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A B S T R A C T   

Semiparametric efficient estimation of various multi-valued causal effects, including quantile 
treatment effects, is important in economic, biomedical, and other social sciences. Under the 
unconfoundedness condition, adjustment for confounders requires estimating the nuisance 
functions relating outcome or treatment to confounders nonparametrically. This paper considers a 
generalized optimization framework for efficient estimation of general treatment effects using 
artificial neural networks (ANNs) to approximate the unknown nuisance function of growing- 
dimensional confounders. We establish a new approximation error bound for the ANNs to the 
nuisance function belonging to a mixed smoothness class without a known sparsity structure. We 
show that the ANNs can alleviate the “curse of dimensionality” under this circumstance. We 
establish the root-n consistency and asymptotic normality of the proposed general treatment ef-
fects estimators, and apply a weighted bootstrap procedure for conducting inference. The pro-
posed methods are illustrated via simulation studies and a real data application.   

1. Introduction 

Estimation of and inference on various causal effects using observational data have been popular in economics and other sciences. 
Under the unconfoundedness assumption, semiparametric efficient estimation of multi-valued Treatment Effects (TEs), including 
quantile TEs and asymmetric TEs, requires nonparametric estimation of a nuisance function relating outcome and/or treatment to 
confounders. Various nonparametric linear smoothers such as kernels and splines have been used in Outcome Regression (OR) or 
Inverse Probability Weighting (IPW) based TE studies. In many applied works, researchers believe that the unconfoundedness 
assumption is likely to hold conditioning on many confounders/covariates. However, popular nonparametric linear smoothers esti-
mated nuisance function(s) of many covariates suffer from the so-called “curse of dimensionality”. Artificial Neural Networks (ANNs) 
are nonlinear sieves that can approximate an unknown function of high dimensional covariates better than linear sieves such as splines, 
cosines, and polynomials. Moreover, recent computation advances have made the implementation of ANNs easier. This motivates our 
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investigation of ANN-based efficient estimation and inference on general TEs with increasing dimensional confounders, without 
known sparsity. 

In this paper, we propose an ANN-based, root-n consistent, asymptotic normal, and efficient estimator of general multi-valued TE. 
Our TE estimator is obtained by directly optimizing a generalized objective function that involves an ANN-approximated nonpara-
metric Propensity Score (PS) function, which is the only nuisance function to be estimated. Theoretically, we derive a new convergence 
rate of the ANN estimator for the nuisance function under mild conditions when the number of confounders is allowed to grow with the 
sample size (n). Our method can be naturally used to estimate general TEs, including the average, quantile, and asymmetric least 
squares TEs. In addition, our optimization procedure enables us to easily construct convenient weighted bootstrapped confidence sets, 
without the need of estimating the asymptotic variances that are of complicated forms for quantile TEs and asymmetric TEs.1 

Feedforward ANNs are effective tools for solving the classification and prediction problems with high dimensional covariates and 
big data sets. The basic idea is to extract linear combinations of the inputs as features, and then model the target as a nonlinear function 
of these features. It has been shown in the literature (Barron, 1993; Chen and White, 1999; Hornik et al., 1994; Klusowski and Barron, 
2018) that when the unknown target function admits a Fourier representation with a bounded moment, its ANNs approximator enjoys 
a fast approximation rate, making ANNs a promising tool to potentially break the notorious “curse of dimensionality” in nonparametric 
multivariate regression. This Fourier function class is recently named “Barron class” by E et al. (2022), who claim it is one right 
function space to address the curse of dimensionality problem. Nevertheless, it is of interest to investigate how the Barron class is 
related to some classical function spaces such as the Sobolev space (Stone, 1994; Wasserman, 2006) commonly used in the 
nonparametric regression literature.2 Moreover, it is still unclear how the moment of the Fourier transform appeared in the ANN 
approximation error bounds depends on the dimension of the covariates. This moment is implicitly treated as a constant in the existing 
works on ANNs (Barron, 1993; Chen and White, 1999; Klusowski and Barron, 2018) as they consider fixed dimensions. 

In this paper, we introduce a mixed smoothness class, and show that it is a subset of the Barron class. For any function in the mixed 
smoothness class, we derive an upper bound for the moment of its Fourier transform in terms of the dimension of the covariates. 
Functions in this mixed smoothness class need to be at least one order smoother in each coordinate than those in the standard Sobolev 
ball. We show that the nonlinear ANN estimators for functions in the mixed smoothness class have fast convergence rates. We also 
show that the conventional linear sieve approximators still suffer the “curse of dimensionality” when the target function belongs to the 
mixed smoothness class. Our new theoretical results enhance readers’ understanding why single hidden layer ANNs perform better 
than nonparametric linear smoothers when estimating functions in a mixed smoothness class with increasing dimensional covariates. 

While the development of credible inferential theories for the ANN-based estimator of TEs is essential to test the significance of the 
various causal effects, it is also a daunting task because of the complex nonlinear structure of the ANNs. In this paper, we establish the 
root-n asymptotic normality of our ANN-based TE estimator when the number of the confounders is allowed to grow with the sample 
size. Different from the earlier works on semiparametric efficient estimation and inference for TEs (see, e.g., Ai et al., 2021; Chen et al., 
2008; Hirano et al., 2003; Robins et al., 1994), our semiparametric inferential theory allows for settings with diverging dimensional 
confounders. To the best of our knowledge, our paper is the first to provide a thorough theoretical justification for the ANN-based 
inferential procedures for general TEs when the dimension of the confounders can grow with the sample size. 

Our ANN-based TE estimator is obtained directly from a generalized optimization procedure without estimating the Efficient In-
fluence Function (EIF). The estimated EIF approach requires estimating two nuisance functions nonparametrically, while our opti-
mization based procedure involves estimating one nuisance function only. Recently, Farrell et al. (2021) proposed an ANN-based 
Doubly Robust (DR) (or EIF based) estimator of average TEs, which involves estimating both OR and PS nuisance functions via 
ANNs. They assume that both nuisance functions belong to the standard Sobolev (or Hölder) ball and the dimension of the confounders 
is fixed. Although the EIF estimation-based method is commonly used for estimating average TEs, see for example Cao et al. (2009), 
Tan (2010), van der Laan and Rose (2011), Rotnitzky et al. (2012), Kennedy et al. (2017), Chernozhukov et al. (2018), it can be more 
difficult to apply in quantile, asymmetric and other complex TE settings, as these TE parameters can enter the estimated EIF equation in 
a nonlinear and non-separable fashion. When the nuisance functions are trained by nonlinear machine learning algorithms, it becomes 
even more computationally challenging to estimate the EIF in these complex settings. Our TE estimator is obtained directly from 
optimizing an objective function with a plug-in ANN-based estimator of the PS nuisance function, so a weighted bootstrap procedure 
can be conveniently applied for conducting inference without estimating the EIF nor the asymptotic variance function. To better 
illustrate our ANN-based TE estimation and inference procedures, we focus on using the ANNs with one hidden layer in the main text, 
and discuss the extension to ANNs with multiple hidden layers in the online supplement. 

Finally, for those readers who care about efficient estimation of the averaged treatment effect (ATE) only, we also propose an ANN- 
based efficient estimator of the ATE obtained from the ANN estimated OR nuisance function. Under standard regularity conditions, our 
proposed ANN-PS and ANN-OR estimators for ATE have the same asymptotic distribution, and are both asymptotic efficient when the 
number of covariates is fixed. We show that, unlike the estimators using IPW and DR methods, the ANN-OR based ATE estimator can 
achieve the root-n asymptotic normality without imposing the strict overlap condition on the PS function. Consequently, the ANN-OR 
based ATE estimator is more robust than the ANN-PS based estimator when the true unknown PS function is close to zero. In our Monte 
Carlo simulations, we also observe that ANN-OR based ATE estimator performs slightly better than ANN-DR ATE estimator, which in 

1 See our online supplement for consistent estimation of the asymptotic variances. Nevertheless, our simulation studies indicate that bootstrapped 
CSs are more accurate than the CSs based on estimated asymptotic variance.  

2 The minimax optimal rate in root-mean squared error norm for estimating a function in the standard Sobolev ball is known, and no 
nonparametric estimator can avoid the “curse of dimensionality” for the standard Sobolev ball. 
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turn performs slightly better than ANN-IPW ATE estimator. However, it is difficult to apply the ANN-OR based procedure to estimate 
other types of multi-valued TEs such as quantile TEs. 

The rest of the paper is organized as follows. Section 2 provides a new approximation error rate result for ANNs to a mixed 
smoothness class of functions with diverging dimension. Section 3 introduces the general multi-valued TEs and our proposed ANN- 
based estimators for TEs. Section 4 establishes the large sample properties and Section 5 presents the inferential procedures. Sec-
tion 6 extends the optimization procedures and the asymptotic properties to general multi-valued treatment effects for the treated 
subgroups. Section 7 reports simulation studies and Section 8 contains a real data application. Section 9 briefly concludes. All the 
technical proofs and additional simulation results are provided in the Appendix and the on-line Supplemental Materials. 

2. ANNs approximation for functions in the Barron class 

For nonparametric estimation of a target function of high dimensional covariates, in addition to specifying the approximation basis, 
identifying a “good” target function space is also crucial in machine learning literature, as E et al. (2022) write: 

Sobolev/Besov type spaces are not the right function spaces for studying machine learning models that can potentially address 
the curse of dimensionality problem. 

In this section we present ANNs with one hidden layer and the related approximation results for a target function in the Barron 
class. 

Let X denote the support of a random vector X which is compact in Rp. Without loss of generality, we assume X = [0, 1]p. Let FX be 
the cumulative distribution function (CDF) of X. Denote the L2(dFX)-norm of any function f(⋅) by ‖ f ‖L2(dFX) := {

∫

X
|f(x)|2dFX(x)}1/2. 

Let ̃f(a) be the Fourier transform of f(x) defined by 

f̃ (a) :=
1

(2π)p

∫

Rp
exp( − ia⊤x)f (x)dx,

where a = (a1, ..., ap)
⊤
∈ Rp. We define the mth moment of the Fourier transform of f(x) as vf ,m :=

∫

Rp |a|m1 |̃f(a)|da, where |a|1 :=
∑p

i=1|ai|. Barron (1993), Hornik et al. (1994), Chen and White (1999), and Klusowski and Barron (2018) considered the target function 
belonging to the Barron class F m

p : 

F
m
p :=

{

f : X →R : f (x) =
∫

Rp
exp(ia⊤x)̃f (a)da, vf ,m < ∞

}

(2.1)  

F m
p contains a class of functions of p dimension that admit Fourier representations with the finite mth moment. The input variables of 

functions in F m
p have dimension p, which is allowed to grow to infinity as the sample size n increases. It is worth noting that vf ,m 

depends on the dimension p, and its value can increase with p. In the nonparametric regression literature, spaces with certain 
smoothness constraints such as the Hölder or Sobolev space are instead more commonly used (Chen, 2007; Stone, 1994; Wasserman, 
2006). We will build a connection between the function class F m

p given in (2.1) and a mixed smoothness ball, and will establish an 
upper bound for vf ,m in terms of the dimension p in Theorem 1. To the best of our knowledge, our paper is the first one that builds such a 
connection between the Fourier function class used for ANNs and a mixed smoothness ball and establishes an upper bound for vf ,m 

which appears in the approximation error bounds. 
Consider to approximate a target function f ∈ F m

p using the ANNs, belonging to the class 

G (ψ,B, r, p) = {g : g(x) = g0(x; γ0) +
B
r
∑r

j=1
γjψ
(

a⊤
j x
)
, aj =

(
aj1, ..., ajp

)⊤
∈ Rp,

‖ aj‖2 = 1,
⃒
⃒γj

⃒
⃒ ≤ 1, j ∈ {1, ..., r}, B ∈ R+

}
,

(2.2)  

where g0(x; γ0) is a parametric function indexed by an unknown parameter vector γ0, and ‖ aj‖2 := {|aj1|
2
+ ...+ |ajp|

2
}

1/2. The 
structure of g0(x; γ0) depends on the type of the activation function that is used. For example, if the ReLU activation function is used, 
then g0(x; γ0) = γ⊤

0 x. G (ψ ,B, r, p) is the collection of output functions for neural networks with p-dimensional input feature x, a single 
hidden layer with r hidden units and an activation function ψ and real-valued input-to-hidden unit weights (aj), and hidden-to-output 
weights (γ∗j := Bγj). Note that for any outer parameter γ∗j ∈ R, it can be written as γ∗j = Bγj with |γj| ≤ 1, and B is a scale factor of all 
γ∗j ’s. Both r and B are allowed to increase with the sample size n, which will be discussed in Section 3.1. The ANN class in (2.2) comes 
from the class given in Klusowski and Barron (2018). The difference is that we change their ℓ1 constraint on the inner parameters aj to a 
ℓ2 normalization ‖ aj‖2 = 1. This normalization has been commonly used in semiparametric index models, see Ma and He (2016). 

The approximation error for a target function depends on the smoothness of the approximand, the dimension of the covariates, and 
the type of approximation basis. We first present the approximation results based on some popularly used neural networks, which have 
been established in the existing literature: 
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• (Sigmoid type activation function) Suppose that the function f ∈ F 1
p , g0(x; γ0) ≡ 0, the activation function ψ(⋅) is compactly 

supported, bounded, and uniformly Lipschitz continuous. If B ≤ 2vf ,1 < ∞, then Chen and White (1999, Theorem 2.1) show that 
the L2(dFX)-approximation rate of f based on ANN is 

inf
g∈G (ψ,B,r,p)

{∫

X

|f (x) − g(x)|2dFX(x)
}1/2

≤ const × vf ,1 ⋅ r−
1
2−

1
p. (2.3)  

The activation functions ψ include the Heaviside, logistic, tanh, cosine squasher, and other sigmoid functions (Hornik et al., 1994; 
Makovoz, 1996), but do not include the ReLU and squared ReLU ridge functions stated below.  

