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Abstract

We propose a theory of cooperative games with incomplete information. The
theory concerns stable interactions that cannot be undermined by coalitions and
is built on a criterion of rational counterfactual reasoning, which requires that
in every counterfactual scenario of coalitional deviation, every individual player
formulate a belief and act optimally, and in doing so they collectively prevent
the counterfactual scenario from actualizing. We equip the criterion with weak
consistency and strong consistency to reflect the alignment of players’ beliefs and
incentives in deviating coalitions, and demonstrate their implications through two
applications. We identify a condition of comonotonic differences that preserves
the efficiency of stable matching with incomplete information, where Tarski’s fixed
point theorem is a useful tool. We show that mutual costly signaling unravels
outcome-relevant incomplete information in networks.

1 Introduction
Cooperative solution concepts, such as the core and pairwise stability, find a wide range
of applications, for example in labor markets, school choices, social networks, family
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economics, international relations, and voting. They serve as descriptive theories or
normative criteria for analyzing markets and games. Quite remarkably, even though
both the cooperative framework of complete information and the non-cooperative frame-
work of incomplete information are richly developed, cooperative theories of incom-
plete information have not received adequate attention; “this area is to this day fraught
with unresolved conceptual difficulties” (Aumann and Heifetz, 2002); cooperative game-
theoretic analysis of practical economic applications with incomplete information is a
virtually uncharted territory. This under-exploration is especially noteworthy, given the
methodological comparative advantages of cooperative models for complex strategic in-
teractions on the one hand, and the practical prevalence of incomplete information on
the other.1

Complete
Information

Incomplete
Information

Non-Cooperative ✓ ✓

Cooperative ✓ ?

This paper presents a general approach to cooperative analysis of incomplete infor-
mation and explores its applications. Focusing on the core and stability, our departure
from the existing literature is both conceptual and applicational.

The foremost conceptual question of cooperative analysis of incomplete information
is to model how players make inferences about one another and form beliefs without re-
lying on ad hoc assumptions about individual strategies and strategic interactions. The
literature has experienced significant theoretical advancements since the breakthrough
of Wilson (1978).2 At the risk of oversimplification, one can describe the dominant
paradigm as modeling the processes through which players form coalitions and exchange
information, often reintroducing mechanism design or other non-cooperative elements
back to a cooperative framework. This approach naturally arises from recognizing each
scenario of coalitional deviation as a complex multiple-player game.

Our methodology is different. The advantages of cooperative analysis come from
1Non-cooperative analysis is usually sensitive to assumptions about strategic interactions (e.g.,

strategy spaces, dynamics, order of play, information, etc. about which the analysts often have limited
knowledge) and can be intractable when the underlying interactions are complex or involve many
parties, see, e.g., Fisher (1991) for an intriguing discussion in the context of industrial organization.

2See, e.g., Holmström and Myerson (1983) and Forges, Minelli, and Vohra (2002).
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sidestepping the complexity and flexibility of non-cooperative modeling. To this end,
we approach the problem in reverse. The starting point is the realization that rational
Bayesian players must arrive at some probabilistic beliefs in every possible scenario,
regardless of how they interact and make inferences. Therefore, a cooperative solution
to a strategic problem should explicitly articulate players’ beliefs in each counterfactual
scenario of coalitional deviation and ensure that each player acts optimally against the
system of beliefs, which prevents the coalitional deviation from taking place (so the
counterfactual scenario remains counterfactual). This is what we refer to as rational
counterfactual reasoning.

After setting the stage, the most important conceptual question is to identify mean-
ingful constraints on beliefs and outcomes that can have sufficient prediction power.
We propose two types of constraints, weak consistency and strong consistency, to reflect
the alignment of deviating players’ beliefs and incentives in a deviating coalition. The
difference is subtle but crucial. A scenario of deviation is relevant for a player only when
other players (if any) in the same coalition expect to benefit from the deviation, as per
the system of beliefs, and therefore willingly participate in it. Weak consistency requires
that players’ beliefs in each scenario of deviation be Bayesian consistent with their peers’
willingness to deviate, whenever possible. Strong consistency and its variants require
that players’ beliefs “mutually reassure” others’ deviation—meaning, their willingness
to deviate is dependent on one another. This mutual reassurance can generate more
information that will refine the original belief system. Each counterfactual scenario of
deviation is indeed a multiple-player game, but the formulation does not rely on non-
cooperative processes of information exchange or belief formation and hence adheres to
the principles of cooperative game theory, taking a reduced-form approach to complex
games.

The general model captures applications such as labor markets, marriage markets,
trading networks, exchanges, etc. In these contexts, there isn’t a planning stage, and
re-contracting opportunities arise after outcomes are observed: divorces happen in exist-
ing marriages, new connections are established and old connections are removed within
existing networks, firms adjust their existing workforce with hiring and layoff decisions,
etc.3 This feature is not captured by the traditional trichotomy of ex ante, interim,

3Even in markets that involve some degree of planning, participants may not adhere to their initial
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and ex post frameworks, or by the analysis of interim deviations from ex ante agree-
ments (i.e., durable decision rules) in Holmström and Myerson (1983), highlighting the
need of a new analytical framework.4 It is worth noting that the prevailing outcomes
(marriages, connections, contracts, etc.) inform about the incentives and disincentives
for deviating from them, and this information in turn shapes the outcomes in a feed-
back loop. This information perspective is another difference between our approach and
familiar cooperative or non-cooperative equilibrium models, which opens up a wealth
of new applications and sheds new light on well-studied ones. Markets with adverse
selection are an example in point. For instance, if a separating contract prevails in an
insurance market, policyholders will reveal their types. Competing insurance compa-
nies or new entrants will then take advantage of this information and offer full coverage
contracts tailored to specific types, thus destabilizing the separating outcome. There-
fore, the framework of Rothschild and Stiglitz (1976) is not suitable for analyzing stable
insurance markets. These familiar applications, previously analyzed in non-cooperative
models, warrant further investigation. We foresee that the ideas developed in our co-
operative framework of incomplete information will become valuable in a wide range of
applications.

We study two concrete applications in depth, matching and networks with incom-
plete information, which are of significant research interest but have been limited in
progress due to their complexity. While these applications often involve many play-
ers, a typical strategic interaction is unilateral or bilateral. The recent proliferation
of research in this area, which mostly assumes complete information, attests to their
versatility and prevalence.

We assume that all players possess private information in the two-sided match-
ing application. In a Bayesian framework, two-sided incomplete-information matching
games raise new conceptual questions that are not present in the special case of one-
sided incomplete information settings, such as the one studied in Liu (2020), because
they necessitate considering players’ mutual inferences from each other’s incentives and

agreements and may enter into side agreements after seeing the realized outcomes.
4Green and Laffont (1987) refine the notion of implementability and Forges (1994) studies modified

notions of Pareto efficiency with this “posterior” re-contracting possibility. In contrast, our focus is on
a solution concept that captures stabilized market interactions and a self-reinforcing information loop
plays a crucial role in shaping stable outcomes.
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information that jointly determine the formation of beliefs. Restricting to one-sided
incomplete information significantly limits potential applications.5 This difference is
further manifested in the distinction between the concepts of weak consistency and
strong consistency (Theorem 5). Readers who are familiar with non-cooperative models
of bargaining and signaling will find the distinction we are making here quite obvious.
These existing models are typically restricted to one-sided incomplete information in
two-player games; however, multiple-player games with multiple-sided incomplete infor-
mation are substantively different and often intractable, significantly limiting the study
of many economic applications. This paper offers a tractable cooperative approach.

We identify conditions, for weak and strong consistencies, respectively, under which
all stable matchings with transfers maximize the total surplus from an outside observer’s
perspective. Specifically, for weak consistency, we show that the interdependence of
players’ payoffs becomes relevant. For strong consistency, we demonstrate that a new
condition, called “comonotonic differences,” is crucial for restoring efficiency of stability,
a duality that always hold under complete information. This concept of comonotonic
differences says that, for any pair of deviating players, their types can be reordered in a
way that aligns their incentives to deviate. Mathematically, the condition ensures the
existence of a fixed-point pair of sets of types (“mutually reassuring set”) that defines
strong consistency. Interestingly, Tarski’s fixed point theorem once again becomes a
useful tool in matching, but for a very different reason from complete-information games.
We consider efficient matching from an outside observer’s perspective. The criterion is
useful because the analysts are not directly involved in the economic activity and have
no direct access to insiders’ private information. They need a theoretical framework to
understand and interpret matching data, perform evaluations, and recommend policy
interventions. The concepts of stability, weak consistency, and strong consistency, and
the criterion of efficiency serve as such a framework.

5There is a small growing literature on matching with incomplete information. Liu, Mailath, Postle-
waite, and Samuelson (2014) devise an iterative concept of stability for matching with one-sided incom-
plete information, leaving open the determination of beliefs that should be endogenous. Bikhchandani
(2017) makes exogenous assumptions on beliefs in the iterative process. Chen and Hu (2023) extend
the iterative approach to two-sided incomplete information, where the resulting solution is permissive
even under strong assumptions. Liu (2020) proposes a “Kreps–Wilson program” where solution con-
cepts must specify correct on-path beliefs and consistent off-path beliefs. The present paper can also
be seen as an advancement of this program.
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The second application is networks. Despite the many applications of creating and
maintaining relationships between individuals or organizations with incomplete infor-
mation, network modeling remains primarily focused on complete information. We
make two additional assumptions to capture plausible features of stabilized network
structures and link formations. First, directly connected players in an existing net-
work observe each other’s characteristics, although players who are not connected or
indirectly connected may not. Second, before establishing a new connection, players
can engage in mutual signaling activities, such as transfers to third parties in or out
of the network, investment in education and physical characteristics, conspicuous con-
sumption, virtue signaling, etc. We identify conditions under which strongly consistent
and stable networks under incomplete information must be state-by-state complete-
information stable. However, it is important to note that although network structures
unravels, uncertainty may persist within incomplete-information stable networks. The
result helps in understanding how incomplete information affects network formation,
how the existing models that assume complete information are robust in terms of final
distributions of connections, as well as the scope of policies and interventions that could
influence the stabilized network structures under uncertainty.

This paper leaves several important issues open for further investigation. The first is
non-cooperative implementation of the cooperative concepts we developed, specifically
an incomplete-information version of the Nash program. The second issue is concerned
with alternative cooperative concepts. The third is to study economic applications that
involve larger deviation coalitions. The paper is unfortunately too short to cover all the
interesting topics it opens up, but might well be too long for a reader to engage with
comfortably. We provide some additional discussion in Section 8.

The rest of the paper is organized as follows. Section 2 defines coalitional games with
incomplete information and Section 3 describes several familiar applications. Section
4 formulates belief systems and the notion of stability. Section 5 formulates weak
and strong consistencies, which are the main analytical tools. Sections 6 and 7 study
applications of matching and networks, respectively. The appendix contains omitted
proofs and additional materials.
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2 Games with Incomplete Information
Let N be a finite set of players. Player n ∈ N privately knows his own type θn ∈ Θn,
where Θn is finite. The state space is Θ = ∏

n∈N Θn. Let β0
n ∈ ∆(Θ) be player n’s prior

belief, which is assumed to have a full support for notational simplicity.
Let Z be the set of feasible outcomes. We do not restrict Z to be finite. Each

player n has a von Neumann–Morgenstern utility function un : Z × Θ → R. Let S
be a collection of non-empty subsets of N. Each set S ∈ S is a coalition. We write
ΘS = ∏

n∈S Θn and Θ−S = ∏
n/∈S Θn. For each coalition S ∈ S, let d(S, z) ⊂ Z be

the set of feasible outcomes which the coalition S can collectively effectuate from
z.We do not formulate a cooperative game in characteristic-function form, which is not
convenient for an incomplete-information setting as it will become clear.

A game with incomplete information is Γ = (N, Z, S, d, (un, Θn, β0
n)n∈N). Denote by

Γθ = (N, Z, S, d, (un(·, θ))n∈N) the special case of complete information when θ ∈ Θ is
commonly known. The natural solution concept for Γθ is as follows.

