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Decision Theory and Stochastic Growth†

By Arthur Robson, Larry Samuelson, and Jakub Steiner*

This paper examines connections between stochastic growth and 
decision problems. We use tools from the theory of large deviations to 
show that wishful thinking decision problems are equivalent to utility 
maximization problems, both of which are equivalent to growth max-
imization under idiosyncratic risk. Rational inattention problems are 
equivalent to  growth-optimal portfolio problems, both of which are 
equivalent to growth maximization under aggregate risk. Stochastic 
growth generates extreme inequality, with nearly all wealth eventu-
ally held by those who happen to have faced empirical distributions 
that match the solution to the wishful thinking or rational inattention 
problem. (JEL D31, D81, D82, D83, G51, O41)

This paper derives and exploits connections between stochastic growth in large 
economies and individual decision problems.

We show that a decision model of wishful thinking is equivalent to standard 
expected utility maximization under a modified utility function and that rational 
inattention problems are equivalent to  growth-optimal portfolio problems. We then 
introduce the stochastic growth model, tracking wealth accumulation in a con-
tinuous population of agents that face idiosyncratic or aggregate risk. In the for-
mer case, each agent faces her own draw of the payoff state. In the latter case, all 
agents face the same draw. We show that expected utility maximization and wishful 
thinking are equivalent to growth maximization under idiosyncratic risk, while the 
 growth-optimal portfolio problem and rational inattention optimization are equiva-
lent to growth maximization under aggregate risk. Hence, in each of the following 
rows, the growth process and the two representations are equivalent:

Growth process Representations

Idiosyncratic risk Expected utility 
maximization

Wishful thinking

Aggregate risk  Growth-optimal 
portfolio

Rational inattention 
problem
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These results reflect a basic  trade-off between the likelihood and the growth 
implications of a sequence of realizations of random shocks. Wealth accumulation 
involves a product of stochastic financial returns. The empirical distribution of these 
returns occasionally exhibits extremely unlikely deviations from the true distribu-
tion. Such large deviations have a negligible effect under an additive objective, such 
as maximizing the sum of flow utilities. However, they are of  first-order importance 
under our multiplicative objective because the extremely small probability of a large 
deviation can be compensated by an extremely large wealth advantage. We show 
that a standard tool from the theory of large deviations captures this  trade-off, lead-
ing to straightforward proofs of the equivalences.

Tracking the population dynamics allows us to isolate the statistical properties of 
stochastic growth of wealth and to connect these to their  decision-theoretic coun-
terparts. First, stochastic growth generates extreme wealth concentration. Nearly 
all wealth is held by a fraction of the population that has enjoyed a specific “large 
deviation,” and this fraction vanishes exponentially with time. For the growth pro-
cess with idiosyncratic risk, the wealth concentration increases at the rate that equals 
the expenditure on belief distortion in the wishful thinking model. For the aggregate 
risk case, the wealth concentration increases at the rate that equals the expenditure 
on information acquisition in the rational inattention model. Second, the agents who 
end up owning nearly all wealth in the two processes enjoy the empirical distribu-
tion of payoff states given by large deviations. Under idiosyncratic risk, these “win-
ners” of the growth process face an empirical distribution of states that equals the 
subjective distribution chosen by the wishful thinker. Similarly, the “winners” under 
aggregate risk face an empirical joint distribution of states and actions equal to that 
of the optimizing rationally inattentive decision-maker.

One message of our results is that distinct processes may generate identical 
data. An analyst examining choice data may conclude that an individual is a wish-
ful thinker rather than an expected utility maximizer (or vice versa). These repre-
sentations of choice data reflect different views of a process of economic growth 
with idiosyncratic uncertainty. A perspective that focuses on the  short-run growth 
of aggregate wealth corresponds to expected utility maximization, whereas an 
equivalent perspective that focuses on  long-run growth of individuals’ wealth cor-
responds to wishful thinking. Analogously, distinct but equivalent perspectives on 
economic growth with aggregate uncertainty correspond to  rational inattention and 
 growth-optimal portfolio problems. One might view these equivalences as a motiva-
tion for misspecification. We prefer a somewhat different interpretation—multiple 
equivalent representations are useful because they correspond to distinct, economi-
cally relevant aspects of the growth processes.

As an example of how these connections can be exploited, we show that 
rational inattention techniques can be used to derive comparative statics for the 
 growth-optimal portfolio problem. We find that under a regularity condition, the 
increase in the growth rate induced by a provision of a public signal equals the 
mutual information between the signal and the underlying state and that the pro-
vision of the public signal reduces inequality. In a related result, we show that a 
decline of the growth rate caused by a misspecification of the prior distribution 
of the payoff shocks equals the  Kullback-Leibler divergence of the true prior 
from the misspecified one. Strikingly, the value of information and the cost of  
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misspecification arising in the context of growth are universal in that they do not 
depend on the details of the underlying utility.

Growth processes with idiosyncratic and aggregate risks were introduced by 
Robson (1996). A subsequent literature, surveyed by Robson and Samuelson (2011), 
has explored this distinction. For example, Robson and Szentes (2014) examine the 
evolutionary foundations of time preferences, Steiner and Stewart (2016) examine 
the evolutionary foundations of distorted beliefs, and Sadowski and Sarver (2021) 
argue that evolution can select for ambiguity-averse preferences. Like this litera-
ture, we use growth processes to provide insights into  decision-theoretic models, 
while also using decision theory insights to derive statistical properties of growth 
processes.

Somewhat further afield, Dillenberger, Postlewaite, and Rozen (2017) show 
that the behavior of an expected utility maximizer is indistinguishable from that 
of an agent with a transformed utility function and motivated beliefs, without 
appealing to growth considerations. Benhabib and Bisin (2018) stress the propen-
sity of stochastic growth to give rise to inequality, without making connections 
to decision theory. Heller and Robson (2021; Section VI) also obtain a growing 
inequality result but do not characterize this in terms of large deviations. Williams 
(2004) emphasizes the importance of large deviations for stochastic growth  
processes.