• (ReLU activation function) Suppose that the function f ∈ F 2
p , g0(x; γ0) = γ⊤

0 x for γ0 ∈ Rp, and ψ(a⊤x) = (a⊤x)+. If B ≤ 2vf ,2 < ∞, 
then Klusowski and Barron (2018, Theorem 2 and its discussion on page 7651) show that the L2(dFX)-approximation rate based on 
ReLU ridge functions is 

inf
g∈G (ψ,B,r,p)

{∫

X

|f (x) − g(x)|2dFX(x)
}1/2

≤ const × vf ,2 ⋅ r−
1
2−

1
p. (2.4)    

• (Squared ReLU activation function) Suppose that the function f ∈ F 3
p , g0(x; γ0) = γ⊤01x + x⊤γ02 ⋅ x for γ0 = {γ01,γ02} ∈ Rp × Rp×p, 

and ψ(a⊤x) = (a⊤x)2
+. If B ≤ 2vf ,3 < ∞, then Klusowski and Barron (2018, Theorem 3 and its discussion on page 7651) show that 

the L2(dFX)-approximation rate based on squared ReLU ridge functions is 

inf
g∈G (ψ,B,r,p)

{∫

X

|f (x) − g(x)|2dFX(x)
}1/2

≤ const × vf ,3 ⋅ r−
1
2−

1
p. (2.5)   

If the target function f(x) is in a Barron class with a finite moment given in (2.1), then (2.3), (2.4) and (2.5) show that the 
L2(dFX)-approximation rates of ANNs are O(vf ,m ⋅ r− 1/2− 1/p) = o(vf ,m ⋅ r− 1/2) for m = 1,2,3, in which r− 1/2 no longer depends on the 
dimension p. Thus, the resulting ANNs estimator can break the “curse of dimensionality” that typically arises in the nonparametric 
kernel and linear sieve estimation. 

Remark 1. Recently, DeVore et al. (2023) propose weighted variation spaces that enlarge the second order Barron space F 2
p . They 

show that the L2(dFX)-approximation rate based on the shallow ReLU neural networks for a function f(⋅) belonging to their weighted 
variation spaces achieves const× ‖ f ‖V w ⋅ r−

1
2−

3
2p, where ‖ ⋅ ‖V w is the weighted variation norm defined in DeVore et al. (2023, Section 

4, page 8). Our theoretical results for the classic Barron space presented in this article can also be adapted to the weighted variation 
spaces. We focus on the Barron space for easing the presentation. 

2.1. The mixed smoothness ball 

To the best of our knowledge, there are two questions that remain unanswered in the literature, including (1) how restrictive this 
Barron class F m

p is compared to the conventional smoothness spaces such as the Sobolev ball typically assumed in the multivariate 
nonparametric regression literature, and (2) how the moment of the Fourier transform vf ,m depends on the dimension p. To address 
these questions, we build a connection between the Barron class F m

p and a mixed smoothness ball, and establish an upper bound for 
vf ,m. 

Given a p-tuple α = (α1, ..., αp) of nonnegative integers, set |α|1 :=
∑p

j=1αj and let Dα denote the differential operator defined by 

Dα :=
∂|α|1

∂xα1
1 ⋯∂xαp

p
.

For an integer s ∈ N, denote the class of all s-times continuously differentiable real-valued functions on X by C s,∞(X ): 

C
s,∞

(X ) :=

{

f ( ⋅ ) : sup
|α|1≤s

|Dαf (x)| ≤ 1

}

. (2.6)  

The upper bound “1” used in the definition of C s,∞(X ) is only for notational simplicity and it can be replaced by any finite positive 
constant. The function class C s,∞(X ) is called the Sobolev ball (in L∞-norm) of order s. 

Let ∂x1 ⋯∂xp be the partial derivative with respect to x = (x1, ..., xp)
⊤ defined by 

∂x1 ⋯∂xp :=
∂p

∂x1⋯∂xp
.
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For any δ > 0, define Δδ
xi 

to be the difference operator by 

Δδ
xi

f
(
x1, ..., xp

)
:= f

(
x1, ..., xi− 1, xi, xi+1, ..., xp

)
− f
(
x1, ..., xi− 1, xi − δ, xi+1, ..., xp

)
,

for i ∈ {1,2, ...,p}. We have 

lim
δ1 ,...,δp→0

Δδp
xp

⋯Δδ1
x1

f (x)
δ1⋯δp

= ∂x1 ⋯∂xp f (x),

provided that the partial derivative ∂x1 ⋯∂xp f(x) exists. 
Being motivated by the application of sparse grids in dealing with high-dimensional partial differential equations (PDEs) (Bungartz 

and Griebel, 2004), we define W m,1+ϵ,∞(X ) for m ∈ N and ϵ ∈ (0, 1] to be the mixed smoothness ball of order (m,1 + ϵ): 

W
m,1+ϵ,∞

(X ) :=

{

f : f ( ⋅ ) ∈ C
m,∞

(X ), sup
{∀α:|α|1=m}

sup
x∈X

⃒
⃒∂x1 ⋯∂xp Dαf (x)

⃒
⃒ ≤ 1,

sup
{∀α:|α|1=m}

sup
{x∈X ,δ1>0,...,δp>0}

⃒
⃒
⃒Δδp

xp
⋯Δδ1

x1
∂x1 ⋯∂xp Dαf (x)

⃒
⃒
⃒

δϵ
1⋯δϵ

p
≤ 1

} (2.7) 

The following result states that W m,1+ϵ,∞(X ) with ϵ ∈ (0, 1] is a subspace of F m
p . The proof is relegated to Appendix B. 

Theorem 1. Let f ∈ W m,1+ϵ,∞(X ) for some ϵ ∈ (0,1], then f ∈ F m
p and 

vf ,m ≤ 2 ⋅
(

M0 ⋅
π
2

)m
⋅ Mp  

for some universal constant M defined by M := M0 ⋅
( π

2
)

⋅
( 1

2ϵ+
1
2
)
, where the definition of M0 is given in (B.3). To the best of our 

knowledge, Theorem 1 is the first result in the literature that provides a connection between the mixed smoothness ball W m,1+ϵ,∞(X )

and F m
p . Theorem 1 shows that the mixed smoothness ball W m,1+ϵ,∞(X ) is a subspace of the Barron class F m

p . Thus, for any functions 
in W m,1+ϵ,∞(X ), their ANNs approximators enjoy the nice approximation rates given in (2.3)–(2.5). Furthermore, Theorem 1 
explicitly provides an upper bound for the mth moment of the Fourier transform vf ,m, which enables us to evaluate the effect of the 
dimension p on the approximation rates of ANNs. This upper bound has not been provided in the literature, and the theories in most 
existing works on ANNs are established by assuming that p is fixed. 

Remark 2. In particular, if ϵ = 1 in (2.7), we obtain 

W
m,2,∞

(X ) :=

{

f ( ⋅ ) : f ( ⋅ ) ∈ C
m,∞

(X ) and sup
{∀α:|α|1=m}

sup
x∈X

⃒
⃒
⃒∂2

x1
⋯∂2

xp
Dαf (x)

⃒
⃒
⃒ ≤ 1

}

,

where 

∂2
x1

⋯∂2
xp
:=

∂2p

∂x2
1⋯∂x2

p
.

The functions in the mixed smoothness ball W m,2,∞(X ) need to be 2-order smoother in each coordinate of X than the functions in the 
regular Sobolev ball of order s = m given in (2.6), i.e. C m,∞(X ). It is worth noting that W m,2,∞(X ) is much broader than the Sobolev 
ball of order s = m+ 2p; indeed, we have the following inclusion relation: 

C
m+2p,∞

(X ) ⊊ W
m,2,∞

(X )⊂W
m,1+ϵ,∞

(X )⊂F
m
p , for ϵ ∈ (0, 1].

The functions in this mixed smoothness ball do not need a compositional structure such as a hierarchical interaction structure 
considered in Bauer and Kohler (2019) and Schmidt-Hieber (2020). We should be mindful that breaking the curse of dimensionality 
happens at the cost of sacrificing flexibility. If a function is assumed to be in the Sobolev ball of order m, the nonparametric optimal 
minimax rates suffer from the curse of dimensionality, i.e., no nonparametric estimator can avoid the dimensionality problem under 
this condition (Schmidt-Hieber, 2020). 

3. Parameters of interest and ANN-based estimators 

In this section, we first define our general treatment effect parameters of interest, and then introduce our ANN optimization based 
estimators. 

Let D denote a treatment variable taking value in D = {0,1, ...,J}, where J ≥ 1 is a positive integer. Let Y∗(d) denote the potential 
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outcome when the treatment status D = d is assigned. The probability density of Y∗(d) exists, denoted by fY∗(d), is continuously 
differentiable. Let L (⋅) denote a nonnegative and strictly convex loss function satisfying L (0) = 0 and L (v) ≥ 0 for all v ∈ R. The 
derivative of L (⋅) exists almost everywhere and non-constant which is denoted by L

′
(⋅). Let β∗ = (β∗

0, β
∗
1,…, β∗

J)
⊤
∈ RJ+1 be the 

parameter of interest which is uniquely identified through the following optimization problem: 

β∗ := argmin
β

∑J

d=0
E[L (Y∗(d) − βd)], (3.1)  

where β = (β0, β1, ..., βJ)
⊤
∈ RJ+1 and J ∈ N. The formulation (3.1) permits various definitions of treatment effect (TE) parameters, 

some of which have been considered in the literature. For example,  

• L (v) = v2 and J = 1, then β∗
0 = E[Y∗(0)] and β∗

1 = E[Y∗(1)], and β∗
1 − β∗

0 is the average treatment effects (ATE) studied by Hahn 
(1998), Hirano et al. (2003), Chan et al. (2016) and many others. When J ≥ 2, then β∗

d = E[Y∗(d)] is the multi-valued ATE first 
studied by Cattaneo (2010).  

• L (v) = v ⋅ {τ − 1(v ≤ 0)} for some τ ∈ (0, 1) and J = 1, then β∗
0 = F− 1

Y∗(0)(τ) and β∗
1 = F− 1

Y∗(1)(τ), and β∗
1 − β∗

0 is the quantile treatment 
effects (QTE, Chen et al., 2008; Firpo, 2007; Han et al., 2019).  

• L (v) = v2 ⋅ |τ − 1(v ≤ 0)| is the asymmetric least square treatment effects (ALSTE, Newey and Powell, 1987). ALSTE estimators 
have properties analogue to QTE estimators, but they are easier to compute. ALSTE has a variety of applications, such as the study 
of racial/ethnic disparities in health care, in which the data are often skewed. 

The problem with (3.1) is that the potential outcomes (Y∗(0),Y∗(1), ...,Y∗(J)) cannot all be observed. The observed outcome is 
denoted by Y := Y∗(D) =

∑J+1
d=01(D = d)Y∗(d). One may attempt to solve the problem: 

min
β

∑J

d=0
E[L (Y − βd)].

However, due to the selection in treatment, the true value β∗ is not the solution of the above problems. To address this problem, most 
literature imposes the following unconfoundedness condition (Rosenbaum and Rubin, 1983): 

Assumption 1. For each d ∈ D , Y∗(d)⊥D|X. 

This condition is also maintained in our work. Nevertheless, we depart from the classical semiparametric estimation and inference 
for various TEs by allowing the dimension p of the confounders X to grow with sample size n. Specifically, we work with triangular 
array data {((Di,n,Xi,n,Yi,n), i= 1, ..., n), n = 1,2, ...} defined on some common probability space (Ω,A ,P). Each Xi,n is a vector whose 
dimension pn may grow with n, the support of Xi,n is assumed to be [0,1]pn . For each given n, these vectors are independent across i, but 
not necessarily identically distributed. The law Pn of {(Di,n,Xi,n,Yi,n), i = 1, ..., n} can change with n, though we do not make explicit 
use of Pn. Thus, all parameters (including pn) that characterize the distribution of {(Di,n,Xi,n,Yi,n), i = 1, ..., n} are implicitly indexed by 
the sample size n, but we omit the index n in what follows to simplify notation. 

3.1. ANN-IPW estimator for general TEs 

Under Assumption 1, the causal parameters β∗ can be identified by the minimizer of the following optimization problem: 

β∗ = argmin
β

∑J

d=0
E

[
1(Di = d)

π∗
d(Xi)

L (Yi − βd)

]

, (3.2)  

where π∗
d(Xi) := P(Di = d|Xi) is the propensity score (PS) function which is unknown in practice. 

Based on (3.2), existing approaches rely on parametric or nonparametric estimation of the PS function π∗
d(⋅). Parametric methods 

suffer from model misspecification problems, while conventional nonparametric methods, such as linear sieve or kernel regression, fail 
to work if the dimension of covariates p is large which is known as the “curse of dimensionality”. The goal of this article is to efficiently 
estimate β∗ under this general framework when the dimension of covariates p is large, and it possibly increases as the sample size n 
grows. We propose to estimate the PS function π∗

d(⋅) using feedforward ANNs with one hidden layer described below. 
All three ANNs described in Section 2 can be applied to estimate the PS function π∗

d(⋅), and the resulting TE estimators have the same 
asymptotic properties based on the three ANNs. For convenience of presentation, we use the sigmoid type ANNs to present the 
theoretical results in this section. To facilitate our subsequent statistical applications, we allow r = rn and B = Bn to depend on sample 
size n. We denote the resulting ANN sieve space as 

G n := G (ψ,Bn, rn, p).

Denote Ddi := 1(Di = d) for brevity. Let L(a) := exp(a)/(1+ exp(a)), for a ∈ R, be the logistic function. The inverse logistic transform of 
the true PS is defined by 
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g∗
d(x) := L− 1( π∗

d(x)
)
= log

{
π∗

d(x)
/ (

1 − π∗
d(x)

)}
,

and it satisfies E[ℓd(Ddi,Xi; g∗d)] ≥ E[ℓd(Ddi,Xi; gd)] for all gd ∈ G n, where 

ℓd(Ddi,Xi; gd) := DdilogL(gd(Xi)) + {1 − Ddi}log(1 − L(gd(Xi)))

= Ddigd(Xi) − log[1+ exp(gd(Xi))].

Let ĝd be the ANN estimator of g∗d based on the space G n, i.e. 

Ld,n(ĝd) ≥ sup
gd∈G n

Ld,n(gd) − O
(
ϵ2

n

)
, (3.3)  

where Ld,n(gd) := n− 1∑n
i=1ℓd(Ddi,Xi; gd) is the empirical criterion, and ϵn = o(n− 1/2). 

