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Introduction: markets for heterogeneous products

Housing: speci�c features

1 Discrete individual demand
2 Heterogeneous products
! product-speci�c price

3 Each �product�(or �producer�) de�ned by a list of �characteristics�

Size
Location
View, �oor
Amenities, etc.
! price re�ects these characteristics

4 Di¤erent buyers have di¤erent valuations of the product�s
characteristics

Notion of �hedonic models�(Lancaster 1966):

Product de�ned by a list of characteristics ! vector z
Price de�ned as the price of a particular combination of characteristics,
P (z)
Buyer�s utility depends on z (e.g. ∑ xk zk , where x = (x1, ..., xk ) is
buyer-speci�c)
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Introduction: markets for heterogeneous products

Other examples?

Cars, computers, etc.

Heterogeneous products
Heterogeneous buyers�preferences
Heterogeneous producers (typically heterogeneous costs), who produce
several units

Labor?

Especially highly skilled
Obvious example: CEOs
But also: academics, artists, athletes, ...

Interesting aspects: bilateral preferences

An academic is characterized by a list of characteristics ...
... so is a university (actually a department)
! notion of �quality of match�

How about marriage?
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Matching Models with Transfers

Two heterogeneous populations; say, �rms and (potential) CEOs

Matching: one individual (at most) from each population

Gain generated by such a match, match-speci�c

Generalizations: many to one, many to many, �roommate�matching

Goal: explain:

Who is matched with whom?
(in some models): how is the gain allocated?
! therefore: endogeneize �power�and intramatch allocations as
functions of the �environment�(i.e. the �market�)

Equilibrium concept: Stability

Robustness vis a vis uni- or bilateral deviations
Interpretation: �divorce at will�
Models of competition (although not necessarily perfect)
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Matching Models with Transfers

Links with hedonic models?
! very deep:
(Almost) any hedonic model is a matching model (and conversely)

Hedonic models are matching models

An hedonic equilibrium matches a producer and a consumer
Which product? ! maximizes (pairwise) surplus

(Less obvious): matching models are hedonic equilibria

Basic question:
Where is the price?
! Basic insight (Shapley-Shubik, Becker)
Intra-pair allocation as a market clearing price
Therefore:

intra-pair allocation constrained or pinned down by stability conditions
therefore in�uenced by �market conditions�

Applications (among many): intrahousehold allocation (crucial!)
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Possible interpretation: �marriage market�

Two populations, men and women; matching: one individual from
each population

We want to explain matching patterns (who marries whom):

assortative matching (by education, income,...);
impact on inequality, etc.

... but also: how are the gain from marriage allocated?

... and: how does the market for marriage a¤ect behavior:

ex post: behavior (including human capital investment) of existing
couples (basic idea: expenditures may depend on the spouses�
respective �powers�- cf collective model).
ex ante: human capital investment of future spouses. Basic idea: HC
improves marital prospects, in many directions ! a crucial motivation
for HC investment, that has been overlooked so far.

�Tractable General Equilibrium�

Di¤erent models are better suited for some purposes than for others.
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Issues related to matching: two examples
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Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�

Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.
Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�
Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?
Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?
How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�
Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.

Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�
Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?
Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?
How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�
Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.
Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�

Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?
Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?
How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�
Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.
Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�
Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?
Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?
How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�
Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.
Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�
Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?

Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?
How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�
Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.
Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�
Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?
Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?

How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 1: Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
�The changing correlation of husband and wife earnings has tended to
reinforce the e¤ect of greater pay disparity.�
Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased
assortative matching.
Several recent papers (e.g. Greenwood et al 2013): �if people
matched in 2005 according to the 1960 standardized mating pattern
there would be a signi�cant reduction in income inequality; i.e., the
Gini drops from 0.43 to 0.35.�
Several questions; in particular:

Which correlation should we consider: Earnings? Wages? Human
capital?
Why did correlation change? Did �preferences for assortativeness�
change? How can we de�ne �preferences for assortativeness�?
How do we compare single-adult households and couples? What about
intrahousehold inequality?