Definition 1. An outcome z ∈ Z is a stable outcome of Γθ if there do not exist S ∈ S
and z′ ∈ d(S, z) such that un(z′, θ) > un(z, θ) for all n ∈ S.

This widely-applied concept requires a leap of faith, as it is agnostic on how a coali-
tion S is formed, how the coalition agrees on the alternative z′, and how a stable outcome
z is achieved. However, the simplicity is precisely its advantage. We shall extend this
concept to incomplete information, maintaining the same kind of simplification.

3 Examples
The general model encompasses a wide range of problems as special cases, and the
complete-information versions of these problems are classic and well understood.

Two-Sided Matching. The set of players is N = I ∪ J, where I ∩ J = ∅. A matching
outcome is z = (µ, τ), where µ = (µn)n∈N assigns a partner to each player n ∈ N s.t.

(i) µn = m iff µm = n,

(ii) µn ∈ J ∪ {n} if n ∈ I,

(iii) µn ∈ I ∪ {n} if n ∈ J,
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and τ = (τn)n∈N specifies a transfer τn ∈ R to each player n such that τn + τµn
= 0. If

µn = n, player n is unmatched. We write zn = (µn, τn) as player n’s matching outcome.
Let Z be the set of all matching outcomes. A coalition consists of a single player or a
pair:

S = {{i}, {j}, {i, j} : i ∈ I, j ∈ J}. (3.1)

For any z = (µ, τ), any individual player n can abandon his partner (if he is matched
under z) to stay alone, i.e.,

d({n}, z) =
z′ ∈ Z : z′

m = (m, 0), if m ∈ {n, µn}
z′

m = zm, otherwise

,

and any pair {i, j} ∈ S can match with each other for any transfers, leaving their original
partners unmatched, i.e.,

d({i, j}, z) =

z′ = (µ′, τ ′) ∈ Z :
µ′

i = j

µ′
n = n, if n /∈ {i, j} and µn ∈ {i, j}

z′
n = zn, otherwise

.

For applications, it is often convenient to assume that a player’s payoff depends only
on his own matches and is linear in transfers, i.e., un(z, θ) = vn(µn, θ) + τn for some
function vn. In the special case of complete information, Definition 1 is the familiar
concept of pairwise stability of Shapley and Shubik (1971) and Crawford and Knoer
(1981). If we restrict τn ≡ 0, the model reduces to a marriage problem and the special
case of complete information is studied by Gale and Shapley (1962).

Network Formation. A network on N is z = (zn)n∈N , where zn ⊂ N is player n’s
neighbors that satisfies

(i) n ∈ zn for all n ∈ N ;
(ii) m ∈ zn iff n ∈ zm, for all m, n ∈ N.

(3.2)

Condition (i) is for notational convenience only. Let Z be the set of all networks on N ,
and let S be the collection of singleton and doubleton subsets of N . Any player i can
unilaterally remove any of his neighbors in a network z ∈ Z, i.e.,

d({i}, z) =

(z′
n)n∈N ∈ Z :

z′
n ⊂ zn, if n = i

zn\{i} ⊂ z′
n ⊂ zn, if n ∈ zi\{i}

z′
n = zn, otherwise

.
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It takes two distinct players {i, j} ∈ S to establish a new link in z ∈ Z, i.e.,

d({i, j}, z) =
(z′

n)n∈N ∈ Z : z′
n = zn ∪ {i, j}, if n ∈ {i, j}

z′
n = zn, otherwise

.

In the special case of complete information, Definition 1 is the concept of pairwise
stability of Jackson and Wolinsky (1996).

Exchange Economy. Each player n ∈ N has an endowment en ∈ R|K|
+ , where K is

a finite set of commodities. Let zn ∈ R|K|
+ be player n’s consumption bundle, and let

zk ∈ R|N |
+ be all players’ consumption of commodity k. An outcome of the economy is

z = (zn)n∈N = (zk)k∈K . The set of feasible coalitions S consists of all non-empty subsets
of N, and for any S ∈ S, we write 1S = (xn)n∈N as a vector of 0’s and 1’s such that
xn = 1 iff n ∈ S. The set of feasible outcomes of this economy is

Z =
{
z ∈ R|K||N |

+ : 1N · zk ≤ 1N · ek for all k ∈ K
}
.

The set of feasible outcomes for a coalition S ∈ S is

d(S, z) =
{
z′ ∈ Z : 1S · zk ≤ 1S · ek for all k ∈ K

}
.

Thus, players in S can trade exclusively among themselves and leave players in N\S to
trade among themselves. Under complete information, Definition 1 corresponds to the
core of the economy. The incomplete information is about preference uncertainty (as
contrast to endowment uncertainty).

Competitive Price Equilibrium. In addition to en, zn and zk as in the exchange
economy model, let z0 ∈ R|K|

+ be a price vector. A market outcome is z = (zn)n∈N∪{0} ∈
R|K|(|N |+1)

+ . The set of feasible outcomes is

Z =
z = (zn)n∈N∪{0} ∈ R|K|(|N |+1)

+ : 1N · zk ≤ 1N · ek for all k ∈ K

z0 · zn ≤ z0 · en for all n ∈ N

.

Player n’s utility depends on z only through zn. Only unilateral deviations are allowed,
so S := {{n} : n ∈ N} and d({n} , z) = {z′ ∈ Z : z′

0 = z0}. The interpretation is that
player n, a price taker, can unilaterally change his consumption from zn to z′

n as long
as the outcome z′ remains feasible under price z0. The restriction that d({n} , z) ⊂ Z

says that consumption must be physically possible (i.e., consumption is constrained
by the endowments of the economy) and affordable (it is still mediated by the price
system). In the traditional formulation of a Walrasian equilibrium, the only constraint
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for player n’s deviation is the budget constraint z0·z′
n ≤ z0·en; the endowment constraint

is considered for the equilibrium consumption, but not for the deviation, so n’s off-
equilibrium consumption can exceed what the economy offers. Definition 1 defines a
notion of price equilibrium that is weaker than the Walrasian equilibrium.

4 Rational Counterfactual Reasoning and Stability
Rational players should evaluate all possible counterfactual scenarios of deviation. Being
Bayesian, they should also ascribe probabilistic beliefs to uncertainties at all counterfac-
tual scenarios, use Bayes’ rule whenever possible, and act optimally given their beliefs
in each counterfactual scenario. In any scenario of coalitional deviation of a putative
stable situation, some player in the coalition should find it optimal not to engage in the
deviation, thus enforcing the counterfactuality of the scenario. We shall formalize these
ideas.

The relationship between the underlying uncertainties and “stabilized” outcomes is
described by a function π : Θ → Z. We refer to π as a playout of the game.6 If
the game is played out according to π, then π(Θ) = {π(θ) : θ ∈ Θ} ⊂ Z is the set of
outcomes that actualize. Let

∆π = {(S, z, z′) : S ∈ S, z ∈ π(Θ), z′ ∈ d(S, z)}

be the set of deviations associated with the playout π. Let

Σπ = {(S, z, z′, θ) : (S, z, z′) ∈ ∆π, z = π(θ)}

be the scenarios of deviations of π. A scenario of deviation σ = (S, z, z′, θ) ∈
Σπ indicates that a coalition S can deviate to z′ from z at state θ. But player n’s
perception of σ is σn = (S, z, z′, θn) since he does not know θ−n. Let Σπ,n be player
n’s perceived scenarios of deviations, i.e.,

Σπ,n = {(S, z, z′, θn) : n ∈ S, (S, z, z′, θn, θ−n) ∈ Σπ for some θ−n ∈ Θ−n}.

Let π−1
n (z) be the projection of π−1(z) on Θn. Then,

Σπ,n = {(S, z, z′, θn) : n ∈ S, (S, z, z′) ∈ ∆π, θn ∈ π−1
n (z)}.

A Bayesian player has a belief in each scenario. Let βn : Σπ,n → ∆(Θ) be a mapping
6A version of “correlated stability” through the playout π : Θ × T → Z can be defined analogously

on an enlarged state space Θ × T .
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that specifies a belief βn(σn) for player n at each of his perceived scenarios of deviation
σn ∈ Σπ,n.

Definition 2. A belief system for a playout π is β = (βn)n∈N such that for any
σn = (S, z, z′, θn) ∈ Σπ,n, we have

(i) self-recognition: βn(σn)({θn} × Θ−n) = 1, and
(ii) knowledge of playout: βn(σn)(π−1(z)) = 1.

We refer to a playout–belief pair (π, β) of a game Γ as an assessment of the game.

The terminology of assessment is borrowed from Kreps and Wilson (1982), but it
should be noted that the formulation of a cooperative game does not involve a game tree
or individual strategies, and hence making belief restrictions will be our main conceptual
and methodological tasks.

Each scenario of deviation corresponds to a complex multiple-player interaction,
but since beliefs are specified explicitly, we no longer need to formulate the strategic
interaction in a non-cooperative way. This is the advantage of the approach.

Definition 3. A scenario of deviation σ = (S, z, z′, θ) ∈ Σπ is a viable scenario with
respect to the belief system β if

Eβn(σn)(un(z′, ·)) > Eβn(σn)(un(z, ·))

for all n ∈ S, where Eβn(σn) is the expectation operator with respect to player n’s belief
βn(σn) for the perceived scenario σn. A deviation (S, z, z′) ∈ ∆π is a viable deviation
if there exists some θ ∈ Θ such that (S, z, z′, θ) ∈ Σπ is a viable scenario.

For a playout π endowed with a belief system β to be “stable,” every scenario of
coalitional deviation should remain counterfactual.

Definition 4. An assessment (π, β) is a stable assessment if there is no viable
scenario of deviation with respect to β. A playout π is a stable playout if (π, β) is a
stable assessment for some belief system β.

Under complete information, this new concept is equivalent to the classic one in
Definition 1. It requires the same kind of leap of faith: it is agnostic about how a
scenario of deviation arises, only requiring that a stable situation withstands all possible
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deviations. Additionally, players must form beliefs for each counterfactual scenario, a
leap of faith required for the cooperative formulation of incomplete information.

The stability concept is permissive if there are no further restrictions, because the
belief system is quite arbitrary except that it must be compatible with deviation incen-
tives as outlined in Definitions 2–4. Nevertheless, it lays the groundwork for cooperative
analysis. As a proof of concept, we first demonstrate that the concept does have some
restrictions in special cases.

Definition 5. A game Γ = (N, Z, S, d, (un, Θn, β0
n)n∈N) has essentially private val-

ues if for any n ∈ N there exist vn : Z × Θn → R, an : Θ → R++, and bn : Θ → R such
that un(z, θ) = an(θ)vn(z, θn) + bn(θ) for all z ∈ Z and θ ∈ Θ.

Player n’s payoff in a game with essentially private values depends only on θn up
to a positive affine transformation that can depend on the type profile θ. The following
result is obtained by comparing definitions. Its proof is omitted.

Theorem 1. Suppose that Γ has essentially private values. Then (π, β) is a stable
assessment of Γ if and only if π(θ) is a stable outcome of Γθ for all θ ∈ Θ.

5 Weak and Strong Consistency
In this section, we define the key concepts that give the theory teeth. We do this by
identifying constraints on beliefs that capture the inferences that players could make.
There are many plausible constraints, but we would like to strike a balance between
simplicity, predictive power, and interpretability.

5.1 Weak Consistency

What can player n infer from his perceived scenario of deviation (S, z, z′, θn)? We
should realize that a player’s belief becomes relevant only when it leads to consequential
decisions. A player’s decision at a scenario of deviation is relevant if and only if his
opponents join the deviation—if some of his opponents does not join this deviation, the
player’s decision and belief are irrelevant (this is perhaps the least amount of inference
the player can and should make, without making a further leap of faith, from both
the player’s and the analyst’s perspectives). So the player’s belief that is relevant for
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the analysis should be conditioned on the set of states in which his opponents join the
deviation. Furthermore, if the player is the only one involved in the deviation, S = {n},
his belief should not vary based on their contemplation of different alternatives z′ ̸= z′′.