The ANN estimator of g∗d depends on the sample size n. For notational simplicity, we omit the index n. (3.3) states that the ANN 
estimator ̂gd of g∗d does not need to be the global maximizer of the objective function Ld,n(gd), which may not be obtained in practice. It 
can be any local solutions satisfying (3.3), i.e., the values of the objective function evaluated at the local solutions and at the global 
maximizer cannot be far away from each other, and their difference needs to satisfy the order O(ϵ2

n). This assumption is also imposed 
for sieve extreme estimation; see Shen (1997), Chen and Shen (1998) and Chen and White (1999). The estimator of π∗

d is defined by 
π̂d := L(ĝd), then we use the empirical version of (3.2) to construct the estimator of β∗, denoted by β̂ = (β̂0, ..., β̂J)

⊤ where 

β̂d := argmin
β∈Θ

1
n
∑n

i=1

Ddi

π̂d(Xi)
L (Yi − β), (3.4)  

for every d ∈ D = {0,1, ...,J}. β̂ is called the artificial neural networks-based inverse probability weighting (ANN-IPW) estimator. 

3.2. ANN-OR estimator for ATE 

In this subsection, we consider an alternative estimator for a particularly important parameter of interest, ATE, which corresponds 
to a loss function L (v) = v2. Using Assumption 1 and the property of conditional expectation, we can rewrite (3.1) as follows: 

β∗ = argmin
β

∑J

d=0
E[E[L (Yi − βd)|Xi,Di = d]]. (3.5)  

Based on the above expression, an alternative estimation strategy for β∗ is to first estimate the conditional expectation 
E[L (Yi − βd)|Xi,Di = d] (with βd being fixed), and then estimate β∗ by minimizing the empirical version of (3.5) with E[L (Yi − βd)|Xi,Di 

= d] replaced by its estimate. Unlike the estimator ̂E d(x) in (F.4) of the supplement, where ̂βd involved in ̂E d(x) is separately obtained 
through (3.4), solving an empirical version of (3.5) is difficult for a general L (⋅), since β∗ is involved in the ANN estimator of 
E[L (Yi − βd)|Xi,D = d] which may not have a closed-form expression. 

In this case, β∗
d = E[Y∗(d)] = E[z∗d(Xi)], where z∗d(Xi) := E[Yi|Xi,Di = d] is the outcome regression (OR) function and satisfies 

E[ℓOR
d (Ddi,Xi,Yi; z∗d)] ≥ E[ℓOR

d (Ddi,Xi,Yi; zd)] for all zd ∈ G n, where 

ℓOR
d (Ddi,Xi, Yi; zd) := − Ddi{Yi − zd(Xi)}

2
.

Let ẑd be the ANN estimator of z∗d based on the space G n, i.e. 

LOR
d,n(ẑd) ≥ sup

zd∈G n

LOR
d,n(zd) − O

(
ϵ2

n

)
, (3.6)  

where LOR
d,n(zd) := n− 1∑n

i=1ℓOR
d (Ddi,Xi,Yi; zd) is the empirical criterion, and ϵn = o(n− 1/2). Then the ANN-OR estimator of β∗

d is defined 
to be 

β̂
OR
d =

1
n
∑n

i=1
ẑd(Xi). (3.7)  

4. Large sample properties of estimators 

4.1. Properties of the ANN-IPW estimator for general TEs 

We first introduce sufficient conditions for the convergence rates of our ANN estimators {π̂d}
J
d=0 for the unknown PS nuisance 

functions. 

Assumption 2. For every d ∈ D = {0,1, ..., J} and m ≥ 1, we assume g∗d(⋅) ∈ F m
p . 
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Assumption 3. (i) The dimension of Xi is denoted by p ∈ N and the number of hidden units is denoted by rn ∈ N. They satisfy 

max

⎧
⎪⎪⎨

⎪⎪⎩

vg∗d ,m
⋅ r

− 1
2−

1
p

n ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rn ⋅ p ⋅ logn

n

√
⎫
⎪⎪⎬

⎪⎪⎭

= o
(

n− 1
4

)
.

(ii) The bound of the hidden-to-output weights, Bn, specified in (2.2) satisfies Bn ≤ 2vg∗d ,m. Assumption 2 is a smoothness condition 
imposed on the transformed PS functions. Assumption 3 (i) allows the dimension of covariates going to infinity as the sample size 
grows, while it imposes restrictions on the growth rate of the dimension of covariates and that of the number of hidden units to ensure 
that the L2(dFX)-convergence rate of estimated PS attains oP(n− 1/4), which is needed to establish the 

̅̅̅
n

√
-asymptotic normality for the 

proposed TE estimator. 

Remark 3. As shown in Theorem 1, the mixed smoothness ball W m,1+ϵ,∞(X ) belongs to the Barron space F m
p . Assumption 3 (i) can 

be implied by the following primitive condition: 

Assumption 3’. (i) Suppose g∗d ∈ W m,1+ϵ,∞(X ), p and rn are allowed to grow to infinity as the sample size n increases, with the 
rates 

p ≤ an ⋅ (logn)
1
2 and C1 ⋅ n

p+1
2(p+2) ≤ rn ≤ C2 ⋅ (logn)−

3
2 ⋅ n1

2,

where an→0 can be arbitrarily slow, and C1 and C2 are two positive constants. The following result establishes the convergence rates 
of g∗d and π∗

d. 

Theorem 2. Suppose Assumptions 2 and 3 hold. Then 

‖ ĝd − g∗
d‖L2(dFX ) = OP

⎛

⎜
⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩

vg∗d ,m
⋅ r

− 1
2−

1
p

n ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rn ⋅ p ⋅ logn

n

√
⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠ = oP

(
n− 1/4),

and 

‖ π̂d − π∗
d‖L2(dFX ) = OP

⎛

⎜
⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩

vg∗d ,m
⋅ r

− 1
2−

1
p

n ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rn ⋅ p ⋅ logn

n

√
⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠ = oP

(
n− 1/4),

where the constants hiding inside OP and oP do not depend on p and n. The proof of Theorem 2 is provided in Supplement B. Theorem 2 
shows that under a suitable smoothness condition, the M-estimates based on ANNs with a single hidden layer circumvent the curse of 
dimensionality and achieve a desirable rate for establishing the asymptotic normality of plug-in estimators (Chen et al., 2003). Bauer 
and Kohler (2019) showed that their least squares estimator based on multilayer neural networks with a smooth activation function 
can achieve the convergence rate of n− 2s/(2s+d∗) (up to a log factor), if the regression function satisfies a s-smooth generalized hier-
archical interaction model of order d∗, where d∗ is fixed. Schmidt-Hieber (2020) established a similar rate for the ReLU activation 
function. However, the target function class considered in Bauer and Kohler (2019) and Schmidt-Hieber (2020) is different from that 
used in our paper. The extension of our results for multilayer neural networks is beyond the scope of the current article. We refer to the 
Supplement for more discussion. 

Let E d(x, β∗
d) := E[L

′
(Y∗

i (d) − β∗
d)
⃒
⃒Xi = x], u∗

d(x) := E d(x; β∗
d)/π∗

d(x), and g(gd, ϵn) := (1 − ϵn) ⋅ gd + ϵn ⋅ {u∗
d +g∗d} be a local alter-

native value around gd ∈ G n. The directional derivative of ℓd(Ddi,Xi; gd) is given by 

∂
∂gd

ℓd(Ddi,Xi; gd)[u] := lim
t→0

ℓd(Ddi,Xi; gd + t ⋅ u) − ℓd(Ddi,Xi; gd)

t
= {Ddi − L(gd(Xi))}u(Xi), for u ∈ L2(dFX).

We now introduce sufficient conditions and additional notation for the asymptotic normality of our ANN-IPW estimators β̂ for the 
general TE parameters. 

Assumption 4. (i) Let Θ be a compact set of RJ+1 containing the true parameters β∗. (ii) The propensity scores are uniformly bounded 
away from zero, i.e., there exists a constant c such that 0 < c ≤ π∗

d(x) for all x ∈ X and d ∈ {0,1,...,J}. (iii) For every d ∈ {0,1, ..., J} and 
m ≥ 1, we assume the function E d(⋅, β∗

d) is uniformly bounded. 

Assumption 5. (Approximation error) We assume the following conditions hold: 
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sup{
gd∈G n :‖gd − g∗d‖L2(dFX )

≤δn

}‖ ProjG n
g(gd, ϵn) − g(gd, ϵn) ‖L2(dFX ) = O

(
ϵ2

n

δn

)

,

and 

sup{
gd∈G n :‖gd − g∗d‖L2(dFX )

≤δn

}
1
n

∑n

i=1

(
∂

∂gd
ℓd
(
Ddi,Xi; g∗

d

)[
g(gd, ϵn) − ProjG n

g(gd, ϵn)
]
)

= OP
(
ϵ2

n

)
,

where ProjG n
g(gd, ϵn) denotes the L2(dFX)-projection of g(gd, ϵn) on the ANN space G n and δn is a sequence of positive real numbers 

satisfying ‖ ĝd − g∗d‖L2(dFX) = oP(δn). 

Assumption 6. 1. There exists a finite positive constant κ ≥ 1/2 such that for any β ∈ Θ and any δ > 0 in a neighborhood of zero, 
{

E

[

sup
β̃:|̃β− β|<δ

{L
′
(Y − β̃) − L

′
(Y − β)}2

]}1/2

≤ const × δκ;

2. supβ∈ΘE[|L
′
(Y − β)|2]〈∞ and E[supβ∈Θ|L

′
(Y − β)|]〈∞;  

3. supx∈X E[|L
′
(Y − β∗

d)‖ X= x]〈C < ∞ for some finite constant C > 0;  
4. Hd := − ∂βd E[L

′
(Y∗(d) − β∗

d)]〉0. 

Assumption 4 (i) is a standard condition for the parameter space. Assumption 4 (ii) is a strict overlap condition ensuring the ex-
istence of participants at all treatment levels, which is commonly assumed in the literature. D’Amour et al. (2021) discussed the 
applicability of the strict overlap condition with high-dimensional covariates, and provided a variety of circumstances under which 
this condition holds. They also argued that the strict overlap condition may not be necessary if other smoothness conditions are 
imposed on the potential outcomes, or it can be technically relaxed with some non-standard asymptotic analyses (e.g. Hong et al., 
2020; Ma and Wang, 2020) and the sacrifice of uniform inference on ATE. Assumption 4 (iii) is a smoothness condition for approx-
imation. The functions {π∗

d(⋅),E d(⋅, β∗
d)}

J
d=0 generally depend on the sample size n. Assumption 5 specifies both approximation error 

and stochastic equicontinuity in neural network space, which is needed for establishing Lemma in the supplemental material. Such a 
condition is also imposed in Shen (1997, Condition (C)), Chen and Shen (1998, Condition (B.3)), and Chen and Liao (2015, Assumption 
3.3 (ii)). Assumption 6 concerns L2 continuity and envelope conditions, which are needed for the applicability of the uniform law of 
large numbers, establishing stochastic equicontinuity and weak convergence, see Chen et al. (2008). Again, they are satisfied by widely 
used loss functions such as L (v) = v2, L (v) = v{τ − 1(v ≤ 0)}, and L (v) = v2 ⋅ |τ − 1(v ≤ 0)| discussed in Section 3. Assumption 6 (3) 
implies supx∈X

⃒
⃒E (x; β∗

d)
⃒
⃒ < C < ∞ by Jensen’s inequality. 

The following theorem shows the asymptotic distribution of the proposed estimator β̂, whose proof is presented in Appendix C and 
Supplement D. 

Theorem 3. Under Assumptions 1–6, for any d ∈ {0,1, .., J}, we have β̂d →
p

β∗
d and 

̅̅̅
n

√ (
β̂d − β∗

d

)
= H− 1

d ⋅
1̅
̅̅
n

√
∑n

i=1
Sd
(
Yi,Ddi,Xi; β∗

d

)
+ oP(1), (4.1)  

where Hd = − ∂βd E[L
′
(Y∗(d) − β∗

d)] and 

Sd = Sd
(
Yi,Ddi,Xi; β∗

d

)
:=

Ddi

π∗
d(Xi)

L
′{Yi − β∗

d

}
−

{
Ddi − π∗

d(Xi)

π∗
d(Xi)

}

E d
(
Xi, β∗

d

)
.

Consequently, 

V− 1/2 ⋅
̅̅̅
n

√
{β̂ − β∗}→d

N
(
0, I(J+1)×(J+1)

)
,

where I(J+1)×(J+1) is the (J + 1) × (J + 1) identity matrix, V = H− 1E[SS⊤]H− 1, H = Diag{H0, ...,HJ} and S = (S0, ..., SJ)
⊤. Based on the 

strict overlap condition and the integrability of the outcome, Assumption 4 (ii) and Assumption 6 (ii), we have that the asymptotic 
variance is finite, which implies that the proposed estimator β̂ is 

̅̅̅
n

√
-consistent. In addition, when p is a fixed number, our estimator 

attains the semiparametric efficiency bound given in Ai et al. (2021). 

4.2. Property of the ANN-OR estimator for ATE 

The asymptotic normality of the ANN-IPW estimator requires the strict overlap condition, i.e. Assumption 4 (ii). In this section, we 
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prove that such a condition can be possibly relaxed for the ANN-OR estimator of ATE defined in (3.7). From both the theoretical 
analysis and the numerical comparison in Section 7, we recommend the use of ANN-OR estimator for estimating ATE in practice and 
the use of ANN-IPW estimator for estimating other types of causal effects such as QTE. 

Let w∗
d(x) := fX(x)/fX|D(x|d), z∗d(x) = E[Y|X = x, D = d], and z(zd, ϵn) := (1 − ϵn) ⋅ zd + ϵn ⋅ {w∗

d +z∗d} be a local alternative value 
around zd ∈ G n. 

Assumption 7. For every d ∈ D = {0,1, ..., J} and m ≥ 1, we assume z∗d(⋅) ∈ F m
p . 

Assumption 8. (i) We assume 

max

⎧
⎪⎪⎨

⎪⎪⎩

vz∗d ,m
⋅ r

− 1
2−

1
p

n ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rn ⋅ p ⋅ logn

n

√
⎫
⎪⎪⎬

⎪⎪⎭

= o
(

n− 1
4

)
.

(ii) The bound of the hidden-to-output weights, Bn, specified in (2.2) satisfies Bn ≤ 2vz∗d ,m. 

