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(Re-)Imag(in)ing Price Trends

JINGWEN JIANG, BRYAN KELLY, and DACHENG XIU*

ABSTRACT

We reconsider trend-based predictability by employing flexible learning methods to
identify price patterns that are highly predictive of returns, as opposed to testing
predefined patterns like momentum or reversal. Our predictor data are stock-level
price charts, allowing us to extract the most predictive price patterns using machine
learning image analysis techniques. These patterns differ significantly from com-
monly analyzed trend signals, yield more accurate return predictions, enable more
profitable investment strategies, and demonstrate robustness across specifications.
Remarkably, they exhibit context independence, as short-term patterns perform well
on longer time scales, and patterns learned from U.S. stocks prove effective in inter-
national markets.

Nevertheless, technical analysis has survived through the years, perhaps
because its visual mode of analysis is more conducive to human cognition,
and because pattern recognition is one of the few repetitive activities for
which computers do not have an absolute advantage (yet).

Lo, Mamaysky, and Wang (2000)

A LARGE LITERATURE INVESTIGATES THE ability of past prices to forecast
future returns, producing a handful of famous and robust predictors includ-
ing price momentum and reversal. Given recent strides in understanding how
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price dynamics are influenced by human behavior and psychology,1 it is plau-
sible that prices contain subtle and complex patterns that can be difficult to
detect with the standard methods of empirical finance. In this paper, we recon-
sider price trend patterns from a machine learning perspective.

Perhaps the most daunting challenge to a machine learning perspective on
price-based return prediction is settling on a methodology to achieve a balance
between two countervailing concerns. On the one hand, we prefer a method
that is flexible enough to find potentially complex predictive patterns. On the
other hand, we prefer a method that is tractable and constrained enough that
we can interpret those patterns to inform future theory.2 To negotiate this deli-
cate trade-off, we make two research design choices that together result in suc-
cessful inference of new return-predictive patterns in past prices: We represent
historical prices as an image, and we model the predictive association between
images and future returns using a convolutional neural network (CNN). These
choices work together and enhance each other. We describe the logic behind
each choice in turn, beginning with the CNN.

The input to a CNN is typically an image, and in our setting the image is a
plot of past market information (open, high, low, and close prices and trading
volume) represented as a matrix of black and white pixel values. A CNN is
designed to produce forecasts from an image without requiring a researcher to
manually engineer predictive features. Instead, the CNN automates the fea-
ture extraction process. In a given “layer,” the CNN spatially smooths image
contents to reduce noise and accentuate shape configurations that correlate
with future returns. This smoothing operation is applied recursively by stack-
ing multiple layers together, which gives the CNN flexibility to capture poten-
tially complex predictive patterns (and earns it the synonym “deep learning”).
The final predictor set consists of smoothed nonlinear transformations of the
original numeric pixel values. At a high level, this is similar to more traditional
kernel-based data filters used in regression analysis. However, the CNN does
not simply fix the set of smoothing filters: Instead, it estimates the filters that
best detect shapes and other attributes of the images that are most predictive
of the target variable. In short, we use a CNN due to its ability to automatically
extract predictive signals from raw input data, which makes it ideally suited
to elicit patterns that underly financial markets but may be too complex for a
human to hypothesize.

Why is it beneficial to encode market data as an image rather than in the
more standard time-series numerical format? The first reason is that the lead-
ing CNN architectures are custom crafted for image analysis. Therefore, to
enjoy the CNN’s benefits of automated signal generation, it is useful to rep-
resent price data in the format naturally ingested by the CNN, that is, as an
image. Second, representing time-series as an image allows the model to focus
on relational attributes of the data that would be difficult to tease out with

1 See Barberis (2018) for a survey.
2 In addition to interpretability, we also favor more tractable and constrained methods to ensure

that they can be reliably estimated from available data with manageable computational cost.
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time-series methods. This is the same basic rationale for why humans illus-
trate patterns graphically rather than with lists of numbers. If a human can
more readily detect patterns in images by consuming an entire data matrix
through a single visualization, a statistical pattern recognition algorithm may
benefit from doing so as well. Third, the process of imaging price and volume
data converts all assets’ data histories into a comparable scale. We show that
this particular rescaling choice has large benefits for prediction in the panel
of stocks. Fourth, technical trading hinges on the presence of geometric shapes
visually defined and observed by human cognition. Technical traders have long
used price charts as an information source to predict returns and make invest-
ment decisions.

Our empirical analysis revolves around a panel prediction model for U.S.
stock returns from 1993 to 2019. We train a panel CNN model to predict
the direction (up or down) of future stock returns. Specifically, in each train-
ing sample, we estimate a single model with a fixed structure and set of pa-
rameters that produces forecasts for all individual stocks. The data input to
this model are images depicting price and volume (daily open, close, high,
and low prices, daily trading volume, and moving average price) over the
past 5, 20, and 60 days. The output of the CNN is a set of stock-level esti-
mates for the probability of a positive subsequent return over short (five-day),
medium (20-day), and long (60-day) horizons. We use CNN-based out-of-sample
predictions as signals in a number of asset pricing analyses.

Our main empirical finding is that image-based CNN predictions are pow-
erful and robust predictors of future returns. We summarize this predictive
power in economic terms with out-of-sample portfolio performance. We sort
stocks into decile portfolios using image-based CNN forecasts and track the
returns of a decile spread High-Low portfolio. We first consider a weekly trad-
ing strategy and use a CNN supervised by weekly returns (thus, CNN training
and the strategy’s rebalancing frequency align). Image-based decile spreads
perform extraordinarily well, earning annualized out-of-sample gross Sharpe
ratios as high as 7.2 for equal-weight portfolios and 1.7 for value-weight port-
folios. We benchmark this performance against four other price trend strate-
gies: 2-12 momentum (MOM), one-month short-term reversal (STR), one-week
short-term reversal (WSTR), and the Han, Zhou, and Zhu (2016) trend strategy
that combines short, intermediate, and long-term price trends (TREND). Of
these, the closest competitors to image-based forecasts are TREND and WSTR,
which achieve equal-weight Sharpe ratios of 2.9 and 2.8 (value-weight Sharpe
ratios of 0.7 and 0.8), respectively. The performance differential between the
CNN and competitors does not appear attributable to differences in limits to
arbitrage such as trading costs. Image-based CNN strategies have portfolio
turnover that is nearly identical to WSTR, but manage to double the annual-
ized performance of WSTR.

We find similar qualitative results for strategies with longer holding-periods
of one month and one quarter (again, each CNN is trained to forecast re-
turns over horizons that align with strategy holding-period). The image-based
H-L strategy reaches an annualized out-of-sample equal-weight Sharpe ratio
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as high as 2.4 and 1.3 for monthly and quarterly strategies, respectively. We
next explore whether this longer horizon performance is driven by especially
strong predictability over the first week by decomposing the monthly rebal-
anced strategy into returns from days 1 to 5 after rebalance versus returns over
days 6 to 20. While the bulk of the return in the monthly equal-weight strategy
accrues over the first five days, we find that the annualized Sharpe ratio for
days 6 to 20 reaches 1.2 and is highly significant. Summarizing this analysis,
we find that image-based price trend forecasts are most potent in the first week
after observing the image. A weekly rebalancing strategy that exploits these
potent short-horizon image-based predictions incurs high turnover, suggest-
ing it is mostly accessible to investors who behave as market makers. But we
also find that profits to image-based strategies remain significantly positive af-
ter standard trading cost adjustments, when the strategy rebalances at lower
frequencies that are accessible to longer horizon investors, and when trading
focuses on predictability beyond the first week following image observance.

CNN interpretation is a notoriously difficult problem in the machine learn-
ing literature because the model uses several telescoping layers of nonlinear
image transformations to generate its forecasts. We make progress interpret-
ing the predictive patterns identified by the CNN using two approaches. First,
we compare image-based signals from the CNN to previously studied signals
in the literature. Using logistic regression, we identify the traditional signals
that most closely approximate the CNN’s prediction; these include dollar vol-
ume, size, reversal, and Amihud illiquidity. However, previously studied sig-
nals explain only about 10% of the cross-sectional variation in CNN forecasts.

Second, we search for simple logistic regression specifications (using price
and volume data underlying our images) to best approximate the CNN
model. A key component of image-based prediction is the implicit data scaling
achieved by the image representation—images put all stocks’ past price data
on the same scale so that their recent maximum high and minimum low prices
span the height of the image, and all other prices (open, high, low, close, and
moving average) are rescaled accordingly, likewise for volume. Following this
data transformation, a logistic model can produce a reasonable approximation
to the CNN, which aids in interpretation. For example, a simple approximator
for one of the patterns detected by the CNN is that when a stock closes on the
low end of its recent high-low range, future returns tend to be high.

An intriguing aspect of our analysis is that return-predictive patterns de-
tected by the CNN extrapolate to contexts outside the main data set of daily
U.S. stock prices. In particular, we consider the possibility of image-based
transfer learning, using a model estimated in one context to forecast in a dis-
tinct context. We show that the predictive patterns identified by the CNN from
daily U.S. stock data transfer well to international markets and to other time
scales. International markets have fewer stocks and shorter time-series com-
pared to the United States. We transfer CNN model estimates from U.S. data
to construct return forecasts in 26 foreign markets. We find that international
image-based trading strategies earn a higher Sharpe ratio than if we train
a CNN from scratch using local market data. In addition, given the scarcity
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of low-frequency data in financial markets, it would be beneficial to know if
patterns that unfold at high frequencies (which we can potentially measure
well) are similar to patterns that unfold at low frequencies.3 To illustrate this
idea, we train a CNN model to predict five-day returns from images of five-day
prior price data. We then apply this model to the problem of predicting 60-day
returns using prior 60-day price data by sampling the data once every 12 days.
A quarterly trading strategy based on this high-frequency transfer approach
outperforms a CNN trained directly on quarterly data.

The theoretical sensibility and empirical reliability of technical analysis
have long been a subject of debate. Lo, Mamaysky, and Wang (2000) and Lo
and Hasanhodzic (2009) insightfully juxtapose arguments on either side of the
debate. A number of papers present theoretical arguments for the existence
of equilibrium predictability with technical analysis, including Brown and
Jennings (1989), Grundy and McNichols (1989), Blume, Easley, and O’Hara
(1994), Barberis, Shleifer, and Vishny (1998), and Han, Zhou, and Zhu (2016).
Several papers find strong empirical support for technical trading rules, with
prominent examples including Brock, Lakonishok, and LeBaron (1992), Lo,
Mamaysky, and Wang (2000), Zhu and Zhou (2009), Neely et al. (2014), Han,
Zhou, and Zhu (2016), Detzel et al. (2020), and Murray, Xiao, and Xia (2021).
Sullivan, Timmermann, and White (1999) and Bajgrowicz and Scaillet (2012)
study large collections of candidate trading rules with careful corrections for
multiple hypothesis testing and reach skeptical conclusions regarding the sig-
nificance of technical trading profits. The debate about the viability of techni-
cal trading is to some extent moot given the widely documented, robust, and by
now uncontroversial momentum effect (Jegadeesh and Titman (1993)), which
Schwert (2003) concludes is the most reliable technical pattern in the postpub-
lication sample.

