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Abstract: A patient player interacts with a sequence of short-run players. The patient player is either an
honest type who always takes a commitment action and never erases any record, or an opportunistic type
who decides which action to take and whether to erase that action from his record at a low cost. We show
that the patient player will have an incentive to build a reputation in every equilibrium and can secure a
payoff that is strictly greater than his commitment payoff after accumulating a long enough good record.
However, as long as the patient player has a sufficiently long lifespan, his equilibrium payoff must be close
to his minmax value. Although a small probability of opportunistic type can wipe out all of the patient
player’s returns from building reputations, it only has a negligible effect on the short-run players’ welfare.
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1 Introduction

Most of the existing works on repeated games and reputations assume that the lengths of players’ records

are exogenous.1 This includes the canonical models of Fudenberg and Maskin (1986) and Fudenberg and

Levine (1989) where players can observe the full history of play as well as the models in Liu and Skrzypacz

(2014), Bhaskar and Thomas (2019), Levine (2021), and Pei (2023) where players have limited records.

However, in many situations, players’ record lengths are endogenous and are affected by their strategic

behaviors. For example, sellers in online platforms may bribe consumers for deleting negative reviews, or

may even threaten to sue them for defamation if the negative reviews are not removed.2 Politicians may

collude with media outlets to limit the coverage of bad news and political scandals (Besley and Prat 2006).

This paper takes a first step to analyze reputation effects when players’ record lengths are determined

endogenously by their strategic behaviors. We analyze a novel reputation model in which a patient player

*Department of Economics, Northwestern University. Email: harrydp@northwestern.edu. I thank Jeff Ely, Drew Fudenberg,
David Levine, Alessandro Pavan, Larry Samuelson, Andrzej Skrzypacz, Egor Starkov, Yiman Sun, and Alex Wolitzky for helpful
comments. I thank the NSF Grant SES-1947021 and the Cowles Foundation for financial support.

1A few exceptions include models where the monitoring structure is designed by social planners such as Ekmekci (2011), Vong
(2022), and Wong (2023), as well as models where the uninformed players decide how much information to acquire about the
informed player’s history, such as Liu (2011). We explain the differences between our model and theirs in the literature review.

2There is abundant anecdotal evidence showing that sellers in online platforms bribe or harass consumers who post negative
reviews. Nosko and Tadelis (2015) document that 99.3% of the reviews on eBay are positive despite their survey results indicate
that a significant fraction of the consumers are not satisfied with the seller. Cai, et al (2014) find similar results on EachNet.
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can erase actions from his records at a low cost. We show that the patient player will build a reputation

in all equilibria and can secure a high payoff after accumulating a long enough good record. However,

his equilibrium payoff must be close to his minmax value when he has a sufficiently long lifespan, even

if with high probability, he is an honest type who always takes some commitment action and never erases

any record. Therefore, although the possibility of erasing records cannot eliminate the patient player’s

reputational incentives, it can wipe out his returns from building reputations by slowing down the process

of reputation building. We also show that a small probability of opportunistic type has a negligible effect on

the short-run players’ welfare, even though it can significantly lower the patient player’s payoff.

We study a repeated game between a long-run player (e.g., a firm) and a sequence of short-run players

(e.g., consumers). The long-run player discounts future payoffs and exits the game with some exogenous

probability after each period. Players’ stage-game payoffs are monotone-supermodular. The product choice

game in Mailath and Samuelson (2001) satisfies our assumption, which we use to illustrate our results:

firm \ consumer Large Quantity Small Quantity

Good Products 1, 1 −g, x

Bad Products 1 + g,−x 0, 0

with g > 0 and x ∈ (0, 1).

By the end of each period, the firm can erase its action in that period at a cost c.3 We focus on the case in

which the cost of erasing an action is strictly lower than the cost of supplying good products g.4

The long-run player has private information about his type: He is either an honest type who supplies

good products in every period and never erases any action, or an opportunistic type who strategically decides

which products to supply and whether to erase his actions. Each short-run player can observe the long-run

player’s unerased actions but cannot observe how many actions were erased. Hence, they cannot observe the

long-run player’s age in the game, i.e., calendar time.5 In consistent with the literature on reputation effects

with limited memories such as Liu and Skrzypacz (2014), the short-run players have a prior belief about the

long-run player’s age, which is determined by the rate with which the long-run player leaves the game. The

short-run players update their beliefs according to Bayes rule after observing the long-run player’s record.
3The firm in our model can only erase reviews but cannot modify the content of reviews. Arguably, it is harder to persuade

dissatisfied consumers to write positive reviews than to ask them to stay silent. Our main result shows that reputation effects will
fail when firms can manipulate their records, which is stronger when they can only erase reviews but cannot modify their content.

4We study the case where c > g in Online Appendix A. Our assumption that c < g seems reasonable since the consumers’
losses from their bad experiences are sunk, so they might be willing to remove their negative reviews in exchange for a small bribe
or to avoid a defamation lawsuit. The firms’ costs of issuing a giftcard and making legal threats seem to be lower than the cost of
supplying high quality. This is consistent with the empirical observation that negative reviews are rare in online marketplaces.

5The seller’s age on the market is not publicly revealed on online platforms that only disclose the number of times that the seller
received each review, such as eBay and TMall. Section 5.3 extends our results to settings where the consumers arrive stochastically,
in which case the firm’s age on the market may not be the same as the number of consumers that it has interacted with.
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When the firm can erase its actions at a low cost, it will never supply good products after the consumers

rule out the honest type. However, as long as the honest type occurs with positive probability, the oppor-

tunistic type will supply good products with positive probability in all equilibria until it has a sufficiently

long good record at which point its continuation value will be strictly greater than its commitment payoff 1.

The intuition is that the firm can signal its honesty via the length of its good record and in every equilibrium,

both the firm’s reputation and the consumers’ willingness to play L increase in the firm’s record length.

Although the firm can secure a high payoff in the long run, our main result, Theorem 1, shows that when

the firm has a sufficiently long lifespan, (i) the opportunistic type’s equilibrium payoff must be close to its

minmax value 0 and (ii) the consumers’ equilibrium welfare must be close to that in an auxiliary setting

where they can observe the firm’s type and the opportunistic type always supplies bad products. This result

implies that the presence of a small fraction of opportunistic types who may supply bad products and may

erase records can wipe out all of the firm’s returns from building reputations but it only has a negligible effect

on consumer welfare. It also implies that when a firm commits to the consumers that it will supply good

products and will never erase any action, the value of such a commitment will be seriously compromised as

long as the consumers entertain a grain of doubt about the firm’s willingness to honor its commitment.

Theorem 1 is driven by two forces that are caused by the firm’s ability to erase actions. On the one

hand, the opportunistic type’s ability to erase actions implies that it can sustain its current continuation

value at a low cost. In order to motivate the opportunistic type to build a reputation for supplying good

products, its continuation value has to increase fast enough with the length of its good record. This leads to

an upper bound on the maximal length of good record that the opportunistic type may have in equilibrium,

or equivalently, the minimal length of good record required for the firm to have a perfect reputation.

On the other hand, the opportunistic type may not lose its reputation after supplying bad products since

it can erase that action. The firm’s incentive to do so will slow down consumer learning and in equilibrium,

firms with shorter records will have worse reputations. The upper bound on the speed of learning leads to a

lower bound on the length of good record required for the firm to have a perfect reputation.

As the firm’s expected lifespan increases, the honest type’s expected record length increases, which also

increases the lower bound on the length of good record required for the firm to have a perfect reputation.

Once this lower bound exceeds the upper bound implied by the need to provide the opportunistic type

incentives, the opportunistic type needs to separate from the commitment type with positive probability

in the first period in order to boost its reputation. Since the opportunistic type’s continuation value after

separating from the honest type equals its minmax value 0, its equilibrium payoff must be close to 0.

In terms of consumer welfare, its equilibrium value is no less than the consumers’ payoff when they play

3



L if and only if the firm has a perfect reputation, and is no more than the consumers’ payoff when they can

observe the firm’s realized pure action before choosing their actions. Although the opportunistic type will

play G with high probability at some histories, we show that the probability with which a history occurs is

bounded above zero if and only if the opportunistic type plays G at that history with a probability that is at

most proportional to its exit rate. Since the opportunistic type’s maximal length of good record is bounded,

the average probability with which it plays G vanishes as its exit rate vanishes. If this is the case, then the

upper and lower bounds on consumer welfare coincide, which together pin down its equilibrium value.

Theorem 1 suggests that when the consumers expect that the honest type will have a long good record,

firms with short records will have low reputations and will receive low payoffs. A natural question is that

whether this reputation failure problem can be solved when the honest type does not reveal all its actions.

Theorem 2 studies a setting where the honest type discloses information about its past actions according

to a disclosure policy. It shows that when the firm is sufficiently long-lived, regardless of the honest type’s

disclosure policy (i) the opportunistic type’s payoff cannot exceed its equilibrium payoff in an auxiliary

game where the honest type reveals no information and (ii) consumer welfare cannot exceed its equilibrium

value in the baseline model where the honest type reveals all past actions. These conclusions also apply, for

example, when a platform commits to reveal at most K of the firm’s unerased actions to the consumers.

Theorem 2 implies that a long-lived firm cannot benefit from allowing the consumers to observe its

history as long as the consumers suspect that with positive probability, it can erase actions from its records

at a low cost. This stands in contrast to the standard lessons from the theories of repeated games such as

Fudenberg, Kreps and Maskin (1990), that a patient player can obtain higher payoffs in some equilibria

when his opponents can monitor his past actions relative to the case in which there is no monitoring at all.

Theorem 2 is driven by a conflict between motivating the opportunistic type to supply good products and

persuading the consumers to buy a large quantity starting from period 0. As in Theorem 1, the opportunistic

type’s incentives lead to an upper bound on the longest good record that it may have in any equilibrium.

Persuading the consumers in our setting differs from the Bayesian persuasion problem in Kamenica

and Gentzkow (2011). This is because the consumer’s payoff in our model depends only on the firm’s

endogenous actions rather than on some exogenous state of the world, and the honest type’s disclosure policy

affects the opportunistic type’s equilibrium behavior. Our proof uses the upper bound on the opportunistic

type’s average behavior that we derived earlier, which implies that the average probability with which it

supplies good products vanishes when its expected lifespan goes to infinity. If this is the case, then it is

impossible to persuade the consumers to play L in every period when (i) the honest type occurs with low

probability and (ii) the opportunistic type erases B at every history and never separates from the honest type.
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Related Literature: This paper takes a first step to analyze reputation effects when players’ records, and

in particular, their record lengths, are determined endogenously by their own behaviors. Our model stands

in contrast to Ekmekci (2011), Vong (2022), Kovbasyuk and Spagnolo (2023), and Wong (2023) in which

the record systems are designed by planners who do not participate in the game, as well as Liu (2011) in

which the short-run players decide how much information to acquire about the long-run player’s history.6

Our reputation model has several merits compared to our benchmark without any honest type and to

some of the existing reputation models such as the one in Fudenberg and Levine (1989).

First, our model leads to sharp predictions not only on the long-run player’s payoff, but also on both

players’ behaviors and the short-run players’ welfare. In contrast, the results in Fudenberg and Levine

(1989) focus exclusively on the long-run player’s equilibrium payoff but do not lead to sharp predictions on

players’ behaviors and the short-run players’ welfare. The details are explained in Li and Pei (2021).

Second, our predictions are consistent with a number of empirical findings in online marketplaces. For

example, Livingston (2005) finds that on eBay, negative reviews are rare and sellers’ sales increase in the

lengths of their good records. This is consistent with our finding that in all equilibria, the probability with

which the consumers play L increases in the length of the firm’s good record. By contrast, in Fudenberg

and Levine (1989), the relationship between the short-run player’s action and the length of the long-run

player’s good record depends on the selection of equilibrium, and in Liu and Skrzypacz (2014), the short-run

player’s action depends only on the timing of the latest bad review rather than on the length of good records.

Nosko and Tadelis (2015) document that 99.3% of the reviews on eBay are positive despite their survey

suggests that a significant fraction of the consumers are dissatisfied. This is consistent with the equilibria

in our reputation model that firms supply good products with positive probability, but both the firm and the

consumers will receive low payoffs until the firm has a sufficiently long good record. By contrast, in the

benchmark without honest types, the firm supplies bad products and the consumers play S in every period.