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 9 / 57



Example 2: College premium and the demand for college
education
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Example 2: College premium and the demand for college
education

Motivation: remarkable increase in female education, labor supply,
incomes worldwide during the last decades.

Source: Becker-Hubbard-Murphy 2009
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Example 2: College premium and the demand for college
education

In the US:
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Example 2: College premium and the demand for college
education

Questions:

why such di¤erent responses by gender?

impact on intrahousehold allocation?

impact on household behavior (expenditure, HC investment, etc.)

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 13 / 57



Example 2: College premium and the demand for college
education

Questions:

why such di¤erent responses by gender?

impact on intrahousehold allocation?

impact on household behavior (expenditure, HC investment, etc.)

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 13 / 57



Example 2: College premium and the demand for college
education

Questions:

why such di¤erent responses by gender?

impact on intrahousehold allocation?

impact on household behavior (expenditure, HC investment, etc.)

P.A. Chiappori (Columbia University) Matching with Transfers Yale, November 2015 13 / 57



Roadmap

1 Matching models: general presentation
2 The case of Transferable Utility (TU)
3 Extensions and applications
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Matching models: three main families

1 Matching under NTU (Gale-Shapley)
Idea: no transfer possible between matched partners

2 Matching under TU (Becker-Shapley-Shubik)

Transfers possible without restrictions
Technology: constant �exchange rate�between utiles
In particular: (strong) version of interpersonal comparison of utilities
! requires restrictions on preferences

3 Matching under Imperfectly TU (ITU)

Transfers possible
But no restriction on preferences
! technology involves variable �exchange rate�

4 Recently: �general�approaches (�matching with contracts�, from
Kelso-Crawford to Milgrom-Hat�eld-Kominers and friends)
... and links with: auction theory, general equilibrium.
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! requires restrictions on preferences

3 Matching under Imperfectly TU (ITU)

Transfers possible
But no restriction on preferences

! technology involves variable �exchange rate�

4 Recently: �general�approaches (�matching with contracts�, from
Kelso-Crawford to Milgrom-Hat�eld-Kominers and friends)
... and links with: auction theory, general equilibrium.
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Formal structure: Common components

Compact, separable metric spaces X ,Y (�women, men�) with �nite
measures F and G . Note that the spaces may be multidimensional

This talk: concentrate on absolutely continuous measures.

Spaces X ,Y often �completed�to allow for singles:
X̄ = X [ f∅g , Ȳ = Y [ f∅g
A matching de�nes of a measure h on X � Y (or X̄ � Ȳ ) such that
the marginals of h are F and G . Two reasons:

allow for randomization
! it is easy to �nd TU examples (even in one-dimension) where the
unique stable matching involves randomization
emphasize linearity

The matching is pure if the support of the measure is included in the
graph of some function φ
Translation: matching is pure if y = φ (x) a.e.
! no �randomization�
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Formal structure: di¤erences

De�ning the problem: populations X ,Y plus

NTU: two funtions u (x , y) , v (x , y)
TU: one function s (x , y) (intrapair allocation is endogenous)
ITU: Pareto frontier u = F (x , y , v)

De�ning the solution

NTU: only the measure h; stability as usual
TU: measure h and two functions u (x) , v (y) such that

u (x) + v (y) = s (x , y) for (x , y) 2 Supp (h)
and stability

u (x) + v (y) � s (x , y) for all (x , y)
ITU: measure h and two functions u (x) , v (y) such that

u (x) = F (x , y , v (y)) for (x , y) 2 Supp (h)
and stability

u (x) � F (x , y , v (y)) for all (x , y)
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Implications (crucial for empirical implementation)

NTU: stable matchings solve

u(x) = max
z
fU(x , z)jV (x , z) � v(z)g

and
v(y) = max

z
fV (z , y)jU(z , y) � u(z)g

for some pair of functions u and v .

