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Abstract

This paper studies stochastic hysteresis − general dependence on the path of past de-

cisions and shocks. We develop a new methodology for deriving the explicit dynamics

of optimal policy with path-dependence and show that stochastic hysteresis changes

optimal policy both qualitatively and quantitatively. We showcase our methodology

by deriving new results for optimal policy with stochastic habits, tipping points, ro-

bustness concerns, limited commitment, and dynamic private information.
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1 Introduction

We develop a new methodology to analyze environments with general dependence on past shocks

and choices which we refer to as stochastic hysteresis. Our benchmark environment is a habit

economy which is a broad representative example of settings with path-dependence. We explicitly

characterize the dynamics of optimal policy and show how stochastic hysteresis changes policy

prescriptions both qualitatively and quantitatively. We further use these methods to tractably

analyze robust policy design, and to derive new insights in models with limited commitment and

dynamic private information, in the presence of stochastic hysteresis.

We start by analyzing a representative agent production economy with stochastic productivity,

external habit formation, and labor supply similar to Ljungqvist and Uhlig (2000) in continuous

time. In their classic work, Stigler and Becker (1977) propose that preferences depend on the

trajectory of past consumption. Our formulation allows habits to have stochastic hysteresis, that

is, to directly depend both on past choices and the trajectory of uncertain shocks. The shocks

can be thought of as experiences and circumstances that directly influence habits beyond merely

the quantity consumed. While we present our methodology for an economy with habit formation,

habits can be understood generally as any dependence of the economy on past choices and shocks.1

Our primary objective is to characterize the dynamics of optimal policy. Optimal policy in an

environment with external habit formation corrects the externality that arises because agents do

not internalize the effect of their decisions on the habits, and therefore welfare, of others. Specif-

ically, an increase in current consumption affects habits along all future stochastic trajectories.

The main challenge in characterizing optimal policy is that the conditional expectation of the

future marginal effects on habits, and hence optimal policy, is path-dependent. In general, path-

dependence does not allow to describe optimal policy dynamics using the standard Ito formula as

it applies only to functions of the state and not to functions of a path.

The main new tool that we develop – the total derivative formula for conditional expectation

processes – allows us to characterize the dynamics of general path-dependent processes. This

formula is broadly applicable to a variety of settings where conditional expectations processes are

1In Section 2 we show stochastic hysteresis arises in several important classes of economies: in macro-climate
models (Nordhaus, 1992, 1993; Golosov, Hassler, Krusell, and Tsyvinski, 2014) as path-dependency in climate
variables, in firm investment models (Arrow, 1964; Rogerson, 2008) as path-dependent stochastic depreciation, and
in knowledge accumulation models (Becker, 1962; Ben-Porath, 1967; Heckman, 1976; Arrow, 1962; Uzawa, 1965;
Lucas, 1988) as path-dependent returns on education. Stochastic habits appear in, for example, Chetty and Szeidl
(2016) where the habit weights on aggregate consumption are stochastic and depend on the distribution of agents.
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central. The total derivative formula provides a drift and diffusion decomposition of the dynamics

of optimal policy. The first term in the total derivative formula gives the drift of the process which

represents how the conditional expectation evolves with respect to time. The second term gives

the diffusion coefficient and represents the sensitivity of the conditional expectation with respect

to changes in the underlying stochastic process. To derive this sensitivity we apply the concepts

of Malliavin calculus, a mathematical toolkit of the stochastic calculus of variations. We establish

that the sensitivity of the conditional expectation is the Malliavin derivative of the expected

marginal habits. Given an initial condition, the drift and diffusion decomposition provides a full

description of optimal policy along any path. The drift and diffusion decomposition thus breaks

down complex interactions of time and uncertainty in the conditional expectation into a drift and

a diffusion term.

To show the implications of stochastic hysteresis on policy design, we develop a number of

examples. Our first example focuses on stochastic habits that reduce the significance of past

consumption based on the level of dissimilarity between current productivity and past experiences.

Habits formed under vastly different circumstances are less relevant. We refer to this notion of

experiencing something different from what one is used to as unfamiliarity. We show that optimal

policy can be viewed as a price of an asset that pays a lower dividend in unfamiliar states. Optimal

policy includes a path-dependent component determined by unfamiliarity, that is, by the extent

of dissimilarity between future states and past experiences. The total derivative formula provides

the value of the assets, and hence optimal policy, in closed form.2

Using the analytical characterization of optimal policy we quantitatively evaluate optimal pol-

icy with stochastic hysteresis under unfamiliarity and compare our findings to those of Ljungqvist

and Uhlig (2000). Our first quantitative result is that optimal policy is neither procyclical nor

countercyclical. The reason is that unfamiliarity, measured by the distance between the current

productivity shock and past experiences, is symmetric. Good and bad times are equally unfa-

miliar which implies that the habit externality and, hence, optimal policy are identical in these

times. The second quantitative result is stochastic hysteresis in optimal policy, that is, lasting

2Our formulation of unfamiliarity is consistent with Gilboa and Schmeidler (1995) and Billot, Gilboa, Samet, and
Schmeidler (2005) which provide a foundation for incorporating similarity of previous experiences in agents’ decision-
making. Recent work on memory (see Malmendier and Wachter (2022) for a review) emphasizes the importance of
similarity with prior experiences (Mullainathan, 2002; Bordalo, Gennaioli, and Shleifer, 2020; Wachter and Kahana,
2021), and the long-lasting influence of personal experiences (see, for example, Malmendier and Nagel (2011) for
the effects of stock market experiences and Malmendier and Nagel (2016) for the effects of inflation experiences).
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dependence on past shocks. Even when current and expected productivities are identical over a

large part of the sample, optimal policy qualitatively differs. The total derivative formula allows

us to derive the main factors behind these differences. Specifically, we show that the behavior of

the diffusion coefficient governed by the Malliavin derivative of unfamiliarity plays a central role

in determining the qualitative differences. These two results stand in contrast to Ljungqvist and

Uhlig (2000) where the habit externality is cyclical and depends only on the current state. Finally,

we show that unfamiliarity has significant welfare consequences. Since anticipated productivity

shocks make current experiences less relevant for the future, an increase in current consumption

imposes a smaller externality compared to the specification without unfamiliarity.

Our second main example analyzes tipping points, which are endogenous thresholds that cause

a significant shift in the behavior of an economy or agents. Specifically, we model a tipping point

by allowing habits to change once a new maximum in the trajectory of shocks is attained. We

provide a closed-form drift and diffusion decomposition that gives the dynamics of optimal policy

with tipping points. The diffusion coefficient is of particular interest as we explicitly show how

a change in the trajectory of the stochastic process affects the probability of crossing a tipping

point.

We then showcase how our methodology can be applied to three important environments: ro-

bustness, limited commitment, and dynamic private information. First, we show how to tractably

analyze optimal policy with robustness concerns. Robustness may be of particularly concern in

our path-dependent framework since habits directly depend on the shock trajectory and are thus

directly affected by misspecification. We consider two approaches to robust policy design. The

first approach studies policy design with concerns for robustness in the sense of Hansen and Sar-

gent (2001, 2008). We show that robust optimal policy is represented by exponentially tilted habit

coefficients that account for the robustness considerations. Using the total derivative formula we

establish that the drift of optimal policy is adjusted by the level of the tilt, while the diffusion

coefficient is adjusted by both the level of the tilt and its sensitivity to uncertainty as measured

by the Malliavin derivative. The second approach characterizes the sensitivity of optimal policy

to local misspecification, drawing connections to robust statistics (Hampel, 1974; Huber, 1981).

We show that optimal policy has to be corrected by the effects of misspecification as measured by

its Malliavin sensitivity. Both the characterization of optimal robust policy and its dynamics in a

general path-dependent environment as well as the use of Malliavin derivatives to determine the
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first-order effects of misspecification are new to the robustness literature.

Second, we incorporate limited commitment frictions in the economy with stochastic habits.

Limited commitment entails additional path-dependence since an increase in current consump-

tion relaxes past participation constraints (Thomas and Worrall, 1988; Kehoe and Levine, 1993;

Kocherlakota, 1996; Marcet and Marimon, 2019). The interaction of these two types of path-

dependency, due to stochastic habits and due to limited commitment, introduces considerations

new to the literature.3 Using the total derivative formula, we derive a drift and diffusion decom-

position for optimal policy. We show that optimal policy dynamics change in the presence of

participation constraints through an additional stochastic discount factor. This discount factor

affects future marginal effects of habits by placing a larger weight on low marginal utility states.

Third, we analyze dynamic private information settings (Golosov, Kocherlakota, and Tsyvin-

ski, 2003; Farhi and Werning, 2013; Kapička, 2013; Pavan, Segal, and Toikka, 2014; Golosov,

Troshkin, and Tsyvinski, 2016). We first establish a new representation of incentive constraints

using Malliavin integration by parts. This enables direct analysis of private information problems,

even when a recursive representation is not feasible. With private information, we show that the

planner reweights agents’ utilities with a martingale weight. This weight is a stochastic integral

over multipliers on prior incentive constraints along the trajectory of the skill shocks. This rep-

resentation highlights a key economic difference between private information models and limited

commitment models. In private information models, the weight is a martingale. In limited com-

mitment models, the weight instead accumulates multipliers on previous participation constraints

over time and, hence, only has a drift component (Marcet and Marimon, 2019).

We derive two new results on taxation in this dynamic private information economy. The

first result gives the dynamics of the term structure of intertemporal distortions which describes

how distortions vary with investment horizons and informs the difference in optimal capital taxes

between short and long-term investments. We show that the term structure is determined by the

product of the stochastic discount factor and the evolution of the martingale weight.

The second result derives the labor wedge when skills are an arbitrary function of the shock

trajectory. Our general formulation of the skill process generalizes the results in the dynamic

optimal taxation literature to incorporate recent labor economics evidence that focuses on earnings

3This combination may be particularly relevant for asset pricing as it jointly considers predictions of habit models
(Abel, 1990; Constantinides, 1990; Campbell and Cochrane, 1999) and limited commitment models (Alvarez and
Jermann, 2000).
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processes with path dependency, nonlinearity of persistence, and realized skewness and kurtosis

(Arellano, Blundell, and Bonhomme, 2017; Guvenen, Karahan, Ozkan, and Song, 2021; Browning,

Ejrnæs, and Alvarez, 2010). The labor wedge is given by the labor supply elasticity and the product

of two terms. The first term is the sensitivity of the stochastic discount factor to uncertainty. The

second is the Malliavin semi-elasticity of skills which shows how path-dependent skills react to a

shock in prior uncertainty. We derive a closed-form expression for this Malliavin semi-elasticity

which governs the informational advantage of a misreporting agent over the planner. For path-

dependent processes, the labor wedge significantly differs from the cases of the geometric Brownian

motion and the Ornstein-Uhlenbeck process in the literature.

2 Environment

We consider a representative agent problem in continuous time with time t ∈ [0, T ]. We denote

consumption by c and habit consumption by x. Both consumption goods are produced with labor.

Hours worked are given by n.

Production is linear in hours, with total output given by θn, where θ denotes labor productivity.

Output can be used for consumption and habit consumption with a unit rate of transformation

and can be transferred across periods and states at a unit rate. The feasibility constraint is:

E

∫ T

0
(ct + xt − θtnt)dt ≤ 0. (1)

The agent’s lifetime utility of consumption and hours is given by:

E

∫ T

0
(u(ct) + u(xt)− ht − v(nt))dt, (2)

where utility from consumption at time t is u(ct), utility from habit consumption is u(xt) − ht,

and labor disutility is v(nt). The functions u and −v are strictly concave and satisfy the Inada

conditions.4 The period utility is Ut = u(ct) + u(xt)− ht − v(nt). Stochasticity in the economy is

given by a Brownian motion w which affects both skills and habits. Skills depend on the trajectory

wt of the shocks between time 0 and t as θt(w
t).

Habits ht depend on the trajectories of habit consumption xt and shocks wt as ht(x
t, wt).

Habits are linearly separable in past habit consumption:

ht(x
t, wt) =

∫ t

0
kst (w

t)xsds, (3)

4Time is finite and the discount rate is zero, both of which are non-essential.
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where kst (w
t) are functions that depend on the shocks up to time t, wt.5 We highlight that habit

coefficients depend both on the time of prior consumption s and the time of habit evaluation t,6

and also depends on the shock trajectory wt.

Discussion. The classic work of Stigler and Becker (1977) specifies utility depending on past

consumption. Our environment is more general since habits are stochastic as they directly depend

on the trajectory of past shocks. Consider a descriptive example. Stigler and Becker (1977) allow

the appreciation of music to depend on past instances devoted to listening to music xt. We further

allow the taste for music to depend directly on personal experiences wt.7 A specific example of

stochastic habits is Chetty and Szeidl (2016) who show that a heterogeneous agent model with

consumption commitments behaves as a representative agent economy with stochastic habits in

terms of aggregates. In their model, the habit coefficients on past consumption are generally

stochastic and depend on the cross-sectional distribution of agents in the economy.8

While we frame our model as a habit economy, habits can be considered as general dependence

of the economy on past shocks and decisions. Our specification specifically allows habits to depend

on both past shocks and choices, which we refer to as stochastic hysteresis. We next present how

hysteresis can be introduced in three important settings: macro-climate models, firm investment

models, and knowledge accumulation models.9

First, our framework expands on dynamic macro-climate economies (Nordhaus, 1992, 1993)

by incorporating path-dependent climate externalities, where h captures damages caused by past

consumption of pollutant-emitting good x. Allowing for path-dependency is important, as there

is significant evidence suggesting that important climate variables, such as vegetation, ice sheets,

and ocean acidification, exhibit hysteresis.10

5We use habit specification (3) to clarify the exposition of results. Our insights extend to general habits ht(x
t, wt)

(see Riabov and Tsyvinski (2021)).
6For example, distant periods may be downweighted while recent periods are more salient as in the case of

kst = e−δ(t−s), where δ > 0 (Pollak, 1970; Ryder and Heal, 1973; Becker and Murphy, 1988; Constantinides, 1990).
7The appreciation for the Beatles among the current generation may grow by consuming their albums similar to

their grandparents’ generation, which we think of as being represented by xt. However, the current generation can
never first see the Beatles live on the Ed Sullivan Show, or attend the concert at Shea Stadium at the backdrop of
the Vietnam war. We consider this trajectory of uncertain events as wt that also influences appreciation of music.

8Our formulation is consistent with Frick, Iijima, and Strzalecki (2019) which axiomatizes general non-parametric
dynamic random utility models and include both dependence on the history of shocks and on past choices, both of
which are central to our specification of stochastic hysteresis.

9In Appendix A.1, we formally demonstrate the mapping between the economy in this section and these models.
10For example, the Intergovernmental Panel on Climate Change documents that a number of important climate

variables show significant hysteresis behavior in their Fifth Assessment Report (Collins, Knutti, Arblaster, Dufresne,
Fichefet, Friedlingstein, Gao, Gutowski, Johns, Krinner, Shongwe, Tebaldi, Weaver, and Wehner, 2013). Riabov
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Second, Arrow (1964) and Rogerson (2008) analyze firm investment decisions with arbitrary

deterministic depreciation patterns. Our generalization allows productive capital to be a general

function of past investments and shocks. For example, productive capital can be a linear and

separable function of past investments (3), where the current production value of past investments

is given by kst (w
t). This permits deprecation to not only follow an arbitrary deterministic depre-

ciation pattern but also to vary generally with depreciation shocks. For example, we allow for

depreciation shocks that impact older machines but do not impact recent vintages.

Third, a large literature studies knowledge accumulation through both financial and time

investments. Knowledge capital models endogenize labor productivity through past investment

choices (Becker, 1962; Ben-Porath, 1967; Heckman, 1976), or with learning-by-doing (Arrow, 1962;

Uzawa, 1965; Lucas, 1988). Under our generalization, knowledge capital is a general function (3)

of past choices and stochastic realizations. The return on investments in education may depend

on an individual’s current age t, their age at the time of training s, and the shock trajectory. For

example, past investments increase current productivity when they are more recent (t close to s),

and when the training is more transferable, that is, an individual’s current job is similar to their

job at the time of their training (ws close to wt).
11

3 Optimal Policy

The planner chooses consumption ct, habit consumption xt and hours nt to maximize welfare (2)

with habits (3) subject to the resource constraint (1). The optimality conditions are:

λ = u′(xt)− Et
∫ T

t
kts (ws) ds, λ = u′(ct), and λθt(w

t) = v′(nt), (4)

where λ denotes the multiplier on the feasibility constraint (1). An increase in habit consumption

increases current consumption utility and future habits. The effect on future habits is given by the

conditional expectation Et
∫ T
t kts(w

s)ds. Each coefficient kts captures the effect of current habit

consumption xt on habits at future time s. This effect depends on the trajectory of shocks ws as

habits are stochastic. The future is uncertain from the perspective of time t which is captured

by the conditional expectation of these future effects. The optimality conditions for consumption

and labor are standard.

and Tsyvinski (2021) focus on macro-climate economies as in Golosov, Hassler, Krusell, and Tsyvinski (2014) and
provide an extensive discussion of evidence on hysteresis in climate variables.

11Our notion of stochastic habits with unfamiliarity in Section 3.2 is an example of such specification.
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The habit consumption wedge Λt is:

Λt := u′(xt)− u′(ct) = Et

∫ T

t
kts(w

s)ds. (5)

The habit wedge plays the central role in habit economies. In Ljungqvist and Uhlig (2000), for

example, it determines the tax that a government uses to align the choices of individuals with

the social optimum in the presence of external habit formation. More broadly, the habit wedge

corrects the marginal externality of habit consumption and is the optimal policy in models with

path-dependent externalities.

Our primary objective is to describe the dynamics of optimal policy Λt. The main challenge in

deriving the evolution of the habit consumption wedge lies in the fact that the conditional expec-

tation Et
∫ T
t kts(w

s)ds is generally path-dependent, as the coefficients kts(w
s) are path-dependent.