We formulate the notion of “weak consistency” that captures the ideas above. For
any deviation (S, z, z′) ∈ ∆π, let Dβ

n(S, z, z′) be player n’s deviating set, the set of
types with which player n ∈ S benefits from the deviation according to the belief system
β, i.e.,

Dβ
n(S, z, z′) :=

{
θn ∈ π−1

n (z) : Eβn(S,z,z′,θn)(un(z′, ·)) > Eβn(S,z,z′,θn)(un(z, ·))
}
. (5.1)

This set can be empty. We write

Dβ
S\{n}(S, z, z′) :=

∏
m∈S\{n}

Dβ
m(S, z, z′)

as the Cartesian product of the deviating sets of player n’s opponents. Player n’s
decision is relevant in his perceived scenario of deviation (S, z, z′, θn) if and only if his
opponents participate in the deviation. Therefore, we require that βn(S, z, z′, θn) be
updated from the prior belief conditional on Dβ

S\{n}(S, z, z′) and player n’s type, θn:

βn(S, z, z′, θn)(·) = β0
n

(
·|({θn}×Dβ

S\{n}(S, z, z′)×Θ−S) ∩ π−1(z)
)
. (5.2)

So, player n assigns positive probability to a state θ only when his opponents all benefit
from the deviation in state θ. Bayes’ rule has no restriction if not all of player n’s
opponents participate in the deviation, i.e., Dβ

S\{n}(S, z, z′) = ∅, but Definition 2 imposes
a support constraint on the conditional probability measure through (5.2). Notice that
(5.2) is not a definition of beliefs, since β is given and appears on both sides of the
equation. It is a fixed-point property for the given assessment (π, β) to satisfy.

Definition 6. An assessment (π, β) is weakly consistent if (5.2) holds for all players
in all their perceived scenarios of deviations.

Remark 1. If S = {n}, then the nullary Cartesian product Dβ
S\{n}(S, z, z′) = {∅}.

Weak consistency implies that

βn(S, z, z′, θn)(·) = β0
n

(
·|({θn}×Θ−n) ∩ π−1(z)

)
,

which is independent of z′. That is to say, a player does not learn any information
from contemplating a unilateral deviation, as one should expect. In this case, player n

updates his belief based on his own type θn and the observation of outcome z.
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Remark 2. By Definition 3 and the definition of deviating sets, a deviation (S, z, z′)
is viable if and only if

(Dβ
S(S, z, z′)×Θ−S) ∩ π−1(z) ̸= ∅,

where Dβ
S(S, z, z′) is the Cartesian product ∏

n∈S Dβ
n(S, z, z′). Weak consistency imposes

restrictions even if no deviation is viable because it restricts the beliefs under which
viability is evaluated. If θ ∈ (Dβ

S(S, z, z′)×Θ−S) ∩ π−1(z) ̸= ∅, then everyone in S

gains from the deviation (S, z, z′). Weak consistency says that, in state θ, everyone’s
belief is supported by (Dβ

S(S, z, z′) × Θ−S) ∩ π−1(z), so everyone in S believes that
everyone in S gains from the deviation. Not limited to first-order beliefs as it may
appear, weak consistency implies that, in θ, everyone in S believes that everyone in S

believes that everyone in S gains from the deviation, ad infinitum. In epistemic jargon,
(Dβ

S(S, z, z′)×Θ−S) ∩ π−1(z) is a “self-evident” common knowledge event.7 Viability
alone, as in Definition 3, does not satisfy this common knowledge property.

The following example demonstrates the restriction of weak consistency.

Example 1. Consider a partnership game with two players N = {1, 2}. Each player has
two types: Θn = {θ1

n, θ2
n}. There is a uniform common prior β0 ∈ ∆(Θ). There are two

outcomes Z = {z, z′}, where z is the outcome of not forming a partnership and z′ is the
outcome of forming a partnership. Players’ payoffs from not forming a partnership are
always 0. Players’ payoffs from forming a partnership, (u1(z′, θ), u2(z′, θ)), are dependent
on their types θ = (θ1, θ2) as follows:

θ1
2 θ2

2

θ1
1 1, 1 1, −2

θ2
1 −2, −2 −2, −2

This configuration means that, for instance, players 1 and 2 receive payoffs of 1 and
−2, respectively, from the partnership if their types are θ = (θ1

1, θ2
2). Assume that each

player can unilaterally choose not to form a partnership, but both parties must agree
in order to form a partnership. Consider a playout that assigns the outcome z to every
state, π ≡ z, and a belief system β, in which βn(N, z, z′, θn) assigns equal probabilities
to the opponent’s two types in his perceived scenario of deviation (N, z, z′, θ1

n) and
7See Osborne and Rubinstein (1994) for a textbook treatment of common knowledge and self-evident

events.
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(N, z, z′, θ2
n). Therefore, player 1 of type θ1

1 prefers the deviation, i.e.,

Eβ1(N,z,z′,θ1
1)(u1(z′, ·)) = 1 > 0 = Eβ1(N,z,z′,θ1

1)(u1(z, ·)),

but player 1 of type θ2
1 and player 2 of both types prefer not to deviate:

Eβ1(N,z,z′,θ2
1)(u1(z′, ·)) = −2 < 0 = Eβ1(N,z,z′,θ2

1)(u1(z, ·)),

Eβ2(N,z,z′,θ1
2)(u2(z′, ·)) =−1

2 < 0 = Eβ2(N,z,z′,θ1
2)(u2(z, ·)),

Eβ2(N,z,z′,θ2
2)(u2(z′, ·)) = −2 < 0 = Eβ2(N,z,z′,θ2

2)(u2(z, ·)).

Therefore, (N, z, z′) is not a viable deviation in any state θ. However, player 1 prefers
the deviation if and only if his type is θ1

1, i.e., Dβ
1 (N, z, z′) = {θ1

1}. This incentive is
understood by player 2 of both types and the relevant belief for player 2’s decision of
joining the coalitional deviation (N, z, z′) should condition on this fact. That is, player
2 should assign probability 1 to player 1 being θ1

1, instead of equal probability to θ1
1

and θ2
1, in any of his two perceived scenario of deviation, which is captured by weak

consistency. Given this belief, player 2 of θ1
2 will join the deviation (N, z, z′) with player

1 of θ1
1. Therefore, weak consistency therefore implies that (N, z, z′, θ1

1, θ1
2) is a viable

scenario of deviation. It can be shown that the only playout that is part of a weakly
consistent and stable assessment is the following:

θ1
2 θ2

2

θ1
1 z′ z

θ2
1 z z

So weak consistency identifies the the more intuitive outcomes in this game. This game
is still special. In more general games, the updating of the prior β0

n(·|·) will play a more
salient role.

5.2 Strong Consistency

Weak consistency is a restriction on how each player’s beliefs should align with the
incentives faced by their opponents (which are determined by their beliefs). We shall
show that it suffices to make strong predictions in applications. But it leaves open
the possibility of making joint restrictions on all players’ beliefs and incentives. The
following example demonstrates the possibility in the simplest case.

Example 2. Consider the same partnership game as in Example 1, except that the
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payoffs from forming a partnership, z′, are as follows:
θ1

2 θ2
2

θ1
1 1, 1 −2, −2

θ2
1 −2, −2 −2, −2

That is, forming a partnership is mutually beneficial if and only if players’ types are
(θ1

1, θ1
2). We will call θ1

1 and θ1
2 the “cooperative types.” Consider a playout π ≡ z and a

belief system, in which βn(N, z, z′, θn) assigns equal probabilities to the opponent’s two
types. Then, for each n ∈ N and θn ∈ Θn,

Eβn(N,z,z′,θn)(un(z′, ·)) < Eβn(N,z,z′,θn)(un(z, ·)).

Hence, in no state will player n benefit from the deviation, i.e., Dβ
n(N, z, z′) = ∅. It

follows that (π, β) is stable and weakly consistent.
However, it is quite intuitive that in this common-interest game, the two cooperative-

type players can form a partnership in (θ1
1, θ1

2). For instance, player 1 of type θ1
1 can make

the following statement to player 2: “I am θ1
1, and if you are θ1

2, let’s form a partnership.
You should know that if you are θ1

2, I benefit from the partnership if and only if my type
is θ1

1, so you should trust that I am θ1
1. My question is whether you are θ1

2.” Similarly,
player 2 of type θ1

2 can make the following mirroring statement to player 1: “I am θ1
2,

and if you are θ1
1, let’s form a partnership. You should know that if you are θ1

1, I benefit
from the partnership if and only if my type is θ1

2, so you should trust that I am θ1
2. My

question is whether you are θ1
1.” The two statements are “mutually reassuring” in the

sense that conditional on that the opponent is the cooperative type, a player benefits
from carrying out the stated plan if and only if he himself is the cooperative type, which
reassures the cooperative opponent. The existence of such mutual reassurance means
that it is plausible that the two players collectively deviate from z to z′ in (θ1

1, θ1
2).

We can deduce that the only stable playout π : Θ → Z that survives this reasoning
is such that the outcome z′ is obtained if and only if the state is (θ1

1, θ1
2).

This example is reminiscent of trading under heterogeneous beliefs (Levin, 2003) and
the blocking condition of credible core (Dutta and Vohra, 2005).8 We need to introduce

8The no-trade theorem, as formulated by authors such as Milgrom and Stokey (1982) and Rubin-
stein and Wolinsky (1990), provides conditions under which no trade will occur under arbitrary given
information structure. In contrast, the mutual reassurance in this example leads to the creation of new
information, i.e., the revelation of (θ1

1, θ1
2).
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new ideas to accommodate more complex applications, as shown in the example below.

Example 3. Consider a game with two outcomes Z = {z, z′} between two players
N = {1, 2}, where each player has two types and there is a uniform common prior
β0 ∈ ∆(Θ). Players’ payoffs from z are 0. The payoffs from z′, (u1(z′, ·), u2(z′, ·)),
depend on the state as follows:

θ1
2 θ2

2

θ1
1 1, 1 −2, 1

θ2
1 1, 1 3, −2

Consider the playout π : Θ → Z given by
θ1

2 θ2
2

θ1
1 z z

θ2
1 z′ z

In state (θ2
1, θ1

2), z′ is the outcome, so the two players do not want to deviate to z. At
the outcome z, the relevant payoff matrix is

θ1
2 θ2

2

θ1
1 1, 1 −2, 1

θ2
1 3, −2

In state (θ1
1, θ1

2), the two players have a common interest to move from z to z′, but
knowing player 1’s type is θ1

1, player 2’s type θ2
2 would also participate in this deviation,

deterring θ1
1 from participating in the first place. This seems to unravel the coalitional

deviation. However, the following “mutually reassuring” statements can sustain the
common interest deviation from z to z′ in (θ1

1, θ1
2) : player 1 states that he would join

the deviation regardless of his types and asks player 2 to join only when player 2’s type
is θ1

2; player 2 states that he will join the deviation only when his type is θ1
2 and asks

player 1 to join no matter what.
Let’s see how mutual reassurance is created. Believing that player 1 will join the

deviation regardless of his types, player 2 indeed finds it beneficial to join only when
his type is θ1

2. Believing player 2’s claim that only θ1
2 will join the deviation, player 1

finds it beneficial to join the deviation if his type is θ1
1. How about θ2

1? When player 1
is θ2

1, he believes that player 2 is θ2
2. However, according to player 2’s claim, θ2

2 will not
join the deviation and, more importantly, will not find it beneficial to join the deviation
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if both types of player 1 join the deviation. However, if player 2 trembles (i.e., join the
deviation even if type θ2

2 does not benefit from the deviation), then θ2
1 indeed benefits

from joining the deviation. Hence, player 1’s claim of joining the deviation regardless
of his types is justified.

The existence of mutual reassurance depends on payoff functions. Suppose the
following payoff matrix associated with z′ is instead given by

θ1
2 θ2

2

θ1
1 1, 1 −2, 1

θ2
1 1, 1 −3, −2

Then the reasoning above breaks down and it will be impossible for the two players to
deviate to z′ from z in (θ1

1, θ1
2).

To formulate the ideas we have proposed, we start with beliefs.

