Matching with Transfers 2015 Koopmans Lecture, Yale University Part 2: Empirical applications

Pierre-André Chiappori

Columbia University

Yale, November 2015

- Empirical implementation
- The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
- Job matching by skills Lindenlaub (2014)

- Empirical implementation
- The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
- Job matching by skills Lindenlaub (2014)

Basic question: what do we observe?
 → various possibilities:

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe
- Two solutions:

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe
- Two solutions:
 - Frictions (search,...) \rightarrow Shimer and Smith, Robin and Jacquemet, Goussé,...

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe
- Two solutions:
 - Frictions (search,...) \rightarrow Shimer and Smith, Robin and Jacquemet, Goussé,...
 - Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) \rightarrow unobserved (random) heterogeneity

- Basic question: what do we observe?
 - \rightarrow various possibilities:
 - Matching patterns only
 - Matching patterns and (information on) total surplus
 - Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
 - For instance, with supermodular surplus, matching should be *exactly* assortative ...
 - ... which we never observe
- Two solutions:
 - Frictions (search,...) \rightarrow Shimer and Smith, Robin and Jacquemet, Goussé,...
 - Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) \rightarrow unobserved (random) heterogeneity
 - Here: second path

Initial remark:

Matching models cannot be identified from matching patterns only

• Simple example: assume one dimensional matching, with supermodular surplus. Then:

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
 - indispensible

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
 - indispensible
 - non testable

Initial remark:

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
 - Theory predicts assortative matching
 - If satisfied, can we recover the surplus function?
 - $\bullet \ \rightarrow$ No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
 - indispensible
 - non testable
- ... unless we can observe more than only matching patterns!

• Agent belong to a (small) number of *categories:* $i \in I, j \in J$

- Agent belong to a (small) number of *categories*: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity)
 → Gain g^{IJ}_{ii} generated by the match i ∈ I, j ∈ J:

$$\mathsf{g}^{IJ}_{ij} = \mathsf{Z}^{IJ} + arepsilon^{IJ}_{ij}$$

where I = 0, J = 0 for singles, and ε_{ii}^{IJ} random shock with mean zero.

- Agent belong to a (small) number of *categories*: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity)
 → Gain g^{IJ}_{ii} generated by the match i ∈ I, j ∈ J:

$$\mathsf{g}^{IJ}_{ij} = \mathsf{Z}^{IJ} + arepsilon^{IJ}_{ij}$$

where I = 0, J = 0 for singles, and ε_{ii}^{IJ} random shock with mean zero.

• Therefore: dual variables (*u_i*, *v_j*) also random (*endogenous* distribution)

- Agent belong to a (small) number of *categories*: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity)
 → Gain g^{IJ}_{ii} generated by the match i ∈ I, j ∈ J:

$$\mathsf{g}^{IJ}_{ij} = \mathsf{Z}^{IJ} + arepsilon^{IJ}_{ij}$$

where I = 0, J = 0 for singles, and ε_{ij}^{IJ} random shock with mean zero.

- Therefore: dual variables (*u_i*, *v_j*) also random (*endogenous* distribution)
- \bullet What do we know about the distribution of the dual variables? \rightarrow not much!

- Agent belong to a (small) number of *categories*: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity)
 → Gain g^{IJ}_{ii} generated by the match i ∈ I, j ∈ J:

$$\mathsf{g}_{ij}^{IJ} = \mathsf{Z}^{IJ} + arepsilon_{ij}^{IJ}$$

where I = 0, J = 0 for singles, and ε_{ij}^{IJ} random shock with mean zero.

- Therefore: dual variables (*u_i*, *v_j*) also random (*endogenous* distribution)
- \bullet What do we know about the distribution of the dual variables? \rightarrow not much!
- Alternative approach: use the stability inequalities

$$u_i + v_j \geq g_{ij}^{IJ}$$
 for any (i,j)

 \rightarrow large number (one inequality *per potential couple*)

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}$$
 (S)

Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)
 Assumption S (separability): the idiosyncratic component ε_{ij} is additively separable:

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}$$
 (S)

Interpretations:

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ} \tag{S}$$

- Interpretations:
 - Idiosyncratic preferences for an educated partner

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}$$
 (S)

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}$$
 (S)

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner
 - Only the spouse's *category* matters

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}$$
 (S)

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner
 - Only the spouse's *category* matters
- Then:

Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006)
 Assumption S (separability): the idiosyncratic component ε_{ij} is additively separable:

$$\varepsilon_{ij}^{IJ} = \alpha_i^{IJ} + \beta_j^{IJ}$$
 (S)