Assumption 9. (i) P(Ddi = 1) ∈ (0, 1) and π∗
d(X) ∈ (0,1); (ii) There exists a constant c such that 

E
[{

w∗
d(X)

}2
]
= E

[{
fX(X)

fX|D(X|d)

}2]〈

c < ∞.

Assumption 10. (Approximation error) We assume the following conditions hold: 

sup{
zd∈G n :‖zd − z∗d‖L2(dFX )

≤δn

}‖ ProjG n
z(zd, ϵn) − z(zd, ϵn) ‖L2(dFX ) = O

(
ϵ2

n

δn

)

, and  

sup{
zd∈G n :‖zd − z∗d‖L2(dFX )

≤δn

}
1
n

∑n

i=1

(
z(zd, ϵn)(Xi) − ProjG n

z(zd, ϵn)(Xi)
)
= OP

(
ϵ2

n

)
,

where ProjG n
z(zd, ϵn) denotes the L2(dFX)-projection of z(zd, ϵn) on the ANN space G n. 

Assumption 11. supx∈X E[{Y∗(d)}2
⃒
⃒
⃒X= x]〈C < ∞ for some finite constant C > 0. 

Assumptions 7 –11 are comparable to Assumptions 2–6. It’s worth noting that Assumption 9 does not restrict the propensity score 
π∗

d(X) to be uniformly bounded below by a constant. 

Theorem 4. Under Assumptions 1, 7–11, for every d ∈ {0,1, ..., J}, we have β̂
OR
d →

p
β∗

d and 

̅̅̅
n

√ (
β̂

OR
d − β∗

d

)
=

1̅
̅̅
n

√
∑n

i=1
SOR

d

(
Yi,Ddi,Xi; β∗

d

)
+ oP(1),

where 

SOR
d = SOR

d

(
Yi,Ddi,Xi; β∗

d

)
=

Ddi

π∗
d(Xi)

Yi −

{
Ddi − π∗

d(Xi)

π∗
d(Xi)

}

⋅ z∗d(Xi) − E
[
z∗d(Xi)

]
.

Consequently, 
{

VOR}− 1/2 ⋅
̅̅̅
n

√ {
β̂OR − β∗

}
→d

N
(
0, I(J+1)×(J+1)

)
,

where I(J+1)×(J+1) is the (J + 1) × (J + 1) identity matrix, VOR = E[SOR ⋅ (SOR)
⊤
], and SOR = (SOR

0 , ..., SOR
J )

⊤. The proof of Theorem 4 is 
provided in Supplement E. 

Note that 1/π∗
d(X) = w∗

d(X)/P(Ddi = 1), with Assumptions 9 and 11, we have that the asymptotic variance is finite, which implies 
the proposed estimator β̂OR is 

̅̅̅
n

√
-consistent. Moreover, the ANN-OR estimator β̂OR has the same asymptotic variance as the ANN-IPW 

estimator β̂ when L (v) = v2 for ATE. We can take the same inferential strategies as given in Section 5 to conduct inference based on 
the ANN-OR estimator. 

5. Statistical inference 

This section presents a weighted bootstrap procedure to conduct statistical inference for β∗. Our TE estimator is obtained from 
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directly optimizing an objective function, so a weighted bootstrap procedure can be performed to conduct inference without the need 
of estimating the asymptotic variance function. Estimation of the variance function can be challenging in the quantile TE setting. In 
Supplement F.2, we discuss a possible method for the estimation of the asymptotic variance based on the asymptotic formula given in 
Theorem 3. 

Let {ωd1, ...,ωdn} be i.i.d. positive random weights that are independent of data satisfying E[ωdi] = 1 and Var(ωdi) = 1, where d ∈ {0,
1, ...,J}. The weighted bootstrap estimator of the inverse logistic PS g∗d is defined by satisfying 

LB
d,n

(
ĝB

d

)
≥ sup

gd∈G n

LB
d,n(gd) − O

(
ϵ2

n

)
,

where LB
d,n(gd) := n− 1∑n

i=1ωdiℓd(Ddi,Xi; gd(⋅)) is the bootstrapped empirical criterion, and ϵn = o(n− 1/2). Let π̂B
d := L(ĝB

d). Then the 
weighted bootstrap IPW estimator of β∗

d is given by 

β̂
B
d = argmin

β∈Θ

1
n
∑n

i=1

ωdiDdi

π̂B
d (Xi)

L (Yi − β), d ∈ {0, 1, ..., J}.

The weighted bootstrap OR estimator of ATE can be derived similarly. The weighted bootstrap estimator of the OR function z∗d is 
defined by satisfying 

LOR,B
d,n

(
ẑB

d

)
≥ sup

zd∈G n

LOR,B
d,n (zd) − O

(
ϵ2

n

)
,

where LOR,B
d,n (zd) := n− 1∑n

i=1ωdiℓOR
d (Ddi,Xi,Yi; zd(⋅)). Then the weighted bootstrap OR estimator of E[Y∗(d)] is given by 

β̂
OR,B
d =

1
n
∑n

i=1
ωd,i ẑB

d (Xi), d ∈ {0, 1, ..., J}.

Let β̂B := (β̂
B
0 , ..., β̂

B
J+1)

⊤

and β̂OR,B := (β̂
OR,B
0 , ..., β̂

OR,B
J+1 )

⊤

. The following theorem justifies the validation of the proposed bootstrap 
inference. 

Theorem 5. (i) Under Assumptions 1–6, for any d ∈ {0,1, .., J}, then conditionally on the data we have 

V− 1/2 ⋅
̅̅̅
n

√ (
β̂B − β̂

)
→d

N
(
0, I(J+1)×(J+1)

)
.

(ii) Under Assumptions 1, 3, 7-11, for any d ∈ {0,1, ..,J}, then conditionally on the data we have 
{

VOR}− 1/2 ⋅
̅̅̅
n

√ (
β̂OR,B − β̂OR)→d

N
(
0, I(J+1)×(J+1)

)
.

The proof of Theorem 5 is presented in Supplement F. 

5.1. Possible challenge of applying the EIF based method to quantile TE estimation 

The EIF can be applied to different loss functions. When EIF is given, the estimator of β∗
d can be obtained by solving the estimated 

efficient score function (Tsiatis, 2007). For example, when the loss function L (v) = v2 corresponding to ATE, the EIF of β∗
d = E[Y∗(d)] is 

Ddi

π∗
d(Xi)

Yi −

{
Ddi

π∗
d(Xi)

− 1
}

E[Yi|Ddi = 1,Xi] − β∗
d. (5.1)  

It involves the PS function π∗
d(x) and the OR function E[Yi|Ddi = 1,Xi = x] that can be estimated separately. As a result, the ATE of β∗

d 
can be obtained with the estimated PS and OR functions directly plug into the function given in (5.1). 

When the loss function L (v) = v ⋅ {τ − 1(v ≤ 0)} corresponding to the τth-quantile TE, the specific form of EIF for β∗
d = F− 1

Y∗(d)(τ) can 
also be derived from H− 1

d Sd(Yi,Ddi,Xi; β∗
d). As a result, its estimator can be obtained from solving the estimated efficient score equation 

∑n

i=1

[
Ddi

π̂d(Xi)
{τ − 1(Yi ≤ β)} −

{
Ddi

π̂d(Xi)
− 1
}

{τ − Ê[1(Yi ≤ β)|Ddi = 1,Xi]}

]

= 0, (5.2)  

where π̂d(x) and Ê[1(Yi ≤ β)|Ddi = 1,Xi = x] are estimates of π∗
d(x) and E[1(Yi ≤ β)|Ddi = 1,Xi = x], respectively. We can see that the 

estimation of quantile TEs from (5.2) is challenging when ANNs or other nonlinear machine learning methods are employed to obtain 
Ê[1(Yi ≤ β)|Ddi = 1,Xi = x], as it intertwines with the unknown quantile TE parameter β nonlinearly. 

Different from the aforementioned estimators constructed based on the estimated EIF, our TE estimators are directly obtained from 
optimizing an objective function that only involves the ANN-based estimated PS function. This approach greatly facilitates the 
computation of obtaining TE estimates and conducting causal inference without the need to estimate the EIF. 
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6. Extension to the general treatment effect on the treated 

The above results can be easily extended to other multi-valued causal parameters defined on the treated subgroup. Let 

β∗

d′ := argmin
β

∑J

d=0
E[L (Y∗(d) − βd)|D =d′], (6.1)  

for some fixed d′ ∈ {0, 1, ..., J}, where β = (β0, β1, ..., βJ) and β∗
d′ = (β∗

0,d′, β∗
1,d′, ..., β∗

J,d′). The formulation (6.1) includes the following 
important cases discussed in Lee (2018):  

• L (v) = v2, then β∗
d,d′ = E[Y∗(d)|D= d′] is the average treatment effects on the treated.  

• L (v) = v{τ − 1(v ≤ 0)}, then β∗
d,d′ = F− 1

Y∗(d)|D(τ|d′) is the τth quantile of Y∗(d) conditioned on the treated group {D = d′}. 

Under Assumption 1, using the property of conditional expectation, the parameter of interest β∗
d′ is identified by 

β∗

d′ := argmin
β

∑J

d=0

1
pd′

E[1(D = d′)L (Y∗(d) − βd)]

= argmin
β

∑J

d=0

1
pd′

E
[
π∗

d′(X) ⋅ E[L (Y∗(d) − βd)|X]
]

= argmin
β

∑J

d=0

1
pd′

E

[

π∗

d′(X) ⋅ E[L (Y∗(d) − βd)|X] ⋅ E

[
1(D = d)

π∗
d(X)

|X
]]

= argmin
β

∑J

d=0

1
pd′

⋅ E

[

1(D = d) ⋅
π∗

d′(X)

π∗
d(X)

⋅ L (Y − βd)

]

,

where pd′ := P(D = d′). The estimator of β∗
d′ is obtained by minimizing the empirical analogue of the above equation: 

β̂d′ = argmin
β

∑J

d=0

∑n

i=1
Ddi π̂d′(Xi)L (Yi − βd)

/

π̂d(Xi)

∑n

i=1
Dd′i

,

where π̂d is the ANN estimator of π∗
d. The estimator of β∗

d,d′ for d ∈ {0,1, ..., J} can be defined as 

β̂d,d′ = argmin
β∈Θ

1
n
∑n

i=1

Ddi

π̂d(Xi)
π̂d′(Xi)L (Yi − β).

Similar to the proof of Theorem 3 we obtain the following result for β∗
d′. 

Theorem 6. Under Assumptions 1–6, for any d, d′ ∈ {0,1, .., J}, we have that 

̅̅̅
n

√ (
β̂d,d′ − β∗

d,d′

)
= H− 1

d,d′ ⋅
1̅
̅̅
n

√
∑n

i=1
Sd,d′

(
Xi,Ddi, Yi; β∗

d,d′

)
+ oP(1),

where Hd,d′ = − ∂βd E[π∗
d′(Xi)L

′
(Y∗

i (d) − β∗
d)] and 

Sd,d′

(
Yi,Ddi,Xi; β∗

d,d′

)
:=

Ddi

π∗
d(Xi)

π∗

d′(Xi)L
′
(

Yi − β∗

d,d′

)
−

{
Ddi

π∗
d(Xi)

π∗

d′(Xi) − Dd′i

}

E d

(
Xi, β∗

d,d′

)
.

7. Simulation studies 

7.1. Background and methods used 

In this section, we illustrate the finite sample performance of our proposed methods via simulations in which we generate data from 
models in Section 7.2. Our proposed IPW estimator can be applied to various types of treatment effects. We use ATE, ATT (average 
treatment effects on the treated), QTE and QTT (quantile treatment effects on the treated) for illustration of the performance of the IPW 
estimator. For QTE and QTT, we consider the 25th (Q1), 50th (Q2) and 75th (Q3) percentiles. We also illustrate the performance of the 
OR estimator for ATE and ATT. To obtain the IPW and OR estimators, we estimate the PS and OR functions by using our proposed ANN 
method as well as five other popular methods, including the generalized linear models (GLM), the generalized additive models (GAM), 
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Table 1 
The summary statistics of the estimated ATEs for Model 1 with p = 5.   

IPW OR DR Oracle  

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN 
n = 1000               

bias 0.0008 0.0584 0.0594 0.0523 0.0562 0.0015 0.0010 0.0586 0.0574 0.0151 0.0144 0.0012 0.0026 0.0006 
emp_sd 0.0758 0.0907 0.0924 0.0830 0.0844 0.0789 0.0713 0.0906 0.0930 0.0769 0.0828 0.0726 0.0752 0.0668 
est_sd 0.0701 0.0923 0.0903 0.0511 0.0483 0.0715 0.0701 0.0923 0.0903 0.0511 0.0483 0.0715 0.0701 0.0686 
cover_rate 0.9275 0.9025 0.8750 0.6700 0.6400 0.9250 0.9425 0.9050 0.8900 0.8000 0.7450 0.9425 0.9325 0.9600 
est_sd_boot 0.0771 0.0901 0.0922 0.0821 0.0853 0.0791 0.0751 0.0902 0.0924 0.0773 0.0841 0.0737   
cover_rate_boot 0.9375 0.8850 0.0888 0.9025 0.8950 0.9375 0.9475 0.8875 0.8875 0.9275 0.9350 0.9500   
n = 2000               
bias 0.0007 0.0578 0.0585 0.0495 0.0425 0.0008 0.0009 0.0591 0.0571 0.0127 0.0131 0.0010 0.0007 0.0010 
emp_sd 0.0524 0.0684 0.0675 0.0620 0.0634 0.0563 0.0499 0.0685 0.0677 0.0564 0.0575 0.0502 0.0523 0.0498 
est_sd 0.0488 0.0652 0.0637 0.0371 0.0370 0.0508 0.0488 0.0652 0.0637 0.0371 0.0370 0.0508 0.0493 0.0485 
cover_rate 0.9375 0.8175 0.8100 0.6250 0.6500 0.9175 0.9500 0.8175 0.8050 0.7875 0.7575 0.9475 0.9475 0.9475 
est_sd_boot 0.0573 0.0679 0.0665 0.0612 0.0645 0.0599 0.0493 0.0685 0.0697 0.0563 0.0572 0.0505   
cover_rate_boot 0.9475 0.8275 0.8400 0.8400 0.8575 0.9400 0.9500 0.8275 0.8225 0.9200 0.9075 0.9500   
n = 5000               
bias 0.0001 0.0558 0.0545 0.0407 0.0225 0.0002 0.0003 0.0558 0.0545 0.0043 0.0073 0.0003 0.0009 0.0010 
emp_sd 0.0334 0.0397 0.0390 0.0362 0.0376 0.0335 0.0312 0.0397 0.0389 0.0324 0.0327 0.0305 0.0322 0.0309 
est_sd 0.0309 0.0413 0.0403 0.0244 0.0258 0.0307 0.0309 0.0413 0.0403 0.0244 0.0258 0.0307 0.0306 0.0307 
cover_rate 0.9350 0.7350 0.7175 0.5700 0.7400 0.9250 0.9475 0.7375 0.7150 0.8500 0.8450 0.9525 0.9400 0.9600 
est_sd_boot 0.0331 0.0402 0.0401 0.0355 0.0365 0.0337 0.0308 0.0399 0.0402 0.0327 0.0331 0.0305   
cover_rate_boot 0.9475 0.7350 0.7225 0.7850 0.8725 0.9475 0.9575 0.7350 0.7250 0.9325 0.9250 0.9525    
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Table 2 
The summary statistics of the estimated ATEs for Model 1 with p = 10.   