We thus cannot use the standard Ito formula as it applies only to functions of the state and not

to functions of a path.

3.1 Optimal Policy Dynamics

We next develop the main theoretical tool of our paper, the total derivative formula for conditional

expectation processes, to derive the drift and diffusion decomposition of optimal policy in closed

form. These conditional expectations are central in dynamic economic models, as they reflect the

optimal choices made by forward-looking agents who balance current costs and benefits against

those in an uncertain future.

A preliminary step in developing the total derivative formula is to introduce the Malliavin

derivative. This derivative characterizes how a function, which depends on the trajectory of a

stochastic process, responds to small changes in that process and can thus be thought of as its

sensitivity to shocks. Consider a variation of the path wt that changes the drift of the stochastic

process at each time s ≤ t by ε
∫ s
0 zr(w

r)dr, where ε is small. The resulting change in the function

value F (wt) can be represented, to a first order, as:

F
(
wt + ε

∫ ·
0
zrdr

)
= F (wt) + ε

∫ T

0
DrF (wt)zrdr + o(ε), (6)

where DrF (wt) is the Malliavin derivative at time r of the function F (wt).12 Figure 1 illustrates

12Consider the Brownian motion wt =
∫ t
0

1dws. The variation (6) is given by wt + ε
∫ t
0
zrdr − wt = ε

∫ t
0
zrdr.

The Malliavin derivative DrF (wt) is equal to one for all time periods r ≤ t, and zero for all time periods r > t. In
In Appendix A.2, we provide additional examples of Malliavin derivatives that we use in this paper. The notation∫ ·
0
zrdr indicates that the entire trajectory is perturbed.
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Figure 1: The Malliavin Derivative

Figure 1 illustrates the Malliavin derivative. The blue solid line shows trajectory wt, while the orange dashed line shows a perturbed

trajectory wt + ε
∫ ·
0 zrdr which equals wt + ε

∫ t
0 zrdr for all t. The Malliavin derivate evaluates the change in the function F (wt) due

to a perturbation zr at time r.

the Malliavin derivative, where the blue solid line shows trajectory wt, while the orange dashed

line shows a perturbed trajectory wt + ε
∫ ·
0 zrdr

The total derivative formula gives the drift and diffusion decomposition for the conditional

expectation process.

Proposition 1. Total Derivative Formula. Let Λt be a process so that Λt = Et[ξt], where ξt is

Malliavin differentiable and differentiable with respect to time. Then,

dΛt = Et[∂tξt]dt+ Et[Dtξt]dwt. (7)

The proof is in Appendix A.3.13

The first term in the total derivative formula, Et[∂tξt], gives the drift of the process and rep-

resents how the conditional expectation evolves with respect to time. The second term, Et[Dtξt],

gives the diffusion coefficient and represents how the conditional expectation evolves with changes

in the underlying stochastic process.14

We apply the total derivative formula to optimal policy (5) to explicitly derive its drift and

13In Appendix A.3 we also prove a general version of the total derivative formula which does not require Malliavin
differentiability. In Appendix A.4, we show that the assumption of time differentiability of ξt can be significantly
relaxed, and note that when ξt does not vary with time, the Clark-Ocone formula is a special case of our formula.

14This explains why we call (7) the total derivative formula. For a function of two variables, the total derivative
formula describes the function’s change as the sum of the derivatives of each variable, multiplied by the respective
changes in those variables. In our setting, the total derivative formula decomposes the change dΛt as a combination
of the changes dt and dwt respectively weighted by the time derivative and the Malliavin derivative.
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diffusion decomposition:

dΛt =

(
Et

∫ T

t
∂tk

t
s(w

s)ds− ktt(wt)
)
dt+

(
Et

∫ T

t
Dtk

t
s(w

s)ds

)
dwt. (8)

The drift of the habit wedge is given by the time derivative of the effects of current consumption on

future habits Et∂t
∫ T
t kts(w

s), or how expected marginal habits change with time. The stochasticity

of habits translates into the diffusion coefficient that shows how expected habits evolve with

respect to underlying stochasticity and is given by the expectation over Malliavin derivatives

Et
∫ T
t Dtk

t
s(w

s)ds. The drift and diffusion decomposition thus breaks down complex interactions

of time and uncertainty in the conditional expectation into a drift and a diffusion. The drift gives

the expectation of optimal policy changes, while the diffusion gives its volatility. Given an initial

condition, the decomposition then fully describes optimal policy along any trajectory.15

3.2 Examples: Unfamiliarity and Tipping Points

In this section, we solve two examples in closed form to illustrate the use of the total derivative

formula (7).

Unfamiliarity. In the first example we capture the stochastic relevance of past consumption

by introducing a notion of experiencing something different from what you were used to. An

experience at time t is considered different from what you were used to by time s if the current

realization log θt differs from average productivity up to time s, log θ̄s = 1
s

∫ s
0 log θrdr. The absolute

value of the distance υs(θ
t) := log θt − log θ̄s is a measure of unfamiliarity. Specifically, let:

ht(x
t, θt) = α

∫ t

0
exp(−(δ + κ|υs(θt)|)(t− s))xsds, (9)

where α ≥ 0 parameterizes the importance of habits. When κ = 0, we obtain the usual geometric

habit specification that discounts experiences at more distant times in the past. When κ > 0, the

weight on past consumption xs is additionally decreased by κ|υs(θt)| depending on how different

log θt is from what you were used to. This specification is an example of habits (3) where kst =

α exp(−(δ + κ|υs(θt)|)(t− s)).16

15In the nested case with time-invariant habit coefficients ks(w
s), where ∂tk

t
s(w

s) = 0, the drift of the marginal
habit effect in (8) is −kt(wt) (Detemple and Zapatero, 1991). When the habit coefficients kts are deterministic, the
Malliavin derivative Dtk

t
s in equation (8) is zero. The time derivative, measuring how the future habits change

throughout time, simplifies to
∫ T
t
∂tk

t
sds− kt.

16This formulation of habits captures three key features of how past experiences affect economic decisions outlined

10



The habit wedge Λt is a combination of the geometric habit wedge and the unfamiliarity term

with strength κ. We view the habit consumption wedge as a portfolio of assets that pays an amount

α exp(−δ(s− t)) exp(−κ|υt(θs)|(s− t)) for each history θs. Each component of the portfolio has a

value determined by the discount rate δ and the additional path-dependent component determined

by the absolute value of unfamiliarity |υt(θs)|.

The total derivative formula (7) describes the dynamics of optimal policy in closed form. The

drift coefficient is Et
∫ T
t ∂tk

t
sds− ktt, where ∂tk

t
s = kts

(
δ + κ |υt(θs)| − κ(s− t)∂tυt(θs)sign(υt(θ

s))
)

and ktt = α. The evolution with respect to time of the path-dependent unfamiliarity term υt(θ
s)

is given by ∂tυt(θ
s) = −1

tυt(θ
t). When the time horizon increases and the last realization exceeds

the average, the average increases by 1
tυt(θ

t), and unfamiliarity υt(θ
s) decreases by 1

tυt(θ
t). The

diffusion term is Et
∫ T
t Dtk

t
s(w

s)ds, where Dtk
t
s = −ktsκ(s−t)sign(υt(θ

s))Dtυt(θ
s). The sensitivity

to changes in the underlying path of uncertainty of the path-dependent unfamiliarity term υt(θ
s)

is the Malliavin semi-elasticity of the productivity process Dtυt(θ
s) = Dt log θs = Dtθs

θs
. This semi-

elasticity is the percentage change in productivity θs with respect to a change in the underlying

stochastic process at time t.17

Tipping Point. The second example illustrates optimal policy in an important class of problems

with tipping points. Tipping points are endogenous thresholds in time upon which the behavior

of a system fundamentally changes.18

Specifically, we allow habits to significantly change once a new maximum in the trajectory of

shocks is attained. Intuitively, this notion of a tipping point corresponds to the (best) “time of

your life”. Formally, the tipping point γt(w
t) := arg max

s∈[0,t]
ws is the time when the trajectory wt

attains its maximum before age t, with the corresponding value M0,t(w
t) := max

s∈[0,t]
ws. Consider

habit (3) with coefficients kst (w
t) = f(s− γt(wt)), where f(x) = 0 for all x ≤ 0. The behavior of

the system changes as habits put zero weight on experiences prior to the tipping point γt(w
t), and

in the review of Malmendier and Wachter (2022): long lasting effects, recency bias, and context dependence
(Mullainathan, 2002; Malmendier and Nagel, 2011, 2016; Bordalo, Gennaioli, and Shleifer, 2020; Wachter and
Kahana, 2021). A comparison with previous experiences as a similarity function is axiomatized in Billot, Gilboa,
Samet, and Schmeidler (2005) and its exponential form in Billot, Gilboa, and Schmeidler (2008).

17In Appendix A.5, we explicitly calculate the conditional expectations in the drift and diffusion coefficients when
the productivity process follows an Ornstein-Uhlenbeck process in logarithms.

18Tipping points are especially significant in models of climate change. For example, Dietz, Rising, Stoerk, and
Wagner (2021) consolidate various approaches in the literature and argue for the need for models that incorporate
sophisticated tipping point dynamics. Lemoine and Traeger (2014), Lontzek, Cai, Judd, and Lenton (2015), van der
Ploeg and de Zeeuw (2018), and Cai and Lontzek (2019) incorporate tipping points in economics models of climate.
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Figure 2: Tipping Points

Figure 2 shows how a perturbation of the process at time t can put the best time of your life up to time s after time t− x. In the left

panel, the increase at time t puts the time of the maximum up to time s after t− x as indicated by the orange dashed line exceeding

the black solid line that indicates the maximum prior to the perturbation. The middle panel shows that when the maximum is already

after time t− x as indicated by the green line, a perturbation at time t does not change that. The right panel shows that a change at

time t does not alter the indicator function I{γs≤t−x} if Mt,s > M0,t or if Mt,s < M0,t.

agents form habits as f(s − γt(wt)) only from this reference point onward.19 The habit wedge is

therefore given by Λt = Etξt with ξt =
∫ T
t f(t− γs(ws))ds.

The total derivative formula gives the dynamics of optimal policy in closed form. The drift

coefficient is Et∂tξt = −f(t−γt) +Et
∫ T
t f ′(t−γs)ds. As time advances, future impacts on habits

are amended to the extent that more time t−γs has passed since the best time in life prior to time

s. The term −f(t− γt) measures the instantaneous decay of the habit externality with time.20

The diffusion coefficient captures how a perturbation in the underlying stochastic process at

time t affects the future times of a maximum. A change in the underlying process puts the best

time of your life up to time s, γs, after time t− x, where x ≥ 0 is any amount of time, when two

conditions are met. First, the time of your life before time t was before time t− x, or γt ≤ t− x.

Second, the maximum after time t has to be such that a perturbation at time t puts the best time

of your life after time t (and hence after t − x). That is, prior to a perturbation the attained

maximum values are identical, Mt,s = M0,t, where Mt,s is the maximum value attained between

period t and s, or Mt,s(w
s) := max

r∈[t,s]
wr.

21

19For example, at age 20, an individual’s high point may have been being the high school valedictorian at age 18.
An individual’s habits reset after this achievement, meaning that only times s ≥ 18 matter for habit formation. If
this individual wins an Olympic gold medal at age 25, the weighting again resets, and only times s ≥ 25 matter for
habits. This specification immediately extends to habit coefficients that vary with time and habit coefficients that
weight experiences prior to the reference point γt as well as experiences after the reference point.

20In Appendix A.6, we calculate Et
∫ T
t
f ′(t− γs)ds explicitly.

21In summary, the indicator I{γs≤t−x} switches from one to zero if and only if I{γt≤t−x}I{Mt,s=M0,t}, and hence
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The left panel of Figure 2 illustrates how a change in the process at time t can put the best

time of your life up to time s after time t−x. The increase at time t puts the time of the maximum

up to time s after t− x as indicated by the orange dashed line exceeding the black solid line that

indicates the maximum prior to the perturbation. The middle panel shows the necessity of the

first condition that the time of your life before time t was before time t− x, or γt ≤ t− x. If the

maximum is already after time t− x as indicated by the green line, then a perturbation at time t

does not change that. The right panel shows the necessity of the second condition, Mt,s = M0,t,

by showing that a change at time t does not alter the indicator function if the maximum between

t and s exceeds the maximum from 0 to t, Mt,s > M0,t, or if Mt,s < M0,t.

The optimal policy Λt = Etξt = Et
∫ T
t

∫ t
0 f
′(x)I{x≤t−γs}dxds =

∫ T
t

∫ t
0 f
′(x)Et

[
I{γs≤t−x}

]
dxds

highlights the importance of determining how a change in the stochastic process at time t affects

the indicator I{γs≤t−x}. The diffusion coefficient explicitly shows how a change in the trajectory

of the stochastic process affects the likelihood of crossing an endogenous tipping point. We show

that the diffusion coefficient is given in the closed form as −f(t− γt)
∫ T
t ϕs−t(M0,t−wt)ds, where

ϕs−t is the density function for the maximum of a Brownian motion over s− t periods.22

4 Quantifying Optimal Policy

We build on our theoretical framework to quantitatively analyze optimal policy with stochastic

hysteresis under unfamiliarity and compare our findings to those of Ljungqvist and Uhlig (2000).

We consider an infinite horizon economy (T =∞) and assume there is only a habit good x. We

replace the present value resource constraint (1) by resource constraints for every shock history

θt such that xt(θ
t) ≤ θtnt(θ

t). Consumption utility is u(x) = x1−γ−1
1−γ , where γ = 1.5 and the

disutility from work is v(n) = n. Logarithmic productivity follows an Ornstein-Uhlenbeck process

for which the equivalent annual discrete-time AR(1) process has persistence equal to 0.9 and the

standard deviation of the innovation equals 0.04.

We specify the habit coefficients as in the case of unfamiliarity (9). We parameterize the habits

with α = 0.015 and δ = 0.03. In the case of geometric habits, κ = 0, optimal policy is given by

I{γt≤t−x}Et
[
I{Mt,s=M0,t}

]
in expectation.

22The conditional expectation that Mt,s is equal to M0,t is Et[I{Mt,s=M0,t}] = ϕs−t(M0,t −wt), where ϕs−t(z) =√
2

π(s−t)e
− z2

2(s−t) is the density function for the maximum of a Brownian motion over s − t periods. The diffusion

coefficient is then
∫ T
t

∫ t
0
f ′(x)I{γt≤t−x}ϕs−t(M0,t − wt)dxds = −f(t− γt)

∫ T
t
ϕs−t(M0,t − wt)ds.
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Figure 3: Optimal Policy with Stochastic Habits

Figure 3 shows optimal policy with stochastic habits described by unfamiliarity (9). The left panel displays four productivity paths,

the middle panel plots the running average of productivity which determines how productivity paths translate into unfamiliarity

υt(θs) = | log θs − log θ̄t|, and the right panel shows optimal policy. The figure shows that optimal policy is neither procyclical nor

countercyclical as optimal policy over the green dashed expansion-contraction cycle is identical to optimal policy over the orange dashed

contraction-expansion cycle.

Λt = α/δ = 0.5. An extra unit of consumption increases habits in all subsequent periods, and

when discounted, the increase in future habit is given by 1/δ.

Optimal Policy. In order to demonstrate the optimal policy with stochastic habits (9), we

present four sample paths for productivity and the corresponding optimal policy in Figure 3.

The left panel of Figure 3 displays four productivity paths. The blue dash-dotted line is a

constant productivity path. The three business cycle lines are as follows. The green dashed line

illustrates an expansion-contraction cycle, where productivity expands with a peak at period 25

and then enters a recession at period 50 with a trough at period 75. The orange dashed line is

the mirror image of the green cycle in terms of cyclicality, resulting in a contraction-expansion

cycle of the same magnitude. Consequently, differences between the green and orange paths

are due to their opposing cyclicality. The purple dashed line portrays an asymmetric cycle that

follows the same expansion-contraction pattern as the green line but with a muted expansion in

the first half of the sample. Discrepancies in the first half of the sample are driven by varying

magnitudes, while discrepancies in the second half arise from distinct trajectories in the first

half and not from contemporaneous productivity differences. The middle panel plots the running

average log θ̄t := 1
t

∫ t
0 log θrdr which determines how productivity paths translate into unfamiliarity

14



υt(θ
s) = | log θs − log θ̄t|. We now use the analytical characterization in Section 3.2 to generate

the evolution of optimal policy along these trajectories and compare to the optimal policy under

geometric habits Λt = α/δ = 0.5.

The first result is that optimal policy is neither procyclical nor countercyclical. The right panel

of Figure 3 demonstrates that optimal policy over the green dashed cycle is identical to optimal

policy over the orange dashed cycle. Since the unfamiliarity metric is a distance between current

productivity and what you were used to at time t, | log θs− log θ̄t|, and since the green and orange

cycle only differ through reflection, optimal policy is identical. In sum, the right panel of Figure

3 shows that optimal policy behaves identically in good and bad times as both unfamiliarity and

the skill process are symmetric. This result stands in contrast to Ljungqvist and Uhlig (2000)

where the habit wedge is instead countercyclical.23 In Ljungqvist and Uhlig (2000) optimal policy

Λt is proportional to the expected marginal utility of future habit consumption. In good times,

the marginal utility of future habit consumption decreases since consumption increases with good

shocks and shocks are persistent. Individuals thus relatively over-consume less in good times as

the expected marginal utility of consumption decreases, and relatively over-consume more in bad

times. In our model, good and bad times are equally unfamiliar and, hence, agents over-consume

less in both good and bad times in the same relation compared to normal times.

The second point we emphasize is the lasting dependence of optimal policy on past shocks, or

stochastic hysteresis. Stochastic hysteresis is illustrated by the difference between optimal policy

under the green short-dashed expansion-contraction cycle and the purple dashed asymmetric cycle.

