Matching with Transfers
 2015 Koopmans Lecture, Yale University

Part 2: Empirical applications

Pierre-André Chiappori
Columbia University
Yale, November 2015

Roadmap

(1) Empirical implementation
(2) The US education puzzle

- One-dimensional version: CSW (2014)
- Two-dimensional version: Low (2014)
- Matching patterns and behavior: CCM 2015
(3) Job matching by skills Lindenlaub (2014)

Roadmap

(1) Empirical implementation
(2) The US education puzzle

- One-dimensional version: CSW (2014)
- Two-dimensional version: Low (2014)
- Matching patterns and behavior: CCM 2015
(3) Job matching by skills Lindenlaub (2014)

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
- For instance, with supermodular surplus, matching should be exactly assortative ...

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
- For instance, with supermodular surplus, matching should be exactly assortative ...
- ... which we never observe

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
- For instance, with supermodular surplus, matching should be exactly assortative ...
- ... which we never observe
- Two solutions:

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
- For instance, with supermodular surplus, matching should be exactly assortative ...
- ... which we never observe
- Two solutions:
- Frictions (search,...) \rightarrow Shimer and Smith, Robin and Jacquemet, Goussé, ...

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
- For instance, with supermodular surplus, matching should be exactly assortative ...
- ... which we never observe
- Two solutions:
- Frictions (search,...) \rightarrow Shimer and Smith, Robin and Jacquemet, Goussé,...
- Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) \rightarrow unobserved (random) heterogeneity

Empirical implementation: which data?

- Basic question: what do we observe?
\rightarrow various possibilities:
- Matching patterns only
- Matching patterns and (information on) total surplus
- Matching patterns and transfers
- Basic issue: reconcile the somewhat mechanical predictions of theory and the fuzziness of actual data
- For instance, with supermodular surplus, matching should be exactly assortative ...
- ... which we never observe
- Two solutions:
- Frictions (search,...) \rightarrow Shimer and Smith, Robin and Jacquemet, Goussé,...
- Unobservable heterogeneity: some matching traits are unobservable (by the econometrician) \rightarrow unobserved (random) heterogeneity
- Here: second path

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
- indispensible

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
- indispensible
- non testable

Empirical implementation 1: matching patterns only

Initial remark:
Matching models cannot be identified from matching patterns only

- Simple example: assume one dimensional matching, with supermodular surplus. Then:
- Theory predicts assortative matching
- If satisfied, can we recover the surplus function?
- \rightarrow No: any supermodular surplus would give the same matching
- Situation less extreme in a multidimensional context (iso husband curves, etc.), ...
- ... but still no hope of recovering the surplus
- Therefore: specific stochastic structures are
- indispensible
- non testable
- ... unless we can observe more than only matching patterns!

Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$

Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity) \rightarrow Gain $g_{i j}^{I J}$ generated by the match $i \in I, j \in J$:

$$
g_{i j}^{I J}=Z^{I J}+\varepsilon_{i j}^{I J}
$$

where $I=0, J=0$ for singles, and $\varepsilon_{i j}^{I J}$ random shock with mean zero.

Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity) \rightarrow Gain $g_{i j}^{I J}$ generated by the match $i \in I, j \in J$:

$$
g_{i j}^{I J}=Z^{I J}+\varepsilon_{i j}^{\prime J}
$$

where $I=0, J=0$ for singles, and $\varepsilon_{i j}^{I J}$ random shock with mean zero.

- Therefore: dual variables $\left(u_{i}, v_{j}\right)$ also random (endogenous distribution)

Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity) \rightarrow Gain $g_{i j}^{I J}$ generated by the match $i \in I, j \in J$:

$$
g_{i j}^{I J}=Z^{I J}+\varepsilon_{i j}^{\prime J}
$$

where $I=0, J=0$ for singles, and $\varepsilon_{i j}^{I J}$ random shock with mean zero.

- Therefore: dual variables $\left(u_{i}, v_{j}\right)$ also random (endogenous distribution)
- What do we know about the distribution of the dual variables? \rightarrow not much!

Empirical implementation 1: matching patterns only

- Agent belong to a (small) number of categories: $i \in I, j \in J$
- Basic insight: unobserved characteristics (heterogeneity) \rightarrow Gain $g_{i j}^{I J}$ generated by the match $i \in I, j \in J$:

$$
g_{i j}^{I J}=Z^{I J}+\varepsilon_{i j}^{\prime J}
$$

where $I=0, J=0$ for singles, and $\varepsilon_{i j}^{I J}$ random shock with mean zero.