IPW OR DR Oracle  

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN 
n = 1000               

bias 0.0010 0.0635 0.0655 0.0574 0.0536 0.0010 0.0064 0.0637 0.0640 0.0264 0.0279 0.0037 0. 0073 0.0077 
emp_sd 0.0855 0.0900 0.1127 0.0887 0.0915 0.0859 0.0793 0.0901 0.1041 0.0825 0.0832 0.0785 0.0823 0.0666 
est_sd 0.0789 0.0943 0.0982 0.0547 0.0512 0.0784 0.0789 0.0943 0.0982 0.0547 0.0512 0.0784 0.0789 0.0695 
cover_rate 0.9250 0.9075 0.8675 0.6725 0.6500 0.9275 0.9400 0.9075 0.8800 0.7775 0.7375 0.9450 0.9325 0.9550 
est_sd_boot 0.0884 0.0923 0.1089 0.0893 0.0921 0.0864 0.0798 0.0913 0.0965 0.0833 0.0856 0.0778   
cover_rate_boot 0.9350 0.8950 0.8825 0.8925 0.8950 0.9375 0.9475 0.8950 0.8650 0.9150 0.9125 0.9450   
n = 2000               
bias 0.0034 0.0659 0.0661 0.0584 0.0462 0.0032 0.0001 0.0660 0.0675 0.0227 0.0266 0.0009 0.0012 0.0050 
emp_sd 0.0597 0.0660 0.0692 0.0634 0.0629 0.0657 0.0543 0.0661 0.0683 0.0588 0.0590 0.0519 0.0558 0.0501 
est_sd 0.0532 0.0668 0.0667 0.0397 0.0382 0.0539 0.0532 0.0668 0.0667 0.0397 0.0382 0.0539 0.0530 0.0492 
cover_rate 0.9250 0.8275 0.8225 0.6050 0.6400 0.9250 0.9400 0.8250 0.8275 0.7825 0.7475 0.9650 0.9400 0.9500 
est_sd_boot 0.0604 0.0668 0.0687 0.0624 0.0628 0.0649 0.0560 0.0664 0.0679 0.0590 0.0595 0.0530   
cover_rate_boot 0.9475 0.8250 0.8250 0.8125 0.8375 0.9425 0.9500 0.8275 0.8350 0.9025 0.8875 0.9525   
n = 5000               
bias 0.0015 0.0679 0.0670 0.0565 0.0362 0.0012 0.0001 0.0679 0.0670 0.0158 0.0177 0.0009 0. 0017 0.0020 
emp_sd 0.0363 0.0439 0.0439 0.0416 0.0419 0.0357 0.0332 0.0440 0.0439 0.0376 0.0376 0.0319 0.0345 0.0319 
est_sd 0.0322 0.0422 0.0418 0.0258 0.0267 0.0319 0.0322 0.0422 0.0418 0.0258 0.0267 0.0319 0.0323 0.0311 
cover_rate 0.9275 0.6100 0.5975 0.4225 0.6150 0.9250 0.9425 0.6125 0.6000 0.7875 0.7700 0.9500 0.9475 0.9550 
est_sd_boot 0.0368 0.0441 0.0443 0.0420 0.0423 0.0349 0.0333 0.0440 0.0442 0.0376 0.0378 0.0323   
cover_rate_boot 0.9475 0.6550 0.6475 0.6575 0.7875 0.9450 0.9525 0.6250 0.6175 0.8275 0.8150 0.9525    
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the random forests (RF), the gradient boosted machines (GBM) and the deep neural networks with three hidden layers (DNN). We 
make a comparison of the performance of the resulting TE estimators with the nuisance functions estimated by the aforementioned six 
methods. Moreover, we compare our IPW and OR estimators with the doubly robust (DR) estimator (Farrell et al., 2021) and the Oracle 
estimator for ATE. For the DR estimator, the IPW and OR functions are also approximated by ANNs. The Oracle estimator is constructed 
based on the efficient influence function with the true PS and OR functions plugged in, see Hahn (1998). The Oracle estimators are 
infeasible in practice, but they are expected to perform the best for the estimation of ATE, and serve as a benchmark to compare with. 
In the quantile TE settings, both DR (EIF-based) and OR estimators are difficult to obtain, so we only show the performance of the IPW 
estimator. 

We use the Rectified Linear Unit (ReLU) as the activation function for both ANN and DNN. We use cubic regression spline basis 
functions for GAM. We apply grid search with 5-fold cross-validation to select hyperparameters for all methods, including the number 
of neurons for ANN DNN, the number of trees and max depths of trees for RF and GBM, and the learning rate for GBM. All the 
simulation studies are implemented in Python 3.9. The DNN, GLM, GAM, RF and GBM methods are implemented using the packages 
tensorflow, statsmodel, pyGAM and scikit-learn, respectively. 

7.2. Data generating process 

We generate the treatment and outcome variables from a nonlinear model and a linear model, respectively, given as follows. 
Model 1 (nonlinear model) : 

logit{E(Di|Xi)} = 0.5
(
X∗

i1X∗
i2 − 0.7sin

( (
X∗

i3 + X∗
i4

)(
X∗

i5 − 0.2
))

− 0.1
)
,

E
(
Y∗

i (1)
⃒
⃒Xi
)

= E(Yi|Xi,Di = 1) = 0.3
(
X∗

i1 − 0.9
)2

+ 0.1
(
X∗

i2 − 0.5
)2

− 0.6X∗
i2X∗

i3 + sin
(
− 1.7

(
X∗

i1 + X∗
i3 − 1.1

)
+ X∗

i4X∗
i5

)
+ 1,

E
(
Y∗

i (0)
⃒
⃒Xi
)

= E(Yi|Xi,Di = 0) = 0.64
(
X∗

i1 − 0.9
)2

+ 0.16
(
X∗

i2 + 0.2
)2

− 0.6X∗
i2X∗

i3 + sin
(
− 1.7

(
X∗

i1 + X∗
i3 − 1.1

)
+ X∗

i4X∗
i5

)
− 1;

Model 2 (linear model) : 

logit{E(Di|Xi)} = 0.1
(
X∗

i1 + X∗
i2 − 2X∗

i3 + 3X∗
i4 − 3X∗

i5

)
,

E
(
Y∗

i (1)
⃒
⃒Xi
)

= E(Yi|Xi,Di = 1) = 4X∗
i1 + 3X∗

i2 − X∗
i3 − 5X∗

i4 + 7X∗
i5 + 1,

E
(
Y∗

i (0)
⃒
⃒Xi
)

= E(Yi|Xi,Di = 0) = 4X∗
i1 + 3X∗

i2 − X∗
i3 − 5X∗

i4 + 7X∗
i5 − 1,

where X∗
ij′ = cp

5
p
∑pj′/5

j=p(j′− 1)/5+1Xij for 1 ≤ j′ ≤ 5,1 ≤ i ≤ n, and Y∗
i (d) = E(Y∗

i (d)
⃒
⃒Xi)+ ϵi, d = {0,1}, ϵi∼

i.i.d. N (0,1) for 1 ≤ i ≤ n. 

We generate the confounders from Xij = 2(F(Zij) − 0.5), where Zi = (Zi1, ...,Zip)
⊤
∼i.i.d. N (0,Σ), Σ = {σkk′}, σkk′ = 0.2|k− k′| for 1 ≤ k,

k′ ≤ p, and F(⋅) is the cumulative distribution function of the standard normal for 1 ≤ i ≤ n, 1 ≤ j ≤ p. Let cp=1. We partition the 
confounders into 5 subgroups, and X∗

ij′ is the average of the p/5 confounders in the j’th subgroup for j′ = 1, ..., 5, so that every 
confounder is included in our models. We consider p = 5, 10 and n = 1000, 2000, 5000. All simulation results are based on 400 
realizations. 

We also use the nonlinear model (Model 1) to illustrate the performance of our proposed methods for p = 100 and n = 2000, with 
the confounders Xij = 2(F(Zij /σj) − 0.5), where σj is the standard deviation of Zij, and Zi = (Zi1, ...,Zip)

⊤ are generated from two 
designs.  

• Design 1 (factor model): Zij = F⊤
i Lj + ηij, where Fi∼

i.i.d. N (0, Σ∗), Σ∗ = {σkk′}, in which σkk′ = 0.2|k− k′| for 1 ≤ k, k′ ≤ 10, Lj is a 
constant vector kept fixed for each realization and is generated from Lj∼

i.i.d. N (0,Σ∗), and ηij∼
i.i.d. N (0,1). Let cp=7. 

• Design 2 (multivariate normal): Zi∼
i.i.d. N (0,Σ), Σ = {σkk′}, σkk′ = 0.2m(|k− k′|) for 1 ≤ k,k′ ≤ p, where m(x) = ⌈x /10⌉, and ⌈a⌉ de-

notes the smallest integer no less than a. Let cp=4. 

7.3. Simulation results 

To compare the performance of different methods for estimating the TEs, we report the following statistics: the absolute value of 
bias (bias), the empirical standard deviation (emp_sd), the average value of the estimated standard deviations based on the asymptotic 
formula (est_sd) and obtained from the weighted bootstrapping (est_sd_boot), and the empirical coverage rates of the 95% confidence 
intervals based on the estimated asymptotic standard deviations (cover_rate) and the weighted bootstrapping method (cover_-
rate_boot). The 95% confidence intervals based on bootstrapping are obtained from the 2.5th percentile and 97.5th percentile of the 
weighted bootstrapping estimates. The bootstrap confidence intervals and the estimated standard deviations (est_sd_boot) are obtained 
based on 400 bootstrap replicates for each simulation sample. The bootstrap weights are randomly generated from the exponential 
distribution with mean 1 according to Ma and Kosorok (2005). 

Tables 1–2 report the numerical results for different estimators of ATE for Model 1 with p = 5, 10, respectively. We see that as n 
increases, the empirical coverage rates (cover_rate and cover_rate_boot) based on our proposed ANN-based IPW and OR estimates 
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Table 3 
The summary statistics of the estimated QTEs by the IPW method for Model 1 with p=5.   

Q1 Q2 Q3  

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN 
n=1000                   

bias 0.0045 0.0601 0.0589 0.0630 0.0684 0.0036 0.0012 0.0534 0.0574 0.0507 0.0539 0.0025 0.0098 0.0363 0.0407 0.0286 0.0302 0.0067 
emp_sd 0.1266 0.1358 0.1418 0.1274 0.1301 0.1235 0.1075 0.1116 0.1166 0.1055 0.1074 0.1099 0.1196 0.1151 0.1201 0.1121 0.1130 0.1206 
est_sd 0.1414 0.1403 0.1596 0.1398 0.1405 0.1404 0.1238 0.1240 0.1447 0.1241 0.1249 0.1222 0.1251 0.1232 0.1412 0.1237 0.1247 0.1243 
cover_rate 0.9500 0.9275 0.9375 0.9350 0.9250 0.9525 0.9675 0.9550 0.9500 0.9675 0.9650 0.9575 0.9600 0.9650 0.9650 0.9650 0.9625 0.9625 
est_sd_boot 0.1259 0.1378 0.1432 0.1275 0.1305 0.1278 0.1091 0.1154 0.1171 0.1087 0.1072 0.1093 0.1231 0.1131 0.1241 0.1172 0.1187 0.1236 
cover_rate_boot 0.9350 0.9225 0.9300 0.9275 0.9175 0.9375 0.9600 0.9500 0.9475 0.9500 0.9475 0.9500 0.9575 0.9450 0.9500 0.9575 0.9550 0.9600 
n = 2000                   
bias 0.0046 0.0604 0.0560 0.0631 0.0646 0.0037 0.0004 0.0547 0.0523 0.0454 0.0467 0.0014 0.0056 0.0494 0.0506 0.0372 0.0369 0.0043 
emp_sd 0.0928 0.1029 0.1012 0.0944 0.0944 0.0954 0.0819 0.0883 0.0884 0.0828 0.0844 0.0831 0.0852 0.0872 0.0888 0.0848 0.0860 0.0864 
est_sd 0.0900 0.0986 0.0976 0.0984 0.0989 0.0933 0.0791 0.0870 0.0872 0.0871 0.0875 0.0804 0.0814 0.0860 0.0871 0.0862 0.0867 0.0824 
cover_rate 0.9325 0.8650 0.8750 0.9000 0.8875 0.9425 0.9350 0.9050 0.9050 0.9300 0.9225 0.9325 0.9550 0.9100 0.9175 0.9425 0.9350 0.9375 
est_sd_boot 0.0911 0.1014 0.1023 0.0954 0.0968 0.0961 0.0811 0.0889 0.0892 0.0857 0.0853 0.0842 0.0841 0.0872 0.0891 0.0857 0.0871 0.0858 
cover_rate_boot 0.9400 0.8675 0.8925 0.8750 0.8650 0.9450 0.9425 0.9100 0.9025 0.9125 0.9200 0.9500 0.9375 0.9150 0.9200 0.9375 0.9350 0.9450 
n = 5000                   
bias 0.0034 0.0594 0.0560 0.0456 0.0255 0.0029 0.0033 0.0489 0.0478 0.0367 0.0188 0.0036 0.0026 0.0454 0.0460 0.0320 0.0176 0.0014 
emp_sd 0.0560 0.0600 0.0591 0.0555 0.0559 0.0570 0.0514 0.0545 0.0539 0.0520 0.0522 0.0517 0.0494 0.0513 0.0508 0.0497 0.0503 0.0490 
est_sd 0.0558 0.0624 0.0607 0.0624 0.0639 0.0531 0.0493 0.0546 0.0537 0.0546 0.0557 0.0510 0.0508 0.0542 0.0540 0.0542 0.0551 0.0513 
cover_rate 0.9575 0.8625 0.8600 0.9125 0.9575 0.9575 0.9400 0.8675 0.8675 0.9200 0.9525 0.9475 0.9625 0.8900 0.8850 0.9300 0.9575 0.9675 
est_sd_boot 0.0560 0.0614 0.0603 0.0576 0.0578 0.0560 0.0509 0.0553 0.5420 0.0534 0.0539 0.0509 0.5010 0.0517 0.0515 0.0508 0.0512 0.5010 
cover_rate_boot 0.9575 0.8575 0.8550 0.8825 0.9325 0.9575 0.9500 0.8725 0.8725 0.9075 0.9500 0.9500 0.9600 0.8575 0.8550 0.9200 0.9325 0.9625  
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Table 4 
The summary statistics of the estimated QTEs by the IPW method for Model 1 with p=10.   