Definition 7. Given player n’s prior belief β0
n ∈ ∆(Θ), a version of the conditional

probability β0
n(·|·) is a conscious conditional probability if for any perceived sce-

nario of deviation (S, z, z′, θn) ∈ Σπ,n and any F−n ⊂ Θ−n, the following holds:
(i) β0

n({θn}×Θ−n|({θn}×F−n) ∩ π−1(z)) = 1;
(ii) β0

n(π−1(z)|({θn}×F−n) ∩ π−1(z)) = 1.

The two properties of conscious conditional probability are consistent with the “self-
recognition” and “knowledge of playout” properties of a belief system in Definition 2.
Therefore, regardless of how he updates his belief, player n knows his own type θn

and the outcome z. It allows for conditioning on zero probability events. Player n will
attribute any surprises—we say F−n is a surprise if ({θn}×F−n) ∩ π−1(z) is an empty
set—to mistakes or trembles of his opponents. For instance, in Example 3, if θ1 = θ2

1

and F2 = {θ1
2}, we have ({θ2

1}×F2) ∩ π−1(z) = {(θ2
1, θ1

2)} ∩ π−1(z) = ∅. Therefore, if
only player 2 of type θ1

2 is expected to join the deviation, player 1 of type θ2
1 would be

surprised but he rationalizes this surprise by assuming that player 2’s type is actually
θ2

2 and this type trembles (i.e., joins the deviation by mistake when not supposed to).
We do not need to explicitly formulate trembles, but obviously it can be done.9

We are ready to formalize mutually reassuring sets of types that support a deviation.
9See, e.g., Kohlberg and Reny (1997) for an analogous discussion.
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Definition 8. A collection of sets {Dn}n∈S, where Dn ⊂ π−1
n (z), is mutually reas-

suring for a deviation (S, z, z′) ∈ ∆π if
(i) (DS ×Θ−S) ∩ π−1(z) ̸= ∅, where DS = ∏

n∈S Dn, and
(ii) for all n ∈ S, we have

Dn =
θn ∈ π−1

n (z) : E0
n(un(z′, ·)|({θn}×DS\{n}×Θ−S) ∩ π−1(z))

> E0
n(un(z, ·)|({θn}×DS\{n}×Θ−S) ∩ π−1(z))

, (5.3)

where the conditional expectation E0
n(·|·) is defined with respect to a version of conscious

conditional probability β0
n(·|·).

Mutually reassuring sets {Dn}n∈S for a deviation form a fixed point of (5.3). This is
where Tarski’s fixed-point theorem comes into play in applications. Let us break down
the mathematical expression that defines mutual reassurance. Condition (i) says that
the type profiles of the coalition S do not contradict with the outcome z. Condition
(ii) says that player n’s types that prefer z′ to z, conditional on his opponents’ types
are in DS\{n}, are exactly Dn. The expected payoff is computed as follows. The belief
of player n, who has type θn, is updated from his prior β0

n conditional on the outcome
z and the types of other players from the coalition being in DS\{n}. This updated
belief, β0

n(·|({θn}×DS\{n} ×Θ−S) ∩ π−1(z)), which is a conscious conditional proba-
bility that takes into account the possibility of surprises, leads to an expected payoff
E0

n(un(·, ·)|({θn}×DS\{n} ×Θ−S) ∩ π−1(z)). In Example 2, D1 = {θ1
1} and D2 = {θ1

2}
are mutually reassuring; in Example 3, D1 = {θ1

1, θ2
1} and D2 = {θ1

2} are mutually
reassuring.

Remark 3. Identifying and carrying out mutually reassured deviations can be a de-
manding task for real-world players. But this is a good assumption to make for theory
building, which is not very different from the leap of faith required for complete infor-
mation solution concepts (see the discussion following Definition 1).

Ultimately, we need to find a way to incorporate the idea of mutual reassurance in
an assessment (π, β). This culminates in the following definition.

Definition 9. An assessment (π, β) is strongly consistent if the following two con-
ditions are satisfied:

(i) it is weakly consistent, and
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(ii) a deviation (S, z, z′) ∈ ∆π is viable, i.e., (Dβ
S(S, z, z′)×Θ−S) ∩ π−1(z) ̸= ∅, if

there exist mutually reassuring sets {Dn}n∈S for the deviation.

The conceptual difference between weak consistency and strong consistency is subtler
than one might expect, although their implications very different as demonstrated by
Examples 1–3.

Remark 4. Weak consistency is defined in terms of deviating sets. Deviating sets, if
non-empty, define a common knowledge event of mutual gains from deviation, where
the event is derived from the given belief system β and hence no new information is
created that is not already captured by β. Together with stability, weak consistency
requires that there be no common knowledge of gains from deviation. In contrast, strong
consistency is defined in terms of mutually reassuring sets. Mutually reassuring sets,
if they are not already common knowledge according to β, will create new information
that refines the belief system β. Together with stability, strong consistency means that
no such new information can be created.

Weak and strong consistencies differ in their exact connection with mutually reas-
suring sets. The following result makes it precise. Its proof is in Appendix A.1.

Theorem 2. Relationship between weak and strong consistency.
(i) If (π, β) is weakly consistent, then a deviation (S, z, z′) ∈ ∆π is viable only if

there exist mutually reassuring sets {Dn}n∈S for the deviation.
(ii) If (π, β) is strongly consistent, then a deviation (S, z, z′) ∈ ∆π is viable if and

only if there exist mutually reassuring sets {Dn}n∈S for the deviation.

We give conditions for the existence of stable assessments that are weakly or strongly
consistent. The proof is long and constructive and has been relegated to Appendix A.2.

Theorem 3. If π(θ) is a stable outcome of Γθ for each θ ∈ Θ, then there exists a
belief system β such that (π, β) is weakly consistent and stable. If, in addition, π is
one-to-one, then (π, β) is strongly consistent and stable.

The classic reference for existence under complete information is Shapley (1967).
Dubey and Shapley (1984) identify a general and useful class of totally balanced games.
Perhaps unexpectedly, a playout π that leads to state-by-state stable outcomes is not
guaranteed to be part of an assessment that is strongly consistent and stable.
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Example 4. Consider a two-player game where N = {1, 2} , Θ = {θ1
1, θ2

1} × {θ1
2, θ2

2},

Z = {z, z′}, and S = {N, {1} , {2}} . The prior belief over Θ is uniform. Payoffs from
an outside option z are always 0. Payoffs from the partnership z′, (u1(z, ·), u2(z, ·)),
depend on the state as follows:

θ1
2 θ2

2

θ1
1 +3, −1 −1, +3

θ2
1 −1, +3 +3, −1

Assume that players can unilaterally take the outside option but have to reach a con-
sensus for a partnership: d(N, ·) = Z and d({n}, z′) = d({n}, z) = {z} for n ∈ N. The
unique state-by-state complete-information stable playout is π ≡ z. Note that Θ1 and
Θ2 are mutually reassuring because β0(·|Θn) is uniform and all types in Θ−n prefer z′

(with an expected payoff of 1) to z. Therefore, there does not exist β such that (π, β)
is strongly consistent and stable.

5.3 Variants of Strong Consistency

Strong consistency has some useful variants.

5.3.1 Strong Consistency with Certainty

Definition 10. A collection of sets {Dn}n∈S, where Dn ⊂ π−1
n (z), is mutually reas-

suring with certainty for a deviation (S, z, z′) ∈ ∆π if
(i) (DS ×Θ−S) ∩ π−1(z) ̸= ∅, and
(ii) for all n ∈ S,

Dn =

θn ∈ π−1
n (z) :

(a) ({θn}×DS\{n}×Θ−S) ∩ π−1(z) ̸= ∅,
(b) E0

n(un(z′, ·)|({θn}×DS\{n}×Θ−S) ∩ π−1(z))
> E0

n(un(z, ·)|({θn}×DS\{n}×Θ−S) ∩ π−1(z))

, (5.4)

where E0
n(·|·) is defined with respect to the usual conditional probability β0

n(·|·).

In contrast with Definition 8, mutual reassurance with certainty requires that Dn

only contain types that do not contradict with their opponents’ types being in DS\{n}

and that the outcome is z; that is, player n is certain that his opponents do not tremble,
and hence β0

n(·|·) is well defined. In Example 2, {θ1
1} and {θ1

2} are mutually reassuring
with certainty. In Example 3, mutually reassuring sets with certainty do not exist.

21



Definition 11. An assessment (π, β) is strongly consistent with certainty if the
following two conditions are satisfied:

(i) it is weakly consistent, and
(ii) a deviation (S, z, z′) ∈ ∆π is viable if there exist {Dn}n∈S that are mutually

reassuring with certainty for the deviation.

The connection between strong consistency and strong consistency with certainty
warrants an investigation. The key is belief independence. In non-cooperative games, we
often assume that types remain independent under posterior beliefs after any history in
games with observable actions if they are independent under the prior belief. Analogous
properties can be defined for cooperative games.

Definition 12. (i) A playout π has type independence if for all θ ∈ π−1(z), z ∈ π(Θ),
and n ∈ N ,

β0
n(θ|π−1(z)) =

∏
m∈N

β0
n(θm|π−1(z)).

(ii) An assessment (π, β) has belief independence if for all (S, z, z′) ∈ ∆π, n ∈ S,
θn, θ′

n ∈ π−1
n (z), and θ−n ∈ Θ−n,

βn(S, z, z′, θn)(θ−n) = βn(S, z, z′, θ′
n)(θ−n) =

∏
m ̸=n

βn(S, z, z′, θn)(θm). (5.5)

Type independence in (i) invokes the prior belief β0
n. Belief independence in (ii)

captures the idea that player n in each of his perceived scenarios of deviation believes
that his opponents’ types are independent, and this belief is independent of his own
type. In a sense belief independence is stronger than type independence because it also
applies to deviations. This intuition is confirmed in Lemma 1.

Lemma 1. Suppose ({n}, z, z) ∈ ∆π for all n ∈ N and z ∈ π(Θ). Then if a weakly
consistent assessment (π, β) has belief independence, the playout π has type indepen-
dence.

The assumption of ({n}, z, z) ∈ ∆π is vacuous and does not affect any concept
previously defined.

Theorem 4. Suppose π has type independence. Then the following holds.
(i) {Dn}n∈S are mutually reassuring for (S, z, z′) ∈ ∆π if and only if they are mutu-

ally reassuring with certainty.
(ii) (π, β) is strongly consistent if and only if it is strongly consistent with certainty.
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5.3.2 Strong Consistency with Correlation

Mutual reassurance and strong consistency are building blocks for even stronger restric-
tions, which are of conceptual interest. For instance, we can have correlated coalitional
deviations, where individuals within each sub-coalition mutually reassure themselves
and sub-coalitions mutually reassure one another. Due to space constraints, we skip the
elaboration of the idea here.

6 Economic Application 1: Matching
Building theories without applications is like telling a superhero story without villains.
We invite all readers, sympathetic or not, to explore further. To begin, we study appli-
cations where the solution concept is undisputed for the complete-information setting,
while the understanding of the incomplete-information setting remains limited.

For matching games described in Section 3, Theorem 1 implies the following.

Corollary 1. Suppose that the matching game has essentially private values. Then
(π, β) is a stable assessment if and only if for each θ ∈ Θ, π(θ) is a stable matching
outcome for the complete information game Γθ.

A matching game has one-sided incomplete information if either Θi is a sin-
gleton for all i ∈ I, or Θj is a singleton for all j ∈ J. The following result spells out a
conceptual difference between one-sided and two-sided incomplete information.

Theorem 5. Suppose the matching game has one-sided incomplete information, and
un(z, θ) depends on θ only through θzn . Then an assessment (π, β) is weakly consistent
if and only if it is strongly consistent.

The conclusion is quite interesting, because Examples 2–4 show that weak consis-
tency and strong consistency have very different implications if there is two-sided in-
complete information. Our later results will build on this conceptual distinction. Both
Corollary 1 and Theorem 5 hold with or without transfers and with or without out-
come externality (i.e., payoffs depend on the matching outcome z of the whole market).
Theorem 5 relies on the absence of information externality of θ−zn .

