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A B S T R A C T

A heteroskedasticity-autocorrelation robust (HAR) test statistic is proposed to test for the
presence of explosive roots in financial or real asset prices when the equation errors are strongly
dependent. Limit theory for the test statistic is developed and extended to heteroskedastic
models. The new test has stable size properties unlike conventional test statistics that typically
lead to size distortion and inconsistency in the presence of strongly dependent equation errors.
The new procedure can be used to consistently time-stamp the origination and termination of
an explosive episode under similar conditions of long memory errors. Simulations are conducted
to assess the finite sample performance of the proposed test and estimators. An empirical
application to the S&P 500 index highlights the usefulness of the proposed procedures in
practical work.

1. Introduction

The standard no-arbitrage condition for the determination of the price 𝑃𝑡 of a financial or real asset at time 𝑡 implies that

𝑃𝑡 =
1

1 + 𝑅
E𝑡

(

𝑃𝑡+1 +𝐷𝑡+1
)

, (1)

where 𝑅, E𝑡, and 𝐷𝑡 denote the discount rate, expectation conditional on information available at time 𝑡, and fundamentals (such
as the dividend for a stock or the rental income from a house) at time 𝑡. Solving (1) by forward substitution leads to the equation
𝑃𝑡 = 𝑃 𝐹

𝑡 + 𝐵𝑡, where

𝑃 𝐹
𝑡 =

∞
∑

𝑖=1

( 1
1 + 𝑅

)𝑖
E𝑡

(

𝐷𝑡+𝑖
)

(2)
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is the fundamental price,

𝐵𝑡 =
1

1 + 𝑅
E𝑡(𝐵𝑡+1) (3)

is the bubble component. 𝐵𝑡 is unrelated to fundamentals and emerges as part of the general solution to (1), whereas 𝑃 𝐹
𝑡 in (2) is

the particular solution driven by fundamentals measured by the sum of the discounted expectations of future dividends if 𝑃𝑡 is the
price of a stock. Under the transversality condition lim𝑇→∞ (1 + 𝑅)−𝑇 E𝑡𝑃𝑡+𝑇 = 0, the general solution is 𝐵𝑡 = 0 and 𝑃𝑡 = 𝑃 𝐹

𝑡 . When
the transversality condition fails, 𝐵𝑡 ≠ 0. It is clear from (3) that, when 𝐵𝑡 > 0 , 𝐵𝑡 satisfies the submartingale property:

E𝑡(𝐵𝑡+1) = (1 + 𝑅)𝐵𝑡 > 𝐵𝑡, (4)

since 1+𝑅 > 1. This submartingale behavior can be well captured by an explosive autoregressive (AR) model with an AR coefficient
greater than 1. Explosive behavior in 𝐵𝑡 ensures that 𝑃𝑡 is an explosive process even when fundamentals 𝑃 𝐹

𝑡 are themselves not
xplosive. It is this property that facilitates empirical analysis of bubbles in time series and panel data using autoregressive methods.

In practical work, many recent empirical studies have confirmed evidence of episodic explosive behavior in the price-fundamental
atio using bubble detection techniques; e.g., Phillips et al. (2015a) (hereafter PSYa) and Pedersen and Schütte (2020). A natural
pproach to bubble detection is to employ a right-tailed unit root test, initially employed by Diba and Grossman (1988) and
ubsequently used in sequential testing methods by Phillips et al. (2011) (hereafter PWY) and Phillips and Yu (2011) (hereafter
Y) that provide consistent estimates of bubble initiation and termination dates. Phillips et al. (2015a) extended that work to allow
or the detection of multiple bubbles by means of sequential evolving search methods for episodic bubbles in time series. Harvey et al.
2016, 2018, 2019) provided further extensions of these methods by allowing for models with heteroskedastic errors and Pedersen
nd Schütte (2020) emphasized the importance of treating autocorrelated errors in the small sample procedures that are inevitably
nvolved in sequential and evolving testing algorithms. Readers are referred to Phillips and Shi (2020) and Shi and Phillips (2023)

for recent overviews of these methods, including instrumental variable methods for calculating fundamentals, bootstrap methods
for controlling the multiplicity issues that affect sequential testing, and algorithms for practical implementation.

The simplest model for explosive behavior testing has the following first-order AR form

𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝜖𝑡, 𝑦0 = 𝑂𝑝(1), with 𝜖𝑡
𝑖𝑖𝑑∼ (0, 𝜎2), 𝑡 = 1,… , 𝑛. (5)

Under normal market conditions, time series 𝑦𝑡 of asset prices typically follow random wandering behavior. Correspondingly, the
common null hypothesis for such conditions is that 𝑦𝑡 is a random walk process with 𝜌 = 1. Under the alternative hypothesis of
bubble behavior originating from some point of initialization in the sample, the process 𝑦𝑡 displays explosive behavior with a fixed
coefficient 𝜌 > 1 or mildly explosive behavior with locally defined coefficient 𝜌 = 1 + 𝑐∕𝑛𝛼 , 𝑐 > 0, and 𝛼 ∈ (0, 1), as in Phillips and
Magdalinos (2007) and Magdalinos (2012).3 Against both these alternatives, right-tailed unit root tests have finite sample power and
are consistent as 𝑛 → ∞ (Phillips et al., 2011). This framework provides the basis for more complex versions of tests for explosive
behavior and bubbles that are better suited to the data in financial and real asset markets.