The long-run player’s time preference and survival probability play different roles in our model. This

feature stands in contrast to Fudenberg and Levine (1989) and existing models where players do not observe

calendar time such as Liu (2011), Liu and Skrzypacz (2014), Levine (2021), and Pei (2023), where the

qualitative features of equilibria depend only on the product of the two, or the effective discount factor.7

We show that the patient player will receive a low payoff in all equilibria even when he is the honest

type with high probability. This is related to the literature on bad reputation, most notably Ely and Välimäki
6Ekmekci, Gorno, Maestri, Sun and Wei (2022) study a continuous-time stopping game where an informed long-run player can

manipulate the content of public signals rather than the length of his records. This stands in contrast to our model.
7The results on steady state learning in Fudenberg and Levine (1993) and Fudenberg and He (2018) require players’ expected

lifespans to be much longer relative to their patience, under which players spend most of their lives playing their best replies in the
steady state. In contrast, a longer expected lifespan in our model lowers the long-run player’s reputation when he has a short record.
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(2003) and Ely, Fudenberg and Levine (2008). They show that the patient player will receive a low payoff in

all equilibria when there is a lack-of-identification problem and bad commitment types occur with positive

probability. Their papers focus on participation games in which the short-run players can unilaterally shut

down learning by taking a non-participating action. This stands in contrast to our model where no player

can unilaterally stop learning and reputation failure is caused by the low rate of learning.8

Our model can be interpreted as a continuum of firms and consumers being randomly matched in each

period and each consumer observing the record of the firm she is matched with. This is related to the litera-

ture on community enforcement with a continuum of players, such as Takahashi (2010), Heller and Mohlin

(2018), Bhaskar and Thomas (2019), and Clark, Fudenberg and Wolitzky (2021). One of our contributions

is to introduce endogenous record length and reputations into this literature. We show that even a small

fraction of opportunistic types who may manipulate records can significantly lower social welfare.9

Our work is also related to several recent papers on dynamic information censoring such as Smirnov

and Starkov (2022), Sun (2023), and Hauser (2023). Unlike those papers in which the uninformed player’s

payoff depends only on the informed player’s type, the uninformed player’s payoff depends only on the

informed player’s action in our model. Our formulation is standard in models of repeated games and repu-

tations, which fits markets where quality provision is subject to moral hazard. Compared to their works, we

highlight the roles of record length and the informed player’s expected lifespan on the value of reputations.

2 The Baseline Model

Time is discrete, indexed by k = 0, 1, 2, ... A long-lived player 1 interacts with an infinite sequence of

short-lived player 2s, arriving one in each period and each plays the game only in the period she arrives.

Player 1 discounts future payoffs for two reasons. First, by the end of each period, he exits the game

with probability 1− δ where δ ∈ (0, 1), after which the game ends and players payoffs are 0. Second, he is

indifferent between δ̂ ∈ (0, 1) unit of utility in period k and 1 unit in period k + 1. Therefore, the long-run

player discounts future payoffs by δ ≡ δ · δ̂, which we call his effective discount factor. His time preference

δ̂ and his survival probability δ play different roles since only δ affects his expected lifespan (1− δ)−1.

In period k ∈ N, players simultaneously choose their actions a1,k ∈ A1 and a2,k ∈ A2 from finite sets

A1 and A2. Players’ stage-game payoffs are u1(a1,k, a2,k) and u2(a1,k, a2,k). We make two assumptions on
8The conclusion that delays are necessary for the patient player to signal his type also appears in repeated signaling games with

interdependent values where the receiver’s payoff depends on the sender’s type, such as in the model of Kaya (2009). In contrast,
our model has private values and costly delays are caused by the patient player’s ability to erase actions from his records.

9Sugaya and Wolitzky (2020) show that players’ payoffs are arbitrarily close to their minmax values in all equilibria of a
community enforcement model with bad commitment types. However, their model has a finite number of players and focuses on
symmetric stage games with a pairwise dominant action (e.g., the prisoner’s dilemma). Both features stand in contrast to our model.
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(u1, u2) throughout the paper. The first one is a monotone-supermodularity assumption, which is standard

in the literature and is also assumed in Mailath and Samuelson (2001), Ekmekci (2011), and Liu (2011).

Assumption 1. There exist a complete order on A1 and a complete order on A2 such that u1(a1, a2) is

strictly decreasing in a1 and is strictly increasing in a2, and u2(a1, a2) has strictly increasing differences.

The product choice game in the introduction satisfies Assumption 1 once we rank the row player’s

actions according to G ≻ B and the column player’s actions according to L ≻ S. We make another

assumption, which is generically satisfied as long as A1 and A2 are finite sets.

Assumption 2. Player 1 has a strict best reply to every a2 ∈ A2. Player 2 has a strict best reply to

every a1 ∈ A1. For every a2 ∈ A2, a1, ã1 ∈ A1, and λ ∈ [0, 1], if a2 best replies to player 1’s mixed action

λa1 + (1− λ)ã1, then there exists λ̃ ∈ [0, 1]\{λ} such that a2 also best replies to λ̃a1 + (1− λ̃)ã1.

The first part of Assumption 2 requires each player to have a strict best reply to each of their opponent’s

pure actions. The second part of Assumption 2 rules out situations in which some a2 only best replies to a

knife-edge distribution over player 1’s actions: It allows some of player 2’s actions to be strictly dominated

and also allows some actions to best reply to an open set of player 1’s mixed actions. We explain why this

part of Assumption 2 is generically satisfied by the end of Appendix C, after showing Lemma 2.

Let a1 denote the lowest action in A1. Assumption 1 implies that a1 is strictly dominant in the stage

game. Let a2 ∈ A2 denote player 2’s best reply to a1, which is unique under Assumption 2. By definition,

u1(a1, a2) is player 1’s minmax value in the sense of Fudenberg, Kreps and Maskin (1990), which requires

player 2 to play a best reply to some α1 ∈ ∆(A1). We normalize player 1’s payoff so that u1(a1, a2) ≡ 0.

By the end of period k but before period k + 1, player 1 decides whether to erase his period-k action

a1,k at cost c > 0. We denote this decision by ck ∈ {0, c}, where ck = 0 stands for a1,k not being erased

and ck = c stands for a1,k being erased. All of our results except for Proposition 3 extend to the case where

the cost of erasing actions is 0. Except for an extension in Online Appendix A, our analysis focuses on the

case where the cost of erasing actions c is lower than the cost of taking high actions. Formally, let a′1 denote

the lowest action in A1 such that a2 does not best reply to a′1. By definition, a′1 is strictly greater than a1.

We assume that:

c < c ≡ min
β∈∆(A2)

{
u1(a1, β)− u1(a

′
1, β)

}
. (2.1)

In the product choice game, c equals the cost of supplying good products g.10 This restriction seems rea-
10Even when the long-run player has a continuum of actions, the value of c remains bounded above 0. Take the product choice

game example. If the firm chooses its effort level from the unit interval [0, 1] and the consumers have an incentive trust the firm
(i.e., play L) only when its expected effort is more than x ∈ (0, 1), then c equals the firm’s cost of choosing effort level x.
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sonable since consumers’ losses from their bad experiences are sunk.11 Therefore, they might be willing to

remove their negative reviews in exchange for a small bribe, or to avoid a defamation lawsuit. Paying bribes

(e.g., by issuing a giftcard) and making legal threats are usually not that costly from the firm’s perspective.

Player 1 has persistent private information about his type ω ∈ {ωh, ωo}, where ωo stands for an oppor-

tunistic type who chooses his actions as well as whether to erase them in order to maximize his discounted

average payoff
∑+∞

k=0(1 − δ)δk{u1(a1,k, a2,k) − ck}, and ωh stands for an honest type who takes action

a∗1 ̸= a1 in every period and never erases any action. Let a∗2 denote player 2’s unique best reply to a∗1. Player

1’s commitment payoff is u1(a∗1, a
∗
2). We focus on the interesting case where u1(a

∗
1, a

∗
2) > u1(a1, a2) ≡ 0.

Before choosing a1,k, player 1 observes his type ω and the full history of the game up to period k, which

we denote by hk ≡ {a1,s, a2,s, cs}k−1
s=0 . Player 1 observes ω, hk, and (a1,k, a2,k) before choosing ck.

Player 2 observes the sequence of player 1’s unerased actions but cannot observe which actions were

erased and how many actions were erased. Formally, her history in period k is a sequence {a1,τ0 , ..., a1,τm(k)
}

where 0 ≤ τ0 < τ1 < ... < τm(k) ≤ k − 1 such that for every s ∈ {0, 1, ..., k − 1}, cs = 0 if and only if

there exists i ∈ {0, 1, ...,m(k)} such that s = τi. Let H2 denote the set of player 2’s histories, or player

1’s records. Our results extend to any monitoring structure as long as player 2 observes (i) the number of a∗1

among player 1’s unerased actions and (ii) whether the set of player 1’s unerased actions contains any action

other than a∗1. One example is that player 2k only observes the number of times that each action occurred in

the sequence {a1,τ0 , ..., a1,τm(k)
}, that is, the summary statistics of player 1’s unerased actions.

We also assume that the short-run players cannot directly observe the long-run player’s age in the game,

or equivalently, calendar time. This assumption is common in reputation models with limited memories,

such as Liu (2011), Liu and Skrzypacz (2014), Levine (2021), and Pei (2023). It is reasonable on platforms

such as eBay, EachNet, and TMall that do not publicly reveal the seller’s time on the market. It is consistent

with our interpretation that firms can erase actions from their records and consumers cannot observe the

extent to which records were erased. Section 5.3 extends our results to settings where the probability with

which a short-run player arrives in each period is strictly less than 1 and the long-run player’s record length

increases by 1 only when a short-run player arrives and the long-run player chooses not to erase his action.

As in Liu and Skrzypacz (2014), the short-run players have a prior belief about calendar time and update

their beliefs according to Bayes rule after they observe their histories. Since the long-run player exits the

game with probability 1 − δ after each period, for every k ∈ {0, 1, 2, ...}, the probability that the short-run

players’ prior belief assigns to the long-run player’s age being k + 1 should equal δ times the probability
11The interpretation is that the seller decides whether to supply high quality experienced goods and the consumers decide how

much to purchase without knowing product quality. The consumers can observe the seller’s action, i.e., quality, after purchase.
Then they post a review that honestly reflects the seller’s action. The seller then decides whether to erase that review at cost c > 0.
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that her prior belief assigns to the long-run player’s age being k. The unique prior belief that satisfies this

condition for every k ∈ N is the one that assigns probability (1− δ)δ
k

to the long-run player’s age being k.

Let π ∈ (0, 1) denote the prior probability of the honest type, which can be different from player

2’s posterior belief after she observes a history with length zero. Player 1’s reputation in period k is the

probability that player 2’s posterior belief assigns to the honest type after observing her history in period k.

Players’ strategies σ1 and σ2 are mappings from their histories to their actions. A Nash equilibrium is

a strategy profile (σ1, σ2) such that σi best replies to σ−i for every i ∈ {1, 2}. A stationary equilibrium

(σ∗
1, σ2) is a Nash equilibrium such that the opportunistic type’s strategy σ∗

1 depends only on player 2’s

history. Let H(σ1, σ2) denote the set of player 2’s histories that occur with positive probability under

(σ1, σ2), which we refer to as the set of on-path histories.

Lemma 1. If (σ1, σ2) is a Nash equilibrium, then there exists a stationary equilibrium (σ∗
1, σ2) such

that H(σ1, σ2) = H(σ∗
1, σ2), player 2’s beliefs about player 1’s action and type at every history that

belongs to H(σ1, σ2) are the same under (σ1, σ2) and (σ∗
1, σ2), and the expected values of

∑+∞
k=0(1 −

δ)δk
{
u1(a1,k, a2,k)−ck

}
and U2 ≡

∑+∞
k=0(1−δ)δ

k
u2(a1,k, a2,k) are the same under (σ1, σ2) and (σ∗

1, σ2).

The proof is in Appendix A. Lemma 1 shows that for every Nash equilibrium, there exists an equivalent

stationary equilibrium in the sense that (i) the short-run players’ strategy σ2 and their beliefs about the

long-run player’s action and type at every on-path history remain the same and (ii) the long-run player’s

discounted average payoff and the short-run players’ welfare, measured by the sum of their payoffs U2,

remain the same.12 Our subsequent analysis focuses on the common properties of all stationary equilibria

(or equilibria for short). According to Lemma 1, the properties we derived on players’ payoffs, the short-run

players’ actions, beliefs, and learning, as well as the long-run player’s reputation apply to all Nash equilibria.

2.1 Alternative Interpretations of the Baseline Model

We spell out two alternative interpretations of our model, which will be used to discuss the implications of

our results. Our model can be interpreted as one of imperfect commitment: Player 1 commits to player 2 that

he will always play a∗1 and will never erase any action. Player 2 is concerned that player 1 will not honor his

commitment with probability 1 − π, in which case player 1 may take other actions and may erase actions.

Section 4 explores alternative forms of commitment, in which the honest type commits to play a∗1 in every

period but reveals information about his history according to an arbitrary information disclosure policy.

12The sum of player 2’s payoffs is
∑+∞

k=0(1− δ)δ
k
u2(a1,k, a2,k) since the game ends with probability 1− δ after each period.
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Our model also has a population-level interpretation. As in Heller and Mohlin (2018) and Clark, Fu-

denberg and Wolitzky (2021), consider a doubly infinite repeated game between a unit mass of player 1 and

a unit mass of player 2. A fraction π of player 1s are honest types and the rest are opportunistic types. Each

period, each player 1 is randomly and anonymously matched with a player 2 to play the stage game. Player

2 observes the record of the player she is matched with before choosing her action. Player 1 cannot observe

player 2’s record. After the interaction, player 1 decides whether to erase the action that he has just taken at

a cost c. Then a fraction 1− δ of player 1s exit the game and are replaced by new ones without any record, a

fraction π of which are honest types. Whether a player will exit is independent of his type, record, and past

actions. As a result, player 2’s prior belief assigns probability (1− δ)δ
t

to player 1’s age being t.