We contribute to this literature by investigating price trends (and technical
analysis more generally) with a machine learning analysis of price chart im-
ages. The key differentiating feature of our approach is that we do not require
the researcher to prespecify a set of technical patterns. Instead, we present
our model with historical market data in the form of an image. In place of
human-generated predictive signals, our CNN conducts an automated search
for image patterns that are most predictive of future returns. This is a contin-
uation of the agenda set forth by Lo, Mamaysky, and Wang (2000), but with
a retooled research design benefitting from 20 years of progress in machine
learning and computer vision. Ultimately, our CNN approach extracts robust
predictive patterns from images that outperform stalwart price trend patterns
from the literature, including MOM and STR.

An emerging literature in computer science uses price plots and CNN-based
models to forecast stock returns. These papers give a short description of meth-
ods and present small-scale empirical analyses. The large majority of this work

3 This is motivated by the Mandelbrot (2013) “fractal” hypothesis in financial markets, which
predicts that asset prices exhibit statistically self-similar patterns when studied at different time
scales, and which also predicts the emergence of long-range dependence in prices (Cont (2005)).
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performs time-series prediction of aggregate stock indices (examples include
Chen et al. (2016), Hoseinzade and Haratizadeh (2019), Kim and Kim (2019),
Lee, Kim, Koh, and Kang (2019)). Hu et al. (2018) use price plot CNNs to clus-
ter individual stocks, while Cohen, Balch, and Veloso (2020) classify images
with specific technical patterns (crossings of Bollinger Bands, MACD, Rela-
tive Strength Index). These authors do not predict returns. To our knowledge,
no prior paper to date performs a large-scale, thorough, and methodologically
transparent analysis of return prediction for individual stocks with the fine
granularity that is standard in empirical asset pricing research.

The remainder of the paper proceeds as follows. In Section I, we describe the
process of “imaging” market data. Section II presents the intuition and detailed
mechanics of our CNN framework. We report our main empirical analysis in
Section III. Section IV explores interpretations of the CNN model. In Section V,
we analyze the benefits of CNN transfer learning across geographies and time
scales. Section VI concludes. In the Internet Appendix, we report a variety
of extensions and robustness tests of our main empirical analysis, as well as
simulation evidence to illustrate the model’s finite-sample properties.4

I. “Imaging” Market Data

In this section, we describe the process of representing historical market
data as an image input for the CNN prediction model. Many popular web-
sites such as Bloomberg, Yahoo! Finance, and Google Finance provide histor-
ical price charts for a wide range of financial assets. Figure 1 illustrates by
providing an example of Tesla’s stock price data through August 18, 2020, in
a common price chart format. It includes “OHLC” bars that depict daily open-
ing, high, low, and closing prices. It then overlays a 20-day moving average
closing price. The bottom of the chart shows daily trading volume. While these
charts (and many variations on them) can be captured from the Internet, we
generate our own price charts from scratch. This allows us to conduct various
experiments by controlling the amount of information that our CNN “trader”
can observe.

A. The OHLC Chart

The images we generate follow the basic format of Figure 1. In particular,
our main price plot uses OHLC bars (colored in black). High and low prices are
represented by the top and bottom of the middle vertical bar, while opening and
closing prices are represented by the small horizontal lines on the left and right
of the bar, respectively. In our images, one day occupies an area three pixels
wide: The center bar, open mark, and closing mark are each one pixel wide.

The main component of our image is a concatenation of daily OHLC bars
over consecutive 5-, 20-, or 60-day intervals (approximately weekly, monthly,

4 The Internet Appendix is available in the online version of the article on The Journal of Fi-
nance website.
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Figure 1. Tesla OHLC chart from Yahoo! Finance. This figure displays an OHLC chart for
Tesla stock with 20-day moving average price line and daily volume bars. Data are daily from
January 1, 2020, to August 18, 2020. (Color figure can be viewed at wileyonlinelibrary.com)

and quarterly price trajectories, respectively). The width of an n-day image is
therefore 3n pixels. We replace prices by CRSP-adjusted returns to translate
the opening, closing, high, and low prices into relative scales that abstract from
price effects of stock splits and dividend issuance.

Once days are concatenated, we impose a constant height for all images and
scale the vertical axis so that the maximum and minimum of the OHLC path
coincides with the top and bottom of the image. As a result, all images for the
same number of days have the same pixel dimensions. The resulting image is
shown in Figure IA.2, Panel A.

The vertical dimension of the image conveys two main types of information.
The first and most obvious are directional price trends that are viewed as the
critical content of typical technical signals such as momentum and reversal.
The second and more subtle is volatility information. Parkinson (1980) shows
that the daily high-low range, described by the vertical length of the OHLC bar,
provides an accurate snapshot of daily stock price volatility. Generalizations
by Dobrev (2007) and others show that the high-low range over intervals other
than a day are likewise beneficial for volatility inference. This helps motivate
the visual representation of price paths, which allows the viewer to immedi-
ately and simultaneously perceive price ranges at different frequencies, which
is an essentially nonlinear process. This type of nonlinearity would be difficult
for traditional kernel methods to discern from time-series data.

We exclude images for stocks that either undergo an Initial Public Offer-
ing or are delisted during the data window, but we allow missing data if they
occur in the middle of the stock’s history. In the case of missing data, the
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columns of pixels corresponding to the missing days are left blank (or partially
blank if only part of the OHLC information is available).5

We use black as the background color and white for visible objects on the
charts. This means that most space on the chart is in black, which eases
data storage requirements because a black pixel is represented by (0, 0, 0)
and our resulting images are sparse. The use of different colors for “up” and
“down” days, as is common practice by Bloomberg and others, is redundant be-
cause the direction of the price change is implied from the opening and closing
price marks. Omitting such redundancy allows us to focus on two-dimensional
pixel matrices, rather than having to track a third dimension for RGB pixel
intensities.

B. Moving Average Lines and Volume Bars

As in the Yahoo! Finance chart of Figure 1, we consider supplementing the
main OHLC image with two additional pieces of information. The first is a
moving average price line. In traditional technical analysis, moving averages
are viewed as useful for inferring potential deviations from fair value by pro-
viding a long-horizon reference point for prevailing point-in-time prices. The
comparison of price to its moving average may be useful as a value signal that
avoids the need for balance sheet data, as recommended by Fama and French
(1988) and Kelly and Pruitt (2013). We use a moving average line with a win-
dow length equal to the number of days in the image (e.g., 20-day images will
have a moving average line of 20 days). The daily moving average is reported
using one pixel in the middle column for each day, and a line is drawn by con-
necting those dots.

The second addition is a set of daily trading volume bars. When including
volume data, we design images so that volume is shown in the bottom one-fifth
of the image while the top four-fifths contain the main OHLC plot. Similar
to our OHLC scaling, the maximum volume in a given image is set equal to
the upper limit of the volume bar section and the remaining volume bars are
scaled accordingly.

Figure 2 shows an example from our final image data set. This image con-
cisely embeds a variety of information on price trends, volatility, intraday and
overnight return patterns, and trading volume. The image design strikes a
balance between information content and storage efficiency, delivering a rich
information set as an input to the CNN while controlling the computational
burden of estimation.

5 The ability to obtain price trend–based forecasts in the presence of incomplete data is an
example of image-based CNN robustness to noisy data. When a high or low price is missing, we
leave the bar entirely black because it is impossible to draw the middle bar. If both high and low
prices are available but opening and closing prices are not, we draw a vertical bar only.
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Figure 2. Generated OHLC images with volume bar and moving average line. This
figure displays market data image for 60 days of data.

II. The CNN Model

In this section, we briefly describe the architecture of our CNN model spec-
ification and training approach.6 We also discuss the rationale and beneficial
aspects of representing time-series market data as an image for use in a CNN,
rather than using a traditional time-series prediction model.

A. A Brief Description of the CNN Architecture

Each image in our data set is represented as a matrix of pixel values (0 or
255 for black or white pixels). In principal, this matrix can be vectorized and
treated as the input to a standard feed-forward neural network. There are a
number of problems with this approach. First, generic unconstrained neural
networks tend to be massively parameterized, and this problem is exacerbated
by the large number of pixels in a typical image. The amount of data required
to support such a flexible parameterization is unrealistic in many research
problems, particularly in our application. Second, such a model would be in-
herently sensitive to position, scale, and orientation of an object in the image.
Moving the object from one corner of the image to another, or from foreground
to the distance, would confuse such a model and severely limit its usefulness
in forecasting.

Instead, CNN is the workhorse model for constructing predictions based on
raw image data. Its popularity stems from its success in resolving the two prob-
lems above. The CNN imposes cross-parameter restrictions that dramatically
reduce parameterization relative to standard feed-forward neural networks,
making them more tractable to train and more effective in prediction with

6 Chapter 9 in Goodfellow, Bengio, and Courville (2016) provides a textbook introduction
to CNN.
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comparatively small data sets, and it embeds a number of tools that make
the model resilient to deformation and repositioning of important objects in
the image.

The CNN modeling scheme stacks together a sequence of operations to trans-
form a raw image into a set of predictive features and, ultimately, a prediction.
Such schemes are inherently modular, using a single core building block that
can be assembled in various configurations depending on the application at
hand. A core building block consists of three operations: convolution, activa-
tion, and pooling. Convolution works similarly to kernel smoothing. It scans
horizontally and vertically through the image and, for each element in the
image matrix, produces a summary of image contents in the immediately sur-
rounding area. Activation is a nonlinear transformation (specifically, “leaky
ReLU”) applied element-wise to the output of a convolution filter. The last op-
eration in a building block is “max-pooling,” which again scans over the input
matrix and returns the maximum value over surrounding areas in the image
to reduce the dimension of the data and reduce noise. The final CNN layer is
fully connected and activated by a softmax function. The CNN targets a binary
outcome equal to one for a positive return over the specified forward horizon
and zero otherwise. As a result, the fitted value from the CNN is an estimate
for the probability of a positive outcome.

