
Economic distributions, primitive distributions, and

demand recovery in monopolistic competition

Simon P. Anderson and André de Palma∗

Revised May 2023

Abstract

We link fundamental technological and taste distributions to endogenous economic

distributions of prices and firm size (output, profit) generated under monopolistic com-

petition with heterogeneous productivities as per recent Trade and IO models. We derive

full equivalence properties for monopoly mark-ups, demand shape, marginal revenue, and
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1 Introduction

Distributions of economic variables have attracted the interest of economists at least since

Pareto (1896). In industrial organization, firm size distributions (measured by output, sales,

or profit) have been analyzed. Other studies have looked at the distribution of prices within

an industry and across industries (Kaplan and Menzio, 2015, and Hitsch, Hortacsu, and Lin,

2017); recent research has focussed on mark-up distributions (De Loecker, Eeckhout, and Unger,

2020). Firm sizes within industries are wildly asymmetric, and frequently involve a long-tail

of smaller firms (e.g., Anderson, 2006, Gabaix, 2016). Particular distributions —mainly the

Pareto and log-normal —seem to fit the data well. Much work in international trade looks at

the size distribution of firms (e.g., Melitz, 2003, Eaton, Kortum, and Kramarz, 2011, Head,

Mayer, and Thoenig, 2014).

We show how the distributions of these “economic” variables (prices, output, profit, and

mark-ups) are jointly determined by the fundamental underlying distributions of tastes and

technologies, and we determine the links between the various distributions. We link the eco-

nomic ones to each other and to the primitive (cost) distribution and consumer tastes (as en-

capsulated in demand). More surprisingly, the primitives can be uncovered from the observed

economic distributions.

The idea of linking demand to distributions is analyzed in two recent papers which com-

plement the present study. Mrázová, Neary, and Parenti (2021) study the relations between

parameterized equilibrium distributions of sales and relative mark-ups and the (primitive) pro-

ductivity distribution for a cleverly parameterized demand form. They are mainly interested

in when distributions are in the same (“self-reflecting”) class (e.g., when both productivity and

sales are log-normal or Pareto). They provide some empirical analysis of log-normal and Pareto

distributions. In parallel, Anderson and de Palma (2020) start with the special (and central)
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case of the CES and the “Pareto circle”that all relevant distributions are Pareto if one is, and

they extend to find the distribution classes associated to other key parameterized distribution

forms.1 They extend the analysis to generalized logit-CES demand forms, which are not covered

by the MNP parameterization. These papers provide useful schematic links, but they do not

address general demand functions nor how arbitrary distribution shapes can be used to recover

demand nor which distribution combinations are consistent with the monopolistic competition

model.

We start by deploying a general monopolistic competition model with a continuum of firms

(see Thisse and Ushchev, 2018, for a review of this literature).2 We focus on productivity (cost)

differences across firms, in line with much recent work in Trade, although theoretical IO models

have almost exclusively looked at symmetric settings. The Trade literature is mainly based on

CES demand, while we take general demand functions as our starting point. We show how

the demand function delivers a mark-up function, and then we prove our key converse result

that the mark-up (or “pass-through”function of Weyl and Fabinger, 2013) determines the form

of the demand function. We then engage these results and analogous ones with constructive

proofs to determine how (and under which conditions) cost distribution and demand suffi ce

to determine the shape of the economic price, profit, and output distributions. Along broader

lines, we determine when and how any two distributions suffi ce to deliver all the missing pieces.

We contribute several results to the theory of pass-through and monopoly, and engage

them as key relations for the monopolistic competition analysis. One is that a continuously

differentiable and strictly monotonic mark-up (pass-through) implies a strictly (−1)-concave

demand. We construct the demand function from the mark-up function and we prove the

equivalence of the following properties: strictly (−1)-concave demand; strictly increasing mark-

1They also introduce heterogeneous product qualities to break the Pareto circle for the CES.
2Ironically, Chamberlin (1933) is best remembered for his symmetric monopolistic competition analysis. Yet

he went to great length to point out that he believed asymmetry to be the norm, and that symmetry was a very
restrictive assumption.
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up function; strictly decreasing marginal revenue. The counterpart to Hotelling’s Lemma for

monopolistic competition establishes that profit is strictly convex in unit cost and its derivative

is the inverse marginal revenue. Another relation is that optimized profit is strictly decreasing

in optimal price.

We use these results to uncover restrictions on distributions to be compatible with monopo-

listic competition. First, we determine how the properties of demand and a single distribution

(such as cost, price, output, or profit) suffi ce to determine all the other distributions. Our next

contribution is perhaps more surprising because it works in the opposite direction and theoret-

ically identifies demand. We reconstruct demand from any distribution pair. For example, if

both the profit distribution and the price distribution are strictly monotonic then there exists

a strictly (−1)-concave demand function which renders them consistent with the monopolistic

competition model whatever their shapes. We consider mark-up distributions in a fully sepa-

rate Section. The next Section describes the model and its back-drop and outlines a detailed

road-map of the paper.

2 The Model: overview and roadmap

There is a continuum of firms. Each has constant unit production costs, c, but these differ

across firms with domain [c, c̄], where c ≥ 0. Within this continuum, each firm effectively faces

a monopoly problem where its price choice is independent of the actions of rivals. We allow for

a general common demand function.

2.1 Demand side

Assumption 1 Suppose that demand h (p) for a firm charging p is a positive, strictly decreas-

ing, strictly (−1)-concave, and C2 function on its domain [c,∞), with h (0) > c̄.

This is equivalent to 1
h(.)

strictly convex, and is a minimal condition ensuring profit strict
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quasi-concavity: see Caplin and Nalebuff (1991) and Anderson, de Palma, and Thisse (1992,

p.164) for more on ρ-concave functions and see Weyl and Fabinger (2013) for the properties

of pass-through as a function of demand curvature.3 We suppress the impact of other firms’

actions on demand, which would be expressed as aggregate variables in the individual demand

function (as illustrated next paragraph). Under monopolistic competition with a continuum of

firms, each firm’s individual action has no measurable impact on the aggregate variables (for

example, the “price index”in the CES model, or the Logit denominator). Because we look at

the cross-section relation between equilibrium distributions, the actions of other firms are held

constant across the comparison, and therefore are not changing.

One micro-foundation for the function h (p) comes from a continuous-discrete choice model

(Hanemann, 1984). Consumers make a discrete choice of which product to buy but their condi-

tional demand is price-sensitive. Concretely, suppose that consumer conditional indirect utility

is ui = y+ v (pi) + εi where y is income, v (.) has the properties of a conditional indirect utility

function (decreasing, convex in pi) and the εi are i.i.d. Gumbel distributed. Then conditional

demand is v′ (pi) and demand for product i is (by Roy’s identity) xi = (−v′ (pi)) exp(y+v(pi))
D

,

where D =
∫ 1

0
exp (y + v (pl)) dl is a constant for individual firms under monopolistic compe-

tition. Setting xi (p) equal to h (p) and integrating delivers the conditional indirect sub-utility

function v (.) that generates demand h (p) from this continuous-discrete consumer approach.

When v (pi) = −pi we have logit (with unit conditional demand and hence log-linear h (.));

CES has v (pi) = − ln pi and hence constant elasticity demand.4

While we can construct a monopolistic competition model with discrete choice roots from

3A1 is actually not very restrictive. If there were segments of demand that were strictly log-convex then
marginal revenue slopes up in such regions and so first-order conditions cannot constitute even a local maximum
and so are irrelevant. For such situations there would be an effective gap in demand and so corresponding
outputs would have zero density in the monopolistic competition analysis. We deal with strict (-1)-concavity for
simplicity, for then corresponding distributions of economic variables are strictly increasing on their domains.
See the CEPR DP 15731 for details.

4Aggregate consumer surplus is V =
∫ 1

0
exp v (pl) dl+ y. Applying Roy’s Lemma delivers the demands. This

is analogous to a representative consumer for the population with heterogeneous tastes over varieties.
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h (p) as the constructive proof above shows, the converse is not true. Perloff and Salop (1985)

show that the tail of the density f (ε)must satisfy lim
ε→∞

(ln f (ε))′ finite, in order for the limit price

equilibrium to strictly exceed marginal cost and therefore constitute monopolistic competition.

Otherwise, with a bounded density or too thin a tail (such as normal and hence probit) the

limit is perfect competition and so cannot deliver a function h (p). The Gumbel (and hence

Logit and CES) satisfy the requisite tail property.

Another approach builds on representative consumer models of product differentiation (see

e.g. Spence, 1976 and Dixit and Stiglitz, 1977). The canonical CES model was extended

by Kimball (1995).5 We provide an analogous version for quasilinear utility by defining the

utility function implicitly by
∫ 1

0
Υ (xl − u) dl = 1, so the corresponding quasi-linear utility is

U = u+X0 where X0 is consumption of numeraire, u is the sub-utility function, and Υ′ (.) > 0.

We derive the corresponding demand functions by maximizing U under the budget constraint,

which leads to inverse demands given by ∂u
∂xi

= pi = Υ′(xi−u)
D

, where D =
∫ 1

0
Υ′ (xl − u) dl is

constant under monopolistic competition so that i’s demand is given by inversion (up to a

positive constant) as xi = Υ′−1 (pi) + u. Setting xi equal to h (p) and integrating back delivers

the (modified) Kimball function Υ (.) that generates demand h (p) from this representative

consumer approach.

2.2 Monopoly (and monopolistic competition) properties of demand

Our focus is on cost and the endogenous economic variables: price/mark-up, profit, and output.

We establish in Section 3 key properties relating these variables - we show that A1 implies

strictly monotonic and continuously differentiable relations between any pair of them and that

5Kimball (1995) considers a single sector (no outside good) and postulates a utility function, U , implicitly
defined by

∫ 1

0
Υ
(
xl
U

)
dl = 1, where Υ (1) = 1 and Υ′ (.) > 0. The special case when Υ (ξ) = ξρ delivers the

CES (U =
(∫ 1

0
xρl

) 1
ρ

) and constant elasticity demand. As Kimball argues the function Υ (.) allows any demand

shape. We thanks a referee for alerting us to Kimball’s work.
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knowing any relation determines all the others. These results constitute the full set of links

of main variables for monopoly and monopolistic competition, showing how (for example) a

pass-through function (the element derived by Weyl and Fabinger, 2013, from demand) suffi ces

to determine all the satellite elements. The diagram below provides the map to the Lemmas

and the summary Theorem of Section 3 that establish these links.