- Therefore: dual variables $\left(u_{i}, v_{j}\right)$ also random (endogenous distribution)
- What do we know about the distribution of the dual variables? \rightarrow not much!
- Alternative approach: use the stability inequalities

$$
u_{i}+v_{j} \geq g_{i j}^{\prime J} \text { for any }(i, j)
$$

\rightarrow large number (one inequality per potential couple)

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption \mathbf{S} (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{\prime J} \tag{S}
\end{equation*}
$$

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption S (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{\prime J} \tag{S}
\end{equation*}
$$

- Interpretations:

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption S (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{\prime J} \tag{S}
\end{equation*}
$$

- Interpretations:
- Idiosyncratic preferences for an educated partner

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption S (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{I J} \tag{S}
\end{equation*}
$$

- Interpretations:
- Idiosyncratic preferences for an educated partner
- or: idiosyncratic attractiveness for an educated partner

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption S (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{I J} \tag{S}
\end{equation*}
$$

- Interpretations:
- Idiosyncratic preferences for an educated partner
- or: idiosyncratic attractiveness for an educated partner
- Only the spouse's category matters

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption S (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{I J} \tag{S}
\end{equation*}
$$

- Interpretations:
- Idiosyncratic preferences for an educated partner
- or: idiosyncratic attractiveness for an educated partner
- Only the spouse's category matters
- Then:

Empirical implementation

- Crucial identifying assumption (Dagsvik 2000, Choo-Siow 2006) Assumption \mathbf{S} (separability): the idiosyncratic component $\varepsilon_{i j}$ is additively separable:

$$
\begin{equation*}
\varepsilon_{i j}^{I J}=\alpha_{i}^{I J}+\beta_{j}^{I J} \tag{S}
\end{equation*}
$$

- Interpretations:
- Idiosyncratic preferences for an educated partner
- or: idiosyncratic attractiveness for an educated partner
- Only the spouse's category matters
- Then:

Theorem

Under S, there exists $U^{I J}$ and $V^{I J}$ such that $U^{I J}+V^{I J}=Z^{I J}$ and for any match $(i \in I, j \in J)$

$$
\begin{aligned}
& u_{i}=U^{I J}+\alpha_{i}^{I J} \\
& v_{j}=V^{I J}+\beta_{j}^{I J}
\end{aligned}
$$

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the εs ?

Empirical implementation

- What's wrong without separability (i.e. $\varepsilon_{i j}$)? Many issues
- What correlation structure on the εs ?
- General correlation structure: no hope to identify it!

Empirical implementation

- What's wrong without separability (i.e. $\varepsilon_{i j}$)? Many issues
- What correlation structure on the εs ?
- General correlation structure: no hope to identify it!
- Independence:

Empirical implementation

- What's wrong without separability (i.e. $\varepsilon_{i j}$)? Many issues
- What correlation structure on the εs ?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe

Empirical implementation

- What's wrong without separability (i.e. $\varepsilon_{i j}$)? Many issues
- What correlation structure on the es?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the es?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the es?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the es?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:
- Utilities tend to infinity

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the es?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:
- Utilities tend to infinity
- Matching either mostly based on the random term, or not random at all ('large deviations')

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the εs ?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:
- Utilities tend to infinity
- Matching either mostly based on the random term, or not random at all ('large deviations')
- no singles, and very large expected utility conditional on singlehood

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the εs ?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:
- Utilities tend to infinity
- Matching either mostly based on the random term, or not random at all ('large deviations')
- no singles, and very large expected utility conditional on singlehood
- More generally: the frictionless assumption hard to justify with many agents
... but not with a small number of categories!

Empirical implementation

- What's wrong without separability (i.e. $\left.\varepsilon_{i j}\right) ? \rightarrow$ Many issues
- What correlation structure on the εs ?
- General correlation structure: no hope to identify it!
- Independence:
- Hard to believe
- Strange outcomes with large populations: tendency to match with the upper bound of the ε distribution
- Bounded support: degenerate stochastic structure (limit)
- Unbounded support:
- Utilities tend to infinity
- Matching either mostly based on the random term, or not random at all ('large deviations')
- no singles, and very large expected utility conditional on singlehood
- More generally: the frictionless assumption hard to justify with many agents
... but not with a small number of categories!
- Lastly, parcimony!

Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$
\begin{aligned}
& U^{I J}+\alpha_{i}^{I J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \\
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{I K}+\alpha_{i}^{I K} \text { for all } K
\end{aligned}
$$

Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$
\begin{aligned}
& U^{I J}+\alpha_{i}^{I J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \\
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{I K}+\alpha_{i}^{I K} \text { for all } K
\end{aligned}
$$

- In practice (Choo-Siow approach):

Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$
\begin{aligned}
& U^{I J}+\alpha_{i}^{I J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \\
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{I K}+\alpha_{i}^{I K} \text { for all } K
\end{aligned}
$$

- In practice (Choo-Siow approach):
- take singlehood as a benchmark (interpretation!)

Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$
\begin{aligned}
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \\
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{\prime K}+\alpha_{i}^{\prime K} \text { for all } K
\end{aligned}
$$

- In practice (Choo-Siow approach):
- take singlehood as a benchmark (interpretation!)
- assume the $\alpha_{i}^{I J}$ are extreme value distributed

Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$
\begin{aligned}
& U^{\prime J}+\alpha_{i}^{\prime J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \\
& U^{\prime J}+\alpha_{i}^{\prime J} \geq U^{\prime K}+\alpha_{i}^{\prime K} \text { for all } K
\end{aligned}
$$

- In practice (Choo-Siow approach):
- take singlehood as a benchmark (interpretation!)
- assume the $\alpha_{i}^{I J}$ are extreme value distributed
- then $2 \times K$ logits (one for each gender and education) $\rightarrow U^{I J}, V^{I J}$