We consider three main CNN specifications with varying degrees of complex-
ity. The architecture of each model is shown in Figure 3. The Appendix provides
further details about this CNN structure along with the intuition behind each
of its components.

B. Image Representation versus Time-Series Representation

To understand our empirical design, it is useful to understand the CNN
terms “1D” and “2D.” These describe the way that a CNN’s convolutional filters
move through the data. A black and white image is represented as a matrix
with the value of each element corresponding to the shade of gray at the corre-
sponding position of the image. Because its rectangular filters move both hori-
zontally and vertically through the image matrix, a standard image-processing
CNN is said to be “2D.” Another common machine learning model is a CNN
applied to time-series data. In this case, the data are again represented as a
matrix with rows corresponding to time and columns to variables. Convolu-
tional filters in this setting have the same width as the data matrix, and the
filter moves only through the time dimension. Such a CNN is therefore said to
be “1D.”

Our research design recommends embedding time-series data as an image
before bringing it to predictive analysis. Why is it beneficial to work with im-
ages rather than directly modeling the time-series? Representing the data
as an image makes it possible for a convolutional filter to capture nonlinear
spatial associations among various price curves. Figure 4 illustrates how this
works. It shows a price plot over four periods. In the first two periods, the price
is flat; in the third period, it rises by one unit; and in the fourth period, the
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(Re-)Imag(in)ing Price Trends 3203

Figure 3. Diagram of CNN models. This figure displays diagrams of a five-day (left), 20-day
(middle), and 60-day (right) CNN model. The 5/20/60-day CNN models are built with 2/3/4 CNN
building blocks as described in Figure A2. The notation H × W shows the output size of the CNN
building block, where H is the height and W the width. The number following “conv” or “Max-
Pool” is the depth (number of channels, for example, 64, 128, 256, and 512). The output of the
last CNN block is flattened to a vector and fed to a fully connected (FC) layer, where the reported
input size (after FC) is calculated as the product H × W × D from the last CNN building block.
The final Softmax layer yields the probabilities of “up” and “down.” (Color figure can be viewed at
wileyonlinelibrary.com)

price jumps by two units. A 1D kernel filter can only extract the linear dif-
ference between prices on two consecutive days without the further help of a
nonlinear activation function. If a price increase of two units is more than twice
as predictive as a price increase of one unit, the 1D kernel is unable to account
for it. A 2D CNN applied to the price plot image, however, can, with 3 × 2 fil-
ters that treat “no change,” “small increase,” and “large increase” as separate
features, enter into an ultimate prediction with distinct weights. That is, when
these filters are applied to images, they act as indicator functions that detect
and bin price movements of different sizes.

Likewise, the image automatically combines information on directional price
movements, movements relative to moving average trend, price volatility,
and trading volume in a single representation. To jointly consider price di-
rection and volatility, for example, a traditional time-series model would re-
quire restrictive choices to manually engineer features. Moreover, incorporat-
ing volatility information would inevitably require nonlinear transformations
of price series along the lines of stochastic volatility or GARCH models. Fortu-
nately, 2D CNN eliminates any need to manually engineer such features and
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Figure 4. Convolutional filters that detect the next day’s price change. The “1D” figure on
the left displays a snippet of time-series prices. The “2D” figure on the left translates this time-
series into a black and white image where “255” represents a white pixel (corresponding to a price
entry) and “0” represents empty space in the image. The image is a discretized representation
of the prices. For illustration, each unit on the y-axis of the image is 0.1. Because the difference
between 1.04 and 1.0 is smaller than 0.05, the discretized prices on the image are flat over the
first two periods. The figure on the right displays three 3 × 2 convolutional filters that detect no
change, a small increase, and a large increase in price, respectively. (Color figure can be viewed at
wileyonlinelibrary.com)

instead extracts predictive patterns from the market data series within the
CNN itself.

In short, ingesting data in the form of an image allows the model to isolate
data relationships that may be difficult to detect with time-series methods.
Just as humans find it easier to detect patterns graphically rather than with
lists of numbers, a statistical pattern recognition algorithm may also benefit
from visualizing an entire data matrix in a single image.7

C. Training the CNN

Our workflow from training, to model tuning, and finally to prediction fol-
lows the basic procedure outlined by Gu, Kelly, and Xiu (2020). First, we divide
the entire sample into training, validation, and testing samples. In our main
U.S. data sample, we estimate and validate the model using a single eight-
year sample (1993 to 2000) at the start of our sample. In this eight-year sam-
ple, we randomly select 70% images for training and 30% for validation. Ran-
domly selecting the training and validation sample helps balance positive and

7 While we advocate the use of CNN models over time-series models, we cannot rule out the
possibility that a well-crafted time-series model, say, Long Short-term Memory networks (LSTM),
may outperform the CNN. Also, our objective here is not to find the best return prediction model,
an unrealistic task in any case. Rather, our empirical analysis provides, at best, a lower bound on
the extent of predictability that machine learning models can achieve.
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negative labels in our classification problem, which attenuates a potential bias
in classification due to extended periods of bullish or bearish market swings.
The resulting training and validation images have approximately 50% “up”
and 50% “down” labels in all scenarios we consider. The remaining 19 years
(2001 to 2019) of data comprise the out-of-sample test data set.

We treat the prediction analysis as a classification problem. In particular, the
label for an image is defined as y = 1 if the subsequent return is positive and
y = 0 otherwise. The training step minimizes the standard objective function
for classification problems, a cross-entropy loss function. It is defined as

L(y, ŷ) = −y log(ŷ) − (1 − y) log(1 − ŷ), (1)

where ŷ is the softmax output from the final step in the CNN. If the predicted
probability exactly corresponds with the label, ŷ = y, then the loss function is
zero, otherwise the loss is positive.

We adopt the same regularization procedures in Gu, Kelly, and Xiu (2020)
to combat overfit and aid efficient computation. We apply the Xavier initial-
izer for weights in each layer (Glorot and Bengio (2010)). This promotes faster
convergence by generating starting values for weights to ensure that predic-
tion variance begins on a comparable scale to that of the labels. Loss func-
tion optimization uses stochastic gradient descent and the Adam algorithm
(Kingma and Ba (2014)) with initial learning rate of 1 × 10−5 and batch size
of 128. We use a batch normalization (Ioffe and Szegedy (2015)) layer between
the convolution and nonlinear activation within each building block to reduce
covariate shift.8 We apply 50% dropout (Srivastava et al. (2014)) to the fully
connected layer (the relatively low parameterization in convolutional blocks
avoids the need for dropout there). Finally, we use early stopping to halt train-
ing once the validation sample loss function fails to improve for two consecutive
epochs. Gu, Kelly, and Xiu (2020) outline the intuition behind these choices, so
for the sake of brevity, we omit this discussion and refer interested readers
there.

In Section IV of the Internet Appendix, we report results of simulation ex-
periments that investigate the finite-sample performance of the CNN classifier.
Since our images look rather different from standard CNN research data sets
like ImageNet, the simulation evidence provides insights into the effectiveness
of a CNN in this new environment. The general conclusion from the simula-
tions is that the CNN successfully detects complicated technical patterns in
realistically low signal-to-noise data sets.

8 We also normalize all images using the mean and standard deviation of all pixel values from
images in the training data, which are then used to normalize the validation and testing images.
We adopt it as a standard operation in the CNN literature, although skipping this step has negli-
gible impact on our results.
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III. CNN Prediction for U.S. Stock Returns

A. Data

We use daily stock data from CRSP for all firms listed on NYSE, AMEX,
and NASDAQ. Our sample runs from 1993 to 2019 based on the fact that daily
opening, high, and low prices first become available in June 1992.

Our price trend analysis focuses on returns adjusted for corporate actions
by using returns to construct a price series. In each image, we normalize the
first day closing price to one, and construct each subsequent daily close from
returns (RETt) according to

pt+1 = (1 + RETt+1)pt .

Each day’s opening, high, and low price levels are scaled in proportion to that
day’s closing price level.

We consider three input choices that include images of market data over the
past 5, 20, or 60 days. Image labels take a value of one or zero for positive or
nonpositive returns over the 5, 20, or 60 days subsequent to the image. Thus,
our main analysis amounts to nine separately estimated models. Because the
CNN optimization is stochastic, for each model configuration we independently
retrain the CNN five times and average the forecasts (following Gu, Kelly, and
Xiu (2020)).

Two important considerations when reading our empirical results are that
we do not recursively retrain the model and we randomly select training and
validation samples. Specifically, we train and validate each model only once
using data from 1993 to 2000, in which 70% of the sample is randomly selected
for training and the remaining 30% for validation. The trained CNN model
is then held fixed for the entire 2001 to 2019 test sample. This design is due
primarily to capacity in computational resources. Adopting a rolling window
and repeatedly retraining is likely to further improve the predictions.

Every period in which we construct new forecasts (weekly, monthly, or quar-
terly, depending on the model’s forecast horizon), we sort stocks into decile
portfolios based on out-of-sample CNN estimates for the probability of a posi-
tive subsequent return. We also construct a long-short spread portfolio (“H-L”)
that is long decile 10 and short decile 1. The holding-period for each portfolio
coincides with the forecast horizon for each model (5, 20, or 60 days following
the last date in an image). Throughout we use the notation “Ix/Ry” to indi-
cate that the model uses x-day images to predict subsequent y-day holding-
period returns.

B. Short-Horizon Portfolio Performance

Image-based return predictions, which constitute a technical price trend sig-
nal, are likely to be most potent over relatively short horizons. We therefore
begin our discussion focusing on one weekly return prediction.

Table I reports the predictive strength of the CNN model when it targets
five-day-ahead returns. We couch this predictive strength in economic terms
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by reporting performance of portfolios sorted on CNN forecasts. The table
focuses on annualized average returns and Sharpe ratios for five-day holding-
period returns. The top panel reports equal-weight decile portfolios. Decile 1,
which corresponds to stocks having the lowest probability of a positive future
return, realizes large negative Sharpe ratios in excess of −1.0 for all image
sizes. Sharpe ratios increase monotonically across predicted “up” probability
deciles. A long-only strategy based on stocks in decile 10 alone earns a Sharpe
ratio in excess of 1.8 across CNN models. Long-short H-L strategies earn an-
nualized Sharpe ratios of 7.2, 6.8, and 4.9 for CNN models based on 5-, 20-, and
60-day images, respectively. To benchmark these results, we also report perfor-
mance of one-week holding-period strategies based on MOM, STR, WSTR, and
TREND, whose decile spreads earn annualized Sharpe ratios of 0.1, 1.8, 2.8,
and 2.9, respectively.9 In value-weight portfolios (bottom panel), CNN strate-
gies earn Sharpe ratios ranging from 1.4 to 1.7, double the 0.8 Sharpe ratio
for the value-weight WSTR strategy (which is the best value-weight performer
of the benchmarks).10 CNN strategies outperform competing models in both
the long and short legs of the H-L portfolio. Figure 5 plots the cumulative
volatility-adjusted returns to the weekly H-L strategies for the CNN model
and competing price trend signals.