One key set of relations allow us to circle between demand, mark-ups, and output /mar-

ginal revenue. Another key relation involves strict monotonicity for profits: A1 implies that

equilibrium profits are convex in unit cost with derivative equal to output (Lemma 5, and the

counterpart to Hotelling’s Lemma), equilibrium profits strictly decrease with equilibrium prices

(Lemma 6) and strictly increase with equilibrium output (Lemma 7).

2.3 Equilibrium distribution relations for monopolistic competition

The result above that A1 implies that each variable is a function of any of the others enables us to

back out the equilibrium distribution relations for monopolistic competition. These equilibrium

relations are written in the following form. Let z denote the fraction of firms with profit below

some level π. Given the strict monotonic relations between variables, the same set of firms

have output below some corresponding level y, and these same firms have costs and prices

above corresponding levels c and p. Thus the firms with costs strictly higher than some value

c are the same ones that have prices strictly higher than p, an output strictly below y and a

6



profit strictly below π, where the specific values satisfy π = (p− c)h (p), where h (p) = y and

the mark-up (p− c) satisfies the first-order condition (3) below (see Anderson and de Palma,

2001, for analogous properties for oligopoly). Writing FC (c) as the cumulative cost distribution

function, etc., gives the following key ranking property:6

1− FC (c) = 1− FP (p) = FY (y) = FΠ (π) = z. (1)

For the reader who wishes to look ahead to how this all fits together graphically, we refer

them to Figure 1 below. The technical analysis of monopolistic competition equilibrium begins

with Theorem 2 in Section 4. Here we show that the primitives of the model, the demand

function h (p) and the cost distribution FC (c), tie down the other distributions. This analysis

uncovers several relations between equilibrium densities that must hold in equilibrium. These

therefore generate potentially testable implications of the model in terms of densities. Theorem

3 assumes the demand function is known (a common assumption in many empirical studies) and

shows that knowing any one of the endogenous distributions (price, output, or profit) suffi ces

to identify all the other distributions, including costs.

In Section 5 we turn to the theoretical identification exercise proper where we do not a priori

assume a demand function but we instead identify it. To do so, we need any two distributions,

under the restrictions uncovered after Theorem 2 that they be compatible with the monopolistic

competition model. We therefore consider each pair of distributions (FC , FP , FY , and FΠ). If

two distributions are compatible and both strictly increasing and C2, we construct the implied

demand function satisfying A1. A guide to the content of the Theorems is given in this Table:

6Mark-ups will be treated separately because they are not necessarily monotone increasing in c.
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Seed

CDFs
Restrictions Testable predictions

Unique demand

satisfying (A1)

Thm 4 FC FP FC (c) > FP (p (c)) µ′ (c) > 0 iff fC (c) > fP (p (c)) up to mult. factor

Thm 5 FY FP fP/fY ↓ in p fY ↓=⇒ fP ↓; fP ↑=⇒ fY ↑ up to add. factor

Thm 6 FY FC No restriction Any {FY , FC} is compatible up to add. factor

Thm 7 FΠ FP No restriction Any {FΠ, FP} is compatible up to add. factor

Thm 8 FΠ FC fC/fΠ ↓ in c fΠ ↓=⇒ fC ↓; fC ↑=⇒ fΠ ↑ up to add. factor

Thm 9 FΠ FY None Any {FΠ, FY } is compatible up to add. factor
Table 1. Guide to Distribution Pair Theorems

Where pertinent we give further testable properties implied from elasticity relations between

densities. We also draw out the difference between log-concave and log-convex demands when

discussing pass-through.

Section 6 gives results specific to mark-ups. Section 7 concludes with some extensions.

3 Monopoly demands, mark-ups, and profits

This section proves the results of the diagram above. In what follows, whenever we use a “prime”

symbol on a variable, we shall understand the function to be continuously differentiable (C1).

3.1 Demand to mark-up and output

The profit for a firm with per unit cost c is π = (p− c)h (p) = mh (m+ c), where m = p − c

is its mark-up. We will make extensive use of the following result on demand, which follows

because strict (−1)-concavity is by definition that 1/h (u) is strictly convex.

Lemma 1 A C2 function h (u) is strictly (−1)-concave iff [h (u) /h′ (u)]′ > −1. Equivalently,

h (u)h′′ (u)− 2 [h′ (u)]2 < 0.

With a continuum of firms, the equilibrium mark-up, m, satisfies the first-order condition

m+
h (m+ c)

h′ (m+ c)
= 0, c ∈ [c, c̄] . (2)
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The solution to (2), denoted µ (c), is uniquely determined (and strictly positive) by A1 via

Lemma 1. It constitutes a maximum to profit because profit is rising for all m < µ (c) and

falling for all m < µ (c).

Applying the implicit function theorem to (2) shows that

µ′ (c) =
− [h (µ+ c) /h′ (µ+ c)]′

1 + [h (µ+ c) /h′ (µ+ c)]′
> −1, (3)

where the denominator is strictly positive under A1 by Lemma 1. Continuity of µ′ (c) implies

equilibrium price is C1. Because µ′ (c) > −1, price strictly increases in cost.

Denote the value of equilibrium demand by h∗ (c) = h (µ (c) + c). Now, h∗ (c) is strictly

decreasing given that µ′ (c) > −1:

h∗′ (c) = (µ′ (c) + 1)h′ (µ (c) + c) < 0. (4)

Because h∗ (c) is a continuous and strictly decreasing function, marginal revenue (which is

h∗−1 (c)) is also continuous and strictly decreasing. To summarize:

Lemma 2 For given demand h (p) satisfying A1: (i) the equilibrium mark-up, µ (c) > 0 is

the unique C1 solution to (2), with µ′ (c) > −1; (ii) the equilibrium price, p (c) > c, is a C1

function with p′ (c) > 0; (iii) the associated equilibrium demand, h∗ (c) ≡ h (µ (c) + c), is C1

with h∗′ (c) < 0.

Our converse result to Lemma 2 indicates how the mark-up function µ (c) implies the form

of inverse marginal revenue, h∗ (c), and hence determines the form of h (p) satisfying A1.

3.2 From mark-ups to output and demand

Here we show how any mark-up function µ (c) (with µ′(c) > −1) can be used to find the

associated equilibrium demand and demand function, h (p). (Equivalently, we can start with a
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C1 and strictly increasing relation between equilibrium price and cost, p (c).)

Lemma 3 Consider any positive mark-up function µ (c) > 0 for c ∈ [c, c̄] with µ′ (c) > −1,

i.e., p′ (c) > 0. Then there exists an equilibrium output function h∗ (c) with h∗′ (c) < 0, c ∈ [c, c̄]

and given by (6), which is unique up to a positive multiplicative factor. The associated primitive

demand function, h (p) (unique up to a positive multiplicative factor) is given by (7) and satisfies

A1 on its domain [µ (c) + c, µ (c̄) + c̄].

Proof. First note from (2) and (4) that

dh∗ (c) /dc

h∗ (c)
=

(µ′ (c) + 1)h′ (µ (c) + c)

h (µ (c) + c)
= −µ

′ (c) + 1

µ (c)
≡ g (c) < 0, (5)

because µ′ (c) > −1 by assumption. Thus [lnh∗ (c)]′ = g (c), and so ln
(
h∗(c)
h∗(c)

)
=
∫ c
c
g (v) dv, or

h∗ (c) = h∗ (c) exp

(∫ c

c

g (v) dv

)
, c ≥ c, (6)

which determines h∗ (c) up to the positive factor h∗ (c); it is strictly decreasing because g (c) < 0.

We can now use the output function, h∗ (c) (which is inverse marginal revenue), to back

out the demand function, h (m+ c), via the following steps. First, define u ≡ p (c) = µ (c) + c,

which is strictly increasing because µ′ (c) + 1 > 0, so the inverse function p−1 (·) is strictly

increasing. Now, h (u) = h∗ (p−1 (u)) and thus the function h (·) is recovered on the domain

u ∈ [µ (c) + c, µ (c̄) + c̄]. Using (6) with h (u) = h∗ (p−1 (u)),

h (u) = h∗ (c) exp

(∫ p−1(u)

c

g (v) dv

)
, (7)

and so we recover the pricing first-order condition (2):

h (u)

h′ (u)
=

1

g (p−1 (u)) [p−1 (u)]′
=

p′ (c)

−µ′(c)+1
µ(c)

= −µ (c) < 0, (8)
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where first and second step follow from (5) with u = p (c) and the last step follows because

p′ (c) = µ′ (c) + 1. Thus, since h (u) = h (µ (c) + c) = h∗ (c). So,

[
h (u)

h′ (u)

]′
= − µ′ (c)

µ′ (c) + 1
> −1, (9)

and so h (u) is strictly (−1)-concave ( using Lemma 1). Note that h (.) is C2 because µ (.) was

assumed differentiable.

Recalling that µ (c) = p (c)− c for c ∈ [c, c̄], the restriction used in the Lemma (µ′ (c) > −1)

is that p′ (c) > 0 so that any arbitrary (differentiable) increasing price function of costs can be

associated to a unique demand function that could generate it (up to the multiplicative factor).

The reason that demand is only determined up to a positive factor is simply that multiplying

demand by a positive constant does not change the optimal mark-up (when marginal costs are

constant, as here). The mark-up function can only determine the demand shape, but not its

scale. The steps in the proof are readily confirmed for the ρ−linear example given at the end

of this Section.

Notice that the function h (·) is tied down only on the domain for which we have information

about the equilibrium mark-up value in the market. Outside that domain, we know only that

h (·) must be consistent with the maximizer µ (c), which restricts h (·) to be not “too”convex.

The results so far indicate that knowing either h (.) or µ (c) suffi ces to determine the other

and h∗ (c) (up to constants in the first case). We next show that knowing h∗ (c) strictly de-

creasing determines h (p) satisfying A1.