I. A Large Deviation Result

Our basic tool is an insight from large deviation theory. Consider a random variable  
x  with a  full-support distribution  p ∈ Δ (X)   on a finite set  X .1 Let  f  be a  real-valued 
function on  X . Let  D (q ∥ p)  =  E q   ln (q (x) /p (x) )  ≥ 0  be the  Kullback-Leibler diver-
gence of the distributions  q  and  p , commonly interpreted as the (pseudo) distance 
of the probability distribution  q  from the reference distribution  p .2 Dupuis and Ellis 
(1997; Proposition 1.4.2) prove the following:

LEMMA 1 ( Donsker-Varadhan Lemma):

(1)  ln  E p    e      f  (x)   =   max  
q∈Δ (X) 

   { E q    f  (x)  − D (q ∥ p) } . 

The maximum in (1) is attained, as the objective is a continuous function on a com-
pact set.

We develop a heuristic derivation of (1) that highlights its relevance for stochastic 
growth. Suppose that some quantity begins at value   s  0   = 1  and is then governed by 
the multiplicative process   s t   =  e      f  ( x t  )     s t−1    for  t = 1, …, T . Assume that the values   
x t    are independently drawn from the distribution  p .

We show that each side of (1) is an (at least approximate) expression for 
the growth rate of the expected value of   s T   . First, since the realizations of   x t    

1 We denote random variables in bold throughout.
2 We use the usual convention that  0 ln 0 = 0 .
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are  independently drawn, we have  E  s T   =   ( E p    e      f  (x)  )    
T
  . Taking a log and dividing by  

T  to obtain a growth rate then gives the left side of (1):

(2)    1 _ T   ln E  s T   = ln  E p     e      f  (x)  . 

Alternatively, let   x   T  =   ( x t  )   t=1  T    denote the random sequence of length  T  gen-
erated by drawing according to  p  in each period. We can compute  E  s T    by aver-
aging over such sequences. Let   x   T   stand for the sequence realization and let  
  q  x   T    (x)  =   1 _ T    ∑ t=1  T   1 { x t   = x}  , so that   q  x   T    ∈ Δ (X)   is the empirical distribution for the 
sequence realization   x   T  . For each sequence realization   x   T  ,   s T    attains the value

(3)  exp [T ×  E  q  x   T       f  (x) ] . 

Ignoring divisibility concerns, the large deviation principle states that the log proba-
bility of observing an empirical probability  q ∈ Δ (X)   asymptotically approximates  
−T × I (q)   as  T  grows, where  I : Δ (X)  →  ℝ +    is a rate function. In this case, taking 
the expectation of (3) over random sequences, pooling sequences with the same 
empirical distribution  q , and applying the large deviation principle, we obtain

(4)    1 _ T   ln E  s T   ≈   1 _ T   ln  ∫ q∈Δ (X)   
 
    exp [T ×  ( E q    f  (x)  − I (q) ) ] dq

 ≈   1 _ T   ln exp [T ×   max  
q∈Δ (X) 

   { E q    f  (x)  − I (q) } ] 

 =   max  
q∈Δ (X) 

   { E q    f  (x)  − D (q ∥ p) } . 

For the first approximate equality, observe that the contribution of each empir-
ical distribution  q  to the expectation is the realized value of   s T    (given by (3)) 
multiplied by the probability of  q  (approximately equal to   e   −T×I (q)   , by the large 
deviation principle). For the second approximate equality, note that all these con-
tributions are exponential functions of  T . When  T  is large, all the contributions 
are dominated by the exponential function with the largest exponent.3 Finally, by 
Sanov’s theorem (Cover and Thomas 1999; Section 11.4), there is a rate function 
given by  I (q)  = D (q ∥ p)  —the probability of observing an empirical sequence  q , 
when draws are taken from the distribution  p , decays exponentially with the length 
of the sequence at a rate equal to the  Kullback-Leibler divergence of the empirical 
distribution  q  from the actual distribution  p .4 Applying this result and simplifying 
gives the final equality.

3 This argument is referred to as the Laplace principle in the large deviation theory.
4 To build intuition, suppose that  n  independent draws are taken from a coin whose probability of a head is  p . 

Then, letting  q = k/n , the log of the probability of  k  heads, divided by  n , is given by

    1 _ n   ln   n! _ 
k! (n − k) !    p   k   (1 − p)    n−k  =   1 _ n   [ln n! − ln k! − ln (n − k) ! + k  ln p +  (n − k) ln (1 − p) ]  

  =   1 _ n   [n  ln n − k  ln k −  (n − k) ln (n − k)  + k  ln p +  (n − k) ln (1 − p)  + O (ln n) ]  
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Combining (2) and (4) gives an approximation of the desired result, (1). The 
approximation becomes arbitrarily sharp as  T  grows, giving the equality in (1).

II. Two Equivalences

We establish two equivalences between pairs of decision problems. These prob-
lems are built on the following common foundation. An agent chooses action  a ∈ A  
and receives payoff  u (a, θ)  , where the payoff state  θ  is a random variable drawn 
from the distribution  p  that attains values in  Θ . The sets  A  and  Θ  are finite for sake 
of simplicity. We call the pair   (  p, u)   a problem.

A. Expected Utility and Wishful Thinking

We first show that expected utility maximization is behaviorally equivalent to wish-
ful thinking. The expected utility maximizer in problem   (  p, u)   chooses an action in

(5)   A  eu  ∗   (  p, u)  =  arg max  
a∈A

     E p    u (a, θ) . 

The wishful thinker in problem   (  p, u)   solves

(6)    max  
a∈A,q∈Δ (Θ) 

   { E q    u (a, θ)  − D (q ∥ p) } . 