Decile portfolio analysis provides detailed insights into CNN forecast accu-
racy. By studying realized returns at different quantiles of model predictions,
we can understand accuracy across the full distribution of CNN forecasts, and
how this compares to traditional trend-based benchmark strategies. For ex-
ample, the left panel in Figure 6 shows the average weekly realized return
at each decile of the CNN forecast distribution (based on five-day images, de-
noted “I5/R5”), averaged first within deciles in each period and then over time
(i.e., average returns of equal-weight decile portfolios). To illustrate the preci-
sion of the forecasts, the right panel shows the time-series standard deviation
of average decile returns. More positive CNN forecasts translate monotonically
into higher returns on average. This is also true for MOM, STR, WSTR, and
TREND, although with a somewhat flatter slope. An interesting difference be-
tween CNN forecasts and other benchmark price trend signals is in their vari-
ability. All CNN decile portfolios have annualized volatility below 20%, while
volatilities of MOM, STR, WSTR, and TREND realizations reach around 30%
in extreme deciles.

Trend strategies, particularly those used for short horizons, tend to have
high turnover. In Table I, we report the fraction of the strategy that turns over
on average scaled in monthly terms. Following Gu, Kelly, and Xiu (2020), we

9 Internet Appendix Table IA.V reports correlations between the long and short legs of CNN
strategies versus those for other technical indicator strategies.

10 Internet Appendix Table IA.II studies the possibility that CNN models trained with one su-
pervising return horizon are helpful for predicting different return horizons out of sample. Indeed,
we see that no single image length, and no single supervision window, is dominant in terms of
portfolio performance across investment horizons. For example, it is often the case that quarterly
trading strategies benefit when the prediction model is supervised with shorter horizon returns.
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Figure 5. Cumulative volatility-adjusted returns of equal-weight portfolios. This
figure displays cumulative volatility-adjusted log returns of equal-weight long-short portfolios of
I5/R5, I20/R5, I60/R5, MOM, STR, WSTR, and TREND. All strategies are rescaled to have the
same volatility as that of SPY over the test sample. (Color figure can be viewed at wileyonlineli-
brary.com)

calculate monthly turnover as

Turnover = 1
M

1
T

T∑
t=1

(∑
i

∣∣∣∣∣wi,t+1 − wi,t (1 + ri,t+1)
1 +∑

j wj,tr j,t+1

∣∣∣∣∣
)

,

where M is the number of months in the holding-period, T is the number of
trading periods, ri,t+1 is the return of stock i at time t + 1, and wi,t is the port-
folio weight of stock i at time t. Dividing by the number of months makes
the turnover measure comparable across different holding-periods that we
investigate, for example, scaling down quarterly strategy turnover by a fac-
tor of one-third or scaling up weekly strategy turnover by a factor of four.
A strategy that completely reconstitutes its holdings with no overlap from
one holding-period to the next will have maximum turnover of 200%/M while
a buy-and-hold strategy that never rebalances achieves minimum turnover
of 0%.

While Table I demonstrates that image-based strategies are highly profitable
in gross terms, it also shows that they require significant trading. Image-based
strategies turn over roughly as frequently as the weekly return reversal strat-
egy. Other strategies, such as monthly reversal and momentum, have mechan-
ically lower turnover because their signals are moving averages of weekly re-
turns. Below we investigate image-based strategies that trade less frequently.
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Figure 6. Prediction accuracy by decile. The left panel plots average realized returns in
each decile of I5/R5 CNN model forecasts and for each decile of the benchmark signals. Return
averages are based on cross-sectional decile averages in each period that are then averaged over
time. The right panel plots the time-series volatility of decile returns. (Color figure can be viewed
at wileyonlinelibrary.com)

C. Portfolio Performance over Longer Horizons

MOM and STR strategies are useful turnover benchmarks from the asset
pricing literature, with MOM typically viewed as a strategy that survives trad-
ing costs while STR does not. To make more direct comparisons with these
strategies, we study the performance of image-based strategies that rebalance
at the monthly frequency.

The top panel of Table II reports portfolio performance for one-month
holding-period equal-weight strategies based on each image size (5, 20, or
60 days). To align the model with the strategy’s rebalance frequency, each CNN
is trained to forecast returns over a 20-day horizon. The H-L Sharpe ratios for
the I5/R20, I20/R20, and I60/R20 CNN models are 2.4, 2.2, and 1.3, respec-
tively. One-month holding-period CNN strategies have essentially the same
turnover as STR (and WSTR), but with more than three times the Sharpe ratio
of STR and nearly double the Sharpe ratio of WSTR. Momentum has substan-
tially lower turnover than the monthly CNN strategy, but its Sharpe ratio is
an order of magnitude smaller.

The bottom panel of Table II reports quarterly strategies with CNN mod-
els trained on 60-day returns. In this case, the image-based strategies have
monthly turnover of about 60%, roughly equal to the turnover of monthly re-
balanced MOM. In this case, the I5/R60 model produces an H-L Sharpe ratio
of 1.3, roughly double the next-best benchmark (quarterly rebalanced WSTR
with a Sharpe ratio of 0.7) and well in excess of quarterly rebalanced MOM
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(Sharpe ratio of 0.1).11 Over longer horizons, the relative outperformance of
CNN strategies is concentrated in the long leg of the H-L portfolio.

The weekly results above illustrate that image predictions are especially
valuable at short horizons. The results for monthly and quarterly trading
strategies demonstrate that the benefits of image-based predictions continue to
be sizable and outperform competitors even when traded at levels of turnover
that are much lower and on par with the turnover of MOM. In other words,
image-based strategies appear to be profitable in net terms since they can
be traded with the same turnover as momentum while earning higher gross
Sharpe ratios.

We next investigate whether this longer horizon performance is due solely
to predictability of the first week of returns, or whether images can help pre-
dict returns beyond the first week. Table III decomposes the performance of
the monthly rebalanced CNN strategy (and its competitors) into the return
from days 1 to 5 after rebalancing (top panel) and the return from days 6 to
20 (bottom panel), focusing on CNN models supervised with 20-day returns
(Ix/R20). While the bulk of the image-based strategy performance does indeed
come from the first week, a significant portion also obtains after the first week
of trading. The annualized Sharpe ratios over days 6 to 20 are 0.4, 1.2, and 0.8
for 5-, 20-, and 60-day image models, respectively. CNN strategy mean returns
over days 6 to 20 are all significant at the 10% level or better.

D. The Effect of Stock Size and Trading Costs

Table I shows that Sharpe ratios of image-based strategies more than dou-
ble when using equal-weight deciles versus value-weights. However, as Jensen,
Kelly, and Pedersen (2022) point out, pure value-weighting does not necessar-
ily give a more economically representative description of empirical return pat-
terns. Nor are strict value-weights necessary for constructing portfolios with
manageable trading costs (even Fama and French (1993) value-weight factors
give half of all weight to small stocks).

In Table IV, we analyze the effect of stock size by restricting the strategy
to only the largest 500 stocks by market capitalization each month. Even with
this severe sample restriction to the most liquid stocks, we continue to find sig-
nificantly positive Sharpe ratios in excess of 1.0 in both equal and value-weight
strategies. Furthermore, in Internet Appendix Table IA.IV, we show that the
trading profits in Table I survive standard trading cost adjustments (10 basis
points for stocks exceeding the 80th size percentile of the NYSE, and 20 basis
points otherwise: see Frazzini, Israel, and Moskowitz (2018), Ke, Kelly, and
Xiu (2021)). We find net-of-cost Sharpe ratios as high as 4.0, 1.5, and 0.9 for
weekly, monthly, and quarterly equal-weight strategies, respectively.

11 Internet Appendix Table IA.III reports monthly and quarterly results for value-weight
decile portfolios.
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E. Robustness

Section I of the Internet Appendix reports a number of robustness analy-
ses that support the main empirical findings presented above. We show that
image-based strategy returns are not explained by exposure to the market or
to well-known price trend strategies. We therefore perform sensitivity analy-
sis of the CNN prediction model to alternative choices in image representa-
tion (e.g., excluding volume data or moving average price line or using mini-
mal white pixels to represent the data), model architecture (e.g., varying the
number of filters in each layer or varying the number of layers), and estima-
tion (e.g., using different dropout or batch normalization schemes). Finally, we
compare CNN models to alternative computer vision models including “HOG”
and “HAAR” (descriptions of these models are also included in the Internet
Appendix).

IV. What Does the CNN Learn?

Interpreting a CNN is difficult due to its recursive nonlinear structure. We
attempt to interpret the predictive patterns identified by the CNN using two
approaches. First, we relate CNN fits to a collection of conceptually related
(price, risk, and liquidity) signals widely studied in the literature. Second,
we investigate regression-based logistic approximations to the CNN using the
data underlying the CNN’s image input. Our attempts at interpretation are ad-
mittedly incomplete (as in the CNN literature more broadly). Notwithstanding,
they achieve partial success by offering some insight into the complex inner
workings of the CNN model.

A. Association with Other Predictors

How unique are image-based forecasts compared to standard characteris-
tics in the literature? We focus our comparison on measures of recent price
trends (MOM, STR, WSTR, and distance from 52-week high), risk (beta and
volatility), and liquidity (bid-ask spread, dollar volume, number of no-trade
days, price delay, size, and Amihud illiquidity).12 Table V reports univariate
correlations between each of these characteristics and each image-based fore-
cast. We estimate period-by-period cross-sectional correlations among cross-
sectional ranks of each variable, then report the time-series average correla-
tion during the test sample. Among the largest associations is WSTR, which
has a correlation of −26% to −34% for models supervised by future five-day
returns, consistent with the CNN picking up on a weekly STR pattern. The
WSTR correlation drops close to zero when CNN models are supervised by
60-day returns. Similarly, MOM has its highest correlation (21%) with long-
horizon forecasts from large images (I60/R60), but essentially zero correlation
with short-horizon forecasts from small images (I5/R5). Image-based predic-
tions from the CNN also resemble nonprice firm characteristics. Other strong

12 For variable definitions and references, see table A.6 of Gu, Kelly, and Xiu (2020).
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Table VI
CNN Predictions and Standard Stock Characteristics

This table reports slope coefficients and R2s from panel logistic regressions of CNN model fore-
casts on stock characteristics. Panel regressions are estimated during the test sample using CNN
models estimated in the training sample. ***,**, and * indicate significant at the 1%, 5%, and 10%
significance level, respectively, using Newey-West standard errors.