Pedersen and Schütte (2020) allowed for weakly dependent errors in their application, noting that failure to do so led to
considerable size distortion in bubble testing algorithms, particularly those that use recursive sample methods. The present paper is
motivated by similar concerns and extends the analysis of earlier work by considering a generating mechanism such as (5) in which
the errors follow a strongly dependent process. The phenomenon of strong dependence is widespread in economic and financial time
series. Cheung (1993) and Baillie et al. (1996) found empirical evidence of strong dependence in exchange rates. Christensen and

ielsen (2007), Andersen et al. (2003) and Ohanissian et al. (2008) provided evidence of strong dependence in volatilities of stock
eturns and exchange rate returns; and empirical studies by Gil-Alana et al. (2014) and Barros et al. (2014) showed similar evidence
f strong dependence in housing prices. More recently, Chevillon and Mavroeidis (2017) utilized statistical learning methods in long
emory analysis, finding strong dependence in the US monthly CPI inflation rates.

Consider the following unit root process driven by long memory errors 𝑢𝑡
{

𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡, 𝑡 = 1,… , 𝑛

𝑢𝑡 = 𝛥−𝑑
+ 𝜖𝑡, 𝑑 > 0, 𝜖𝑡

𝑖𝑖𝑑∼ (0, 𝜎2), E|𝜖1|2+𝛿 < ∞, 𝛿 > 0
, (6)

where the operator 𝛥−𝑑
+ associated with the memory parameter 𝑑 is defined by

𝛥−𝑑
+ 𝜖𝑡 = (1 − 𝐿)−𝑑1(𝑡 ≥ 1)𝜖𝑡 = (1 − 𝐿)−𝑑𝜖𝑡1(𝑡 ≥ 1) =

𝑡−1
∑

𝑗=0

(𝑑)𝑗
𝑗!

𝜖𝑡−𝑗 , (7)

with (𝑑)𝑗 = 𝛤 (𝑑 + 𝑗)∕𝛤 (𝑑) and initialization at time 𝑡 = 0. The moving average coefficients (𝑑)𝑗 ∕𝑗! =∶ 𝑐𝑑𝑗 in (7) are positive when
𝑑 > 0 for all 𝑗. By standard gamma function asymptotic expansion 𝑐𝑑𝑗 = 1

𝛤 (𝑑)𝑗1−𝑑 {1 + 𝑂
(

1
𝑗

)

} 𝑎∼ 1
𝛤 (𝑑)𝑗1−𝑑 as 𝑗 → ∞. If 𝑑 = 0 in (6),

odel (6) reduces to (5) with 𝜌 = 1. When 𝑑 > 0, there is strong dependence in the sequence 𝑢𝑡, commonly written as 𝑢𝑡 ∼ 𝐹𝐼(𝑑),

3 Mildly explosive models have distinct advantages over purely explosive systems and have become commonly used in the recent literature. First, since purely
xplosive models are asymptotically more explosive than a mildly explosive model, a test that is consistent in detecting mild explosiveness is also consistent
n detecting pure explosiveness. Hence, the test has asymptotic power unity against both mildly explosive and purely explosive processes. Second, no central
imit theory or invariance principle properties apply for estimation or testing in a purely explosive model, in contrast to mildly explosive processes for which
2

nvariance principles apply that validate inference.
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Fig. 1. The unbroken and dashed blue lines are time series plots of the actual and fitted monthly PD ratios (left axis), where the fitted value is obtained by
an AR(1) regression with an intercept. The unbroken and dotted red lines are time series plots of residuals from a fitted least squares autoregression and exact
local Whittle (ELW) estimation of the long memory parameter (right axis). See the text for further details. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

so that 𝑢𝑡 is fractionally integrated (FI) of order 𝑑 or with long memory parameter 𝑑.4 Since the first difference of 𝑦𝑡 is 𝐹𝐼(𝑑), it
follows that 𝑦𝑡 ∼ 𝐹𝐼(𝑑𝑦) with 𝑑𝑦 = 1 + 𝑑.

Although data 𝑦𝑡 generated by (6) follow a unit root process driven by strongly dependent errors, it is not uncommon to observe
realizations that form time paths with episodes mimicking an explosive trajectory. Solving (6) gives the partial sum representation
𝑦𝑡 =

∑𝑡
𝑖=1 𝑢𝑖+𝑦0. Since 𝑢𝑡 is strongly dependent with representation (7) and moving average coefficients 𝑐𝑑𝑗 > 0 for all 𝑗, it is evident

that any large positive shock 𝜀𝑡−𝑗 provides a sustained positive impact on 𝑦𝑡 due to strong dependence. Since 𝑦𝑡 is the cumulative
effect of such inputs, a succession of positive shocks produces an upward trend in the process that can mimic an explosive time
series.

