T )

(
I − e−δ−1(I−Σ)T

)
z̃ t ≥ T

For t < T ,

ln q (t) = ln q (0) + δ−1Σ

∫ t

0

x (s) ds

= ln qss − z̃ − δ−1Σ
∫ t

0

e−δ
−1(I−Σ)s dsz̃

= ln qss − z̃ −Σ (I −Σ)−1
[
I − e−δ−1(I−Σ)t

]
z̃

= ln qss − (I −Σ)−1 z̃ + Σ (I −Σ)−1 e−δ
−1(I−Σ)tz̃

ln q (T ) = ln qss −Σ (I −Σ)−1 z̃ + Σ (I −Σ)−1 e−δ
−1(I−Σ)T z̃

for t > T ,

ln q (t) = ln q (T ) + δ−1Σ

∫ t−T

0

x (T + s) ds

= ln q (T ) + δ−1Σ

(∫ t−T

0

e−δ
−1(I−Σ)s ds

)
x (T )

= ln q (T ) + Σ (I −Σ)−1
(
I − e−δ−1(I−Σ)(t−T )

)
x (T )

= ln qss −Σ (I −Σ)−1 z̃ + Σ (I −Σ)−1 e−δ
−1(I−Σ)T z̃

+Σ (I −Σ)−1
(
I − e−δ−1(I−Σ)(t−T )

)(
I − e−δ−1(I−Σ)T

)
z̃

= ln qss −Σ (I −Σ)−1 e−δ
−1(I−Σ)(t−T )

(
e−δ

−1(I−Σ)T − I
)
z̃
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Welfare:

V (z̃;T )− V ss

=

∫ T

0
e−ρs (ln c (s)− ln css0 ) ds+ e−ρT

∫ ∞

0
e−ρs (ln c (T + s)− ln css0 ) ds

= β′
{∫ T

0
e−ρs

(
− (I −Σ)−1 + Σ (I −Σ)−1 e−δ

−1(I−Σ)s
)

ds

+e−ρT
∫ ∞

0
e−ρs

(
−Σ (I −Σ)−1 e−δ

−1(I−Σ)s
(
e−δ

−1(I−Σ)T − I
))

ds
}
z̃

= −β′ (I −Σ)−1
{∫ T

0
e−ρsI −Σe−δ

−1((1+ρδ)I−Σ)s ds

−Σ
(
e−δ

−1(I−Σ)T − I
)
e−ρT

∫ ∞

0

(
e−δ

−1((1+ρδ)I−Σ)s
)

ds
}
z̃

= −β′ (I −Σ)−1
{1

ρ

(
1− e−ρT

)
−Σδ ((1 + ρδ) I −Σ)−1

(
I − e−δ−1((1+ρδ)I−Σ)T

)

−Σ
(
e−δ

−1((1+ρδ)I−Σ)T − e−ρT
)
δ ((1 + ρδ) I −Σ)−1

}
z̃

= −1

ρ

(
1− e−ρT

)
β′ (I −Σ)−1

(
I − Σρδ

1 + ρδ

(
I − Σ

1 + ρδ

)−1)
z̃

= −1

ρ

(
1− e−ρT

)
β′
(
I − Σ

1 + ρδ

)−1
z̃

A.9 Output and Welfare Under Persistent TFP Shocks

Under exponential recovery of TFP,

ln zt − ln z0 =
(
1− e−φt

)
z̃

At time zero, the sectoral output follows

ln q (0)− ln qss = − (I −Σ)−1 z̃

As in the baseline model, we can define xj (t) ≡ ln
∑

i sij (t) − ln
∑

imij (t), and, following
the same strategy as in the proofs of Lemmas 1 and 2, we can show δ−1xj (t) =

d lnmij
dt

.
After time 0, sectoral output evolves according to

d ln qi
dt

=
d ln zi

dt
+
∑

j

σij
d lnmij

dt

d ln q

dt
=

d lnz

dt
+ δ−1Σx. (37)
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x evolves according to

ẋ =
d ln q

dt
− δ−1x

= φe−φtz̃ − δ−1 (I −Σ)x (38)

with the initial condition that x (0) = 0.
We can now derive the output path by first integrating (38) to obtain an explicit solution

for x, and then substitute into (37) to obtain an explicit solution for q. We can then integrate
to obtain the explicit solution for the welfare impact.

To do so, we eigendecompose Σ = UΛW where Λ is a diagonal matrix of eigenvalues
{λk}Nk=1 arranged in decreasing order by absolute values, and W = U−1. We know that for
each eigenvector uh, Σuh = λhuh.