5D5P 20D5P 60D5P

MOM −0.10*** 0.01** 0.40***
STR −0.09*** 0.27*** 0.24***
Lag Weekly Return −0.85*** −1.00*** −0.89***
TREND 0.51*** 0.46*** 0.23***
Beta 0.11*** 0.15*** 0.22***
Volatility −0.09*** −0.20*** −0.24***
52WH −0.05*** −0.03*** −0.09***
Bid-Ask 0.10*** −0.11*** −0.08***
Dollar Volume 0.20*** 0.16*** −1.22***
Zero Trade −0.09*** 0.00 0.32***
Price Delay −0.01*** −0.01** 0.00
Size 0.21*** 0.40*** 0.44***
Illiquidity 0.08*** 0.19*** −1.43***
McFadden R2 8.20 8.56 9.78

correlates are size, volatility, bid-ask spread, illiquidity, and dollar volume, all
of which reach correlations near 30% and associate most strongly with fore-
casts from 60-day images.

These correlations are an impressive feat for the CNN. It shows that the
CNN model has the ability to discern meaningful predictive information from
data that are represented abstractly in the form of an image. MOM, STR, and
other common price trend variations are predictive features that have been
manually curated by human researchers over a decades-long research process.
But the CNN is oblivious to human-engineered features; instead, feature engi-
neering is fully automated and integrated into the CNN model itself. Without
requiring hand-crafted trend signals, the CNN still manages to identify trend-
like features and liquidity features in the raw images.

Table VI shows the joint explanatory power for image-based predictions from
all characteristics simultaneously (this table focuses on our main specification
using five-day CNN predictions). We estimate a panel logistic regression using
cross-sectional ranks of all regressors. In multiple regression, the most impor-
tant explanatory variables across image size are TREND and WSTR (for 60-
day images, illiquidity and volume become especially important). The McFad-
den logistic R2 ranges from 8.2% to 9.8%. So, while the CNN is able to detect
signals within images that are significantly correlated with other well-known
predictors, the variation in image-based predictions is by and large unique.

Next, Table VII reports logistic regressions of future stock returns on image-
based forecasts while simultaneously controlling for the other characteristics.
To remain comparable with the CNN model, the dependent variable is an
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indicator for a positive five-day realized return. We estimate the regressions
using only the test sample data (so that CNN parameters are estimated from
an entirely distinct sample). For each CNN specification, we estimate three re-
gressions using test sample data—one using only the CNN forecast, one using
stock characteristics and excluding the CNN forecast, and one joint regression
using all predictors. The coefficients corresponding to the second regression are
identical across three CNN specifications since the regressors (characteristics)
and the dependent variable (R5) are the same. Coefficients on CNN image-
based predictions are fairly close in univariate and multivariate regressions.

To evaluate overall model performance, we report out-of-sample MacFad-
den R2s. We see that, across CNN models, the image-based prediction is by
far the strongest return forecaster. The out-of-sample McFadden R2 due to
image-based predictions alone ranges from 0.13% to 0.20% depending on the
model specification. The R2 from all non–image-based characteristics together
is 0.09%. In addition, a large fraction of the predictive R2 in the multivari-
ate model is accounted for by the univariate CNN prediction, indicating that
unique aspects of the CNN signal and not the previously studied characteris-
tics drive the CNN’s predictive power.

B. Logistic Approximation

What do the CNN models detect in images to produce accurate forecasts
that are distinct from traditional stock-level predictors? In this section, we use
logistic regressions to approximate the CNN based on the raw market data
that underlie our images. Our CNN is structured as a binary classifier, so its
forecast output is a probability. We therefore use logistic regression for our
approximating models rather than the simple linear model. The argument to
the logistic function is a linear model, so logistic regression estimates can be
viewed as a linear approximation to the CNN.

To estimate the approximating models, we must first decide on a represen-
tation of the price history data that is amenable for regression. The beauty of
the CNN model, and the reason for its widespread usage in machine learning
applications, is that it has the ability to extract predictive features with min-
imal data engineering on the part of the researcher. This contrasts with the
standard approach from the momentum and reversal literature, which makes
a number of human feature engineering choices—for example, representing
historical data as returns rather than price levels to make series more compa-
rable across assets. Our logistic approximation analysis highlights the typical
reliance on human feature engineering, because now we must also decide how
to transform not only close prices, but also intraday high and low prices, open
prices, price moving averages, and volumes to make them comparable in the
cross section.

To make logistic regressions comparable to the image CNN model, we
scale all price series such that the maximum of all prices appearing in the
image (usually the maximum high price, but sometimes the maximum moving
average price) is normalized to one and the minimum is normalized to zero.
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Daily volumes are likewise scaled by the maximum volume appearing in
the image.

Our regressions focus on five-day images. Five-day images contain relatively
few data points (five observations each for open, high, low, and close price, vol-
ume, and moving average price), which makes them a convenient context for
attempting to isolate image attributes that contribute to CNN success. In par-
ticular, there are few enough observations in a five-day image that we can add
each as a separate regressor in a logistic model without risk of severe overfit.

Columns (1) through (3) of Table VIII pursue a logistic approximation to
the CNN forecast itself, as in Table VI. The dependent variable is the out-of-
sample forecast generated by the CNN model for five-day images (one if the
CNN predicted probability is greater than 0.5, and zero otherwise), and the
independent variables are data underlying five-day images rescaled to mimic
the image representation. Across all return horizons (5, 20, and 60 days), the
most important explanatory variables for the CNN forecast are the first lags of
closing, high, and low prices, with the next-most important variables being the
first lag of moving average price and trading volume. These variables gener-
ally have a consistent sign and magnitude for all return horizons. Compared to
the first lag, lags 2 through 5 have a small role in the CNN forecast, although
some of these are statistically significant. The regression-based approximation
to the true nonlinear CNN construction explains 22% to 35% of the variation
in image-based predictions. But CNN predictions are built only from the raw
market data. Therefore, more than half of the variation in image-based predic-
tions is attributable to nonlinear functions of the underlying market data.

Next, we use the logistic specification to directly forecast returns with the ap-
proach used in Table VII. Regressions are grouped by supervising the return
window (5, 20, or 60 days). As a frame of reference, columns (4), (7), and (10)
report return predictive regressions using only the out-of-sample CNN fore-
cast. Next, columns (5), (8), and (11) show another approach to approximating
the CNN by directly predicting returns using image-scaled market series. We
find that the largest regression coefficients tend to be on the first lag of the
high, low, and close prices. Taken together, their coefficients suggest a signal
that is roughly equal to 1

2 (High + Low) −Close for the previous day. In other
words, future returns tend to be high when the price closes at the low end of
the recent high-low range. The regression also isolates features that look like
deviations of the lagged prices from their recent averages. Recent rises in vol-
ume also notably predict positive future returns. These patterns are consistent
with the coefficient estimates from columns (1) through (3), indicating that the
CNN extracts similar patterns as those isolated by the logistic model. Again,
however, the approximating pattern explains less than half of the content in
CNN predictions.

Columns (6), (9), and (12) compare the CNN’s nonlinear predictions with
those of a simple logistic model by regressing the sign of realized returns on
CNN predictions while controlling for the image-scaled market data. First, we
see that controlling for the underlying market data does not increase the pre-
dictive coefficient on the CNN-based forecast. The out-of-sample R2 using only
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the CNN as a predictor ranges from 0.7% to 1.3% compared to the benchmark
based on stock-level in-sample averages. The logistic approximation delivers
a lower R2 at the weekly horizon, yet a similar R2 at monthly and quarterly
horizons. The combined R2 in the third column of each group of regressions is
worse than that of the CNN-only regression. These results indicate that the
nonlinear component of the CNN forecast incorporates useful additional infor-
mation most evident at a shorter horizon from the underlying images relative
to the logistic model.

Table IX compares the performance of long-short decile spread portfolios
formed on CNN forecasts versus the linear approximation via logistic regres-
sion. These results are reported in the rows labeled “Logistic (image scale).”
We find that the linear approximation to the CNN delivers a successful trading
strategy, but is generally inferior to the full nonlinear CNN model (and gener-
ally superior to the benchmark models reported earlier). The logistic model is
most competitive at longer horizons, where the 60-day holding-period strate-
gies in some cases outperform the full CNN.

The strength of trading strategies based on the logistic model begs the fol-
lowing question: Is the image representation necessary at all, or would a lo-
gistic model with a traditional time-series representation of past data work
just as well? To demonstrate the key role of representing market data as an
image, we also study logistic prediction models based on more “standard” time-
series representations. Of course some scaling choice must be made for market
data to be comparable across stocks in a logistic model. One natural candidate
is to scale all prices by the first closing price in the historical data window
(i.e., the closing price 5, 20, or 60 days ago) and likewise for volume. We refer
to this scaling as “cumulative return scale” because it represents prices sim-
ilarly to those in a cumulative return plot. The trading strategy based on a
logistic model with this data representation is shown in the rows labeled “Lo-
gistic (cum. ret. scale).” While this model also produces positive trading perfor-
mance across the board, it is substantially weaker than the logistic model with
image-scaled market data. For example, with 20 days of historical data, the
equal-weight 20-day holding-period strategy drops from an annualized Sharpe
ratio of 2.0 in the “Logistic (image scale)” case to 0.4 for “Logistic (cum. ret.
scale).” For value-weight strategies, “Logistic (cum. ret. scale)” is again worse
than “Logistic (image scale)” in all cases.