That is, the wishful thinker chooses a subjective belief  q  at distortion cost  D (q ∥ p)  ,  
chooses an action  a , and enjoys subjective expectation   E q    u (a, θ)   formed under the 
distorted belief. We let   A  wt  ∗   (  p, u)   denote the set of actions that, together with some 
subjective belief, optimize the objective in (6). Caplin and Leahy (2019) have intro-
duced this model as a psychologically plausible procedure.5

PROPOSITION 1: Wishful thinking with utility function  u (a, θ)   is behaviorally 
equivalent to expected utility maximization with the monotonically transformed util-
ity function  U (a, θ)  =  e   u (a,θ)   :

   A  wt  ∗   (  p, u)  =  A  eu  ∗   (  p, U) . 

Thus, even though the two models appear to be conceptually and procedurally dis-
tinct, they have the same normative appeal. In fact, an analyst, who does not observe 
the decision-maker’s utility function, cannot distinguish the two models based on 
choice data.

  = −q  ln q −  (1 − q) ln (1 − q)  + q  ln p +  (1 − q) ln (1 − p)  +   
O (ln n) 

 _ n   

  ≈ −D (q ∥ p) , 

where the second equality follows from an application of Stirling’s formula ( ln n! = n  ln n − n + O (ln n)  ).
5 Little (2022) studies a special case of the wishful thinking model in which the agent makes no action choice.
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PROOF OF PROPOSITION 1:
Since the logarithm is an increasing function, the expected utility maximizer in 

problem   (  p, U)  =  (  p,  e   u )   solves

   max  
a∈A

    ln  E p     e   u (a,θ)  . 

By the  Donsker-Varadhan lemma, this is equivalent to

    max  
a∈A,q∈Δ (Θ) 

   { E q    u (a, θ)  − D (q ∥ p) } , 

where the last optimization is the problem of the wishful thinker, as needed. ∎

Strzalecki (2011; pages 56–57), in the course of providing an axiomatic founda-
tion for the multiplier preferences of Hansen and Sargent (2001) and Hansen et al. 
(2006), uses a similar argument to establish an equivalence between multiplier pref-
erences and expected utility maximization.6

B.  Growth-Optimal Portfolios and Rational Inattention

Now interpret  A  as a set of assets. The asset  a ∈ A  yields the growth rate  
 u (a, θ)   and hence the gross return   e   u (a,θ)    in state  θ . The portfolio that distributes an 
investor’s wealth in proportions  α (a)   across assets  a ∈ A  then enjoys the growth 
rate  ln ( E α     e   u (a,θ)  )   in each state  θ , where we formalize the portfolio as a random vari-
able  𝐚  drawn from distribution  α ∈ Δ (A)  . Following a large literature originating 
in Kelly (1956) and surveyed in Christensen (2005), we say that a mixed strategy   
α   ∗  ∈ Δ (A)   is a  growth-optimal portfolio for   (  p, u)   if

(7)   α   ∗  ∈  arg max  
α∈Δ (A) 

     E p   ln ( E α     e   u (a,θ)  ) . 

The solution to (7), the  growth-optimal portfolio problem, maximizes the expected 
growth rate of the value of the portfolio. Appealingly, an investor who rebal-
ances her investment proportions according to   α   ∗   every period achieves at least as 
high an asymptotic growth rate of wealth as any other strategy; see, for example, 
Cover and Thomas (1999; Theorem 16.3.1). See Section III for the evolutionary 
reinterpretation.

6 Strzalecki (2011) shows that in an Anscombe and Aumann (1963) setting, multiplier preferences are the intersec-
tion of variational preferences (Maccheroni, Marinacci, and Rustichini 2006) and  second-order expected utility pref-
erences (Ergin and Gul 2009). In a setting with only subjective uncertainty, as examined here, multiplier preferences 
are equivalent to expected utility maximization. More precisely, the multiplier problem   max a∈A    min q∈Δ (Θ)   { E q    u (a, θ)   
+ D (q ∥ p) }  (interpreted as calling for the maximizing agent to choose an action  a , knowing that nature will then 
choose a belief  q  at cost  D (q ∥ p)   that minimizes the agent’s expected utility) has the same solution as the utility 
maximization problem   max a∈A  { E p∈Δ (Θ)    −  e   −u (a,θ)  } .
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We show that the  growth-optimal portfolio problem is equivalent to an associated 
rational inattention problem. In the latter problem, as introduced by Matějka and 
McKay (2015), a decision-maker chooses a  state-contingent stochastic choice rule  
q (a ∣ θ)  ∈ Δ (A)   for each state  θ  and solves

(8)    max  
q∈Δ  (A)    Θ 

   { E p,q    u (a, θ)  −  I p,q   (a; θ) } , 

where the optimization is over rules  q = (q(a ∣ θ ) ) a,θ    . Matějka and McKay (2015) 
motivate the objective in (8), the rational inattention problem, as an information 
acquisition problem: a more informed choice rule  q  achieves a higher expected pay-
off but incurs a higher information cost. The authors set this cost to the mutual 
information

   I p,q   (a; θ)  = H (θ)  − H (θ ∣ a) , 

where  H  stands for (conditional) entropy.7

A marginal action distribution   q   ∗  (a)   is induced by the solution of the rational 
inattention problem if   q   ∗  (a)  =  E p    q   ∗  (a ∣ θ)   and the rule   q   ∗  (a ∣ θ)   solves (8).

PROPOSITION 2: An action distribution is induced by the solution of the rational 
inattention problem if and only if it is the  growth-optimal portfolio.

Again, the equivalence between the two problems holds despite their proce-
dural differences: an investor in (7) cannot acquire information, while the deci-
sion-maker in (8) can. This proposition is mathematically equivalent to Lemma 2 
in Matějka and McKay (2015), who offer a proof based on a characterization (their  
Theorem 1) of the solution of the rational inattention problem. Matějka and McKay 
(2015) do not draw the connections to the investment problem or to the growth pro-
cess. Sections IIIB and IIIC illustrate how these connections can be useful.