Empirical implementation

Theorem

A NSC for $i \in I$ being matched with a spouse in J is:

$$
\begin{aligned}
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{\prime 0}+\alpha_{i}^{\prime 0} \\
& U^{I J}+\alpha_{i}^{\prime J} \geq U^{\prime K}+\alpha_{i}^{\prime K} \text { for all } K
\end{aligned}
$$

- In practice (Choo-Siow approach):
- take singlehood as a benchmark (interpretation!)
- assume the $\alpha_{i}^{\prime J}$ are extreme value distributed
- then $2 \times K$ logits (one for each gender and education) $\rightarrow U^{I J}, V^{I J}$
- and expected utility:

$$
\bar{u}^{\prime}=E\left[\max _{J}\left(U^{\prime J}+\alpha_{i}^{I J}\right)\right]=\ln \left(\sum_{J} \exp U^{I J}+1\right)=-\ln \left(a^{\prime 0}\right)
$$

Empirical implementation (cont.)

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption \rightarrow the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ follow any distribution

Empirical implementation (cont.)
 Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
\rightarrow the $\alpha \mathrm{s}$ and β s follow any distribution
- Define the function G_{l} by:

$$
G_{I}\left(U^{I \varnothing}, \ldots, U^{I K}\right)=E\left[\max _{J=\varnothing, 1, \ldots, K}\left(U^{I J}+\alpha_{i}^{J}\right)\right]
$$

which can be computed if thedistribution of the $\alpha \mathrm{s}$ is known. Then G_{l} increasing, convex and envelope theorem: $\partial G_{l} / \partial U^{I J}$ is the probability that $i \in I$ marries someone in J

Empirical implementation (cont.)

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption \rightarrow the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ follow any distribution
- Define the function G_{l} by:

$$
G_{I}\left(U^{\prime \varnothing}, \ldots, U^{I K}\right)=E\left[\max _{J=\varnothing, 1, \ldots, K}\left(U^{I J}+\alpha_{i}^{J}\right)\right]
$$

which can be computed if thedistribution of the α s is known. Then G_{l} increasing, convex and envelope theorem: $\partial G_{l} / \partial U^{I J}$ is the probability that $i \in I$ marries someone in J

- Legendre-Fenchel transform (conjugate) of G_{l} :

$$
G_{I}^{*}\left(\gamma^{0}, \ldots, \gamma^{L}\right)=\max _{U^{0}, \ldots, U^{K}}\left(\sum \gamma^{L} U^{L}-G_{I}\left(U^{0}, \ldots, U^{K}\right)\right)
$$

Then G_{I}^{*} is convex, and envelope theorem: $\partial G_{I}^{*} / \partial \gamma^{J}=U^{I J}$

Empirical implementation (cont.)

Generalization: 'Cupid' framework (Galichon-Salanie 2014)

- Relax the extreme value assumption
\rightarrow the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ follow any distribution
- Define the function G_{l} by:

$$
G_{I}\left(U^{\prime \varnothing}, \ldots, U^{I K}\right)=E\left[\max _{J=\varnothing, 1, \ldots, K}\left(U^{\prime J}+\alpha_{i}^{J}\right)\right]
$$

which can be computed if thedistribution of the $\alpha \mathrm{s}$ is known. Then G_{l} increasing, convex and envelope theorem: $\partial G_{l} / \partial U^{I J}$ is the probability that $i \in I$ marries someone in J

- Legendre-Fenchel transform (conjugate) of G_{l} :

$$
G_{I}^{*}\left(\gamma^{0}, \ldots, \gamma^{L}\right)=\max _{U^{0}, \ldots, U^{K}}\left(\sum \gamma^{L} U^{L}-G_{I}\left(U^{0}, \ldots, U^{K}\right)\right)
$$

Then G_{l}^{*} is convex, and envelope theorem: $\partial G_{l}^{*} / \partial \gamma^{J}=U^{\prime J}$

- $G^{*}\left(\gamma^{\prime}\right)$ is called the generalized entropy of the corresponding discrete choice problem

Empirical implementation

- What can we identify?

Empirical implementation

- What can we identify?
- Basic CS model:

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction
- Can we improve testability?

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction
- Can we improve testability?
- One solution: 'multi-markets' (cf. the IO literature). Ex: CSW

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction
- Can we improve testability?
- One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
- \rightarrow requires invariance of (part of) the surplus ...