For the rest of this application, we consider a matching game with transfers. A
matching outcome is z = (µ, τ). Let Mn be the set of feasible matching partners for
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player n; thus, Mn = I ∪ {n} if n ∈ J and Mn = J ∪ {n} if n ∈ I. Players have
quasi-linear utility functions: for all n ∈ N , there exists vn : Mn ×Θ → R such that

un(µ, τ , θ) = vn(µn, θ) + τn.

We shall allow for information externality. We also assume that players share a com-
mon prior β0 ∈ ∆(Θ).

6.1 Efficiency: An Outside Observer’s Perspective

Starting with the prior β0, knowing the playout π, and observing matching data z, an
outside observer who doesn’t possess insiders’ private information will have a posterior
distribution β0(·|π−1(z)) ∈ ∆(Θ). The expected surplus associated with this matching
outcome computed from this posterior is

∑
n∈N

E0(un(z, ·)|π−1(z)).
We ask the following question: can the observer recommend a rearrangement of the

matching to improve the expected surplus? That is to ask whether the following hold:

z ∈ argmax
z′∈Z

∑
n∈N

E0(un(z′, ·)|π−1(z)). (6.1)

If (6.1) holds for all z ∈ π(Θ), we say π is Bayesian efficient. If π is efficient in
this sense, the outsider observer will not be able to make surplus-improving recom-
mendations based on observed matching data alone, without changing the information
structure. This criterion of the outside observer assessed efficiency has useful implica-
tions, as explained in the introduction.10

When information is complete, a duality exists between efficiency and stability.
However, this duality does not always apply under incomplete information, even when
considering this restricted notion of efficiency. Therefore, our objective is to identify
general and economically meaningful conditions that preserve this duality.

The evaluation of expected surplus involves the knowledge of playout π and the
incomplete-information game (in particular, payoff functions (un)n∈N and the common
prior β0). This is perhaps too much information for an outside observer to acquire.
We are after a robust efficiency result—the planner needs to know neither the specific
playout nor the exact game.

10This notion is adopted in Liu (2020) for the special case of one-sided incomplete information. It is
different from efficiency criteria analyzed in Holmström and Myerson (1983) and Forges (1994), because
it does not condition on each player’s types although it conditions on the observed outcome.
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Definition 13. A matching game has one-sided interdependence if either there is
no restriction on vj but there exist functions Ai : Θ → R and A′

i : Mi → R such that

vi(j, θ) = Ai(θ) + A′
i(j) for all i ∈ I, j ∈ Mi, and θ ∈ Θ,

or symmetrically, there is no restriction on vi but there exist functions Bj : Θ → R and
B′

j : Mj → R such that

vj(i, θ) = Bj(θ) + B′
j(i) for all j ∈ J , i ∈ Mj, and θ ∈ Θ.

Obviously, one-sided interdependence is different from one-sided incomplete infor-
mation. The following are two special cases of one-sided interdependence.

vi(j, θ) = Ai(θi) with no restriction on vj;
vj(i, θ) = Bj(θj) with no restriction on vi.

One-sided interdependence appears natural in applications: workers’ costs from work
depend only on their types but their outputs depend on both theirs and firms’ types,
or producers’ costs are their private information but the customers’ payoffs depend on
the private information of both sides. One-sided interdependence and weak consistency
have strong implications.

Theorem 6. If the matching game has one-sided interdependence, then the playout π

of any weakly consistent and stable assessment (π, β) is Bayesian efficient.

The proof is relegated to Appendix A.6. Under one-sided interdependence, the
deviating set for one of the deviating players is either empty or the whole set of types.
In this case, Bayes’ rule under weak consistency imposes a very strong restriction on
stability, which restores efficiency. We shall introduce a general class of matching games
with what we call “comonotonic differences.” To deal with the bigger class, we strengthen
the weak consistency requirement to strong consistency.

6.2 Comonotonic Differences

Let X1, X2, and X3 be finite sets. Consider two real-valued functions f, g : X1 × X2 ×
X3 → R and a weight function w : X3 → R+ on X3. Define fw, gw : X1 × X2 → R as

fw(·) =
∑

x3∈X3

f(·, x3)w(x3) and gw(·) =
∑

x3∈X3

g(·, x3)w(x3).
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Definition 14. We say that f and g are comonotonic on X1 and X2 if for any weight
function w : X3 → R+, there exist total orders ≥w

1 on X1 and ≥w
2 on X2 such that both

fw and gw are non-decreasing on X1 and X2.

Comonotonicity on X1 and X2 is different from (co)monotonicity on X1 × X2. It is
stronger than the combination of monotonicity on X1 for each x2 ∈ X2 and monotonicity
on X2 for each x1 ∈ X1.

Definition 15. A matching game has comonotonic differences if vi(j, θ) − vi(j′, θ)
and vj(i, θ) − vj(i′, θ) are comonotonic on Θi and Θj for any two pairs (i, j) ∈ I × Jand
(i′, j′) ∈ Mj × Mi.

The condition of comonotonic differences is new to the literature, yet it is both
intuitive and useful for incomplete-information matching. The motivation is as follows.
For any putative matching, consider a potential “blocking pair” i and j whose partners
are j′ ̸= j and i′ ̸= i, respectively. Worker i’s ex post gain from the deviation is
vi(j, θ) − vi(j′, θ) and firm j’s is vj(i, θ) − vj(i′, θ). Comonotonic differences ensure that
there are total orders on Θi and Θj for any two pairs (i, j, i′, j′) according to which the
deviating incentives of i and j respond to their private information in the same direction.
It is worthwhile to emphasize that the total orders on Θi and Θj are not a priori fixed:
they can change with (i, j, i′, j′) and beliefs over Θ−ij. As such, comonotonic differences
does not rely on the monotonicity of matching values.

Some special cases of comonotonic differences are of interest in their own right.

• Complete-Information Games. Comonotonic differences places no restriction
on complete-information matching games. So it is not an extension of any known
condition for complete information matching problems.

• One-sided Interdependence. To verify comonotonic differences, consider the
first case where there is no restriction on vj. Then

vi(j, θ) − vi(j′, θ) = A′
i(j) − A′

i(j′)

does not depend on θi and θj. Therefore, vi(j, θ) − vi(j′, θ) and vj(i, θ) − vj(i′, θ)
are comonotonic on Θi and Θj.
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• Separable Values. A matching game has separable values if
vi(j, θ) = Ai(θ) + A′

i(j, θ−i) for all i ∈ I, j ∈ Mi, and θ ∈ Θ,

vj(i, θ) = Bj(θ) + B′
j(i, θ−j) for all j ∈ J , i ∈ Mj, and θ ∈ Θ,

where Ai, Bj : Θ → R, A′
i(j, ·) : Θ−i → R and B′

j(i, ·) : Θ−j → R. Matching
games with separable values have been useful for empirical analysis.

To see that the condition of separable values implies comonotonic differences,
observe that vi(j, θ) − vi(j′, θ) = Ai(j, θ−i) − Ai(j′, θ−i), which is independent of
θi, and vj(i, θ) − vj(i′, θ) = Bj(i, θ−j) − Bj(i′, θ−j), which is independent of θj.

Therefore, vi(j, θ) − vi(j′, θ) and vj(i, θ) − vj(i′, θ) are comonotonic on Θi and Θj.

• Common Values. Consider a two-player coordination game with incomplete
information: I = {i} and J = {j}. Also vi(j, ·) = vj(i, ·) and vi(i, ·) = vj(j, ·) ≡ 0.

The game has comonotonic differences. The uniform sharing rule considered by
Dizdar and Moldovanu (2016), where vi(j, ·) = λvj(i, ·), λ > 0 is a scalar, also
satisfies comonotonic differences.

The condition of omonotonic differences connects efficiency and stability.

Theorem 7. If the game has comonotonic differences, then the playout π of any strongly
consistent and stable assessment (π, β) with type independence is Bayesian efficient.

We would like to emphasize that although strong consistency and type independence
implies strong consistency with certainty (Theorem 4), the latter is not sufficient to
ensure efficiency and counterexamples are not difficult to concoct. Independence is
needed to wash out the information externality of the private information of players not
involved in the deviation (but their payoff externality is not ruled out). The proof in
Appendix A.8 employs two tools: strong duality and Tarski’s fixed point theorem.

First, by the dual program of surplus maximization (6.1), a failure of efficiency is
translated into what we call “auxiliary deviations” that do not condition on players’
private information or each other’s incentives to deviation (Lemma 3 and Lemma 4 in
Appendix A.5). In a nutshell, an auxiliary deviation from z involves a pair of players
(i, j) and a transfer such that the following hold:

E0(i’s gain from deviation|π−1(z)) > 0,

E0(j’s gain from deviation|π−1(z)) > 0.
(6.2)
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Under complete information, the existence of an auxiliary deviation implies that z is
not a stable outcome, as is well-known. With incomplete information, the auxiliary
deviation only reflects an outside observer’s perspective, which is not how players inside
the game look at the deviation. It follows from Theorem 2 that, under strong consis-
tency, a viable deviation for these players must be supported by non-empty mutually
reassuring sets Di and Dj that satisfy the following fixed-point property:

Di = {θi : E0(i’s gain from deviation|π−1(z), θi,Dj)>0},

Dj = {θj : E0(j’s gain from deviation|π−1(z), θj,Di)>0}.
(6.3)

Second, to go from an auxiliary deviation of an outsider’s perspective (6.2) to a
viable deviation of insiders’ perspective (6.3), we invoke comonotonic differences. The
existence of non-empty mutually reassuring sets is an application of Tarski’s fixed point
theorem (Lemma 5 in Appendix A.7). Example 2 shows that the condition of strong
consistency cannot be relaxed in the result.

7 Economic Application 2: Networks
The basic setup is described in Section 3.11 We further assume that each player’s

type set is linearly ordered. Player n’s payoff from a network z is

un(z, θ) =
∑

m∈zn

vnm(θn, θm) − cn(|zn|, θn),

where vnm : Θn × Θm → R specifies the value of the link (n, m) to player n, and
cn : N × Θn → R specifies player n’s cost of maintaining his links.12

We introduce two more modifications that are easily incorporated into the main
theoretical framework. First, in a putative network, if m ∈ Nn (i.e., m is connected
to player n), then player n observes m’s type θm. So effectively, player n’s information
type is θzn . We do not assume that indirectly linked players, or disconnected players
trying to form a new connection, have knowledge of each other’s types.

Second, prior to forming a new link with player m in an existing network, player
n ̸= m can take a costly action sn ∈ R+ that is observable to m (see the introduction
for applications of such signaling activities; the question of whether player n’s action

11The cooperative model simplifies the game of network formation, which studies a given network’s
robustness to deviations; see, e.g., Dutta and Mutuswami (1997) for a rich strategic model.

12This payoff specification is not uncommon in the literature; see, e.g., Sadler (2022).
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is observable to a third party is irrelevant for the solution concept, because it tests
the network’s vulnerability to any single deviation instead of a chain of deviations).
Player n’s cost function is Cnm : R+ × Θn × Θm → R, so player n’s ex post signaling
cost can depend on player m’s private type, as well as player m’s observable attributes,
which are summarized by m. Importantly, the action is assumed to be a non-productive
signaling device. We allow the ex post signaling cost to depend on both players’ types
for generality. Player m can also take a costly action sm. Therefore, given any network
z, a deviation δ = ({m, n}, z, z′, sm, sn) involves a pair of players m and n, who take
signaling actions sm and sn, respectively, and form a new link between them to obtain
the network z′. Player n’s ex post payoff from the deviation is un(z′, θ)−Cnm(sn, θn, θm),
while his payoff from not deviating is un(z, θ). We shall make the following assumptions.

Assumption 1.
(i) vnm is strictly increasing in both θn and θm for all n ̸= m;
(ii) cn(k + 1, ·) − cn(k, ·) is non-increasing in θn for all k ≥ 1 (i.e., high types have

weakly lower marginal cost of maintaining a link);
(iii) Cnm(0, ·) ≡ 0, lim sn→∞Cnm(sn, θn, θm) = ∞ for each θn and θm; Cnm is strictly

increasing and continuous in sn and non-increasing in θn (i.e., signaling is less expensive
for high types, but the cost needn’t be monotonic in the other player’s types).