3.3 From strictly decreasing MR to strictly (-1)-concave demand

First note that h∗(c) is strictly decreasing if and only if marginal revenue, h∗−1(y) ≡MR(y) >

0, is strictly decreasing, with both C1. This is because these are inverse functions. Next,

integrating MR(y) yields total revenue, TR (y), which is therefore C2 (and it is strictly quasi-
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concave, and monotone increasing for MR(y) > 0). Inverse demand, p (y), is then TR (y) /y,

and this is a C2 function. Inverting it yields h (p) as a C2 function. It remains to show that

h (p) is strictly (-1)-concave. The next result concludes the issue.

Lemma 4 Consider any inverse marginal revenue function, h∗(c) > 0, strictly decreasing and

C1. Then there exists demand, h (p) satisfying A1, which can be recovered up to a constant.

Proof. First note that h (p) is strictly (−1)-concave if and only if h′′h − 2 (h′)2 < 0. Write

the inverse demand as p (y) so that h′ (p) = 1
p′(y)

and h′′ (p) = − p′′(y)

(p′(y))3 . Then the strict (−1)-

concavity condition we are to show becomes:

p′′y + 2p′ < 0. (10)

Now we want to find p (y), using the steps explained before the Lemma. Let MR (y) denote

h∗−1 (c), i.e., marginal revenue. So then Total Revenue, TR (y) is the integral of MR (y) and

equilibrium inverse demand, p (y), is

p (y) =
TR (y)

y
=

∫ y
0
MR (u) du

y
=

∫ y
0
h∗−1 (u) du

y
=

∫ y
0
c (u) du

y
,

and its inverse is h (p): note demand h (p) is only determined up to a constant (from the step

where MR (.) is integrated). Hence p′ (y) =
yc(y)−

∫ y
0 c(u)du

y2 and p′′ (y) =
c′(y)y2−2(yc(y)−

∫ y
0 c(u)du)

y3 .

Using these expressions in (10) givesMR′ (y) = p′′ (y) y+ 2p′ (y) < 0 (where we used c′ (y) < 0,

i.e. marginal revenue slopes down).

Intuitively, one can always add a rectangular hyperbola to any inverse demand (the rectan-

gular hyperbola has a zero Marginal Revenue) and get the same Marginal Revenue function.
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3.4 Hotelling’s Lemma

Call the equilibrium profit π∗ (c) = µ (c)h∗ (c). The next result shows its properties under A1

and how demand satisfying A1 can be constructed from any such function.

Lemma 5 The equilibrium profit function, π∗ (c) = µ (c)h∗ (c), is strictly convex and C2 with

π∗′ (c) = −h∗ (c) < 0 if and only if A1 holds. Consider any demand function h (p) satisfying

A1. Then the equilibrium profit function, π∗ (c) = µ (c)h∗ (c), is strictly convex and C2 with

π∗′ (c) = −h∗ (c) < 0. Conversely, for any positive profit function π∗ (c) which is strictly

decreasing and strictly convex and C2 there exists a demand function, h (p) satisfying A1, which

can be recovered up to a constant.

Proof. Applying the envelope theorem to the profit function π (p; c) = (p− c)h (p) implies

that π∗′ (c) = −h (p (c)) = −h∗ (c) < 0. Because h∗ (c) is C1 and strictly decreasing by Lemma

2, π∗ (c) is C2 and is strictly convex. Conversely, the derivative of any purported convex and

decreasing profit function π∗ (c) represents a valid function h∗ (c) and Lemma 4 shows that

there exists a corresponding demand function h (p) satisfying A1.

This is the monopolistic competition (and monopoly) counterpart to Hotelling’s Lemma for

competitive firms (that the derivative of profit with respect to price is minus demand). While

the result is straightforward, we do not know any statement of it for monopolistic competition.

Because it specifies optimal output as a function of marginal cost, h∗ (c) is the inverse

marginal revenue curve.

3.5 Equilibrium prices and profits, and output and profit

Another new characterization result (used in Theorem 7) concerns the properties of equilibrium

profit when written as a function of equilibrium price, denoted by p̃. Call this relationship π̃ (p̃).

Inserting the mark-up first-order condition (2) into the profit function π (p) = (p− c)h (p) gives
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the desired relation as π̃ (p̃) = −h2 (p̃) /h′ (p̃). This relation defines a strictly decreasing and

continuous function if and only if h2 (p) /h′ (p) is strictly increasing. But this is the condition

for 1/h (p) to be strictly convex: equivalently, this is A1. Furthermore, along the lines of our

earlier demand construction results, it is straightforward to argue that for any purported C2

and strictly decreasing function π̃ (p̃) there exists a demand function, h (p) satisfying A1, which

can be recovered (by integration) up to a constant. In summary:

Lemma 6 Equilibrium profit as a function of equilibrium price, π̃ (p̃) = −h2 (p̃) /h′ (p̃), is a

strictly decreasing and continuous function if A1 holds. Conversely, for any profit function π̃ (p̃)

which is positive, strictly decreasing, and C2 there exists a demand function, h (p) satisfying A1,

which can be recovered up to a constant.

The intuition for the relation between equilibrium profit and equilibrium price is as follows.

Suppose that some price is optimally chosen on the demand curve h (p). Then it must be

that the price satisfies the condition that marginal revenue equals marginal cost, with marginal

revenue downward-sloping locally: as shown above, marginal revenue is strictly decreasing if

and only if demand satisfies A1. The optimal profit is continuously decreasing with the optimal

price because both are driven in a continuous way by costs: higher costs entail both higher

prices and lower profits, as Lemma 2 and Lemma 5 attest.

Analogously, we can describe the relation between equilibrium output and equilibrium profit.

Denote the former by ŷ and denote the relation π̂ (ŷ). This is quickest to derive using the inverse

demand, p (y), for which the standardMR = MC condition writes as p′ (ŷ) ŷ+p (ŷ)−c = 0, and

hence π̂ (ŷ) = −p′ (ŷ) ŷ2. Then: π̂′ (ŷ) = −ŷ
(
2p′ (ŷ) + p

′′
(ŷ) ŷ

)
. Noting that p′ (ŷ) = 1/h′ (p̃)

and p′′ (ŷ) = −h′′ (p̃) / (h′ (p̃))3, this gives π̂′ (ŷ) = − h(p̃)

(h′(p̃))3

{
2 (h′ (p̃))2 − h′′ (p̃)h (p̃)

}
, which is

strictly negative if and only if A1 holds.
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Lemma 7 Equilibrium profit as a function of equilibrium output, π̂ (ŷ), is a positive, strictly

increasing, and continuous function if A1 holds. Conversely, for any profit function π̂ (ŷ) =

−p′ (ŷ) ŷ2 which is strictly increasing and C2 there exists a demand function, h (p) satisfying

A1, which can be recovered up to a constant.

The intuition again comes from thinking about higher costs delivering both lower output

and lower profit, so that these variables move together.

3.6 Demand relations synthesis

We summarize the results obtained so far in this Section as follows.

Theorem 1 Consider the set of elements h (p), µ (c), h∗ (c), π∗ (c), π̃ (p̃), and π̂ (ŷ). Any

demand function h (p) satisfying A1 implies the existence of a mark-up function with µ (c) with

µ′ (c) > −1, an output (inverse marginal revenue) function h∗ (c) with h∗′ (c) < 0, a convex

and decreasing equilibrium profit function π∗ (c) with π∗′ (c) = −h∗ (c), a decreasing equilibrium

profit function π̃ (p̃), and an increasing equilibrium profit function π̂ (ŷ). Likewise, the knowledge

of any one of the other elements, µ (c), h∗ (c), π∗ (c), π̃ (p̃), and π̂ (ŷ) with the required properties

delivers the others with the required properties.

The demand assumption A1 (that demand is strictly (−1)-concave and C2) implies various

properties and conversely, as detailed in the Lemmas, including:

Equilibrium price strictly increases with cost.

Marginal revenue is strictly decreasing.

Equilibrium profit is strictly convex in cost and its derivative is minus the equilibrium demand,

which strictly decreases in cost.

Equilibrium profit is strictly decreasing in equilibrium price.

Equilibrium profit is strictly increasing in equilibrium output.
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The diagram in Section 2.2 shows these relations and the constituent Lemmas. The key

implication of this Theorem is that we have strictly monotonic relations between variables. We

use this to twin strictly monotonic distributions below.

3.7 Decreasing or increasing mark-ups

Some characterization results rely on a delineation of the degree of curvature of demand.

Corollary 1 Under A1, if demand is strictly log-concave (resp. strictly log-convex), higher cost

firms have lower (resp. higher) equilibrium markups µ′ (c) < 0, (resp. µ′ (c) > 0). Equivalently,

p′ (c) ∈ (0, 1) for strictly log-concave demand, and p′ (c) > 1 for strictly log-convex demand.

Conversely, h (p) is strictly log-convex if µ′ (c) > 0 and strictly log-concave if µ′ (c) < 0.

Proof. First, the numerator of (3), − [h (µ+ c) /h′ (µ+ c)]′ is (weakly) positive for h log-convex

and (weakly) negative for h log-concave. The last result follows from (8).