- Interpretations:
 - Idiosyncratic preferences for an educated partner
 - or: idiosyncratic attractiveness for an educated partner
 - Only the spouse's *category* matters
- Then:

Theorem

Under S, there exists U^{IJ} and V^{IJ} such that $U^{IJ} + V^{IJ} = Z^{IJ}$ and for any match $(i \in I, j \in J)$

$$u_i = U^{IJ} + \alpha_i^{IJ}$$

$$v_j = V^{IJ} + \beta_i^{IJ}$$
• What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all ('large deviations')

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all ('large deviations')
 - no singles, and very large expected utility conditional on singlehood

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all ('large deviations')
 - no singles, and very large expected utility conditional on singlehood
- More generally: the frictionless assumption hard to justify with many agents
 - ... but not with a small number of categories!

- What's wrong without separability (i.e. ε_{ij})? \rightarrow Many issues
- What correlation structure on the ε s?
- General correlation structure: no hope to identify it!
- Independence:
 - Hard to believe
 - Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
 - Bounded support: degenerate stochastic structure (limit)
 - Unbounded support:
 - Utilities tend to infinity
 - Matching either mostly based on the random term, or not random at all ('large deviations')
 - no singles, and very large expected utility conditional on singlehood
- More generally: the frictionless assumption hard to justify with many agents
 - ... but not with a small number of categories!
- Lastly, parcimony!

A NSC for $i \in I$ being matched with a spouse in J is:

$$\begin{array}{rcl} U^{IJ}+\alpha_i^{IJ} &\geq & U^{I0}+\alpha_i^{I0} \\ U^{IJ}+\alpha_i^{IJ} &\geq & U^{IK}+\alpha_i^{IK} \ \ \mbox{for all } K \end{array}$$

A NSC for $i \in I$ being matched with a spouse in J is:

$$\begin{array}{rcl} U^{IJ} + \alpha_i^{IJ} & \geq & U^{I0} + \alpha_i^{I0} \\ U^{IJ} + \alpha_i^{IJ} & \geq & U^{IK} + \alpha_i^{IK} & \text{for all } K \end{array}$$

A NSC for $i \in I$ being matched with a spouse in J is:

$$\begin{array}{rcl} U^{IJ} + \alpha_i^{IJ} & \geq & U^{I0} + \alpha_i^{I0} \\ U^{IJ} + \alpha_i^{IJ} & \geq & U^{IK} + \alpha_i^{IK} & \text{for all } K \end{array}$$

- In practice (Choo-Siow approach):
 - take singlehood as a benchmark (interpretation!)

A NSC for $i \in I$ being matched with a spouse in J is:

$$\begin{array}{rcl} U^{IJ} + \alpha_i^{IJ} & \geq & U^{I0} + \alpha_i^{I0} \\ U^{IJ} + \alpha_i^{IJ} & \geq & U^{IK} + \alpha_i^{IK} & \text{for all } K \end{array}$$

- take singlehood as a benchmark (interpretation!)
- assume the α_i^{IJ} are extreme value distributed

A NSC for $i \in I$ being matched with a spouse in J is:

$$\begin{array}{rcl} U^{IJ} + \alpha_i^{IJ} & \geq & U^{I0} + \alpha_i^{I0} \\ U^{IJ} + \alpha_i^{IJ} & \geq & U^{IK} + \alpha_i^{IK} & \text{for all } K \end{array}$$

- take singlehood as a benchmark (interpretation!)
- assume the α_i^{IJ} are extreme value distributed
- then 2 imes K logits (one for each gender and education) $\rightarrow U^{IJ}$, V^{IJ}

A NSC for $i \in I$ being matched with a spouse in J is:

$$\begin{array}{rcl} U^{IJ}+\alpha_i^{IJ} &\geq & U^{I0}+\alpha_i^{I0} \\ U^{IJ}+\alpha_i^{IJ} &\geq & U^{IK}+\alpha_i^{IK} \ \ \mbox{for all } K \end{array}$$

- take singlehood as a benchmark (interpretation!)
- assume the α_i^{IJ} are extreme value distributed
- then 2 imes K logits (one for each gender and education) $\rightarrow U^{IJ}$, V^{IJ}
- and expected utility:

$$\bar{u}^{I} = E\left[\max_{J}\left(U^{IJ} + \alpha_{I}^{IJ}
ight)
ight] = \ln\left(\sum_{J}\exp U^{IJ} + 1
ight) = -\ln\left(a^{I0}
ight)$$

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
 - ightarrow the lphas and etas follow any distribution