Each player’s strategy is a mapping from their histories to their actions. A steady state consists of a

strategy for each player and a distribution over records such that the record distribution is consistent with

the strategy profile and players’ strategies are mutual best replies given the record distribution. One can

show that each stationary equilibrium in our baseline model corresponds to a steady state of this game.

2.2 Discussions on the Modeling Assumptions and Extensions

We assume that player 1 can erase actions from his records but cannot modify the content of his records. In

practice, whether firms can modify the reviews as well as their costs of doing so depend on the institutional

details. Our assumption is motivated by the observation in Tadelis (2016) that most of the consumers post

reviews because they are motivated to share their opinions, to reward firms’ good behaviors and to punish bad

ones, or to provide future consumers useful information. If this is the case, then it seems more challenging

for firms to convince consumers to lie about their experiences than to ask them to stay silent. We show that

firms will receive low payoffs even when only a small fraction of them can manipulate their records. This

conclusion is stronger when opportunistic firms can only erase reviews but cannot modify their content.13

Our analysis focuses on the case where the cost of erasing actions is low. In the product choice game,

it translates into c < g. In Online Appendix A, we show that when c > g, for every π ∈ (0, 1) and ε > 0,

there exists δ∗ ∈ (0, 1) such that when δ > δ∗, the opportunistic type’s payoff in every equilibrium is ε-

close to his commitment payoff and that he will never erase any action whenever he has a positive reputation.

Therefore, the ability to erase actions affects the equilibrium outcomes only when the cost of erasing is low.

Our baseline model focuses on the case in which there is only one honest type and one opportunistic

type and assumes that the honest type cannot erase actions. Section 5.2 studies an extension where the
13If the opportunistic type can modify the content of his records at a low cost, e.g., he can change his record to a∗

1 when his
action was a1, then he will never play a∗

1 since doing so is strictly dominated by playing a1 and then modifying his record to a∗
1.

10



honest type commits to take action a∗1 in every period but strategically decides whether to erase his action

at a strictly positive cost c > 0 in order to maximize his discounted average payoff. In Online Appendix B,

we study an extension where (i) there are multiple honest types taking different pure actions and (ii) there

are multiple opportunistic types with different payoff functions and different costs of erasing actions.

Our baseline model focuses on the case in which (i) the short-run players’ best reply does not depend

on whether the long-run player will erase his action and (ii) the cost of erasing actions does not depend on

the action profile being played. In practice, if we interpret erasing actions as offering a partial refund or

a giftcard in exchange for deleting the review, then the consumers’ demands for refunds or giftcards may

depend on the quantity they purchased and on the firm’s action (e.g., product quality). Our theorems can be

extended to cases where (i) each consumer’s best reply also depends on the probability with which the firm

will erase its action, and (ii) the firm’s cost of erasing actions depends on the action profile being played.

Our model assumes that the short-run players can perfectly observe the long-run player’s unerased ac-

tions. This rules out situations in which they can only observe noisy signals about those actions. Analyzing

repeated games with incomplete information, imperfect monitoring, and limited observations is challeng-

ing. This explains why most of the existing analysis on reputation games with finite record lengths such

as Liu (2011), Liu and Skrzypacz (2014), and Heller and Mohlin (2018) all focus on the case with perfect

monitoring.14 The case with endogenous record length and imperfect monitoring is left for future work.

3 Analysis and Results

Section 3.1 examines three benchmarks, including the case where the honest type occurs with zero probabil-

ity and the case where player 1 cannot erase actions. Then we analyze the case of interest in which π ∈ (0, 1)

and player 1 can erase records. Section 3.2 establishes some common properties of players’ behaviors and

beliefs that apply to all equilibria. Sections 3.3 and 3.4 state and prove our main result, Theorem 1, which

provides a sharp characterization of players’ equilibrium payoffs when player 1 is sufficiently long-lived.

3.1 Benchmarks

First, when it is common knowledge that player 1 is the honest type, that is, π = 1, players will play (a∗1, a
∗
2)

in every period and player 1’s equilibrium payoff is u1(a∗1, a
∗
2) and player 2’s welfare is u2(a∗1, a

∗
2).

Second, suppose the opportunistic type cannot erase actions. When π = 0, that is, the honest type

occurs with zero probability, the folk theorem in Fudenberg, Kreps and Maskin (1990) implies that there
14Bhaskar and Thomas (2019) allow for imperfect monitoring, but they focus on a complete information game in which the

long-run player has only one type. Levine (2021) allows for imperfect monitoring but assumes that players’ record length is 1.
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exists an equilibrium in which player 1’s payoff is u1(a∗1, a
∗
2) and there also exist equilibria in which player

1 receives his minmax value u1(a1, a2) ≡ 0. When π > 0, the result in Fudenberg and Levine (1989)

implies that player 1’s payoff in every equilibrium is approximately his commitment payoff u1(a
∗
1, a

∗
2)

when δ is sufficiently close to 1. In Online Appendix A, we show that similar conclusions hold when c is

high. However, as shown in Li and Pei (2021), there is little robust prediction on players’ behaviors and

the short-run players’ welfare. For example, in the product choice game, there exist equilibria in which the

firm takes action G in every period and the consumers obtain their first-best payoff 1, and there also exist

equilibria in which the firm takes action G with low frequency and the consumers receive low payoffs.

Third, suppose the opportunistic type can erase his records but the honest type occurs with probability

0. Recall that H(σ1, σ2) is the set of player 2’s histories that occur with positive probability under (σ1, σ2).

Proposition 1. If c < c and π = 0, then in every equilibrium (σ1, σ2), action profile (a1, a2) is played

at every history that belongs to H(σ1, σ2).

The proof is in Appendix B. This conclusion also applies to any continuation game starting from any

on-path history where player 2 assigns zero probability to the honest type.

The intuition is that player 1’s ability to erase actions implies that he can take his lowest action a1 and

then erase it, by which he can sustain his current continuation value. Fix any equilibrium (σ1, σ2) and

consider any history h2 where player 1’s continuation value is close to his highest continuation value among

the histories in H(σ1, σ2). When c < c, player 1 strictly prefers taking action a1 and then erasing it to taking

any action that is no less than a′1. This is because taking any action at h2 will lead to at most a negligible

increase in player 1’s continuation value. Once player 2 anticipates this, she will have a strict incentive to

take action a2 at h2. This will unravel any equilibrium where player 1 takes any action other than a1.

3.2 Preliminary Observations

Starting from this section, we analyze the case in which π ∈ (0, 1) and player 1 can erase records at cost

c < c. It is straightforward that player 1 will never take any action other than a∗1 and a1 at any on-path

history in any equilibrium. This is because if in equilibrium, he plays any a1 /∈ {a∗1, a1} with positive

probability and then not erase it, then he will be separated from the honest type and Proposition 1 implies

that his continuation value will be 0. In order to obtain a strictly positive continuation value after taking

action a1, he needs to erase a1. But taking action a1 and then erasing it is strictly dominated by taking

action a1 and then erasing it. This is because they lead to the same history for player 2 in the next period

but the latter results in a higher payoff in the current period. Since player 1’s action at every on-path history

12



belongs to {a∗1, a1}, player 2’s (potentially mixed) action at every h2 ∈ H(σ1, σ2) belongs to

B ≡
{
β ∈ ∆(A2)

∣∣∣β best replies to λa∗1 + (1− λ)a1 for some λ ∈ [0, 1]
}
. (3.1)

Lemma 2 shows that every pair of player 2’s mixed actions in B can be ranked according to FOSD and that

one can generate a rich set of payoffs for player 1 by varying player 2’s actions in B.

Lemma 2. Each pair of elements in B can be ranked according to FOSD. For every a1 ∈ A1 and

v ∈ [u1(a1, a2), u1(a1, a
∗
2)], there exists a unique β ∈ B such that u1(a1, β) = v.

The proof is in Appendix C. Let hk∗ denote player 2’s history where she observes k actions, all of which

are a∗1. Let H∗ ≡
{
hk∗

∣∣k ∈ N
}

, which is the set of histories where player 1 has a strictly positive reputation.

Let p∗k ∈ [0, 1] denote the probability with which the opportunistic type of player 1 plays a∗1 at hk∗ . Let

βk ∈ ∆(A2) denote player 2’s mixed action at hk∗ . Let πk ∈ [0, 1] denote player 1’s reputation at hk∗ .

Proposition 2 establishes some properties of players’ behaviors and beliefs that apply to all equilibria.

Proposition 2. For every π ∈ (0, 1) and c ∈ (0, c), there exists a constant λ > 0 such that in every

equilibrium under (π, c, δ), there exist t0, t ∈ N that satisfy 0 ≤ t0 ≤ t < +∞ and t > λ
1−δ such that:

• The opportunistic type plays a1 with positive probability at every on-path history. The opportunistic

type plays a∗1 with positive probability at h2 if and only if there exists k < t− 1 such that h2 = hk∗ .

• The opportunistic type’s continuation value at ht−1
∗ is at least (1− δ)u1(a

∗
1, a2) + δ(u1(a1, a

∗
2)− c).

• The opportunistic type never erases a∗1 at any history and never erases any action unless the history

belongs to H∗. At history hk∗ , player 1 never erases a1 if k < t0 and erases a1 for sure if k > t0.

• For every k < t, player 1’s reputation πk at hk∗ is strictly less than 1. For every k < t− 1, player 2’s

action βk is strictly less than a∗2. For every k ≥ t, we have βk = a∗2 and πk = 1.

• When k < t, βk is strictly increasing in k in the sense of FOSD, πk is strictly increasing in k, and p∗k

is strictly decreasing in k.

The proof is in Appendix D. Compared to the game without honest type, the opportunistic type will

build a reputation for playing a∗1 even though he can play a1 and then erase it at a low cost. The intuition is

that the long-run player can signal his honesty via the length of his good record. When his effective discount

factor δ is close to 1, he has an incentive to take action a∗1 for a long time, i.e., the number of periods in

which he does so is bounded from below by a linear function of (1− δ)−1. By the time he stops playing a∗1,
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his continuation value at ht−1
∗ is at least (1 − δ)u1(a

∗
1, a2) + δ(u1(a1, a

∗
2) − c), which is strictly bounded

above his commitment payoff u1(a∗1, a
∗
2) given that c < c. The opportunistic type can secure this payoff by

taking action a∗1 at ht−1
∗ and in every subsequent period, taking action a1 and then erasing it at cost c.

In terms of the equilibrium dynamics, Proposition 2 shows that when the long-run player has a longer

good record, he will have a stronger incentive to erase a1, and both his reputation and the short-run player’s

action will increase. As we explained in the introduction, these qualitative features of our equilibria match

the empirical observations in Livingston (2005), Nosko and Tadelis (2015), and Tadelis (2016) better com-

pared to the existing reputation models as well as our benchmark where the honest type occurs with zero

probability. The intuition is that the long-run player faces decreasing returns from generating longer good

records, faces a greater loss from losing his reputation once he has a longer good record, and needs to be

rewarded for taking the commitment action given that he has the option to take the lowest action and then

erase it at a low cost. The first part is reminiscent of reputation models with changing types such as Phelan

(2006) and the second part is reminiscent of the bad news model of Board and Meyer-ter-Vehn (2013).

3.3 Main Result

Although Proposition 2 implies that both players will obtain high payoffs after the long-run player has

accumulated a long enough good record, it remains silent on the time it takes for players to obtain the high

payoffs, which is also crucial for player 1’s equilibrium payoff and for player 2’s welfare.

Our main result, Theorem 1, addresses this question and provides a sharp characterization of players’

equilibrium payoffs in the case where the long-run player has a sufficiently long lifespan. Recall that δ̂

measures player 1’s patience, δ stands for the probability that the game continues after each period, and

δ ≡ δ̂ · δ. Recall the definitions of the short-run players’ welfare U2 in Lemma 1 and that of c in (2.1).

Theorem 1. For every c < c, π ∈ (0, 1), δ̂ ∈ (0, 1), and ε > 0, there exists δ∗ ∈ (0, 1) such that in

every equilibrium when δ ∈ (δ∗, 1),

1. The opportunistic type of player 1’s payoff is no more than (1− δ)c/δ.

2. Player 2’s welfare U2 belongs to an ε-neighborhood of πu2(a∗1, a
∗
2) + (1 − π)u2(a1, a2) under an

additional assumption that u2(a1, a2) is strictly increasing in a1.15

According to Theorem 1, as long as player 1 has a sufficiently long lifespan, even when his discount

factor δ is close to 1 and the probability of opportunistic type is close to 0, his equilibrium payoff must be
15The additional assumption is required for the lower bound on player 2’s welfare since Assumption 1 only requires player 2’s

payoff being supermodular but does not say anything about player 2’s preference over player 1’s actions.
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close to his minmax value 0.16 The honest type’s payoff is also no more than (1− δ)c/δ when the two types

share the same stage-game payoff function since the opportunistic type can imitate the honest type.

If in addition that u2(a1, a2) is strictly increasing in a1, which in the product choice game translates

into the consumers receiving higher payoffs when the firm exerting higher effort, then the short-run players’

welfare in every equilibrium is arbitrarily close to their payoff in an auxiliary setting where (i) they can

observe the long-run player’s type and (ii) the opportunistic type always takes his lowest-cost action a1.