While current productivity and expected productivity going forward in the second half of the

sample are identical between the two paths, optimal policy differs owing to the dependence on past

shocks. This dependence is strongly persistent. Even when the past 50 time periods are identical in

terms of productivity, optimal policy differs between these two trajectories. We highlight that these

paths also differ qualitatively. Toward the end of the sample, the habit wedge starts decreasing

under the purple asymmetric cycle but continues increasing under the green expansion-contraction

cycle. By the drift and diffusion decomposition (8), this is because the diffusion coefficient turns

negative under the purple asymmetric cycle. While the shock increments are positive and identical

23Ljungqvist and Uhlig (2000) analyze a slightly different object than our habit wedge Λt. They focus on the linear
income tax τ(θt) that corrects the habit wedge. The relationship between the two is given by τ(θt)/(1− τ(θt)) ∝
Λt(θ

t)θt. The habit wedge Λt in their model is countercyclical while the linear habit tax is procyclical due to
productivity variation exceeding the cyclical variation in Λt.
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to those under the green expansion-contraction cycle, the negative diffusion coefficient generates

a decrease in optimal policy.

The third point is that, even when productivity follows a constant path, optimal policy is lower

than under deterministic habits. Even if realized productivity is constant up to time t, the agent

expects future productivity shocks to make today’s experiences less relevant from the perspective

of future habits. Therefore, today’s consumption has a smaller effect on future habits compared

to the geometric specification, where the effect of consumption on future habits is not affected by

the business cycle trajectory.

Welfare. We show that unfamiliarity has significant welfare consequences. Let the consumption-

equivalent welfare difference between the planner’s outcome and the laissez-faire economy be ∆.

Let ∆κ denote the consumption-equivalent welfare difference between the planner outcome and

the economy with policy at the optimal value under deterministic habits α/δ. The first measure

captures the overall welfare gains while the second measure captures the welfare gains due to

accounting for the stochastic nature of habits.24

Table 1 presents the welfare results for different parameterizations of unfamiliarity habits. The

first column shows that under deterministic habits, the welfare gains of optimal policy increase

with the lifetime relevance of deterministic habits α/δ. As α/δ increases from 0.2 to 0.5 and 0.8,

the welfare gains of moving to optimal policy increase from 0.7 to 3.5 and 7.4 percent of optimal

consumption.

The welfare gains of optimal policy are smaller in the presence of stochastic habits. Specifically,

the second column of Table 1 shows that welfare gains of optimal policy are significantly smaller,

by about two thirds, under stochastic habits. The optimal wedge is much smaller than α/δ because

future stochastic outcomes make present habit consumption less relevant.

The third column evaluates the welfare gains of optimal policy in comparison to implementing

the (suboptimal) optimal policy for deterministic habits α/δ. This column shows that welfare

gains of optimal policy cannot be captured by optimal policy for deterministic habits, highlighting

the relevance of accounting for the stochastic nature of habits in policy design.

24These comparisons are analogous to those in Ljungqvist and Uhlig (2000). Suppose the planner allocation is
{xt, nt} and the laissez-faire allocation is {x̃t, ñt}. The consumption-equivalent welfare difference between the plan-
ning economy and laissez-faire economy ∆ solves: E

∫∞
0

(u((1−∆)xt)−ht−v(nt))dt = E
∫∞
0

(u(x̃t)− h̃t−v(ñt))dt.
In Appendix A.7 we show that the results in this section are robust to a range of alternative parameterizations of
the preferences and the productivity process.
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Table 1: Welfare Loss Under Suboptimal Policy

α/δ κ = 0 κ = 1

∆ ∆ ∆κ

0.2 0.7 0.4 0.2

0.5 3.5 1.6 1.2

0.8 7.4 3.1 2.6

Table 1 presents welfare results for different parameterizations of unfamiliarity habits. The second column shows

the welfare gains of optimal policy with geometric habits (κ = 0), while the third column shows the welfare gains

of optimal policy with stochastic habits (κ = 1). The fourth column evaluates the welfare gains of optimal policy

with stochastic habits in comparison to implementing the (suboptimal) optimal policy for deterministic habits, and

shows that welfare gains of optimal policy cannot be captured by optimal policy for deterministic habits.

5 Robustness

We use the methodology of Section 3 to develop the analysis of robust policy in the presence of

stochastic hysteresis.25 Robustness can be particularly important in our path-dependent frame-

work, as habits (3) directly depend on the shock trajectory and are thus affected by misspecifica-

tion.

5.1 Policy with Concerns for Robustness

We introduce concerns for robustness following Hansen and Sargent (2001, 2008) into our problem

with stochastic hysteresis. The stochastic process can be misspecified so that it is difficult to

distinguish from the true stochastic process. This is captured by the misspecified Brownian motion

wh = w +
∫ ·
0 hds in which the drift of history wt is changed by

∫ t
0 hs(w

s)ds.

The concern for robustness is represented by the optimization problem

min
h

E
[
U(wh)

]
, (10)

with lifetime utility Ut =
∫ T
0 Utdt, and where misspecification is constrained by the relative entropy

R(µh||µ) between the distribution of the misspecified process µh and the true distribution of the

Brownian motion µ: R(µh||µ) ≤ A.

The problem for the choice of misspecification h can be represented as min
h
Eµ[U(wh)] +

1
κR(µh||µ) where welfare is penalized by relative entropy with strength 1/κ. By the variational

25The detailed derivations are in Appendix A.8.
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formula for relative entropy, the value of the optimum for the misspecification problem is given by

− 1
κ logE exp(−κU(w)).

Therefore, concerns for robustness lead to the planner problem:

max
c,x,n

−1

κ
logE exp(−κU(w)), (11)

subject to the resource constraint (1). By maximizing the expectation of the exponentiated utility,

the planner cares not only about expected welfare (2) but also about the variability of the welfare

function.

We show that optimal robust policy ΛRt is:

ΛRt =
Et
∫ T
t e−κU(w)ktsds

Ete−κU(w)
. (12)

Robustness considerations exponentially tilt the habit coefficients kts by e−κU(w)

Ete−κU(w) . This tilting

puts more weight on trajectories associated with low lifetime utility and less weight on trajectories

associated with high lifetime utility. In sum, optimal policy with concerns for robustness to model

misspecification takes the same form as optimal policy without model misspecification (5) but

with habit coefficients tilted towards low lifetime utility paths.

We next use the total derivative formula (7) to describe the dynamics of optimal robust policy.

The numerator in ΛRt is Et
∫ T
t k̃ts (ws) ds where habit coefficients are modified in proportion to

the exponential tilt k̃ts(w
s) := kts(w

s)Es
[
e−κU(w)

]
. The application of the total derivative formula

immediately gives its drift and diffusion decomposition:

d

(
Et

∫ T

t
k̃ts(w

s)ds

)
=

(
Et

∫ T

t
∂tk̃

t
s(w

s)ds− k̃tt(wt)
)
dt+

(
Et

∫ T

t
Dtk̃

t
s(w

s)ds

)
dwt. (13)

The dynamics of optimal policy are modified to account for exponential tilting. The drift re-

flects only the level adjustment as exponential tilting does not evolve with time: ∂tk̃
t
s(w

s) =

Es
[
e−κU(w)

]
∂tk

t
s(w

s). The adjustment in the diffusion coefficient reflects not only sensitivity of

future habits to underlying uncertainty adjusted in level by the tilt but also the sensitivity of

the tilt itself Dtk̃
t
s(w

s) = Es
[
e−κU(w)

]
Dtk

t
s + ktsEs

[
Dte

−κU(w)], where sensitivity is captured by

the Malliavin derivative.26 This result, which characterizes optimal policy dynamics in a general

path-dependent environment, is new to the robustness literature that predominantly uses recursive

representations.

26Since the denominator of optimal policy with robustness concerns ΛRt in (12) is a martingale, the dynamics
dΛRt is given by Ito’s lemma and presented in Appendix A.8.
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5.2 Sensitivity of Policy to Misspecification

The second form of robustness we study is how optimal policy changes with local misspecification

of the underlying process. This connects to robust statistics (Hampel, 1974; Huber, 1981), which

studies how estimators change in response to misspecification of underlying data. We show that

this local sensitivity of policy to misspecification can be analyzed using Malliavin derivatives. Our

approach and characterization of first-order robustness of optimal policy and its dynamics using

Malliavin derivative is new to the robustness literature.

We introduce local misspecification of the stochastic process by considering a perturbation as

in Figure 1. The shift in optimal policy in response to such misspecification is represented by its

Malliavin derivative as in (6):

DrΛt = Et

∫ T

t
Drk

t
s(w

s)ds. (14)

The sensitivity of optimal policy to misspecification is equal to the conditional expectation of the

sensitivities of the habit coefficients. Therefore, optimal policy under misspecification ΛMt is,:

ΛMt = Λt + ε

∫ t

0
DrΛthrdr + o(ε). (15)

That is, optimal policy without misspecification Λt is adjusted by first-order effects of misspecifi-

cation at all prior times r as measured by its Malliavin sensitivity DrΛt and its size hr.

The sensitivity of the dynamics of optimal policy with misspecification is, up to first-order:

dΛMt = dΛt + ε

∫ t

0
(dDrΛt)hrdr + εDtΛthtdt. (16)

That is, the dynamics of optimal policy dΛt in equation (8) is adjusted by two additional terms.

The first term accounts for dDrΛt which are the evolutions of sensitivity of optimal policy to

misspecification at times r < t given by DrΛt.
27 The second term accounts for DtΛt, sensitivity

of optimal policy Λt to misspecification at moment t.

27Specifically, dDrΛt = Drαtdt+Drβtdwt, where αt and βt are the drift and diffusion coefficients of optimal policy
dΛt in equation (8). There is a parallel between (16) and the literature on sensitivity of asset prices to underlying
parameters (Fournié, Lasry, Lebuchoux, Lions, and Touzi, 1999; Borovička, Hansen, Hendricks, and Scheinkman,
2011; Hansen, 2012; Hansen and Scheinkman, 2012; Borovička, Hansen, and Scheinkman, 2014; Borovička and
Hansen, 2016). In these papers, shocks are driven by a diffusion Yt(wt) and, therefore, do not feature direct
path-dependency. The drift and diffusion coefficients then simplify to Drαt = α′(Yt)DrYt and Drβt = β′(Yt)DrYt.
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6 Limited Commitment

We incorporate limited commitment frictions (Thomas and Worrall, 1988; Kehoe and Levine,

1993; Kocherlakota, 1996; Marcet and Marimon, 2019) into the model with stochastic habits.28

Limited commitment frictions introduce additional path-dependence through the participation

constraints and interacts with path-dependency due to habits. Our main result is an explicit drift

and diffusion decomposition of the evolution of the habit wedge in the limited commitment model.

This result is new to the literature on limited commitment.

After each history wr, the participation constraint requires that the individual’s expected

utility from staying in the relationship exceeds an outside option value:

Er

∫ T

r

(
u(ct) + u(xt)−

∫ t

0
kstxsds− v(nt)

)
dt ≥ Ur(w

r). (17)

where the outside option value Ur(w
r) is a general function of the path wr. The planner maximizes

welfare (2) with habits (3) subject to the resource constraint (1) and participation constraints (17).

Additional utility from consumption, habit consumption, or leisure relaxes participation con-

straints (17) for all 0 ≤ r ≤ t. The value of relaxing the participation constraint at time r is

given by the multiplier µr. Habit consumption xt relaxes prior participation constraints and also

tightens future participation constraints. These forces are balanced in the optimality conditions

for consumption, labor supply, and habit consumption:29

λ

1 +
∫ t
0 µrdr

= u′(ct) =
v′(nt)

θt
, and u′(ct) = u′ (xt)− Et

∫ T

t
ktsm(cs, ct)ds. (18)

where the stochastic discount factor m(cs, ct) = u′(ct)
u′(cs)

=
1+

∫ s
0
µrdr

1+
∫ t
0
µrdr

. There is no distortion between

labor supply and consumption since both consumption utility and labor disutility are equally

reweighted by the cumulative multiplier 1 +
∫ t
0 µrdr.

Habit consumption affects habits in all future periods s which in turn affects the commitment

constraints in all periods 0 ≤ r ≤ s. The latter results in additional weight
∫ s
0 µrdr on the habit

coefficient kts. The habit wedge is:

Λt = Et

∫ T

t
ktsm(cs, ct)ds. (19)

28Krueger and Uhlig (2022) present an analytically tractable framework for the limited commitment models in
neoclassical growth settings.

29The detailed derivations are in Appendix A.9.
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One can intuitively think of optimal policy Λt as the price of an asset that pays dividends kts.

These dividends are valued by the stochastic discount factor m(cs, ct) which is driven by the

inverse marginal utility (Kocherlakota and Pistaferri, 2009).

We use the total derivative formula (8) to derive the evolution of optimal policy:30

dΛt =
(
Et

∫ T

t
∂t
(
ktsm(cs, ct)

)
ds− ktt

)
dt+ Et

(∫ T

t
Dt

(
ktsm(cs, ct)

)
ds
)
dwt (20)

The drift term is analogous to the drift without participation constraints (8) but is now multiplied

by the stochastic discount factor m. Without participation constraints the stochastic discount

factor always equals one. With participation constraints, the stochastic discount factor is distorted

by the stochastic weight (1 +
∫ s
0 µrdr)/(1 +

∫ t
0 µrdr) and generally differs from one. This discount

factor affects the future marginal effects of habits by putting more weight on low marginal utility

states. The presence of the stochastic discount factor in the habit wedge (19) hence introduces

additional drift and diffusion terms in the evolution of optimal policy with limited commitment.

7 Dynamic Private Information

We generalize the analysis of dynamic economies with private information (Golosov, Kocherlakota,

and Tsyvinski, 2003; Farhi and Werning, 2013; Kapička, 2013; Pavan, Segal, and Toikka, 2014;

Golosov, Troshkin, and Tsyvinski, 2016) by considering general path-dependent skill processes.

We first derive a new non-recursive representation of the planning problem that enables direct

analysis of dynamic private information economies, even when a recursive representation is not

feasible. We then establish two new results on dynamic taxation – the term structure of the

intertemporal distortion and the labor wedge with path-dependent skill processes.

Our main specification of the skill processes is

log θt =

∫ t

0
µst (w

s)ds+

∫ t

0
σst (w

s)dws, (21)

for which both the drift µst (w
s) and diffusion coefficients σst (w

s) depend on the shock trajectory.

Recent developments in labor economics emphasize the rich nature of labor income shocks

with path-dependency, nonlinearity of persistence and realized skewness and kurtosis (Arellano,

Blundell, and Bonhomme, 2017; Guvenen, Karahan, Ozkan, and Song, 2021; Browning, Ejrnæs,

30This result assumes that m(cs, ct) is Malliavin differentiable. The general version of the total derivative formula
in Appendix A.3 does not require Malliavin differentiability.
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and Alvarez, 2010).31 Our specification features path dependency through the stochastic integral

of past shocks and through path-dependence in coefficients as well as nonlinearity of persistence

and realized skewness and kurtosis through nonlinearity in the skill process coefficients. When

skills are driven by these processes the dynamic private information problem does not permit a

recursive representation.

To highlight the results on path-dependent skills, we assume there is only a consumption good

and no habit good.32

7.1 Incentive Constraints

Consider a problem where the planner observes only labor output yt = θtnt but not individual

productivity or hours worked. Unobservability of shocks introduces incentive constraints into the

planning problem. When an individual with a history of idiosyncratic shocks wt (and skill θt(w
t))

reports ŵt, it receives allocations ct(ŵ
t) and yt(ŵ

t). The incentive constraint implies that agents

maximize utility by reporting their true type w, or w ∈ arg max
ŵ

E
∫ T
0

(
u(ct(ŵ

t))− v
(
yt(ŵ

t)
θt(wt)

))
dt,

where ŵt = wt + ε
∫ t
0 zrdr and zr depends on the history up to period r. Intuitively, agents may

misreport by changing the drift of the process w, as illustrated in Figure 1.33

We introduce Malliavin integration by parts, a stochastic analogue of the common integration

by parts, to provide a new characterization of incentive constraints. For a Malliavin differentiable

function F (wt):

E
[ ∫ t

0
DrF (wt)zrdr

]
= E

[
F (wt)

∫ t

0
zrdwr

]
. (22)

31Arellano, Blundell, and Bonhomme (2017) develop a model with nonlinear income dynamics that is able to
generate a general form of conditional heteroskedasticity, skewness, and kurtosis. They emphasize the nonlinear
persistence of histories where the impact of past shocks on current earnings varies nonlinearly with new shocks.
Their general specification also extends to the underlying processes being a higher-order Markov process for per-
sistence and a moving average transitory component. Guvenen, Karahan, Ozkan, and Song (2021) document that
earnings changes display strong negative skewness and high kurtosis. Browning, Ejrnæs, and Alvarez (2010) extend
the conventional ARMA model to incorporate additional initial convergence to the long run process. Browning and
Ejrnæs (2013) argue that the ARMA(1,2) model with significant heterogeneity in parameters and nonlinear trends
fits the data and is consistent with a wide range of models. Altonji, Hynsjö, and Vidangos (2022) is a recent review
of this literature.

32See Appendix A.10 for the derivations for the dynamic private information economy. We additionally provide a
characterization of the optimum with both the consumption and the habit good. Boerma (2019) studies a dynamic
private information economy where housing services play a role similar to our habit consumption.

33In Appendix A.11 we show that this misreporting is without loss of generality. Specifically, we show that any
absolutely continuous change of measure can be represented by such misreports. The absolute continuity means
the planner cannot detect these deviations as all events possible when agents tell the truth are possible when agents
misreport.
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Integration by parts is one of the cornerstones of Malliavin calculus. It states that the expectation

of the Malliavin derivative
∫ t
0 DrF (wt)zrdr is equal to the expectation of the function F (wt) times

the stochastic integral
∫ t
0 zrdwr.

34

Using Malliavin differentiation and integration by parts, the local incentive constraints for a

small ε are:

0 = E

∫ T

0
Ut
(∫ t

0
zrdwr

)
dt− E

∫ T

0
v′
(yt
θt

)yt
θt

∫ t

0

Drθt
θt

zrdrdt, (23)

where Ut is the truth-telling utility at time t. This result gives a new, non-recursive representation

of the incentive constraints.