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
 → the αs and βs follow any distribution
- Define the function G_l by:

$$G_{I}\left(U^{I\oslash},...,U^{IK}
ight)=E\left[\max_{J=\oslash,1,...,K}\left(U^{IJ}+lpha_{i}^{J}
ight)
ight]$$

which can be computed if the distribution of the α s is known. Then G_I increasing, convex and envelope theorem: $\partial G_I / \partial U^{IJ}$ is the probability that $i \in I$ marries someone in J

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
 - \rightarrow the αs and βs follow any distribution
- Define the function G_I by:

$$\mathcal{G}_{I}\left(U^{I \oslash},...,U^{I K}
ight)= E\left[\max_{J=\oslash,1,...,K}\left(U^{I J}+lpha_{i}^{J}
ight)
ight]$$

which can be computed if the distribution of the α s is known. Then G_I increasing, convex and envelope theorem: $\partial G_I / \partial U^{IJ}$ is the probability that $i \in I$ marries someone in J

• Legendre-Fenchel transform (conjugate) of G_l :

$$G_{I}^{*}\left(\gamma^{0},...,\gamma^{L}
ight)=\max_{U^{0},...,U^{K}}\left(\sum\gamma^{L}U^{L}-G_{I}\left(U^{0},...,U^{K}
ight)
ight)$$

Then G_l^* is convex, and envelope theorem: $\partial G_l^* / \partial \gamma^J = U^{lJ}$

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
 - ightarrow the lphas and etas follow any distribution
- Define the function G_I by:

$$G_{I}\left(U^{I\oslash},...,U^{IK}
ight)=E\left[\max_{J=\oslash,1,...,K}\left(U^{IJ}+lpha_{i}^{J}
ight)
ight]$$

which can be computed if the distribution of the α s is known. Then G_I increasing, convex and envelope theorem: $\partial G_I / \partial U^{IJ}$ is the probability that $i \in I$ marries someone in J

• Legendre-Fenchel transform (conjugate) of G_l :

$$G_{I}^{*}\left(\gamma^{0},...,\gamma^{L}
ight)=\max_{U^{0},...,U^{K}}\left(\sum\gamma^{L}U^{L}-G_{I}\left(U^{0},...,U^{K}
ight)
ight)$$

Then G_I^* is convex, and envelope theorem: $\partial G_I^* / \partial \gamma^J = U^{IJ}$

• $G^*(\gamma^l)$ is called the *generalized entropy* of the corresponding discrete choice problem

• What can we identify?

3

- What can we identify?
- Basic CS model:

3

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of *α*s and *β*s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: 'multi-markets' (cf. the IO literature). Ex: CSW

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
 - $\bullet~\rightarrow$ requires invariance of (part of) the surplus \ldots

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of *α*s and *β*s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
 - \rightarrow requires invariance of (part of) the surplus ...
 - ... for instance the 'supermodular core' ('preferences for assortativeness')

$$Z_t^{II} + Z_t^{JJ} - Z_t^{IJ} - Z_t^{JI} = K \Rightarrow Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
 - $\bullet~\rightarrow$ requires invariance of (part of) the surplus \ldots
 - ... for instance the 'supermodular core' ('preferences for assortativeness')

$$Z_t^{II} + Z_t^{JJ} - Z_t^{IJ} - Z_t^{JI} = K \Rightarrow Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$

• ... or at least some restrictions on its variations (e.g. linear trend): $Z_0^{IJ}+z^{IJ}\times t$

- What can we identify?
- Basic CS model:
 - Severe parametric restrictions (distribution of α s and β s known, no heteroskedasticity,...)
 - Even then, the model is exactly identified
 - In particular, no testable restriction
- Can we improve testability?
 - One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
 - ullet \to requires invariance of (part of) the surplus ...
 - ... for instance the 'supermodular core' ('preferences for assortativeness')

$$Z_t^{II} + Z_t^{JJ} - Z_t^{IJ} - Z_t^{JI} = K \Rightarrow Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$

• ... or at least some restrictions on its variations (e.g. linear trend): $Z_0^{IJ}+z^{IJ}\times t$

• Alternatively, more information is needed

Empirical implementation 2: matching patterns and (information on) the surplus

Basic insight

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
 - More information needed
- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - $\bullet \rightarrow$ observed behavior (e.g. labor supply) allows to identify preferences

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - ullet ightarrow observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - ullet ightarrow observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus
- In practice:

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - ullet ightarrow observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus
- In practice:
 - either double set of logit regressions, plus constraints across equations

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - $\bullet \rightarrow$ observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus
- In practice:
 - either double set of logit regressions, plus constraints across equations
 - or simulated moments ...