PROOF OF PROPOSITION 2:
For each state  θ ∈ Θ  and any strategy  α , applying the  Donsker-Varadhan lemma 

to the random action  a ∣ θ  gives

  ln ( E α     e   u (a,θ)  )  =   max  
q (a∣θ) ∈Δ (A) 

   { E q (a∣θ)     u (a, θ)  − D (q (a ∣ θ)  ∥ α (a) ) } . 

Taking an expectation over  θ  with respect to  p  and then maximizing over  α ∈ 
Δ (A)  , the left side of this equation becomes the  growth-optimal portfolio problem, 
which is accordingly equivalent to

(9)    max  
α∈Δ (A) ,q∈Δ  (A)    Θ 

   { E p,q   u (a, θ)  −  E p   D (q (a ∣ θ)  ∥ α (a) ) } . 

7 Hence,  H (θ)  = − ∑ θ       p (θ) ln p (θ)   and  H (θ ∣ a)  =  ∑ a       q (a) H (θ ∣ a = a)  .
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It is now a straightforward calculation that (9) is equivalent to the rational inatten-
tion problem. In particular, the chain rule for  Kullback-Leibler divergence implies 
that

  D (  p (θ) q (a ∣ θ)  ∥ p (θ) α (a) )  = D (  p (θ)  ∥ p (θ) )  +  E p   D (q (a ∣ θ)  ∥ α (a) ) 

 = D (q (a)  ∥ α (a) )  +  E q (a)    D (q (θ ∣ a)  ∥ p (θ) ) , 

where the left side is the divergence of two joint distributions,  q (a)  =  E p   q (a ∣ θ)   is 
the marginal action distribution for prior  p  and rule  q (a ∣ θ)  , and  q (θ ∣ a)   is the con-
ditional state distribution for a given action  a . Since  D (p (θ)  ∥ p (θ) )  = 0 , we have

   E p   D (q (a ∣ θ)  ∥ α (a) )  = D (q (a)  ∥ α (a) )  +  E q (a)    D (q (θ ∣ a)  ∥ p (θ) ) . 

Thus, the expected divergence in (9) is for a given rule  q (a ∣ θ)   minimized by  
 α (a)  = q (a)  . Hence, expression (9) and in turn the  growth-optimal portfolio prob-
lem are equivalent to

    max  
q∈Δ  (A)    Θ 

   { E p,q   u (a, θ)  −  E q (a)    D (q (θ ∣ a)  ∥ p (θ) ) } . 

This last problem is equivalent to the rational inattention problem as needed because

   I p,q   (θ; a)  =  E q (a)    D (q (θ ∣ a)  ∥ p (θ) ) .  ∎

An analyst with access to the type of data typically associated with a 
 revealed-preference exercise—a collection of problems and selected alternatives—
would be unable to distinguish wishful thinking or rational inattention from their 
behaviorally equivalent counterparts. Richer data would give the analyst more power. 
The state-dependent stochastic choice data of Caplin and Dean (2015) would make 
the information acquisition of rational inattention apparent. In a similar vein, data 
that included objective and elicited subjective beliefs could detect wishful thinking.

III. A Population Perspective

We have phrased the problems of Section  II as problems of a single deci-
sion-maker. We now consider a continuum of agents who repeatedly experience 
draws of the state. We consider two cases. In one case, each agent faces an indepen-
dent draw, which leads to expected utility maximization. In another case, all agents 
face the same draw, which leads to the  growth-optimal portfolio problem with hedg-
ing over the finite action set occurring on the aggregate level.

Time is discrete, with the length  δ  of the periods  t = 1, 2, …  in this section 
normalized to  δ = 1 . In our leading interpretation, we normalize the size of 
the population and the initial wealth of each agent to one. Each agent chooses a 
private action  a ∈ A  each period and enjoys wealth   w t   =  e   u (a, θ t  )    w t−1    at the end of 
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each period  t , where   θ t    is drawn from  p ∈ Δ (Θ)  , independently across periods.8 
Alternatively, we can interpret the process as demographic growth. We normalize 
the initial population size to one and interpret  a  as a characteristic a parent transmits 
to her offspring, with   e   u (a,θ)    then being the attendant expected number of surviving 
offspring and   w t    the size of the population at time  t .

In the idiosyncratic uncertainty variant, the payoff shocks   θ t    are independent 
across agents. We impose a law of large numbers on the continuous population. 
Hence, if all agents choose an action  a  in all periods, the population wealth in 
period  t  is    ( E p     e   u (a,θ)  )    

t
   with certainty. We seek an action that maximizes the growth  

rate of the population’s wealth and hence solves9

(10)   max  
a∈A

    ln  E p     e   u (a,θ)  . 

Since the logarithmic transformation does not affect the maximizer, this prob-
lem is equivalent to the expected utility maximization problem, (5), with utility  
 U (a, θ)  =  e   u (a,θ)   .

In the aggregate uncertainty variant of the growth process, we assume that all 
agents in each period  t  are subject to the same  period-dependent   θ t   . We let each agent 
randomize their action according to a mixed strategy  α ∈ Δ (A)   independently 
across agents and periods. We again assume that a law of large numbers applies to 
the continuous population. Hence, if the share of the agents choosing an action  a  is  
α (a)  , the population’s aggregate wealth is multiplied by factor   E α     e   u (𝐚,θ)    in each state  
θ . We seek a strategy   α   ∗   that maximizes the long-run growth rate of the population’s 
wealth—that is, the solution of the  growth-optimal portfolio problem:

    max  
α∈Δ (A) 

    E p    ln ( E α     e   u (a,θ)  ) . 

Our implicit assumption in adopting these objectives is that strategies maximiz-
ing the long-run aggregate wealth of the population will dominate the population. 
This will be the case if these strategies are deliberately chosen by maximizing 
agents. Alternatively, this prevalence will emerge, no matter how strategies are cho-
sen, if market forces cause wealth-maximizing strategies to displace other strate-
gies (cf. Blume and Easley 1992) or if more successful strategies are imitated. 
Wealth-maximizing strategies will automatically dominate if one samples behav-
ior according to wealth or if the growth process is interpreted as population growth  
(cf. Tanny 1981).