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction
- Can we improve testability?
- One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
- \rightarrow requires invariance of (part of) the surplus ...
- ... for instance the 'supermodular core' ('preferences for assortativeness')

$$
z_{t}^{\prime \prime}+Z_{t}^{J J}-z_{t}^{\prime J}-Z_{t}^{J \prime}=K \Rightarrow z_{t}^{\prime J}=\zeta_{t}^{\prime}+\xi_{t}^{J}+z_{0}^{\prime J}
$$

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction
- Can we improve testability?
- One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
- \rightarrow requires invariance of (part of) the surplus ...
- ... for instance the 'supermodular core' ('preferences for assortativeness')

$$
z_{t}^{\prime \prime}+Z_{t}^{J J}-z_{t}^{\prime J}-Z_{t}^{J \prime}=K \Rightarrow z_{t}^{\prime J}=\zeta_{t}^{\prime}+\xi_{t}^{J}+z_{0}^{\prime J}
$$

- ... or at least some restrictions on its variations (e.g. linear trend): $z_{0}^{I J}+z^{I J} \times t$

Empirical implementation

- What can we identify?
- Basic CS model:
- Severe parametric restrictions (distribution of $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ known, no heteroskedasticity,...)
- Even then, the model is exactly identified
- In particular, no testable restriction
- Can we improve testability?
- One solution: 'multi-markets' (cf. the IO literature). Ex: CSW
- \rightarrow requires invariance of (part of) the surplus ...
- ... for instance the 'supermodular core' ('preferences for assortativeness')

$$
z_{t}^{\prime \prime}+Z_{t}^{J J}-z_{t}^{\prime J}-Z_{t}^{J \prime}=K \Rightarrow z_{t}^{\prime J}=\zeta_{t}^{\prime}+\xi_{t}^{J}+z_{0}^{\prime J}
$$

- ... or at least some restrictions on its variations (e.g. linear trend): $z_{0}^{I J}+z^{I J} \times t$
- Alternatively, more information is needed

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility
- \rightarrow observed behavior (e.g. labor supply) allows to identify preferences

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility
- \rightarrow observed behavior (e.g. labor supply) allows to identify preferences
- ... therefore the surplus

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility
- \rightarrow observed behavior (e.g. labor supply) allows to identify preferences
- ... therefore the surplus
- In practice:

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility
- \rightarrow observed behavior (e.g. labor supply) allows to identify preferences
- ... therefore the surplus
- In practice:
- either double set of logit regressions, plus constraints across equations

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility
- \rightarrow observed behavior (e.g. labor supply) allows to identify preferences
- ... therefore the surplus
- In practice:
- either double set of logit regressions, plus constraints across equations
- or simulated moments ...

Empirical implementation 2: matching patterns and (information on) the surplus

- Basic insight
- More information needed
- Here, pairwise surplus (as a function of traits)
- Where can such an information come from?
- Answer: from observed behavior
- Structure:
- Start with given preferences, satisfying TU
- Once a couple is formed, they maximize total utility
- \rightarrow observed behavior (e.g. labor supply) allows to identify preferences
- ... therefore the surplus
- In practice:
- either double set of logit regressions, plus constraints across equations
- or simulated moments ...
- ... especially since simulating the model is easy (linear optimization)

Empirical implementation 3: matching patterns and transfers

- Basic reference: hedonic models
- Strong, non parametric identification results
- See f.i. Ekeland, Heckman and Nesheim (2004), Heckman, Matzkin and Nesheim (2010), Chernozhukov, Galichon and Henry (2014) and Nesheim (2013)

Roadmap

(1) Empirical implementation
(2) The US education puzzle

- One-dimensional version: CSW (2014)
- Two-dimensional version: Low (2014)
- Matching patterns and behavior: CCM 2015
(3) Job matching by skills Lindenlaub (2014)

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
- Impact on intrahousehold allocation?

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?
- Answers provided by matching models:

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?
- Answers provided by matching models:
- First question: just compute the dual variables!

The demand for education puzzle

- Motivation: remarkable increase in female education, labor supply, incomes during the last decades.

- Two questions:
- Impact on intrahousehold allocation?
- How can the asymmetry between genders be explained?
- Answers provided by matching models:
- First question: just compute the dual variables!
- Second question: 'marital college premium'

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected
- their evolution markedly differs across genders

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected
- their evolution markedly differs across genders
- may influence investment behavior \rightarrow may explain the puzzle

The marital college premium (CIW AER 2009)

- Basic intuition: investment in HC generates two types of benefits:
- on the labor market ('college premium')
- extensively studied
- no significant difference between men and women (if anything favors men)
- \rightarrow cannot explain asymmetry between gender
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected
- their evolution markedly differs across genders
- may influence investment behavior \rightarrow may explain the puzzle
- But a structural model is needed!

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.
- Then:

$$
g_{i j, t}=Z_{t}^{I J}+\alpha_{i, t}^{\prime J}+\beta_{j, t}^{I J}
$$

where α, β extreme value distributed

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.
- Then:

$$
g_{i j, t}=Z_{t}^{I J}+\alpha_{i, t}^{\prime J}+\beta_{j, t}^{I J}
$$

where α, β extreme value distributed

- Identifying assumption:

$$
\left.\begin{array}{rl}
\text { either } & Z_{t}^{\prime J} \\
\text { or } & Z_{t}^{\prime J} \tag{2}
\end{array}=\zeta_{t}^{\prime}+\zeta_{t}^{J}+\zeta_{t}^{J}+\left(Z_{0}^{I J}+\delta^{\prime J} \times t\right)\right) ~ l
$$