Cumulative return scaling continues to look at prices in levels. Next, we
study a representation in terms of price and volume changes. In particular,
we use daily returns normalized by their exponentially weighted moving av-
erage volatility (with smoothing parameter 0.05). We refer to this scaling as
“devolatized return scale.” Given the standard asset pricing approach of build-
ing price trend signals from past returns, this is a natural data representation
for a logistic model. Indeed, consistent with standard price trend signals, logis-
tic models of past returns perform reasonable well. They are even competitive
with the CNN for 60-day price history specifications. However, the overall best-
performing CNN models (those based on five-day price histories) dominate the
best-performing logistic model with devolatized return scale by a large margin.
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Figure 7. Prediction accuracy of CNN and logistic models by decile. The left panel plots
average realized returns in each decile of I5/R5 CNN model forecasts, as well as for each decile of
forecasts from 1D CNN models and logistic models. Return averages are based on cross-sectional
decile averages each period that are then averaged over time. The right panel plots the time-series
volatility of decile returns. (Color figure can be viewed at wileyonlinelibrary.com)

As a last point of emphasis for the importance of the image representa-
tion, we analyze 1D CNN models. These are time-series CNN models in the
sense that they use a continuous numerical representation of market data
time-series, and perform convolution only by sliding convolutional filters along
the time-series dimension of the data matrix. “CNN1D (image scale)” reports
a trading strategy when the 1D CNN is applied to market data time-series
with image scaling, while “CNN1D (cum. ret. scale)” and “CNN1D (devol. ret.
scale)” compared to alternative data formulations. Two interesting observa-
tions emerge. The first is that with image scaling, the 1D CNN performs
roughly as well as, and in some cases better than, the baseline 2D CNN model.
However, this is not because the 1D CNN is generally superior to the 2D CNN
for return prediction. We see that “CNN1D (cum. ret. scale)” and “CNN1D (de-
vol. ret. scale)” broadly underperform the baseline 2D CNN, as well as the
“CNN1D (image scale)” model. In other words, the key performance differen-
tiator, be it for a 2D CNN, a 1D CNN, or a logistic model, is using an image
representation. Once the data are represented as an image, either literally (as
in our baseline case) or figuratively (using image scaling of time-series data),
a deep learning model can use historical market data to produce powerful re-
turn forecasts.

Figure 7 repeats the analysis of Figure 6 but compares 2D CNN decile port-
folios to those from 1D CNN and logistic models in order to better understand
why the CNN avoids high volatility in deciles 1 and 10. One candidate expla-
nation for the volatility shape in Figure 6 might be that the forecast output
from a CNN is a probability, while other signals (like MOM and STR) may me-
chanically have higher volatility in extreme deciles. Figure 7 shows that this
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is unlikely to be the explanation because all of the logistic models also output
a probability, but at the same time, they tend to produce U shapes in volatility.
Instead, it appears that the CNN decile volatility pattern is due primarily to
image scaling of the raw data.

C. Traditional Technical Analysis

Brock, Lakonishok, and LeBaron (1992) find that 26 predefined (and com-
monly used) technical trading rules generate significantly positive investment
performance. Lo, Mamaysky, and Wang (2000) introduce a kernel regression
approach to identify technical indicators and find further support for the posi-
tive performance of investment strategies that rely on technical analysis.

Sullivan, Timmermann, and White (1999) assess a universe of 7,846 prede-
fined technical trading rules while carefully controlling for multiple testing to
control the likelihood of false positives. While they find that none of the Brock,
Lakonishok, and LeBaron (1992) strategies delivers significant positive perfor-
mance in the postpublication sample, they find evidence of significant positive
performance in their larger universe of trading rules. More recently, Bajgrow-
icz and Scaillet (2012) revisit the same universe of 7,846 rules and conclude
that none is significant after controlling the false discovery rate.

The Sullivan, Timmermann, and White (1999) universe of 7,846 technical
rules offers an excellent opportunity to calibrate the significance of our results.
These rules constitute a null distribution for benchmarking other technical
analysis strategies. To use these benchmarks, we apply each of the 7,846 trad-
ing rules stock-by-stock to produce a stock-level signal13 and then construct
decile spread long-short strategies in the same way we build our long-short
CNN strategy. We use technical signals at the end of each week, month, or
quarter to rebalance, depending on the portfolio holding-period, and consider
equal-weighting and value-weighting. This gives us a performance distribution
for 7,846 different strategies against which we compare the CNN strategy.

Figure 8 reports histograms of annualized Sharpe ratios for the 7,846 tech-
nical signals and the corresponding CNN strategy Sharpe ratio (red bars). At
the weekly horizon, zero of the 7,846 technical signals outperform the CNN
strategy (regardless of weighting scheme), with the closest technical indicator
outperformed by a large margin. At the monthly horizon, again none of the
technical rules exceeds CNN performance in equal-weighted terms, and only
4.4% exceed CNN when value-weighted. At the quarterly horizon, the outper-
formance of CNN diminishes somewhat, with 13.4% and 12.9% of technical
rules outperforming CNN with equal- and value-weighting, respectively.

There are two considerations to bear in mind when interpreting the results
of Figure 8. First, the CNN exceedence rates are not the same as p-values be-
cause the technical strategy distribution is not truly a null distribution. There
may in fact be some true positives in the technical strategy universe, so in
this sense the exceedance rate is more conservative than a p-value. Second,

13 We are grateful to Olivier Scaillet for sharing his code.
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Figure 8. Comparison with traditional technical indicators. The figure shows histograms
of Sharpe ratios for 7,846 technical analysis portfolios that rebalance by week, month, and quar-
ter, respectively. The top panels show equal-weight portfolios and the bottom panels show value-
weight portfolios. Red vertical bars are the Sharpe ratios for the I20/R5, I20/R20, and I20/R60
CNN strategies, respectively. (Color figure can be viewed at wileyonlinelibrary.com)

the technical indicator literature focuses only on very short holding-periods,
typically a single day. The fact that a nontrivial proportion of the Sullivan,
Timmermann, and White (1999) technical signals achieve high Sharpe ratios
at the weekly, monthly, and even quarterly frequency is a new and potentially
interesting finding that warrants further investigation (though is beyond the
scope of this paper).

A handful of common technical patterns have evolved into a frequently mar-
keted folk wisdom14 that associates each price pattern (such as “head and
shoulders” or “double bottom”) with a sign for future returns. We use our esti-
mated CNN model to evaluate the reliability of such popular chartist patterns.
The logic of our analysis is as follows. Our model learns general price patterns
that predict future returns. We can feed an image of a candidate price pattern
into the estimated model to query whether the CNN expects it to be followed
by a positive or a negative return.

We study 23 price patterns commonly referenced in technical analysis text-
books. We simulate each pattern in 20- and 60-day images as described in
Section III of the Internet Appendix. We feed these into the CNN model esti-
mated from real data and evaluate the model-based probability of a positive
subsequent return. We repeat this for 10,000 simulated images and report the
average probability in Table IA.XIX. For 20-day images, we find that about half
of popular patterns (13 of 23) have a significant association with directional re-
turn forecasts from the CNN. However, among these 13 patterns, eight go in
the opposite direction of the folk wisdom prediction.

14 A brief internet search yields hundreds of books on technical analysis patterns, many of them
independently published. For instance, a classical reference on technical trading is Murphy (1999).
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Of course, our CNN model is not ground truth. But it has a few attributes
that make it a useful proving ground for folk wisdom recommendations. First,
the model is empirically successful as documented in Section III. Second, we
have a reassuring placebo result in Table IA.XIX: When we feed the CNN im-
ages simulated from totally random Brownian motions, the average probabil-
ity of positive subsequent return is statistically indistinguishable from 50%.
Third, associations between certain price patterns and CNN predictions ap-
pear significantly nonrandom. All told, this evidence tilts us toward the con-
clusion that some price patterns are likely to be predictive, but those typical
directional patterns from technical analysis books do not seem profitable in
our context.

V. Transfer Learning

Our analysis thus far has focused on daily data for the U.S. stock market.
Training the CNN in this setting confers two advantages from data size. First,
because the U.S. stock market is the largest in the world, the CNN benefits
from a wide cross section of observations. Second, our use of daily data ex-
tends the time-series dimension of our data set by a factor of five compared to
using weekly data and a factor of 20 compared to using monthly data. How-
ever, we may be interested in applying CNN forecasts in contexts for which
retraining the CNN model is infeasible. For example, to isolate low-frequency
dynamics in returns, one may wish to use images of long past price histories
and forecast several months into the future. This is likely to be prohibitive for
a CNN due to the data requirements necessary to achieve a sufficiently well-
trained model. Likewise, we may be interested in forecasting returns in small
or emerging markets where the cross section may contain only a few hundred
stocks.

In this section, we explore the possibility of transfer learning for constructing
accurate image-based forecasts in contexts with limited data. Transfer learn-
ing uses patterns identified in one context to guide analysis or prediction in
a different context.15 We show that the prediction patterns identified by the
CNN from daily U.S. stock data transfer well to international markets and to
other time scales. In doing so, we show that it is possible to apply CNN models
estimated in daily U.S. data to construct profitable portfolios in other settings
that preclude direct training of the CNN. At the same time, the analysis pro-
vides an additional out-of-sample demonstration of reliable predictive power
of image-based CNN forecasts.

15 See, for example, Pan and Yang (2009) for a survey of the computer science literature on
transfer learning. In asset pricing, existing literature typically retrains the model discovered in
the U.S. market using data from international markets. The direct-transfer approach similar to
what we propose here is rare, with the exception of a concurrent paper by Liu, Zhou, and Zhu
(2020), which applies their genetic programming model trained with U.S. data directly to G7 in-
ternational markets.
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A. International Transfer

International markets have fewer stocks and shorter time-series compared
to the United States. If estimates from U.S. data are applicable in interna-
tional contexts, this would help alleviate the limitations of conducting data-
intensive analysis in small markets. More generally, if predictive patterns in
stock prices are to some degree global phenomena, then forecasts in data-
sparse markets can draw estimation strength from information in data-rich
markets. We explore the viability of international transfer learning by using
CNN models estimated from U.S. data to construct return forecasts in foreign
markets.

We use daily stock market data from Datastream for Hong Kong, the United
Kingdom, Canada, Japan, Australia, Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Ireland, Italy, the Netherlands, New Zealand, Nor-
way, Portugal, Singapore, Spain, Sweden, Switzerland, Russia, India, and
South Korea, and we use daily stock market data from CSMAR for mainland
China.16 The date range for most countries matches the U.S. sample, 1993
to 2019, with the exception of Russia, Greece, Finland, Ireland, and Sweden,
which start in 1999. While some markets such as Japan and Canada have
samples of around 3,000 stocks each month on average, the median country
has roughly 300 stocks.

Our transfer-learning implementation directly applies estimated CNN mod-
els from the U.S. sample to price images in foreign markets, with no retrain-
ing. We then conduct portfolio sorts country-by-country using transfer-based
return forecasts and calculate out-of-sample Sharpe ratios for decile spread
H-L portfolios. We assess the benefits of transfer learning by comparing with
otherwise identical CNN models estimated using local image data for each for-
eign market.

Table X reports I5/R5 portfolio performance for each country in our interna-
tional sample, ordered by the monthly average stock count in each country. The
left side of the table shows results for H-L strategies based on equally weighted
decile portfolios. We report performance for the CNN forecasts trained from
scratch on country-specific data, for forecasts based on direct application of the
CNN model estimated in U.S. data, and for the difference. The last row shows
the simple average of each column.