Under idiosyncratic risk, every finite sequence of states is realized for some 
segment of the population and nearly all aggregate growth occurs along atypi-
cal sequences of states. We characterize these atypical sequences by applying 
the  Donsker-Varadhan lemma to the stochasticity of states, leading to the wishful 

8 Our investor relentlessly reinvests all of her wealth. Allowing her to consume a fixed proportion of her income 
in each period would add a constant to the growth objective while preserving the results. Total reinvestment is 
appropriate in a biological interpretation of the growth process.

9 Allowing for mixed actions,  period-dependent or  history-dependent choice is inconsequential under idiosyn-
cratic risk since an optimal  history-independent and  time-independent pure action always exists.
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 thinking representation. Under aggregate risk, the growth rate is maximized along 
the typical sequences of shocks but some fractions of the population enjoy large 
deviations in the sequences of their actions. Proposition 2.2 characterizes these 
atypical sequences by applying the  Donsker-Varadhan lemma to the stochasticity of 
actions, leading to the rational inattention representation.

A. Idiosyncratic Uncertainty

This subsection connects the equivalence between expected utility maximiza-
tion and wishful thinking established in Proposition 1 to growth under idiosyncratic 
risk. We show that a  wealth-weighted sampling of the population’s realized states 
reproduces the optimally distorted distribution   q   ∗   from the wishful thinking prob-
lem. Population wealth becomes concentrated on a vanishingly small subpopulation 
whose empirical distribution of realized states matches   q   ∗   and whose size shrinks at 
a rate equal to the belief distortion expense in the wishful thinking representation.

Consider a large time horizon  t . Under idiosyncratic risk, any empirical dis-
tribution  q  of states is enjoyed by a fraction of population of approximate size   
e   −t×D (q∥p)    up to period  t  (again ignoring divisibility concerns). If the popula-
tion chooses an action  a , agents from the subpopulation experiencing empiri-
cal distribution  q  have enjoyed growth rate   E q    u (a, θ)   and hold aggregate wealth  
 exp [t ×  ( E q    u (a, θ)  − D (q ∥ p) ) ]   at the end of period  t . The first term in the expo-
nent describes the growth rate of per capita wealth of this subpopulation, while the 
second describes the rate of decline of the subpopulation.

The law of large numbers can be misleading when examining the distribution 
of wealth. Some sequences of realized states will be exponentially rare, but these 
sequences may beget exponentially large wealth. The aggregate wealth of the entire 
population will be approximated by the wealth of the subpopulation whose sequence 
of realized states appropriately balances these two forces—that is, that has enjoyed 
the empirical distribution   q   ∗   that maximizes   E q    u (a, θ)  − D (q ∥ p)  . An  ever-growing 
fraction of the population’s wealth, approaching one in the limit, will be held by this 
 ever-shrinking subpopulation, whose size becomes negligible in the limit, while the 
wealth of the residual population also becomes negligible. To secure a nonnegligible 
wealth share, an agent needs to be lucky in order to experience the optimal large 
deviation of shocks and needs to be prepared in the sense of choosing an action that 
maximizes the growth rate under this deviation.

To make these remarks precise, define the sampled distribution as

(11)   q ̃   (θ)  =   
p (θ)  e   u ( a   ∗ ,θ)  
 _ 

 E p     e   u ( a   ∗ ,θ)  
  , 

where   a   ∗   is the optimal action from the idiosyncratic growth problem, (10). To 
interpret the sampled distribution, think of sampling a dollar uniformly from the 
population wealth at the end of any given period. The numerator is proportional 
to aggregate wealth generated by state  θ , and the denominator is proportional to 
the total wealth. Hence,   q ̃    is the distribution of the payoff state  θ  of the dollar’s 
owner from this period. A naive frequentist who learns the distribution of states 
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by sampling agents proportionally to their wealth learns the sampled distribution. 
Alternatively, a population biologist who took an unweighted sample of survivors 
would learn the sampling distribution.

COROLLARY 1: The sampled distribution   q ̃    equals the distorted distribution   q   ∗   
chosen by the wishful thinker.

PROOF OF COROLLARY 1:
The  first-order conditions in the wishful thinking optimization problem,

   max  
q
    {  ∑ 

θ∈Θ
    q (θ) u ( a   ∗ , θ)  − D (q ∥ p) }  

    subject to   ∑ 
θ∈Θ

    q (θ)  = 1, 

have a unique solution, given by

(12)   q   ∗  (θ)  =   
p (θ)  e   u ( a   ∗ ,θ)  
 _ 

 E p     e   u ( a   ∗ ,θ)  
  , 

which coincides with the sampled distribution   q ̃    from (11). ∎

For intuition for Corollary 1, think of sampling a dollar in period  t , tracing the 
predecessor dollar whose investment generated the terminal dollar, and tracing the 
predecessor’s predecessor, and so on. The payoff shocks experienced by the owner 
of these dollars are independently drawn from the sampled distribution   q ̃   . By the 
law of large numbers, the empirical state distribution experienced by the owner of 
the random dollar sampled at  t  is likely to be near   q ̃    when  t  is large. But for large  t , 
nearly all wealth is owned by agents who have enjoyed the optimal large deviation   
q   ∗  , which is also the distorted distribution of the wishful thinker, ensuring   q ̃   =  q   ∗  .

The next result describes a debiasing procedure that arises endogenously in our 
setting and is akin to the  robust-control approach of Hansen and Sargent (2011).

COROLLARY 2: Let   a   ∗   be the optimal action and   q   ∗   be the sampled distribution in 
the growth process with prior  p  and growth rates  u (a, θ)  . Then

(13)  p ∈  arg min  
p′
    { E p′   u ( a   ∗ , θ)  + D (p′ ∥  q   ∗ ) } . 