TU: stable matchings solve

u(x) = max
y
fs(x , y)� v(y)g and v(y) = max

x
fs(x , y)� u(x)g

for some pair of functions u and v .
ITU: stable matchings solve

u(x) = max
y
fF (x , y , v (y))g and v(y) = max

x
fF�1(x , y , u (x))g

for some pair of functions u and v .
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Roadmap

1 Matching models: general presentation
2 The case of Transferable Utility (TU)
3 Extensions and applications
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Transferable Utility (TU)

De�nition
A group satis�es TU if there exists monotone transformations of individual
utilities such that the Pareto frontier is an hyperplane
u (x) + v (y) = s (x , y) for all values of prices and income.

Two remarks:

TU is an ordinal concept
In particular, TU compatible with concave utilities and risk aversion

... and a question:

! Consider a model of household behavior: what properties of
individual preferences does TU require?
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TU and individual preferences

Model:

n agents
Private (qi ) and public (Q) consumptions
Risk sharing, intertemporal, ...
Collective (e¢ cient decisions)

Static model: necessary and su¢ cient condition for TU: �A¢ ne
Conditional Indirect Utility�(ACIU, Chiappori and Gugl 2015).

vi (Q, p, ρi ) = a (p,Q) ρi + bi (p,Q)

Includes GQL (Bergstrom & Cornes)...
... but more general

Risk aversion: ISHARA is N and S (Schulhofer-Wohl 2007)
Simplest example:

ui (qi ,Q) =
1

1� α
(qiQ + bi (Q))

1�α

Note that: under TU the group behaves as a single individual (whose
utility is the sum of utilities)
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Duality and optimal transportation

Consider the following surplus maximization problem, which is an
optimal transportation problem (Monge-Kantorovitch):
Find a measure h on X � Y such that:

the marginals of h are F and G
h solves

max
h

Z
X�Y

s (x , y) dh (x , y)

Note: linear programming; therefore

Existence: easy to establish
�Generic�uniqueness
There exists a dual program, and duality theorem applies
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Duality and optimal transportation (cont.)

Dual problem: dual functions u (x) , v (y) and solve

min
u,v

Z
X
u (x) dF (x) +

Z
Y
v (y) dG (y)

under the constraint

u (x) + v (y) � s (x , y) for all (x , y) 2 X � Y

In particular, the dual variables u and v describe an intrapair
allocation compatible with a stable matching
Basic result: A measure h is associated with a stable matching
(h, u, v) if and only if it solves the primal problem
Proof:Z
X
u (x) dF (x) +

Z
Y
v (y) dG (y) =

Z
X�Y

(u (x) + v (y)) dh (x , y)

�
Z
X�Y

s (x , y) dh (x , y)

Duality theorem: equality ) u (x) + v (y) = s (x , y) h - a.e.
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Duality and optimal transportation (cont.)

Corollary: Let s and s̄ be two surplus functions. Assume there exists
two functions f and g, mapping Rm to R and Rn to R respectively,
such that

s (x , y) = s̄ (x , y) + f (x) + g (y)

Any stable matching for s is a stable matching for s̄ and conversely.

Moreover, if s is Lipschitz then u and v are Lipschitz, therefore
di¤erentiable a.e. (Rademacher)

Since
u (x) = max

y
s (x , y)� v (y)

we have that

Dxu (x) = Dx s (x , y) and Dy v (y) = Dy s (x , y)

Question: can we solve the �rst equation in y?
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Links with hedonic models

Structure: three sets (�buyers�X , �sellers�Y , �products�Z ) with
measures µ, ν, σ.

Buyer x : quasi linear preferences U (x , z)� P (z); seller y maximizes
pro�t P (z)� c (y , z)
Equilibrium: price function P (z) that clears markets

Technically: function P and measure α on the product set
X � Y � Z such that

(i) marginal of α on X (resp. Y ) coincides with µ (resp. ν)

(ii) for all (x , y , z) in the support of α,

U (x , z)� P (z) = max
z 02K

�
U
�
x , z 0

�
� P

�
z 0
��

and P (z)� c (y , z) = max
z 02K

�
P
�
z 0
�
� c

�
y , z 0

��
.