In the log-concave case, low-cost firms use their advantage in both mark-up and output

dimensions. Under log-convexity, low-cost firms exploit the opportunity to capitalize on much

larger demand by setting small mark-ups. In both cases though, as per Lemma 2, profits

are higher with lower costs. For h (·) strictly log-concave, µ′ (c) < 0, so firms with higher

costs have lower mark-ups in the cross-section of firm types (price pass-through is less than

100%). They also have lower equilibrium outputs. The only demand function with constant

(absolute) mark-up is the exponential (associated to the Logit), which has h (·) log-linear in

p (i.e., h (p) ∝ exp
(−p
σ

)
where σ is a positive constant), and so h(m+c)

h′(m+c)
is constant. When

h (·) is strictly log-convex, the mark-up increases with c, so cost pass-through is greater than

100%, which is a hall-mark of CES demands. They have constant elasticity and hence constant

relative mark-up (and µ′ (c) > 0) so a 1% cost rise causes a 1% equilibrium price rise.
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3.8 An illustrative example: ρ−linear demand

An important special case is when demand is ρ−linear (which means that hρ is linear):

h (p) = (1 + ρ (k − p))1/ρ , (11)

where k is a constant satisfying 1 + ρ (k − c) > 0, and ρ > −1 as required for A1. Then

µ (c) =
1 + ρ (k − c)

1 + ρ
> 0, (12)

which is linear in c, with µ′ (c) > −1, since 1 + ρ > 0. Moreover, µ′ (c) < 0 if h (p) is log-

concave, for −1 < ρ < 0, and µ′ (c) > 0 if h (p) is log-convex for ρ > 0. For ρ = 1 demand is

linear and the standard property is apparent that mark-ups fall fifty cents on the dollar with

cost. Log-linearity is ρ = 0 (note that lim
ρ→0

h (.) = exp (k − p)) and delivers a constant mark-up

(see Anderson and de Palma, 2020). A constant elasticity of demand (which the CES model

delivers) results from the parameter restriction ρ = −1/k ∈ (−1, 0) and h (p) ∝ p−1/ρ.7

For ρ−linear demands, equilibrium demand is h∗ (c) =
(

1+ρ(k−c)
1+ρ

)1/ρ

and then (by (5)),

dh∗(c)/dc
h∗(c) = −1

1+ρ(k−c) = −µ′(c)+1
µ(c)

< 0. Notice that h∗ (c) is also ρ-linear.

From (11) and (12) we have π∗ (c) = µ (c)h∗ (c) =
(

1+ρ(k−c)
1+ρ

)(1+ρ)/ρ

, which is indeed de-

creasing in c, and convex for ρ > −1, as anticipated (Lemma 5). Finally, the expression for

π̃ (p̃) is (1 + ρ (k − p̃))(1+ρ)/ρ, decreasing in p̃ for ρ > −1, which concurs with Lemma 6.

4 Distributions for monopolistic competition

The relations above in Section 3.7 already determine some links between the equilibrium price

distribution, the cost distribution, and the demand. We now show how the other economic

distributions are determined and linked in the model. That is, how is one distribution “passed

7Unfortunately, the symbol ρ is also traditionally used to parameterize the CES function: call the CES
version ρc (∈ (0, 1) for substitutes) and then the current usage says that ρ = ρc − 1.
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through”to the others via the demand function and the corresponding equilibrium links between

variables shown in Section 3.

Figure 1 illustrates the equilibrium links between demand, output and cost distributions

under monopolistic competition. The upper right panel gives the demand curve, from which

we determine the corresponding marginal revenue function. The latter is the key to finding the

output distribution from the cost distribution. Notice that h∗ (c) defined above determines the

equilibrium output (for a firm with per unit cost c) as a function of its cost. As earlier noted,

the inverse function, c = h∗−1 (y) therefore traces out the marginal revenue curve.

Figure 1: Construction of marginal revenue, output, and price from demand, and cost

distribution to price and output distribution

The distribution of costs is given in the upper left panel. The negative linear relation

between the cost and output distributions is given in the lower left panel: as noted in Lemma

2, higher costs are associated to lower outputs. Therefore, the z% of firms with costs below c are

the z% of firms with output above y = h∗ (c). We hence choose some arbitrary level z ∈ (0, 1)

(see (1)). This means that all firm types with cost levels above c (z) = F−1
C (1− z) are the firms

with outputs and profits below y and π. That is, 1 − FC (c) = FY (h∗ (c)) (= z). The lower

right panel therefore connects this relation as the output distribution, FY (y). (Notice that in

the above argument, only the marginal revenue curve was used from the demand side: as we

show later in Section 5, the cost and output distribution determine the marginal revenue, but

we then need to integrate up to find demand).

Figure 1 also provides the information to determine the price distribution. The upper right

panel gives the vertical distance between the marginal revenue and demand, which is the mark-

up (which can be expressed as µ (c)), and is thus the vertical shift between cost and price

distributions in the upper left panel. It can be constructed simply from the information in the
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top two panels8 by drawing across the demand price associated to a marginal revenue - marginal

cost intersection. We could also draw in the mark-up distribution in the upper left panel, but

have avoided the extra clutter here. Notice that (as drawn) the price and cost distributions

diverge, as is consistent with Lemma 2 for increasing µ (c), i.e., log-concave demand.

In summary, the marginal revenue curve h∗−1 (y) together with the cost distribution tie

down the output distribution (and conversely, by reversing the analysis). The demand function

then finds the price distribution, and therefore relates price and output distributions.

One relation that is missing in the Figure is the profit distribution. But, as Lemma 2 shows,

analogous arguments apply: π∗ (c) is a decreasing function and so the relation 1 − FC (c) =

FΠ (π∗ (c)) (= z) can be used to construct the profit distribution.

The following result establishes the existence of a unique equilibrium for the monopolistic

competition model. Consequently, equilibrium distributions are tied down from the primitives

on costs and demand.

Theorem 2 Let there be a continuum of firms, with demand satisfying A1. Suppose that FC

is known and is strictly increasing and C2 on its domain. Then the distributions FP , FY , and

FΠ are strictly increasing and C2 on their domains. They are given by FP (p) = FC (c (p));

FY (y) = 1 − FC (h∗−1 (y)); and FΠ (π) = 1 − FC (π∗−1 (π)), where c (p) inverts p (c), h∗−1 (y)

inverts h∗ (c), and π∗−1 (π) inverts π∗ (c).

Proof. Let p (c) denote the equilibrium price for a firm with cost c; from (3) we have µ′ (c) > −1

so that p (c) is strictly increasing, and define the inverse relation as c (p), which is strictly

increasing. The relation p (c) (and hence its inverse) is determined from h (.) by Lemma 2.

Given FC , then FP (p) is determined by FP (p) = FC (c (p)). Next, consider FY (y). By

result (4) we know that output y = h∗ (c) is a monotonic decreasing function, and so the

8Hence we were able to give results on the relationships between cost and price distributions in Section 3.7
without reference to the output distribution.

19



fraction of firms with output below y = h∗ (c) is the fraction of firms with cost above c, so

FY (h∗ (c)) = 1− FC (c), or indeed

FY (y) = Pr (h∗ (C) < y) = Pr
(
C > h∗−1 (y)

)
= 1− FC

(
h∗−1 (y)

)
. (13)

Finally, by Lemma 5 we know that profit π∗ (c) = µ (c)h∗ (c) is a strictly decreasing function,

and so the fraction of firms with profit below π∗ (c) is the fraction of firms with costs above c,

so FΠ (π∗ (c)) = 1− FC (c). That is

FΠ (π) = Pr (Π < π) = Pr (π∗ (C) < π) = Pr
(
C > π∗−1 (π)

)
= 1− FC

(
π∗−1 (π)

)
. (14)

The key relations underlying the twinning of distributions are the strictly monotonic re-

lations between cost, output, profit, and price (see Lemma 2. A specific cost distribution

generates specific output, profit, and price distributions. Conversely, as we show in the next

result, this output, profit, or price distribution could only have been generated from the initial

cost distribution.

The relations above already impose three key restrictions between the equilibrium distrib-

utions emanating from the monopolistic competition model. We elaborate upon them further

below, once we discuss the individual distribution pairs explicitly in Section 5. But, for the mo-

ment we underscore them as necessary conditions on densities that the monopolistic competition

model must satisfy. First, the positive mark-up for monopolistic competition, µ (c) > 0 implies

FC (c) > FP (p). We discuss this further following Theorem 5, where we also break out the

implications of demand log-concavity for density relations. Second, the relation between price

and output distributions, FP (p) = 1− FY (h (p)), inverts to give 1
h(p)

= 1
F−1
Y (1−FP (p))

. The need

for the LHS to be convex under A1 implies fY /fP must be increasing in p (or that its reciprocal
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be decreasing in y). We discuss this further after Theorem 4. Third, the relation between cost

and profit distributions, FC (c) = 1− FΠ (π∗ (c)), inverts to give π∗ (c) = 1− F−1
Π (1− FC (c)).

The need for the LHS to be convex (by Lemma 5) implies fC/fΠ must be increasing in c. We

discuss this further after Theorem 8.

Interestingly, the other relations involve no pairwise restrictions (modulo those discussed in

the next sub-section where we invoke a density elasticity analysis to put on further structure).

This means that in the sequel (Section 5) there are no restrictions on the shapes of the other

pairs of distributions that can be compatible with monopolistic competition.

Researchers often impose specific demand functions (such as CES, or logit). Here we forge

the (potentially testable) empirical links that are imposed by so doing: Theorem 2 shows that

when a specific functional form is imposed for h (as is done in most of the literature), then

all the relevant distributions can be found from FC (c). Furthermore, all distributions can be

found from any one of them.

Theorem 3 Let there be a continuum of firms with demand satisfying A1. Consider the set

of 3 distributions, {FP , FY , FΠ}. Suppose that demand and any one distribution is known and

is strictly increasing and C2 on its domain. Then FC and all other distributions in the set are

explicitly recovered and all are strictly increasing and C2 on their domains.

Proof. Consider FP . Then FC (c) = FP (p (c)), where p (c) is the equilibrium price relation,

which we showed in Lemma 2 to be C2, and both the other distributions are determined from

the steps in the proof of Theorem 2 earlier.

Next start with FY . Because h (p) is strictly decreasing, then FP is determined by FP (p) =

1−FY (h (p)) and is C2. By the argument above, FC is then determined, and hence so is FΠ (π).

Finally, start with FΠ. By Lemma 2 we know that profit π∗ (c) = µ (c)h∗ (c) is a strictly

decreasing function. Therefore FC (c) is recovered from FC (c) = 1−FΠ (π∗ (c)) and is C2. From
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Theorem 2, FP is recovered, and so is FY .

The Theorem says that for any (−1)-concave demand function and any economic distrib-

ution, there is only one cost distribution that is consistent with them. The other economic

distributions are likewise pinned down.

4.1 Density elasticity relations

There are clean and useful conditions that show which elasticities connect the densities. They

are all different aspects of the demand side. For example, the profit density elasticity is related

to the cost density elasticity via the elasticities of profit and (inverse) marginal revenue (with

respect to unit cost, c), both of which are derived from the demand form.