One caveat is that U2 ≡
∑+∞

k=0(1 − δ)δ
k
u2(a1,k, a2,k) is the expected sum of the short-run players’

payoffs. This means that conditional on the game will continue to the next period, the planner who evaluates

the short-run players’ welfare does not value the current player’s payoff more than the next one’s. Take the

product choice game, the first t consumers receive their minmax value 0, where t is bounded above and

below by linear functions of (1− δ)−1. Therefore, when the firm is patient, consumer welfare is low once it

is evaluated by a planner who weights the current consumer’s payoff much more than the ones in the future.

In terms of implications, under the standard interpretation of reputation models as well as the population-

level interpretation in Section 2.1, Theorem 1 implies that a small fraction of opportunistic types who may

erase actions from their records can significantly lower the long-run player’s payoff, although it has a neg-

ligible effect on the short-run players’ welfare. Nevertheless, both players will receive low payoffs in all

equilibria when the honest type is rare or occurs with low probability. Under the interpretation that the long-

run player commits to the short-run players that it will always take the commitment action and will never

erase actions, Theorem 1 implies that the long-run player’s benefit from commitment is entirely wiped out

as long as his opponents entertain a grain of doubt about his willingness to honor his commitment.

We provide some intuition for Theorem 1 before presenting the proof. In the benchmark where the long-

run player cannot erase actions, the opportunistic type separates from the honest type right after he takes any

action other than a∗1. The Bayesian learning argument in Fudenberg and Levine (1989) implies that there

exist at most a bounded number of ‘bad periods’ where (i) the short-run player’s belief assigns a strictly

positive probability to the honest type and (ii) the short-run player believes that the long-run player will take

action a∗1 with probability lower than some cutoff γ ∈ (0, 1). Since the upper bound on the number of bad

periods does not depend on the long-run player’s discount factor δ, a sufficiently patient player can secure

approximately his commitment payoff u1(a∗1, a
∗
2) by taking his commitment action a∗1 in every period.

In our model, the opportunistic type may not separate from the honest type after he takes actions other

than a∗1 since he can erase those actions. This makes it hard for the short-run players to distinguish the

16Our result can accommodate the usual order of limits in the reputation results of Fudenberg and Levine (1989) and others,
which fix the type distribution and let δ ≡ δ̂ · δ goes to 1. As we will explain later, the patient player’s equilibrium payoff depends
not only on whether δ goes to 1 but also on the rates with which δ and δ̂ going to 1, respectively.
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honest type from the opportunistic type. As a result, they may not be convinced that the long-run player will

play a∗1 with high probability in the future even after many periods where (i) they believe that the long-run

player will play a∗1 with low probability but (ii) observe that the long-run player has actually played a∗1.

Hence, the opportunistic type’s ability to erase actions slows down the process of reputation building. In

order to convince the short-run players to play a∗2, the long-run player needs to have a longer good record

compared to that in the benchmark scenario where he cannot erase actions. This will lower his returns from

building reputations. The extent to which the short-run players’ learning is slowed down depends on player

1’s incentive to erase actions, which is a key object to examine in our proof.

Recall the definition of hk∗ and recall that βk ∈ ∆(A2) denotes player 2’s action at hk∗ . Proposition 2

implies that the opportunistic type has an incentive to play a1 at every on-path history of every equilibrium.

Therefore, it is optimal for the opportunistic type to play a1 and then not erase it at history hk∗ if and only if

(1− δ)u1(a1, βk)︸ ︷︷ ︸
player 1’s payoff from playing a1 and not erasing it

≥ u1(a1, βk)− c︸ ︷︷ ︸
player 1’s payoff from playing a1 in every period and then erasing it

,

or equivalently,

u1(a1, βk) ≤ c/δ. (3.2)

In any equilibrium where the opportunistic type finds it optimal not to erase a1 in period 0, his equilibrium

payoff is no more than (1− δ)u1(a1, β0), which according to (3.2), is no more than (1− δ)c/δ.

In order to show the first part of Theorem 1, we only need to rule out equilibria in which the opportunistic

type has a strict incentive to erase action a1 after taking it in period 0. Our proof uses a conflict caused by

the long-run player’s ability to erase actions, which is between (i) motivating the opportunistic type to take

the commitment action a∗1 and (ii) motivating the short-run players to take actions greater than a2. The

same conflict is also used to show the second part of the result, since it provides an upper bound on the

maximal length of good record that the opportunistic type may have in any equilibrium. This in turn leads

to a uniform upper bound on the expected probability with which the opportunistic type takes action a∗1.

3.4 Proof of Theorem 1

Fix any c < c, π ∈ (0, 1), and δ̂ ∈ (0, 1). Suppose by way of contradiction that for every δ∗ ∈ (0, 1),

there exist δ ∈ (δ∗, 1) as well as an equilibrium (σ1, σ2) under (c, π, δ̂, δ) such that the opportunistic type

of player 1 has a strict incentive to erase action a1 after taking it in period 0.

First, we use the opportunistic type’s incentive to take action a∗1 to derive a lower bound on the rate with
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which the opportunistic type’s continuation value needs to increase as his good record becomes longer.

According to Proposition 2, there exists t ∈ N such that player 1’s reputation is strictly less than 1 at

ht−1
∗ but reaches 1 at ht∗. By definition, the opportunistic type takes action a∗1 with positive probability at

hk∗ for every k < t− 1. Let Vk denote player 1’s continuation value at hk∗ . If the opportunistic type strictly

prefers to erase a1 after taking it at h0∗, then by Proposition 2, he will also have a strict incentive to do so at

every hk∗ . This implies that at every hk∗ with k < t− 1, the opportunistic type is indifferent between playing

a∗1 and playing a1 and then erasing it. This leads to the following indifference condition:

Vk = u1(a1, βk)− c = (1− δ)u1(a
∗
1, βk) + δVk+1 for every k < t− 1. (3.3)

Plugging Vk+1 = u1(a1, βk+1)− c into (3.3) and using the conclusion that βk+1 ≻FOSD βk, we have

u1(a1, βk+1)−u1(a1, βk) = (1−δ)
(
u1(a1, βk+1)−c−u1(a

∗
1, βk)

)
> (1−δ)

(
u1(a1, βk)−c−u1(a

∗
1, βk)

)
.

Assumption 1 implies that u1(a1, βt−1) ≤ u1(a1, a
∗
2) and u1(a1, β0) ≥ u1(a1, a2) ≡ 0. Therefore,

t ≤ T ≡ u1(a1, a
∗
2)

(1− δ)∆
, (3.4)

where ∆ ≡ minβ∈B
{
u1(a1, β)− u1(a

∗
1, β)− c

}
> 0. This upper bound T is linear in (1− δ)−1.

The second step uses player 2’s incentives to derive a lower bound on t, which is strictly greater than the

upper bound T as δ → 1. One caveat is that player 2’s posterior belief about player 1’s type after observing

player 1’s record length being 0 may not be the same as her prior belief π. This is because the opportunistic

type may erase actions from his records, so the length of player 1’s record is a signal about his type.

We compute player 2’s belief about player 1’s action. For every k ≤ t− 1, let µ∗
k denote the probability

of history hk∗ conditional on player 1 being the opportunistic type. Let q∗k denote the probability that the

opportunistic type plays a1 at hk∗ and then erases it. Recall that p∗k is the probability that the opportunistic

type plays a∗1 at hk∗ . Since player 1 exits the game with probability 1− δ after each period, we have:

µ∗
0 = (1− δ) + δµ∗

0q
∗
0 and µ∗

k = δ(µ∗
k−1p

∗
k−1 + µ∗

kq
∗
k) for every k ∈ {1, ..., t− 1},

or equivalently,

µ∗
0 =

1− δ

1− δq∗0
and

µ∗
k

µ∗
k−1

=
δp∗k−1

1− δq∗k
for every k ∈ {1, ..., t− 1}. (3.5)
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Our hypothesis that the opportunistic type strictly prefers to erase a∗1 at h0∗ implies that q∗k = 1 − p∗k for

every k ∈ {0, 1, ..., t− 1}. Let xk denote the probability with which player 2’s belief at hk∗ assigns to player

1’s current-period action being a∗1. Recall that π is the probability that player 2’s prior belief assigns to the

honest type. According to Bayes rule, we have:

xk
1− xk

=
π(1− δ)δ

k
+ (1− π)µ∗

kp
∗
k

(1− π)µ∗
k(1− p∗k)

,

or equivalently,

l(1− δ)δ
k
= µ∗

k

{ xk
1− xk

(1− p∗k)− p∗k

}
= µ∗

k

xk − p∗k
1− xk

, (3.6)

where l ≡ π
1−π . Applying equation (3.6) to both hk∗ and hk−1

∗ , we obtain that

µ∗
k

µ∗
k−1

= δ
xk−1 − p∗k−1

xk − p∗k
· 1− xk
1− xk−1

≤ δ
xk − p∗k−1

xk − p∗k
, (3.7)

where the last inequality comes from Proposition 2 that βk is strictly increasing in k in the sense of FOSD,

and by Assumption 1, xk is weakly increasing in k. Equation (3.5) and inequality (3.7) together imply that

µ∗
k

µ∗
k−1

=
δp∗k−1

1− δq∗k
=

δp∗k−1

1− δ(1− p∗k)
≤ δ

xk − p∗k−1

xk − p∗k
,

or equivalently,

p∗k−1 − p∗k ≤ (1− δ)
xk − p∗k−1

xk
(1− p∗k) ≤ 1− δ. (3.8)

Since the opportunistic type plays a∗1 with zero probability at ht−1
∗ , we have p∗t−1 = 0. This implies that

t ≥ p∗0(1− δ)−1. (3.9)

We show that there exists p∗ ∈ (0, 1) such that p∗0 > p∗ for all δ close to 1. In order to derive this

uniform lower bound for p∗0, take k = 0 in (3.6) and replace µ∗
0 with its expression in (3.5), we have

π

1− π
= l =

1

1− δq∗0
· x0 − p∗0
1− x0

=
1

1− δ(1− p∗0)
· x0 − p∗0
1− x0

. (3.10)

The value of x0 is bounded above 0 since u1(a1, β0) > c/δ requires β0 to assign positive probability to

some action strictly greater than a2. The RHS of (3.10) converges to 1
1−δ

· x0
1−x0

as p∗0 → 0, and there exists

δ∗ ∈ (0, 1) such that 1
1−δ

· x0
1−x0

> π
1−π for every δ > δ∗. This implies that p∗0 must be bounded above 0.

Therefore, the lower bound on t, implied by player 2’s incentive constraints, is a linear function of
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(1 − δ)−1. The upper bound on t in (3.4), implied by the opportunistic type’s incentive constraints, is a

linear function of (1 − δ)−1. The lower bound exceeds the upper bound once we fix any δ̂ and let δ → 1.

This leads to a contradiction. Therefore, in every equilibrium, the opportunistic type has an incentive not to

erase action a1 after taking it at h0∗, so his equilibrium payoff must be no more than (1− δ)c/δ.

Next, we bound player 2’s equilibrium welfare in three steps. In the first step, we show that there exist

a constant m ∈ N that depends only on (π, u1, u2) as well as a constant λ > 0 that depends only on

(u1, u2) such that t ≤ m + λ(1 − δ)−1. Recall the definitions of t0 and t in Proposition 2. Since player

1’s continuation value at ht0∗ is at least 0, the opportunistic type’s incentive to take action a∗1 from ht0∗ to

ht−2
∗ implies that t − t0 is bounded above by a linear function of (1 − δ)−1. At every hk∗ with k < t0,

player 1 has no incentive to erase actions at hk∗ and player 2 takes actions other than a∗2 with strictly positive

probability. The learning argument in Fudenberg and Levine (1989) implies that for every (π, u1, u2), there

exists m ∈ N such that t0 ≤ m. The two parts together imply that t ≤ m+ λ(1− δ)−1.

In the second step, we bound the short-run players’ welfare from below, which uses the additional

assumption that u2(a1, a2) is strictly increasing in a1. Since the honest type reaches ht∗ in period t and the

opportunistic type never reaches ht∗, the short-run players can secure payoff

{
(1− δ

t
)π + (1− π)

}
u2(a1, a2) + δ

t
πu2(a

∗
1, a

∗
2) (3.11)

by taking action a∗2 at every hk∗ with k ≥ t and taking action a2 at every other history. Since t is bounded

above by a linear function of (1−δ)−1, we know that for every δ̂ ∈ (0, 1) and ε > 0, there exists δ∗ ∈ (0, 1),

such that when δ > δ∗, the right-hand-side of (3.11) is more than πu2(a
∗
1, a

∗
2) + (1− π)u2(a1, a2)− ε.

In the third step, we bound the short-run players’ welfare from above by deriving bounds on the oppor-

tunistic type’s expected behavior from an ex ante perspective. We show the following lemma:

Lemma 3. In every equilibrium and for every k ≤ t− 1, the probability of the following event

Ek ≡ {the current history is hk∗ and player 1 plays a∗1 in the current period}

is no more than 1− δ conditional on player 1 being the opportunistic type.