Note that: c (y , z) does not depend on x
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Links with hedonic models

Chiappori, McCann and Nesheim (2010): canonical correspondance
between QL hedonic models and matching models under TU.
Speci�cally, consider a hedonic model and de�ne surplus:

s(x , y) = max
z2Z

(U(x , z)� c(y , z))

Let η be the marginal of α over X � Y , u (x) and v (y) by
u (x) = max

z2K
U (x , z)� P (z) and v (y) = max

z2K
P (z)� c (y , z)

Then (η, u, v) de�nes a stable matching. Conversely, starting from a
stable matching (η, u, v), for all (x , y , z) we have:

u(x) + v(y) � s (x , y) � U (x , z)� c (y , z) therefore
c (y , z) + v (y) � U (x , z)� u(x)

For any z , an equilibrium price is any P (z) such that

inf
y2J

fc (y , z) + v (y)g � P (z) � sup
x2I
fu (x , z)� u (x)g
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Supermodularity and assortative matching

Assume X ,Y one-dimensional. Then s is strictly supermodular if
whenever x > x 0 and y > y 0 then

s (x , y) + s
�
x 0, y 0

�
> s

�
x , y 0

�
+ s

�
x 0, y

�

Submodularity: similar
Interpretation: single crossing (Spence - Mirrlees)
In particular, if s is C 2 then for all (x , y):

∂2s
∂x∂y

> 0 (< 0)

Consequence: matching is assortative
Note that the mapping

y ! ∂s
∂x
is injective
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Generalization: the twist condition

Problem: supermodularity and assortative matching are 1-dimensional

Generalization (�twist�condition):

De�nition
The function s 2 C 1 satis�es the twist condition if, for each �xed x0 2 X
and y0 6= y 2 Y , the mapping

x 2 X 7! δ(x , y , x0, y0) = s(x , y) + s(x0, y0)� s(x , y0)� s(x0, y)

has no critical points.

Equivalently, for almost all x0 in X ,

Dx s (x0, y1) = Dx s (x0, y2)) y1 = y2

That is, y ! Dx (x , y) is injective

Then the stable matching is unique and pure
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The twist condition
Example 1: Index models

De�nition: there exists I : Rn ! R and σ : Rm+1 ! R such that:

s (x , y) = σ (x , I (y)) . (1)

NSC:
∂

∂xm

�
∂s/∂yk
∂s/∂yl

�
= 0 8k, l ,m.

Practical use: then n = 1 case, with Y replaced with Ỹ = ImI � R

and ν with push-forward ν̃ := I#ν of ν through I
Extension: pseudo-index models

s (x , y) = α (y) + σ (x , I (y)) . (2)

Both cases: if Dxσ (x , i) is injective in i then

Dx s(x , y) = Dxσ (x , I (y)) 6= Dxσ (x , I (y0)) = Dx s(x , y0)

for any y , y0 such that I (y) 6= I (y0)! Twist!
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The twist condition
Example 2

Example (Galichon-Salanié 2013, Dupuy-Galichon 2013, Lindenlaub
2015):

s (x , y) = fX (x) + gY (y) +
K

∑
k=1

ak fk (xk ) gk (yk )

Then

Dx s (x , y)�Dx s (x , ȳ) =

0B@ a1f 01 (x1) (g1 (y1)� g1 (ȳ1))
...

aK f 0K (xK ) (gK (yK )� gK (ȳK ))

1CA
If both the f s and the gs are strictly monotonic, then twist; therefore
uniqueness and purity
Moreover, matching such that xk increases with yk (Lindenlaub�s
�assortative matching�)
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Intracouple allocation under TU

Discrete number of agents: equilibrium (stability) conditions impose
constraints on individual shares...

... but there exists in general an in�nite set of intramatch allocations

However, with a continuum of agents, intramatch allocation of
welfare is typically pinned down by the equilibrium conditions

Known from the outset, but ...