We do not assume that the cost of maintaining links, cn, is increasing or convex in the
number of links, k. A special case of the signaling cost function is Cnm(sn, θn, θm) ≡ sn

so that signaling is purely money burning.
With the two modifications, a deviation is δ = ({m, n}, z, z′, sm, sn), a scenario of

deviation is σ = (δ, θ), and player n’s perception of the scenario is σ = (δ, θzn).13 Our
goal is to understand the structure of stable networks under incomplete information.

Theorem 8. If (π, β) is strongly consistent with certainty and stable, then, for any
θ ∈ Θ, z = π(θ) is a stable outcome of the complete information game Γθ.

Strong consistency and type independence imply strong consistency with certainty.
But unlike Theorem 7, independence is not needed in Theorem 8. How can we reconcile

13Therefore, the definitions of stability and consistencies should treat player n’s type as θzn
. Details

are fleshed out in Appendix A.9.
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the difference? Isn’t that both matching and networks are concerned with pairwise
stability? The difference is that in network formation problem, especially the stability
concept of Jackson and Wolinsky (1996), players are not required to abandon their
existing partners before forming a new link, and hence the types of other players will
not play a role. This is clearly not the case in one-to-one matching, where deviating
players must abandon their partners whose types are informationally relevant. Both
concepts are reasonable. Incomplete information accentuates their subtle difference.

We should clarify the scope of the result. To understand networks, it is crucial to
distinguish between stable network structures and network formation processes. The-
orem 8 states that, regardless of the network formation process, we should expect the
patterns of connections between nodes under incomplete information to resemble those
under complete information. However, it is important to note that players may still
be uncertain about the types of players they are not connected to, so uncertainty does
not fully unravel. This offers insight into how incomplete-information networks func-
tion in the long run and the role of incomplete information, without relying on specific
assumptions about network formation processes.

But costly mutual signaling indeed indirectly captures a consequential aspect of
network formation processes. Signaling takes place when forming new connections,
which, in our formulation, is a deviation from a stabilized network. Therefore, our
modeling has achieved the separation of network structures and network formation.
Theorem 8 shows that this modeling of network formation as a deviation scenario leads
to stark implications for network structures. The approach of disentangling stabilized
network structures and network formation should be explored further. For example,
one useful direction is to measure the inefficiency of network formation by studying the
minimal total signaling cost it must entail for an unstable network structure to stabilize.

In the proof, we show that as long as players m and n find it mutually profitable
to form a link under the complete information of (θ∗

m, θ∗
n), they can take costly actions

sm and sn, respectively, and mutually reassure a deviation in some state under incom-
plete information (which may not be the same as (θ∗

m, θ∗
n)). The literature of signaling

games offers many ideas about equilibrium refinements, which could be useful to ex-
tend strengthen our notion of strong consistency, although most of these games have
one-sided incomplete information. For cooperative analysis, the exact signaling action
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is not important—what is relevant is whether there is a deviation that will destabilize
z—we again test a solution against all possible deviations.

8 Conclusion
This paper presents a general approach to cooperative games with incomplete informa-
tion and studies two of its applications that have been limited in progress due to their
complexity. As reduced-form models of strategic interactions without making excessive
ad hoc assumptions, cooperative games will have many more interesting applications, in
which deviations can be bilateral or multilateral. The advantages of cooperative analy-
sis over non-cooperative analysis come at a cost. Specifically, it does not model strategic
behaviors, and due to the simplicity of cooperative models, unique predictions are often
difficult to obtain. Consequently, a delicate balance must be struck between simplify-
ing our models and obtaining meaningful results. We believe that concrete economic
applications can provide valuable guidance.

We leave open the question of implementing solution concepts or, more broadly, a
Nash program for incomplete-information games (see Okada (2012), Kamishiro, Vohra,
and Serrano (2022) for seminal contributions).14 One immediate idea is to require that
playouts are incentive compatible. All of our results still hold with this additional
condition except that establishing existence is not generally possible. However, this
mechanism design approach is too restrictive, particularly in the context of observable
outcomes, because playouts are intended to be stabilized allocations as a result of com-
plex interactions that are not modeled; to complement the mechanism design approach,
the outcome space needs to be augmented in some way to account for the processes
leading to these outcomes. It should also be mentioned that the efficiency notion we
consider in this paper is allocative efficiency, which does not rule out inefficient delays
of these progresses.15 Note that stability and familiar notions of implementability are
known to be in conflict even in complete-information applications such as two-sided
matching except in the special case where the preference of one side of the market is

14This exercise is quite subtle even under complete information; see, e.g., Gul (1989), Perry and
Reny (1994), etc.

15Inefficient delays in frictional bargaining (due to incomplete information or non-negligible discount-
ing) should not surprise us; see, e.g., Rubinstein and Wolinsky (1985).
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ignored.
In this paper, we focus on the solution concepts of core and stability. The long

history of cooperative game theory is marked by the development of a wealth of useful
solution concepts for games involving complete information: values, bargaining solu-
tions, the nucleolus, the von Neumann–Morgenstern stable sets, etc. Ray (2007) offers
a systematic examination of ideas to coalition formation with complete information.
Gul and Pesendorfer (2020) propose a new agenda for using Lindahl equilibrium and
set-valued bargaining solutions in collective choice and market design problems. Our
approach of formulating solution concepts can be used to extend these cooperative con-
cepts to incomplete-information environments.

A Appendix

A.1 Proof of Theorem 2

Lemma 2. Suppose (π, β) is weakly consistent and {Dβ
n(S, z, z′)}n∈S are deviating sets

for a deviation (S, z, z′) ∈ ∆π. If (Dβ
S(S, z, z′)×Θ−S)∩π−1(z) ̸= ∅, then {Dβ

n(S, z, z′)}n∈S

are mutually reassuring for the deviation (S, z, z′).

Proof. We only need to verify the fixed-point property (5.3) in the definition of mutually
reassuring sets. Combining (5.1) and (5.2), we have

Dβ
n(S, z, z′)=

θn ∈π−1
n (z) :

E0
n(un(z′, ·)|({θn}×Dβ

S\{n}(S, z, z′)×Θ−S)∩π−1(z))
> E0

n(un(z, ·)|({θn}×Dβ
S\{n}(S, z, z′)×Θ−S)∩π−1(z))

 (A.1)

where the conditional expectation is with respect to the belief in (5.2):

βn(S, z, z′, θn)(·) = β0
n

(
·|({θn}×Dβ

S\{n}(S, z, z′)×Θ−S) ∩ π−1(z)
)
. (A.2)

Notice that (A.2) is a conscious conditional probability because the belief system satisfies
“self-recognition” and “knowledge of playout.” Thus, {Dβ

n(S, z, z′)}n∈S satisfy (5.3).

Proof of Theorem 2. (i) By Definition 3 and the definition of deviating sets, the devia-
tion (S, z, z′) is viable if and only if (Dβ

S(S, z, z′)×Θ−S) ∩ π−1(z) ̸= ∅. It follows from
Lemma 2 that {Dβ

n(S, z, z′)}n∈S are mutually reassuring for the deviation (S, z, z′).
(ii) The “only if” part follows from (i) above. The “if” part follows from the definition

of strong consistency.
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A.2 Proof of Theorem 3

Proof. The proof is constructive. Unfortunately, we cannot find a shorter and simpler
argument. For each deviation (S, z, z′) ∈ ∆π, we denote by π−1

S\{n}(z) the projection of
π−1(z) on ΘS\{n}. The proofs proceed in four steps.

Step 1. Defining the support of βn(S, z, z′, θn).
For each n ∈ S and θn ∈ π−1(z), we shall define a Boolean function an,θn : π−1

n (z) →
{0, 1} such that an,θn(θ) = 1 if and only if θ is in the support of βn(S, z, z′, θn).

Case 1. For any n ∈ S and θn ∈ π−1
n (z), if un(z′, θn, θ−n) > un(z, θn, θ−n) for all θ−n

such that (θn, θ−n) ∈ π−1(z), let an,θn(θn, θ−n) = 1. Let Θ∗
n be the set of all such θn’s.

Case 2. If there exist n ∈ S and θ̄S\{n} = (θ̄m)m∈S\{n} ∈ π−1
S\{n}(z) such that

um(z′, θ̄m, θ−m) > um(z, θ̄m, θ−m) for all m ∈ S\{n} and (θ̄m, θ−m) ∈ π−1(z), then
for all θ = (θn, θ̄S\{n}, θ−S) ∈ π−1(z), we have un(z′, θ) ≤ un(z, θ), because otherwise we
would have (S, z, z′) as a viable deviation for Γθ. For all such n and θ, we let an,θn(θ) = 1.

Case 3. For any n ∈ S and θn ∈ π−1
n (z)\(Θ∗

n ∪ Θ∗∗
n ), there exist θ−n such that

θ := (θn, θ−n) ∈ π−1(z) and un(z′, θ) ≤ un(z, θ), because otherwise we would have
θn ∈ Θ∗

n. We let an,θn(θ) = 1.

Finally, for any n ∈ S and θ = (θn, θ−n) ∈ π−1(z), let an,θn(θ) = 0 if an,θn(θ) is not
yet defined in Cases 1–3.

The following properties follow immediately from the definition of an,θn :
(i) for any θn ∈ π−1

n (z), there exists θ = (θn, θ−n) ∈ π−1(z) such that an,θn(θ) = 1;
(ii) if θn ̸= θ′

n, then an,θn(θ′
n, θ′

−n) = 0 for any (θ′
n, θ′

−n) ∈ π−1(z);
(iii) if an,θn(θn, θ−n) = 1, then either un(z′, θn, θ−n) ≤ un(z, θn, θ−n) or θn ∈ Θ∗

n, i.e.,

un(z′, θn, θ−n) > un(z, θn, θ′
−n)

for all θ′
−n such that (θn, θ′

−n) ∈ π−1(z).
Step 2. Defining βn(S, z, z′, θn).
For any n ∈ S and (S, z, z′, θn) ∈ Σπ,n, we define

βn(S, z, z′, θn)(·) = β0
n(·| {θ : an,θn(θ) = 1}). (A.3)

By property (i) in Step 1, {θ : an,θn(θ) = 1} ≠ ∅, and βn(S, z, z′, θn)(θ) > 0 if and only
if an,θn(θ) = 1. It follows from property (ii) in Step 1 that β so defined is a belief system.

Step 3. Showing that (π, β) is weakly consistent.
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Consider n ∈ S and (S, z, z′, θn) ∈ Σπ,n. We consider the three cases: θn ∈ Θ∗
n,

θn ∈ Θ∗∗
n , and θn ∈ π−1

n (z)\(Θ∗
n ∪ Θ∗∗

n ).
Suppose that θn ∈ Θ∗

n. We claim that for any θ = (θm)m∈N ∈ π−1(z) such that
an,θn(θ) = 1, there exists m ∈ S\{n} such that for all (θm, θ′

−m) ∈ π−1(z), am,θm(θm, θ′
−m) =

1 only if um(z′, θm, θ′
−m) ≤ um(z, θm, θ′

−m). It follows from the claim that

({θn} × Dβ
S\{n}(S, z, z′) × Θ−S) ∩ π−1(z) = ∅

and hence, weak consistency imposes no additional restriction on βn(S, z, z′, θn). To
prove the claim, suppose to the contrary that there exists θ = (θm)m∈N such that
an,θn(θ) = 1, and for all m ∈ S\{n} there exists θ′

−m such that am,θm(θm, θ′
−m) = 1 and

um(z′, θm, θ′
−m) > um(z, θm, θ′

−m). By the definition of am,θm (property (iii) in Step 1),
θm ∈ Θ∗

m for all m ∈ S\{n}. Together with θn ∈ Θ∗
n, it implies that (S, z, z′) is a viable

deviation for Γθ, a contradiction.
Suppose that θn ∈ Θ∗∗

n . Then

({θn} × Dβ
S\{n}(S, z, z′) × Θ−S) ∩ π−1(z) = {θ : an,θn(θ) = 1}.