Proof. By definition, the probability of event Ek conditional on player 1 being the opportunistic type is

µ∗
kp

∗
k. We show by induction that µ∗

jp
∗
j ≤ 1− δ for every j ≤ t− 1. The first part of (3.5) implies that:

µ∗
0p

∗
0 =

(1− δ)p∗0
1− δq∗0

≤ (1− δ)p∗0
1− δ(1− p∗0)

≤ 1− δ for every p∗0 ∈ [0, 1].
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Next, suppose µ∗
j−1p

∗
j−1 ≤ 1− δ for some j ∈ {1, 2, .., t− 1}, then the second part of (3.5) implies that

µ∗
jp

∗
j =

δp∗jp
∗
j−1µ

∗
j−1

1− δq∗j
≤

δp∗jp
∗
j−1µ

∗
j−1

1− δ(1− p∗j )
≤ δ

(1− δ)p∗j

1− δ(1− p∗j )
≤ 1− δ for every p∗j ∈ [0, 1].

Therefore, the probability of event Ek is no more than 1− δ for every k ≤ t− 1.

Conditional on player 1 being the opportunistic type, the probability of Ek is 0 for every k ≥ t since

the opportunistic type never reaches ht∗. The ex ante probability that the opportunistic type takes action a∗1

is
∑+∞

k=0 Pr(Ek), which by Lemma 3, is no more than t(1 − δ) in every equilibrium. Fix any equilibrium

(σ1, σ2) as well as the resulting distribution over player 1’s actions. Player 2’s payoff is no more than her

payoff when she can observe player 1’s realized pure action before choosing her action, which is at most

(1− π)
{
1− t(1− δ)

}
u2(a1, a2) +

{
π + t(1− δ)(1− π)

}
u2(a

∗
1, a

∗
2). (3.12)

Since t is bounded above by a linear function of (1 − δ)−1, for every δ̂ ∈ (0, 1) and ε > 0, there exists

δ∗ ∈ (0, 1) such that when δ > δ∗, the value of (3.12) is no more than πu2(a
∗
1, a

∗
2) + (1− π)u2(a1, a2) + ε.

3.5 Additional Implications of Theorem 1

Theorem 1 implies the following two corollaries. The first one examines the case where δ̂ and δ are fixed. It

shows that player 1’s equilibrium payoff is at most (1− δ)c/δ when π is lower than some cutoff.

Corollary 1. For every c < c, δ̂ ∈ (0, 1), and δ ∈ (0, 1), there exists π ∈ (0, 1) such that when

π ∈ (0, π), player 1’s payoff is no more than (1− δ)c/δ in every equilibrium.

The proofs of this corollary and the next can be found in Appendix E. More generally, one can show

that whether reputation effects will fail when π is close to 1 depends on the comparison between (i) the rate

with which δ → 1 and (ii) the rate with which δ → 1: Once we fix the long-run player’s patience level

δ̂ and increase his expected lifespan, or more generally, when 1−δ̂
1−δ

diverges to infinity, the long-run player

receives (approximately) his minmax value in all equilibria even when π is close to 1. When 1−δ̂
1−δ

converges

to a finite number, the long-run player receives his minmax value only if π is lower than some cutoff.

The next corollary provides sufficient conditions under which player 1’s equilibrium payoff is uniquely

pinned down as well as sufficient conditions under which there is a unique equilibrium outcome. Let π∗

denote the lowest π̃ ∈ [0, 1] such that player 2 has an incentive to play a∗2 when player 1 takes a mixed action
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π̃a∗1+(1− π̃)a1. Let δ ≡ c
u1(a1,a

∗
2)

, which is strictly between 0 and 1 given that u1(a1, a
∗
2) > u1(a

∗
1, a

∗
2) > 0

and c < u1(a1, a
∗
2)− u1(a

∗
1, a

∗
2). In the product choice game, we have π∗ = x and δ = c

1+g .

Corollary 2 shows that when the fraction of honest types π is more than π∗ and player 1’s effective

discount factor δ ≡ δ · δ̂ is greater than δ, player 1’s payoff is exactly (1− δ)c/δ in every equilibrium when

he has a sufficiently long lifespan, and that generically, there is a unique equilibrium outcome.

Corollary 2. For every c < c, π > π∗, and δ̂ ∈ (0, 1), there exists δ∗ ∈ (0, 1) such that player 1’s

payoff in every equilibrium equals (1−δ)c
δ for every δ ∈

(
max{δ∗, δ/δ̂}, 1

)
and all equilibria lead to the

same outcome for generic δ ∈
(
max{δ∗, δ/δ̂}, 1

)
.

The proof is in Appendix E. Although the equilibrium outcome is not necessarily unique under every

parameter configuration, all equilibria share the same qualitative features (Proposition 2 and Theorem 1), so

in some sense, they are all close. Section 5.1 discusses the sources of multiplicity in our model.

4 Extension: Limiting the Honest Type’s Record

In our baseline model, when player 1 has a sufficiently long lifespan, the honest type will have a long record

in expectation. This implies that player 1 will have a low reputation when he has a short record and hence

will receive a low payoff. One natural question is that whether player 1 can obtain higher payoffs when the

honest type does not reveal all his past actions to the short-run players, either because he commits to reveal

a shorter record or his record length is limited by some third party, such as an online platform.

In the spirit of commitment types in the reputation literature, we assume that the honest type takes action

a∗1 in every period, and in addition, he commits to disclose information about his past actions according to

a disclosure policy. Our analysis and conclusion also apply to the case where each short-run player can

observe at most K̃ ∈ N actions, where K̃ can be any random variable that takes values in N ∪ {+∞}. This

is relevant, for example, when a platform commits to reveal at most K̃ unerased actions from each seller.17

We restrict attention to disclosure policies that take the form of a mapping q ≡ (q0, q1, q2, ...) such

that if the honest type’s record length is m ∈ N, then (i) with probability qm(n), he reveals a record with

length n ∈ N consisting only of a∗1, and (ii) with probability qm(s∗), he reveals a public signal s∗ that is

infeasible for the opportunistic type to generate. This class of disclosure policies includes disclosing the last

K actions, randomizing between disclosing all past actions and disclosing no past action, and so on.
17This is because when the honest type’s record length is at most K, either due to his commitment or due to some physical

constraints imposed by the platform or by other planners, the opportunistic type has no incentive to take action a∗
1 for more than K

times in any equilibrium, even when it is feasible for the opportunistic type to do that.
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Compared to general disclosure policies that map the honest type’s action history to a distribution over

public signals, we only rule out disclosure policies which require the honest type to fabricate records, by

which we mean revealing records that contain actions that he has never taken in the past. The motivation is

that fabricating records and lying to the consumers about their past actions are against the spirit of honest

types. It also sounds unrealistic for firms to tell consumers that it has supplied low quality while it has

actually supplied high quality. We leave the study of such disclosure policies for future research.

There are other reasonable restrictions on the set of disclosure policies that the honest type can commit

to, such as (i) the length of record he reveals cannot exceed the number of actions that he has taken and (ii)

the honest type cannot generate any signal that the opportunistic type cannot generate, such as signal s∗. We

do not include any additional restriction since our result applies to all disclosure policies that belong to our

class. That is to say, the result is stronger when it is stated without any additional restriction.

We start from two useful benchmarks. First, in an auxiliary game where player 2 cannot observe any

information about player 1’s past actions, the opportunistic type will never take any action that is strictly

greater than a1 and will never erase any action. For every π ∈ (0, 1), let aπ2 denote player 2’s highest

best reply to player 1’s mixed action πa∗1 + (1 − π)a1 and let aπ2 denote player 2’s lowest best reply to

πa∗1 + (1− π)a1. The opportunistic type’s equilibrium payoff is between u1(a1, a
π
2 ) and u1(a1, a

π
2 ).

Next, suppose the honest type commits to reveal no information regardless of his history, that is, qm(0) =

1 for every m ∈ N. Lemma 4 derives lower and upper bounds on the opportunistic type’s equilibrium payoff.

Lemma 4. If qm(0) = 1 for every m ∈ N, then the opportunistic type’s payoff in every equilibrium is

at least max{0, u1(a1, aπ2 )− c} and is at most max{1−δ
δ c, u1(a1, a

π
2 )− c}.

The proof is in Appendix F. The intuition is that the opportunistic type will take action a1 in every

period, and whether he will erase that action depends on the short-run player’s action when they observe a

record of length 0. For generic π, player 2 has a unique best reply to πa∗1+(1−π)a1, in which case aπ2 = aπ2

and the payoff lower and upper bounds derived in Lemma 4 coincide as δ → 1.

Theorem 2 shows that as long as player 1 is sufficiently long-lived, regardless of the honest type’s

disclosure policy (i) the opportunistic type’s payoff in any equilibrium cannot be significantly greater than

his highest equilibrium payoff when the honest type discloses no information and (ii) the short-run players’

welfare cannot be significantly greater than that when the honest type discloses all his actions.

Theorem 2. For every c < c, π, δ̂, and ε > 0, there exists δ∗ ∈ (0, 1) such that for every δ > δ∗, the
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opportunistic type’s payoff in any equilibrium under any of the honest type’s disclosure policy is at most

max
{1− δ

δ
c, u1(a1, a

π
2 )− c

}
. (4.1)

If in addition that u2(a1, a2) is strictly increasing in a1, then player 2’s welfare U2 in any equilibrium under

any disclosure policy is no more than πu2(a
∗
1, a

∗
2) + (1− π)u2(a1, a2) + ε.

Theorem 2 implies that as long as the short-run players suspect that the long-run player can erase his

actions at a low cost, allowing them to observe the game’s history can no longer benefit the long-run player

relative to the two benchmarks where either the honest type reveals no information, or the short-run players

cannot monitor the long-run player’s behavior.18 This is true even when the honest type can commit to any

disclosure policy as long as it cannot fabricate records. Our conclusion stands in contrast to usual intuition

in the theories of repeated games and reputations, that the patient player can obtain higher payoffs when his

opponents can monitor his actions compared to the case in which his actions cannot be monitored at all.

Compared to the baseline model where the honest type discloses his entire history to the short-run

players, Theorem 2 implies that policies that limit the honest type’s record length cannot improve the short-

run players’ welfare. Nevertheless, they can strictly benefit the opportunistic type if and only if the short-run

players assign a high enough probability to the honest type so that the opportunistic type’s payoff is greater

than his minmax value in the auxiliary game where the honest type discloses no information.

Under our imperfect commitment interpretation, Theorem 2 implies that the long-run player may benefit

from committing to non-full disclosure only when his opponents believe that he will honor his commitment

with a high enough probability. As we mentioned earlier, our conclusion also applies to policies imposed by

third parties, such as an online platform committing to reveal at most K unerased actions from each seller

to the consumers, in which case it is infeasible for any type to reveal more than K actions.

The proof is in Appendix G. Theorem 2 does not follow from the standard arguments in the Bayesian

persuasion literature, such as the one in Kamenica and Gentzkow (2011). This is because unlike those

models where the uninformed player’s payoff depends only on some exogenous state, their payoff in our

model depends only on the patient player’s endogenous action.19 Since Proposition 2 implies that the

opportunistic type will take action a∗1 with positive probability and that the probability with which he takes

18Theorem 2 neither implies nor is implied by Theorem 1. This is because Theorem 1 derives a stronger payoff upper bound
under full disclosure while Theorem 2 derives a weaker payoff upper bound but allows for a larger class of disclosure policies.

19More closely related is Bhaskar and Thomas (2019), who study the design of disclosure policies in a repeated complete
information game, under the restriction that the short-run players only have information about the long-run player’s last K actions.
They examine whether cooperation can be sustained in one purifiable equilibrium while the current paper focuses on the common
properties of all equilibria. As a result, the techniques used in their paper cannot be directly applied to our setting and vice versa.
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action a∗1 depends on the disclosure policy, it is not straightforward that the opportunistic type cannot obtain

higher payoffs under any of the honest type’s disclosure policy relative to the no disclosure benchmark.

Our proof uses Lemma 3 in Section 3.3 that conditional on player 1 being the opportunistic type, the

probability of event Ek is no more than 1− δ for every k ≤ t− 1. This lemma applies under all disclosure

policies of the honest type since it is a statement about the probabilities conditional on player 1 being the

opportunistic type and the proof of that result does not rely on any player’s incentive constraint.

As in the baseline model, the opportunistic type’s incentive to play a∗1 implies that (i) the short-run

player’s action increases in FOSD with the length of the long-run player’s good record, and (ii) the maximal

length of good record that the opportunistic type may have in any equilibrium is bounded above by a linear

function of (1 − δ)−1. If the opportunistic type’s equilibrium payoff is strictly more than (4.1), then (i)

the short-run players need to take actions strictly greater than aπ2 with positive probability at every on-path

history that belongs to H∗, and (ii) the opportunistic type will never take a1 and then not erase it, since his

payoff in any equilibrium where he does so with positive probability is no more than (1−δ)c/δ. The second

requirement is satisfied only if the opportunistic type never reaches histories that do not belong to H∗.

Therefore, a necessary condition for the existence of such an equilibrium is that player 2 has an incentive

to take an action that is strictly greater than aπ2 under her prior belief about player 1’s action. The definition

of aπ2 implies that player 2 has no incentive to take actions strictly greater than aπ2 under her prior belief

about player 1’s action unless in expectation, the opportunistic type will take action a∗1 with probability

bounded above 0. However, conditional on player 1 being the opportunistic type, the probability of every Ek

is no more than 1− δ for every k ≤ t and the probability of Ek is 0 for every k > t. Therefore, persuading

the short-run players to take actions greater than aπ2 requires t to be at least proportional to (1− δ)−1.