Q1 Q2 Q3  

ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN ANN GLM GAM RF GBM DNN 
n=1000                   

bias 0.0019 0.0717 0.0750 0.0700 0.0696 0.0023 0.0047 0.0544 0.0541 0.0507 0.0472 0.0033 0.0030 0.0488 0.0476 0.0394 0.0367 0.0036 
emp_sd 0.1585 0.1345 0.1634 0.1325 0.1364 0.1592 0.1437 0.1195 0.1485 0.1179 0.1206 0.1437 0.1332 0.1185 0.1529 0.1193 0.1208 0.1331 
est_sd 0.2530 0.1444 0.4770 0.1442 0.1487 0.2630 0.2639 0.1269 0.4708 0.1269 0.1312 0.2684 0.2034 0.1253 0.4458 0.1255 0.1294 0.2109 
cover_rate 0.9675 0.9200 0.9950 0.9350 0.9375 0.9675 0.9425 0.9450 1.0000 0.9475 0.9525 0.9450 0.9575 0.9325 1.0000 0.9350 0.9500 0.9575 
est_sd_boot 0.1623 0.1345 0.1552 0.1376 0.1425 0.1687 0.1523 0.1231 0.1253 0.1198 0.1225 0.1523 0.1376 0.1203 0.1623 0.1198 0.1256 0.1392 
cover_rate_boot 0.9325 0.9150 0.9125 0.9300 0.9250 0.9350 0.9350 0.9350 0.9375 0.9400 0.9475 0.9500 0.9325 0.9225 0.9375 0.9000 0.9225 0.9350 
n = 2000                   
bias 0.0030 0.0663 0.0678 0.0632 0.0535 0.0023 0.0015 0.0576 0.0580 0.0529 0.0421 0.0005 0.0105 0.0613 0.0620 0.0527 0.0426 0.0087 
emp_sd 0.1070 0.1040 0.1083 0.1008 0.1016 0.1109 0.0937 0.0902 0.0943 0.0874 0.0872 0.0954 0.0873 0.0855 0.0890 0.0833 0.0830 0.0923 
est_sd 0.1057 0.1021 0.1149 0.1019 0.1052 0.1134 0.0919 0.0889 0.1026 0.0889 0.0917 0.0939 0.0913 0.0878 0.1001 0.0878 0.0904 0.0919 
cover_rate 0.9425 0.8775 0.8850 0.8900 0.9150 0.9475 0.9200 0.8900 0.9175 0.9100 0.9250 0.9350 0.9425 0.9125 0.9325 0.9275 0.9400 0.9525 
est_sd_boot 0.1072 0.1043 0.1097 0.1011 0.1045 0.1122 0.0932 0.0901 0.0994 0.0883 0.0892 0.0952 0.0885 0.0861 0.0923 0.0869 0.0873 0.0925 
cover_rate_boot 0.9450 0.8800 0.8000 0.8900 0.9125 0.9450 0.9325 0.8975 0.9150 0.9100 0.9175 0.9450 0.9375 0.9050 0.9125 0.9250 0.9275 0.9575 
n = 5000                   
bias 0.0065 0.0774 0.0764 0.0696 0.0472 0.0055 0.0046 0.0637 0.0633 0.0547 0.0356 0.0051 0.0021 0.0537 0.0535 0.0433 0.0273 0.0031 
emp_sd 0.0657 0.0682 0.0680 0.0650 0.0656 0.0634 0.0568 0.0580 0.0584 0.0560 0.0567 0.0532 0.0554 0.0555 0.0562 0.0549 0.0563 0.0531 
est_sd 0.0629 0.0644 0.0638 0.0644 0.0659 0.0615 0.0537 0.0556 0.0555 0.0556 0.0568 0.0531 0.0542 0.0550 0.0551 0.0549 0.0560 0.0522 
cover_rate 0.9275 0.7675 0.7725 0.8025 0.8875 0.9275 0.9350 0.7800 0.7725 0.8225 0.9075 0.9450 0.9375 0.8375 0.8300 0.8650 0.9250 0.9375 
est_sd_boot 0.0655 0.0686 0.0678 0.0648 0.0658 0.0635 0.0565 0.0577 0.0579 0.0552 0.0571 0.0545 0.0548 0.0561 0.0568 0.0552 0.0561 0.0528 
cover_rate_boot 0.9325 0.7825 0.7875 0.8125 0.8875 0.9450 0.9475 0.7900 0.7850 0.8200 0.9100 0.9525 0.9400 0.8500 0.8525 0.8675 0.9275 0.9425  
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become closer to the nominal level 95%. The biases are close to zero, and the values of emp_sd, est_sd and est_sd_boot decrease as n 
increases. These results corroborate our asymptotic theories. We observe that our ANN-based IPW and OR estimators have comparable 
performance to the DR and the Oracle estimators when estimating ATE. The proposed ANN-based OR estimator slightly outperforms 
the ANN-based IPW and DR estimators in the sense that it has the smallest emp_sd value. It is possible that the estimated PS functions 
have a few values close to zero. This can affect the emp_sd value of the IPW estimate for ATE. The DR estimator which is constructed 
based on the estimates of both IPW and OR functions has larger emp_sd values than the OR estimator, but it yields smaller emp_sd 
values than the IPW estimator. Our numerical results suggest that the proposed ANN-based OR estimator is preferred for the estimation 
of ATE. However, in practice, it can be difficult to construct OR and DR estimators for other types of TEs, such as quantile TEs. Then the 
proposed ANN-based IPW estimator becomes a more appealing tool. Moreover, our numerical results given in Tables 3–4 show that the 
performance of the ANN-based IPW estimators for quantile TEs is less influenced by the small values of the estimated PS functions 
because of the robustness of the quantile objective functions. For our proposed ANN-based IPW and OR estimators, it is convenient to 
apply the proposed weighted bootstrap procedure for conducting inference. We find that the empirical coverage rates of 95% con-
fidence intervals obtained from the weighted bootstrapping are closer to the nominal level than those obtained from the estimated 
asymptotic standard deviations. 

Next, we compare the performance of different machine learning (ML) methods for the estimation of ATE. We see that the GLM and 
GAM methods yield large estimation biases due to the model misspecification problem. Our numerical results show that the proposed 
ANN method outperforms the other two ML methods, RF and GBM, for the estimation of TEs. The empirical coverage rates based on the 
ANN method are closer to the nominal level in all cases than the rates obtained from RF and GBM. It is worth noting that our ANN- 
based TE estimators enjoy the properties of root-n consistency and semiparametric efficiency. In general, our numerical results 
corroborate those theoretical properties. Moreover, for RF and GBM, the OR estimator also performs better than the IPW estimator for 
ATE estimation. The empirical coverage rates of the 95% confidence intervals obtained from the weighted bootstrapping are improved 
compared to the rates obtained from the estimated asymptotic standard deviation. The DNN method has comparable performance to 
the ANN method. 

Tables 3–4 show the numerical results of different methods for the estimation of QTEs for Model 1 with p = 5, 10, respectively. It is 
difficult to construct OR and DR estimators for QTEs, so we only report the results for the IPW estimators, which are very convenient to 
be obtained in this context. The PS functions are estimated by different ML methods, and the numerical results of the resulting IPW 
estimates are summarized in Tables 3–4. In general, we observe similar patterns of numerical performance of different methods as 
shown in Tables 1–2. It is worth noting that the proposed ANN-based IPW method has very stable performance for the estimation of 
QTEs. The resulting emp_sd values are not influenced by possibly small values of the estimated PS functions because of the robustness 
nature of the quantile objective function. Moreover, in the QTE settings, estimation of the asymptotic standard deviations can involve a 
complicated procedure, and several approximations are needed. As a result, the estimation is not guaranteed to perform well. Fig. 1 
shows the boxplots of the estimated asymptotic standard deviations of QTE (Q1) for Model 1 with p = 5,10, n = 1000. We see that the 
estimated values are large for some simulation replicates. In contrast, the estimated standard deviations obtained from the weighted 
bootstrapping have more reliable performance. In complex TE settings such as QTEs, the proposed weighted bootstrap method that 
avoids the estimation of the asymptotic variance provides a robust way to conduct statistical inference, and thus it is recommended in 
practice. It is convenient to apply the weighted bootstrap method in our proposed TE estimation procedure, as the TE estimators are 
obtained from optimizing a general objective function. We apply different ML methods to estimate the PS function. The numerical 
results show that the ANN and DNN methods have comparable performance, and they still outperform other methods for the esti-
mation and inference of QTEs. 

To save space, the numerical results of different methods for ATTs and QTTs for Model 1 and all the numerical results for Model 2 
are presented in Tables 1–12 of Section I in the Supplementary Materials. Tables 1–4 show that the numerical results of different 
methods for estimating ATTs and QTTs have similar patterns as those given in Tables 1–4 for ATEs and QTEs. In Model 2, both PS and 
OR functions are generated from linear models, so the GLM and GAM methods no longer have the model misspecification problem, and 
GLM is expected to have the best performance. However, we can see from Tables 5–12 that the ANN and DNN methods have com-
parable performance to GLM for the estimation of TEs in all cases. It is worth noting that our proposed method can also be applied to 
the estimation of asymmetric least squares TEs and other types of TEs, and it has similar patterns of numerical performance as the 
estimation of ATEs and QTEs. The numerical results are not presented due to space limitations. 

Fig. 1. Boxplots of the estimated asymptotic standard deviations of QTE(Q1) for Model 1, n = 1000.  
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At last, we evaluate the performance of our proposed TE estimators in the settings with p = 100 and n = 2000. In this scenario, the 
number of confounders is very large compared to the sample size, and it does not satisfy the order requirement given in Assumption 4. 
Note that when dealing with high-dimensional covariates, one often assumes a parametric structure on the regression model and 
imposes a sparsity condition such that a small number of covariates are useful for the prediction The sparsity assumption and the 
parametric structure are not required in our setting. For the purpose of dimensionality reduction, we apply Principal Component 
Analysis (PCA) to extract the first 20 leading principal components, and use them to estimate the PS and OR functions via ANNs. For 
comparison, we also use the original covariates matrix without PCA to fit the nuisance models via ANNs. The resulting TE estimators 
with and without the PCA procedure are called ANN-PCA and ANN, respectively. Tables 5–6 report the summary statistics of the ANN- 
based TE estimators for ATE, ATT, QTE and QTT for Model 1 with p = 100 and n = 2000, based on 400 simulation realizations, when 
the confounders are generated from Designs 1 & 2 given in Section 7.2. For QTE and QTT, we only report the estimated standard 
deviations and empirical coverage rates from the weighted bootstrapping, as it is difficult to estimate the asymptotic standard de-
viations in the quantile settings. The ATE and ATT are estimated by the IPW, OR and DR methods, respectively, while the QTE and QTT 
are only estimated by the IPW method. 

From Table 5, for the estimation of ATE and ATT, we see that the empirical coverage rates obtained from all of the three methods, 
IPW, OR and DR, are smaller than the nominal level 0.95, and the values of bias and emp_sd are larger than those values given in 
Tables 1–2 for p = 5,10. The ANN-PCA method yields larger biases but smaller emp_sd than the ANN method. The empirical coverage 
rates from the ANN-PCA method are closer to the nominal level than those from the ANN method for both designs, but they still cannot 
reach the nominal level. It is expected that these ANN-based methods have inferior performance for p = 100 compared to the p = 5, 10 
settings, as the order assumption on the dimension p required for ANN approximations does not hold anymore when p = 100. As a 
result, the ANN-based estimators of the nuisance functions (OR and PS functions) are not guaranteed to be consistent estimators, 
yielding deteriorated performance, and those estimates further affect the estimation of ATE and ATT. The formula of est_sd involves the 
estimates of both OR and PS functions, so it is not surprising that its value is also affected. From Table 6 for the estimation of QTE and 

Table 5 
The summary statistics of the estimated ATEs and ATTs for Model 1 with p = 100 and n = 2000.    

Design 1 Design 2   

ATE ATT ATE ATT   

ANN ANN-PCA ANN ANN-PCA ANN ANN-PCA ANN ANN-PCA 

IPW bias 0.0104 0.0444 0.0205 0.0516 0.0163 0.0446 0.0197 0.0578 
emp_sd 0.0983 0.0719 0.1293 0.0790 0.1080 0.0776 0.1673 0.1005 
est_sd 0.0512 0.0651 0.0764 0.0789 0.0618 0.0733 0.0782 0.0865 
cover_rate 0.8225 0.8650 0.8025 0.8875 0.8100 0.8800 0.7650 0.8500 
est_sd_boot 0.0694 0.0668 0.0899 0.0796 0.0798 0.0737 0.1036 0.0934 
cover_rate_boot 0.8650 0.8675 0.8350 0.8900 0.8550 0.8925 0.8100 0.8825 

OR bias 0.0097 0.0379 0.0132 0.0356 0.0222 0.0388 0.0193 0.0511 
emp_sd 0.0892 0.0722 0.1163 0.0870 0.0988 0.0760 0.1356 0.0961 
est_sd 0.0512 0.0651 0.0764 0.0789 0.0618 0.0733 0.0782 0.0865 
cover_rate 0.8350 0.8900 0.8475 0.8950 0.7975 0.9150 0.8150 0.8400 
est_sd_boot 0.0625 0.0639 0.0871 0.0847 0.0714 0.0698 0.0939 0.0942 
cover_rate_boot 0.8775 0.8850 0.8575 0.9150 0.8450 0.8950 0.8575 0.8850 

DR bias 0.0101 0.0382 0.0158 0.0457 0.0195 0.0390 0.0204 0.0548 
emp_sd 0.0894 0.0723 0.1207 0.0862 0.0992 0.0765 0.1397 0.0964 
est_sd 0.0521 0.0669 0.0785 0.0807 0.0633 0.0724 0.0801 0.0849  
cover_rate 0.8375 0.8850 0.8500 0.9050 0.8025 0.8975 0.8275 0.8375  

Table 6 
The summary statistics of the estimated QTEs and QTTs by the IPW method for Model 1 with p = 100 and n = 2000.    