In Hansen and Sargent (2011), an agent faces a generic decision problem under 
uncertainty and observes the distribution   q   ∗  . The agent assumes that the true distri-
bution of payoff states is within a  Kullback-Leibler divergence ball of distributions 
around   q   ∗   and selects the worst-case distribution from this ball. Our problem (13) 
coincides with this worst-case optimization relaxed by the Lagrange method with 
the Lagrange multiplier normalized to one.

To prove Corollary 2, we fix the optimal action   a   ∗   and trace the wealth of agents 
from period  t  backward. The states are distributed according to the sampled distribu-
tion   q   ∗  , and the wealth of each agent shrinks by   e   u ( a   ∗ , θ t  )    each period; that is, it grows 
with rate  −u ( a   ∗ ,  θ t  )  . The proof consists of characterizing the sampled distribution of 
this backward process.
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PROOF OF COROLLARY 2:
Consider a growth process with prior distribution   q   ∗  (θ)   and growth rates  

 u′ (a, θ)  = −u ( a   ∗ , θ)  . By (12), its sampled distribution is

    
 q   ∗  (θ)  e   u′ ( a   ∗ ,θ)  

  _________ 
 E  q   ∗     e   u′ ( a   ∗ ,θ)  

   =   
 q   ∗  (θ)  e   −u ( a   ∗ ,θ)  

  _  
 E  q   ∗     e   −u ( a   ∗ ,θ)  

   = p (θ)  e   u ( a   ∗ ,θ)    e   −u ( a   ∗ ,θ)   = p (θ) . 

By Corollary 1, the sampled distribution of this growth process is in

   arg max  
p′∈Δ (Θ) 

    {− E p′   u ( a   ∗ , θ)  − D (p′ ∥  q   ∗ ) }  =  arg min  
p′∈Δ (Θ) 

    { E p′   u ( a   ∗ , θ)  + D (p′ ∥  q   ∗ ) } . 

Hence,  p  is the minimizer of the problem on the right side, as needed. ∎

The wishful thinking representation is informative of an additional property 
of the stochastic growth process. A dollar sampled at any given period has orig-
inated from an investment with expected return   E  q   ∗    u ( a   ∗ ; θ)  , given by the sam-
pled distribution   q   ∗  . However, the growth rate of the aggregate wealth is only  
  E  q   ∗    u ( a   ∗ ; θ)  − D ( q   ∗  ∥ p)  . This difference in growth rates implies that wealth is 
becoming increasingly concentrated. Indeed, nearly all wealth is concentrated 
among the subpopulation that has enjoyed the optimal deviation and its size van-
ishes exponentially at rate  D ( q   ∗  ∥ p)  . Thus:

COROLLARY 3: The distortion expense  D ( q   ∗  ∥ p)   from the wishful thinking opti-
mization identifies the degree of wealth concentration in the idiosyncratic growth 
process, as all wealth becomes concentrated in a subpopulation whose size shrinks 
at rate  D ( q   ∗  ∥ p)  .

B. Aggregate Uncertainty

We now assume that in each period, a single payoff state   θ t    is drawn that applies 
to all individuals.We show that a  wealth-weighted sampling of the population’s 
realized actions reproduces the solution of the rational inattention problem. The 
population wealth becomes concentrated on a subpopulation whose size exponen-
tially vanishes at a rate equal to the information expense in the associated rational 
inattention problem.

Analogously to the sampled distribution from Section IIIA, we define the sam-
pled choice rule:

(14)   q ̃   (a ∣ θ)  =   
 α   ∗  (a)  e   u (a,θ)  
 _ 

 E  α   ∗     e   u (a,θ)  
  , for all θ, 

where the mixed strategy   α   ∗   is the maximizer of the  growth-optimal portfolio prob-
lem. We write   q ̃    for the  state-contingent system    ( q ̃   (a ∣ θ) )  

θ∈Θ
   .

For interpretation, again note that the owner of a dollar uniformly selected from 
the wealth of population at the end of any period  t  in which   θ t   = θ  has chosen 
action  a  with probability   q ̃   (a ∣ θ)  . While the actions chosen at the beginning of any 

http://individuals.We
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period are uncorrelated with the payoff state, the sampled choice rule oversamples 
successful actions and thus features correlation induced by the growth process itself. 
In the biological interpretation, sampling of surviving offspring yields the sampled 
choice rule.

COROLLARY 4: A rule solves the rational inattention problem if and only if it is 
the sampled choice rule.

PROOF OF COROLLARY 4:
We have shown in Proposition 2 that   α   ∗   equals the marginal action distribution 

induced by the choice rule that solves the rational inattention problem. Matějka and 
McKay (2015) show in their Theorem 1 that given   q   ∗  (a)  =  α   ∗  (a)  , the optimal 
choice rule   q   ∗  (a ∣ θ)   satisfies (14). ∎

The equivalence in Corollary 4 arises even though the agents in the growth pro-
cess cannot engage in information acquisition, in contrast to the decision-maker 
in the rational inattention problem. Again, the equivalence can be understood in 
terms of large deviation theory. For any finite time horizon, various fractions of the 
population in the growth process with aggregate risk experience empirical correla-
tions between their actions and states by luck. Some of these random correlations 
boost growth. Asymptotically, nearly all population wealth is concentrated among 
the subpopulation that has enjoyed sufficiently favorable but not too unlikely devi-
ations. The trade-off between the growth advantage of the deviation and its rarity is 
equivalent to the trade-off between the benefit and cost of information in the rational 
inattention problem.

An empirical researcher who samples agents proportionally to their wealth learns 
the joint distribution of actions and states that coincides with that of the rationally 
inattentive decision-maker. The researcher might be tempted to conclude that the 
agents acquire partial information about the states in a  cost-benefit calculation, even 
though the observed correlation pattern stems from uninformed hedging and selec-
tion bias.

Again, the  information-acquisition expense from the rational inattention problem 
corresponds to wealth concentration in the growth process.