A standard procedure for testing explosive behavior is to fit an AR model such as (5) and employ a right-tailed unit root 𝑡-test.
In this event, if data is generated according to (6), it is well known that the 𝑡-statistic diverges as 𝑛 → ∞ (see Sowell, 1990), so that

conventional right-tailed test will inevitably lead to rejection of a unit root null when 𝑛 is large. Thus, for data from a unit root
rocess with long memory innovations such as (6), application of right-tailed tests that ignore strong dependence in the innovations
hen such dependence is present will lead to the mistaken conclusion of explosive behavior and spurious detection of a rational
ubble in the data. That is, when the true AR parameter is unity, the test mistakenly concludes that the data is explosive.

To address this problem, we introduce heteroskedasticity-autocorrelation robust (HAR) statistics to test explosive behavior in
ata when the error term is strongly dependent. Unlike the conventional 𝑡-test, the new tests avoid the aforementioned spurious
etection problem and have a stable size property. The tests can also be used to consistently estimate the origination date and the
ermination date of an explosive episode. Monte Carlo simulations are conducted to check the finite sample performance of the
roposed tests and an empirical illustration of the methods to the S&P 500 index is provided.

4 More precisely, 𝑢𝑡 is a Type II FI time series with fractional order 𝑑 – see Marinucci and Robinson (1999) and Davidson and Hashimzade (2009) for further
3

discussion of this terminology and Type I FI time series together with definitions of corresponding fractional Brownian motion processes.
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The remainder of this paper is organized as follows. Section 2 first briefly reviews traditional right-tail unit root tests for
explosiveness and procedures for date stamping explosive periods in data. This section also motivates the present paper based
on findings from the S&P 500 data. Section 3 introduces the model with strongly dependent errors, proposes the new test, and
derives asymptotic theory under the null. Section 4 examines asymptotic properties under explosive alternatives. New estimators of
bubble origination and termination dates in recursive applications of the new statistic are given in Section 5. Section 6 discusses
how to conduct tests in the presence of time-varying volatilities. Simulations exploring finite sample properties of the procedures
are reported in Section 7. An empirical study using the S&P 500 index is conducted in Section 8 where the results are compared
with earlier findings that employ standard test procedures. Section 9 concludes. Proofs of the main results in the paper are given
in Appendix A. An Online Supplement provides useful lemmas with proofs, proofs and discussion relating to several remarks, together
with additional technical and simulation results, including the development of a sup HAR statistic, asymptotic theory and finite
sample analysis of the sup HAR statistic. Notation is standard with

𝑝
→,

𝑑
→,

𝑎𝑠
→,⇒, 𝑎∼, ⌊⋅⌋, ∶= and =∶ denoting convergence in probability,

convergence in distribution, almost sure convergence, weak convergence on the relevant probability space, asymptotic equivalence,
the floor function, and definitional equality.

2. Related literature and motivation

Before introducing our new approach, we first briefly review right-tailed unit root tests and methods to timestamp the origination
and termination of explosive episodes in time series data. Model (5) is fitted by LS regression with an intercept from the full sample
giving the coefficient estimate 𝜌̂𝑛 and associated 𝑡-statistic 𝐷𝐹𝑛 =

(

𝜌̂𝑛 − 1
)

∕𝑠𝑒(𝜌̂𝑛), where 𝑠𝑒(𝜌̂𝑛) is the usual standard error of 𝜌̂𝑛. Under

the null hypothesis that 𝜌 = 1, by standard methods (Phillips, 1987a) as 𝑛 → ∞, 𝐷𝐹𝑛 ⇒ ∫ 1
0 𝑊̆ (𝑠)𝑑𝑊 (𝑠)∕

(

∫ 1
0 𝑊̆ (𝑠)2𝑑𝑠

)1∕2
=∶ 𝐷𝐹∞,

where 𝑊 (𝑠) is standard Brownian motion (BM) and 𝑊̆ (𝑠) = 𝑊 (𝑠) − ∫ 1
0 𝑊 (𝑝)𝑑𝑝 is demeaned BM. Right-tailed unit root tests are

implemented by rejecting the null when 𝐷𝐹𝑛 exceeds its right-tailed critical value.
In practical work, potentially explosive episodes are typically investigated within sample at some point of time 𝜏𝑒 = ⌊𝑛𝑟𝑒⌋, with

corresponding sample fraction 𝑟𝑒 ∈ (0, 1). Such episodes may then end later in the sample at some time 𝜏𝑓 = ⌊𝑛𝑟𝑓 ⌋, with 𝑟𝑒 < 𝑟𝑓 < 1,
when there is a market correction or shock that terminates exuberance. If explosive behavior emerges and collapses within sample
in this way, Phillips et al. (2011) prove that 𝐷𝐹𝑛

𝑝
→ −∞, revealing that full sample right-tailed unit root tests of the type suggested

in Diba and Grossman (1988) have no discriminatory power for detecting financial bubbles. Instead, Phillips et al. (2011) and Phillips
and Yu (2011) propose a sup statistic based on recursive regressions of the form