- Basic insight
 - More information needed
 - Here, pairwise surplus (as a function of traits)
 - Where can such an information come from?
 - Answer: from observed behavior
- Structure:
 - Start with given preferences, satisfying TU
 - Once a couple is formed, they maximize total utility
 - $\bullet \ \rightarrow$ observed behavior (e.g. labor supply) allows to identify preferences
 - ... therefore the surplus
- In practice:
 - either double set of logit regressions, plus constraints across equations
 - or simulated moments ...
 - ... especially since simulating the model is easy (linear optimization)

Empirical implementation 3: matching patterns and transfers

- Basic reference: hedonic models
- Strong, non parametric identification results
- See f.i. Ekeland, Heckman and Nesheim (2004), Heckman, Matzkin and Nesheim (2010), Chernozhukov, Galichon and Henry (2014) and Nesheim (2013)

- Empirical implementation
- The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
- Job matching by skills Lindenlaub (2014)

• Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

Two questions:

- Two questions:
 - Impact on intrahousehold allocation?

- Two questions:
 - Impact on intrahousehold allocation?
 - How can the asymmetry between genders be explained?

- Two questions:
 - Impact on intrahousehold allocation?
 - How can the asymmetry between genders be explained?
- Answers provided by matching models:

- Two questions:
 - Impact on intrahousehold allocation?
 - How can the asymmetry between genders be explained?
- Answers provided by matching models:
 - First question: just compute the dual variables!

• Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
 - Impact on intrahousehold allocation?
 - How can the asymmetry between genders be explained?
- Answers provided by matching models:
 - First question: just compute the dual variables!
 - Second question: 'marital college premium' =

Matching with Transfers

• Basic intuition: investment in HC generates two types of benefits:

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - ullet ightarrow *cannot* explain asymmetry between gender

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - ullet ightarrow *cannot* explain asymmetry between gender
 - on the marriage market: more education changes:

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - ullet ightarrow *cannot* explain asymmetry between gender
 - on the marriage market: more education changes:
 - marriage probability

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated
 - the distribution of that surplus

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated
 - the distribution of that surplus
 - Marriage-market benefits (the 'marital college premium'):

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated
 - the distribution of that surplus
 - Marriage-market benefits (the 'marital college premium'):
 - have been largely neglected

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated
 - the distribution of that surplus
 - Marriage-market benefits (the 'marital college premium'):
 - have been largely neglected
 - their evolution markedly differs across genders

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated
 - the distribution of that surplus
 - Marriage-market benefits (the 'marital college premium'):
 - have been largely neglected
 - their evolution markedly differs across genders
 - $\bullet\,$ may influence investment behavior \rightarrow may explain the puzzle

- Basic intuition: investment in HC generates two types of benefits:
 - on the labor market ('college premium')
 - extensively studied
 - no significant difference between men and women (if anything favors men)
 - $\bullet \ \rightarrow \ cannot \ \text{explain} \ \text{asymmetry} \ \text{between gender}$
 - on the marriage market: more education changes:
 - marriage probability
 - spouse's (expected) education
 - total marital surplus generated
 - the distribution of that surplus
 - Marriage-market benefits (the 'marital college premium'):
 - have been largely neglected
 - their evolution markedly differs across genders
 - $\bullet\,$ may influence investment behavior \to may explain the puzzle
 - But a structural model is needed!
• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

• Then:

$$g_{ij,t} = Z_t^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α , β extreme value distributed

• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

Then:

$$g_{ij,t} = Z_t^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α , β extreme value distributed

• Identifying assumption:

either
$$Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$
 (1)
or $Z_t^{IJ} = \zeta_t^I + \xi_t^J + (Z_0^{IJ} + \delta^{IJ} \times t)$ (2)

• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

Then:

$$g_{ij,t} = Z_t^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α , β extreme value distributed

• Identifying assumption:

either
$$Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$
 (1)
or $Z_t^{IJ} = \zeta_t^I + \xi_t^J + (Z_0^{IJ} + \delta^{IJ} \times t)$ (2)

Interpretation:

• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

Then:

$$g_{ij,t} = Z_t^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α , β extreme value distributed

• Identifying assumption:

either
$$Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$
 (1)
or $Z_t^{IJ} = \zeta_t^I + \xi_t^J + (Z_0^{IJ} + \delta^{IJ} \times t)$ (2)

- Interpretation:
 - Non parametric trends ζ^I, ζ^J affecting the surplus but not the supermodularity

• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

Then:

$$g_{ij,t} = Z_t^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α , β extreme value distributed

• Identifying assumption:

either
$$Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$
 (1)
or $Z_t^{IJ} = \zeta_t^I + \xi_t^J + (Z_0^{IJ} + \delta^{IJ} \times t)$ (2)

- Interpretation:
 - Non parametric trends ζ^I, ξ^J affecting the surplus but not the supermodularity
 - (1): 'preferences for assortativeness' do not change \rightarrow testable

17 / 38

• Idea: structural model holds for different cohorts t = 1, ..., T with varying class compositions.