... much easier than you would think
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Pinning down intracouple allocation under TU

Assume X ,Y one dimensional and s supermodular. Then 3 steps

Step 1: supermodularity implies assortative matching:
x matched with y = ψ (x) if the number of women above x equals
the number of men above ψ (x)

Step 2: Stability implies

u (x) = max
y
s (x , y)� v (y)

with the max being reached for y = ψ (x).
Therefore

u0 (x) =
∂s
∂x
(x ,ψ (x)) and v 0 (y) =

∂s
∂y
(φ (y) , y)

and

u (x) = k +
Z x

0

∂s
∂x
(t,ψ (t)) dt , v (y) = k 0 +

Z y

0

∂s
∂y
(φ (s) , s) ds

! Utilities de�ned up to two additive constants
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Pinning down intracouple allocation under TU

Step 3: pin down the constants

Note that
u (x) + v (ψ (x)) = s (x ,ψ (x))

which pins down the sum k + k 0

If one gender in excess supply (say women): the �last married�woman
indi¤erent between marriage and singlehood
Note: typically, discontinuity
If equal number (knife-edge situation), indeterminate ...
... unless corner solutions
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Three extensions

Imperfectly Transferable Utility (ITU)

Multidimensional matching and links with AS models (CMcCP 2015)

Pre-matching investments
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Imperfectly Transferable Utility (ITU)

Motivation

Limitation of TU models: all Pareto optimums correspond to the
same aggregate behavior

Therefore, redistributing power between men and women cannot
impact the structure of expenditures

�Collective�literature: important phenomenon
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Imperfectly transferable utilities

General case:

Transfers possible...

... but the �exchange rate�is not constant.

In practice:
u (x) = P (x , y , v (y))

with P decreasing in v , usually increasing in x and y .

Stability:
u (x) � P (x , y , v (y)) 8x 2 X , y 2 Y

But: no longer equivalent to a maximization (�total surplus �not
de�ned).
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Imperfectly transferable utility: theory

Stability
u (x) � max

y
P (x , y , v (y))

and equality if marriage probability positive. Hence:

u (x) = max
y
P (x , y , v (y))

1st O C:

∂P
∂y
(x , y , v (y)) + v 0 (y)

∂P
∂v
(x , y , v (y)) = 0

satis�ed for x = φ (y)

Knowing φ, if ∂P/∂y > 0, v de�ned up to a constant by:

v 0 (y) = �
∂P
∂y (φ (y) , y , v (y))
∂P
∂v (φ (y) , y , v (y))

> 0
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Imperfectly transferable utility: theory

Assortativity

1st OC:
H (y , φ (y)) = 0 8y

where

H (y , x) =
∂P
∂y
(x , y , v (y)) + v 0 (y)

∂P
∂v
(x , y , v (y)) .

therefore
∂H
∂y
+

∂H
∂x

φ0 (y) = 0 8y ,

2nd OC:
∂H
∂y

� 0 , ∂H
∂x

φ0 (y) � 0.
or:�

∂2P
∂x∂y

(φ (y) , y , v (y)) + v 0 (y)
∂2P
∂x∂v

(φ (y) , y , v (y))
�

φ0 (y) � 0 8y .
(3)
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Application: matching on wages

Framework:

Agents characterized by their wage (or Human Capital) ! match
Then labor supply decisions

Utilities:
ui (Li ,Q) = LiQα

Pareto-e¢ ciency:
max
L1,L2,Q

L1Qα + µL2Qα

under
Q + w1L1 + w2L2 = (w1 + w2)T

Then µ = w2/w1, and Pareto frontier:

u1 = �
w2
w1
u2 +

α

(1+ α)2
(w1 + w2)

2

w1
T 2
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Three extensions

Imperfectly Transferable Utility (ITU)

Multidimensional matching and links with AS models (CMcCP 2015)

Pre-matching investments
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Matching with di¤erent dimensions

Assume n < m

�Indi¤erence sets�: the same husband y matched with a continuum of
potential wives