Lemma 8 Consider two distributions FX1 (x1) and FX2 (x2), which are continuous and strictly

increasing on their respective domains. Let x1 and x2 be related by a monotone function x1 =

ξ (x2). Then ηfX2
= ηfX1

ηξ + ηξ′, where ηξ′ is the elasticity of ξ
′ (x2) and ηfX2

is the elasticity

of fX2: ηfX2
= x2f

′
X2

(x2) /fX2 (x2), etc.

A1 imposes several restrictions on the various demand-side elasticities that appear in the

density elasticity relations below. In particular, ηh < −1 is the property that demand must be

elastic at equilibrium in a monopolistic competition setting, mirroring the standard monopoly

property. Furthermore, ηh∗ < 0 is the property that marginal revenue slopes down. The

elasticity of the demand curve slope, ηh′ = h′′p
h′ , has the sign of −h

′′ and so is positive for

concave demand, and negative for convex demand. The elasticity of the output function slope,

ηh∗′, involves third derivatives of demand, though notable benchmarks are that it is zero for

linear demand (because marginal revenue is linear) and for constant elasticity. The elasticity

of maximized profit (with respect to c), ηπ, is particularly interesting. Write this as

ηπ =
π′ (c)

π (c)
c = − ch∗ (c)

µ (c)h∗ (c)
= − c

µ (c)
= − 1

`− 1
< 0. (15)
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The third expression is the ratio of total cost to total profit;9 the fourth one is the reciprocal

of mark-up over cost; the last one writes this in terms of relative mark-up ` = p/c, which we

examine in Section 6. We describe other elasticity relations in the sequel.

5 Rationalizability of distributions via demand

An old question in consumer theory is whether a demand system can be generated from a

set of underlying preferences (see Antonelli, 1896, and the discussion in Mas-Collel, Whinston,

and Green, 1995, pp. 70-75). Here we look at when any arbitrary pair of economic/primitive

distributions (FC , FP , FY , FΠ) could be consistent with the monopolistic competition model

with demand satisfying A1.

5.1 Deriving demand and all distributions from price and cost ones

We now determine demand when there are strict monotone relations between two variables.

Suppose first that price and cost distributions, FP and FC , are known and are strictly monotonic.

Because mark-ups are necessarily positive, it must be that the price distribution first-order

stochastically dominates the cost one. However, we will show that this is the only restriction

on the distributions. The demand function will ensure that they are compatible, though the

only restriction on it is that it be strictly (−1)-concave.

Because price strictly increases with cost, the price and cost distributions are matched: the

fraction of firms with costs below some level c equals the fraction of firms with prices below the

price charged by a firm with cost c. This enables us to back out the corresponding mark-up

function µ (c) and then access Lemma 2.

Theorem 4 Let the cost and price distributions, FC and FP be two arbitrary strictly increasing

and C2 functions on their domains with FC (c) > FP (p (c)). Then there exists a strictly (-1)-

9Else ηπ = − TC
TR−TC = −1

(TR−TC)−1 .
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concave demand function (unique up to a positive multiplicative factor) that rationalizes these

distributions in the monopolistic competition model.

Proof. Consider a distribution of costs, FC and a distribution of prices, FP satisfying FC (c) >

FP (c) (so that the price distribution is right of the cost one: note that FC (c) > FP (c) = 0 for

c below the lower bound of the domain of the price distribution). We wish to find a demand

function satisfying A1. Define p (c) = F−1
P (FC (c)) , which is a strictly increasing function. It

satisfies p(c) > c given that FC (c) > FP (p (c)). Then Lemma 3 implies that there exists an

h (.) satisfying A1 up to a positive multiplicative factor.

We can then determine the other economic relations (see also Theorem 2):

Corollary 2 Let the cost and price distributions, FC and FP be two arbitrary strictly increasing

and C2 functions on their domains with FC (c) > FP (p (c)). Then the mark-up function µ (c)

is found from (16) and µ′ (c) > 0; inverse marginal revenue is found from (6) and the demand

function is given from (7), up to a positive multiplicative factor, h∗ (c). The output and profit

distributions are determined, up to h∗ (c), by (13) and (14).

Proof. We can write the price-cost margin, as a function of c, as (from (1))

µ (c) = F−1
P (FC (c))− c, (16)

with µ (c) > 0 because FC (c) > FP (p (c)) and so µ′ (c) > −1. Hence a unique such mark-

up function µ (c) exists given the cost and price distributions. With the function µ (c) thus

determined, we can invoke Lemma 3 to uncover the equilibrium demand function h∗ (·) (unique

up to a positive multiplicative factor) as given by (5) and (6), and the demand function is given

from (7). By Lemma 3, this demand function satisfies A1, as postulated.

From (16) we write

µ′ (c) =
fC (c)

fP (p (c))
− 1, (17)
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which shows that µ′ (c) > 0 iff fC (c) > fP (p (c)). As we know from Corollary 1, log-convex

demand begets increasing mark-ups. Thus the equilibrium prices “spread out” vis-a-vis the

costs, and hence engender a more spread price density than cost density when we take the

price induced from a given cost. Conversely, log-concave demand delivers a decreasing mark-up

and so prices tend to pile up, meaning the price density is more peaked than the cost density.

Put another way, the price distribution is a compression of the cost distribution when h is

log-concave, and a magnification when h is log-convex, in the simple sense that prices are

closer together (or, respectively, farther apart) than costs. The border case (Logit / log-linear

demand) has constant mark-ups, so the price distribution mirrors the cost one.10

The construction of the demand function is illustrated in Figure 1. The only restriction we

use here is that the cost distribution first-order stochastically dominates the price one. Given

this property, any pair of (C2) price and cost functions is consistent with the monopolistic

competition model. In the next section, we show that the price and output distributions are

restricted if they are to be consistent.

5.2 Price and output distributions

Now suppose that price and output distributions, FP and FY , are known.

Theorem 5 Let the price and output distributions, FP and FY be two arbitrary strictly in-

creasing and C2 functions on their domains. Then there exists a unique strictly (-1)-concave

demand function, h (p) = F−1
Y (1− FP (p)), that rationalizes these distributions in the monop-

olistic competition model if and only if fP (p) /fY (y) is strictly decreasing in p.

10One parameterized example is the flexible CES-Logit demand function model introduced in Anderson and

de Palma (2020): h (p) = kpb−1 exp

(
(pb−1)/b

µ

)
where k > 0 is constant for monopolistic competition and µ > 0

is a measure of product differentiation. The CES corresponds to the limit b→ 0+, while the Logit corresponds

to the limit b → 1−. From the f.o.c.
(

1− c
p

)
pb + (1− b)µ = 1, µ′ (c) < 0 for b < 1 (strict log-concavity) and

µ′ (c) > 0 for b > 1 (strict log-convexity), while d(p/c)
dc > 0 iff b < 0 b 6= 0.
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Proof. From the two distributions y = F−1
Y (1− FP (p)) = h (p) is the unique candidate

demand function. While this is decreasing in p, as desired, we also require that the function

F−1
Y (1− FP (p)) is strictly (-1)-concave to be consistent with the monopolistic competition

model. This condition holds if and only if fP (p) /fY (h (p)) is strictly decreasing in p.

The other distributions and relations are determined analogously to Corollary 2. If the

implied demand shape does not satisfy the (−1)-concavity condition, the purported demand

relation would not have a downward-sloping marginal revenue curve everywhere, and any price-

output pair with an upward sloping marginal revenue could not be consistent with profit max-

imization by a firm.

The condition that fP (p) /fY (y) be strictly decreasing rules out various combinations. For

example, if fp (p) is increasing (locally, say), then we cannot have fY (y) (locally) increasing

too. But both decreasing is fully consistent. Indeed, the required consistency condition is

f ′P (p) fY (y) − f ′Y (y) fP (p)h′ (p) < 0, or ηP < ηY ηh, so the price density elasticity should be

negative if the output one is positive. Conversely, if the price density elasticity is positive then

the output one should be negative. If such necessary (empirically testable) conditions do not

hold the market cannot be described by the proposed monopolistic competition approach.

The density elasticity relation between price and output is given by applying Lemma 8 to

FP (p) = 1− FY (h (p)):

ηfP = ηfY ηh + ηh′ . (18)

The elasticity of the demand slope has shown up elsewhere in pricing formulae (e.g., in Helpman

and Krugman, 1985). On the RHS, the demand elasticity, ηh, is negative, while the slope

elasticity ηh′ = h”p
h′ is positive for concave demand and negative for convex demand. For linear

demand we have a benchmark that the price and output density elasticities have opposite signs.

Concave demand implies that decreasing output density drives increasing price density. For
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convex demand, increasing price density drives decreasing output density. To interpret the

negative relation in the benchmark, recall that the low price firms are the high output ones,

so we are looking at opposite ends of the distributions/densities effectively. Think about an

increasing price density. Then there are more firms with higher prices: translating to the output

density, there are more firms with lower outputs.

5.3 Cost and output distributions

Although price and output distributions are jointly restricted, surprisingly, cost and output

distributions are not. Suppose that FC and FY are known.

Theorem 6 Let the cost and output distributions, FC and FY be two arbitrary strictly increas-

ing and C2 functions on their domains. Then there exists a strictly (-1)-concave demand func-

tion (unique up to a positive constant) that rationalizes these distributions in the monopolistic

competition model.

Proof. From the two distributions y = F−1
Y (1− FC (c)) = h∗ (c) is the candidate function for

optimized demand. The only restriction is that it slope down, which is satisfied, and that it

be continuous, which is also immediately satisfied. Hence it is rationalizable, and we can use

Lemma 4 to back up to the implied demand function, h (p), which is therefore determined up

to a positive constant.

The defining relation for elasticity densities for this pair is FY (h∗ (c)) = 1− FC (c). Then11

ηfY ηh∗ = ηfC − ηh∗′ .

This is directly comparable to the price-output relation (18) (namely ηfY ηh = ηfP − ηh′).

Drawing on that analysis, a linear marginal revenue is a useful benchmark,12 for which output
11Write the density relation −h∗′ (c) fY (h∗ (c)) = fC (c) in log form: the elasticity relation follows directly.
12This comes from linear demand, but is not limited to that —we can add a rectangular hyperbola to demand

and still get a linear marginal revenue.
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and cost densities necessarily go in opposite directions. Constant elasticity of demand is just

like for price-output, given that the parameters are the same for both cases.