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.
- Then:

$$
g_{i j, t}=Z_{t}^{I J}+\alpha_{i, t}^{\prime J}+\beta_{j, t}^{\prime J}
$$

where α, β extreme value distributed

- Identifying assumption:

$$
\left.\begin{array}{rl}
\text { either } & Z_{t}^{I J} \\
\text { or } & Z_{t}^{I J} \tag{2}
\end{array}=\zeta_{t}^{\prime}+\zeta_{t}^{J}+\zeta_{t}^{J}+\left(Z_{0}^{I J}+\delta^{\prime J} \times t\right)\right) ~ l
$$

- Interpretation:

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.
- Then:

$$
g_{i j, t}=Z_{t}^{I J}+\alpha_{i, t}^{\prime J}+\beta_{j, t}^{\prime J}
$$

where α, β extreme value distributed

- Identifying assumption:

$$
\left.\begin{array}{rl}
\text { either } & Z_{t}^{I J} \\
\text { or } & Z_{t}^{I J} \tag{2}
\end{array}=\zeta_{t}^{\prime}+\zeta_{t}^{J}+\xi_{t}^{J}+\left(Z_{0}^{I J}+\delta^{I J} \times t\right)\right) ~ l
$$

- Interpretation:
- Non parametric trends ζ^{\prime}, ξ^{J} affecting the surplus but not the supermodularity

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.
- Then:

$$
g_{i j, t}=Z_{t}^{I J}+\alpha_{i, t}^{\prime J}+\beta_{j, t}^{\prime J}
$$

where α, β extreme value distributed

- Identifying assumption:

$$
\left.\begin{array}{rl}
\text { either } & Z_{t}^{I J} \\
\text { or } & Z_{t}^{I J} \tag{2}
\end{array}=\zeta_{t}^{\prime}+\zeta_{t}^{J}+\xi_{t}^{J}+\left(Z_{0}^{I J}+\delta^{I J} \times t\right)\right) ~ l
$$

- Interpretation:
- Non parametric trends ζ^{\prime}, ξ^{J} affecting the surplus but not the supermodularity
- (1): 'preferences for assortativeness' do not change \rightarrow testable

One-dimensional version: CSW 2014

- Idea: structural model holds for different cohorts $t=1, \ldots, T$ with varying class compositions.
- Then:

$$
g_{i j, t}=Z_{t}^{I J}+\alpha_{i, t}^{\prime J}+\beta_{j, t}^{\prime J}
$$

where α, β extreme value distributed

- Identifying assumption:

$$
\left.\begin{array}{rl}
\text { either } & Z_{t}^{I J} \\
\text { or } & Z_{t}^{I J} \tag{2}
\end{array}=\zeta_{t}^{I}+\zeta_{t}^{J}+\zeta_{t}^{I J}+\left(Z_{0}^{I J}+\delta^{I J} \times t\right)\right) ~ l
$$

- Interpretation:
- Non parametric trends ζ^{\prime}, ξ^{J} affecting the surplus but not the supermodularity
- (1): 'preferences for assortativeness' do not change \rightarrow testable
- (2): 'preferences for assortativeness' follow linear trends $\delta^{I J}$

What do raw data say?

Comparing educations within white couples

Comparing educations within black couples

Results: preferences for assortativeness

		Women				
		HSD	HSG	SC	CG	CG+
Men	HSD	$\begin{aligned} & 0.0118^{* * *} \\ & (0.0015) \end{aligned}$	$\begin{aligned} & 0.0067^{* * *} \\ & (0.0012) \end{aligned}$	$\begin{aligned} & 0.0146^{* * *} \\ & (0.0018) \end{aligned}$	$\begin{aligned} & -0.0023 \\ & (0.0017) \end{aligned}$	$\begin{aligned} & -0.036 \\ & 0.001 \\ & 0 \end{aligned}$
	HSG	$-0.0237 * * *$	0.0024	0.011***	-0.0009	-0.01
		${ }^{(0.0011)}$	(0.0008)	${ }^{(0.0008)}$	(0.0009)	(0.001
	SC	$-0.0198^{* * *}$	-0.001	0.0056***	0.004***	0.0001 $(0.0014$
		(0.0013)	(0.0006)	(0.0013)	${ }^{(0.0015)}$	(0.00
	CG	0.0187***	-0.0011	-0.0093***	0.0079***	0.015
		(0.0012)	(0.0009)	(0.0013)	(0.0015)	(0.00
	CG+	0.0436***	0.0055***	-0.0087***	-0.0059**	0.01
		(0.0004)	(0.0006)	(0.0008)	(0.001)	(0.00

Table: Slopes - linear extension

Results: college premium

Figure 12: The marital college premium

Roadmap

(1) Empirical implementation
(2) The US education puzzle

- One-dimensional version: CSW (2014)
- Two-dimensional version: Low (2014)
- Matching patterns and behavior: CCM 2015
(3) Job matching by skills Lindenlaub (2014)

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.
- Con: delayed entry \rightarrow loss of 'reproductive capital'

Reproductive capital and women's demand for higher education

Source: Corinne Low's dissertation (2014)

- Basic remark: sharp decline in female fertility between 35 and 45
- Consequence: matching patterns and age
- Consider the choice between
- entering the MM after college
- delaying, in order to acquire a 'college +' degree
- Pros and cons of delaying:
- Pro: higher education \rightarrow higher wage, etc.
- Con: delayed entry \rightarrow loss of 'reproductive capital'
- Impact on marital prospects?