The first term is the utility difference between truth-telling agents with shocks w and truth-

telling agents with shocks w+ε
∫ ·
0 zrdr. A small change in the shock trajectory in period r changes

utility of an agent in period t by DrUt(wt)zr which is the sensitivity of utility DrUt(wt), represented

by the Malliavin derivative, times the sizes of the misreports zr. The lifetime utility difference

is then given by
∫ t
0 DrUt(wt)zrdr. The key step is to use Malliavin integration by parts to write

the change in lifetime utility as E
[ ∫ t

0 DrUt(wt)zrdr
]

= E
[
Ut(wt)

∫ t
0 zrdwr

]
. This expression shows

that the utility change of the misreporting agent is the truthful utility weighted by the stochastic

integral
∫ t
0 zrdwr.

The second term is marginal disutility of effort with respect to productivity v′(nt)nt times the

sensitivity of productivity to the trajectory of shocks and the size of the misreport zr,
∫ t
0
Drθt
θt
zrdr.

This additional information rent appears for labor but not for consumption because the marginal

disutility of labor at time t directly depends on skill θt while the marginal disutility of consumption

does not.

7.2 Optimal Policy

Optimal policy maximizes aggregate welfare (2) subject to the resource constraint E
∫ T
0 (yt−ct)dt ≥

0 and the local incentive constraints (23). This gives the Lagrangian:

L = E

∫ T

0

(
Ut
(

1 +

∫ t

0
µrdwr

)
− v′

(yt
θt

)yt
θt

(∫ t

0

Drθt
θt

µrdr
)

+ λ(yt − ct)
)
dt. (24)

34The intuition for Malliavin integration by parts can be based on the Girsanov theorem for the change of measure.
The Girsanov theorem states that the expectation of the function of a Brownian motion and the expectation of
that function with the drift changed by Zt = ε

∫ t
0
zrdr relate through E[F (wt + ε

∫ ·
0
zrdr)E(Zt)] = E[F (wt)] where

E(Zt) = exp(ε
∫ t
0
zsdws − 1

2ε
2
∫ t
0
z2rdr) is the stochastic exponential. Equation (22) is then obtained by evaluating

the derivatives on both sides. The change of measure is thus the stochastic integral ε
∫ t
0
zrdwr when ε is small.
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where λ is the multiplier for the resource constraint, and µr in the multiplier for the incentive

constraints.35

We highlight two key differences between the problem with private information (24) and the

problem with limited commitment (18). First, while both models put additional weight on utility

Ut, the form of this additional weight is different. For limited commitment models, Marcet and

Marimon (2019) show that the additional weight is an integral
∫ t
0 µrdr that accumulates random

multiplier values over time. For private information models, we show that the additional weight is a

stochastic integral
∫ t
0 µrdwr where integration is over the stochastic trajectory. It thus accumulates

both random multiplier values and random fluctuations of the stochastic process.36

The difference between these two integrals highlights the main differences between the limited

commitment problem and the private information problem. The stochastic integral mt = 1 +∫ t
0 µrdwr is a martingale with dmt = µtdwt and its evolution is driven by the diffusion term. On

average, stochasticity does not affect agents but individual realizations do. The evolution of the

martingale weight implies that the evolution of individual variables, such as the inverse marginal

utility of consumption, is driven by random innovations dwt. In limited commitment models, the

evolution of the cumulative multiplier given by the random integral gt = 1 +
∫ t
0 µrdr is dgt = µtdt

and the evolution of individual variables is instead driven by the drift term and is thus locally

deterministic.

Second, models with private information have an additional term to account for the information

advantage that individuals have over the planner represented by
∫ t
0
Drθt
θt
µrdr. This term mirrors

the cumulative multiplier in limited commitment models but weighted by the Malliavin semi-

elasticity of productivity Drθt
θt

.

Term Structure for Intertemporal Wedges. The optimality condition for consumption is:

λ = u′ (ct)

(
1 +

∫ t

0
µrdwr

)
. (25)

The marginal resource cost λ is equated to the marginal utility of consumption and the marginal

benefit of relaxing the incentive constraint
∫ t
0 µrdwr.

37

35Since the incentive constraints (23) are linear in the perturbation of the trajectory, they enter the Lagrangian
with perturbation zr replaced by the multiplier µr. We present the detailed derivation in Appendix A.10.

36This reweighting is a form of stochastic habits where utility becomes Ut(wt)(1 +
∫ t
0
µrdwr). This connection

parallels the discussion in Chien and Lustig (2010) who in a limited commitment model argue that the reweighting
is a form of a stochastic habit.

37The inverse Euler equation 1
u′(ct)

= Et
[

1
u′(ct+δ)

]
(Golosov, Kocherlakota, and Tsyvinski, 2003) follows by noting
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We derive a result new to the literature − the term structure of the intertemporal distortion

which describes how the distortion varies with the investment horizons δ. For example, the term

structure of the intertemporal distortion determines the difference in optimal capital taxes on short

versus long-term assets. We define the term structure of the intertemporal distortion between

periods t and t+ δ for δ > 0 as:

τ δt := 1− Etu
′(ct+δ)

u′(ct)
. (26)

The instantaneous savings wedge is nested as lim
δ→0

τ δt /δ which describes a short term distortion.

In order to characterize the term structure of the intertemporal distortion we first analyze

the stochastic discount factor. By the optimality condition for consumption (25), the stochastic

discount factor is m(ct) = u′(c0)
u′(ct)

= 1 +
∫ t
0 µrdwr and evolves as dm(ct) = µtdwt. The evolution is

driven by the incentive constraints represented by the multiplier µr and the underlying uncertainty

dwr. When the realization of uncertainty dwr is positive, the stochastic discount factor increases,

meaning that the consumption of the agent increases.

The magnitude of the evolution of the stochastic discount factor is governed by the multiplier

µt. One advantage of our approach is that it enables a direct representation for the multipliers on

the incentive constraints:

µr = Er
[
Drm(ct)

]
, (27)

where r < t. This expression gives a clear interpretation to the multiplier as the sensitivity of the

stochastic discount factor to changes in the underlying uncertainty.

The term structure τ δt sums the product of the stochastic discount factor m(cs, ct) = m(cs)
m(ct)

=

1+
∫ s
0
µrdwr

1+
∫ t
0
µrdwr

for t ≤ s and the squared sensitivity of the future marginal utility Es[Dsm(ct+δ)]
m(cs)

for all

dates between current time t and the investment horizon t+ δ:

τ δt = −Et
∫ t+δ

t
m(ct, cs)

(
Es[Dsm(ct+δ)]

m(cs)

)2

ds. (28)

The squared term is a consequence of Ito’s lemma and reflects the diffusion coefficient of the

martingale process governing the inverse marginal utility of consumption. In Appendix A.10, we

use the total derivative formula (7) to give the explicit drift and diffusion decomposition of the

evolution of the term structure.

that the stochastic weight is a martingale.
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Labor Wedge with Stochastic Hysteresis. Hours worked are distorted in two ways. The

first is the same reweighting 1 +
∫ t
0 µrdwr of disutility from labor as for consumption and does

not introduce a distortion in the tradeoff between hours and consumption. The second distortion

is due to the additional informational advantage that an agent has over the planner in knowing

their marginal disutility of work. This informational advantage results in a labor wedge, which is

defined as τ lt = 1−
v′(nt)

1
θt

u′(ct)
, and that is optimally given by:

τ lt
1− τ lt

= εt

∫ t

0

Drθt
θt

Er[Drm(ct)]

m(ct)
dr, (29)

where we used (27) for the multiplier µr.

Equation (29) is new to the literature and derives the labor wedge when skills are an arbitrary

function of the trajectory of shocks, generalizing the dynamic labor wedge formulas in Farhi and

Werning (2013) and Golosov, Troshkin, and Tsyvinski (2016). There are two terms in equation

(29). The first term εt = 1 + v′′(nt)nt
v′(nt)

is the elasticity of labor supply. The planner wants to have

low taxes on more elastic agents. The second term captures the information rents that an agent

receives due to unobservability of the marginal disutility of labor. This term is the product of

the sensitivity of the discount factor m(ct) to uncertainty at time r, represented by the Malliavin

derivative Er
[
Drm(ct)

]
scaled by the stochastic discount factor m(ct) itself, and the Malliavin

semi-elasticity of skills Drθt
θt

= Dr log θt.

We next derive a closed form expression for the Malliavin semi-elasticity of the general skill

processes (21):

Dr log θt =

∫ t

r
Drµ

s
t (w

s)ds+

∫ t

r
Drσ

s
t (w

s)dws + σrt (w
r), (30)

for r < t. The Malliavin semi-elasticity contains three terms: the Malliavin derivative of the drift

Drµ
s
t (w

s), the Malliavin derivative of the diffusion Drσ
s
t (w

s), and the term σrt (w
r) which can be

thought of as a derivative with respect to the innovation dwr.

As an example, consider the skills log θt =
∫ t
0 k

s
t dws. The productivity at time t is the weighted

average of the innovations in the trajectory with weights kst . The Malliavin semi-elasticity is

Dr log θt = krt stating that the sensitivity to a shock at time r is varying with both current time t

and the time of the shock r. The optimal labor wedge is: τ lt
1−τ lt

= εt
∫ t
0 k

r
t
Er[Drm(ct)]

m(ct)
dr. The labor

wedge can be seen as a stochastic habit where the planner incorporates incentive constraints at all

prior times r with weights krt , scaled by the labor supply elasticity εt. These weights represent the

importance of past innovations to today’s skill and govern the agent’s informational advantage.
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We now compare the labor wedge for path-dependent skills in equation (29) to the labor wedge

when logarithmic skills are given by the Brownian motion with diffusion coefficient σ or by the

Ornstein-Uhlenbeck process with drift−ζ log θt and diffusion σ. For the Brownian motion Drθt
θt

= σ

so the deviation at any time r has the same percentage effect σ on skill θt. The informational

advantage of the agent fully persists and is captured by the adjustment equal to σ independent of

the time of misreporting. For the Ornstein-Uhlenbeck process Drθt
θt

= σe−ζ(t−r). Since this process

mean reverts, more distant periods r are downweighted exponentially compared to period t as the

informational advantage of the misreporting agent dwindles with time which tends to decrease the

labor wedge.38 For the path-dependent process (21), the informational advantage is given by (30)

which may significantly differ from a constant (as for the Brownian motion) and from a geometric

decay (as for the Ornstein-Uhlenbeck process). For example, suppose early-life experiences play

a more important role than later experiences (Shonkoff and Phillips, 2000; Knudsen, Heckman,

Cameron, and Shonkoff, 2006; Heckman, 2006; Cunha, Heckman, and Schennach, 2010; Chetty,

Hendren, and Katz, 2016), and krt is high for formative years of life. The informational advantage

that the agent derives from these years plays a disproportionate role which tends to increase the

labor wedge compared to the cases of both the Brownian motion and the Ornstein-Uhlenbeck

process.

Finally, consider an example where logarithmic productivity is the running maximum of the

trajectory log θt = max
r≤t

wr.
39 The Malliavin semi-elasticity is Dr log θt = I{r≤γt}: the sensitivity

to the shock at time r equals one prior to the time when the maximum is attained, denoted by

γt, and zero thereafter. The optimal labor wedge is:

τ lt
1− τ lt

= εt

∫ γt

0

Er[Drm(ct)]

m(ct)
dr (31)

and accumulates the informational advantage only to time of the maximum γt. The shorter horizon

results in a lower labor wedge as the agent has no additional informational advantage over the

planner after time γt.

38Appendix A.12 contains detailed derivations and also presents results for the Cox-Ingersoll-Ross process (Cox,
Ingersoll, and Ross, 1985) which features level-dependent volatility that results in lower taxes at low skill levels
and higher taxes at high skill levels. We further derive results for the general diffusion process.

39The notion that productivity is given by the maximum of an individual’s original productivity and the best of
their new ideas is akin to Jovanovic and Rob (1989), Kortum (1997), Lucas (2009), Perla and Tonetti (2014), and
Lucas and Moll (2014).
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8 Conclusion

Modern macroeconomics is stochastic and is built on recursive methods. While the actions in these

models are history dependent, the past is represented by a small number of finite-dimensional state

variables. This paper provides an alternative that allows to analyze problems with general path-

dependency and opens venues to develop new models where path-dependency plays a central role.

The main tool that we develop – the total derivative formula – allows to analytically characterize

the dynamics of the central object in these models, the evolution of conditional expectations. We

develop our results in a habit economy that is important in its own account and also serves as

a prototype for general path-dependence in a variety of environments. Our methodology delivers

closed-form solutions for several examples, and facilitates qualitative and quantitative comparison

with benchmark models. We showcase how our methodology can yield new results in a number of

important environments: robustness, limited commitment, and dynamic private information.
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A Appendices

A.1 Habit Economies

We show the generality of habit economies. We connect other settings to the feasibility constraint

(1), a general objective:

E

∫ T

0

(
u(ct) + ϕ(xt, ht(x

t, wt))− v(nt)
)
dt,

and the linearly seperable habit specification (3).

Climate. We first connect our benchmark habit model to the macro-climate model of Golosov,

Hassler, Krusell, and Tsyvinski (2014). We consider an economy with a single sector, and abstract

from capital accumulation to simplify the exposition. In Golosov, Hassler, Krusell, and Tsyvinski

(2014) preferences for consumption are logarithmic, and the production technology is Ft(ht, et) =

(1−dt(ht))F̃t(et) where ht is the stock of emissions, et capture current emissions, and 1−dt(ht) =

exp(−γtht) is the damage function. In this case, the planner’s problem is to maximize:

E

∫ T

0

(
log F̃t(et)− γtht

)
dt = E

∫ T

0

(
ut(et)− γtht

)
dt,

where ut(et) := log F̃t(et).

Our generalization allows the stock of emissions to be a general function of past emissions and

past shocks. In other words, we allow the stock of emissions ht to follow the habit specification (3),

that is, ht(e
t, wt) =

∫ t
0 k

s
t (w

t)esds. We thus allow deprecation to not only follow a deterministic

pattern, but also to vary generally with depreciation shocks. Golosov, Hassler, Krusell, and

Tsyvinski (2014) study a special case where the stock of emissions depends deterministically on

how long ago emissions were made.
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Firm Investment. To map our setting to firm investment decisions, let ϕ(xt, ht(x
t, wt)) be the

firm period profit which depends on current output produced using the stock of capital F (ht), and

current investments xt, or:

ϕ(xt, ht(x
t, wt)) = F (ht)− xt

where productive capital ht follows (3). As a result, the firm’s profit maximization problem can

be written as maximizing:

E

∫ T

0

(
F (ht)− xt(wt)

)
dt

Our generalization allows productive capital to be a general function of past investments. That is,

we allow deprecation to not only follow an arbitrary deterministic depreciation pattern, but also

vary generally with depreciation shocks. For example, we incorporate depreciation shocks that

impact older machines but not recent vintages. The case studied by Rogerson (2008) is a special

case where the production value of past investments is given by kst (w
t) = kt−s, that is, the extent

of depreciation depends deterministically on how long ago the investment was made.

Knowledge Capital. We next map our environment to canonical models of knowledge capital

accumulation. We distinguish two different classes of models.

First, labor productivity can be endogenized through past financial investment choices (Becker,

1962; Ben-Porath, 1967; Heckman, 1976). Let ϕ(yt, ht) denote the utility cost to generate output

yt given knowledge capital ht:

ϕ(yt, ht) = −v (yt/ht) (A.1)

In this case, the agent’s problem can be written as maximizing:

E

∫ T

0
(u(ct)− v (yt/ht))dt (A.2)

subject to the budget constraint (1). Under our generalization knowledge is a general function of

past choices and experiences. For example, habit (3) allows the return on investment in education

xs to depend on an individual’s current age t, their age at the time of training s, and their personal

experiences.

Labor productivity can also be endogenized through past time investments, that is, learning-by-

doing (Arrow, 1962; Uzawa, 1965; Lucas, 1988). Let ϕ(yt, ht) again be the utility cost to generate
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effective income yt given knowledge capital ht in equation (A.1). However, human capital is now

given by:

ht(y
t, wt) =

∫ t

0
kst (w

t)ysds

That is, human capital is now a function of prior output, and the agent’s problem is to maximize

(A.2) subject to the constraint E
∫ T
0 (ct − yt)dt ≤ 0. Under our generalization knowledge capital

is a general function of previous time investments and experiences.

A.2 Malliavin Derivatives

This appendix contains a number of examples of Malliavin derivatives.

Stochastic Integral of Deterministic Function F (wt) =
∫ t
0 frdwr. Function fr is determin-

istic, it does not depend on the realizations of w. Consider the variation as in (6):

F
(
wt + ε

∫ ·
0
zrdr

)
− F (wt) =

∫ t

0
frd
(
wr + ε

∫ r

0
zsds

)
−
∫ t

0
frdwr

=

∫ t

0
frdwr + ε

∫ t

0
frd
(∫ r

0
zsds

)
−
∫ t

0
frdwr = ε

∫ t

0
frzrdr

Hence, this implies by (6) that the Malliavin derivative DrF (wt) = Dr

∫ t
0 frdwr is equal to fr for

r ≤ t and zero otherwise.

Random Riemannian Integral F (wt) =
∫ t
0 xs(w

s)ds. To find the Malliavin derivative of F (wt),

we use the Malliavin derivative of xs(w
s). By the definition of the Malliavin derivative (6):

xs

(
ws + ε

∫ ·
0
zrdr

)
− xs(ws) = ε

∫ s

0
Drxszrdr + o(ε),

As a result, we can write the variation, up to the first order, as:∫ t

0
xs

(
ws + ε

∫ ·
0
zrdr

)
ds−

∫ t

0
xs(w

s)ds = ε

∫ t

0

∫ s

0
Drxszrdrds = ε

∫ t

0

∫ t

r
Drxsdszrdr

where the first equality follows from the Malliavin derivative of xs(w
s), and the second equality

by changing the order of integration. So,

DrF (wt) =

∫ t

r
Drxsds

for r ≤ t, and zero otherwise. We can alternatively see this by formally interchanging integration

and Malliavin differentiation:

DrF (wt) = Dr

∫ t

0
xsds =

∫ t

0
Drxsds =

∫ t

r
Drxsds
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where the final equality uses that Drxs = 0 for s < r.