5.4 Deriving demand from price and profit distributions

We now use Lemma 3 to find a unique demand function satisfying A1 from any pair of distri-

butions. This is quite a surprising result. For example, there exists a demand function that

squares Pareto distributions for both prices and profits, or normal and log-normal, etc. All

other distributions are then determined.

Theorem 7 Let the price and profit distributions, FP and FΠ, be two arbitrary strictly in-

creasing and C2 functions on their domains. Then there exists a strictly (-1)-concave demand

function (unique up to a positive constant) that rationalizes these distributions in the monopo-

listic competition model.

Proof. From (1), first write 1−FP (p) = FΠ (π) = z. Then we can write π = F−1
Π (1− FP (p)) =

h (p)µ (p) ≡ π̃ (p), where we recall that π̃ (p) denotes the relation between the observed max-

imized profit level observed and the corresponding maximizing price. As shown in Lemma 6,

π̃ (p) = −h2 (p) /h′ (p). Integrating (1/h (p))′ = 1
π̃(p)

gives:

h (p) =
1∫ p

p
dr

F−1
Π (1−FP (r))

+ k
. (19)

This determines the demand form up to the positive constant k = 1/h
(
p
)
(in the position in

the above formula): (19) is C2 and decreasing in p. Furthermore,

(
1

h (p)

)′
=

1

F−1
Π (1− FP (p))

,

which is strictly increasing because both distributions are strictly increasing. That is 1/h (p) is

convex and so, equivalently, h (p) is (−1)-concave.
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By Theorem 3 all the other distributions are determined.

Therefore, the price and profit distributions define the function (19) and the resulting de-

mand function satisfies A1 without any further restrictions. This means, for example, that a

decreasing price density is consistent with an increasing profit density (very many high profit

firms and yet very few high price ones). The underlying cost distribution along with demand is

what renders these features compatible. As regards the constant k, knowing the demand level

at any one point ties down the whole demand function.

We have just shown that there are no restrictions on price and profit distribution shapes,

though we have restrictions on some other pairs of distribution functions that can be combined

in order to be consistent with the monopolistic competition model.

5.5 Cost and profit distributions

This is another case where monopolistic competition restricts the distribution pair.

Theorem 8 Let the cost and profit distributions, FC and FΠ be two arbitrary strictly increasing

and C2 functions on their domains. Then there exists a demand function h (p) satisfying A1

(unique up to a constant) that rationalizes these distributions in the monopolistic competition

model if and only if fC (c) /fΠ (π∗ (c)) is strictly increasing in c, with π∗ (c) = F−1
Π (1− FC (c)).

Proof. From the two distributions, π∗ (c) = F−1
Π (1− FC (c)) is the candidate profit function.

This is decreasing in c, as desired, but it also needs to be strictly convex, by Lemma 5, in order

to be consistent with the monopolistic competition model. The convexity condition is that

h∗ (c) = fC (c) /fΠ (π∗ (c)) is strictly increasing in c. Using Lemma 4, there exists a demand

function h (p) satisfying A1, which is unique up to a constant.

Applying Lemma 8 to the case 1 − FC (c) = FΠ (π∗ (c)), we get ηfΠ
ηΠ = ηfC − ηh∗ . Recall

that π∗′ (c) = −h∗ (< 0) and h∗′ < 0, so that ηΠ < 0 and ηh∗ < 0. If the profit density

29



is increasing, then the cost density is necessarily decreasing, but the reverse is not true: a

strong enough decreasing cost density is needed for an increasing profit density. Conversely,

ηfC > 0⇒ ηfΠ
< 0: an increasing cost density implies a decreasing profit one.

Finally, distribution elasticities uncover relations. From 1 − FC (c) = FΠ (π∗ (c)), we can

write fC
1−FC + fπ

Fπ
π′ (c) = 0, which in elasticity form (recalling ηΠ = −1

`−1
from (15)) becomes

ηFΠ
= − (`− 1) ηSC (20)

where the subscript SC denotes the survivor function of costs and the corresponding elasticity

ηSC < 0. Thus the profit distribution is more elastic the bigger the relative mark-up, `, as the

survivor cost parlays into more profit distribution response. (20) also indicates how mark-ups

can be estimated directly from the two elasticities.

5.6 Output and profit distributions

The final case returns to no restrictions.

Theorem 9 Let the output and profit distributions, FY and FΠ be two arbitrary strictly in-

creasing and C2 functions on their domains. Then there exists a strictly (-1)-concave demand

function (unique up to a constant) that rationalizes these distributions in the monopolistic com-

petition model. This unique net demand function, and the other distributions, are determined

explicitly in the proof.

The proof is in the Appendix (and illustrated in the ρ-linear demand example below). It

is based on the relation, Ψ (z), between the counter z and the cost level (or any economic

variable): Ψ (z) =
∫ z

0

[
F−1

Π (r)
]′
/F−1

Y (r) dr = c̄− c (see (24)).

What the Theorem ties down is net demand (inverse demand minus cost): if both inverse

demand and cost shift by the same amount then equilibrium quantity (output) and mark-up
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are unaffected, so profit is unchanged too. Thus output and profit distributions tie down the

shape of the net inverse demand and the shape of the other distributions, but not the inverse

demand curve height. As we saw above, price and cost distributions alone do not tie down the

demand scale, and nor do price and profit distributions. But the other pairs of distribution

combinations fully determine the demand function and all distributions.

5.7 Examples

We illustrate the Theorems above with distributions that generate ρ-linear demand. Details

are in the Appendix.

Recovering ρ-linear demand. Suppose that FY (y) = (1+ρ)yρ−1
ρ

, y ∈
[

1

(1+ρ)1/ρ , 1
]
, and

FΠ (π) = (1+ρ)πρ/(1+ρ)−1
ρ

, π ∈
[

1

(1+ρ)(1+ρ)/ρ , 1
]
, with ρ > −1. Then demand is ρ-linear (see (11)

with k = c̄) and the cost distribution is uniform.

Uniform costs give a useful benchmark for some important properties relating cost and profit

distributions. For the example above, we have fΠ (π) = π−1/(1+ρ), so that the density of the

profit distribution is decreasing, despite the underlying cost distribution that generates it being

flat. This property indicates how profit density “piles up”at the low end. The output density

shape is also interesting. For linear demand (ρ = 1) it is clearly flat —equilibrium quantity is a

linear function of cost. For convex demand (ρ < 1) it is decreasing, but for concave demand it is

increasing, despite the property just noted that the profit density is decreasing. This suggests

that (for concave demand), a decreasing output density requires an increasing cost density,

which a fortiori entails a decreasing profit density. The Appendix also illustrates that knowing

the profit and cost distributions ties down the full model, using the same parameters, and gives

the steps involved.
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6 Mark-up distribution

Recent work has delivered mark-up distributions from several different methodologies, most

notably the recent production function approach. We now analyze how mark-up distributions

interact with the other ones, and how they help retrieve demand. Thus far in the analysis, via

A1 and the subsequent Lemmas it entails, variables are always either positively or negatively

linked (e.g. prices and costs, or prices and outputs respectively). Mark-ups though either go up

or down with the other variables depending on the degree of concavity of demand. This is true

for both absolute and relative mark-ups, which we consider in turn. As we show, this means

that each pair of a mark-up distribution and another distribution and can yield two solutions,

depending on whether or not costs are fully passed through.

6.1 Absolute mark-ups

Our first result with this distribution, FM (m) with m = p− c, extends and modifies Theorem

3. We claim that knowing the demand function and FM (m) suffi ces to tie down the other

distributions if the demand is either strictly log-concave or strictly log-convex (see Corollary

1). We divide the analysis into two cases, depending on the log-concavity or log-convexity of

h (.).13 Under log-concavity, we know that µ (c) is decreasing and cost pass-through is less than

100%. This entails higher (per unit) mark-ups at firms with lower costs, so that z = FM (m) =

1 − FC (c). Rewriting, we recover the cost distribution from FC (c) = 1 − FM (µ (c)), and we

can then find all the other distributions from the relations in Theorem 3.

On the other hand, µ (c) is increasing when h (.) is log-convex, and cost pass-through is

more than 100%. Then higher (per unit) mark-ups are set at lower firm outputs, and in that

case we recover the cost distribution (and hence all others) from FC (c) = FM (µ (c)) .

When the demand has both log-concave and log-convex segments, then some values of mark-

13The mixed case is discussed briefly below, with more in the CEPR version of the paper.
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up could have been delivered by two (or more) values of c. Thus µ (c) is not invertible and so

the cost distribution cannot be recovered without supplementary information (at least on the

domain for which µ (c) is not invertible and if fM (m) > 0 for such values).

Likewise, knowing FM (m) and one other distribution does not tell us all other distributions

and demand without further qualification. If we knew in addition that h (.) were log-concave

(resp. log-convex), then we can pin down the demand form, and the other distributions using

analogues to Theorems 4, 5, 7: we discuss the procedure in the next sub-section. However,

without knowing a priori which side of log-linearity (the Logit) h (.) falls, we get two candidate

solutions. Indeed, if [ln (h)]′ changed sign over its domain then h (.) cannot be tied down.

We now give a fuller treatment of relative mark-ups since these are more commonly derived

empirically.

6.2 Relative mark-ups

A growing recent literature (see e.g. De Loecker, Eeckhout, and Unger, 2020), has been esti-

mating markups from a production function approach. The mark-ups estimated are not the

absolute mark-ups with which we started the paper (m = p− c), but a unit-free version. This

has been expressed in various ways, like the Lerner index p−c
p
, or else p−c

c
, or, most commonly,

by ` = p
c
≥ 1. The other variants can all be expressed in terms of `, and we retain this last

version, which we term relative mark-up.

We first recall the classic Inverse Elasticity Rule (IER), which applies to our monopolistic

competition formulation. It writes the Lerner index as

(p− c)
p

=
1

ε
,

with ε ≡ −ph′(p)
h(p)

, the elasticity of demand (in absolute terms) and ε > 1 so firms produce

where demand is elastic. From the IER we have the equilibrium relation ` = ε
ε−1

> 0, which is
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decreasing in ε with domain (1,∞) and domain (1,∞) (see e.g., Melitz, 2018).