Model

- Two commodities, private consumption and child expenditures; utility:

$$
u_{i}=c_{i}(Q+1), i=h, w
$$

and budget constraint (y_{i} denotes i 's income)

$$
c_{h}+c_{w}+Q=y_{h}+y_{w}
$$

Model

- Two commodities, private consumption and child expenditures; utility:

$$
u_{i}=c_{i}(Q+1), i=h, w
$$

and budget constraint (y_{i} denotes i 's income)

$$
c_{h}+c_{w}+Q=y_{h}+y_{w}
$$

- Transferable utility: any efficient allocation maximizes $u_{h}+u_{w}$; therefore surplus with a child

$$
s\left(y_{h}, y_{w}\right)=\frac{\left(y_{h}+y_{w}+1\right)^{2}}{4}
$$

and without a child $(Q=0)$

$$
s\left(y_{h}, y_{w}\right)=y_{h}+y_{w}
$$

therefore, if π probability of a child:

$$
s\left(y_{h}, y_{w}\right)=\pi \frac{\left(y_{h}+y_{w}+1\right)^{2}}{4}+(1-\pi)\left(y_{h}+y_{w}\right)
$$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
- how is the surplus distributed?

Populations

- Men: differ in income $\rightarrow y_{h}$ uniform on $[1, Y]$
- Women: more complex
- differ in skills $\rightarrow s$ uniform on $[0, S]$
- may choose to invest \rightarrow income:
- $y_{w}=\lambda s$ if invest (with $\lambda>1$)
- $y_{w}=s$ if not
- but investment implies fertility loss
- $\pi=p$ if invest
- $\pi=P>p$ if not
- Therefore: once investment decisions have been made, bidimensional matching model, and three questions:
- who marries whom?
- how is the surplus distributed?
- what is the impact on (ex ante) investment?

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
- Regime 1: negative assortative matching (can be discarded)

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: non monotonic matching

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: non monotonic matching
- Regime 3: positive assortative matching

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: non monotonic matching
- Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: non monotonic matching
- Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:
- If λ small and P / p large, regime 2

Resolution

- Assumption: investment decision such that there exists some \bar{s} such that

$$
\text { invest iff } s \geq \bar{s}
$$

Then:

- There exists a stable match (conditional on education); generically unique
- For given fertility, assortative matching on income
- Matching and fertility: three possible regimes (plus intermediate randomization)
- Regime 1: negative assortative matching (can be discarded)
- Regime 2: non monotonic matching
- Regime 3: positive assortative matching
- Which regime? Depends on the parameters. In particular:
- If λ small and P / p large, regime 2
- If λ large and P / p not too large, regime 3

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size

Notes: "Don't know/refused" responses not shown. Respondents were asked: "What is the ideal number of children for a family to have?"

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate
- After the 80s: college + women marry 'above' college graduate

Empirical predictions

Basic intuition: we have moved from ' λ small, P / p large' to ' λ large, P / p not too large' Why?

- Increase in λ : dramatic increase in 'college + premium'
- Decrease in P / p : two factors
- progress in assisted reproduction
- (much more important): dramatic change in desired family size
- Consequence: according to the model:
- Before the 80 s: college + women marry 'below' college graduate
- After the 80s: college + women marry 'above' college graduate
- What about data?

Spousal income by wife's education level, white women 41-50

Roadmap

(1) Empirical implementation
(2) The US education puzzle

- One-dimensional version: CSW (2014)
- Two-dimensional version: Low (2014)
- Matching patterns and behavior: CCM 2015
(3) Job matching by skills Lindenlaub (2014)

Matching patterns and behavior Chiappori, Costa Dias, Meghir 2015

- The basic motivation for this project is to understand how policy affects individual life-cycle decisions
- Long term effects will change education choices and the marriage market
- In turn this will have effects on labor supply and will have intergenerational impacts
- Two fundamental, Beckerian insights: Notion of Human Capital and Matching as an equilibrium phenomenon

Matching patterns and behavior

Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game

Matching patterns and behavior

Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics

Matching patterns and behavior

Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage

Matching patterns and behavior

Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative

Matching patterns and behavior
 Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply

Matching patterns and behavior Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good

Matching patterns and behavior Chiappori, Costa Dias, Meghir 2015

Basic features:

- Agents invest in education before entering the matching game
- Human Capital: education + random dynamics
- At any moment, Human Capital stock determines the wage
- Risk: shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- TU context

Timing

(1) Agents invest in education; heterogeneous costs

Timing

(1) Agents invest in education; heterogeneous costs
(2) Agents enter the MM with their education level H; matching takes place; full commitment

Timing

(1) Agents invest in education; heterogeneous costs
(2) Agents enter the MM with their education level H; matching takes place; full commitment
(3) Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

Timing

(1) Agents invest in education; heterogeneous costs
(2) Agents enter the MM with their education level H; matching takes place; full commitment
(3) Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Shocks are realized:

$$
\ln w_{i, t}=\ln W_{t}+\ln H_{i}+\ln \left(e_{i, t}\right), \quad i=1,2
$$

Timing

(1) Agents invest in education; heterogeneous costs
(2) Agents enter the MM with their education level H; matching takes place; full commitment
(3) Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Shocks are realized:

$$
\ln w_{i, t}=\ln W_{t}+\ln H_{i}+\ln \left(e_{i, t}\right), \quad i=1,2
$$

- \rightarrow agents supply labor and consume

Timing

(1) Agents invest in education; heterogeneous costs
(2) Agents enter the MM with their education level H; matching takes place; full commitment
(3) Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Shocks are realized:

$$
\ln w_{i, t}=\ln W_{t}+\ln H_{i}+\ln \left(e_{i, t}\right), \quad i=1,2
$$

- \rightarrow agents supply labor and consume
- Note that shocks can be permanent ...