In 21 out of 26 countries, transfer learning produces a Sharpe ratio gain
over the locally retrained model (for equal-weight portfolios), with the gain
statistically significant in 20 of these 26 countries. In the 20 significant cases,
transfer from the U.S. model produces a Sharpe ratio gain of more than 0.5
(except for 0.34 for Greece). On average, transfer from the U.S. model produces
a Sharpe ratio of 3.6, more than a 50% increase over the average Sharpe ratio
of 2.3 for locally retrained models.

16 For exposition, we refer to each of these markets as “countries,” although Hong Kong is a
special administrative region of China.
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Figure 9. Sharpe ratio gains from international transfer. The panels show annualized out-
of-sample Sharpe ratio gains from I5/R5 transfer learning (both equal-weight and value-weight
strategies) versus the average number of stocks in each country. (Color figure can be viewed at
wileyonlinelibrary.com)

The comparative gains from transfer versus local training are similar in
value-weight strategies, shown in the three right columns of the table. In this
case, the gain in Sharpe ratio from transfer learning is significantly positive for
22 out of 26 countries. On average, transfer from U.S. models nearly doubles
the Sharpe ratio of value-weight strategies relative to locally retrained models,
from 1.0 locally to 1.9 with transfer. The evidence is broadly similar, though
smaller in magnitude, for lower frequency (monthly) strategies as shown in
Internet Appendix Table IA.VI for I20/R20 CNN models. In Tables IA.VII and
IA.VIII, we also decompose the monthly strategy performance into returns on
days 1 to 5 versus days 6 to 20. There we find that international return predic-
tion is insignificant beyond the first five days.

Figure 9 summarizes the benefits of international transfer learning by plot-
ting the Sharpe ratio gains reported in Table X against the number of stocks
in each country. Most international markets are small and thus clustered on
the left side of the plots. In these countries, portfolio Sharpe ratios tend to ben-
efit especially from U.S. transfer relative to locally trained CNN models. But
for larger markets on the right side of the plots, the expected gains (based on
the best-fit line) are small or slightly negative. These results suggest there are
benefits to local retraining when there is sufficient data, likely due to some
degree of heterogeneity in predictive patterns across countries that transfer
learning does not account for. Internet Appendix Figure IA.1 shows that the
same pattern holds for I20/R20 transfer. A direction for further optimization
of image-based prediction models would combine a global image model to cap-
ture shared differences with a country-specific model that accommodates some
degree of heterogeneity. The model weights in this combination could be dic-
tated by the relative informativeness of global and country-specific data in a
Bayesian fashion.
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B. Time-Scale Transfer

The most constraining aspect of empirical asset pricing data is in the time-
series dimension. The finance literature focuses most often on monthly or an-
nual data because many economically important patterns in asset markets
unfold over such frequencies. Yet, we experience only one history of financial
market prices, meaning that we have at most several hundred monthly time-
series observations and several dozen annual observations. Given the scarcity
of low-frequency data, it would be greatly beneficial to know if patterns that
unfold at high frequencies (which we can potentially measure well, thanks to
the availability of large high frequency data sets) are similar to patterns that
unfold at low frequencies.

Transfer learning provides a means of investigating the possibility that price
patterns apply at multiple time scales. While it is difficult to effectively train a
CNN using monthly or annual observations, we can apply our CNNs trained on
daily data to data sampled at lower frequencies. We first consider transferring
the I5/R5 CNN to the problem of using 20-day price histories to forecast future
20-day returns. To do so, we draw the 20-day price history using a five-period
OHLC chart by redefining a “period” to be a four-day interval. Each tick mark
in an image now corresponds to four days of market data collapsed into a single
observation, and a given OHLC bar shows open, high, low, and close over the
four-day interval. By down-sampling market data from once per day to once
every four days, we can apply I5/R5 estimates to a 20-day image.

Panel A of Table XI compares approaches to portfolio construction using
20-day price histories to make 20-day future return forecasts. The columns
labeled “baseline” correspond to CNN-based forecasts using daily data, that is,
it exactly repeats the strategy of the I20/R20 model in Table II. The columns
labeled “Retrain, No Transfer” reestimate a CNN from scratch using 20 days
of data collapsed into five-period images and supervised by future 20-day re-
turns. This provides a benchmark for how predictability is affected by simply
down-sampling the price history and retraining the CNN. The columns labeled
“Transfer” use estimates from the I5/R5 CNN to construct 20-day return fore-
casts from the collapsed 20-day images, thus applying transfer learning at a
1:4 time scale.

Directly transferring the I5/R5 model to collapsed 20-day images with no
reestimation produces a remarkable 2.1 Sharpe ratio in equal-weight portfo-
lios. In this example, the transfer-based strategy performs nearly as well as
the CNN retrained with lower frequency data (whose Sharpe ratio is 2.2). In-
terestingly, the transfer-learning signal is only 42% correlated with the base-
line signal, indicating that it picks up on different predictive patterns. In the
columns labeled “50/50 Baseline+Transfer,” we show that differences in the in-
formation content from baseline and transfer signals can be leveraged to form
an even stronger trading strategy. In particular, an equal-weight combination
of the two individual strategies returns a Sharpe ratio of 2.5. Panel B shows
that when forming value-weight decile portfolios, the transfer-learning signal
is in fact more powerful than the retrained CNN. At 0.7, the H-L transfer
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strategy more than doubles the Sharpe ratios from retraining (0.3) and is
around 50% larger than the baseline Sharpe ratio from daily data (0.5).17

Next, we analyze 60-day market data collapsed into five-period images, that
is, sampling prices once every 12 days and forecasting returns over the next
60 days. We repeat the analysis of comparing the baseline I60/R60 strategy to
either retraining the CNN on collapsed images or directly transferring the es-
timated I5/R5 model to the I60/R60 problem at the 1:12 time scale. The results
are reported in Table XII and show that the comparative success of transfer
learning becomes even stronger at this lower frequency. In Panel A, we find
that transfer achieves an H-L Sharpe ratio of 0.9 (for equally weighted portfo-
lios), compared with the baseline I60/R60 Sharpe ratio of 0.4 and a retraining
Sharpe ratio of 0.4. Value-weight portfolios, reported in Panel B, also demon-
strate success of the transfer approach with a Sharpe ratio of 0.3, versus a
Sharpe ratio of 0.0 for retraining. This evidence of time-scale transfer is in-
consistent with the linear autoregressive model ubiquitous in models of price
dynamics and conditional expected returns. Instead, these patterns are remi-
niscent of the Mandelbrot (2013) hypothesis that prices are fractal processes
that demonstrate self-similarity when studied at different time scales. Honing
in on a model of price dynamics that is consistent with the evidence above rep-
resents an interesting problem for future research (and unfortunately beyond
the scope of this paper).

VI. Conclusion

A fascinating research agenda is to develop models capable of translating
visual data into an optimal portfolio. In this paper, we take a modest step in
this direction by extracting trading signals from price chart images. We ana-
lyze these images with a return prediction CNN and find that our image-based
forecasts in general outperform (and are in large part distinct from) traditional
price trend signals in the asset pricing literature. We show that the predictive
patterns isolated by the CNN are highly robust to variations in model spec-
ification and controlling for a wide range of alternative predictor variables.
One of the most compelling aspects of CNN robustness is its transferability to
international markets and other time scales. Models trained on daily data are
similarly powerful when transferred to data sets sampled at lower frequencies,
and models trained on U.S. data but applied to international stock markets
outperform models trained on data from local markets.

In a sprawling survey of 692 asset managers in five countries, Menkhoff
(2010) finds that 87% of those surveyed rely on some form of technical anal-
ysis in their decision process, and 18% of respondents indicate that techni-
cal analysis comprises a major part of their investment process. As Lo, Ma-
maysky, and Wang (2000) at the start of this paper note, technical analysis is a

17 In Section IV.B of the Internet Appendix, we conduct a simulation strategy that illustrates
how time-scale transfer, from high-frequency estimates to low-frequency forecasts, can produce
more powerful low-frequency forecasts than a model directly trained on low-frequency data.
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primarily visual mode of analysis. In light of this, our CNN model has po-
tentially intriguing implications for economic modeling. If trading decisions
implied by a statistical representation benefit from being more closely aligned
with the formats in which investors intake their market perceptions for even-
tual trading decisions, the CNN becomes more than a pure statistical tool and
moves closer to a model of investor perception. Our ideal research agenda is
to develop a model that can translate visual data into an optimal portfolio in
a way that mimics human perceptions and decision processes. In this paper,
we take a first modest step in this direction by extracting trading signals from
price images using a CNN model.

Market data images, when combined with a CNN, constitute a new and pow-
erful tool for understanding market dynamics and forming efficient portfolios.
Yet, our analysis of images connects existing time-series analysis with ad hoc
chart studies primarily for the purpose of technical trading. In light of this,
our findings highlight image analysis as a future research direction with great
potential to improve our understanding of financial market phenomena.

Initial submission: August 16, 2021; Accepted: July 1, 2022
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix: Architecture Details of the CNN

A CNN is a modeling scheme that stacks a sequence of operations to trans-
form a raw image into a set of predictive features and, ultimately, a prediction.
They are inherently modular, using a single core building block that can be
assembled in various configurations depending on the application at hand. A
core building block consists of three operations: convolution, activation, and
pooling.

The first operation in a CNN building block is “convolution.” To understand
convolution, consider the simpler operation of applying a kernel smoother to a
time-series. For example, a rectangular kernel with a width of three smooths
the time-series by scanning through observations, averaging each data point
with its two neighbors. Convolution works similarly by scanning through the
image and, for each element in the image matrix, producing a summary of
image contents in the immediately surrounding area.