Ito Integral F (wt) =
∫ t
0 xs(w

s)dws. Mechanically, we consider the perturbation:∫ t

0
xs

(
ws + ε

∫ ·
0
zrdr

)
d
(
ws + ε

∫ s

0
zkdk

)
−
∫ t

0
xs(w

s)dws

Note the difference between the bounds on the variations. Next, we expand this expression up to

first-order as:∫ t

0
xs

(
ws + ε

∫ ·
0
zrdr

)
dws + ε

∫ t

0
xs

(
ws + ε

∫ ·
0
zrdr

)
d
(∫ s

0
zkdk

)
−
∫ t

0
xs (ws) dws

= ε

∫ t

0

(∫ s

0
Drxszrdr

)
dws + ε

∫ t

0
xs

(
ws + ε

∫ ·
0
zrdr

)
zsds

= ε

∫ t

0

∫ s

0
Drxszrdrdws + ε

∫ t

0

(
xs + ε

∫ s

0
Drxszrdr

)
zsds,

where the second and third equality both follow from the definition of the Malliavin derivative

(6). We observe that we can ignore the terms of order ε2 to write the perturbation as:

ε

∫ t

0

∫ s

0
Drxszrdrdws + ε

∫ t

0
xszsds = ε

∫ t

0

∫ t

r
Drxszrdwsdr + ε

∫ t

0
xszsds

= ε

∫ t

0

(∫ t

r
Drxsdws + xr

)
zrdr

where the first equality follows by changing the order of integration, while the second equality

follows from isolating zr and regrouping terms. So,

DrF (wt) =

∫ t

r
Drxsdws + xr(w

r)

as long as r ≤ t, and zero otherwise. We can alternatively see this by formally interchanging

integration and Malliavin differentiation, and using the product rule:

DrF (wt) = Dr

∫ t

0
xsdws = Dr

∫ t

r
xsdws =

∫ t

r
Drxsdws + xr(w

r).

A.3 Proof of Total Derivative Formula

We provide a heuristic proof for the total derivative formula as well as a rigorous proof for a

generalization of the total derivative formula.
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A.3.1 Heuristic Proof of Total Derivative Formula

We provide a heuristic proof for the total derivative formula in Proposition 1. The key component

for the heuristic derivation is given by the Clark-Ocone formula. Applied to the random variable

ξt, the Clark-Ocone formula gives

ξt = E [ξt] +

∫ T

0
Er[Drξt]dwr.

Taking the conditional expectation over this formula leads to:

Λt = E [ξt] +

∫ t

0
Er[Drξt]dwr + Et

∫ T

t
Er[Drξt]dwr = E [ξt] +

∫ t

0
Er[Drξt]dwr.

Since ξt =
∫ t
0 ∂sξsds, we obtain:

dΛt = Et[Dtξt]dwt +
(
E [∂tξt] +

∫ t

0
Er[Dr∂tξt]dwr

)
dt. (A.3)

To obtain the total derivative formula, we rewrite the drift term in equation (A.3) by applying

the Clark-Ocone formula to the derivative ∂tξt:

∂tξt = E [∂tξt] +

∫ T

0
Er[Dr∂tξt]dwr.

By again taking the conditional expectations:

Et[∂tξt] = E [∂tξt] +

∫ t

0
Er[Dr∂tξt]dwr.

we can write the total derivative

dΛt = Et[∂tξt]dt+ Et[Dtξt]dwt. (7)

as in Proposition 1.

A.3.2 General Case of Total Derivative Formula

We provide a general case for the total derivative formula.

We first assume η = (ηt)t∈[0,T ] is a measurable stochastic process that is square integrable so that

E
∫ T
0 η2t dt < ∞. Moreover, for almost all times t we assume Eη2t < ∞. Since the process η is

square integrable it has a Clark representation, meaning there exists a progressively measurable

(in s) process hts, such that for all t ∈ [0, T ]:

ηt = Eηt +

∫ T

0
hts(w

s)dws

5



almost surely, where hts is Fs-measurable.

Define ξt :=
∫ t
0 ηsds. Since the process ηt is square integrable, it follows that the process ξt is

also square integrable, and hence it has a Clark representation such that for all t ∈ [0, T ]:

ξt = Eξt +

∫ T

0
gts(w

s)dws.

Using these specifications, we formulate the generalized version of the total derivative formula.

Proposition 2. Generalized Total Derivative Formula. Let Λt be a process so that Λt = Et[ξt],

where ξt :=
∫ t
0 ηsds and the process η is square integrable. Then,

dΛt = Et[∂tξt]dt+ gttdwt. (A.4)

Proof. Consider the process for t ∈ [0, T ]

mt = Λt −
∫ t

0
Erηrdr

which in differential form gives that:

dΛt = dmt + Etηtdt = dmt + Et[∂tξt]dt (A.5)

where the second equality follows from the observation that ∂tξt = ηt.

We next verify that the process mt is a martingale. Indeed, for s < t:

Esmt =Es

[
Λt −

∫ t

0
Erηrdr

]
= Es [Etξt]−

∫ t

0
Es [Erηr] dr = Esξt −

∫ s

0
Erηrdr −

∫ t

s
Esηrdr

=Es

[
ξt −

∫ t

s
ηrdr

]
−
∫ s

0
Erηrdr = Esξs −

∫ s

0
Erηrdr = Λs −

∫ s

0
Erηrdr = ms

where we use the law of iterated expectations to obtain the third equality.

As a Brownian martingale, process mt has a stochastic integral representation, mt =
∫ t
0 vrdwr

for some progressively measurable and square integrable process vs.
40 To find this process we use

Ito isometry. For arbitrary progressively measurable square integrable process u = (us)s∈[0,T ], we

have

E

∫ T

0
vsusds = E

[ ∫ T

0
vsdws

∫ T

0
usdws

]
= E

[
mT

∫ T

0
usdws

]
= E

[(
ξT −

∫ T

0
Erηrdr

)∫ T

0
usdws

]
= E

[ ∫ T

0

(
ηr − Erηr

)
dr

∫ T

0
usdws

]
=

∫ T

0
E

[(
ηr − Erηr

) ∫ T

0
usdws

]
dr

40The constant m0 = 0 since m0 = Λ0 = Eξ0 = 0.
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To develop the final term, we observe that

ηr − Erηr = Eηr +

∫ T

0
hrsdws − Eηr −

∫ r

0
hrsdws =

∫ T

r
hrsdws (A.6)

Hence, by Ito isometry, we have E
[

(ηr − Erηr)
∫ T
0 usdws

]
= E

∫ T
r hrsusds. Finally,

E

∫ T

0
vsusds = E

∫ T

0

∫ T

r
ush

r
sdsdr = E

∫ T

0
us

∫ s

0
hrsdrds = E

∫ T

0
usg

s
sds

where the first equality follows by substituting (A.6), the second equality follows by changing the

order of integration, and where gts =
∫ t
0 h

r
sdr is a continuous modification for the process gts. As a

result, vs = gss, or vt = gtt. Since mt =
∫ t
0 vrdwr, we have that dmt = vtdwt = gttdwt. Substituting

into (A.5), we obtain equation (A.4).

A.4 Total Derivative Formula

This appendix presents two special cases of the total derivative formula, and further shows that

the assumption of time differentiability on the process ξt can be significantly relaxed.

A.4.1 Time-Invariant ξ

We first consider the case where ξt = ξ is Malliavin differentiable but does not vary with time. In

this case, the Clark-Ocone formula is a nested case of our total derivative formula (7). Using the

total derivative formula (7), we see that when ξt = ξ the time derivative is equal to zero so that

we obtain:

dXt = Et[Dtξ]dwt.

Alternatively, we can use the Clark-Ocone representation for the random variable ξ to write:

ξ = Eξ +

∫ T

0
Er[Drξ]dwr

and hence, we obtain that

Xt = Etξ = Eξ +

∫ t

0
Er[Drξ]dwr

where the second equality follows by the law of iterated expectations, and because the expectation

over future innovations equals zero. Hence, the Clark-Ocone representation gives the identical

dynamics of optimal policy, dXt = Et[Dtξ]dwt, when ξt is time-invariant.
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A.4.2 Time-Invariant Habit Coefficients

We next characterize the drift and diffusion decomposition of optimal policy with time-invariant

habit coefficients, by which we mean that the habit coefficient does not depend on t, or kts(w
s) =

ks(w
s). Using the Clark-Ocone formula, we first write optimal policy (5) as:

Λt = Et

∫ T

t
kr(w

r)dr = Et

∫ T

0
kr(w

r)dr −
∫ t

0
kr(w

r)ds. (A.7)

We next observe mt = Et
∫ T
0 kr(w

r)dr is a martingale since

Etms = Et

[
Es

∫ T

0
kr(w

r)dr
]

= Et

∫ T

0
kr(w

r)dr = mt (A.8)

for s > t, where the second equality follows from the law of iterated expectations.

By the Clark-Ocone formula we obtain an explicit formulation of the random variable mT :

mT = EmT +

∫ T

0
Er[DrmT ]dwr. (A.9)

so that mt = EtmT = EmT +
∫ t
0 Er[DrmT ]dwr. As a result, we can write:

mt = EtmT = m0 +

∫ t

0
Er

[
Dr

∫ T

0
ks(w

s)ds
]
dwr = m0 +

∫ t

0
Er

[ ∫ T

r
Drks(w

s)ds
]
dwr, (A.10)

where the final equality uses Dr

∫ T
0 ks(w

s)ds =
∫ T
r Drks(w

s)ds. Intuitively, a perturbation of the

stochastic trajectory at time r does not affect habit coefficients at earlier times s < r and hence

the Malliavin derivative for those times is zero.

Following equations (A.7) and (A.8) we write that dΛt = dmt − kt(w
t)dt. Moreover, using

(A.10) we conclude:

dΛt = −kt(wt)dt+ Et

[ ∫ T

t
Dtks(w

s)ds
]
dwt.

If we follow the drift and diffusion decomposition of optimal policy (8) immediately, we obtain

∂tk
t
s(w

s) = 0 with time-invariant habit coefficients, so the drift coefficient is −kt(wt). In sum, we

establish the same result.

A.4.3 Time Differentiability

In this appendix we show that our mild assumption that habit coefficients are differentiable with

respect to time can be significantly relaxed. The idea is that the when ξt is not differentiable with

8



respect to time it can be replaced by another process ξ̂t where ξ̂t is differentiable with respect to

time such that Etξt = Etξ̂t. We illustrate this powerful idea by means of two examples.

Example 1: ξt = wt. First, consider the case where the process ξt is given by the Brownian motion.

In this case, we consider the process ξ̂t = wT , the terminal value of the Brownian process. Since

the Brownian motion is a martingale wt = Etwt = EtwT implying Etξt = Etξ̂t. By applying the

total derivative formula (7) with ξ̂t, we obtain

dEtξt = Et[∂tξ̂t]dt+ Et[Dtξ̂t]dwt = Et[DtwT ]dwt = dwt

where DtwT = 1 intuitively means that the perturbation of the path at time t changes the terminal

value wT by 1.

Example 2: kts(w
s) = wt. As a second example, we consider the case where the habit coefficients

in optimal policy (5) are given by the realization of the Brownian motion kts(w
s) = wt so that the

habit coefficients are not differentiable with respect to time ξt =
∫ T
t kts(w

s)ds =
∫ T
t wtds. In this

case, we consider the process ξ̂t = (T − t)wT so that:

Etξt = Et

∫ T

t
wtds =

∫ T

t
wtds = (T − t)wt = Et

[
(T − t)wT

]
= Etξ̂t.

where the fourth equality follow since the Brownian motion is a martingale. By applying the total

derivative formula (7) with ξ̂t, we obtain:

dEtξt = Et[∂tξ̂t]dt+ Et[Dtξ̂t]dwt = −Et[wT ]dt+ (T − t)dwt = −wtdt+ (T − t)dwt,

where we use DtwT = 1. Therefore, even though the habit coefficients are not differentiable with

respect to time, the total derivative formula can be used to characterize the evolution of optimal

policy.

A.5 Unfamiliarity

We describe the formal analysis for the stochastic habits under unfamiliarity.

A.5.1 Ornstein-Uhlenbeck Process

We start by discussing features of the Ornstein-Uhlenbeck process that we use to derive our results.

Let xt be a stationary Ornstein-Uhlenbeck process, defined by the stochastic differential equation
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dxt = λ(µ− xt)dt+ σdwt, where wt is the Brownian motion. The stochastic differential equation

for the process xt can be solved to obtain:

xt = x0e
−λt + µ(1− e−λt) + σ

∫ t

0
e−λ(t−r)dwr.

We first note that the Malliavin derivative is given by, for t < s:

Dtxs = σe−λ(s−t) (A.11)

Second, starting with time t, we can similarly write:

xs = xte
−λ(s−t) + µ

(
1− e−λ(s−t)

)
+ σ

∫ s−t

0
e−λ(s−t−r)dw̃r,

where w̃r = wr+t−wt, and observe that conditional on time t, xs is a normally distributed random

variable.

For our analysis, it is key to understand the distribution of the random variable xs− 1
t

∫ t
0 xrdr

for s > t conditional on information at time t. The conditional mean of the random variable xs at

time t is given by Etxs = xte
−λ(s−t) + µ(1 − e−λ(s−t)). In turn, this implies that the conditional

mean of xs − 1
t

∫ t
0 xrdr, which we denote by m̂st, equals:

m̂st = Et

[
xs −

1

t

∫ t

0
xrdr

]
= xte

−λ(s−t) + µ
(
1− e−λ(s−t)

)
− 1

t

∫ t

0
xrdr. (A.12)

and, furthermore, that

xs − Etxs = σ

∫ s−t

0
e−λ(s−t−r)dw̃r.

We next compute the conditional variance of the variable xs− 1
t

∫ t
0 xrdr, which we denote by σ̂2st:

σ̂2st = Et

[(
xs − Etxs

)2]
= σ2Et

[(∫ s−t

0
e−λ(s−t−r)dw̃r

)2]
= σ2Et

[ ∫ s−t

0
e−2λ(s−t−r)dr

]
=
σ2

2λ

(
1− e−2λ(s−t)

)
(A.13)

where the third equality follows from Ito isometry. Hence, xs− 1
t

∫ t
0 xrdr is a normally distributed

random variable with the mean given by m̂st in (A.12), and the conditional variance σ̂2st given in

(A.13). Let z ∼ N(0, 1) be a standard normal variable, then conditional on information at time

t, we equivalently write xs − 1
t

∫ t
0 xrdr ∼ m̂st + σ̂stz, where z is independent from the filtration

generated by the process w up to time t, which we denote by Ft. Going forward, we drop the

subscript st on the mean and the conditional variance when this is with limited risk of confusion.
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A.5.2 Optimal Policy

To characterize optimal policy under unfamiliarity, we recall that the habit coefficients in the case

of unfamiliarity (9) are given by kst = α exp(−δ(t − s) − κ
∣∣ log θt − log θ̄s

∣∣(t − s)), and hence the

corresponding quantity:

Λt = Et

∫ T

t
ktsds = αEt

∫ T

t
exp(−δ(s− t)− κ| log θs − log θ̄t|(s− t))ds.

Since logarithmic productivity follows an Ornstein-Uhlenbeck process, log θs − log θ̄t conditional

on time t is a normally distributed random variable such that log θs − log θ̄t ∼ m̂ + σ̂z. We can

first rewrite the habit consumption wedge as:

Λt = α

∫ T

t
exp(−δ̂)Et exp

(
− κ̂
∣∣ log θs − log θ̄t

∣∣)ds,
where δ̂ := δ(s − t) and κ̂ := κ(s − t). To characterize optimal policy, we focus our attention to

characterizing χt := Et exp(−κ̂| log θs − log θ̄t|):

χt = Et exp
(
− κ̂
∣∣ log θs − log θ̄t

∣∣) = Et exp
(
− κ̂
∣∣m̂+ σ̂z

∣∣). (A.14)

This expression is simplified by evaluating the expectation:

χt =
1√
2π

∫ ∞
−∞

e−κ̂|m̂+σ̂z|− 1
2
z2dz =

1√
2πσ̂2

∫ ∞
−∞

e−κ̂|ẑ|−
1
2( ẑ−m̂σ̂ )

2

dẑ

=
1√

2πσ̂2

∫ ∞
0

e−κ̂ẑ−
1
2( ẑ−m̂σ̂ )

2

dẑ +
1√

2πσ̂2

∫ 0

−∞
eκ̂ẑ−

1
2( ẑ−m̂σ̂ )

2

dẑ

=
1√

2πσ̂2

∫ ∞
0

e−κ̂ẑ−
1
2( ẑ−m̂σ̂ )

2

dẑ +
1√

2πσ̂2

∫ ∞
0

e−κ̂ẑ−
1
2( ẑ+m̂σ̂ )

2

dẑ = χ+t + χ−t , (A.15)

where the second equality follows by a change of variable ẑ := m̂+σ̂z. The third equality follows by

splitting the expectation conditional on ẑ being positive (the first term), and on ẑ being negative

(the second term). We next simplify separately the conditional expectation conditional on ẑ being

positive (χ+t ), and on ẑ being negative (χ−t ).