Timing

(1) Agents invest in education; heterogeneous costs
(2) Agents enter the MM with their education level H; matching takes place; full commitment
(3) Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Shocks are realized:

$$
\ln w_{i, t}=\ln W_{t}+\ln H_{i}+\ln \left(e_{i, t}\right), \quad i=1,2
$$

- \rightarrow agents supply labor and consume
- Note that shocks can be permanent ...
- ... including initial productivity (or HC) shock

Solution

Backwards:

- Start with periods 3

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
- Matching patterns (who marries whom by education)

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
- Matching patterns (who marries whom by education)
- (Future, contingent) intra-household allocation

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
- Matching patterns (who marries whom by education)
- (Future, contingent) intra-household allocation
- \rightarrow ultimately, the returns to education

Solution

Backwards:

- Start with periods 3
- Collective, life cycle LS model

$$
u_{i}\left(Q_{t}, C_{i, t}, L_{i, t}\right)=\ln \left(C_{i, t} Q_{t}+\alpha_{i}(a g e, g, s) L_{i, t} Q_{t}\right)
$$

- Under TU \rightarrow household utility \rightarrow standard, unitary model
- Defines total expected surplus at the household level
- Intra-household allocation not determined
- Then period 2: determines
- Matching patterns (who marries whom by education)
- (Future, contingent) intra-household allocation
- \rightarrow ultimately, the returns to education
- Finally period 1: education decisions

Estimation

- Basic idea: simulated moments

Estimation

- Basic idea: simulated moments
- Choose some parameters

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
- Problem: very hard

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
- Problem: very hard
- Stage 3: dynamic, stochastic LS model

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
- Problem: very hard
- Stage 3: dynamic, stochastic LS model
- Stage 2: matching model (with the surplus estimated from stage 3)

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
- Problem: very hard
- Stage 3: dynamic, stochastic LS model
- Stage 2: matching model (with the surplus estimated from stage 3)
- Stage 1: Rational expectations \rightarrow fixed point in a functional space

Estimation

- Basic idea: simulated moments
- Choose some parameters
- Simulate the model
- Iterate to fit a set of moments
- Problem: very hard
- Stage 3: dynamic, stochastic LS model
- Stage 2: matching model (with the surplus estimated from stage 3)
- Stage 1: Rational expectations \rightarrow fixed point in a functional space
- Simplification: use the 'fictitious game'

Pre-matching investment

- Two-stage model:

Pre-matching investment

- Two-stage model:
- Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative

Pre-matching investment

- Two-stage model:
- Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
- Stage two: matching game on $\mathrm{HC}+$ other characteristics

Pre-matching investment

- Two-stage model:
- Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
- Stage two: matching game on $\mathrm{HC}+$ other characteristics
- Resolution: backwards

Pre-matching investment

- Two-stage model:
- Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
- Stage two: matching game on $\mathrm{HC}+$ other characteristics
- Resolution: backwards
- Stage 2: stability give U, V as functions of HC

Pre-matching investment

- Two-stage model:
- Stage one: agents choose a level of human capital at some cost \rightarrow non cooperative
- Stage two: matching game on $\mathrm{HC}+$ other characteristics
- Resolution: backwards
- Stage 2: stability give U, V as functions of HC
- Stage 1: agents choose HC to maximize utility - cost

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)
- Stage two: jointly choose HC investment to maximize joint surplus

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:
- The two stage game is complex, because of its rational expectation structure (\rightarrow fixed point in a functional space)

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost and any other predetermined parameters)
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:
- The two stage game is complex, because of its rational expectation structure (\rightarrow fixed point in a functional space)
- The fictitious game is much easier to simulate (matching \rightarrow linear programming)

Roadmap

(1) Empirical implementation
(2) The US education puzzle

- One-dimensional version: CSW (2014)
- Two-dimensional version: Low (2014)
- Matching patterns and behavior: CCM 2015
(3) Job matching by skills Lindenlaub (2014)

Job matching by skills (Lindenlaub 2014)

Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs (2×2 matching)

Job matching by skills (Lindenlaub 2014)

Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs $(2 \times 2$ matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.