𝑦𝑡 = 𝜇̂ + 𝜌̂𝜏𝑦𝑡−1 + 𝑢̂𝑡, for 𝑡 = 1,… , 𝜏 = ⌊𝑛𝑟⌋, 𝑟 > 𝑟0 (8)

where 𝜇̂𝜏 , 𝜌̂𝜏 , and 𝑢̂𝑡 are the fitted intercept, AR coefficient, and residuals from regressions, respectively, with 𝜏 = ⌊𝑛𝑟⌋ > 𝜏0 = ⌊𝑛𝑟0⌋
and 𝜏0 is an initiating sample size for the recursion for which it is assumed that 𝜏0 < 𝜏𝑒. Subsequent regressions proceed from the
initiating sample of size 𝜏0 = ⌊𝑛𝑟0⌋ until the full sample size 𝑛 with 𝑟 = 1 is reached. Using the 𝑡-statistic 𝐷𝐹𝜏 =

(

𝜌̂𝜏 − 1
)

∕𝑠𝜏 based

on the regression with 𝜏 observations and recursive standard error 𝑠𝜏 =
(

1
𝜏
∑𝜏

𝑡=1 𝑢̂
2
𝑡 ∕

[

∑𝜏
𝑡=1 𝑦

2
𝑡−1 −

1
𝜏

(
∑𝜏

𝑡=1 𝑦𝑡−1
)2
])1∕2

of 𝜌̂𝜏 , the test
statistic proposed by Phillips et al. (2011) and Phillips and Yu (2011) is sup𝜏∈[𝜏0 ,𝑛] 𝐷𝐹𝜏 , whose limit distribution is given by the
corresponding functional

𝑆𝐷𝐹 ∶= sup
𝜏∈[𝜏0 ,𝑛]

𝐷𝐹𝜏 ⇒ sup
𝑟∈[𝑟0 ,1]

∫ 𝑟
0 𝑊̃ (𝑠)𝑑𝑊 (𝑠)

(

∫ 𝑟
0 𝑊̃ (𝑠)2𝑑𝑠

)1∕2
, as 𝑛 → ∞.

The null hypothesis is rejected in favor of the presence of an explosive episode in the sample if the statistic 𝑆𝐷𝐹 exceeds the
right-tailed critical value corresponding to the specified significance level.

Once evidence of an explosive episode is detected, the origination and termination dates of the episode, represented by 𝜏𝑒 = ⌊𝑛𝑟𝑒⌋
and 𝜏𝑓 = ⌊𝑛𝑟𝑓 ⌋ with sample fraction forms 𝑟𝑒 and 𝑟𝑓 , can be estimated. Suppose the generating mechanism under the alternative of
an explosive episode within the sample is given by

⎧

⎪

⎨

⎪

⎩

𝑦𝑡 = 𝑦𝑡−11
{

𝑡 < 𝜏𝑒
}

+ 𝜌𝑛𝑦𝑡−11
{

𝜏𝑒 ≤ 𝑡 ≤ 𝜏𝑓
}

+
(

∑𝑡
𝑘=𝜏𝑓+1

𝜖𝑘 + 𝑦∗𝜏𝑓

)

1
{

𝑡 > 𝜏𝑓
}

+ 𝜖𝑡 1
{

𝑡 ≤ 𝜏𝑓
}

𝜌𝑛 = 1 + 𝑐
𝑛𝛼 , 𝑐 > 0, 𝛼 ∈ (0, 1) , 𝜖𝑡

𝑖𝑖𝑑∼ (0, 𝜎2), E|𝜖1|2+𝛿 < ∞, 𝛿 > 0

, (9)

where 𝑦∗𝜏𝑓 = 𝑦𝜏𝑒 + 𝑦∗ with 𝑦∗ ∼ 𝑂𝑝 (1). Model (9) has two structural breaks. Before the first break (at 𝑡 = 𝜏𝑒), 𝑦𝑡 follows a unit root
process. After the first break and before the second break (i.e. 𝜏𝑒 ≤ 𝑡 ≤ 𝜏𝑓 ), the process is mildly explosive with autoregressive
coefficient 𝜌𝑛 = 1 + 𝑐

𝑛𝛼 and localizing coefficient 𝑐 > 0. At 𝜏𝑓 + 1, the explosive period ends with a collapse in the process to 𝑦∗𝜏𝑓 ,
which is assumed to be in an 𝑂𝑝 (1) neighborhood of 𝑦𝜏𝑒 , the value reached before the explosive episode begins. The sample fractions
𝑟𝑒 and 𝑟𝑓 are the true origination and termination dates of the explosive period, which may be estimated by

𝑟̂𝑃𝑊 𝑌
𝑒 = inf

𝑟≥𝑟0
{𝑟 ∶ 𝐷𝐹𝜏 > 𝑐𝑣𝑛}, (10)

𝑟̂𝑃𝑊 𝑌
𝑓 = inf

𝛾 ln(𝑛)

{

𝑠 ∶ 𝐷𝐹𝑠 < 𝑐𝑣𝑛
}

, (11)
4

𝑠≥𝑟̂𝑒+ 𝑛
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Table 1
Right-tailed unit root tests for the S&P 500 PD ratio, exact local Whittle estimates 𝑑 of 𝑑, and
corresponding confidence intervals.