Design 1 Design 2   

QTE QTT QTE QTT   

ANN ANN-PCA ANN ANN-PCA ANN ANN-PCA ANN ANN-PCA 

Q1 bias 0.0157 0.0259 0.0139 0.0313 0.0132 0.0337 0.0111 0.0418 
emp_sd 0.1379 0.1101 0.1917 0.1257 0.1988 0.1210 0.2551 0.1542 
est_sd_boot 0.1305 0.1004 0.1812 0.1234 0.1753 0.1190 0.2236 0.1497 
cover_rate_boot 0.9050 0.8850 0.9125 0.8875 0.9125 0.8775 0.9050 0.8575 

Q2 bias 0.0131 0.0283 0.0249 0.0302 0.0154 0.0326 0.0055 0.0386 
emp_sd 0.1256 0.1017 0.1687 0.1123 0.1680 0.1101 0.2056 0.1315 
est_sd_boot 0.1104 0.0977 0.1447 0.1026 0.1544 0.1041 0.1869 0.1278 
cover_rate_boot 0.9225 0.9150 0.9075 0.9125 0.9300 0.9025 0.9225 0.9050 

Q3 bias 0.0265 0.0324 0.0446 0.0301 0.0248 0.0354 0.0272 0.0314 
emp_sd 0.1250 0.0966 0.1539 0.1041 0.1784 0.1077 0.2196 0.1192 
est_sd_boot 0.1213 0.0935 0.1495 0.1066 0.1647 0.1003 0.1967 0.1138 
cover_rate_boot 0.9175 0.9100 0.9025 0.8925 0.9200 0.9050 0.9175 0.8975  
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QTT, we can observe similar patterns as the results in Table 5, except that the ANN method has slightly larger empirical coverage rates 
than the ANN-PCA method. In sum, the TE estimation using ANNs in the context of ultra-high dimensional covariates is a challenging 
task. A sparse model assumption may be needed for high-dimensional settings. The investigation of its methodology and theories is 
beyond the scope of this paper, and it can be an interesting topic to pursue in the future. 

8. Application 

In this section, we apply the proposed methods to the data from the National Health and Nutrition Examination Survey (NHANES) 
to investigate the causal effect of smoking on body mass index (BMI). The collected data consist of 6647 subjects, including 3359 
smokers and 3288 nonsmokers. The confounding variables include four continuous variables: age, family poverty income ratio (Family 
PIR), systolic blood pressure (SBP), and diastolic blood pressure (DBP); six binary variables: gender, marital status, education, alcohol 
use, vigorous activity over past 30 days (PHSVIG), and moderate activity over past 30 days (PHSMOD). Table 7 presents the group 
comparisons of all confounding variables in the full dataset. Mean and standard deviation (SD) are presented for continuous variables, 
while the count and percentage (%) of observations for each group are presented for categorical variables. Standardized difference(Std. 
Dif.) is calculated as (xns − xs)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s2
ns/nns + s2

s /ns
√

for continuous variables, and (pns − ps)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pq/nns + pq/ns

√
for categorical variables, 

where x, s2 and p denote sample mean, sample variance and sample proportion, and the subscripts ns and s refer to nonsmokers and 
smokers respectively, and p, q are the overall proportions. The last column shows the p-value of group comparison for each covariate. 
We notice that the smoking group and nonsmoking group differ greatly in their group characteristics. A naive comparison of the sample 
mean between smoking and nonsmoking groups will lead to a biased estimation of the smoking effects on BMI. 

We apply our proposed ANN methods to estimate the PS and OR functions, respectively. We estimate ATE by the proposed IPW and 
OR methods, and estimate QTE by the IPW method only. The number of neurons is selected using grid search with 5-fold cross- 
validation. 

Table 8 reports the estimates of ATE and QTE, the estimated standard deviations based on the asymptotic formula (est_sd) and 
obtained from the weighted bootstrapping (est_sd_boot), and the corresponding z-values and p-values for testing ATE and QTE. The 
negative values of the estimates indicate that smoking has adverse effects on BMI. From the numerical results based on the estimated 
asymptotic standard deviations, we see that the p-values of testing ATE are 0.073 and 0.058 by the IPW and OR methods, respectively. 
We also notice that the p-value for testing QTE at the 25% quantile is very small, which is 0.005. However, the p-value increases to 
0.071 at the 50% quantile (median), and further to 0.436 at the 75% quantile. This indicates that smoking has a more prominent effect 
on the population with smaller BMI, and its effect diminishes as BMI increases; i.e., the effect of smoking becomes less significant as the 

Table 7 
Group comparisons  

Covariates  Non-smoker (Nns=3288) Smoker (Nns=3359) Std. Dif. p-value 

Gender 1 = Male 1404 (41.8%) 2019 (61.41%) − 15.99 <0.001  
0 = Female 1955 (58.2%) 1269 (38.59%)   

Age Mean(SD) 48.97 (19) 51.73 (17.57) − 6.14 <0.001 
Marital 1 = Yes 1989 (59.21%) 1867 (56.78%) 2.01 0.0446  

0 = No 1370 (40.79%) 1421 (43.22%)   
Education 1 = College or above 1626 (48.41%) 1297 (39.45%) 7.36 <0.001  

0 = Less than college 1733 (51.59%) 1991 (60.55%)   
Family PIR Mean(SD) 2.79 (1.63) 2.57 (1.6) 5.62 <0.001 
Alcohol 1 = Yes 1897 (56.48%) 2708 (82.36%) − 22.87 <0.001  

0 = No 1462 (43.52%) 580 (17.64%)   
PHSVIG 1 = Yes 1102 (32.81%) 908 (27.62%) 4.61 <0.001  

0 = No 2257 (67.19%) 2380 (72.38%)   
PHSMOD 1 = Yes 1491 (44.39%) 1376 (41.85%) 2.09 0.0366  

0 = No 1868 (55.61%) 1912 (58.15%)   
SBP Mean(SD) 126.42 (21.04) 126.63 (19.98) − 0.43 0.6684 
DBP Mean(SD) 72.1 (13.56) 71.61 (14.1) 1.44 0.15  

Table 8 
The estimates and standard errors of ATE and QTE.   

ATE QTE  

IPW OR Q1 Q2 Q3 

estimate − 0.224 − 0.241 − 0.400 − 0.269 − 0.040 
est_sd 0.154 0.154 0.157 0.184 0.247 
z-value − 1.454 − 1.564 − 2.547 − 1.467 − 0.162 
p-value 0.073 0.058 0.005 0.071 0.436 
est_sd_boot 0.162 0.149 0.156 0.187 0.254 
z-value_boot − 1.383 − 1.617 − 2.564 − 1.443 − 0.157 
p-value_boot 0.083 0.053 0.005 0.074 0.437  
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value of BMI becomes larger. This interesting pattern cannot be reflected in ATE. We can draw the same inferential conclusions as 
above when the weighted bootstrap method is applied. 

We also examine the relationship between BMI and two continuous confounding variables, age and family poverty income ratio 
(Family PIR). Fig. 2 depicts the estimated conditional mean functions (OR functions) τ1(⋅) and τ0(⋅) versus the two continuous variables 
for the smoking and nonsmoking groups, and for males and females, respectively. For each comparison, all the other confounding 
variables are fixed as constants: the continuous variables take the values of their means while the categorical variables are kept as 
married, college or above, drinks alcohol, no vigorous activity and no moderate activity. It is interesting to notice that for the same age 
or Family PIR, the estimated conditional mean in the smoking group is smaller than that in the nonsmoking group for both males and 
female, and the estimated conditional mean in the male group is also smaller than that in the female group for both smoker and 
nonsmoker. We can clearly see nonlinear relationships between age and BMI as well as between Family PIR and BMI. Age is positively 
associated with BMI when it is less than 50, and the association between age and BMI becomes more negative as people get older. We 
also see that the smoking effects on BMI are very different between the male group and the female group. Smoking has a more sig-
nificant effect on BMI for males than for females at the same age. In the male group, the BMI decreases as family income increases until 
it reaches the poverty threshold, and then the BMI increases with family income for smokers. For nonsmokers, it shows a relatively 
flatter trend. In the female group, the BMI keeps decreasing as family income increases for both smokers and nonsmokers. 

9. Conclusion 

In this paper, we provide a unified framework for efficient estimation of various types of TEs in observational data using ANNs with 
a diverging number of covariates/confounders. Our framework allows for settings with binary or multi-valued treatment variables, and 
includes the average, quantile, and asymmetric least squares TEs as special cases. We estimate the TEs through a generalized opti-
mization, which involves an ANN estimation of one nuisance function only. When the unknown nuisance function is approximated by 
ANNs with one hidden layer, we show that the number of confounders is allowed to increase with the sample size. We further 
investigate how fast the number of confounders can grow with the sample size (n) to ensure root-n consistency, asymptotic normality 
and efficiency of the resulting TE estimator. These statistical properties are essential for inferring causations. We also show that a 
simple weighted bootstrap provides consistent confidence sets for the general TEs without the need to estimate the asymptotic 
variance. Compared to other approaches based on efficient influence functions, our general optimization-based estimation and 
inference methods are especially attractive for efficient estimation of complex TEs such as quantile and asymmetric TEs. Practically, we 
illustrate our proposed method through simulation studies and a real data example. The numerical studies support our theoretical 
findings. 

Fig. 2. The plots of τ1(⋅) and τ0(⋅) versus two continuous variables for the smoking and nonsmoking groups, and for males and females, respectively, 
where the blue solid curves represent nonsmoking group and red dashed line represent smoking group. 
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We have shown that the ANNs with one hidden layer can circumvent the “curse of dimensionality” and the resulting TE estimators 
enjoy root-n consistency under the condition that the target function is in a mixed smoothness class. Our new results advance the 
understanding of the required conditions and the statistical properties for ANNs in causal inference, and lay a theoretical foundation to 
demonstrate that ANNs are promising tools for causality analysis when the dimension is allowed to diverge, whereas most existing 
works on ANNs estimation still assume the dimension of co to be fixed. In the online supplemental materials, we discuss the extension 
of our method for efficient estimation of and inference on general TEs when the nuisance function is approximated by fully-connected 
ANNs with multiple hidden layers. Finally, our optimization-based method can be also extended to causal analysis with continuous 
treatment variables and with longitudinal data designs. Thorough investigations are needed to develop the computational algorithms 
and establish the theoretical properties of the resulting estimators in these settings. 
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Appendix A. Polynomial approximation and curse of dimensionality 

Let X = [0, 1]p and s0 ∈ N, Lorentz (1966, Theorem 8) states that for any s0-times continuously differentiable function f(⋅) : X →R, 
i.e. sup|α|1≤s0

supx∈X |Dαf(x)| ≤ 1, there exist polynomials Pn1 ,...,np (x), of degree ni in xi, such that 

sup
x∈X

⃒
⃒f (x) − Pn1 ,...,np (x)

⃒
⃒ ≤ Cp ⋅

∑p

i=1

1
ns0

i
,

where Cp is a constant depending on p. 
Consider a K-dimensional polynomial sieve {uK(x)} of the form: 

u1(x) = 1, u2(x) = (1, x1)
⊤
,…, up+1(x) =

(
1, x1, ..., xp

)⊤
, up+2(x) =

(
1, x1, ..., xp, x2

1

)⊤
, ....

To ensure all degrees of (x1, ..., xp) get up to some order n0 ∈ N, i.e. min{n1, ...,np} ≥ n0, we require K = (n0 + 1)p. Therefore, for any 
function f(⋅) satisfying sup|α|1≤s0

supx∈X |Dαf(x)| ≤ 1, the approximation rate based on the polynomial sieve {uK(x)} is 

inf
λK∈RK

sup
x∈X

⃒
⃒f (x) − λ⊤K uK(x)

⃒
⃒ ≤ Cp ⋅ p ⋅ K −

s0
p .

Note that for any function in the mixed smoothness ball defined in Section 2.1, i.e. f(⋅) ∈ W
m,1+ϵ,∞

(X ) for ϵ ∈ (0,1), we only have 
sup|α|1≤m+1supx∈X |Dαf(x)| ≤ 1. In light of the compactness of X , the L2(dFX)-approximation error based on the polynomial sieve {uK(x)}

is Cp ⋅ p ⋅ K− m+1
p , which severely suffers from the curse of dimensionality. 

Appendix B. Proof of Theorem 1 

For a regular function f(⋅) : X →R whose Fourier transform is denoted by f̃(⋅), by using the identity e− πi = − 1 and a change of 
variables, we have 

f̃
(
t1, t2, ..., tp

)
=

1
{2π}p

∫

Rp
f
(
x1, x2, ..., xp

)
e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

= −
1

{2π}p

∫

Rp
f
(
x1, x2, ..., xp

)
e− it1x1 − iπ ⋅ e− it2x2 ⋯ ⋅ e− itpxp dx1dx2⋯dxp

= −
1

{2π}p

∫

Rp
f
(
x1, x2, ..., xp

)
e
− it1

(

x1+
π
t1

)

⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

= −
1

{2π}p

∫

Rp
f
(

x1 −
π
t1
, x2,⋯, xp

)

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp.