Job matching by skills (Lindenlaub 2014)

Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs (2×2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)

Job matching by skills (Lindenlaub 2014)

Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs $(2 \times 2$ matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- \rightarrow Sorting improves along the cognitive dimension but deteriorates along the manual dimension

Job matching by skills (Lindenlaub 2014)

Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs (2×2 matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- \rightarrow Sorting improves along the cognitive dimension but deteriorates along the manual dimension
- \rightarrow Wages more convex in cognitive but less convex in manual skills

Job matching by skills (Lindenlaub 2014)

Basic insights

- Two types of skills: manual and cognitive \rightarrow workers and jobs $(2 \times 2$ matching)
- Sorting trade-off: worker-job complementarities in cognitive versus manual tasks.
- Task-biased technological change increases the level of complementarities between cognitive skills and skill demands (relative to those in the manual dimension)
- \rightarrow Sorting improves along the cognitive dimension but deteriorates along the manual dimension
- \rightarrow Wages more convex in cognitive but less convex in manual skills
- \rightarrow Increased wage inequality along the cognitive dimension, compressed inequality in the manual dimension.

Job matching by skills (Lindenlaub 2014)

- Model:

$$
\pi_{i j}=F_{C}\left(x_{C}^{i}, y_{C}^{i}\right)+F_{M}\left(x_{M}^{i}, y_{M}^{i}\right)
$$

Job matching by skills (Lindenlaub 2014)

- Model:

$$
\pi_{i j}=F_{C}\left(x_{C}^{i}, y_{C}^{i}\right)+F_{M}\left(x_{M}^{i}, y_{M}^{i}\right)
$$

- Matching: if pure,

$$
\begin{aligned}
y_{C} & =\Phi_{C}\left(x_{C}, x_{M}\right) \\
y_{M} & =\Phi_{M}\left(x_{C}, x_{M}\right)
\end{aligned}
$$

Job matching by skills (Lindenlaub 2014)

- Model:

$$
\pi_{i j}=F_{C}\left(x_{C}^{i}, y_{C}^{i}\right)+F_{M}\left(x_{M}^{i}, y_{M}^{i}\right)
$$

- Matching: if pure,

$$
\begin{aligned}
y_{C} & =\Phi_{C}\left(x_{C}, x_{M}\right) \\
y_{M} & =\Phi_{M}\left(x_{C}, x_{M}\right)
\end{aligned}
$$

- PAM: $\partial \Phi_{C} / \partial x_{C}>0, \partial \Phi_{M} / \partial x_{M}>0$, Det >0

Job matching by skills (Lindenlaub 2014)

- Model:

$$
\pi_{i j}=F_{C}\left(x_{C}^{i}, y_{C}^{i}\right)+F_{M}\left(x_{M}^{i}, y_{M}^{i}\right)
$$

- Matching: if pure,

$$
\begin{aligned}
y_{C} & =\Phi_{C}\left(x_{C}, x_{M}\right) \\
y_{M} & =\Phi_{M}\left(x_{C}, x_{M}\right)
\end{aligned}
$$

- PAM: $\partial \Phi_{C} / \partial x_{C}>0, \partial \Phi_{M} / \partial x_{M}>0$, Det >0
- Theorem: if

$$
\partial^{2} F_{C} / \partial x_{C}^{i} \partial y_{C}^{i}>0 \text { and } \partial^{2} F_{M} / \partial x_{M}^{i} \partial y_{M}^{i}>0
$$

then PAM

Job matching by skills (Lindenlaub 2014)

- Model:

$$
\pi_{i j}=F_{C}\left(x_{C}^{i}, y_{C}^{i}\right)+F_{M}\left(x_{M}^{i}, y_{M}^{i}\right)
$$

- Matching: if pure,

$$
\begin{aligned}
y_{C} & =\Phi_{C}\left(x_{C}, x_{M}\right) \\
y_{M} & =\Phi_{M}\left(x_{C}, x_{M}\right)
\end{aligned}
$$

- PAM: $\partial \Phi_{C} / \partial x_{C}>0, \partial \Phi_{M} / \partial x_{M}>0$, Det >0
- Theorem: if

$$
\partial^{2} F_{C} / \partial x_{C}^{i} \partial y_{C}^{i}>0 \text { and } \partial^{2} F_{M} / \partial x_{M}^{i} \partial y_{M}^{i}>0
$$

then PAM

- Then Quadratic-Gaussian model

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(9) Can be taken to data; structural econometric model, over identified
(3) Multidimensional versions: index (COQD 2010), general (CMcCP 2015)
(0) Extensions

- ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(9) Can be taken to data; structural econometric model, over identified
(5) Multidimensional versions: index (COQD 2010), general (CMcCP 2015)
(0) Extensions

- ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
- Joint estimation of surplus and matching (\rightarrow 'consistency' !); for instance domestic production

Conclusion

(1) Frictionless matching: a powerful and tractable tool for theoretical analysis, especially when not interested in frictions
(2) Crucial property: intramatch allocation of surplus derived from equilibrium conditions
(3) Applied theory: many applications (abortion, female education, divorce laws, children, ...)
(9) Can be taken to data; structural econometric model, over identified
(5) Multidimensional versions: index (COQD 2010), general (CMcCP 2015)
(6) Extensions

- ITU: theory; empirical applications still to be developed (but: Galichon-Kominers-Weber 2015)
- Joint estimation of surplus and matching (\rightarrow 'consistency'!); for instance domestic production
- Dynamics: divorce, etc.