Fix any δ̂ ∈ (0, 1) and as δ → 1, the upper bound on t implied by the need to motivate the opportunistic

type will be strictly lower than the lower bound on t implied by the need to persuade the short-run players to

take actions strictly greater than aπ2 . This contradiction rules out equilibria in which player 1’s payoff being

strictly greater than (4.1), regardless of the disclosure policy that the honest type commits to.

The short-run players’ welfare is no more than their welfare in the case where the honest type reveals all

his past actions. This is because regardless of the honest type’s disclosure policy, the expected probability

with which the opportunistic type takes the commitment action vanishes to 0 as δ goes to 1.20

20The short-run players may obtain lower payoffs compared to the full disclosure benchmark. For example, when the honest type
commits to reveal no information, then the short-run players can never distinguish the honest type from the opportunistic type and
therefore, will take the optimal action based on their prior belief, in which case they cannot attain their welfare under full disclosure.

24



5 Concluding Remarks

This paper takes a first step to analyze reputation effects when a patient player’s record length is determined

endogenously by his own behavior. Since the patient player can signal his honesty via the length of his good

record, he will have an incentive to build a reputation even when he can erase actions from his records at a

low cost and that he can secure a high payoff after accumulating a long enough good record.

However, as long as the patient player has a sufficiently long lifespan, his equilibrium payoff must be

close to his minmax value and the short-run players’ welfare must be close to their payoff when they can

observe the patient player’s type and the opportunistic type always takes the lowest action. Even when

the honest type of the patient player can disclose information about his history according to any disclosure

policy, the opportunistic type’s payoff is no more than his equilibrium payoff in the auxiliary game where

the honest type discloses no information, and the one in which the short-run players receive no information.

Our results imply that (i) the possibility of erasing actions cannot eliminate patient players’ incentives

to build reputations, (ii) a small probability of opportunistic type can entirely wipe out the patient player’s

returns from building reputations, although it has a negligible effect on the short-run players’ welfare, (iii)

when a sufficiently long-lived player commits to his opponents that he will always take some cooperative

action and will never erase any action, the value of such a commitment will be seriously compromised as

long as his opponents entertain a grain of doubt about his willingness to honor this commitment, and (iv)

policies that limit the long-run player’s record length cannot improve the short-run players’ welfare and can

improve the long-run player’s welfare only when he is believed to be honest with a high enough probability.

We conclude the paper with a discussion of our baseline model as well as a list of extensions. Section

5.1 discusses the sources of multiplicity in our baseline model. Section 5.2 studies an extension where the

honest type can strategically decide whether to erase his action at a strictly positive cost. Section 5.3 shows

that our results are robust when the consumers arrive stochastically. The extension to multiple honest types

and multiple opportunistic types are relegated to Online Appendix B.

5.1 The Uniqueness and Multiplicity of Equilibrium Outcomes

Corollary 2 provides sufficient conditions under which the equilibrium outcome is unique in our baseline

model. We comment on the sources of multiplicity in our model when these conditions are violated.

Recall the definition of B in (3.1) and that by Lemma 2, every pair of elements in B can be ranked

according to FOSD. Fix any β0 ∈ B, player 2’s actions when player 1 has a positive reputation, β1, β2, ..., βt,
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are pinned down by player 1’s indifference condition at hk∗ for k ∈ {0, 1, 2, ..., t− 1}:

max
{
u1(a1, βk)− c, (1− δ)u1(a1, βk)

}
︸ ︷︷ ︸

player 1’s continuation value at hk
∗

= (1−δ)u1(a
∗
1, βk)+δmax

{
u1(a1, βk+1)− c, (1− δ)u1(a1, βk+1)

}
︸ ︷︷ ︸

player 1’s continuation value at hk+1
∗

.

This recursive process also pins down the value of t since βt−1 must be weakly lower than a∗2 but must be

high enough so that player 1 does not have a strict incentive to play a∗1 at ht−1
∗ even when βt = a∗2.

Let β† ∈ B be such that u1(a1, β
†) = c/δ. When c satisfies (2.1), such an action exists when δ >

c
u1(a1,a

∗
2)

and is unique by Lemma 2. One can also show that β† is nontrivially mixed when δ is large

enough. We consider two cases. If there exists a pure action β ∈ B such that u1(a1, β) = c, then β† must

be nontrivially mixed when δ is close to 1. If the unique β ∈ B that satisfies u1(a1, β) = c is nontrivially

mixed, then a continuity argument implies that β† is also nontrivially mixed for every δ close enough to 1.

When δ and δ̂ are bounded below 1, player 2’s action in the first period can be bounded below β†. If her

action in period 0 is pure, then there are multiple probabilities with which player 1 can play a1 in period 0,

leading to a multiplicity of equilibrium outcomes.

Fix any π. When δ is close enough to 1, it must be the case that β0 = β† or β0 is close to β†. This is

because the speed with which β increases in t is proportional to 1− δ and similar to Fudenberg and Levine

(1989), the speed with which player 1’s reputation increases when β < β† is bounded above 0. If it takes

too many periods for β to reach β†, then player 1’s reputation will exceed 1 before β reaches β†, which will

lead to a contradiction. If π is small enough such that β0 is strictly lower than β†, then even when both β†

and β0 are nontrivially mixed, there may exist multiple values of β0 in equilibrium, which is another source

of multiplicity. However, as long as δ is close to 1, β0 must be close to β†, and the values of β∗
1 , ..., β

∗
t−1,

p∗0, ..., p
∗
t−1, and µ∗

0, ..., µ
∗
t−1 are also close across different equilibria.

When π is above some cutoff and δ is close to 1, we can show that β0 = β† in all equilibria, from which

we can pin down the values of t as well as β1, β2, ..., βt−1. If all of β0, ..., βt−1 are nontrivially mixed, which

happens under generic δ, then the conclusion that p∗t−1 = 0 as well as player 2’s indifference conditions pin

down the values of p∗0, ..., p
∗
t−1 and µ∗

0, ..., µ
∗
t−1. When some actions in {β0, β1, ..., βt−1} are pure, there are

multiple actions of player 1’s under which player 2 has an incentive to play that pure action. This implies

that there are multiple p∗0, ..., p
∗
t−1 and µ∗

0, ..., µ
∗
t−1 that satisfy player 2’s incentive constraints, leading to

multiple equilibrium outcomes. However, even at these degenerate values of δ where multiple equilibrium

outcomes occur, the equilibrium values of p∗0, ..., p
∗
t−1 and µ∗

0, ..., µ
∗
t−1 are pinned down except for periods

in which player 2 takes a pure action in equilibrium.
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5.2 Honest Types Erasing Actions

This section studies an extension where the honest type mechanically takes action a∗1 in every period but can

strategically decide whether to erase his actions in order to maximize his discounted average payoff

+∞∑
k=0

(1− δ)δk
{
u1(a

∗
1, a2,k)− ck

}
.

Proposition 3. If c > 0, then the honest type never erases his action in any equilibrium.

The proof is in Appendix H. This result does not rely on the honest type sharing the same stage-game

payoff as the opportunistic type. It remains valid when the honest type’s stage-game payoff ũ1(a1, a2) is

different from that of the opportunistic type’s u1(a1, a2), as long as ũ1(a1, a2) is strictly increasing in a2.

5.3 Stochastic Arrivals

This section discusses an extension in which the short-run players arrive stochastically. Suppose in each

period, a short-run player arrives with some exogenous probability p ∈ (0, 1). If a short-run player arrives,

then players play the normal-form game in the baseline model, and by the end of that period, the long-run

player decides whether to erase his action. If no short-run player arrives, then the long-run player’s record

remains the same regardless of his behavior and both players’ stage-game payoffs are normalized to 0.

In this setting, the opportunistic type maximizes p
∑+∞

k=0(1− δ)δk
(
u1(a1,k, a2,k)− ck

)
. The short-run

players’ prior belief assigns probability (1 − δ)δ
k

to the long-run player’s age in the game being k and

assigns probability (1− δ̃)δ̃k to the honest type having interacted with k short-run players, where

δ̃ ≡ 1− 1− δ

1− δ(1− p)
. (5.1)

Using the same method as in the proof of Theorem 1, one can show that for every c < c, p ∈ (0, 1),

π ∈ (0, 1), δ̂ ∈ (0, 1), and ε > 0, there exists δ∗ ∈ (0, 1) such that when δ > δ∗, the opportunistic type’s

payoff is no more than

u(p) ≡ (1− δ)(1− δ + δp)

δ
c (5.2)

in every equilibrium. This payoff converges to his minmax value 0 as δ → 1. Under an additional assump-

tion that u2(a1, a2) is strictly increasing in a1, the short-run players’ welfare, measured by the expected sum

of their payoffs, is ε-close to pπu2(a
∗
1, a

∗
2) + p(1− π)u2(a1, a2) in every equilibrium.

When the honest type also commits to an information disclosure policy in addition to committing to play
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a∗1 in every period, or when a third party (e.g., an online platform) limits the length of record the long-run

player can disclose to the short-run players, one can show a generalized version of Theorem 2 that when

c < c and δ̂ ∈ (0, 1), there exists δ∗ ∈ (0, 1) such that when δ > δ∗, the opportunistic type’s payoff in

any equilibrium under any disclosure policy of the honest type is at most max{u(p), p(u1(a1, aπ2 ) − c)},

where aπ2 is player 2’s highest best reply to mixed action πa∗1 +(1− π)a1. Under the additional assumption

that u2(a1, a2) is strictly increasing in a1, the short-run players’ welfare is no more than their equilibrium

welfare when the honest type reveals all of his past actions.

We briefly explain how to extend the proofs of Theorems 1 and 2 to the case with stochastic arrivals,

with details available upon request. To show the generalized version of Theorem 1, suppose by way of

contradiction that there exists an equilibrium in which player 1 strictly prefers to erase action a1 after taking

it at every hk∗ . On the one hand, player 1 has an incentive to take action a∗1 at history hk∗ only if

(1− δ)u1(a
∗
1, βk) + δp(u1(a1, βk+1)− c) ≥ (1− δ)u1(a1, βk) + δp(u1(a1, βk)− c).

A necessary condition for the above inequality is that player 1’s continuation value increases by something

linear in 1−δ when his record length increases from k to k+1. This leads to an upper bound on the number

of periods with which the opportunistic type can take action a∗1, which is a linear function of (1− δ)−1.

On the other hand, the argument in the proof of Theorem 1 implies that the rate with which player 1’s

reputation increases is bounded above by something proportional to 1− δ̃. This implies that the number of

periods with which the opportunistic type needs to take action a∗1 is at least a linear function of (1 − δ̃)−1.

As δ → 1, expression (5.1) implies that δ̃ also goes to 1, and the lower bound on t will exceed the upper

bound. Therefore, in every equilibrium, the opportunistic type has an incentive not to erase a1 at h0∗.

We bound player 1’s payoff in equilibria where he has an incentive not to erase a1 at history h0∗. Suppose

a short-run player arrives at history h0∗ and that the opportunistic type took action a1 at that history, the

opportunistic type prefers not to erase a1 if

(1− δ)u1(a1, β0) ≥ (1− δ)(u1(a1, β0)− c) + δp(u1(a1, β0)− c),

or equivalently,

u1(a1, β0) ≤
(1− δ)(1− δ + δp)

δp
c = u(p). (5.3)

In order to bound the short-run players’ payoffs and to show the generalized version of Theorem 2, we

establish a generalized version of Lemma 3 that the probability of event Ek is no more than 1− δ̃.
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The short-run players’ equilibrium welfare is no less than their payoff when they take action a∗2 if and

only if the length of player 1’s good record exceeds t, and takes action a2 otherwise. This lower bound

converges to pπu2(a
∗
1, a

∗
2) + p(1 − π)u2(a1, a2) as δ̃ → 1, since the expected number of periods for the

honest type to obtain a record length t is a linear function of (1 − δ)−1, which is lower than the decay rate

of their belief δ̃. Their equilibrium welfare is no more than their payoff when they can observe the realized

pure action of player 1. This upper bound converges to pπu2(a
∗
1, a

∗
2) + p(1− π)u2(a1, a2) as δ̃ → 1, since

the average probability with which the opportunistic type takes action a∗1 vanishes as δ̃ → 1. The lower and

the upper bounds coincide, which pins down the short-run players’ equilibrium welfare.

For the generalization of Theorem 2, in order for the opportunistic type to obtain payoff strictly greater

than max{u(p), p(u1(a1, aπ2 ) − c)} in an equilibrium, he must strictly prefer to erase a1 at every on-path

history and the short-run players must have an incentive to take some action that is strictly greater than aπ2 at

h0∗ as well as at every other on-path history. The necessity to provide the opportunistic type an incentive to

take action a∗1 implies that the length of the opportunistic type’s good record must be bounded above by some

linear function of (1 − δ)−1. Since the probability of event Ek is no more than 1 − δ̃, the need to persuade

the short-run players to take actions greater than aπ2 leads to a lower bound on t, which is a linear function

of (1 − δ̃)−1. As δ → 1, one cannot simultaneously provide incentives to the opportunistic type and to the

short-run players. This rules out equilibria in which player 1’s payoff exceeds max{u(p), p(u1(a1, aπ2 )−c)}

under any of the honest type’s disclosure policy.
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A Proof of Lemma 1

Let Hi denote the set of player i ∈ {1, 2}’s histories. The opportunistic type’s strategy is σ1 : H1 → ∆
(
A1×

{0, c}
)
, where {0, c} denotes his choice of whether to erase his action. Player 2’s strategy is σ2 : H2 →

∆(A2). For every Nash equilibrium (σ1, σ2), we construct a stationary strategy for the opportunistic type

σ∗
1 : H2 → ∆

(
A1 × {0, c}

)
such that for every h2 that occurs with positive probability under (σ1, σ2), the

opportunistic type’s mixed action at h2, denoted by σ∗
1(h2), equals player 2’s expectation of the opportunistic

type’s action at h2 under strategy σ1. By construction, we have H(σ1, σ2) = H(σ∗
1, σ2).