First, we simplify the expectation conditional on ẑ being positive:

χ+t =
1√

2πσ̂2

∫ ∞
0

e−κ̂ẑ−
1
2( ẑ−m̂σ̂ )

2

dẑ =
1√

2πσ̂2

∫ ∞
0

e−
2κ̂ẑσ̂2+ẑ2−2ẑm̂+m̂2

2σ̂2 dẑ

=
1√

2πσ̂2

∫ ∞
0

e−
(ẑ+κ̂σ̂2−m̂)2−(κ̂σ̂2)2+2m̂κ̂σ̂2

2σ̂2 dẑ =
e
κ̂2σ̂2

2
−m̂κ̂

√
2πσ̂2

∫ ∞
0

e−
(ẑ+κ̂σ̂2−m̂)2

2σ̂2 dẑ
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To simplify the expression further, we apply a change of variables z̃ = − ẑ+κ̂σ̂
2−m̂
σ̂ to write:

χ+t =
e
κ̂2σ̂2

2
−m̂κ̂

√
2π

∫ m̂
σ̂
−κ̂σ̂

−∞
e−

1
2
z̃2dz̃ = exp

(
κ̂2σ̂2

2
− m̂κ̂

)
Φ

(
m̂

σ̂
− κ̂σ̂

)
,

where Φ denotes the cumulative distribution function for the standard normal distribution, that

is, Φ(x) = 1√
2π

∫ x
−∞ e

− z̃
2

2 dz̃.

Second, we simplify the expectation conditional on ẑ being negative, the second term in (A.15).

We observe that the second term in (A.15) is equivalent to the first term in (A.15) up to changing

m̂ to −m̂, which immediately allows us to write:

χ−t = exp

(
κ̂2σ̂2

2
+ m̂κ̂

)
Φ

(
− m̂

σ̂
− κ̂σ̂

)
.

As a result, we can finally write χt of (A.14) as:

χt = exp

(
κ̂2σ̂2

2

)(
exp(−m̂κ̂)Φ

(m̂
σ̂
− κ̂σ̂

)
+ exp(m̂κ̂)Φ

(
− m̂

σ̂
− κ̂σ̂

))
, (A.16)

which thus fully characterizes the habit wedge Λt.

A.5.3 Drift and Diffusion Decomposition

We now analyze the evolution for the habit wedge using (8). In turn, we identify the drift coefficient

and the diffusion coefficient.

Drift. The drift coefficient in the drift and diffusion decomposition (8) is Et
∫ T
t ∂tk

t
sds−ktt, where

we recall kts = α exp(−δ̂ − κ̂| log θs − 1
t

∫ t
0 log θrdr|), so:

∂tk
t
s = kts

(
δ + κ

∣∣log θs − log θ̄t
∣∣+ κ̂

at
t

sign
(
log θs − log θ̄t

) )
.

where at := log θt − log θ̄t.

Since logarithmic productivity follows an Ornstein-Uhlenbeck process, conditional on time t it

follows that log θs − log θ̄t ∼ m̂+ σ̂z, and we write:

Et∂tk
t
s = δEtk

t
s + ακe−δ̂Et

[
|m̂+ σ̂z| e−κ̂|m̂+σ̂z|

]
+ ακ̂

at
t
e−δ̂Et

[
sign(m̂+ σ̂z)e−κ̂|m̂+σ̂z|

]
. (A.17)

We next simplify the drift coefficient by analyzing the second and third term, since we fully

characterized the first term in the previous subsection. To do so, we start with χt in (A.14) and

its characterization in (A.16). We differentiate both sides of (A.16) with respect to m̂. First, we

differentiate the left-hand side to obtain:

−κ̂Et
[
e−κ̂|m̂+σ̂z|sign(m̂+ σ̂z)

]
.

12



Second, we differentiate the right-hand side to obtain:

e
κ̂2σ̂2

2

[
e−m̂κ̂

(
− κ̂Φ

(m̂
σ̂
− κ̂σ̂

)
+

1

σ̂
ϕ
(m̂
σ̂
− κ̂σ̂

))
+ em̂κ̂

(
κ̂Φ
(
− m̂

σ̂
− κ̂σ̂

)
− 1

σ̂
ϕ
(
− m̂

σ̂
− κ̂σ̂

))]
where ϕ is the probability density function for a standard normal distribution, or ϕ(x) = 1√

2π
e−

x2

2 .

We observe that the terms regarding the probability density function cancel as:

e−
( m̂σ̂ −κ̂σ̂)

2
+2κ̂m̂

2 − e−
( m̂σ̂ +κ̂σ̂)

2
−2κ̂m̂

2 = e−
( m̂σ̂ )

2
+(κ̂σ̂)2

2 − e−
( m̂σ̂ )

2
+(κ̂σ̂)2

2 = 0.

We combine the derivatives of the left and right-hand side, and divide by −κ̂ to obtain:

Et

[
sign(m̂+ σ̂z)e−κ̂|m̂+σ̂z|

]
= e

κ̂2σ̂2

2

(
e−m̂κ̂Φ

(
m̂

σ̂
− κ̂σ̂

)
− em̂κ̂Φ

(
− m̂

σ̂
− κ̂σ̂

))
(A.18)

which takes care of the third term in equation (A.17).

To take care of the second term in equation (A.17) we start with the characterization of χt in

(A.16), which we now differentiate with respect to κ̂. First, we differentiate the left-hand side:

−Et
[
e−κ̂|m̂+σ̂z| |m̂+ σ̂z|

]
.

Second, we differentiate the right-hand side to obtain:

κ̂σ̂2e
κ̂2σ̂2

2

(
e−m̂κ̂Φ

(m̂
σ̂
− κ̂σ̂

)
+ em̂κ̂Φ

(
− m̂

σ̂
− κ̂σ̂

))
+e

κ̂2σ̂2

2

[
e−m̂κ̂

(
− m̂Φ

(m̂
σ̂
− κ̂σ̂

)
− σ̂ϕ

(m̂
σ̂
− κ̂σ̂

))
+ em̂κ̂

(
m̂Φ
(
− m̂

σ̂
− κ̂σ̂

)
− σ̂ϕ

(
− m̂

σ̂
− κ̂σ̂

))]
To simplify, we use the probability density function for a standard normal distribution ϕ(x) to

write:

e
κ̂2σ̂2

2 e−m̂κ̂
1√
2π
e−

( m̂
σ̂
−κ̂σ̂)2

2 =
1√
2π
e−

( m̂
σ̂

)2

2 = ϕ
(m̂
σ̂

)
,

and similarly that:

e
κ̂2σ̂2

2 em̂κ̂
1√
2π
e−

(− m̂
σ̂
−κ̂σ̂)2

2 =
1√
2π
e−

( m̂
σ̂

)2

2 = ϕ
(m̂
σ̂

)
.

We combine the derivative of the left-hand side and the right-hand side to write:

Et

[
e−κ̂|m̂+σ̂z| |m̂+ σ̂z|

]
= σ̂e

κ̂2σ̂2

2

((m̂
σ̂
− κ̂σ̂

)
e−m̂κ̂Φ

(m̂
σ̂
− κ̂σ̂

)
+ em̂κ̂

(
− m̂

σ̂
− κ̂σ̂

)
Φ
(
− m̂

σ̂
− κ̂σ̂

))
+ 2σ̂ϕ

(m̂
σ̂

)
13



This takes care of the second term in (A.17). As a result, the drift coefficient is characterized in

terms of model primitives.

Diffusion. We derive the diffusion coefficient. Recall kts = α exp
(
− δ̂ − κ̂

∣∣ log θs − log θ̄t
∣∣), so:

Dtk
t
s = kts

(
−κ̂sign(log θs − log θ̄t)

)
Dt log θs

By the Malliavin derivative for the Ornstein-Uhlenbeck process (A.11), we know that Dt log θs =

σe−λ(s−t). Therefore, we can write:

EtDtk
t
s = −κ̂ασ exp

(
− (λ+ δ)(s− t)

)
Et
[

exp
(
− κ̂
∣∣m̂+ σ̂z

∣∣)sign(m̂+ σ̂z)
]
.

Using the characterization in (A.18), we can write this as:

EtDtk
t
s = −κ̂ασ exp

(
− (λ+ δ)(s− t)

)
e
κ̂2σ̂2

2

(
e−m̂κ̂Φ

(m̂
σ̂
− κ̂σ̂

)
− em̂κ̂Φ

(
− m̂

σ̂
− κ̂σ̂

))
.

As a result, the diffusion coefficient is characterized in terms of model primitives.

A.6 Tipping Point

In this appendix we analyze stochastic habits under tipping points.

A.6.1 Ito Process

We first introduce the maximum of a Brownian motion, which we use to show that the habit

wedge is an Ito process. To show that the habit wedge is an Ito process, we use the general total

derivative formula (A.4). In order to apply the total derivative formula, we next establish that ξt

is differentiable with respect to time, and that ηt is square integrable.

Let γt be the time when the Brownian motion achieves its maximum value on the interval [0, t].

Formally, we define:

γt = min{r ∈ [0, t] : wr = Mt},

where Mt = max
r∈[0,t]

wr. Analogously, we define γs,t as the time when the Brownian motion attains

its maximum on the interval [s, t]:

γs,t = min{r ∈ [s, t] : wr = Ms,t},

with Ms,t = max
r∈[s,t]

wr.

14



Given a twice continuously differentiable function f satisfying f(x) = 0 for all negative values

x ≤ 0, we consider the process:

ξt =

∫ T

t
f(t− γs)ds.

We note that ξ0 = 0 since evaluated at t = 0 all t− γs ≤ 0.

Our goal is to establish that the conditional expectation process Λt = Etξt is an Ito process

and find its drift and diffusion decomposition. The main representation we use is

ξt =

∫ T

t
f(t− γs)ds =

∫ T

t

∫ max(t−γs,0)

0
f ′(x)dxds =

∫ T

t

∫ t

0
f ′(x)I{γs≤ t−x}dxds. (A.19)

To show that ηt = ∂tξt exists and is square integrable, we first establish that the process ξt is

absolutely continuous. We show absolute continuity by establishing that it is Lipschitz continuous.

For s < t we indeed have∣∣ξt − ξs∣∣ =

∣∣∣∣ ∫ T

t
f(t− γr)dr −

∫ T

s
f(s− γr)dr

∣∣∣∣ ≤ ∫ T

t

∣∣f(t− γr)− f(s− γr)
∣∣dr +

∫ t

s

∣∣f(s− γr)
∣∣dr

≤ C1

∫ T

t
(t− s)dr + C0(t− s) ≤ (TC1 + C0)(t− s),

where the first equality follows by the definition and the first inequality is immediate. The second

inequality is given when C0 = max
0≤r≤T

|f(r)|, and when C1 = max
0≤r≤T

|f ′(r)|. The Lipschitz constant

is thus given by TC1 + C0. Moreover, we observe that this implies:∣∣ξt − ξs∣∣
t− s

=

∣∣ ∫ t
0 ηrdr −

∫ s
0 ηrdr

∣∣
t− s

≤ (TC1 + C0),

where the equality follows since ξt is Lipschitz with respect to time as shown above. Taking the

limits as t tends to s, we obtain |ηs| ≤ (TC1 +C0), from which it directly follows that ηs is square

integrable. By the generalized total derivative formula (A.4) Λt is an Ito process. We next provide

an explicit representation of this Ito process.

A.6.2 Optimal Policy

We next characterize optimal policy Λt. Using (A.19) we can write:

Λt = Etξt =

∫ T

t

∫ t

0
f ′(x)Et

[
I{γs≤t−x}

]
dxds =

∫ T

t

∫ t

0
f ′(x)Pt [γs ≤ t− x] dxds, (A.20)

where Pt is the conditional probability given Ft and s ≥ t. We note that the time of the maximum

is before time t−x, or γs ≤ t−x if and only if the maximum value on the interval [0, t−x] weakly
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exceeds the maximum over the interval [0, s], that is, M0,t−x = M0,s = max(M0,t,Mt,s), where the

final equality follows by the definition of the maximum on an interval [0, s]. Hence,

Pt [γs ≤ t− x] = Pt [M0,t−x = max(M0,t,Mt,s)] = I{M0,t−x=M0,t}Pt [M0,t−x ≥Mt,s]

= I{M0,t−x=M0,t}Pt [M0,t−x − wt ≥Mt,s − wt] . (A.21)

where we observe by the definition of Mt,s that Mt,s −wt = max
q∈[t,s]

(wq −wt) = max
q∈[0,s−t]

(wt+q −wt)

is a maximum M̃0,s−t of a Brownian motion w̃q = wt+q − wt, where w̃ is independent from Ft.

Since the density of the maximum of a Brownian motion M̃0,s−t is ψs−t(z) =
√

2
π(s−t)e

− z2

2(s−t) we

write:

Pt [γs ≤ t− x] = I{M0,t−x≥M0,t}Pt [M0,t−x − wt ≥Mt,s − wt] = I{γt≤t−x}
∫ M0,t−x−wt

0
ψs−t(z)dz

= I{γt≤t−x}
√

2

π(s− t)

∫ M0,t−x−wt

0
e−

z2

2(s−t)dz = 2I{γt≤t−x}
1√
2π

∫ χ

0
e−

ẑ2

2 dẑ

where the final equality follows from a change of variables such that ẑ = z√
s−t and, hence, dẑ =

dz√
s−t , and finally χ := M0,t−x−wt√

s−t . Moreover, we can write the final expression as:

Pt [γs ≤ t− x] = 2I{γt≤t−x}
1√
2π

∫ χ

0
e−

ẑ2

2 dẑ = 2I{γt≤t−x}
(

Φ(χ)− 1

2

)
= I{γt≤t−x}(2Φ (χ)− 1).

(A.22)

We can substitute the expression for the conditional probability into the expression for the habit

consumption wedge (A.20) to write:

Λt =

∫ T

t

∫ t−γt

0
f ′(x)(2Φ (χ)− 1)dxds, (A.23)

which provides a closed-form expression for optimal policy. We next provide the drift and diffusion

decomposition.

A.6.3 Drift

By the total derivative formula, the drift in optimal policy Λt is given by the conditional expec-

tation of the time derivative of ξt, that is, ∂tξt. Since ξt =
∫ T
t f(t − γs)ds, the derivative with

respect to time is, using Leibniz’ integral rule, given by

∂tξt = −f(t− γt) +

∫ T

t
f ′(t− γs)ds.
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Therefore, the conditional expectation of the time derivative is:

Et∂tξt = −f(t− γt) +

∫ T

t
Etf

′(t− γs)ds. (A.24)

When we differentiate with respect to time, the instantaneous impact on the habit externality is

eliminated, and future effects are affected to the extent that the time since the time of your life

increases.

To make the conditional expectation explicit, we use a representation akin to (A.19):

f ′(t− γs) =

∫ max(t−γs,0)

0
f ′′(x)dx =

∫ t

0
f ′′(x)I{γs≤ t−x}dx

since f ′(0) = 0. And hence it follows that:

Etf
′(t− γs) =

∫ t

0
f ′′(x)Et[I{γs≤ t−x}]dx =

∫ t

0
f ′′(x)Pt{γs ≤ t− x}dx

Using the characterization of the conditional probability in (A.22), we write:

Etf
′(t− γs) =

∫ t

0
f ′′(x)I{γt≤t−x}

(
2Φ (χ)− 1

)
dx =

∫ t−γt

0
f ′′(x)

(
2Φ (χ)− 1

)
dx

By substituting back into the conditional expectation of the time derivative (A.24), we obtain:

Et∂tξt = −f(t− γt) +

∫ T

t

∫ t−γt

0
f ′′(x)

(
2Φ (χ)− 1

)
dxds (A.25)

A.6.4 Diffusion

We next characterize the diffusion coefficient for the evolution of optimal policy Λt. We construct

the Clark representation of the habit externality ξt =
∫ T
t

∫ t
0 f
′(x)I{γs≤ t−x}dxds. That is, we

represent the value of the habit externality ξt as a stochastic integral. Given the formulation

(A.19), this requires us to provide the Clark representation of I{γs≤t} where t < s.

Clark Representation of I{γs≤t}. We use the observation that γs ≤ t if and only if M0,t ≥Mt,s.

Next, define the function fn as:

fn(x) =


1 x ≥ 0

n
(
x+ 1

n

)
, − 1

n ≤ x ≤ 0

0, x ≤ − 1
n

17



Hence, lim
n→∞

fn(x) = I{x≥0}. Then, we write:

I{γs≤t} = I{M0,t≥Mt,s} = I{M0,t−Mt,s≥0} = lim
n→∞

fn(M0,t −Mt,s). (A.26)

First, we find the Clark representation of fn(M0,t−Mt,s). To derive this Clark representation,

we first observe that the Malliavin derivative for the maximum of a Brownian motion is known.

Specifically, for a ≤ b, DrMa,b = I{r≤γa,b}. Intuitively, if the Brownian motion is slightly increased

before the maximum is attained, the maximum value increases one-for-one. Moreover, we observe

f ′n(x) = nI[− 1
n
,0](x).

Since the maximum of the Brownian motion is Malliavin differentiable, we know by Clark-

Ocone that:

fn (M0,t −Mt,s) = Efn (M0,t −Mt,s) +

∫ s

0
Er

[
Drfn (M0,t −Mt,s)

]
dwr

= Efn (M0,t −Mt,s) +

∫ s

0
Er

[
f ′n (M0,t −Mt,s)

(
Ir≤γ0,t − Ir≤γt,s

)]
dwr

= Efn (M0,t −Mt,s)− n
∫ s

0
Er

[
I[− 1

n
,0] (M0,t −Mt,s) Iγ0,t<r≤γt,s

]
dwr

= Efn (M0,t −Mt,s)− n
∫ s

0
Pr

[
− 1

n
≤M0,t −Mt,s ≤ 0 and γ0,t < r ≤ γt,s

]
dwr

where the second equality follows by the chain rule, the third equality follows by the derivative of

fn, and the fourth equality follows from the product of indicator functions.

We next compute the conditional probability under the integral. This integral is conditioned

on the information at time r. We have that r < s, but need to consider explicitly the cases where

r < t and the case where r ≥ t.