Then:

$$g_{ij,t} = Z_t^{IJ} + \alpha_{i,t}^{IJ} + \beta_{j,t}^{IJ}$$

where α , β extreme value distributed

• Identifying assumption:

either
$$Z_t^{IJ} = \zeta_t^I + \xi_t^J + Z_0^{IJ}$$
 (1)
or $Z_t^{IJ} = \zeta_t^I + \xi_t^J + (Z_0^{IJ} + \delta^{IJ} \times t)$ (2)

- Interpretation:
 - Non parametric trends ζ^I, ξ^J affecting the surplus but not the supermodularity
 - (1): 'preferences for assortativeness' do not change ightarrow testable
 - (2): 'preferences for assortativeness' follow linear trends δ^{IJ}

17 / 38

What do raw data say?

P.A. Chiappori (Columbia University)

Comparing educations within white couples

Comparing educations within black couples

Proportion

Year of birth of husband

Proportion

				Women		
		HSD	HSG	SC	CG	CG+
	HSD	0.0118***	0.0067***	0.0146***	-0.0023	-0.0366
Men		(0.0015)	(0.0012)	(0.0018)	(0.0017)	(0.0017
	HSG	-0.0237***	0.0024	0.011***	-0.0009	-0.01**
		(0.0011)	(0.0008)	(0.0008)	(0.0009)	(0.0014
	SC	-0.0198***	-0.001	0.0056***	0.004***	0.0001
		(0.0013)	(0.0006)	(0.0013)	(0.0015)	(0.0014
	CG	0.0187***	-0.0011	-0.0093***	0.0079***	0.015**
		(0.0012)	(0.0009)	(0.0013)	(0.0015)	(0.0018
	CG+	0.0436***	0.0055***	-0.0087***	-0.0059***	0.0149*
		(0.0004)	(0.0006)	(0.0008)	(0.001)	(0.0017

Table: Slopes - linear extension

Results: college premium

Figure 12: The marital college premium

- Empirical implementation
- **2** The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
- Job matching by skills Lindenlaub (2014)

Source: Corinne Low's dissertation (2014)

• Basic remark: sharp decline in female fertility between 35 and 45

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a 'college +' degree

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - $\bullet\,$ delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
 - Pro: higher education \rightarrow higher wage, etc.

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
 - Pro: higher education \rightarrow higher wage, etc.
 - Con: delayed entry \rightarrow loss of 'reproductive capital'

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
 - entering the MM after college
 - delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
 - Pro: higher education \rightarrow higher wage, etc.
 - $\bullet~$ Con: delayed entry $\rightarrow~$ loss of 'reproductive capital'
- Impact on marital prospects?

Model

• Two commodities, private consumption and child expenditures; utility:

$$u_i=c_i\left(Q+1
ight)$$
 , $i=h$, w

and budget constraint $(y_i \text{ denotes } i)$'s income)

$$c_h + c_w + Q = y_h + y_w$$

Model

• Two commodities, private consumption and child expenditures; utility:

$$u_i=c_i\left(Q+1
ight)$$
 , $i=h$, w

and budget constraint $(y_i \text{ denotes } i)$'s income)

$$c_h + c_w + Q = y_h + y_w$$

 Transferable utility: any efficient allocation maximizes u_h + u_w; therefore surplus with a child

$$s(y_h, y_w) = rac{\left(y_h + y_w + 1
ight)^2}{4}$$

and without a child (Q = 0)

$$s\left(y_{h},y_{w}\right)=y_{h}+y_{w}$$

therefore, if π probability of a child:

$$s(y_{h}, y_{w}) = \pi \frac{(y_{h} + y_{w} + 1)^{2}}{4} + (1 - \pi)(y_{h} + y_{w})$$

• Men: differ in income $\rightarrow y_h$ uniform on [1, Y]

Image: Image:

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex

Image: Image:

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:

э

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)

•
$$y_w = s$$
 if not

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss

•
$$\pi = p$$
 if invest
- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not
- Therefore: *once investment decisions have been made,* bidimensional matching model, and three questions:

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not
- Therefore: *once investment decisions have been made,* bidimensional matching model, and three questions:
 - who marries whom?