Sampling period 𝐷𝐹𝑛 𝑑 90% 𝐶𝐼 95% 𝐶𝐼

(a) Jan 1872 to Feb 1880 1.35 0.24 (0.05,0.43) (0.02,0.46)
(b) Jun 1882 to May 1887 0.66 0.32 (0.10,0.54) (0.06,0.58)
(c) May 1940 to Feb 1946 1.38 0.34 (0.13,0.55) (0.09,0.59)
(d) Jun 1948 to Nov 1955 1.70 0.29 (0.10,0.48) (0.06,0.52)
(e) May 1979 to Mar 1987 1.73 0.21 (0.02,0.40) (−0.01,0.43)
(f) May 1989 to Apr 1998 2.78 0.24 (0.05,0.42) (0.02,0.46)

the latter estimate being conditional on evidence of an originating date 𝑟̂𝑃𝑊 𝑌
𝑒 to the episode. In (10) and (11), the critical value

𝑣𝑛 increases with the sample size. If 𝑐𝑣𝑛 → ∞ at a slower rate than 𝑛1−𝛼∕2, Phillips and Yu (2009) showed that 𝑟̂𝑃𝑊 𝑌
𝑒

𝑝
→ 𝑟𝑒 and

𝑟̂𝑃𝑊 𝑌
𝑓

𝑝
→ 𝑟𝑓 and the two estimates are consistent under some general regularity conditions. In empirical applications, Phillips et al.

(2011) set 𝑐𝑣𝑛 proportional to ln ln 𝑛.
The methods reviewed above assume the errors in the AR model have weak dependence. But if the errors in (6) have long memory

with memory parameter 𝑑 ∈ (0, 0.5), Sowell (1990) showed that the t-statistic diverges with 𝑛. This means that as the sample size
rises, conventional right-tailed unit root tests will eventually reject a unit root null, leading to a spurious bubble conclusion.

To showcase the empirical relevance of this problem, Fig. 1 plots historical data for the monthly price-dividend (PD) ratio
f the S&P 500 in the unbroken blue line, following Phillips et al. (2015a).5 The panels shown in Fig. 1 cover six periods: (a)
anuary 1872 to February 1880; (b) June 1882 to May 1887; (c) May 1940 to February 1946; (d) June 1948 to November 1955;
e) May 1979 to March 1987 and (f) May 1989 to August 1997. Each period contains a trajectory for which there is some apparent
xuberance in the S&P 500 market. Under the assumption that the generating mechanism is (5) with errors that are not strongly
ependent, autoregressions with an intercept are fitted for each subperiod and Dickey–Fuller 𝑡-statistics (denoted 𝐷𝐹𝑛) are calculated
nd reported in Table 1. The results show rejection of a unit root at the 1% level for each of subperiods, indicating strong statistical
vidence for a rational bubble in each case.6

Phillips et al. (2015a) found evidence of rational bubbles in the S&P 500 for the following periods: the long-depression period
October 1878 to April 1880), the great crash episode (November 1928 to October 1929), the postwar boom in 1954 (January
955 to April 1956), Black Monday in October 1987 (June 1986 to September 1987), and the dot-com bubble (November 1995 to
ugust 2001). Our sampling periods (a), (d), (e) and (f) overlap four of the Phillips et al. (2015a) estimated rational bubble periods,

re-affirming the evidence for market exuberance in these periods.7
If the data were assumed to be fractionally integrated as in (6) the composite long memory parameter 𝑑𝑦 could be estimated

directly and the corresponding memory parameter 𝑑 of the innovations could be deduced. Accordingly, the exact local Whittle (ELW)
procedure (Shimotsu and Phillips, 2005) was used to estimate 𝑑𝑦, deduce 𝑑, and test for short memory (𝑑 = 0) in the innovations
gainst strong dependence (𝑑 > 0).8

In Fig. 1, the red solid line is a plot of {𝜀̂𝑡,𝐿𝑆}𝑛𝑡=2 obtained from least squares (LS) autoregression and the red dotted line is a
plot of {𝜀̂𝑡,𝐸𝐿𝑊 }𝑛𝑡=2 obtained by ELW estimation9 for each of the six sampling periods. Note that an exuberance trajectory can be
generated either by an explosive AR model with an error sequence {𝜀̂𝑡,𝐿𝑆}𝑛𝑡=2 or by a fractionally integrated time series ((6)) with
𝑑 = 𝑑 and the error sequence {𝜀̂𝑡,𝐸𝐿𝑊 }𝑛𝑡=2. Table 1 reports the ELW estimate of 𝑑 and its 90% and 95% confidence intervals for
each subperiod.10 In all cases, 𝑑 is positive and the null hypothesis of short memory is rejected against the alternative of strong
dependence at either the 5% or 10% level, supporting evidence of long memory in the innovations 𝑢𝑡 in the sampling periods. These
findings suggest that a plausible alternative model for the generating mechanism is a unit root model with strong dependent errors
(6) instead of the explosive model indicated by the results of unit root testing. Hence, empirical rejection of a unit root null in favor
of an explosive process may arise from the presence of strong dependence in the errors, raising the possibility of spurious inference
concerning the presence of a rational bubbles.11