If we know the demand form h (p) then we know the corresponding expressions for ε and

`. If we know the equilibrium prices we know the equilibrium mark-up relation ` (p) of those

equilibrium prices too. We distinguish two cases.

First, Marshall’s Second Law of Demand (henceforth M2L) is that ε is strictly increasing in

p, equivalently, ε is strictly decreasing with output, y = h (p). Then `′ (p) < 0. Second, we say

that the "Converse Law" (to M2L) holds if ε is strictly decreasing in p and `′ (p) > 0.14 The

CES forms the boundary case in which ε is constant, and so too is then equilibrium ` (p). Note

that strict log-concavity of h (p) implies M2L and the Converse Law implies strict log-convexity

of demand.15

We briefly discuss relative pass-through as measured from the price and cost distributions.

Recall FC (c) = FP (p) and so dp
dc

= fC(c)
fP (p)

and µ′ (c) > 0 (log-convexity) entails fC (c) > fP (p),

which we can interpret as the cost density driving more spread in the price density. The Con-

verse Law, being a stronger property, entails a stronger condition. Indeed, since the Converse

Law implies strictly increasing ` (c), then it implies p′ (c) > ` and hence cfC (c) > pfP (p).

Equivalently, the elasticity of the cost distribution should exceed that of the price distribu-

tion. M2L implies the opposite elasticity relation, which in turn is implied by the condition

fC (c) < fP (p) for µ′ (c) < 0 (strict log-concavity).

In the sequel, we treat the case when M2L holds; the converse case follows analogously but

flips the distributional relations as indicated below. When M2L holds, `′ (p) < 0, knowing the

price distribution ties down the distribution of ` from the relation FL (` (p)) = 1 − FP (p).16

Conversely the mark-up distribution ties down the price distribution. We can leverage this ar-

14We restrict attention to when the derivative of ε is monotone, so we rule out cases which switch between
the Law and its converse.
15That is,

[
h′(p)
h(p)

]′
< 0 (log-concavity) ⇒

[
ph′(p)
h(p)

]′
< 0 (M2L) because

[
ph′(p)
h(p)

]′
= p

[
h′(p)
h(p)

]′
+ h′(p)

h(p) .
16When the converse law holds, FL (` (p)) = FP (p).
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gument to provide the equilibrium relations with the other distributions. For example, because

prices rise with costs we have FC (c) = 1 − FL (` (c)) (and we expand below on the relation

` (c), which implies `′ (c) < 0 when M2L holds); because equilibrium profits fall with equilib-

rium prices by Lemma 6 we have FΠ (π) = FL (` (p (π))) as big mark-ups are associated to big

profits when M2L holds (and conversely under the Converse Law).

Therefore knowing the demand form and the mark-up distribution delivers all the other

distributions too. Conversely, any distribution along with demand form delivers the mark-up

distribution. This means that Theorem 3 extends to include the mark-up distribution when

M2L applies or when its converse applies.

We now turn to the question of demand recoverability from the mark-up distribution and

one other. Our existing results enable us to find the demand (assuming it obeys M2L). We

illustrate with the cost distribution. As noted above, ` (c) = F−1
L (1− FC (c)), with `′ (c) =

−fC(c)
fL(`)

is negative, as required. Rewrite this as p (c) = cF−1
L (1− FC (c)), from which we

have µ (c) = c
(
F−1
L (1− FC (c))− 1

)
, so that we recover the absolute mark-up function. Now,

as shown in Lemma 2, from the function µ (c) we can recover the demand function up to a

multiplicative factor. However, we need µ′ (c) > −1 for A1 to hold and to apply Lemma 2. The

required condition is

`fL (`) > cfC (c) ,

which can equivalently be written in elasticity form with the interpretation that the elasticity

of the relative mark-up distribution should exceed that of the cost survivor distribution. If the

Converse Law holds, p (c) = cF−1
L (FC (c)) and necessarily p′ (c) > 0 without conditions. Hence

µ (c) = p− c = c
(
F−1
L (FC (c))− 1

)
and Lemma 2 then delivers the demand form from µ (c).17

The next result summarizes.

17The demand is necessarily log-convex because µ′ (c) = (`− 1) + c fC(c)
fL(`) > 0.
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Theorem 10 Let FL (`) and FC (c) be given distributions. If `fL (`) > cfC (c) there exists a

demand satisfying Marshall’s Second Law (M2L), which is unique up to a positive factor. There

always exists a demand (unique up to a positive factor) satisfying the Converse Law.

Demand recovery from the price distribution follows a similar procedure, and also accesses

our key recovery result in Lemma 2, but yet with some surprise, so these are not completely

sibling results. Under M2L, we have ` (p) = F−1
L (1− FP (p)), with `′ (p) = −fP (p)

fL(`)
< 0, as

the mark-up which is recovered empirically from the two distributions. Rewrite this in terms

of the supporting cost c (p) as c (p) = p/
(
F−1
L (1− FP (p))

)
and we require this is increasing

in p for A1 to hold and price to rise with cost, and this also implies that the relation c (p)

is invertible so the corresponding p (c) is increasing. This condition necessarily holds because

c′ (p) > 0 (it has the sign of `fL + pfP ). Therefore there is no restriction on the distributions

for this case (contrast the analogous cost case). To deploy Lemma 2 we need µ (c) = p (c) − c

to have derivative greater than −1, or p′ (c) > 0, which we have just argued to be true, and so

demand is recovered. For demand to satisfy the Converse Law, we have the mark-up delivered

from the two distributions as ` (p) = F−1
L (FP (p)), with `′ (p) = fP (p)

fL(`)
> 0. Then the supporting

cost is c (p) = p/F−1
L (FP (p)) and we need this increasing for the same reason as above. Again

c′ (p) > 0 implies the desired invertibility of p (c) and that Lemma 2 can be applied. The

condition for c′ (p) > 0 is `fL > pfP (so the elasticity of the mark-up distribution should exceed

the elasticity of the survivor function of the price distribution). We summarize as:

Theorem 11 Let FL (`) and FP (p) be given distributions. If `fL (`) > pfP (p) there exists a

demand satisfying the Converse Law, which is unique up to a positive factor. There always

exists a demand (unique up to a positive factor) satisfying Marshall’s Second Law.

It is interesting here that the price and cost distributions deliver restrictions in opposite

cases for demand. Pairing the mark-up distribution to the output and profit distributions also
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bear some similar conclusions. In both cases, there is always a solution under the Converse

Law without restriction; but the M2L case has (similar) restrictions for both.18

7 Conclusions

The basic ideas here are simple. Market performance depends on the economic fundamentals of

tastes and technologies, and how these interact in the market-place. The fundamental distribu-

tion of tastes and technologies feeds through the economic process to generate the endogenous

distribution of economic variables, such as prices, outputs, and profits. The assumption of

a monopolistically competitive market structure delivers the clean and tractable feed-through

from fundamental distributions to performance distributions.19

As we show, any pair of the (endogenous) economic distributions can be reverse engineered

to back out the model’s primitives. If two distributions can be estimated from a data-set, then

they can be checked with respect to the consistency conditions of the model. If so, demand can

be recovered and compared to the commonly-used forms (like CES and Logit). The empirical

density elasticities also yield relations that can be evaluated in the light of the model.

We have focused on demand recovery. Surprisingly, demand can be recovered just from

profit and price distributions (for example). We show what restrictions on the distributions

the model entails, and we provide constructive proofs to find demand. We have chosen to

present the details for all distribution pairs because each pair yields different patterns in terms

of the distribution restrictions, underlying demand construction, or constants not identified in

demand.

The simplest case is output and profit, for which the distributions immediately deliver

18The restrictions come from the condition p′ (c) > 0. In elasticity form these are respectively ηFL+ηFY ηΠ < 0

(recall that ηΠ = −1
`−1 < 0 from (15)) and ηFL + ηFY ηY < 0, with ηY = ch∗′(c)

h∗(c) < 0.
19An oligopoly analysis would be hugely more cumbersome because then firms’ types would be realized

draws of costs from an underlying distribution and we would need to track outcomes across all possible draw
combinations.
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demand, although there is a restriction on densities consistent with the model. Cost and price

distributions deliver a mark-up function, from which we can use our new result (Lemma 3, which

goes in the converse direction from Weyl and Fabinger, 2013) on deriving demand from pass-

through. Two other cases - output and profit - entail a sort of cost pass-through, and we first

deliver new pass-through results on these before again going in the reverse direction and deriving

demand from the distribution pairs. Both proofs involve our constructive result (Lemma 4)

how to find demand from marginal revenue: the common ground between output and profit is

determined from our new result (Lemma 5) on the link that π∗′ (c) = −y. However, while the

cost-profit distribution pair involves a restriction (from the convexity of π∗ (c)), the cost-output

distribution pair is not restricted (as we show in the proof). The last two distribution pairs

are also not restricted, but need separate proofs. These pairs are profit-price and profit-output,

for which variable pairs we also deliver new results showing how their optimized values vary

together (they are orchestrated by underlying cost variation).

The distribution of relative mark-ups is also interesting. For each distribution with which

the mark-up distribution is paired, we find two cases for demand, depending on whether demand

obeys Marshall’s Second Law or its converse, and we find either two solutions or just one alone.

Interestingly, the assured solution can be in either demand class depending on the distribution.

We have assumed that firms differ by marginal costs but that these are constant irrespective

of output. We here briefly address marginal costs that are not constant. To retain a simple cost

heterogeneity across firms, assume that marginal costs are c+ ĉ (y), with c being idiosyncratic

to firms with distribution FC (c) while ĉ (y) is common to all firms with ĉ (0) = 0. Our device

to parallel the earlier analysis is to work with the inverse demand. We had before the primitive

demand h (p) with inverse p (y). For the present inquiry, we now define p̂ (y) = p (y) − ĉ (y)

as the net inverse demand (gross of the idiosyncratic cost component, c). We hence define its

inverse function ĥ (p̂). Analogous to A1, we assume this function is strictly (-1)-concave. Note
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that ĥ (p̂) is the demand as a function of p (y) − ĉ (y), which is the demand price net of the

common marginal cost component. Note that an increasing and convex marginal cost suffi ces

to render ĥ (p̂) (-1)-concave from h (p) (-1)-concave, but this is not necessary.20

Now though we have exactly the same model as before, and with the same distributions

except that we have replaced the price distribution with the distribution of p̂. This means that

all of the results hold modulo this transformation. In particular, the results of Theorems 2 and

3 that knowing ĥ (p̂) and one distribution (any of c, π, y, and p̂) suffi ces to find them all, modulo

restrictions on allowable distributions akin to those before. Likewise, Theorems 4 through 9

hold, mutatis mutandis. Note that if we know the demand and cost function, Theorems 2 and

3 allow recovery of the price distribution too from any other distribution. However, for the

counterparts to Theorems 4 through 9, we need more information (such as a third distribution)

in order to recover the price distribution and to identify the breakdown between marginal cost

and demand function.