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not
- Therefore: *once investment decisions have been made,* bidimensional matching model, and three questions:
 - who marries whom?
 - how is the surplus distributed?

- Men: differ in income $\rightarrow y_h$ uniform on [1, Y]
- Women: more complex
 - differ in skills $\rightarrow s$ uniform on [0, S]
 - may choose to invest \rightarrow income:
 - $y_w = \lambda s$ if invest (with $\lambda > 1$)
 - $y_w = s$ if not
 - but investment implies fertility loss
 - $\pi = p$ if invest
 - $\pi = P > p$ if not
- Therefore: *once investment decisions have been made,* bidimensional matching model, and three questions:
 - who marries whom?
 - how is the surplus distributed?
 - what is the impact on (ex ante) investment?

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

Then:

3

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

Then:

• There exists a stable match (conditional on education); generically unique

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:
 - If λ small and P/p large, regime 2

• Assumption: investment decision such that there exists some \bar{s} such that

invest iff $s \geq \bar{s}$

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
 - Regime 1: negative assortative matching (can be discarded)
 - Regime 2: non monotonic matching
 - Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:
 - If λ small and P/p large, regime 2
 - If λ large and P/p not too large, regime 3

• Increase in λ : dramatic increase in 'college + premium'

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in *P*/*p*: two factors

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in *P*/*p*: two factors
 - progress in assisted reproduction

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in *P*/*p*: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size

Notes: "Don't know/refused" responses not shown. Respondents were asked: "What is the ideal number of children for a family to have?"

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in *P*/*p*: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size
- Consequence: according to the model:

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in *P*/*p*: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size
- Consequence: according to the model:
 - Before the 80s: college + women marry 'below' college graduate

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in *P*/*p*: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size
- Consequence: according to the model:
 - Before the 80s: college + women marry 'below' college graduate
 - After the 80s: college + women marry 'above' college graduate

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P/p: two factors
 - progress in assisted reproduction
 - (much more important): dramatic change in desired family size
- Consequence: according to the model:
 - Before the 80s: college + women marry 'below' college graduate
 - After the 80s: college + women marry 'above' college graduate
- What about data?

Spousal income by wife's education level, white women 41-50

- Empirical implementation
- **2** The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
- Job matching by skills Lindenlaub (2014)

- The basic motivation for this project is to understand how policy affects individual life-cycle decisions
- Long term effects will change education choices and the marriage market
- In turn this will have effects on labor supply and will have intergenerational impacts
- Two fundamental, Beckerian insights: Notion of Human Capital and Matching as an equilibrium phenomenon

• Agents invest in education before entering the matching game

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- TU context
Agents invest in education; heterogeneous costs

э

- Agents invest in education; heterogeneous costs
- Agents enter the MM with their education level H; matching takes place; full commitment

- Agents invest in education; heterogeneous costs
- Agents enter the MM with their education level H; matching takes place; full commitment
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:

- Agents invest in education; heterogeneous costs
- Agents enter the MM with their education level H; matching takes place; full commitment
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Shocks are realized:

$$\ln w_{i,t} = \ln W_t + \ln H_i + \ln(e_{i,t}), \quad i = 1, 2$$

- Agents invest in education; heterogeneous costs
- Agents enter the MM with their education level H; matching takes place; full commitment
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Shocks are realized:

$$\ln w_{i,t} = \ln W_t + \ln H_i + \ln(e_{i,t}), \quad i = 1, 2$$

 $\bullet \ \rightarrow$ agents supply labor and consume

- Agents invest in education; heterogeneous costs
- Agents enter the MM with their education level H; matching takes place; full commitment
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Shocks are realized:

$$\ln w_{i,t} = \ln W_t + \ln H_i + \ln(e_{i,t}), \quad i = 1, 2$$

- $\bullet \ \rightarrow$ agents supply labor and consume
- Note that shocks can be permanent ...