Motivated by these empirical findings and the potential implications for bubble detection with standard right-tail unit root tests,
the present paper seeks to address the problem of spurious test outcomes from right-tail tests. We propose to modify standard test

5 Monthly price-dividend ratio measurements are shown on the left axis. The figure also plots the fitted monthly price-dividend ratio (the blue dashed line),
btained from least squares (LS) autoregression with an intercept on the left axis, and the residuals obtained from that regression and the LM model with
emory parameter fitted by the exact local Whittle (ELW) method (shown by the red unbroken line and the red dotted line) on the right axis.
6 The asymptotic right-tail 95% critical value for the standard 𝑡 statistic for the presence of a unit root is 0.60 (Table B.6 in Hamilton, 1994).
7 The periods where statistical significance of a positive LM parameter 𝑑 is not established are not reported here.
8 We followed Shimotsu (2010) in the implementation of the ELW procedure taking the unknown initial condition into account. See Shimotsu (2010, Equation

9)) for details.
9 These residuals are estimated by computing 𝜀̂𝑡,𝐸𝐿𝑊 = (1 − 𝐿)−𝑑+ 𝛥𝑦𝑡.

10 Shimotsu and Phillips (2005) show that the asymptotic distribution of the ELW estimate of 𝑑 is given by
√

𝑚(𝑑 − 𝑑)
𝑑
→  (0, 1∕4) using bandwidth 𝑚 = 𝑛𝛿 ,

here 𝑛 is the sample size and 𝛿 is a bandwidth parameter that controls the number of periodogram ordinates near the origin that are used in estimation. The
etting 𝛿 = 0.65 was used in the computations reported in Table 1.
11 An analysis based on a larger sample size is conducted in the Online Supplement, confirming strong dependence in the residuals using the ELW estimator
nd explosiveness in the data using 𝐷𝐹 tests.
5
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procedures by constructing a heteroskedasticity-autocorrelation robust (HAR) statistic which controls performance so that the test
statistic does not diverge and has a well defined limit distribution under the null test but diverges and is consistent under the
alternative of an explosive or mildly explosive root. The new HAR test has asymptotic discriminatory power in detecting explosive
time series even in models driven by long memory errors. The test can be implemented in recursive algorithms to consistently
timestamp origination and termination dates of episodic bubbles. The modified test statistic is constructed in the same spirit as the
use of HAR statistics to perform valid testing in potentially spurious relationships (Sun, 2004; Phillips et al., 2019).

3. A new test and asymptotic null distribution

Motivated by the empirical findings in Section 1, we consider the following prototypical model

⎧

⎪

⎨

⎪

⎩

𝑦𝑡 = 𝜌𝑛𝑦𝑡−1 + 𝑢𝑡, 𝑡 = 1,… , 𝑛

𝑢𝑡 = 𝛥−𝑑
+ 𝜖𝑡, 𝑑 > 0, 𝜖𝑡

𝑖𝑖𝑑∼ (0, 𝜎2), E|𝜖1|2+𝛿 < ∞, 𝛿 > 0
𝑦0 = 𝑜𝑝(𝑛1∕2+𝑑 )

. (12)

odel (12) differs from (5) in that 𝑢𝑡 can be strongly dependent. The model also differs from Sowell (1990), who used Type I FI
𝑡 = 𝛥−𝑑𝜖𝑡 =

∑∞
𝑗=0

(𝑑)𝑗
𝑗! 𝜖𝑡−𝑗 with 𝑑 ∈ (0, 0.5) to model strong dependence, because the Type II formulation 𝑢𝑡 = 𝛥−𝑑

+ 𝜖𝑡 allows for a wide
range of stationary and nonstationary long range dependence, for which consistent estimation of 𝑑 or 𝑑𝑦 is possible using the ELW
procedure with associated pivotal Gaussian inference, as noted in Shimotsu and Phillips (2005) and Hualde and Robinson (2011).

e first consider the asymptotic behavior of the traditional Dickey–Fuller 𝑡-test when 𝜌𝑛 = 1.

.1. Asymptotic null distribution of 𝐷𝐹𝜏

emma 3.1. Assume the true data generation process (DGP) is given by (12) with 𝜌𝑛 = 1 and 𝑑 ∈ (0, 0.5). For any 𝑟 ∈ (0, 1] and 𝜏 = ⌊𝑛𝑟⌋
s 𝑛 → ∞,

𝑛−𝑑𝐷𝐹𝜏 ⇒

𝜎𝑟
2

(

𝑊 𝐻 (𝑟)
)2 − 𝜎

(

∫ 𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠

)

𝑊 𝐻 (𝑟)

𝑟
(

𝜎𝑢 ∫
𝑟
0
(

𝑊̃ 𝐻 (𝑠)
)2 𝑑𝑠

)1∕2
. (13)

here 𝜎2𝑢 ∶= E[𝑢2𝑡 ].