One future research direction is to investigate more the inheritance properties of distribu-

tions both theoretically and empirically. For example, curvature properties such as ρ-concavity

translate from one distribution to another. Also, the moments of different economics distri-

butions are related through the economic relations: for example, the modes of the various

distributions follow a simple relation via the elasticity analysis.

Finally, we here considered only one dimensional heterogeneity across firms. Multi-dimensional

heterogeneity could also be analyzed with a generalized version of the methods described here.

For example, suppose that firms differed with respect to both product quality (ζ) and cost

(c) according to a joint fundamental distribution F (ζ, c), and we wrote demand as a function

20We show that 1/ĥ (p̂) convex if 1/h (p) convex and the inverse marginal cost function y (ĉ) is (-1)-convex,
where the latter condition is satisfied for increasing and convex marginal cost functions, ĉ (y). First, 1/h (p)
convex is equivalent to 2p′ + p′′y < 0, so using p̂ (y) = p (y) − ĉ (y), it suffi ces that 2p′ − ĉ′ + (p′′ − ĉ′′) y < 0
which is ensured for −2ĉ′ − ĉ′′y < 0, which is the same as y (ĉ) being (-1)-convex. Hence increasing and convex
marginal cost suffi ces.
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h (ζ − p).21 Naturally, firms with higher ζ and lower c would have higher equilibrium profit and

output. Then the set of firms with profit above any particular level of profit would be those

below some critical locus c (ζ). Likewise for those with the highest outputs. However, the trade-

off would be different for output and profit criteria. The economic fundamentals F (ζ, c) and

h (ζ − p) would determine equilibrium distributions of the economics variables (profit, price,

output, etc.) Now, as long as the iso-profit and iso-output loci (to take one pair as an example)

satisfy a monotonicity condition, then we can determine the primitive distribution F (ζ, c) from

the profit or output distributions by varying costs and quality across the feasible space and

then matching the distributions to uncover it. In this way, we can extend the conceptual idea

expounded here. It remains to determine what restrictions on primitives are needed to ensure

full invertibility. Notice that we would need demand and (at least) two other distributions to

determine the primitive distribution (and hence all the others.) Conversely, we would need at

least three economic distributions to find the demand and the whole system. More generally,

the informational requirements would increase with the number of dimensions of heterogeneity

of primitive variables.

21Anderson and de Palma (2020) look at a one-dimensional version of this model for logit-CES with cost
depending monotonically on quality.
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Appendix

Proof of Theorem 9

The assumption that FY and FΠ are C1 distributions means that we can invert them and

write each of them as a function of the counter z. Both output and profit are increasing

functions of cost, c. Therefore we can match the distributions: the firms with the highest z%

of the costs are those with the lowest z% of the outputs and profits. Furthermore, because the

distribution functions are differentiable, then z is a differentiable function of the underlying

cost, and we can invert it. Call this inverted relation c (z), with c′ (z) < 0.

Choose some arbitrary level z ∈ (0, 1) such that 1−FC (c) = FY (y) = FΠ (π) = z. Then the

firms with cost levels above c (z) = F−1
C (1− z) are the firms with outputs and profits below

y and π. For this proof, we introduce z as an argument into the various outcome variables to

track the dependence of the variables on the level of z (c) = 1−FC (c). However, the expression

for FC (c) is not known at this point.

Write y (z) = F−1
Y (z) and equilibrium demand is

h∗ (c) = y (z (c)) = F−1
Y (1− FC (c)) > 0. (21)

Because π∗ (z (c)) = m (z (c)) y (z (c)) = F−1
Π (z (c)), then

m (z (c)) =
F−1

Π (z (c))

F−1
Y (z (c))

= µ (c) , (22)

and equilibrium profit is π∗ (z ((c))) = µ (z (c))h∗ (z (c)) = F−1
Π (z (c)).

From Lemma 5 we have π∗′ (z (c)) = −h∗ (z (c)), so the relation between the counter z and

the cost level c with z (c) = 1,z (c) = 0 is dz /dc = −h∗ (c)
/

[π∗ (z (c))]′ , and hence

z′ (c) = − F−1
Y (z (c))[

F−1
Π (z (c))

]′ < 0. (23)
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Thus Ψ (z) = −
∫ c
c̄
dv = c̄−c,or c (z) = c̄−Ψ (z), where Ψ (z) is the key transformation between

z and c :

Ψ (z) =

∫ z

0

[
F−1

Π (r)
]′

F−1
Y (r)

dr, (24)

with Ψ (0) = 0, Ψ (1) = c̄ − c. Because Ψ′ (z) =
[F−1

Π (z)]
′

F−1
Y (z)

> 0, the required relation between z

and c is z (c) = Ψ−1 (c̄− c).

Since p = h (µ (c) + c), the inverse demand is p =
F−1

Π (z(c))

F−1
Y (z(c))

+ c =
F−1

Π (Ψ−1(c̄−c))
F−1
Y (Ψ−1(c̄−c)) + c. This

makes clear that a shift up in all costs by ∆ and a corresponding shift up in the inverse demand

by ∆ (so the domain of the cost distribution shifts up by ∆, i.e., c̄ becomes c̄+ ∆) keeps both

the firm’s output choice and mark-up constant so output and profit are not changed. This

means that these two distributions can only pin down net (inverse) demand.

This allows us to uncover the distribution of cost, which is thus given by

FC (c) = 1− z (c) = 1−Ψ−1 (c̄− c) . (25)

The remaining unknowns can be backed out now knowing z (c): equilibrium demand is h∗ (c) =

F−1
Y (Ψ−1 (c̄− c)) from (21). Therefore, since h∗ (c) is strictly decreasing in c, by Lemma 4 we

can claim there exists a demand function h (p) which satisfies A1 up to a constant. Note that

this is exactly the property that the (21) delivers because Ψ−1 (c̄− c) is strictly decreasing in c

(from (25)). Finally, the mark-up function is recovered from µ (c) =
F−1

Π (Ψ−1(c̄−c))
F−1
Y (Ψ−1(c̄−c)) from (22).

Details for ρ-linear examples

First suppose that we know FY (y) = (1+ρ)yρ−1
ρ

, y ∈
[

1

(1+ρ)1/ρ , 1
]
, and FΠ (π) = (1+ρ)πρ/(1+ρ)−1

ρ
,

π ∈
[

1

(1+ρ)(1+ρ)/ρ , 1
]
, with ρ > −1.

Hence F−1
Y (z) =

(
ρz+1
1+ρ

)1/ρ

and F−1
Π (z) =

(
ρz+1
1+ρ

)(1+ρ)/ρ

. By (22), the ratio of these two

yields the mark-up, m (z) = ρz+1
1+ρ

> 0. Because
[
F−1

Π (z)
]′

=
(
ρz+1
1+ρ

)1/ρ

, we can write Ψ (z) =∫ z
0

[F−1
Π (r)]

′

F−1
Y (r)

dr = z = c− c, so c (z) = c− z (c′ (z) = −1). Now, FC (c) = 1−Ψ−1 (c̄− c) = c− c
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(Uniform cost.) Hence µ (c) = ρ(c−c)+1
1+ρ

(from (22). Then y (c) = F−1
Y (z (c)) =

(
ρ(c−c)+1

1+ρ

)1/ρ

,

and h∗ (c) = y (c). We now want to find the associated demand, h (p). We use the fact that

p = µ (c) + c = 1+c+ρc
1+ρ

to write h (p) = (1 + ρ (c̄− p))1/ρ, which is therefore a ρ−linear demand

function with the parameter k set at k = c̄, and ρ > −1 implies h (.) is (−1)-concave.

Note that y (c) =
(

1
1+ρ

)1/ρ

, as verified by the upper bound, c, while the lower bound

condition c = c − 1 implies that y (c) = 1, so costs are uniformly distributed on [c, c]. Lastly,

lim
ρ→0

y (c) = exp (c− c− 1) gives the logit equilibrium demand.

Suppose now that it is known that FC (c) = c for c ∈ [0, 1] and FΠ (π) = (1+ρ)πρ/(1+ρ)−1
ρ

.

We first write π∗ (c) to find h∗ (c) = −π∗′ (c). Matching the distribution levels, 1 − c =

(1+ρ)πρ/(1+ρ)−1
ρ

, or π∗ (c) =
(
ρ(1−c)+1

1+ρ

)(1+ρ)/ρ

and hence the domain of the profit function is

π ∈
[

1

(1+ρ)(1+ρ)/ρ , 1
]
. Hence y (c) = h∗ (c) =

(
ρ(1−c)+1

1+ρ

)1/ρ

, so both output and profit are power

functions. Then we use c = 1 − FY (y) with FY (y) = (1+ρ)yρ−1
ρ

to get , µ (c) = π∗(c)
h∗(c) =(

ρ(1−c)+1
1+ρ

)
= [h∗ (c)]ρ (consistent with: y (c)ρ =

(
ρ(1−c)+1

1+ρ

)
). Now use p = µ (c) + c to find

h (p) = (1 + ρ (1− p))1/ρ and hence the (ρ-linear) demand form is tied down, including the

value of the constant (k = 1: see (11), and consistent with the specification c = 1). Finally,

we use (16) to write µ′ (c) = fC(c)
fP (p)

− 1; so fP (p) = 1 + ρ and FP (p) = (1 + ρ) (p− 1) for

p ∈
[
1, 2+ρ

1+ρ

]
.
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