We now write the TFP shock vector z̃ as a linear combination {ak}Nk=1 of the right-
eigenvectors z̃ =

∑N
k=1akuk, where the weights can be recovered as a = Wz̃. We consider

each eigencomponent uh separately, i.e., assume z̃ = uk. There are two cases to consider.

Case 1. φ 6= δ−1 (1− λk). Integrating (38) we get

xt =
φ

δ−1 (1− λk)− φ
[
e−φt − e−δ−1(1−λk)t

]
uk

note φδ
1−δφ−λk

(
1
φ
− 1

δ−1(1−λk)

)
= 1

δ−1(1−λk) , so
∫ t

0

xs ds =
φ

δ−1 (1− λk)− φ
uk

∫ t

0

[
e−φs − e−δ−1(1−λk)s

]
ds

=
φ

δ−1 (1− λk)− φ
uk

[
1

φ

(
1− e−φt

)
+

1

δ−1 (1− λk)
[
e−δ

−1(1−λk)t − 1
]]

=
1

δ−1 (1− λk)
uk +

φ

δ−1 (1− λk)− φ
uk

[
1

δ−1 (1− λk)
e−δ

−1(1−λk)t − 1

φ
e−φt

]

We integrate (37) to get

ln q (t)− ln qss =
(
1− e−φt

)
uk − (I − Σ)−1 uk + δ−1Σ

∫ t

0

xs ds

=
1

(1− λk)− φδ
λkδφ

(1− λk)
e−δ

−1(1−λk)tuk −
1− φδ

(1− λk)− φδ
e−φtuk (39)
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Hence
∫ ∞

0

e−ρt (ln q (t)− ln qss) dt

=

[
φδ

(1− λk)− φδ
λk

(1− λk)
δ

ρδ + (1− λk)
− 1

(1− λk)− φδ
1− φδ
ρ+ φ

]
uk

=

[
φδ

(1− λk)− φδ
1

ρ

(
1

1− λk
− 1 + ρδ

1 + ρδ − λk

)
− 1

(1− λk)− φδ
1− φδ
ρ+ φ

]
uk (40)

Case 2. φ = δ−1 (1− λk). Integrating ẋt we get

xt = tφe−φtuk

Note φ dφ−1e−φt

dφ
= − (φ−1 + t) e−φt, so
∫ t

0

xs ds =
1

φ
uk + lim

x→0

φuk
x

[
1

φ+ x
e−(φ+x)t − 1

φ
e−φt

]

=
1

φ
uk + φuk

dφ−1e−φt

dφ

=
1

φ
uk −

(
φ−1 + t

)
e−φtuk

We integrate (37) to get

ln q (t)− ln qss =
(
1− e−φt

)
uk − (I − Σ)−1 uk + δ−1Σ

∫ t

0

xs ds

= −
(

1

1− λk
+
t

δ
λk

)
e−φtuk

Hence
∫ ∞

0

e−ρt (ln q (t)− ln qss) dt = −
∫ ∞

0

(
1

1− λk
+
t

δ
λk

)
e−(ρ+φ)t dtuk

= − 1

ρ+ φ

(
1

1− λk
+

λk
δ (ρ+ φ)

)
uk

Taking Stock. When [(1− φδ) I −Σ] is invertible; then (39) implies that the path of
sectoral output following a generic TFP shock z̃ is

ln q (t) = ln qss + ((1− φδ) I −Σ)−1
[
Σφδ (I −Σ)−1 e−δ

−1(I−Σ)t − (1− φδ) e−φt
]
z̃.

Also equation (40) implies the welfare impact is

V (z̃;φ)−V ss = β′ ((1− φδ) I −Σ)−1
[
φδ

ρ

(
(I −Σ)−1 −

(
I − Σ

1 + ρδ

)−1)
− 1− φδ

ρ+ φ
I

]
z̃.

When [(1− φδ) I −Σ] is not invertible, we write the TFP shock vector z̃ as a linear
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combination {ak}Nk=1 of the right-eigenvectors z̃ =
∑N

k=1akuk, where the weights can be
recovered as a = Wz̃. Define

ζk (t) ≡





1
(1−λk)−φδ

λkδφ
(1−λk)e

−δ−1(1−λk)t − 1−φδ
(1−λk)−φδe

−φt if φ 6= δ−1 (1− λk)

−
(

1
1−λk + t

δ
λk

)
e−φt if φ = δ−1 (1− λk)

µk ≡





φδ
(1−λk)−φδ

1
ρ

(
1

1−λk −
1+ρδ

1+ρδ−λk

)
− 1

(1−λk)−φδ
1−φδ
ρ+φ

if φ 6= δ−1 (1− λk)

− 1
ρ+φ

(
1

1−λk + λk
δ(ρ+φ)

)
if φ = δ−1 (1− λk)

We have
ln q (t) = ln qss +

∑

k

ζk (t) akuk

V (z̃;φ)− V ss =
∑

k

µkakuk.