In practice:
fx 2 X j Dy s (x , ȳ) = K (ȳ)g

If s non degenerate (i.e. if the rank of D2xy s = n) then these sets are
submanifolds

Note that the �actual�indi¤erence sets depend on the surplus and the
measures

Interesting case: n = 1
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Multi to one dimensional matching (n = 1)

Motivation: �multidimensional wives�vs �one-dimensional husbands�

Crucial notion: iso-husband curve (submanifold if s non degenerate)

Important for two reasons:

Theoretical: main outcomes of the matching model; generate testable
predictions
Empirical: easy to identify (requires speci�c assumption on the
stochastic structure, cf COQ JPE 2009)

Particular case: index or pseudo index models

Here:

Provide a general method for solving for iso-husband curves
If works, then the measure conditions pin down the e¢ cient matching
Su¢ cient condition: nestedness
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Multi to one dimensional matching (n = 1)
Construction

Potential indi¤erence sets:

Xȳ ,k = fx 2 X j Dy s (x , ȳ) = kg
If s non degenerate, manifold of dimension m� 1
Divides X into two pieces: the sublevel set

X�(y , k) := fx 2 X j ∂s
∂y
(x , y) � kg, (4)

and its complement X>(y , k) := X n X�(y , k).
For any given ȳ , choose k such that

µ [X�(ȳ , k)] = ν [�∞, ȳ ]

Index model: if s (x , y) = S (I (x) , y) then
X�(y , k) = fx 2 X j I (x) � k 0g depends on y and k only through k 0
! nested i¤ twist
Also true for quasi-index
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Multi to one dimensional matching (n = 1)
Construction (cted)

In general: more complicated

De�nition: the model is nested if:

The sublevel sets y 2 Y 7! X� (y , k(y)) depend monotonically on
y 2 R,
Strict inclusion X�(y , k(y)) � X<(y 0, k(y 0)) holding whenever
ν[(y , y 0)] > 0

Index model: boils down to Spence-Mirrlees. Indeed:

The sublevel set X� (y , k) does not depend on y (depends on k)
Monotonicity guaranteed if SM
Note that the condition does not depend on the measures

In general: when can we guarantee nestedness?

Su¢ cient conditions involve both the surplus and the measures
Nestedness for all measures requires quasi-index
! companion paper
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Competitive version of Rochet-Choné

Model:

n-dimensional space of products z = (z1, ..., zn) 2 Z � Rn+;
n-dimensional space of buyers (measure µ):
x = (x1, ..., xn) 2 X � Rn+. ! utility U (x , z)� P (z) where
U (x , z) = ∑ni=1 xi zi ,
One dimensional space of producers (measure ν); pro�t
P (z)� c (y , z), where

c (y , z) =
1
2y

n

∑
i=1

z2i

Either each producer produces one good (real estate), or constant
returns to scale
! Rochet-Choné with competitive producers
Producers heterogeneity is not crucial (ν could be Dirac), but
competition is.
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Competitive version of Rochet-Choné

Resolution:

Surplus:

s (x , y) = max
z2Z

 
n

∑
i=1
xizi �

1
2y

n

∑
i=1
z2i

!

Solution: zi = xiy therefore

s (x , y) =
1
2
y

 
n

∑
i=1
x2i

!
.

Note: index model with I (x) = ∑n
i=1 x

2
i ;

Then
s (x , y) = S (y , I (x)) =

1
2
y � I (x)

and S satis�es Spence-Mirrlees!
Consequence: existence, uniqueness, and purity (�assortative
matching�)
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Competitive version of Rochet-Choné
Example of measures (case m = 2)

µ uniform (normalized to have total mass 1) on the quarter disk�
(x1, x2) j x21 + x22 � 1, x1 � 0, x2 � 0

	
ν uniform on [1, 2].

Optimal matching:
F (x) = jx j2 + 1

Agent x then buys the product z such that:

zi = xi

 
n

∑
k=1

x2k + 1

!
, i = 1, ..., n.