Then 
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2f̃
(
t1, t2, ..., tp

)

=
1

{2π}p

∫

Rp

[

f
(
x1, x2,⋯, xp

)
− f
(

x1 −
π
t1
, x2,⋯, xp

)]

e− it1x1 ⋯e− itpxp dx1dx2⋯dxp

=
1

{2π}p

∫

Rp

Δ
π
t1
x1 f
(
x1, x2, ..., xp

)

(
π
t1

) ⋅
(

π
t1

)

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp,

where Δδ
xi 

is the finite difference operator defined by 

Δδ
xi

f
(
x1, ..., xp

)
:= f

(
x1, ..., xi− 1, xi, xi+1, ..., xp

)
− f
(
x1, ..., xi− 1, xi − δ, xi+1, ..., xp

)
,

for i ∈ {1,2, ..., p} and δ > 0. Inductively, we have that for any nonnegative integer s1 ∈ N and a constant ϵ ∈ (0,1]: 

f̃
(
t1, t2, ..., tp

)

=
1
2

⋅
1

{2π}p

∫

Rp

Δ
π
t1
x1 f (x)
(

π
t1

) ⋅
(

π
t1

)

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

=
1
22 ⋅

1
{2π}p

∫

Rp

(

Δ
π
t1
x1

)2

f (x)
(

π
t1

)2 ⋅
(

π
t1

)2

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

⋮

=
1

2s1
⋅

1
{2π}p

∫

Rp

(

Δ
π
t1
x1

)s1

f (x)
(

π
t1

)s1 ⋅
(

π
t1

)s1

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

=
1

2s1+1 ⋅
1

{2π}p

∫

Rp

(

Δ
π
t1
x1

)s1+1

f (x)
(

π
t1

)s1+1 ⋅
(

π
t1

)s1+1

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

=
1

2s1+2 ⋅
1

{2π}p

∫

Rp

(

Δ
π
t1
x1

)s1+2

f (x)
(

π
t1

)s1+1+ϵ ⋅
(

π
t1

)s1+1+ϵ

e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp.

For a vector of nonnegative integers (s1, ..., sp), by applying the same argument to {t2, ..., tp} gives: 

f̃
(
t1, t2, ..., tp

)

=

(
1
2

)∑p

j=1(sj+2)
⋅

1
{2π}p

∫

Rp

(

Δ
π
tp
xp

)sp+2

⋯
(

Δ
π
t1
x1

)s1+2

f (x)
(

π
tp

)sp+1+ϵ

⋯
(

π
t1

)s1+1+ϵ ⋅
(

π
t1

)s1+1+ϵ

⋯
(

π
tp

)sp+1+ϵ

×e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp

=
(π

2

)|s|1+2p
⋅

1
{2π}p

∫

[0,1]p

(

Δ
π
tp
xp

)sp+2

⋯
(

Δ
π
t1
x1

)s1+2

f (x)
(

π
tp

)sp+1+ϵ

⋯
(

π
t1

)s1+1+ϵ ⋅
1

ts1+1+ϵ
1 ⋯tsp+1+ϵ

p

×e− it1x1 ⋅ e− it2x2 ⋯e− itpxp dx1dx2⋯dxp.

Then for a vector of nonnegative integers (s1, ..., sp) and a constant ϵ ∈ (0,1]: 

|̃f
(
t1, t2, ..., tp

)
| (B.1)  
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≤
(π

2

)|s|1+2p
⋅

1
{2π}p

∫

[0,1]p

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(

Δ
π
tp
xp

)sp+2

⋯
(

Δ
π
t1
x1

)s1+2

f (x)
(

π
tp

)sp+1+ϵ

⋯
(

π
t1

)s1+1+ϵ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

dx1dx2⋯dxp

×
1

|t1|
s1+1+ϵ⋯

⃒
⃒tp
⃒
⃒sp+1+ϵ.

(B.2) 

Note that 

lim
t1 ,...,tp→∞

(

Δ
π
tp
xp

)sp+1

⋯
(

Δ
π
t1
x1

)s1+1

f (x)
(

π
tp

)sp+1

⋯
(

π
t1

)s1+1 = ∂sp+1
xp

⋯∂s1+1
x1

f (x),

provided that the limit exists. 
For any f(⋅) ∈ W

m,1+ϵ,∞([0,1]p), by definition we have 

sup
{∀α:|α|1≤m}

sup
{x∈[0,1]p ,t1>0,...,tp>0}

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(
Δ

π
tp
xp

)
⋯
(

Δ
π
t1
x1

)
∂x1 ⋯∂xp Dαf (x)

(
π
tp

)ϵ

⋯
(

π
t1

)ϵ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ 1.

Then we can find a large enough constant M0 > 0 such that min{j∈1,...,p}
⃒
⃒tj
⃒
⃒ ≥ M0, we have 

sup
{∀α:|α|1≤m}

sup
x∈[0,1]p

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(

Δ
π
tp
xp

)αp+2

⋯
(

Δ
π
t1
x1

)α1+2

f (x)
(

π
tp

)αp+1+ϵ

⋯
(

π
t1

)α1+1+ϵ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ 2,

namely, 

M0 := inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C ∈ R : sup
{|tj |≥C}p

j=1

sup
{∀α:|α|1≤m}

sup
x∈X

⃒
⃒
⃒
⃒

(

Δ
π
tp
xp

)αp+2

⋯
(

Δ
π
t1
x1

)α1+2

f (x)

⃒
⃒
⃒
⃒
⃒

(
π
tp

)αp+1+ϵ

⋯
(

π
t1

)α1+1+ϵ ≤ 2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (B.3) 

Hence, by (B.1), for any f(⋅) ∈ W
m,1+ϵ,∞

([0,1]p), we have that for any k ∈ {1, ..,p}: 

sup
t1 ,...,tk

|̃f
(
t1, ..., tk, tk+1, ..., tp

)
|⋅
∏p

j=k+1
I(|tj| ≥ M0)

≤
(π

2

)m+2p
⋅

2
{2π}p ⋅

1
|tk+1|

γk+1+1+ϵ⋯
⃒
⃒tp
⃒
⃒γp+1+ϵ, where

∑p

j=k+1
γj ≤ m.

(B.4)  

We emphasize that (B.4) holds for an arbitrarily fixed k ∈ {1, ..., p} and for all {(γk+1, ..., γp) :
∑p

j=k+1γj ≤ m}. 

We next find the bound for vf ,m. Without loss of generality, we assume the function ̃f(t1, .., tp) is symmetric in t = (t1,...,tp). Note that 
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vf ,m =

∫

Rp
|t|m1 ⋅ |̃f (t)|dt

=
(∫

|tp |∈[0,M0 ]

+

∫

|tp |∈[M0 ,∞)

)

⋯

(∫

|t1 |∈[0,M0 ]

+

∫

|t1 |∈[M0 ,∞)

){
∑p

k=1
|tk|

}m

⋅ |̃f (t)|dt1⋯dtp

=
∑p

i=0

(
p

i

)∫

|tp |∈[M0 ,∞)

⋯
∫

|ti+1 |∈[M0 ,∞)

∫

|ti |∈[0,M0 ]

⋯
∫

|t1 |∈[0,M0 ]

{
∑p

k=1
|tk|

}m

⋅ |̃f (t)|dt1⋯dtp

=
∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)

×

∫

|tp |∈[M0 ,∞)

⋯
∫

|ti+1 |∈[M0 ,∞)

∫

|ti |∈[0,M0 ]

⋯
∫

|t1 |∈[0,M0 ]

|t1|
α1 ⋯|tp|

αp ⋅ |̃f (t)|dt1⋯dtp

≤
∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)

⋅ Mα1+⋯αi+i
0

×

∫

|tp |∈[M0 ,∞)

⋯
∫

|ti+1 |∈[M0 ,∞)

|ti+1|
αi+1 ⋯|tp|

αp ⋅ sup
t1 ,...,ti

⃒
⃒̃f
(
t1, ..., ti, ti+1..., tp

)⃒
⃒dti+1⋯dtp.

For every i ∈ {0,1, ..p} and every (αi+1, ...,αp) in the summand, since αi+1 + ⋯αp ≤ m, by applying (B.4) we have 

sup
t1 ,...,ti

|̃f
(
t1, ..., ti, ti+1, ..., tp

)
|⋅
∏p

j=i+1
I(|tj| ≥ M0)

≤
(π

2

)m+2p
⋅

2
{2π}p ⋅

1
|ti+1|

αi+1+1+ϵ⋯
⃒
⃒tp
⃒
⃒αp+1+ϵ.

Then we have 

vf ,m ≤
∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)

Mα1+⋯+αi+i
0 ⋅

(π
2

)m+2p
⋅

2
{2π}p

×

∫

|tp |∈[M0 ,∞)

⋯
∫

|ti+1 |∈[M0 ,∞)

1
|ti+1|

1+ϵ⋯t1+ϵ
p

dti+1⋯dtp

≤
∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)

Mm+i
0 ⋅

(π
2

)m+2p
⋅

2 ⋅ 2p

{2π}p ⋅
(

M − ϵ

0

ϵ

)p− i

=
∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)
(

M0 ⋅
π
2

)m
⋅
(
M1+ϵ

0

)i ⋅
(π

2

)2p
⋅

2
πp ⋅

(
M− ϵ

0

)p

ϵp− i

≤
∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)
(

M0 ⋅
π
2

)m
⋅
(π

2

)2p
⋅

2
πp ⋅

Mp
0

ϵp− i

=
(π

2

)2p
⋅

2
πp ⋅ Mp

0 ⋅
(

M0 ⋅
π
2

)m ∑

∑p

j=1
αj=m

(
m

α1, ...,αp

)
∑p

i=0

(
p

i

)

⋅
[

1
ϵ

]p− i

=
2
2p ⋅ Mp+m

0 ⋅
(π

2

)m+p
⋅ pm ⋅

[
1
ϵ
+ 1
]p

≤ 2 ⋅
(

M0 ⋅
π
2

)m
⋅
[

M0 ⋅
(π

2

)
⋅
(

1
2ϵ

+
1
2

)]p

= 2 ⋅
(

M0 ⋅
π
2

)m
⋅ Mp,

for some universial large constant M defined by 

M := M0 ⋅
(π

2

)
⋅
(

1
2ϵ

+
1
2

)

.
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Appendix C. Proof of Theorem 3 

We first show β̂d →
p

β∗
d for any d ∈ {0,1, ..., J}. The details of the proof are given in the on-line supplemental materials. Next, we 

establish the asymptotic normality for 
̅̅̅
n

√
{β̂d − β∗

d}. Since the loss function L (⋅) may not be smooth (e.g. L (v) = v{τ − 1(v ≤ 0)} in 
quantile regression), the Delta method for deriving the large sample property is not applicable in our case. To circumvent this problem, 
we apply the nearness of arg mins argument. Define 

Gd,n(β, π̂d) :=
1
n

∑n

i=1

Ddi

π̂d(Xi)
L (Yi − β). (C.1)  

By definition 

β̂d = argmin
β∈Θ

Gd,n(β, π̂d) = argmin
β∈Θ

1
n
∑n

i=1

Ddi

π̂d(Xi)
L (Yi − β), (C.2)  

then 

β̂d = argmin
β∈Θ

n
{

Gd,n(β, π̂d) − Gd,n
(
β∗

d, π̂d
)}

= argmin
β∈Θ

∑n

i=1

Ddi

π̂d(Xi)

{
L (Yi − β) − L

(
Yi − β∗

d

)}

= argmin
β∈Θ

∑n

i=1

Ddi

π̂d(Xi)

[

− L
′( Yi − β∗

d

)(
β − β∗

d

)

+
{

L (Yi − β) − L
(
Yi − β∗

d

)
+ L

′( Yi − β∗
d

)(
β − β∗

d

)}]

By using change of variables and defining the following functions: 

ûd :=
̅̅̅
n

√ (
β̂d − β∗

d

)
, u :=

̅̅̅
n

√ (
β − β∗

d

)
,

Rd(Yi, u) := L

(

Yi −

{

β∗
d +

u
̅̅̅
n

√

})

− L
(
Yi − β∗

d

)
+ L

′( Yi − β∗
d

)
⋅

u
̅̅̅
n

√ ,

Qd,n(u, π̂d) :=
∑n

i=1

Ddi

π̂d(Xi)

[

− L
′( Yi − β∗

d

)
⋅

u
̅̅̅
n

√ + Rd(Yi, u)
]

= n ⋅
[
Gd,n(β, π̂d) − Gd,n

(
β∗

d, π̂d
)]
.

Then we get 

ûd = argmin
u

Qd,n(u, π̂d).

Next, we define the following quadratic function 

Q̃d,n(u) :=
u
̅̅̅
n

√
∑n

i=1

[

−
Ddi

π∗
d(Xi)

L
′( Yi − β∗

d

)
+

(
Ddi

π∗
d(Xi)

− 1
)

E d
(
Xi, β∗

d

)
]

− ∂βd E
[
L

′( Y∗
i (d) − β∗

d

)]
⋅

u2

2
,

which does not depend on π̂d, and its minimizer is defined by 

ũd := argmin
u

Q̃d,n(u).

Since Q̃d,n(u) is strictly convex and ∂βE[L
′
(Y∗

i (d) − β∗
d)]〈0, then the minimizer ũd is equal to 

ũd =
1̅
̅̅
n

√
∑n

i=1
H− 1

d ⋅ Sd
(
Yi,Ddi,Xi; β∗

d

)
,

where 

Sd
(
Yi,Ddi,Xi; β∗

d

)
:=

Ddi

π∗
d(Xi)

L
′( Yi − β∗

d

)
−

(
Ddi

π∗
d(Xi)

− 1
)

E d
(
Xi, β∗

d

)

is the influence function of β∗
d and Hd := − ∂βd E[L

′
(Y∗

i (d) − β∗
d)]. 
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The desired result can be obtained via the following steps:  

• Step I: showing ξd,n(u, π̂d) := Q̃d,n(u) − Qd,n(u, π̂d) = op(1) for every fixed u;  
• Step II: showing |ûd − ũd| = oP(1);  
• Step III: obtaining the desired result: 

̅̅̅
n

√
{β̂d − β∗

d} = ũd + {ûd − ũd} = n− 1/2∑n
i=1H− 1

d ⋅ Sd(Yi,Ddi,Xi; β∗
d)+ oP(1). 

Note that both objective functions Q̃d,n(u) and Qd,n(u, π̂d) are convex in u with probability approaching to one, the pointwise 
convergence in Step I is sufficient for establishing Step II. The technical proofs of Step I-Step III are provided in the on-line supple-
mental materials. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jeconom.2023.105555. 
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