- Agents invest in education; heterogeneous costs
- Agents enter the MM with their education level H; matching takes place; full commitment
- Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
 - Shocks are realized:

$$\ln w_{i,t} = \ln W_t + \ln H_i + \ln(e_{i,t}), \quad i = 1, 2$$

- $\bullet \ \rightarrow$ agents supply labor and consume
- Note that shocks can be permanent ...
- ... including initial productivity (or HC) shock

Backwards:

• Start with periods 3

æ

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

$$u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(age, g, s)L_{i,t}Q_t)$$

3

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

$$u_i(Q_t, C_{i,t}, L_{i,t}) = \ln \left(C_{i,t}Q_t + \alpha_i(\mathsf{age}, \mathsf{g}, \mathsf{s})L_{i,t}Q_t\right)$$

• Under $TU \rightarrow$ household utility \rightarrow standard, unitary model

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

$$u_i(Q_t, C_{i,t}, L_{i,t}) = \ln \left(C_{i,t}Q_t + \alpha_i(\text{age}, g, s)L_{i,t}Q_t\right)$$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

$$u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(age, g, s)L_{i,t}Q_t)$$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 $u_i(Q_t, C_{i,t}, L_{i,t}) = \ln(C_{i,t}Q_t + \alpha_i(age, g, s)L_{i,t}Q_t)$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 $u_i(Q_t, C_{i,t}, L_{i,t}) = \ln \left(C_{i,t}Q_t + \alpha_i(\mathsf{age}, \mathsf{g}, \mathsf{s})L_{i,t}Q_t\right)$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
 - Matching patterns (who marries whom by education)

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 $u_i(Q_t, C_{i,t}, L_{i,t}) = \ln \left(C_{i,t}Q_t + \alpha_i(\mathsf{age}, g, s)L_{i,t}Q_t \right)$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
 - Matching patterns (who marries whom by education)
 - (Future, contingent) intra-household allocation

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 $u_i(Q_t, C_{i,t}, L_{i,t}) = \ln \left(C_{i,t}Q_t + \alpha_i(\mathsf{age}, g, s)L_{i,t}Q_t \right)$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
 - Matching patterns (who marries whom by education)
 - (Future, contingent) intra-household allocation
 - $\bullet \ \rightarrow$ ultimately, the returns to education

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

 $u_i(Q_t, C_{i,t}, L_{i,t}) = \ln \left(C_{i,t}Q_t + \alpha_i(\mathsf{age}, g, s)L_{i,t}Q_t \right)$

- Under $TU \rightarrow$ household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
 - Matching patterns (who marries whom by education)
 - (Future, contingent) intra-household allocation
 - $\bullet \ \rightarrow$ ultimately, the returns to education
- Finally period 1: education decisions

• Basic idea: simulated moments

æ

- Basic idea: simulated moments
 - Choose some parameters

3

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model

э

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments

э

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments
- Problem: very hard

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments
- Problem: very hard
 - Stage 3: dynamic, stochastic LS model

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments
- Problem: very hard
 - Stage 3: dynamic, stochastic LS model
 - Stage 2: matching model (with the surplus estimated from stage 3)

- Basic idea: simulated moments
 - Choose some parameters
 - Simulate the model
 - Iterate to fit a set of moments
- Problem: very hard
 - Stage 3: dynamic, stochastic LS model
 - Stage 2: matching model (with the surplus estimated from stage 3)
 - Stage 1: Rational expectations \rightarrow fixed point in a functional space

• Basic idea: simulated moments

- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
- Problem: very hard
 - Stage 3: dynamic, stochastic LS model
 - Stage 2: matching model (with the surplus estimated from stage 3)
 - Stage 1: Rational expectations \rightarrow fixed point in a functional space
- Simplification: use the 'fictitious game'

• Two-stage model:

3

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
 - Stage two: matching game on HC + other characteristics

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
 - Stage two: matching game on HC + other characteristics
- Resolution: backwards

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
 - Stage two: matching game on HC + other characteristics
- Resolution: backwards
 - Stage 2: stability give U, V as functions of HC

- Two-stage model:
 - Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
 - Stage two: matching game on HC + other characteristics
- Resolution: backwards
 - Stage 2: stability give U, V as functions of HC
 - Stage 1: agents choose HC to maximize utility cost

• Same framework

- Same framework
- Fictitious game:

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: *jointly* choose HC investment to maximize joint surplus
- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

• However, other equilibria may exist ('coordination failures')

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:
 - The two stage game is complex, because of its rational expectation structure (→ fixed point in a functional space)

- Same framework
- Fictitious game:
 - Stage one: agents match (on their cost and any other predetermined parameters)
 - Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:
 - The two stage game is complex, because of its rational expectation structure (→ fixed point in a functional space)
 - The fictitious game is much easier to simulate (matching \rightarrow linear programming)

34 / 38

- Empirical implementation
- The US education puzzle
 - One-dimensional version: CSW (2014)
 - Two-dimensional version: Low (2014)
 - Matching patterns and behavior: CCM 2015
- Job matching by skills Lindenlaub (2014)

Basic insights

• Two types of skills: manual and cognitive \rightarrow workers and jobs (2 \times 2 matching)

- Two types of skills: manual and cognitive \rightarrow workers and jobs (2 \times 2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.