Lemma 3.1 implies that 𝐷𝐹𝜏 = 𝑂𝑝
(

𝑛𝑑
)

, so that the statistic 𝐷𝐹𝜏 diverges with the sample size, implying rejection of the null
ypothesis as 𝑛 → ∞ which leads to spurious inference concerning explosive behavior in the data. With Type I fractional integration
nd 𝑑 ∈ (0, 0.5), Theorem 4 in Sowell (1990) also showed divergence 𝐷𝐹𝑛

𝑝
→ ∞. Lemma 3.1 extends that result to Type II fractional

ntegration and the divergence rate 𝑂𝑝
(

𝑛𝑑
)

shows faster divergence for larger 𝑑 holding for any 𝑟 ∈ (0, 1], so the result is relevant
or subsample inference.

emark 3.1. To detect the presence of explosiveness, Phillips et al. (2011) and Phillips et al. (2015a) and Phillips et al. (2015b)
(hereafter PSYb) proposed to use 𝑆𝐷𝐹 and 𝐺𝑆𝐷𝐹 statistics defined by

𝑆𝐷𝐹 (𝜏0) = sup
𝜏∈[𝜏0 ,𝑛]

𝐷𝐹𝜏 and 𝐺𝑆𝐷𝐹 (𝜏0) = sup
𝜏2∈[𝜏0 ,𝑛],𝜏1∈[0,𝜏2−𝜏0]

𝐷𝐹 𝜏2
𝜏1 ,

where 𝜏0 = ⌊𝑛𝑟0⌋ is the minimum data window and 𝐷𝐹 𝜏2
𝜏1 is the t statistic based on the observations from 𝜏1 = ⌊𝑛𝑟1⌋ to 𝜏2 = ⌊𝑛𝑟2⌋.

As Lemma 3.1 holds uniformly for 𝑟 ∈ (0, 1], under model (12) with 𝜌𝑛 = 1 and 𝑑 ∈ (0, 0.5), we have

𝑆𝐷𝐹 (𝜏0) = 𝑂𝑝
(

𝑛𝑑
)

and 𝐺𝑆𝐷𝐹 (𝜏0) = 𝑂𝑝
(

𝑛𝑑
)

.

Both statistics lead to the detection of spurious explosive behavior as 𝑛 → ∞.

Remark 3.2. Similar to the framework in Phillips et al. (2014), model (12) can be extended to include an asymptotically negligible
intercept, which can be useful in capturing the presence of a small drift in the data. In this case,

𝑦𝑡 = 𝜇𝑛 + 𝜌𝑛𝑦𝑡−1 + 𝑢𝑡, (14)

where 𝜇𝑛 = 𝑂(𝑛−𝜃) with 𝜃 > 1∕2 − 𝑑. It can be shown that Lemma 3.1 continues to hold in this case. The result in Lemma 3.1 also
continues to hold when the ADF test or the CUSUM test of Homm and Breitung (2011) is used.

3.2. A new test statistic

The failure of the standard t statistic stems from the use of an inappropriate standard error based on the sample variance
of residuals, 1 ∑𝜏 𝑢̂2, which results in the divergence of 𝐷𝐹 . Instead, we use a self-normalized statistic that employs a robust
6

𝜏 𝑡=1 𝑡 𝜏
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standard error estimate, leading to a well defined limit distribution as 𝑛 → ∞ for 𝑑 ∈ [0, 0.5). Specifically, allowing for potential
strong dependence in 𝑢𝑡, we employ the HAR estimate

𝛺̂𝐻𝐴𝑅 =
𝜏
∑

𝑗=−𝜏+1
𝐾

(

𝑗
𝑀

)

𝛾̂𝑗 , (15)

where 𝐾(⋅) is a kernel function with bandwidth 𝑀 = 𝑀𝜏 , and 𝛾̂𝑗 = 1
𝜏
∑𝜏

𝑡=𝑗+1 𝛥𝑦𝑡𝛥𝑦𝑡−𝑗 is the 𝑗th order sample autocovariance over
the subsample 𝑡 = 1,… , 𝜏. Based on 𝛺̂𝐻𝐴𝑅, the t statistic becomes

𝐷𝐹𝜏,𝐻𝐴𝑅 =
𝜌̂𝜏 − 1
𝑠𝜏,𝐻𝐴𝑅

, (16)

in which the robust standard error is

𝑠𝜏,𝐻𝐴𝑅 =

√

√

√

√

𝛺̂𝐻𝐴𝑅
∑𝜏

𝑡=1 𝑦̄
2
𝑡−1

, where 𝑦̄𝑡 = 𝑦𝑡 −
1
𝜏

𝜏
∑

𝑡=1
𝑦𝑡−1. (17)