First, we verify that (σ∗
1, σ2) is a stationary equilibrium. Since σ1 best replies to σ2, σ∗

1 also best replies

to σ2. This is because player 1’s best reply depends only on player 2’s strategy σ2 and σ2 is measurable with

respect to H2. Since σ2 best replies to σ1, σ2 also best replies to σ∗
1 given that player 2’s best reply depends

only on her expectation of player 1’s action, which remains the same under σ∗
1 .

Next, we verify that (σ1, σ2) and (σ∗
1, σ2) are payoff equivalent. Since both σ1 and σ∗

1 best reply to

σ2, player 1’s discounted average payoffs under (σ1, σ2) and (σ∗
1, σ2) are the same, which establishes the

equivalence on player 1’s payoff. In order to establish the equivalence on player 2’s payoffs, we make use of

two observations. First, for every h2 ∈ H2, conditional on observing history h2, player 2’s payoffs are the

same under (σ1, σ2) and (σ∗
1, σ2), which we denote by v(h2). This is because her expectations of player 1’s

actions are the same. Second, by construction, the unconditional distributions over player 2’s histories are

the same under (σ1, σ2) and (σ∗
1, σ2), which we denote by µ ∈ ∆(H2). We use 2k to denote the short-run

player who arrives in period k. Let µk(h2) denote the probability that player 2k observes history h2 under

(σ1, σ2). Let µ∗
k(h2) denote the probability that player 2k observes history h2 under (σ∗

1, σ2). Since player

2’s prior belief assigns probability (1− δ)δ
k

to the calendar time being k, we have

µ(h2) =
+∞∑
k=0

(1− δ)δ
k
µk(h2) =

+∞∑
k=0

(1− δ)δ
k
µ∗
k(h2).

This implies that

E(σ1,σ2)
[ +∞∑
k=0

(1−δ)δ
k
u2(a1,k, a2,k)

]
=

+∞∑
k=0

{
(1−δ)δ

k ∑
h2∈H2

v(h2)µk(h2)
}
=

∑
h2∈H2

v(h2)
( +∞∑

k=0

(1−δ)δ
k
µk(h2)

)

=
∑

h2∈H2

v(h2)µ(h2) =
∑

h2∈H2

v(h2)
( +∞∑

k=0

(1− δ)δ
k
µ∗
k(h2)

)
= E(σ∗

1 ,σ2)
[ +∞∑
k=0

(1− δ)δ
k
u2(a1,k, a2,k)

]
.
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B Proof of Proposition 1

Fix any equilibrium (σ1, σ2). Let V (h2) denote player 1’s continuation value at h2. Let

V ≡ sup
h2∈H(σ1,σ2)

V (h2), (B.1)

which is player 1’s highest continuation value at on-path histories. Suppose by way of contradiction that

V > 0. The definition of V implies that for every

0 < ε < min
{V

2
,
(1− δ)(c− c)

δ

}
, (B.2)

there exists h2 ∈ H(σ1, σ2) such that V (h2) > V − ε. We examine player 1’s incentive at h2. Player

1’s payoff from playing a1 and then erasing it is at least (1 − δ)(u1(a1, β(h2)) − c) + δ(V − ε), where

β(h2) ∈ ∆(A2) is player 2’s action at h2. Recall the definition of action a′1 in Section 2. Player 1’s payoff

for taking any action a1 with a1 ≿ a′1 is at most (1 − δ)u1(a1, β(h2)) + δV , which is strictly less than

(1 − δ)(u1(a1, β(h2)) − c) + δ(V − ε) when c < c and ε satisfies (B.2). This implies player 1 has no

incentive to play any action that is weakly greater than a′1 at history h2. Therefore, player 2 has a strict

incentive to take action a2 at h2. Therefore,

V − ε < V (h2) ≤ (1− δ)u1(a1, a2) + δV

which implies that V − ε
1−δ < u1(a1, a2) for every ε that satisfies (B.2). Since ε can be arbitrarily close to

0, we know that V ≤ u1(a1, a2) ≡ 0 and the opportunistic type will take action a1 at every on-path history.

Suppose by way of contradiction that player 2 takes action a2 ≻ a2 with strictly positive probability at

some history h2 ∈ H(σ1, σ2). Assumption 1 and the definition of a2 imply that player 2 will never take

actions lower than a2. This implies that player 2’s action at h2 strictly FOSDs a2. Since u1(a1, a2) is strictly

increasing in a2, we know that V (h2) > 0. This contradicts our conclusion that V = 0. Since player 2 takes

action a2 at every on-path history, player 1 has no incentive to take any action that is strictly greater than a1.

C Proof of Lemma 2

First, we show that for every λ ∈ [0, 1], player 2 has at most two pure-strategy best replies to λa∗1+(1−λ)a1.

Suppose by way of contradiction that there exist a2, a′2, a
′′
2 with a2 ≻ a′2 ≻ a′′2 such that all three actions

best reply to λ∗a∗1 + (1− λ∗)a1 for some λ∗ ∈ [0, 1]. Then the last part of Assumption 2 implies that there
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exist λ, λ′, λ′′ ∈ [0, 1]\{λ∗} such that a2 best replies to λa∗1+(1−λ)a1, a′2 best replies to λ′a∗1+(1−λ′)a1,

and a′′2 best replies to λ′′a∗1 + (1 − λ′′)a1. Notice that λ, λ′, λ′′ can be the same. Therefore, either at least

two of {λ, λ′, λ′′} are strictly more than λ∗, or at least two of {λ, λ′, λ′′} are strictly less than λ∗. In the

first case, a2 best replies to λ∗a∗1 + (1 − λ∗)a1 and there exists an action that is strictly lower than a2 that

best replies to an action that FOSDs λ∗a∗1 + (1− λ∗)a1. This contradicts Assumption 1 that u2(a1, a2) has

strictly increasing differences. A similar contradiction arises when at least two of {λ, λ′, λ′′} are strictly less

than λ∗. Hence, player 2 has at most two pure-strategy best replies to any λa∗1 + (1− λ)a1.

Next, let

A∗
2 ≡ {a2 ∈ A2|there exists λ ∈ [0, 1] s.t. a2 best replies to λa∗1 + (1− λ)a1}, (C.1)

which is the set of player 2’s pure best replies against player 1’s actions that are mixtures between a∗1 and a1.

We show that there exists λ ∈ [0, 1] such that it is optimal for player 2 to mix between a2 ∈ A∗
2 and a′2 ∈ A∗

2

with a2 ≻ a′2 against λa∗1 + (1− λ)a1 if and only if there exists no a′′2 ∈ A∗
2 such that a2 ≻ a′′2 ≻ a′2. This

is because when u2(a1, a2) has strictly increasing differences, our earlier conclusion implies that there exist

0 ≡ λ0 < λ1 < ... < λn ≡ 1 such that for every a2 ∈ A∗
2, there exists j ∈ {1, 2, ..., n} such that a2 is a strict

best reply to λa∗1 + (1− λ)a1 for every λ ∈ (λj−1, λj). Since u2(a1, a2) has strictly increasing differences,

player 2’s best reply is increasing in λ. The upper-hemi-continuity of best reply correspondences implies

that for every j ∈ {1, 2, ..., n− 1}, player 2 has 2 pure best replies to λja
∗
1+(1−λj)a1 which are her strict

best replies when λ ∈ (λj−1, λj) and when λ ∈ (λj , λj+1). Therefore, every pair of mixed actions in B can

be ranked according to FOSD. Since u2(a1, a2) has strictly increasing differences and a∗1 ≻ a1, a∗2 is the

highest action in A∗
2 and a2 is the lowest action in A∗

2. Since u1(a1, a2) is strictly increasing in a2, for every

a1 ∈ A1 and v ∈ [u1(a1, a2), u1(a1, a
∗
2)], there exists a unique β ∈ B such that u1(a1, β) = v.

Remark: We explain why the second part of Assumption 2 is generically satisfied. If there exist a2 ∈ A2

and a1, a
′
1 ∈ A1 such that there is a unique λ ∈ [0, 1] where a2 best replies to λa1 + (1 − λ)a′1, then the

proof of Lemma 2 suggests that there exists λ∗ ∈ [0, 1] such that player 2 has at least 3 pure best replies

to λ∗a1 + (1 − λ∗)a′1. Once we depict player 2’s payoff from each of her pure actions as a function of the

probability with which player 1 plays a′1 (as opposed to a1), having three best replies to λ∗a1 + (1− λ∗)a′1

implies that three of these linear functions intersect at λ∗, which can only occur under knife-edge (u1, u2).

32



D Proof of Proposition 2

Recall that π(h2) is the probability with which player 2’s belief assigns to the honest type after observing her

history h2. Since π(h2) = 0 for every h2 /∈ H∗, Proposition 1 implies that β(h2) = a2 for every hk2 /∈ H∗.

Therefore, at any history that contains any unerased action that is not a∗1, the opportunistic-type of player

1 will play a1 and will not erase his action. Since u1(a1, a2) is strictly decreasing in a1, taking any action

other than a1 and a∗1 is strictly dominated by taking action a1. This implies that player 1 only takes actions

a∗1 and a1 at any on-path history. Hence, player 2’s action at every on-path history belongs to B.

Let Vk be player 1’s continuation value at hk∗ and let V ≡ supk∈N Vk. Suppose by way of contradiction

that V = 0, then player 2 takes action a2 at every on-path history. This implies that the opportunistic type

takes action a1 at every on-path history. According to Bayes rule, player 2 will assign probability 1 to the

honest type at history h1∗, which implies that she will have a strict incentive to take action a∗2 at h1∗. As a

result, V1 > (1− δ)u1(a1, a
∗
2) > 0, which contradicts the hypothesis that V = 0. This implies that V > 0.

Fix any ε that satisfies (B.2). According to Proposition 1, for every h2 that satisfies V (h2) > V − ε,

the opportunistic type has a strict incentive to take action a1 at history h2. Since the opportunistic type’s

continuation value is 0 at any history that does not belong to H∗, there exists t ∈ N such that the opportunistic

type’s continuation value reaches V − ε at ht−1
∗ , at which point he will have no incentive to take action a∗1.

Therefore, player 2 will assign probability 1 to the commitment type at every hk∗ with k ≥ t, at which point

the opportunistic type’s continuation value is u1(a1, a
∗
2) − c and has no incentive to take action a∗1. Let pk

be the probability that the opportunistic type takes action a∗1 at history hk∗ . The definition of t implies that

p∗k = 0, βk = a∗2, and πk = 1 for every k ≥ t, and p∗k > 0, βk ̸= a∗2, and πk < 1 for every k < t− 1.

Next, we show that p∗k < 1 for every k < t. Suppose by way of contradiction that p∗k = 1 for some k.

Then player 2 strictly prefers to play a∗2 at hk∗ . Player 1’s incentive to play a∗1 instead of a1 implies that

Vk = (1− δ)u1(a
∗
1, a

∗
2) + δVk+1 ≥ max

{
u1(a1, a

∗
2)− c, (1− δ)u1(a1, a

∗
2)
}
. (D.1)

If c < u1(a1, a
∗
2)− u1(a

∗
1, a

∗
2), then Vk+1 > u1(a1, a

∗
2)− c. For every t− 1 > s ≥ k + 1, taking action a∗1

is optimal at hs∗, which implies that Vs+1 > Vs > u1(a1, a
∗
2) − c. This implies that Vt−1 ≥ Vt+1 > Vk. At

history ht−1
∗ , playing a∗1 is not optimal, which implies that

Vt−1 = max{(1− δ)u1(a1, βt−1), u1(a1, βt−1)− c} ≤ max{u1(a1, a∗2)− c, (1− δ)u1(a1, a
∗
2)}, (D.2)

where the last inequality comes from Assumption 1 that u1(a1, a2) is strictly increasing in a2. Inequalities
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(D.1) and (D.2) together imply that Vt−1 ≤ Vk. This contradicts Vt−1 > Vk, which implies that taking

action a1 is weakly optimal for the opportunistic type at every history. Hence, at every hk∗ with k < t, either

player 1 has an incentive to take a1 and then erase it, or he has an incentive to take a1 and then not erase it.

In the first case, Vk = u1(a1, βk)− c and in the second case, Vk = (1− δ)u1(a1, βk). Not erasing a1 is

preferred to erasing a1 if and only if (1− δ)u1(a1, βk) ≥ u1(a1, βk)− c, or equivalently,

u1(a1, βk) ≤ c/δ. (D.3)

Since player 2’s action at every on-path history belongs to B, which by Lemma 2 can be completely ranked

via FOSD, inequality (D.3) is equivalent to βk being lower than some cutoff in the sense of FOSD.