COROLLARY 5: Asymptotically, almost all wealth is held by a fraction of popula-
tion whose size shrinks exponentially at rate   I p, q   ∗    (𝛉; a)  .

Aggregate wealth becomes concentrated on the subpopulation that has experi-
enced the optimal large deviation in their sequence of actions. The members of this 
subpopulation have been blessed by incredible luck and appear to have based their 
choices on (partial) information about the realized sequence of states.

C. Optimal Hedging

The  growth-optimal portfolio involves hedging. For example, suppose that an 
action matching the state gives a positive return, while an action that does not match 
the state gives a gross return of zero. Though matching the a priori most likely state 
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maximizes expected return, it also ensures bankruptcy. Instead, growth is maxi-
mized by matching each state with probability equal to its prior probability. See 
Bergstrom (2014); Robson (1996); and Robson and Samuelson (2011) for the evo-
lutionary context.

Solving for optimal hedging is in general difficult. The equivalence between the 
 growth-optimal portfolio and rational inattention problems allows us to transfer the 
methods derived for the latter problem to the first one. To illustrate this, we use 
rational inattention insights to derive sharp characterizations of the impact of public 
information and belief misspecification on growth and inequality. The characteriza-
tions are based on an analysis of posterior beliefs. These naturally arise in the ratio-
nal inattention setting, but their relevance for the growth process is less immediate.

Our baseline problem is the  growth-optimal portfolio problem, in which agents 
have no information beyond their prior. In our first application, we extend this 
baseline by letting agents condition their actions on a public signal. The payoff 
states   θ t    and public signals   y t    are drawn from a known joint distribution  p (θ, y)    
independently across periods. The agents optimize over stochastic choice rules  
 α (a ∣ y)   that specify conditional action distributions for each signal realization  y . The 
 growth-optimal portfolio problem with public information is then

   max  α     E p (θ,y)     ln ( E α (a∣y)      e   u (a,θ)  ) . 

We impose a regularity condition on the public signal. Let   q   ∗  (a ∣ θ)   be the sampled 
choice rule in the baseline problem without public information, and define poste-
rior distributions   q   ∗  (θ ∣ a)  =  q   ∗  (a ∣ θ)  [  p (θ) / q   ∗  (a) ]   for each action in the support of  
 α .10 We require that the public signal is not too informative.

Regularity Condition 1: The conditional state distribution  p (θ ∣ y)   is in the convex 
hull of   q   ∗  (θ ∣ a)  ,  a :  q   ∗  (a)  > 0 , for each realization  y .

We let   V    ∗   and   V    ∗∗   denote the growth rates achieved in the settings without and 
with information, respectively. We continue to write   α   ∗  (a)   for the optimal strategy 
in the baseline setting and write   α   ∗∗  (a ∣ y)   for the optimal rule in the setting with 
public information;   α   ∗∗  (a)  = E  α   ∗∗  (a ∣ y)   is the marginal action distribution.

PROPOSITION 3: Under Regularity Condition 1:

 (i) The provision of public signal increases the growth rate of wealth by the 
mutual information between the payoff state and the signal:

   V    ∗∗  −  V    ∗  = I (θ; y) . 

10 These posteriors can be interpreted in the growth context as the state distributions conditional on a dollar 
randomly sampled at the end of any period originating from action  a .
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 (ii) The marginal action distribution is unaffected by the information provision:

   α   ∗  (a)  =  α   ∗∗  (a) , for all a ∈ A. 

 (iii) The provision of public information diminishes the exponential rate of wealth 
concentration.

In our second application, we keep the same baseline and compare it to a setting 
in which the agents hold a biased prior belief  p′  and receive no information beyond 
the prior. Letting   α  p  ∗  ∈ Δ (A)   be the optimal strategy for the prior  p ,

  L (  p, p′)  =  E p   ln  E  α  p  ∗     e   
u (a,θ)   −  E p   ln  E  α  p′  ∗      e   u (a,θ)   

is the reduction of the growth rate caused by the optimization for the misspecified 
prior  p′  when the objective prior is in fact  p .

We require that the misspecification is not too large.

Regularity Condition 2: The misspecified belief  p′  is in the convex hull of  
  q   ∗  (θ ∣ a)  ,  a :  q   ∗  (a)  > 0 .

PROPOSITION 4: Under Regularity Condition 2, misspecification of the prior 
belief decreases the growth rate of wealth by  L (  p, p′)  = D (  p ∥ p′)  .

The value of information and the loss from misspecification in a static 
 single-person decision problem depend on the specific payoff function. In contrast, 
the implications of information and misspecification are strikingly simple in the 
context of growth; they are independent of the specific payoff function (under the 
regularity conditions). Moreover, the provision of (weak enough) public information 
introduces correlation between actions and states in the  growth-optimal portfolio 
problem but does not change the marginal action distribution. Thus, (weakly infor-
mative) public persuasion campaigns are ineffective in achieving  state-independent 
goals in this setting.

We use the next lemma to prove both propositions. Let the value function defined 
by   V    ∗  (  p)  =  max α    E p   ln ( E α    e   u (a,θ)  )   map each prior  p  to the optimal growth rate in 
the baseline setting.

LEMMA 2: The value function restricted to the convex hull of optimal posteri-
ors from the baseline setting satisfies   V    ∗  (  p)  = g (  p)  − H (  p)  , where  g  is a linear 
function.

The lemma follows from the “locally invariant posteriors” property of Caplin, 
Dean, and Leahy (2022).
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PROOF OF LEMMA 2:
Caplin, Dean, and Leahy (2022) observe that the rational inattention problem is 

equivalent to

   max  
𝐫
    E [v (𝐫)  + H (𝐫)  − H (  p) ]  

    subject to E 𝐫 = p, 

where  r ∈ Δ (Δ (Θ) )   is a random posterior and  v (r)  =  max a∈A    E r   u (a, θ)   for a real-
ized posterior  r . The term  E [H (  p)  − H (𝐫) ]   is the mutual information for the random 
posterior  r . The constraint is the Bayes plausibility condition.