We start by considering the case r ≤ t and hence that r ≤ γt,s as s > t. In this scenario, the

condition probability simplifies to Pr
[
− 1
n ≤M0,t −Mt,s ≤ 0 and γ0,t < r

]
. Since r ≤ t, and the

maximum on interval [0, t] is attained before r, or γ0,t < r, we have M0,t = M0,r and Mr,t ≤M0,r

so that the conditional probability can be written as:

Pr

[
− 1

n
≤M0,t −Mt,s ≤ 0 and γ0,t < r

]
= Pr

[
− 1

n
≤M0,r −Mt,s ≤ 0 and Mr,t ≤M0,r

]
=

Pr

[
− 1

n
≤M0,r − wt − (Mt,s − wt) ≤ 0 and Mr,t ≤M0,r

]
=

Pr

[
M0,r − wt +

1

n
≥Mt,s − wt ≥M0,r − wt and Mr,t ≤M0,r

]
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We further observe that as r ≤ t < s it follows that Mt,s−wt = max
q∈[0,s−t]

(wt+q−wt) is a maximum

M̃0,s−t of a Brownian motion w̃q = wt+q−wt. The density of the maximum of a Brownian motion

M̃0,s−t is ψs−t(z) =
√

2
π(s−t)e

− z2

2(s−t) . Therefore, the conditional probability is:

Er

[
I{M0,r≥Mr,t}

∫ M0,r−wt+ 1
n

M0,r−wt
ψs−t(x)dx

]
Next, we consider the case r > t, in this case r > γ0,t and the conditional probability simplifies

to Pr
[
− 1
n ≤M0,t −Mt,s ≤ 0 and r ≤ γt,s

]
. Since r > t, and the maximum on interval [t, s] is

attained after r, or r ≤ γt,s, we have that Mt,s = Mr,s and that Mt,r ≤ Mr,s. As a result, the

conditional probability can be written as:

Pr

[
− 1

n
≤M0,t −Mt,s ≤ 0 and r ≤ γt,s

]
= Pr

[
− 1

n
≤M0,t −Mr,s ≤ 0 and Mt,r ≤Mr,s

]
=

Pr

[
M0,t +

1

n
≥Mr,s ≥M0,t and Mt,r ≤Mr,s

]
= Pr

[
M0,t +

1

n
≥Mr,s ≥ max(M0,t,Mt,r)

]
=

Pr

[
M0,t +

1

n
≥Mr,s ≥M0,r

]
= Pr

[
M0,t − wr +

1

n
≥Mr,s − wr ≥M0,r − wr

]
We further observe that as t < r < s it follows that Mr,s−wr = max

q∈[0,s−r]
(wr+q−wr) is a maximum

M̃0,s−r of a Brownian motion w̃q = wr+q − wr. Hence, the probability can be written as:

I{M0,t+
1
n
≥M0,r}

∫ M0,t−wr+ 1
n

M0,r−wr
ψs−r(x)dx

where we observe that no expectations appear here as r > t, and hence all information about time

t is known at time r.

Having separately computed the conditional probability under the integral, we can now write

the Clark representation as:

fn(M0,t −Mt,s) = Efn (M0,t −Mt,s)− n
∫ s

0
Pr

[
− 1

n
≤M0,t −Mt,s ≤ 0 and γ0,t < r ≤ γt,s

]
dwr

= Efn (M0,t −Mt,s)− n
∫ t

0
Er

[
I{M0,r≥Mr,t}

∫ M0,r−wt+ 1
n

M0,r−wt
ψs−t(x)dx

]
dwr

− n
∫ s

t

[
I{M0,r≤M0,t+

1
n
}

∫ M0,t−wr+ 1
n

M0,r−wr
ψs−r(x)dx

]
dwr.

When r > t and M0,r > M0,t, then the integrand in the second integral is zero for large enough n.

Therefore, in the case r > t, we only consider the case M0,r = M0,t with the understanding that
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we consider large enough n:

fn(M0,t −Mt,s) = Efn (M0,t −Mt,s)− n
∫ t

0
Er

[
I{M0,r≥Mr,t}

∫ M0,r−wt+ 1
n

M0,r−wt
ψs−t(x)dx

]
dwr

− n
∫ s

t

[
I{M0,r=M0,t}

∫ M0,t−wr+ 1
n

M0,r−wr
ψs−r(x)dx

]
dwr.

Taking the limit as n→∞, we obtain:

I{γs≤t} = P (γs ≤ t)−
∫ t

0
Er
[
I{M0,r≥Mr,t}ψs−t(M0,r − wt)

]
dwr −

∫ s

t
I{M0,r=M0,t}ψs−r(M0,r − wr)dwr

= P (γs ≤ t)−
∫ T

0

(
I{r≤t}Er

[
I{M0,r≥Mr,t}ψs−t(M0,r − wt)

]
+ I{t<r<s}I{M0,r=M0,t}ψs−r(M0,r − wr)

)
dwr.

Given the computation of the conditional expectation, we write the Clark representation of

the indicator I{γs≤t} as:

I{γs≤t} = P (γs ≤ t)−
∫ T

0

(
I{r≤t}Er

[
I{M0,r≥Mr,t}ψs−t(M0,r − wt)

]
+ I{t<r<s}I{M0,r=M0,t}ψs−r(M0,r − wr)

)
dwr.

We next use the Clark representation of the indicator to write the Clark representation of ξt.

Specifically, we substitute the above expression into (A.19) to obtain:

ξt = Eξt −
∫ T

0

[ ∫ T

t

∫ t

0
f ′(x)

(
I{r≤t−x}Er

[
I{M0,r≥Mr,t−x}ψs−t+x(M0,r − wt−x)

]
+ I{t−x<r<s}I{M0,r=M0,t−x}ψs−r(M0,r − wr)

)
dxds

]
dwr,

Which finally identifies the diffusion coefficient gtt as:

gtt =

∫ T

t

∫ t

0
f ′(x)I{M0,t=M0,t−x}ψs−t(M0,t − wt)dxds =

∫ T

t

∫ t

0
f ′(x)I{γt≤t−x}ψs−t(M0,t − wt)dxds

This step concludes the full description of the drift and diffusion decomposition in terms of model

primitives.

A.7 Quantitative Analysis

This appendix provides more detail on the quantitative analysis, and shows the robustness of the

computational results.
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A.7.1 Computation

The planner chooses adapted processes for consumption ct, and hours nt to maximize welfare (2)

given habits (3) subject to the period resource constraints:

xt(w
t) ≤ θt(w

t)nt(w
t), (A.27)

for every shock trajectory wt. We let the Lagrange multiplier corresponding to the period resource

constraint (A.27) be denoted λt(w
t), so the Lagrangian is:

E

∫ ∞
0

(
u(xt(w

t))−
∫ t

0
kst (w

t)xs(w
s)ds− nt(wt) + λt(w

t)
(
θt(w

t)nt(w
t)− xt(wt)

))
dt. (A.28)

We derive optimality conditions after changing the order of integration on the habit in (A.28),

E
∫∞
0

∫ t
0 k

s
t (w

t)xsdsdt = E
∫∞
0 xtEt

∫∞
t kts(w

s)dsdt. We obtain optimality conditions for habit

consumption and labor hours:

λt(w
t) = u′(xt(w

t))− Et
∫ ∞
t

kts(w
s)ds and λt(w

t)θt = 1. (A.29)

We observe that the optimality condition for labor hours implies that the multiplier only varies

with contemporaneous productivity, or λt(w
t) = 1/θt = λ(θt).

41 The first-order condition for

consumption is thus one equation in one unknown for ct(w
t) once we know Et

∫∞
t kts(w

s)ds.

Laissez-Faire Equilibrium. In the laissez-faire equilibrium, households do not internalize the

effect of their consumption onto the future habits of others. Under this specification, the first-order

condition for hours is identical to the first-order condition for hours under the planning problem

(A.29), while the first-order condition for consumption ignores the effect on habit formation, or:

λt(w
t) = u′(xt(w

t)) .

Since the multiplier is identical for every trajectory in the two economies, and since the effect of

habit consumption on future habits is positive under unfamiliarity, households overconsume.

Equilibrium with Taxes. In an equilibrium with corrective consumption taxes, the optimality

condition with respect to hours is again identical to the first-order condition for hours under the

41Substituting this condition into the Lagrangian we obtain E
∫∞
0

(
u(ct(w

t)) −
∫ t
0
kst (w

t)cs(w
s)ds − ct(w

t)
θt(wt)

)
dt,

which shows that the problem can also be written as a planning problem with resource cost shocks.
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planning problem and the laissez-fair equilibrium (A.29). Letting the corrective habit consumption

tax after shock trajectory wt be denoted by τt(w
t), the first-order condition for consumption is:

λt(w
t) + τt(w

t)λt(w
t) = u′(xt(w

t)) .

Welfare Calculations. Welfare calculations are based on 10,000 randomly generated sequences

of productivities, where each sequence has a length of 1,000 periods that represent 100 years.

Welfare levels are obtained by discarding the first 1,000 periods in each sequence and averaging

over all 10,000 runs.

A.7.2 Quantitative Results

Table A.1 shows the sensitivity of our quantitative results for different configurations with respect

to:

1. The curvature on consumption in the utility function γ;

2. The importance of habits α;

3. The standard deviation of the innovation σ.

A.8 Robustness

This appendix shows the derivations for the policy design problem with concern for robustness.

Our initial problem is to maximize the expectation of the objective:

U(w) =

∫ T

0

[
u(ct) + u(xt)−

∫ t

0
kstxsds− v(nt)

]
dt =

∫ T

0

[
u(ct)+u(xt)−xt

∫ T

t
ktsds−v(nt)

]
dt

where the second equality follows by changing the order of integration. Maximization is subject

to the resource constraint (1), where expectations are taken with respect to µ, the distribution of

the driving Brownian motion w.

We assume the driving process w may be perturbed in a non-detectable way. That is, instead

of maximizing EµU(w), we maximize EµU(w(h)) where:

w
(h)
t = wt +

∫ t

0
hsds,

and h is some adapted process such that the implied distribution µ(h) associated with w(h) “is close”

to distribution µ associated with w. We measure proximity by the relative entropy R(µ(h)||µ) =

Eµ(h) log dµ(h)

dµ .
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Table A.1: Sensitivity of Welfare Loss Under Suboptimal Policy

σ γ α κ = 0 κ = 1

∆ ∆κ ∆

0.01 1.5 0.2 0.7 0.1 0.5

0.5 3.4 0.6 2.4

0.8 7.4 1.1 5.3

0.01 5.0 0.2 0.2 0.0 0.1

0.5 0.9 0.2 0.7

0.8 1.8 0.4 1.4

0.04 1.5 0.2 0.7 0.4 0.2

0.5 3.5 1.6 1.2

0.8 7.4 3.1 2.6

0.04 5.0 0.2 0.2 0.1 0.1

0.5 0.9 0.5 0.3

0.8 1.8 1.0 0.7

Table A.1 shows the robustness of the quantitative results to different configurations for the importance of habits α,

the curvature on consumption in preferences γ, and the standard deviation of the innovation σ. The depreciation

rate is set to δ = 0.03.

To capture the worst possible case we first minimize EµU(w(h)) subject to R(µ(h)||µ) ≤ A.

The Lagrangian of the minimization problem can be written as:

EµU(w(h) +
1

κ

(
R(µ(h)||µ)− A

)
,

where κ > 0. Proposition 1.4.2 in Dupuis and Ellis (2011) characterizes the minimum value as:

inf
h

[
EµU(w(h)) +

1

κ

(
R(µ(h)||µ)− A

)]
= −1

κ
logEµe

−κU(w).

As a result, after minimizing with respect to perturbation h we obtain the problem of maxi-

mizing − 1
κ logEµe

−κU(w) subject to the budget constraint. The Lagrangian is

−1

κ
logEµe

−κU(w) + λEµ

∫ T

0
(θtnt − ct − xt)dt
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We next analyze the optimality conditions for this problem. The first-order conditions with

respect to consumption and labor supply are given by:

λ = u′(ct)
Ete
−κU(w)

Eµe−κU(w)
and λθt = v′(nt)

Ete
−κU(w)

Eµe−κU(w)

Finally, the first-order condition with respect to habit consumption is given by:

λ =
Ete
−κU(w)

(
u′(xt)−

∫ T
t ktsds

)
Eµe−κU(w)

Combining the optimality condition for consumption and habit consumption, optimal policy

(5) is given by:

ΛRt =
Et
∫ T
t e−κU(w)ktsds

Ete−κU(w)
(12)

Robustness considerations modify the habit coefficients kts by multiplying them with ζ = e−κU(w)

and normalizing by Mt = Ete
−κU(w) = Etζ. Since the denominator Mt is a martingale, we cannot

expect that it is differentiable with respect to time, but we can write dMt = Et [Dtζ] dwt.

For the process in the numerator, we write the drift and diffusion decomposition. By the total

derivative formula (8),

d

(
Etζ

∫ T

t
ktsds

)
=

[
− kttEtζ + Etζ

∫ T

t
∂tk

t
sds

]
dt+

[
Et

∫ T

t

(
ktsDtζ + ζDtk

t
s

)
ds

]
dwt.

Finally, we apply the Ito formula to obtain the drift and diffusion coefficient for optimal robust

policy. After grouping terms, we obtain:

dΛRt =

[
Etζ

∫ T
t ∂tk

t
sds− kttEtζ
Mt

−
Et[Dtζ]Et

∫ T
t

(
ktsDtζ + ζDtk

t
s

)
ds

M2
t

+
ΛRt (Et[Dtζ])2

M2
t

]
dt

+

[
Et
∫ T
t

(
ktsDtζ + ζDtk

t
s

)
ds

Mt
− ΛRt Et[Dtζ]

Mt

]
dwt.

A.9 Limited Commitment

This appendix provides detailed derivations for the limited commitment economy in Section 6. The

planning problem is to maximize welfare (2) over all w-adapted processes for consumption, habit

consumption and hours subject to the feasibility constraint (1) and the participation constraints

(17).
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We assign multiplier λ to the resource constraint, multiplier µr to the participation constraints,

and write the Lagrangian for the problem as:

L =E

∫ T

0

(
u(ct) + u(xt)−

∫ t

0
kstxsds− v(nt)

)
dt+ λE

∫ T

0

(
θtnt − ct − xt

)
dt

+E

∫ T

0
µr

(∫ T

r

(
u(ct) + u(xt)−

∫ t

0
kstxsds− v(nt)

)
dt− Ur

)
dr,

where we remove the conditional expectation in the summand since the multiplier µr is adapted,

using the law of iterated expectations.

We change the order of integration on three terms. Specifically, we change the order of inte-

gration on the habit terms in the objective function:∫ T

0

∫ t

0
kstxsdsdt =

∫ T

0

∫ T

s
kstxsdtds =

∫ T

0
xt

∫ T

t
ktsdsdt

and, similarly, on the habit terms in the participation constraints:∫ T

0

∫ T

r

∫ t

0
µrk

s
txsdsdtdr =

∫ T

0

∫ T

s

∫ t

0
µrk

s
txsdrdtds =

∫ T

0
xt

∫ T

t
kts

∫ s

0
µrdrdsdt.

Finally, we change the order of integration on the other elements of the participation constraint:∫ T

0

∫ T

r
µr
(
u(ct) + u(xt)− v(nt)

)
dtdr =

∫ T

0

(
u(ct) + u(xt)− v(nt)

) ∫ t

0
µrdrdt.

By substituting the three changes in the order of integration, we obtain the Lagrangian:

L =E

∫ T

0

((
u (ct) + u (xt)− v (nt)

)(
1 +

∫ t

0
µrdr

)
− xtEt

∫ T

t
kts

(
1 +

∫ s

0
µrdr

)
ds

)
dt

+λE
[ ∫ T

0
(θtnt − ct − xt) dt

]
To obtain the optimality conditions, we vary consumption and labor:

λ = u′(ct)

(
1 +

∫ t

0
µrdr

)
,

while the first-order condition for the disutility from labor is given by:

λθt = v′(nt)

(
1 +

∫ t

0
µrdr

)
.

The first-order condition with respect to habit consumption is given by:

λ = u′(xt)

(
1 +

∫ t

0
µrdr

)
− Et

∫ T

t
kts

(
1 +

∫ s

0
µrdr

)
ds.

Using the first-order condition with respect to consumption, this is equivalent to:

u′(ct) = u′(xt)− Et
∫ T

t
kts
u′(ct)

u′(cs)
ds.
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A.10 Private Information

This appendix provides derivations for the dynamic private information economy in Section 7.

A.10.1 Incentive Constraint

We derive the local incentive compatibility constraint. Consider a perturbation ŵεt = wt+ε
∫ t
0 zrdr,

where zr is any adapted process. The induced trajectory is ŵε,t. We evaluate individual welfare:

E

∫ T

0

(
u(ct(ŵ

ε,t)) + u(xt(ŵ
ε,t))−

∫ t

0
kst (w

t)xs(ŵ
ε,s)ds− v

(
yt(ŵ

ε,t)

θt(wt)

))
dt

which is maximized when ε = 0. We differentiate an agent’s objective with respect to ε to obtain:

0 = E

∫ T

0

(
u′(ct)

∫ t

0
Drctzrdr + u′(xt)

∫ t

0
Drxtzrdr −

∫ t

0
kst

∫ s

0
Drxszrdrds

− v′
(yt
θt

)∫ t
0 Drytzrdr

θt

)
dt. (A.30)

We next rewrite the incentive constraint using the Malliavin derivative for individual welfare. We

omit explicit dependence of the allocations on history wt when there is limited risk of confusion.

Malliavin Derivative for Individual Welfare. To find the Malliavin derivative for individual welfare,

we evaluate the impact of a variation of the stochastic process on period utility. That is, we consider(
Ut(ŵε,t)− Ut(wt)

)/
ε for small ε, which gives:

u′(ct)

∫ t

0
Drctzrdr + u′(xt)

∫ t

0
Drxtzrdr −

∫ t

0
kst

∫ s

0
Drxszrdrds−

∫ t

0
xs

∫ t

0
Drk

s
t zrdrds

− v′
(yt
θt

)∫ t
0 Drytzrdr

θt
+ v′

(yt
θt

)yt ∫ t0 Drθtzrdr

θt
2

.