Weak consistency requires that βn(S, z, z′, θn)(·) = β0
n(·| {θ : an,θn(θ) = 1}), which is

satisfied because of (A.3).
Suppose θn ∈ π−1

n (z)\(Θ∗
n ∪Θ∗∗

n ). Then we claim that for each θ = (θm)m∈N ∈ π−1(z)
there is an m ∈ S\{n} such that

Eβm(S,z,z′,θm)(um(z′, ·)) ≤ Eβm(S,z,z′,θm)(um(z, ·)).

It follows from the claim that ({θn} × Dβ
S\{n}(S, z, z′) × Θ−S) ∩ π−1(z) = ∅ and, hence,

weak consistency places no additional restriction on βn(S, z, z′, θn). To prove the claim,
suppose to the contrary that there exists θ = (θm)m∈N ∈ π−1(z) such that

Eβm(S,z,z′,θm)(um(z′, ·)) > Eβm(S,z,z′,θm)(um(z, ·))

for all m ∈ S\{n}. Then by the definition of am,θm (property (iii) in Step 1) and the
definition of βm(S, z, z′, θm), we have θm ∈ Θ∗

m. Therefore, θn ∈ Θ∗
n ∪ Θ∗∗

n , a contradic-
tion.

Step 4. Showing that (π, β) is stable.
Consider any scenario of deviation (S, z, z′, θ) ∈ Σπ. If there exists n ∈ S such that

θn /∈ Θ∗
n, then player n will not find the deviation profitable (by property (iii) in Step

1). If θn ∈ Θ∗
n for all n ∈ S, then π(θ) is not a stable outcome for Γθ (again by property
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(iii) in Step 1), a contradiction. Therefore, (S, z, z′, θ) is not a viable scenario.
Step 5. Strong consistency and strong consistency with certainty
If π is one-to-one, then π−1(z) is a singleton and βn(S, z, z′, θn) assigns probability 1

to it. The only candidate mutually reassuring sets are {π−1
n (z)}n∈S. Therefore, strong

consistency and strong consistency with certainty are always satisfied.

A.3 Proof of Theorem 4

Proof of Lemma 1. If S = {n}, then (Dβ
S\{n}×Θ−(S\{n})) ∩ π−1(z) = π−1(z) ̸= ∅. Belief

independence and weak consistency imply that, for any ({n}, z, z, θn) ∈ Σπ,n and m ̸= n,

βn({n}, z, z, θn)(θ−n) = β0
n(θ−n|({θn}×Θ−n) ∩ π−1(z)) = β0

n(θ−n|π−1(z)), (A.4)
βn({n}, z, z, θn)(θm) = β0

n(θm|({θn}×Θ−n) ∩ π−1(z)) = β0
n(θm|π−1(z)), (A.5)

where the last inequalities of both (A.4) and (A.5) follow because βn({n}, z, z, θn)(θ−n)
is independent of θn ∈ π−1(z). By belief independence, we have

βn({n}, z, z, θn)(θ−n) =
∏

m ̸=n
βn({n}, z, z, θn)(θm). (A.6)

From (A.4)–(A.6), we have β0
n(θ−n|π−1(z))=

∏
m ̸=n

β0
n(θm|π−1(z)). Therefore,

β0
n(θ|π−1(z)) = β0

n(θ−n|({θn}×Θ−n) ∩ π−1(z))β0
n(θn|π−1(z)) =

∏
n∈N

β0
n(θn|π−1(z)).

That is, π has type independence.

Proof of Theorem 4. Since π−1(z) is a product space, then for any θn ∈ π−1
n (z) and

any Dm ⊂ π−1
m (z), then ({θn}×DS\{n} ×Θ−S) ∩ π−1(z) ̸= ∅ and hence (a) in (5.4)

is always satisfied and the conventional conditional probability β0
n(·|·) is a conscious

conditional probability. Hence (5.3) and (5.4) are identical. The results then follow
immediately.

A.4 Proof of Theorem 5

Proof. Suppose Θj = {θ∗
j} is a singleton for all j ∈ J. If (π, β) is weakly consistent but

not strongly consistent, then there exists a deviation ({i, j}, z, z′), which is not viable,
but there are mutually reassuring sets Di and Dj for the deviation, where Dj = {θ∗

j}
and

Di = {θi ∈ π−1
i (z) : ui(z′, θi, θ∗

j) > ui(z, θi, θ∗
zi

)} ≠ ∅. (A.7)
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Furthermore, ({θ∗
j}×Di×ΘN\{i,j}) ∩ π−1(z) ̸= ∅ by the definition of mutually reassuring

sets, and it follows from player j’s deviation incentives that

E0
j(uj(z′, ·)|({θ∗

j}×Di×ΘN\{i,j}) ∩ π−1(z))>E0
j(uj(z, ·)|({θ∗

j}×Di×ΘN\{i,j}) ∩ π−1(z)).
(A.8)

By the definition of deviating sets,

Dβ
i ({i, j}, z, z′) = {θi ∈ π−1

i (z) : ui(z′, θi, θ∗
j) > ui(z, θi, θ∗

zi
)}. (A.9)

Comparing (A.7) and (A.9), we have Dβ
i ({i, j}, z, z′) = Di ̸= ∅. The weak consistency

of (π, β) requires that

βj({i, j}, z, z′, θ∗
j)(·) = β0

j(·|({θ∗
j}×Di×ΘN\{i,j}) ∩ π−1(z)). (A.10)

Combining (A.8) and (A.10), we obtain Dβ
j ({i, j}, z, z′) = {θ∗

j} ≠ ∅. Hence,

(Dβ
{i,j}({i, j}, z, z′)×ΘN\{i,j}) ∩ π−1(z) = ({θ∗

j}×Di×ΘN\{i,j}) ∩ π−1(z) ̸= ∅.

Therefore, ({i, j}, z, z′) is a viable deviation of (π, β), a contradiction.

A.5 Duality

This section introduces two results that are consequences of the duality of surplus
maximization. Under complete information, the dual of surplus maximization defines
pairwise stability. However, under incomplete information, the dual only defines an
auxiliary problem where pairwise deviations are not conditional on private information.

Lemma 3. A playout π is Bayesian efficient if for all z ∈ π(Θ), i ∈ I, and j ∈ J,

E0(ui(z, ·)|π−1(z)) + E0(uj(z, ·)|π−1(z)) ≥ E0(vi(j, ·) + vj(i, ·)|π−1(z)); (A.11)
E0(ui(z, ·)|π−1(z)) ≥ E0(vi(i, ·)|π−1(z)); (A.12)
E0(uj(z, ·)|π−1(z)) ≥ E0(vj(j, ·)|π−1(z)). (A.13)

Proof. For any z ∈ π(Θ), the surplus maximization problem (6.1) in its relaxed form in
fractional matching has a dual minimization problem:

min
(wn)n∈N

∑
n∈N

wn

such that, for any i ∈ I and j ∈ J,

wi + wj ≥ E0(vi(j, ·) + vj(i, ·)|π−1(z));
wi ≥ E0(vi(i, ·)|π−1(z));
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wj ≥ E0(vj(j, ·)|π−1(z)).

If conditions (A.11)–(A.13) in Lemma 3 are satisfied, then (E0(un(z, ·)|π−1(z)))n∈N is
feasible for the dual and hence ∑

n∈N E0(un(z, ·)|π−1(z)) is no less than the optimal
value of the primal (6.1). Therefore, z is an optimal solution to the primal.

Lemma 4. If the playout π of a weakly consistent and stable assessment (π, β) is not
Bayesian efficient, then there exist z = (µ, τ) ∈ π(Θ) and (i, j, p) ∈ I × J ×R such that

E0(vi(j, ·) − vi(µi, ·)|π−1(z)) > τ i − p;
E0(vj(i, ·) − vj(µj, ·)|π−1(z)) > τ j + p.

(A.14)

We call (i, j, p) that satisfies (A.14) an auxiliary deviation. It is not a deviation
under incomplete information because payoff computations are conditional on neither
players’ private information nor each other’s incentive to deviate.

Proof. Since (π, β) is weakly consistent and stable, the non-existence of any viable
scenario of deviation that involves a single player n when the outcome is z implies that

E0(un(z, ·)|({θn}×Θ−n)∩π−1(z)) ≥ E0(vn(n, ·)|({θn}×Θ−n)∩π−1(z)).

Taking an expectation w.r.t. θn, we obtain (A.12) and (A.13). If π is not Bayesian
efficient, it follows from Lemma 3 that (A.11) is violated for some pair (i, j) ∈ I × J .
Thus, there exists p ∈ R such that (A.14) holds.

A.6 Proof of Theorem 6

Proof. Suppose to the contrary that π is not efficient. By Lemma 4, there exist p ∈ R,
θ̄i ∈ π−1

i (z), and θ̄j ∈ π−1
j (z) such that

E0(vi(j, ·)|({θ̄i}×Θ−i)∩π−1(z)) + p > E0(vi(µi, ·)|({θ̄i}×Θ−i)∩π−1(z)) + τ i, (A.15)
E0(vj(i, ·)|({θ̄j}×Θ−j)∩π−1(z)) − p > E0(vj(µj, ·)|({θ̄j}×Θ−j)∩π−1(z)) + τ j. (A.16)

Assume that there is no restriction on vj by one-sided interdependence. Then (A.15)
takes the following form:

E0(Ai(·)+A′
i(j)|({θ̄i}×Θ−i)∩π−1(z)) + p > E0(Ai(·)+A′

i(µi)|({θ̄i}×Θ−i)∩π−1 (z)) + τ i.

Hence, A′
i(j) + p > A′

i(µi) + τ i. By the definition of deviating sets,

Dβ
i ({i, j}, z, z′) =

{
θi ∈ π−1

i (z) : Eβi(S,z,z′,θi)(ui(z′, ·)) > Eβi(S,z,z′,θi)(ui(z, ·))
}

37



=
{
θi ∈ π−1

i (z) : Eβi(S,z,z′,θi)(vi(j, ·)) + p > Eβi(S,z,z′,θi)(vi(µi, ·)) + τ i

}
=

{
θi ∈ π−1

i (z) : Eβi(S,z,z′,θi)(Ai) + A′
i(j) + p > Eβi(S,z,z′,θi)(Ai) + A′

i(µi) + τ i

}
=

{
θi ∈ π−1

i (z) : A′
i(j) + p > A′

i(µi) + τ i

}
= π−1

i (z).

It follows from the definition of weak consistency that, for any ({i, j}, z, z′, θj) ∈ Σπ,j,

βj({i, j}, z, z′, θj)(·) = β0(·|({θj}×Dβ
i ({i, j}, z, z′)×ΘN\{i,j})∩π−1(z)) (A.17)

= β0(·|({θj}×Θ−j) ∩ π−1(z)). (A.18)

Therefore,

Dβ
j ({i, j}, z, z′) =

{
θi ∈ π−1

i (z) : Eβj(S,z,z′,θj)(uj(z′, ·)) > Eβj(S,z,z′,θj)(uj(z, ·))
}

=
{
θi ∈ π−1

i (z) : Eβj(S,z,z′,θj)(vj(i, ·)) − p > Eβj(S,z,z′,θj)(vj(µj, ·)) + τ i

}
=

θi ∈ π−1
i (z) : E0(vj(i, ·)|({θj}×Θ−j)∩π−1(z)) − p

> E0(vj(µj, ·)|({θj}×Θ−j)∩π−1(z)) + τ i


̸= ∅,

where the last equality is due to (A.18) and the inequality is due to (A.16). Hence,

(Dβ
{i,j}({i, j}, z, z′)×ΘN\{i,j}) ∩ π−1(z) = (Dβ

j ({i, j}, z, z′)×Θ−j) ∩ π−1(z) ̸= ∅,

contradicting the stability of (π, β).

A.7 Comonotonicity and Tarski’s Fixed Point Theorem

We first prove a mathematical result that follows from comonotonicity.