Caplin, Dean, and Leahy (2022) point out that the support of the optimal random 
posterior equals the set of beliefs that support the tangent hyperplane of the concavi-
fication of  v (r)  + H (r)   above the prior belief. An implication, dubbed the locally 
invariant posteriors property by these authors, is that if   r   ∗   is the optimal random 
posterior for prior  p , the optimal random posterior for any prior  p′  in the convex hull 
of support of   r   ∗   has the same support as   r   ∗  . Letting   r   ∗  (  p)   be the optimal random 

posterior for a prior  p  implies that  E [v ( r   ∗  (  p) )  + H ( r   ∗  (  p) ) ]   is linear in  p . Thus, the 

lemma holds with  g (  p)  = E [v ( r   ∗  (  p) )  + H ( r   ∗  (  p) ) ]  . ∎

The locally invariant posteriors property allows us to reformulate our two regu-
larity conditions. They are equivalent to requirements that information provision, 
respectively misspecification, are sufficiently small so that they do not affect the set 
of actions that are chosen with positive probability.

PROOF OF PROPOSITION 3: 
The growth rate achieved under provision of the public signal  y  is a convex com-

bination of the growth rates achieved at priors  p (θ ∣ y)  :

   V    ∗∗  = E  V    ∗  (  p (θ ∣ y) ) . 

Claim (i) follows:

   V    ∗∗  −  V    ∗  (  p)  = E  V    ∗  (  p (θ ∣ y) )  −  V    ∗  (  p) 

 = H (  p)  − E H (  p (θ ∣ y) ) 

 = I (θ; y) , 

where the expectations are with respect to the signal  y . The second equality follows 
from Lemma 2: since the  p (θ ∣ y)   are in the convex hull of the optimal posteriors of 
the baseline problem by the regularity condition,   V    ∗  (  p)  = −H (  p)   up to an irrele-
vant linear term. Indeed, the linear term in   V    ∗   does not affect the difference because  
E p (θ ∣ y)  = p (θ)  .
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Claim (ii) follows from the fact that the prior probability of reaching any of the 
posteriors, and hence the probability of any of the actions, is unaffected by the signal 
provision. For claim (iii), note that the signal provision decreases the rate at which 
wealth concentrates by  I (θ; y)  ≥ 0 . ∎

PROOF OF PROPOSITION 4:
The growth rate   E p   ln  E  α   ∗  (  p′)      e   u (a,θ)    is a linear function of  p , the graph of which 

is a hyperplane tangent to   V    ∗  (  p)   at  p ′. The linearity follows from the fact that 
it is an expectation with respect to  p , and the tangency follows from the optimality of   
α   ∗  (  p′)   at prior  p′ . Thus,  L (  p, p′)   is the error of the linear approximation of   V    ∗   around  
p′  evaluated at  p . By Lemma 2, and since the linear term of   V    ∗   does not affect this 
error,  L (  p, p′)   is the error of the linear approximation of  −H (  p)   around  p′  evaluated 
at  p . Thus,  L (  p, p′)  = D (  p ∥ p′)   because  Kullback-Leibler divergence is a Bregman 
divergence associated with function  −H  (Bregman 1967). ∎

Cabrales, Gossner, and Serrano (2013) show that signal structures are ranked 
by mutual information in a class of static investment problems. Barron and Cover 
(1988) establish that in the absence of our regularity conditions, the characteriza-
tions derived here continue to be upper bounds on the value of information and on 
loss from misspecification, respectively.11 Frick, Iijima, and Ishii (2021) provide 
a distinct  problem-independent characterization of the loss from misspecification.

IV. Discussion

Beginning with Robson (1996), a large literature (discussed in Robson and 
Samuelson 2011) has examined models of biological growth subject to idiosyncratic 
or aggregate environmental risks. The basic finding of this literature, reflecting the 
concavity of the log function that appears in the  growth-optimal portfolio problem, 
is that evolution will select for greater aversion to aggregate than to idiosyncratic 
risk.

We can contribute to this insight by making the period length  δ  explicit, effec-
tively changing  u (a, θ)   to  δ u (a, θ)  . The optimization under the idiosyncratic risk then 
becomes equivalent to

    max  
a∈A,q∈Δ (Θ) 

   { E q    u (a, θ)  −   1 _ δ   D (q ∥ p) } , 

and the optimization under the aggregate risk becomes

    max  
q∈Δ  (A)    Θ 

   { E p,q    u (a, θ)  −   1 _ δ    I p,q   (a; θ) } . 

11 Our regularity condition is automatically satisfied in a special setting in which the investor’s wealth vanishes 
unless she correctly guesses the state (the  so-called horse race setting) because the optimal posteriors are fully 
informed in this case. The value of information has been characterized for this special case by Kelly (1956).
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Since the weight,  1/δ , of the two  information-theoretic terms explodes as the period 
length vanishes, the choices arising in both problems converge to the choices made 
in the expected utility maximization   max a    E p    u (a, θ)   for generic priors  p . Hence, the 
 growth-optimal portfolio involves no hedging when periods are sufficiently short. 
Robatto and Szentes (2017) and Robson and Samuelson (2019) discuss alternative 
conditions under which optimal choices under idiosyncratic and aggregate risk do 
or do not coincide.12

A natural extension of our setting would allow for serial correlations of the payoff 
states. We conjecture that the optimal choice arising under serial correlations can be 
represented by the dynamic extension of the rational inattention problem studied in 
Steiner, Stewart, and Matějka (2017). When the payoff states are serially correlated, 
optimal hedging may involve endogenous serial action correlations because wealth 
accumulation is enhanced by serial correlations of the growth rates. Such serially 
correlated hedging may lead to endogenous inertia of behavior, relevant for instance 
in the macroeconomic context of sticky prices.
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