In the next step, we show that there exists no k < t such that player 1 prefers to erase a1 at hk∗ and

prefers not to erase a1 at hk+1
∗ . Suppose by way of contradiction that there exists such a k, then it must be

the case that βk ⪰ βk+1. Player 1 weakly prefers playing a∗1 at hk∗ and then playing a1 and not erasing at

hk+1
∗ to the following two strategies (i) playing a1 and erasing in every subsequent period after reaching hk∗

as well as (ii) playing a1 and not erasing in every subsequent period after reaching hk∗ . This implies that

(1− δ)u1(a
∗
1, βk) + δ(1− δ)u1(a1, βk+1) ≥ u1(a1, βk)− c (D.4)

and

(1− δ)u1(a
∗
1, βk) + δ(1− δ)u1(a1, βk+1) ≥ (1− δ)u1(a1, βk). (D.5)

When c < c, we have u1(a1, βk)− c > u1(a
∗
1, βk). Therefore, (D.4) together with βk ⪰ βk+1 implies that

(1− δ)u1(a1, βk+1) > u1(a
∗
1, βk) ≥ u1(a

∗
1, βk+1). Inequality (D.5) implies that

u1(a
∗
1, βk) ≥ u1(a1, βk)− δu1(a1, βk+1) ≥ (1− δ)u1(a1, βk).

This leads to a contradiction. Hence, there exists t0 ≤ t such that at history hk∗ , player 1 erases a1 with

probability 1 if k > t0, and erases a1 with zero probability if k < t0.

In the last step, we show that the length of the reputation-building phase t is bounded below a linear

function of (1 − δ)−1, which is uniform across all equilibria. Let a′2 ∈ A2\{a∗2} denote player 2’s action

such that player 2 is indifferent between a′2 and a∗2 when player 1 takes a mixed action x∗a∗1 + (1 − x∗)a1

for some x∗ ∈ [0, 1]. This action a′2 is uniquely defined under Assumption 1. The opportunistic type has an

incentive to take action a1 and then erase it at every hk∗ with t0 < k < t, which implies the following upper
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bound on the extent to which player 1’s continuation value increases with the length of his record:

Vk+1−Vk = u1(a1, βk+1)−u1(a1, βk) ≤ (1−δ)
(
u1(a1, βk+1)−c−u1(a

∗
1, βk)

)
≤ (1−δ)

(
u1(a1, a

∗
2)−c−u1(a

∗
1, a2)

)
.

Let ∆ ≡ u1(a1, a
∗
2)− c− u1(a

∗
1, a2). The rest of the proof considers three classes of equilibria separately.

First, consider any equilibrium in which player 1 has an incentive not to erase a1 at h0∗. Player 1’s

continuation value at ht0∗ is at most (1−δ)c
δ and his continuation value at ht∗ is u1(a1, a

∗
2)−c, which is strictly

greater than u1(a
∗
1, a

∗
2) when c < c. This implies that

t ≥ t− t0 ≥
u1(a1, a

∗
2)− c− (1−δ)c

δ

∆
(1− δ)−1.

Second, consider any equilibrium in which player 2 takes action a∗2 with zero probability at h0∗. Player

1’s continuation value at h0∗ is at most max{ (1−δ)c
δ , u1(a1, a

′
2)− c}. This implies that

t ≥
u1(a1, a

∗
2)− c−max{ (1−δ)c

δ , u1(a1, a
′
2)− c}

∆
(1− δ)−1.

Third, consider any equilibrium such that in period 0, player 1 has a strict incentive to erase a1 and

player 2 takes action a∗2 with positive probability. The definition of t implies that p∗t = 0. Inequality (3.8)

implies that there exists ϕ > 0 such that pk−1 − pk ≤ ϕ(1 − δ). Player 2’s incentive to take action a∗2 in

period 0 implies that she expects player 1 to take action a∗1 in period 0 with probability at least x∗. According

to (3.5) and (3.6), we know that there exists x0 ≥ x∗ such that

π

1− π
=

1

1− δ + δp∗0
· x0 − p∗0
1− x0

. (D.6)

Therefore, for any fixed π ∈ (0, 1), there exists p
0
∈ (0, 1) such that (D.6) holds only if p∗0 > p

0
. Hence,

t ≥
p
0

ϕ(1− δ)
≥

p
0

ϕ(1− δ)
.

The three cases together imply that for every π ∈ (0, 1), there exists a constant λ > 0 such that t > λ
1−δ in

every equilibrium of the reputation game where player 1’s effective discount factor is δ.
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E Proofs of Corollaries 1 and 2

Proof of Corollary 1: Recall that p∗0 is strictly decreasing in l ≡ π
1−π and equals x0 when l = 0. The

right-hand-side of inequality (3.8) implies that when l is close to 0, p∗0 is close to x0, and p∗1 − p∗0 is close

to 0. Therefore, for every δ̂ and δ, there exists l close enough to 0 such that the number of periods for p∗t to

reach 0 is strictly greater than the upper bound on t driven by the opportunistic type’s incentive to play a∗1.

This implies that player 1’s payoff is no more than (1− δ)c/δ in every equilibrium when π is low.

Proof of Corollary 2: We know from the proof of Theorem 1 that the opportunistic type has an incentive

to play a1 and then not erase it at history h0∗. Therefore, in order to show the first part, we only need to

show that he has an incentive to play a1 and then erase it at h0∗. According to (3.2), the opportunistic type’s

indifference condition at h0∗ will then imply that his continuation value at h0∗ is exactly (1− δ)c/δ.

Suppose by way of contradiction that when π > π∗ and there exists an equilibrium in which player 1

erases a1 at h0∗ with zero probability. We consider two cases. First, suppose player 2 does not play a∗2 for

sure at h∗0, then the probability with which player 1 plays a∗1 at h0∗ cannot exceed π∗. This cannot happen

when π > π∗ and player 1 does not erase his action at h0∗. Second, suppose player 2 plays a∗2 for sure at h0∗,

then the opportunistic type of player 1 reaches his highest continuation value at h0∗, which implies that he has

a strict incentive to play a1 at h∗0. The hypothesis that he will not erase a1 at h0∗ implies that u1(a1, a
∗
2) <

c
δ .

Recall that δ ≡ c
u1(a1,a

∗
2)

. Inequality u1(a1, a
∗
2) <

c
δ contradicts our requirement that δ ≡ δ · δ̂ > δ.

For the second part, notice that when player 1’s payoff is (1−δ)c
δ in every equilibrium, player 2’s action

at h0∗, denoted by β0 ∈ ∆(A2), satisfies

V0 = u1(a1, β0)− c =
(1− δ)c

δ
. (E.1)

Recall the definition of B in (3.1), that player 2’s (potentially mixed) action at every on-path history belongs

to B, and that each pair of elements in B can be ranked according to FOSD. Since β0 ∈ B and u1(a1, a2) is

strictly increasing in a2, equation (E.1) uniquely pins down player 2’s action at h0∗, denoted by β0. Similarly,

the values of V1, V2,... are pinned down by V0 via equation (3.3), which also pin down player 2’s actions at

h1∗, h2∗,... Under generic parameter values, β0, β1, ..., βt−1 are non-trivially mixed actions, which pin down

player 2’s belief about player 1’s action at histories h0∗, h
1
∗, ..., h

t−1
∗ . This pins down the opportunistic type

of player 1’s actions at all on-path histories.
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F Proof of Lemma 4

The payoff lower bound is straightforward. The rest of this proof establishes the payoff upper bound.

When q̃ is the Dirac measure on 0, the opportunistic type never takes a∗1 since it is strictly dominated by

playing a1 and then erasing it. We consider two cases. If player 2’s action at the null history β0 satisfies

u1(a1, β0) ≤ c
δ , then not erasing a1 is optimal for the opportunistic type, in which case his payoff is no

more than (1− δ)u1(a1, β0) ≤
(1−δ)c

δ . If β0 is such that u1(a1, β0) >
c
δ , then player 1 has a strict incentive

to erase a1 in period 0, in which case player 2’s belief assigns probability π to player 1’s action being a∗1.

Therefore, player 2’s action is at most aπ2 , in which case player 1’s payoff is no more than u1(a1, a
π
2 )− c.

G Proof of Theorem 2

We use the same notation as in the proof of Theorem 1. Similar to the proof of Proposition 2, we know

that in every equilibrium, there exists t ∈ N such that the opportunistic type takes action a∗1 with positive

probability until his record length reaches t − 1 and moreover, the opportunistic type cannot have a strict

incentive to play a∗1 at hk∗ for every k ≤ t − 1. Therefore, the opportunistic type’s equilibrium payoff is

bounded above by max{ (1−δ)c
δ , u1(a1, β0) − c}. This payoff upper bound is no more than (4.1) unless (i)

u1(a1, β0) >
c
δ and (ii) there exists an action strictly greater than aπ2 that belongs to the support of β0.

The first condition implies that at every hk∗ with k ≤ t−1, the opportunistic type strictly prefers to erase

a1 after taking it at hk∗ . Given our definition of aπ2 , the second condition implies that the expected probability

with which the opportunistic type of player 1 takes action a∗1 must be strictly bounded above 0 in order to

provide player 2 an incentive to take actions that are strictly greater than aπ2 starting from period 0.

Fix any δ̂ ∈ (0, 1). Suppose by way of contradiction that for every δ close enough to 1, there exist a

disclosure policy with unconditional distribution q̃ ∈ ∆(N ∪ {s∗}) and an equilibrium under q̃ such that

the opportunistic type’s payoff is strictly greater than (4.1). Since at every history hk∗ with k < t, the

opportunistic type is indifferent between playing a∗1 and playing a1 and then erasing it, we have

Vk+1 − Vk = (1− δ)
(
u1(a1, βk+1)− c− u1(a

∗
1, βk)

)
. (G.1)

This implies that t is bounded from above by some linear function of (1− δ)−1.

Since player 2 has an incentive to take some action that is strictly greater than aπ2 at h0∗ and player 2’s

action increases in the length of player 1’s good record in the sense of FOSD, there exists x > π such that

player 2’s belief assigns probability at least x to a∗1 at every hk∗ with k ≤ t− 1. Importantly, this x depends
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only on (u1, u2) and does not depend on δ̂, δ, and the honest type’s disclosure policy. Recall that µ∗
k is

the probability that the history is hk∗ conditional on player 1 being the opportunistic type and that p∗k is the

probability with which the opportunistic type plays a∗1 at hk∗ . Player 2’s incentive constraint at history hk∗

implies that
πq̃(k) + (1− π)µ∗

kp
∗
k

(1− π)µ∗
k(1− p∗k)

≥ x

1− x
for every k ∈ {1, ..., t− 1}. (G.2)

Since π < x, (G.2) is true for every k ≤ t − 1 only when
∑t−1

j=0 µ
∗
jp

∗
j is bounded above 0. Lemma 3

implies that µ∗
jp

∗
j ≤ 1 − δ for every j ≤ t − 1. Therefore,

∑t−1
j=0 µ

∗
jp

∗
j is bounded above 0 if and only if t

is bounded below by a linear function of (1 − δ)−1. For any fixed δ̂ ∈ (0, 1), there exists δ close to 1 such

that the lower bound on t is strictly greater than the upper bound on t implied by the opportunistic type’s

incentive constraints. This rules out equilibria in which the opportunistic type’s payoff being strictly greater

than (4.1). Similarly, the short-run players’ payoffs cannot be greater than πu2(a
∗
1, a

∗
2) + (1− π)u2(a1, a2)

unless the expected probability with which the opportunistic type takes action a∗1 is bounded above 0. This

cannot happen when δ → 1 given our upper bound on the average probability with which the opportunistic

type takes action a∗1 in any equilibrium under any disclosure policy.

H Proof of Proposition 3

Suppose by way of contradiction that there exists an equilibrium in which the honest type erases a∗1 with

positive probability at some on-path history. Let t ∈ N denote the smallest integer k such that the honest

type erases his record with positive probability at hk∗ . Hence, it is optimal for the honest type not to erase

any action until period t, after which he erases the record in every subsequent period. We call this strategy

σ∗
1 . We consider two cases separately.

First, suppose βt+1 weakly FOSDs βt. Since c > 0 and the honest type chooses H in every period,

his payoff from σ∗
1 is strictly less than his payoff from the following strategy: Do not erase any action until

period t+ 1 and erase every action taken after period t+ 1. This leads to a contradiction.

Next, suppose βt strictly FOSDs βt+1. Player 2 does not play a∗2 for sure at ht+1
∗ and therefore, the

opportunistic type plays a1 with positive probability at ht+1
∗ . If the opportunistic type reaches ht+1

∗ with

positive probability, then it is optimal for him to play a∗1 at ht∗ and then play a1 at ht+1
∗ . However, this gives

the opportunistic type a strictly lower payoff compared to playing a1 at ht∗. This leads to a contradiction and

implies that the opportunistic type does not reach ht+1
∗ with positive probability in equilibrium. If this is the

case, then player 2 assigns probability 1 to the honest type at history ht+1
∗ , in which case she will have a

strict incentive to play a∗2 at ht+1
∗ . This contradicts our earlier hypothesis that βt is strictly greater than βt+1.
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