- Two types of skills: manual and cognitive → workers and jobs (2 × 2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)

- Two types of skills: manual and cognitive → workers and jobs (2 × 2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- $\bullet \to$ Sorting improves along the cognitive dimension but deteriorates along the manual dimension

- Two types of skills: manual and cognitive → workers and jobs (2 × 2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- $\bullet \to$ Sorting improves along the cognitive dimension but deteriorates along the manual dimension
- ullet ightarrow Wages more convex in cognitive but less convex in manual skills

- Two types of skills: manual and cognitive → workers and jobs (2 × 2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- $\bullet \to$ Sorting improves along the cognitive dimension but deteriorates along the manual dimension
- ullet ightarrow Wages more convex in cognitive but less convex in manual skills
- → Increased wage inequality along the cognitive dimension, compressed inequality in the manual dimension.

• Model:

$$\pi_{ij} = F_C\left(x_C^i, y_C^i\right) + F_M\left(x_M^i, y_M^i\right)$$

- 一司

3

Model:

$$\pi_{ij} = F_C\left(x_C^i, y_C^i\right) + F_M\left(x_M^i, y_M^i\right)$$

• Matching: if pure,

$$y_{C} = \Phi_{C}(x_{C}, x_{M})$$
$$y_{M} = \Phi_{M}(x_{C}, x_{M})$$

э

Model:

$$\pi_{ij} = F_C\left(x_C^i, y_C^i\right) + F_M\left(x_M^i, y_M^i\right)$$

• Matching: if pure,

$$y_{C} = \Phi_{C}(x_{C}, x_{M})$$
$$y_{M} = \Phi_{M}(x_{C}, x_{M})$$

• PAM: $\partial \Phi_C / \partial x_C > 0$, $\partial \Phi_M / \partial x_M > 0$, Det > 0

• Model:

$$\pi_{ij} = F_C\left(x_C^i, y_C^i\right) + F_M\left(x_M^i, y_M^i\right)$$

Matching: if pure,

$$y_{C} = \Phi_{C}(x_{C}, x_{M})$$

$$y_{M} = \Phi_{M}(x_{C}, x_{M})$$

• PAM: $\partial \Phi_C / \partial x_C > 0$, $\partial \Phi_M / \partial x_M > 0$, Det > 0• **Theorem**: if

$$\partial^2 F_C / \partial x_C^i \partial y_C^i > 0$$
 and $\partial^2 F_M / \partial x_M^i \partial y_M^i > 0$

then PAM

Model:

$$\pi_{ij} = F_C\left(x_C^i, y_C^i\right) + F_M\left(x_M^i, y_M^i\right)$$

Matching: if pure,

$$y_{C} = \Phi_{C}(x_{C}, x_{M})$$

$$y_{M} = \Phi_{M}(x_{C}, x_{M})$$

• PAM: $\partial \Phi_C / \partial x_C > 0$, $\partial \Phi_M / \partial x_M > 0$, Det > 0• **Theorem**: if

$$\partial^2 F_C / \partial x_C^i \partial y_C^i > 0$$
 and $\partial^2 F_M / \partial x_M^i \partial y_M^i > 0$

then PAM

• Then Quadratic-Gaussian model

Conclusion

- Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
- Crucial property: intramatch allocation of surplus derived from equilibrium conditions
- Applied theory: many applications (abortion, female education, divorce laws, children, ...)
- Oan be taken to data; structural econometric model, over identified
- Multidimensional versions: index (COQD 2010), general (CMcCP 2015)
- Extensions
 - ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)

Conclusion

- Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
- Crucial property: intramatch allocation of surplus derived from equilibrium conditions
- Applied theory: many applications (abortion, female education, divorce laws, children, ...)
- Oan be taken to data; structural econometric model, over identified
- Multidimensional versions: index (COQD 2010), general (CMcCP 2015)
- Extensions
 - ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
 - Joint estimation of surplus and matching (\rightarrow 'consistency'!); for instance domestic production

A B F A B F

Conclusion

- Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
- Crucial property: intramatch allocation of surplus derived from equilibrium conditions
- Applied theory: many applications (abortion, female education, divorce laws, children, ...)
- Oan be taken to data; structural econometric model, over identified
- Multidimensional versions: index (COQD 2010), general (CMcCP 2015)
- Extensions
 - ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
 - Joint estimation of surplus and matching (→ 'consistency'!); for instance domestic production
 - Dynamics: divorce, etc.