A.10 Welfare Impact of Permanent Shocks

We derive the welfare impact of permanent shocks by starting with the welfare impact of
persistent shocks and take taking the limit as φ → 0 (so that TFP never recovers). As
φ→ 0, [(1− φδ) I −Σ] is invertible, and

lim
φ→0

(V (z̃;φ)− V ss) =
1

ρ
β′ (I −Σ)−1 z̃.

Since V ss = 1
ρ

ln css, the Domar weight γ ′ ≡ β′ (I −Σ)−1 thus characterizes the cross steady-
state consumption differences resulting from permanent TFP shocks.

A.11 Eigendecomposition

Consider the Domar weight

γ ′ = β′
( ∞∑

s=0

Σs

)
= β′U

( ∞∑

s=0

Λs

)
W

= β′
N∑

k=1

( ∞∑

s=0

λsk

)
ukw

′
k = β′

N∑

k=1

1

1− λk
ukw

′
k.
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The welfare impact

v′ =
1

ρ
β′

∞∑

s=0

(
1− (1 + ρδ)−s

)
Σs

=
1

ρ
β′

N∑

k=1

(
1

1− λk
− 1

1− 1
1+ρδ

λk

)
ukw

′
k

= δβ′
N∑

k=1

λk
(1− λk) (1 + ρδ − λk)

ukw
′
k.

A.12 Connection to Time-to-Build and Long and Plosser (1983)

We show our law of motion (8) for intermediate inputs, microfounded by exponential adjust-
ment costs, is to first-order equivalent to a continuous-time formulation of the time-to-build
specification in Long and Plosser (1983).

Specifically, suppose there are no adjustment costs but instead, after each intermediate
input j is produced, it must go through logistical delays before it can arrive at the production
lines of input-using sector i. In Long and Plosser (1983)’s discrete-time formulation, goods
arrive with one period delay. Since our model is in continuous-time, we assume intermediate
inputs arrive from sellers to buyers following a Poisson process with rate δ−1, corresponding
to an exponentially distributed delay with mean δ. Formally, let aij (t) denote the stock of
good j sold to but have not arrived at sector i by time t. The law of motion for aij is

ȧij = sij −mij, (41)

which states that the rate of change in the stock of good j on its way to sector i is the
difference between the quantity of new purchase (sij) and the quantity of arrival (mij). Given
that goods arrive with Poisson rate δ−1, the quantity of arrival follows mij (t) = δ−1aij (t),
and, combining with equation (41), we derive the law of motion for the use of intermediate
inputs:

ṁij = δ−1 (sij −mij) . (42)

Under this microfoundation, the parameter δ can also be interpreted as the backlog ratio: it
measures the average delay between when inputs are ordered and delivered.

Under the time-to-build formulation, the law of motion (42) states that the rate of change
in mij is linear in the difference between new purchase orders sij and quantity delivered mij.
By contrast, the law of motion (8) in our baseline adjustment cost formulation states that the
growth rate in mij is linear in the log-difference (ln sij − lnmij). The two formulations are
equivalent to first-order; that is, when sij/mij is close to one, equation (42) can be re-written
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as
ṁij

mij

= δ−1
(
sij −mij

mij

)
≈ δ−1 (ln sij − lnmij) .

Hence, when TFP shocks are small—so that allocations at time 0 are not too far from the
eventual steady-state—our model predictions on the path of sectoral output closely matches
the predictions of a dynamic network model with time-to-build. The main advantage of
our formulation is tractability. As we have shown, a log-linear law of motion (8) affords us
closed-form solutions for the entire path of sectoral output, thereby enabling us to derive
substantive analytic insights of how the network structure affects the economy’s susceptibility
to and recovery after temporary shocks.

B Factor Structure of the U.S. Input-Output Table: Ad-

ditional Empirical Results

Figure 7. Welfare impact from the first h eigencomponents (v(h)) plotted against v
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Figure 8. Domar weights from the first h eigencomponents (γ(h)) plotted against γ