Lemma 5. Suppose that f, g : X1 × X2 → R are comonotonic16 on X1 and X2, and for
some constants c1 and c2,

Eν1⊗ν2(f) > c1 and Eν1⊗ν2(g) > c2, (A.19)

where the expectation is with respect to some product measure ν1 ⊗ν2 ∈ ∆(X1)×∆(X2).
Then there exist non-empty sets D∗

1 ⊂ X1 and D∗
2 ⊂ X2 such that

D∗
1 = {x1 : Eν2(f |x1, D∗

2) > c1};
D∗

2 = {x2 : Eν1(g|x2, D∗
1) > c2}.

(A.20)

16Here X3 in the Definition 14 is taken as a singleton set.
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The proof idea is as follows. By the comonotonicity of f and g, the mapping defined
on the right-hand side of (A.20) is order-reversing in the set-inclusion order, and hence
a twice iteration of the mapping is order-preserving and has a fixed point by Tarski’s
fixed point theorem. A fixed point of the original mapping can be constructed from
this fixed point. We then use condition (A.19) to show that the fixed point consists of
non-empty sets.

Proof. Suppose without loss of generality that both f and g are non-decreasing with
respect to some complete orders ≥n on Xn. Then consider the class of upper contour sets
Bn(xn) = {x′

n : x′
n ≥n xn}. Let Bn = {Bn(xn) : xn ∈ Xn} ∪ {∅}. Define d1 : B2 → 2X1

and d2 : B1 → 2X2 as follows:
d1(D2) := {x1 : Eν2(f |x1, D2) > c1}, d1(∅) := X1;
d2(D1) := {x2 : Eν1(g|x2, D1) > c2}, d2(∅) := X2.

(A.21)

It follows from Eν1⊗ν2(f) > c1 and Eν1⊗ν2(g) > c2 that d1(X2) ̸= ∅ ≠ d2(X1). Define
d on B1 × B2 as d(D1, D2) = (d2(D1), d1(D2)). By monotonicity of f and g, we have
d1(D2) ∈ B1 and d2(D1) ∈ B2. Therefore d is a self-map on B1 × B2.

For any x′
1 ≥1 x1 and x′

2 ≥2 x2, we have

B1(x′
2) ⊂ B1(x2) and B2(x′

1) ⊂ B2(x1). (A.22)

By monotonicity of f and g, we have

d1(B2(x2)) ⊂ d1(B2(x′
2)) and d2(B1(x1)) ⊂ d2(B1(x′

1)). (A.23)

Notice that B1 × B2 is a complete lattice in the set-inclusion order. It follows from
(A.21)–(A.23) that d is order-reversing. Therefore d2 : B1 × B2 → B1 × B2 is order-
preserving. By Tarski’s fixed point theorem, d2 admits a fixed point (D1, D2). By the
definitions of d2 and the fixed point of d2, we have

d2(D1, D2) = d(d1(D2), d2(D1)) = (d1(d2(D1)), d2(d1(D2))) = (D1, D2).

Thus d1(d2(D1)) = D1 and hence (D1, d2(D1)) is a fixed point of d. The fixed point
cannot be of the form (∅, D) because D = d2(∅) = X2 but d1(X2) ̸= ∅. Similarly, the
fixed point cannot be of the form (D, ∅) because D = d1(∅) = X1 but dY (X1) ̸= ∅.

Therefore, the fixed point of d is non-empty.
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A.8 Proof of Theorem 7

Proof. Suppose to the contrary that π is not Bayesian efficient. By Lemma 4, (A.14)
holds for some z ∈ π(Θ) and a pair of players with transfer (i, j, p). In Lemma 5, set

X1 = π−1
i (z), X2 = π−1

j (z),
f(θi, θj) = E0(vi(j, ·) − vi(µi, ·)|({θi}×{θj}×ΘN\{i,j}) ∩ π−1(z)),
g(θi, θj) = E0(vj(i, ·) − vj(µj, ·)|({θi}×{θj}×ΘN\{i,j}) ∩ π−1(z)),

c1 = τ i − p, c2 = τ j + p,

ν1(θi) = β0(θi|π−1(z)), ν2(θj) = β0(θj|π−1(z)).

Since the playout π has independent types, f and g are well-defined on π−1
i (z) ×

π−1
j (z). Since the game has comonotonic differences, f and g are comonotonic on π−1

i (z)
and π−1

j (z). Condition (A.14) implies (A.19), and hence there exist non-empty sets
D∗

1 and D∗
2 that satisfy (A.20). They are mutually reassuring sets for some deviation

({i, j} , z, z′) in which i and j match with transfer p in z′. By Theorem 2, the existence
of mutually reassuring sets contradicts with the assumption that (π, β) is strongly con-
sistent and stable.

A.9 Proof of Theorem 8

We first flesh out the extension in our network setting. A deviation in a network takes
the form δ = ({m, n}, z, z′, sn, sm). A perceived scenario of deviation of player n takes
the form of σn = ({m, n}, z, z′, sn, sm, θzn), because player n observes not only his own
type θn, but also the types of all players in zn. Let Σπ,n be the set of player n’s
perceived scenarios of deviation. A belief system for a playout π is β = (βn)n∈N , where
βn : Σπ,n → ∆(Θ) is such that for any σn ∈ Σπ,n we have βn(σn)({θzn} × Θ−n) = 1 and
βn(σzn)(π−1(z)) = 1. Consider a deviation δ, the deviation set for player n is

Dβ
n(δ) :=

{
θzn ∈ π−1

zn
(z) : Eβn(δ,θzn )(un(z′, ·) − Cnm(sn, ·)) > Eβn(δ,θzn )(un(z, ·))

}
.

Weak consistency says that βn(δ, θzn)(·) = β0
n(·|({θzn}×Θ−zn)∩(Dβ

m(δ)×Θ−zm)∩π−1(z)).
We say Dn ⊂ π−1

zn
(z) and Dm ⊂ π−1

zm
(z) are mutually reassuring with certainty for a

deviation δ = ({m, n}, z, z′, sm, sn), where m /∈ zn, if the following two conditions hold:
(i) (Dm×Θ−zm) ∩ (Dn×Θ−zn) ∩ π−1(z) ̸= ∅;
(ii) Dm and Dn satisfy the following fixed-point property:
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Dm =

θzm ∈π−1
zm

(z) :
(a) ({θzm}×Θ−zm) ∩ (Dn×Θ−zn) ∩ π−1(z)) ̸= ∅
(b) E0

m(um(z′, ·) − Cmn(sm, ·)|({θzm}×Θ−zm)∩(Dn×Θ−zn)∩π−1(z))
> E0

m(um(z, ·)|({θzm}×Θ−zm)∩(Dn×Θ−zn)∩π−1(z))

,

Dn =

θzn ∈π−1
zn

(z) :
(a) ({θzn}×Θ−zn) ∩ (Dm×Θ−zm) ∩ π−1(z)) ̸= ∅
(b) E0

n(un(z′, ·) − Cnm(sn, ·)|({θzn}×Θ−zn) ∩ (Dm×Θ−zm) ∩ π−1(z))
> E0

n(un(z, ·)|({θzn}×Θ−zn) ∩ (Dm×Θ−zm) ∩ π−1(z))

.

An assessment (π, β) is strongly consistent with certainty if (i) it is weakly consistent
and (ii) a deviation δ = ({m, n}, z, z′, sm, sn), where m /∈ zn, is viable if there exist Dm

and Dn that are mutually reassuring with certainty for the deviation.
The definitions of mutual reassurance, conscious conditional probability, and strong

consistency can be extended analogously.

Proof of Theorem 8. Consider an assessment (π, β). Suppose to the contrary that there
exists θ∗ such that z = π(θ∗) is not a stable outcome for Γθ∗

. Then there are two cases
to consider. First, there exist n ̸= m ∈ zn such that under complete information of θ∗,

player n will remove player m from zn. That is,

vnm(θ∗
n, θ∗

m) < cn(|zn|, θ∗
n) − cn(|zn| − 1, θ∗

n).

Since player n observes player m’s type θ∗
m under incomplete information, he will remove

m from zn as well.
Second, there exists n ̸= m /∈ zn such that both n and m would like to connect with

each other under complete information of θ∗. We define

∆mn(θm, θn) := vmn(θm, θn) − (cm(|zm| + 1, θm) − cm(|zm| , θm))

as the net benefit of forming a link with n for player m. It follows from Assumption
1 that ∆mn is strictly increasing. We define ∆nm(θn, θm) similarly. By the choice of
(m, n) and θ∗, we have ∆mn(θ∗

m, θ∗
n) > 0 and ∆nm(θ∗

n, θ∗
m) > 0.

Choose any θ∗∗ ∈ π−1(z) such that (∆mn(θ∗∗
m , θ∗∗

n ), ∆nm(θ∗∗
n , θ∗∗

m )) is Pareto undom-
inated over all θ’s in π−1(z). Choose ϵ > 0 such that ∆mn(θ∗∗

m , θ∗∗
n ) − ϵ > 0 and

∆nm(θ∗∗
n , θ∗∗

m ) − ϵ > 0, and meanwhile, for any θm < θ∗∗
m and θn < θ∗∗

n , ∆mn(θ∗∗
m , θ∗∗

n ) −
∆mn(θm, θ∗∗

n ) > ϵ and ∆nm(θ∗∗
n , θ∗∗

m ) − ∆nm(θn, θ∗∗
m ) > ϵ. The existence of ϵ is guaranteed

because ∆mn and ∆nm are strictly increasing.
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By Assumption 1, there exist sm, sn ∈ R+ such that Cmn(sm, θ∗∗
m , θ∗∗

n ) = ∆mn(θ∗∗
m , θ∗∗

n )−
ϵ and Cnm(sn, , θ∗∗

n , θ∗∗
m ) = ∆nm(θ∗∗

n , θ∗∗
m ) − ϵ. We claim that there exists a unique θm,

namely θ∗∗
m , such that the following holds:

∆mn(θm, θ∗∗
n ) − Cmn(sm, θm, θ∗∗

n ) > 0, (A.24)
({θm}×Θ−m) ∩ ({θ∗∗

n }×Θ−n) ∩ π−1(z) ̸= ∅. (A.25)

To see this, note that θ∗∗
m satisfies (A.24) and (A.25) by the choice of sm and θ∗∗

m . If
θm > θ∗∗

m satisfies both (A.24) and (A.25), then there is a contradiction with the Pareto
undominance of (∆mn(θ∗∗

m , θ∗∗
n ), ∆nm(θ∗∗

n , θ∗∗
m )). If θm < θ∗∗

m , then

∆mn(θm, θ∗∗
n ) − Cmn(sm, θm, θ∗∗

n ) ≤ ∆mn(θm, θ∗∗
n ) − Cmn(sm, θ∗∗

m , θ∗∗
n ) (A.26)

= ∆mn(θm, θ∗∗
n ) − ∆mn(θ∗∗

m , θ∗∗
n ) + ϵ (A.27)

< 0, (A.28)

where (A.26) is due to the monotonicity of Cmn in θm, (A.27) is by the choice of sm,
and (A.28) is by the choice of ϵ. This contradicts (A.24).

Similarly, θ∗∗
n is the only θn that satisfies ∆nm(θn, θ∗∗

m ) − Cn(sn, θn, θ∗∗
m ) > 0 and

({θn}×Θ−n) ∩ ({θ∗∗
m }×Θ−m) ∩ π−1(z) ̸= ∅.

Let us define Dm := {θzm ∈ π−1
zm

(z) : θm = θ∗∗
m } and Dn := {θzn ∈ π−1

zn
(z) : θn = θ∗∗

n }.

Therefore,

E0
m(um(z′, ·) − um(z, ·) − Cmn(sm, ·)|({θzm}×Θ−zm) ∩ (Dn×Θ−zn) ∩ π−1(z))

= ∆mn(θm, θ∗∗
n ) − Cmn(sm, θm, θ∗∗

n ).

An analogous expression holds for n. Because θ∗∗
m is the only θm that satisfies (A.24)

and (A.25), Dm and Dn are mutually reassuring with certainty.
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