Note: no bunching
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Competitive version of Rochet-Choné

Utilities:

∂u
∂xi
(x) =

∂s
∂xi
(x ,F (x)) = xi

 
1+

n

∑
k=1

x2k

!
which yields

u (x) = A+
1
2

n

∑
i=1
x2i +

1
4

 
n

∑
i=1
x2i

!2
Similarly

v (y) = B +
(y � 1)2

4
and A+ B = 0; assume A = B = 0 (least productive producer makes
zero pro�t)
Price: if Z = ∑n

i=1 z
2
i then

(Z ,P(Z )) =
�
y2 (y � 1) , 1

4
(3y � 1) (y � 1)

�
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Competitive version of Rochet-Choné

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Z

P(Z)

Competitive R-C: pricing schedule
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Competitive version of Rochet-Choné

Conclusions:

No exclusion; all agents buy products.
! not surprising

No bunching of any type: di¤erent agents always buy di¤erent goods.

In the previous example
General property

Model of competition under adverse selection ! matching approach
provides a natural de�nition of an equilibrium in such a framework.

A crucial remark, however, is that the model is characterized by its
private value nature, since the producer�s pro�t is not directly related
to the identity of the consumer buying its product (it only depends on
the characteristics of the product and its price)
! di¤erent from common value (e.g. RS)
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Three extensions

Imperfectly Transferable Utility (ITU)

Multidimensional matching and links with AS models (CMcCP 2015)

Pre-matching investments
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Pre-matching investment

So far, X and Y implicitly considered as exogenously given

In many cases, though, some characteristics result from some initial
investment
! typical example: Human Capital

Conversely, investment in HC generates two types of bene�ts:

on the labor market (�college premium�)
! extensively studied
on the marriage market: more education changes:

marriage probability
spouse�s (expected) education
total marital surplus generated
the distribution of that surplus

Marriage-market bene�ts (the �marital college premium�):

have been largely neglected
may in�uence investment behavior ! may explain the puzzle
but a structural model is needed!
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Pre-matching investment (ced)

Basic issue: e¢ ciency
! can we expect the pre-matching investment to be set at an
e¢ cient level, given that the initial investment is made in a non
cooperative way?

Two arguments suggesting we cannot

1 (�Private provision of public goods�)
Investment boosts future income, part of which will be spent on public
goods, therefore will also bene�t the (future) spouse. The spouse�s
welfare is not taken into account ! under provision !
underinvestment

2 (�Rat race�)
Individual try to outperform their competitors on the marriage market,
by investing more than them. Since everyone does it ! overinvestment
(�arm race�version of the prisonners�dilemma)

3 Which one is correct?
! None: the investment is typically e¢ cient
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Pre-matching investment

Simple two-stage model:

Stage one: agent i chooses a level of human capital σi , at a cost
γiC (σi ) ! non cooperative
Stage two: matching game on σi ! surplus S

�
σi , σj

�
Resolution: backwards

Stage 2: stability implies that

U (σi ) = max
σj
S
�
σi , σj

�
� V

�
σj
�

therefore:

U 0 (σi ) =
∂S
�
σi , σj

�
∂σi

Stage 1: agent i solves

max
σ
U (σ)� γiC (σ)) U 0 (σi ) = γiC

0 (σi )

Finally
∂S
�
σi , σj

�
∂σi

= γiC
0 (σi )
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Main result (Cole Mailath Postlewaite 2001, Nöldeke
Samuelson 2015)

Same framework

Fictitious game:

Stage one: agents match (on their cost parameters γi )
Stage two: jointly choose HC investment to maximize joint surplus

Main result:
The stable matching of the �ctitious game is always an equilibrium of
the initial, two-stage game

However, other equilibria may exist (�coordination failures�)

Important empirical application:

The two stage game is complex, because of its rational expectation
structure (! �xed point in a functional space)
The �ctitious game is much easier to simulate (matching ! linear
programming)
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