-.1
0

.1
.2

.3
-.1

0
.1

.2
.3

0 .05 .1 .15 0 .05 .1 .15 0 .05 .1 .15

1 2 3

4 5 6

Table 6. The 1st & 2nd eigenvectors: 10 largest entries by absolute value

[u1]i [u2]i

Nonferrous metal (except aluminum) production

and processing

0.439 Agencies, brokerages, and other insurance related

activities

0.574

Alumina and aluminum production and

processing

0.221 Insurance carriers 0.334

Other electrical equipment and component

manufacturing

0.213 Animal slaughtering and processing 0.128

Railroad rolling stock manufacturing 0.187 Dairy product manufacturing 0.114

Motor vehicle manufacturing 0.178 Electrical equipment manufacturing -0.097

Steel product manufacturing from purchased steel 0.178 Steel product manufacturing from purchased steel -0.103

Forging and stamping 0.175 Forging and stamping -0.110

Boiler, tank, and shipping container

manufacturing

0.163 Alumina and aluminum production and

processing

-0.140

Iron and steel mills and ferroalloy manufacturing 0.159 Other electrical equipment and component

manufacturing

-0.176

Motor vehicle parts manufacturing 0.153 Nonferrous metal (except aluminum) production

and processing

-0.416
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Figure 9. The contribution of each eigencomponent to γ (Domar weight) and v (welfare
impact of temporary shocks) relative to the first component
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Notes. The figure contrasts the contribution of each eigencomponent to the Domar weight γ—as determinants
of the welfare response to permanent shocks—and to v—as determinants of the welfare response to temporary
shocks. Each point in the figure represents an eigencomponent k ∈ {1, . . . , 171}. The X-coordinate is
|v′uk|, the k-th eigencomponent’s contribution to v. The Y-coordinate is |γ′uk|, the k-th eigencomponent’s
contribution to γ. For the two axes to be comparable, we normalize the contribution of the most important
eigencomponent to 100% on each axis. The figure shows that there are only four eigencomponents (black
circles) with X-coordinates above 10%, meaning the fifth most important eigencomponent contributes to less
than 10% as the most important component for the welfare impact v of temporary shocks. By contrast, for
permanent shocks, a large number (101 out of 171) of eigencomponents have their contributions exceeding
10% of the most important component.

Table 7. The 3rd & 4th eigenvectors: 10 largest entries by absolute value

[u3]i [u4]i

Animal slaughtering and processing 0.314 Radio and television broadcasting 0.628

Dairy product manufacturing 0.286 Animal slaughtering and processing 0.362

Animal food manufacturing 0.211 Dairy product manufacturing 0.263

Resin, synthetic rubber, and artificial synthetic

fibers and filaments manufacturing

0.211 Alumina and aluminum production and

processing

0.180

Plastics product manufacturing 0.194 Railroad rolling stock manufacturing 0.148

Textile mills and textile product mills 0.190 Paint, coating, and adhesive manufacturing -0.129

Grain and oilseed milling 0.187 Rubber product manufacturing -0.137

Sugar and confectionery product manufacturing 0.183 Textile mills and textile product mills -0.186

Fruit and vegetable preserving and specialty food

manufacturing

0.179 Resin, synthetic rubber, and artificial synthetic

fibers and filaments manufacturing

-0.189

Animal production and aquaculture 0.168 Plastics product manufacturing -0.196
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Figure 10. The first four eigenvectors of Σ

-.5
0

.5
-.5

0
.5

0 50 100 150 0 50 100 150

1 2

3 4

Metal products, 
foundries, forging

Manufacturing of consumer goods 
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Manufacturing of 
chemical products, 

rubber, plastic Radio and television 
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Agencies, 
brokerages, 
insurance

boiler tanks, machinery, 
electrical and 

transportation equipment

Notes. The X-axis represent the sectoral ordering according to the BLS input-output table, which roughly
arranges broad sector groups by agriculture, food manufacturing, chemical products, metals, heavy manufac-
turing, and services. In the figure, we indicate the broad groups of sectors that these eigenvectors represent;
Appendix Tables 6 and 7 provide more detailed lists of sector names.
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Table 8. Low dimensional representation of TFP shocks to vulnerable sectors in the U.S.

10 sectors with the highest vi
Loadings on the first 4 eigenvectors

1st 2nd 3rd 4th

Real estate 0.29 0.10 0.62 1.05

Wholesale trade 0.44 0.02 0.70 0.39

Agencies, brokerages, and other insurance related activities 0.89 1.54 -1.50 -0.38

Oil and gas extraction 0.29 0.03 0.86 -0.64

Basic chemical manufacturing 0.46 0.06 1.75 -4.57

Management of companies and enterprises 0.17 0.03 0.37 0.20

Petroleum and coal products manufacturing 0.23 0.02 0.51 -0.15

Advertising, public relations, and related services 0.12 0.04 0.26 0.39

Nonferrous metal (except aluminum) production & processing 1.60 -0.20 -1.19 -0.43

Motor vehicle parts manufacturing 0.08 0.01 0.15 0.15
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