To obtain the Malliavin derivative, we reorganize the expressions involving the habit in the total

variation to isolate zr. First, we observe:∫ t

0
kst

∫ s

0
Drxszrdrds =

∫ t

0

∫ t

r
kstDrxszrdsdr =

∫ t

0

(∫ t

r
kstDrxsds

)
zrdr (A.31)

by changing the order of integration. Second, we observe:∫ t

0
xs

∫ t

0
Drk

s
t zrdrds =

∫ t

0

∫ t

0
xsDrk

s
t zrdsdr =

∫ t

0

(∫ t

0
xsDrk

s
t ds

)
zrdr. (A.32)

We use these two terms, (A.31) and (A.32), to rewrite the Malliavin derivative as:∫ t

0

(
u′(ct)Drct + u′(xt)Drxt −

∫ t

r
kstDrxsds−

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)Dryt
θt

+ v′
(yt
θt

)ytDrθt
θ2t

)
zrdr.
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This expression gives the Malliavin derivative for period utility as DrUt(wt) = u′ (ct)Drct +

u′ (xt)Drxt −
∫ t
r k

s
t (w

t)Drxsds−
∫ t
0 xsDrk

s
t (w

t)ds− v′(yt/θt(wt)) Dryt
θt(wt)

+ v′(yt/θt(w
t)) ytDrθtθt(wt)2

.

We simplify the first-order incentive constraint (A.30). As with the Malliavin derivative for indi-

vidual welfare, we reorganize the term concerning habit consumption using equation (A.31):

0 = E

∫ T

0

∫ t

0

(
u′(ct)Drct + u′(xt)Drxt −

∫ t

r
kstDrxsds− v′

(yt
θt

)Dryt
θt

)
zrdrdt.

Second, we use the Malliavin derivative for the period utility to write this incentive constraint as:

0 = E

∫ T

0

∫ t

0

(
DrUt +

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
zrdrdt. (A.33)

We change the order of integration to write:

0 = E

∫ T

0

[ ∫ T

r

(
DrUt +

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
dt

]
zrdr. (A.34)

If (A.34) were to hold for any process z, the term in the square brackets has to be identically zero.

Instead, as (A.34) has to hold for any adapted process z, we reformulate the incentive constraint

using the law of iterated expectations. To do so, we first bring the expectation operator under the

integral, and use the law of iterated expectations to write:

0 =

∫ T

0
E

[
Er

[ ∫ T

r

(
DrUt +

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
dtzr

]]
dr.

In the conditional expectation, we condition on the information up until time r, implying that zr

is known and that it can be taken out of the conditional expectation to obtain:

0 = E

∫ T

0
Er

[ ∫ T

r

(
DrUt +

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
dt

]
zrdr.

Therefore, for this equality to hold for arbitrary adapted process z, it has to be that:

0 = Er

∫ T

r

(
DrUt +

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
dt. (A.35)

Planning Problem. Having obtained the first-order incentive compatibility constraint (A.35), the

planning problem is to maximize aggregate welfare (2) over all adapted processes for consumption,

habit consumption, and labor. Maximization is subject to the incentive constraint (A.35) for any

trajectory wt, and subject to the resource constraint (1).
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Using µt(w
t) to denote the multiplier on the first-order incentive constraint, and λ to denote

the multiplier on the resource constraint, the Langrangian becomes:

L =E

∫ T

0

[
Ut + λ(yt − ct − xt) + µtEt

∫ T

t

(
DtUr +

∫ r

0
xsDtk

s
rds− v′

(yr
θr

)yrDtθr
θ2r

)
dr

]
dt.

To analyze the problem further, we reorganize the incentive component. First, using the law of

iterated expectations, this incentive component is written as:

E

∫ T

0

∫ T

t

(
DtUr +

∫ r

0
xsDtk

s
rds− v′

(yr
θr

)yrDtθr
θ2r

)
drµtdt

which is equivalent to the right-hand side of equation (A.34). Thus, the expression is equivalent

to (A.33) after changing the order of integration. As a result, we can write the Lagrangian as:

L = E

∫ T

0

[
Ut + λ

(
yt − ct − xt

)
+

∫ t

0

(
DrUt +

∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
µrdr

]
dt

We further apply the Malliavin integration by parts (22) to the period utility function Ut to write

E
[ ∫ t

0 DrUt(wt)µrdr
]

= E
[
Ut(wt)

∫ t
0 µrdwr

]
giving the Lagrangian as:

E

∫ T

0

[
Ut
(

1 +

∫ t

0
µrdwr

)
+ λ
(
yt − ct − xt

)
+

∫ t

0

(∫ t

0
xsDrk

s
t ds− v′

(yt
θt

)ytDrθt
θ2t

)
µrdr

]
dt.

Substituting the habit term using (A.32), we obtain:

E

∫ T

0

[
Ut
(

1 +

∫ t

0
µrdwr

)
+λ
(
yt−ct−xt

)
−v′
(yt
θt

) yt
θ2t

∫ t

0
Drθtµrdr+

∫ t

0
xs

∫ t

0
Drk

s
tµrdrds

]
dt,

Finally, we change the order of integration on the habit terms between t and s:∫ T

0

∫ t

0
xs

∫ t

0
Drk

s
tµrdrdsdt =

∫ T

0

∫ T

s
xs

∫ t

0
Drk

s
tµrdrdtds =

∫ T

0
xs

∫ T

s

∫ t

0
Drk

s
tµrdrdtds

Interchanging labels of t and s and substituting into the Lagrangian, where we expand the period

utility function, we obtain:

L =E

∫ T

0

((
u(ct) + u(xt)−

∫ t

0
kstxsds− v

(
yt
θt

))(
1 +

∫ t

0
µrdwr

)
+ λ
(
yt − ct − xt

))
dt

−E
∫ T

0
v′
(yt
θt

) yt
θ2t

∫ t

0
Drθtµrdrdt+ E

∫ T

0
xt

∫ T

t

∫ s

0
Drk

t
sµrdrdsdt,

which is equivalent to Lagrangian in the body of the text (24) when we abstract from the terms

associated with habit consumption. We use this formulation to obtain the optimality conditions.
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Optimality Conditions. We vary consumption, habit consumption, and labor earnings. The first-

order condition with respect to consumption is (25), while the first-order condition for the disutility

from labor is given by:

λ = v′
(yt
θt

) 1

θt

(
1 +

∫ t

0
µrdwr

)
+ v′

(yt
θt

) 1

θ2t

∫ t

0
Drθtµrdr + v′′

(yt
θt

) yt
θ3t

∫ t

0
Drθtµrdr. (A.36)

Finally, we consider the first-order condition with respect to habit consumption to write:

λ = u′(xt)

(
1 +

∫ t

0
µrdwr

)
+ Et

∫ T

t

∫ s

0
Drk

t
sµrdrds− Et

∫ T

t
kts

(
1 +

∫ s

0
µrdwr

)
ds. (A.37)

A.10.2 Martingale

We next establish that m(ct) = λ/u′(ct) is a martingale, and derive the characterization of the

multipliers on the incentive constraints (27).

First, we rewrite the optimality condition for consumption (25) to see m(ct) is a martingale:

λ

u′(ct)
= 1 +

∫ t

0
µrdwr.

so that m(c0) = 1, and cs = Esm(ct) for all s ≤ t.

Since m(ct) is a martingale random variable, its Clark-Ocone representation can be written as:

λ

u′(ct)
= Em(ct) +

∫ t

0
Er
[
Drm(ct)

]
dwr = 1 +

∫ t

0
Er
[
Drm(ct)

]
dwr,

where the second equality uses that Em(ct) = m(c0) = 1. The characterization of the Lagrange

multiplier (27) follows by comparing this expression to the first-order condition for consumption

(25).

A.10.3 Labor Wedge

To derive the optimal labor wedge formula, we start with the first-order condition for labor (A.36).

Multiplying by θt, using yt = θtnt:

θtλ = v′(nt)

(
1 +

∫ t

0
µrdwr

)
+
(
v′(nt) + v′′(nt)nt

) ∫ t

0

Drθt
θt

µrdr.

Dividing by v′(nt)λ, using the first-order condition for consumption (25) and the definition for the

elasticity of labor supply εt = 1 + v′′(nt)nt
v′(nt)

:

θt
v′(nt)

− 1

u′(ct)
= εt

∫ t

0

Drθt
θt

µr
λ
dr.
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Further observing that τ lt
1−τ lt

= θtu
′(ct)

v′(nt)
− 1, this simplifies to:

τ lt
1− τ lt

= εt

∫ t

0

Drθt
θt

µr
λ
u′(ct)dr.

Using the definition of the stochastic discount factor m(ct) = λ
u′(ct)

, and the characterization of

the multiplier on the incentive constraint (27) we write that:

τ lt
1− τ lt

= εt

∫ t

0

Drθt
θt

Er[Drm(ct)]

m(ct)
dr,

which is the labor wedge (29).

A.10.4 Habit Wedge

We next analyze the optimality condition for habit consumption good (A.37). Using the first-order

condition for consumption (25), this can be rewritten as:

u′(ct) = u′(xt)− Et
∫ T

t
ktsm(cs, ct)ds+ Et

∫ T

t

∫ s

0
Drk

t
s
Er[Drm(cs)]

m(ct)
drds

where we use the first-order condition with respect to consumption (25) and the characterization

of the Lagrange multiplier (27).

We next analyze the evolution of the optimal habit consumption wedge, which is expressed

compactly as Λt = Et
∫ T
t

(
ktsm(cs, ct)−

∫ s
0 Drk

t
s
Er[Drm(cs)]

m(ct)
dr
)
ds. By applying the total derivative

formula (7), we obtain:

dΛt =

[
Et

∫ T

t

(
∂t(k

t
sm(cs, ct))−

∫ s

0
Dr∂tk

t
s
Er[Drm(cs)]

m(ct)
dr
)
ds− ktt +

∫ t

0
Drk

t
t
Er[Drm(ct)]

m(ct)
dr

]
dt

+ Et

∫ T

t
Dt

(
ktsm(cs, ct)−

∫ s

0
Drk

t
s
Er[Drm(cs)]

m(ct)
dr
)
dsdwt,

We derived the decomposition of the effects of habit in terms of the drift and volatility and

extended the characterization of Λt without incentives in (8) to the case with private information

constraints.

A.10.5 Savings Wedge

We next derive the term structure for the intertemporal distortion. Using the definition (26), we

can write the savings wedge between period from t and period t+ δ as:

τ δt = 1− Etu
′(ct+δ)

u′(ct)
= −Etu

′(ct+δ)− u′(ct)
u′(ct)

. (26)
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We recall the first-order condition with respect to consumption (25), and let m = λ
u′(ct)

, which by

the optimality condition for consumption thus follows an Ito process. Applying the Ito formula to

the function F (m) = λ
m ,

du′(ct) = −u
′(ct)

2µt
λ

dwt +
u′(ct)

3µ2t
λ2

dt.

We can use this expression in order to write:

Et(u
′(ct+δ)− u′(ct)) = Et

[
− 1

λ

∫ t+δ

t
u′(cs)

2µsdws +

∫ t+δ

t
u′(cs)

3µ
2
s

λ2
ds

]
= Et

∫ t+δ

t
u′(cs)

3µ
2
s

λ2
ds.

Dividing by the marginal utility of consumption at date t, we obtain:

−τ δt = Et

[
u′(ct+δ)− u′(ct)

u′(ct)

]
= Et

∫ t+δ

t

u′(cs)
3

u′(ct)

µ2s
λ2
ds = Et

∫ t+δ

t
m(ct, cs)

(
Es[Dsm(ct+δ)]

m(cs)

)2

ds

The instantaneous savings wedge τ̂t is a special case τ̂t = lim
δ→0

τ δt /δ and describes a short-term

intertemporal distortion. Formally, dividing by δ and letting δ → 0 we get the instantaneous tax

at time t:

τ̂t = −u
′(ct)

2µ2t
λ2

. (A.38)

To analyze the dynamics of the intertemporal distortion between periods t and t+ δ (where δ > 0

is fixed), we apply the total derivative formula (7):

dEt(u
′(ct+δ)− u′(ct)) =

1

λ2
Et∂t

∫ t+δ

t
u′(cs)

3µ2sdsdt+
1

λ2
Et

∫ t+δ

t
Dt

[
u′(cs)

3µ2s
]
dsdwt

=
1

λ2
(
Et
[
u′(ct+δ)

3µ2t+δ
]
− u′(ct)3µ2t

)
dt+

1

λ2

∫ t+δ

t
EtDt

[
u′(cs)

3µ2s
]
dsdwt

Hence, by the Ito product rule we analyze dτ δt = − 1
λd
(
Et (u′(ct+δ)− u′(ct))× λ

u′(ct)

)
to obtain:

dτ δt = −1

λ
µtEt

(
u′(ct+δ)− u′(ct)

)
dwt −

1

λ2

(∫ t+δ

t

EtDt

[
u′(cs)

3µ2s
]

u′(ct)
ds

)
dwt

− 1

λ2

(
Et

[
u′(ct+δ)

3µ2t+δ
u′(ct)

]
− u′(ct)2µ2t

)
dt− 1

λ3
µt

(∫ t+δ

t
EtDt

[
u′(cs)

3µ2s
]
ds

)
dt

We simplify this expression by using the instantaneous intertemporal distortion (A.38) to write:

dτ δt =− 1

λ
µtEt

(
u′(ct+δ)− u′(ct)

)
dwt +

∫ t+δ

t
Et
[
Dtm(ct, cs)τ̂s

]
dsdwt +

(
Et
[
τ̂t+δm(ct, ct+δ)

]
− τ̂t

)
dt

+ µt

(∫ t+δ

t
EtDt

[
τ̂s
/
m(cs)

]
ds
)
dt

where µt = Et
[
Dtm(ct+δ)

]
by the characterization of the multiplier (27).
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A.11 Incentive Constraint

We consider incentive constraints of the form U(ŵ;w) ≤ U(w;w), where

U(ŵ;w) = E

∫ T

0

(
u(ct(ŵ

t))− v
(
yt(ŵ

t)

θt(wt)

))
dt,

ŵt = wt+ε
∫ t
0 zsds, and zt is an adapted process. Our aim is to capture possibilities of misreporting

by agents in a way that is not detectable. Formally this means that the distribution of the

process ŵ is absolutely continuous with respect to the Wiener measure. With our specification,

ŵt = wt + ε
∫ t
0 zsds, we cover sufficiently many distributions of ŵ that are absolutely continuous

with respect to the Wiener measure.

Let ρ be the probability density, that is, ρ ≥ 0 and Eρ = 1. Consider a new probability

measure Q(A) = E [ρ1A] . Let ρt = Etρ. By the Clark theorem, ρ = 1 +
∫ T
0 hsdws for some

adapted process ht. Girsanov theorem states that the distribution of the process wt −
∫ t
0
hs(w

s)
ρs(ws)

ds

under the measure Q coincides with the distribution of w. If the equation ŵt = wt −
∫ t
0
hs(w

s)
ρs(ws)

ds

has a unique solution w, then there exists a process wt +
∫ t
0 zsds with the distribution Q under

the original measure. To be precise, the class of such distributions is dense in the space of all

measures that are absolutely continuous with respect to the Wiener measure in the total variation

norm (Feyel, Ustünel, and Zakai, 2006).

A.12 Malliavin Derivative of General Diffusion

Consider the solution of the stochastic differential equation:

dat = b (at) dt+ σ (at) dwt,

which is a diffusion since the coefficients b(at) and σ(at) are both state-dependent. Equivalently,

we write the diffusion process as:

at = a0 +

∫ t

0
b(ar)dr +

∫ t

0
σ(ar)dwr.

By Malliavin differentiating both sides of the diffusion process, using Dsar = 0 for r < s:

Dsat =

∫ t

s
b′(ar)Dsardr +

∫ t

s
σ′(ar)Dsardwr + σ(as).

We observe that the Malliavin derivative process (Dsat)s≤t satisfies the equation:

d(Dsat) = b′(at)(Dsat)dt+ σ′(at)(Dsat)dwt, (A.39)
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Table A.2: Example of Diffusion Processes

Drift b(at) Diffusion σ(at) Malliavin semi-elasticity

Brownian Motion µ σ σ

Ornstein-Uhlenbeck −ζat σ σ exp(−ζ(t− s))

Cox-Ingersoll-Ross −ζat σ
√
at σ

√
as exp(−

∫ t
s
(ζ + σ2

8ar
)dr + 1

2

∫ t
s

σ√
ar
dwr)

Table A.2 calculates the Malliavin semi-elasticity for three common diffusion processes: the Brownian motion, the

Ornstein-Uhlenbeck process, and the Cox-Ingersoll-Ross process. The first two columns show the drift and diffusion

coefficient, the final column shows the Malliavin semi-elasticity (A.40).

subject to the initial condition that Dsas = σ(as). This equation shows that the tangent process of

a diffusion process is an Ito process. Specifically, it is an Ito process with coefficients proportional

to the derivatives of the drift and volatility with the initial point equal to the volatility at time s.

Since the Malliavin derivative follows an Ito process, we can analyze the logarithmic trans-

formation of the Malliavin derivative logDsat by applying Ito’s lemma. Doing so, we directly

obtain:

d logDsat =
(
b′(at)−

1

2
σ′(at)

2
)
dt+ σ′(at)dwt.

Integrating this equation from time s to time t, using the initial condition that Dsas = σ(as), we

obtain:

logDsat = log σ(as) +
(∫ t

s

(
b′(ar)−

1

2
σ′(ar)

2
)
dr +

∫ t

s
σ′(ar)dwr

)
.

Taking exponents, we obtain:

Dsat = σ(as) exp
(∫ t

s

(
b′(ar)−

1

2
σ′(ar)

2
)
dr +

∫ t

s
σ′(ar)dwr

)
. (A.40)

Table A.2 calculates the Malliavin semi-elasticity (A.40) for three common diffusion processes.
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