More specifically, the convolution operation uses a set of “filters.” A filter is
a low-dimension kernel weighting matrix that, for each matrix element in the
image, calculates the weighted average of the immediately adjacent matrix
elements. Figure A1, Panel A, illustrates with a 6×6 image that is white in
the 4×4 upper-left corner and black elsewhere. Filter 1 is an example of a 3×3
filter that takes the values of (1, 0,−1) in each row. For each interior element
(i, j) of the image, the convolution operation sums the element-wise product of
Filter 1 and the 3×3 image contents centered on (i, j). The result is stored in
the corresponding element of the convolution output matrix.18

18 For elements at the image’s border, we fill the absent neighbor elements with zeros in order
to compute the convolution. This is a common CNN practice known as “padding” and ensures that
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Figure A1. Illustration of convolution and max-pooling operations. Panel A: The input
tensor has size 6 × 6 (with only one channel of gray-scale). There are two 3 × 3 filters that detect
edges. By construction, Filter 1 detects vertical edges and Filter 2 detects horizontal edges. When
Filter 1 is applied to the yellow part of the input, the convolutional operation first calculates the
element-wise products between the 3 × 3 yellow tensor and Filter 1 of the same size (solid red line)
and then sums up the products and outputs a scalar (dotted red arrow) to the corresponding output
location. As we can see from Output Channel 1, the right part of the output is activated by large
values while the left part remains inactivated with all zeros, indicating that there is a vertical line
on the right of the input image. Finally, 2 × 2 max-pooling is applied to the output and shrinks
the shape by half from 4 × 4 to 2 × 2 by taking the max out of the 2 × 2 rolling window from the
output. The final output in Channel 1 has value 765 at the upper-right corner and value 510 at
the bottom-right corner, extracting the information that there are vertical edges on the right and
the vertical edge is sharper at the top than at the bottom. Filter 2 is applied in the same fashion
(green dotted line and green dotted arrow), extracting the information that there are horizontal
edges at the bottom of the image and the bottom-left (765) has a sharper change than the bottom-
right (510). Panel B: This example shows that the introduction of the max-pooling layer adds
robustness to noise. We take the same 6 × 6 image from the example above and blur the borderline
with gray color (pixel value 122). Take Filter 1, which detects vertical edges, for example. Nonzero
values from Output Channel 1 are significantly changed. However, after max-pooling is applied,
the original upper-right value of 765 remains intact while the original bottom-right value of 510
is replaced with 632, a slightly larger number, indicating a slightly stronger signal of the vertical
line at the bottom than before. We observe a similar effect for Filter 2, which detects horizontal
edges. (Color figure can be viewed at wileyonlinelibrary.com)
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The example highlights the critical difference between convolution and 2D
kernel smoothing. Smoothing calculates local averages in the image matrix,
while convolution instead calculates a weighted sum of nearby image contents,
where the filter weights are parameters to be estimated. Through estimation,
the CNN constructs filters that emphasize aspects of images that are most
predictive of the outcome of interest and blurs out uninformative content. The
weight configuration in Filter 1, for example, is particularly useful for detect-
ing vertical boundaries, while Filter 2 finds horizontal boundaries. Sliding the
filter over the entire image amounts to searching the image for this specific
pattern. If such a pattern exists in part of the input image, the corresponding
output value will be large—meaning that the output neuron is stimulated and
signals that a pattern is detected. As in our model below, it is common to use
several filters in a CNN, each specializing in certain patterns and thus each
outputting a different set of features for use in the next layer of the model. It
is also common for a CNN to use telescoping layers of filters, with the output
from the filters in one layer of the CNN used as inputs for the subsequent layer
to capture more complex patterns.

We use a filter size of 5×3 pixels in our baseline model. In addition, a convo-
lution is flexible in “stride” of the filter, which defines the number of horizontal
or vertical steps the filter takes as it moves through the image matrix. A larger
stride corresponds to coarser convolution output. We use horizontal stride of
one and vertical stride of three, meaning that the filter slides across the im-
age and recalculates the filter output at every position in the row and jumps
three rows at a time as it moves down the image vertically. We sometimes use
a “dilated” filter to cover a larger neighborhood on the image than the size
of the filter. A dilated filter with dilation rate k along the vertical or horizon-
tal dimension (or both) expands the size of the original filter by filling (k − 1)
zeros in between adjacent entries along the corresponding dimension(s). Our
baseline model uses a vertical dilation of two and no horizontal dilation.19

Convolution endows the CNN with a number of attractive properties relative
to more general neural networks connecting an N × M input matrix to an N ×
M output. The CNN tightly constrains model parameterization by imposing
two forms of (severe) cross-parameter restrictions. First, CNN applies a small
filter uniformly to all locations in an image, while a general network allows
separate weight parameters for each element of the image matrix. Second, the
CNN maps the information from a given location in the input matrix only to
the neighborhood of the same location in the output matrix, while a general
network would allow for cross-connectivity between all elements of the input
and output matrices. These restrictions, known, respectively, as “parameter

the convolution output has the same dimension as the image itself (see Simonyan and Zisserman
(2015)).

19 Unit stride is a common choice in the CNN literature, but larger strides are sometimes used
to reduce the dimensionality of the model. A stride of two, for example, recalculates the convolu-
tion at every other element of the input matrix, giving coarser convolution output with half the
dimensionality. While both stride and dilation reduce the computational burden and encourage
parsimony, dilation preserves the resolution of the original image.
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sharing” and “sparse interactions,” are critical to the tractability and small-
sample robustness of the CNN. Further, because the same filters are applied
uniformly to all locations in the image, they detect relevant objects regardless
of their position (in other words, CNN forecasts are “translation equivariant”).

The second operation in a building block is “activation.” This simple opera-
tion is a nonlinear transformation applied element-wise to the output of a con-
volution filter. The activation function we use is “leaky ReLU.” This, roughly
speaking, takes the max of the filter output value and zero, which sharpens
the resolution of the convolution filter output.20

The final operation in a building block is “max-pooling.” We implement this
operation using a small filter that scans over the input matrix and returns the
maximum value of the elements entering the filter at each location in the im-
age. The role of max-pooling is twofold. First, it acts as a dimension-reduction
device. Nearby neurons output from the convolution operation often carry sim-
ilar information. If any of the neurons in the filter region are stimulated, max-
pooling detects it. At the same time, it discards locally redundant informa-
tion. For example, a 2 × 2 pooling filter shrinks the height and width of the in-
put by half, and does so without introducing new parameters to be estimated,
further promoting parsimony in the CNN. In this respect, max-pooling is an
image counterpart to the familiar idea of downsampling from the signal pro-
cessing literature. Second, by taking local maxima throughout the image, the
output is left generally unaffected by small perturbations of the input pattern
(illustrated in Figure A1, Panel B). In this sense, max-pooling is a denoising
tool that enhances CNN robustness to local deformation, much like the convo-
lution operation aids CNN robustness to variation in object position.

Figure A2 illustrates how convolution, activation, and max-pooling combine
to form the basic building block for a CNN model. These blocks are then
stacked together to customize predictive CNN models with varying degrees
of richness. In general, the data input to a building block is a tensor with di-
mensions h × w × d. The lingua franca of CNN refers to image depth d as the
number of “channels.” In the very first block of our network, the input is a black
and white image, which is a matrix. Our black and white images thus have one
channel. Each filter output has dimension h × w × 1. If a building block uses
multiple filters, their outputs are stacked together in the third dimension of
the tensor so outputs have multiple channels, one channel corresponding to
each filter. Building blocks in the interior layers of our CNN therefore take
three-dimensional tensors as inputs. If the input layer has multiple channels,

20 This activation function, introduced by Maas, Hannun, and Ng (2013), is defined as

LeakyReLU(x) =
{

x, if x ≥ 0
kx, if x < 0

, where k = 0.01 is the coefficient that controls the angle of the

negative slope. Leaky ReLU is an improved variant of the standard ReLU function that simply
zeros out the unresponsive (negative) outputs while maintaining the stimulated ones. A drawback
of ReLU is that when inputs are all positive, the gradients are either all positive or all negative,
which introduces obstacles to the gradient descent in the training step. Another drawback of ReLU
is that certain neurons may never activate because all gradients flowing through these units fall
into the zero region of the ReLU function. Leaky ReLU resolves both issues.
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Figure A2. Diagram of a building block. This figure illustrates that a building block of the
CNN model consists of a convolutional layer with 3 × 3 filter, a leaky ReLU layer, and a 2 × 2 max-
pooling layer. The notation D@HxW shows the output size of the CNN building block where H is
the height, W is the width, and D is the number of channels. In this example, the input has size
16 × 8 with two channels. To double the depth of the input, four filters are applied, which generates
the output with four channels. The max-pooling layer shrinks the first two dimensions (height and
width) of the input by half and keeps the same depth. Leaky ReLU keeps the same size of the
previous input. In general, with input of size H × W × D, the output has size H/2 × W/2 × 2D.
One exception is the first building block of each CNN model that takes the gray-scale image as
input: The input has depth of one and the number of CNN filters is 32, boosting the depth of the
output to 32.

each filter of size (3 × 3) gains depth equal to the number of input channels
d (e.g., the filter is 3 × 3 × d). Filters therefore aggregate input information
locally in the height and width dimensions, and then combine this local infor-
mation across all channels. In Figure A2, the input has height of 16 and width
of eight and has two channels. Thus, each filter is 3 × 3 × 2. The example uses
four filters, so the size of the convolution output is 16 × 8 × 4.

Within a building block, the output from all convolutional filters is fed
element-wise through the leaky ReLU activation function, which preserves the
dimensions of the convolution output. In the example, the ReLU activation out-
put is therefore 16 × 8 × 4. Finally, a max-pooling filter of size 2 × 2 with stride
of two is applied to each channel separately, reducing their height and width
by one-half each. The final output of the building block is 8 × 4 × 4.

This output serves as the input to the next building block. By stacking many
of these blocks together, the network first creates representations of small com-
ponents of the image and then gradually assembles them into representations
of larger areas. The output from the last building block is flattened into a vec-
tor and each element is treated as a feature in a standard, fully connected
feed-forward layer for the final prediction step. The final prediction is a linear
combination of the vectorized image features, which is fed through a softmax
(i.e., logistic) function to generate a probability of whether the future price
will rise.

Having introduced the generic architectural components of CNN, we now
discuss specific choices for our models. Since our images are largely sparse
in the vertical dimension, we use 5 × 3 convolutional filters and 2 × 1 max-
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pooling filters. We use the same filter sizes in all layers for convenience. We
use vertical strides of 1, 3, and 3, and vertical dilation rates of 1, 2, and 3 for
5-, 20-, and 60-day images, respectively, only on the first layer, where inputs are
sparse raw images. The number of CNN building blocks in our model is based
on the size of the input image. We use two blocks to model five-day images,
three blocks for 20-day images, and four blocks for 60-day images. The number
of filters for the first building block is 64 for all three models.21 As pointed out
by Zeiler and Fergus (2014), learned features become more complex in deeper
layers, so we follow the literature and increase the number of filters after each
convolutional layer by a factor of two (e.g., 64, 128, 256, and 512 filters, re-
spectively, in the four layers of the 60-day model). In turn, the fully connected
layers have 15,360, 46,080, and 184,320 neurons for 5-, 20-, and 60-day models,
respectively, which are determined by the outputs of the convolutional blocks.
The total number of parameters are 155,138 for the five-day model, 708,866 for
the 20-day model, and 2,952,962 for the 60-day model, respectively.22 Of course,
the effective parameterization of these models is much smaller than this pa-
rameter count due to heavy regularization that shrinks most parameters close
to zero.
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