For HAR estimation, the bandwidth is selected by the fixed-𝑏 setting 𝑀𝜏 = 𝑏×𝜏 with 𝑏 ∈ (0, 1] so the bandwidth is of the same order of
magnitude as the subsample 𝜏 in the regression window. This approach follows Kiefer and Vogelsang (2002a,b, 2005), Bunzel et al.
(2001), Vogelsang (2003) and many subsequent works that employ the fixed-𝑏 method. In the present setting, the HAR normalization
f the test statistic plays the same role as in Sun (2004) in the context of potentially spurious cointegration.

heorem 3.1. Suppose 𝑀𝜏 = 𝑏𝜏, and 𝐾(𝑥) = 𝐾𝐵(𝑥) is the Bartlett kernel with 𝐾𝐵(𝑥) = (1 − |𝑥|)𝟏 (|𝑥| ≤ 1). Under model (12), with
= ⌊𝑛𝑟⌋ and 𝑟 ∈ (0, 1] as 𝑛 → ∞, 𝐷𝐹𝜏=⌊𝑛𝑟⌋,𝐻𝐴𝑅 has the following fixed-b asymptotic distribution,

𝐷𝐹𝜏,𝐻𝐴𝑅 ⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏1∕2𝑟 ∫ 𝑟
0 𝑊̃ (𝑠)𝑑𝑊 (𝑠)

[

2 ∫ 𝑟
0 𝑊̃ (𝑠)2𝑑𝑠

(

∫ 𝑟
0 𝑊 (𝑝)2𝑑𝑝−∫ (1−𝑏)𝑟

0 𝑊 (𝑝)𝑊 (𝑝+𝑏𝑟)𝑑𝑝
)]1∕2 =∶ 𝐹 ∗

𝑟,0 for 𝑑 = 0

𝑏1∕2
[

𝑟
2
(

𝑊 𝐻 (𝑟)
)2−

(

∫ 𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠

)

𝑊 𝐻 (𝑟)
]

[

2 ∫ 𝑟
0 (𝑊̃ 𝐻 (𝑠))2𝑑𝑠

(

∫ 𝑟
0 𝑊 𝐻 (𝑝)2𝑑𝑝−∫ (1−𝑏)𝑟

0 𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝+𝑏𝑟)𝑑𝑝
)]1∕2 =∶ 𝐹𝑟,𝑑 for 𝑑 ∈ (0, 0.5),

(18)

where 𝑊 𝐻 (𝑟) = 1
𝛤 (𝐻+1∕2) ∫

𝑟
0 (𝑟 − 𝑠)𝐻−1∕2𝑑𝑊 (𝑠) is Type II fractional Brownian motion (fBM) with the Hurst parameter 𝐻 = 1∕2 + 𝑑 and

𝑊̃ 𝐻 (𝑟) = 𝑊 𝐻 (𝑟) − 1
𝑟 ∫

𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠 is demeaned Type II fBM.12

In contrast to the divergence of 𝐷𝐹𝜏 , Theorem 3.1 shows that 𝐷𝐹𝜏,𝐻𝐴𝑅 converges weakly to a well-defined limit distribution
for any 𝜏 = ⌊𝑛𝑟⌋ whether 𝑑 = 0 or 𝑑 > 0. Hence, provided the DGP does not have an explosive root, 𝐷𝐹𝜏,𝐻𝐴𝑅 has well-behaved
asymptotics for 𝑑 ≥ 0 and in this respect is better suited to testing. However, although the statistic is well normalized for 𝑑 ≥ 0,
the limit distribution of 𝐷𝐹𝜏,𝐻𝐴𝑅 in (18) is not uniform over 𝑑. The lack of uniformity arises because the centered LS estimator
𝜌̂𝜏 − 1 involves a component involving 𝑛−1−2𝑑

(
∑𝜏

𝑡=1 𝑢
2
𝑡
)

that is asymptotically negligible when 𝑑 > 0 but non-negligible when 𝑑 = 0,
hereby affecting the limit theory in that case and leading to a discontinuity in the limit distribution when 𝑑 → 0. As is evident from
he form of the two limits given in (18), the denominator of 𝐹𝑟,𝑑 is equivalent to the denominator of 𝐹 ∗

𝑟,0 as 𝑑 → 0 (and 𝐻 → 1∕2)
ut this is not true of the numerators. The discrepancy produces the discontinuity in the limit theory as 𝑑 → 0.

Simulations (not reported here) show that critical values obtained from the limit distribution of 𝐷𝐹𝜏,𝐻𝐴𝑅 do not provide
satisfactory performance and lead to size distortion in testing when 𝑑 is close to zero. This distortion stems from two factors.
First, when 𝑑 > 0 but is close to zero, the component 𝑛−1−2𝑑

(
∑𝜏

𝑡=1 𝑢
2
𝑡
)

converges in probability to zero very slowly and the limit
distribution 𝐹𝑟,𝑑 does not provide a good finite sample approximation to the true distribution. Second, when 𝑑 = 0, use of 𝐹𝑟,𝑑 for an
asymptotic approximation with a plug-in estimate 𝑑 > 0 can be a poor approximation to the correct distribution 𝐹 ∗

𝑟,0 which should
be used to provide critical values.

The size distortion in the use of 𝐷𝐹𝜏,𝐻𝐴𝑅 and the source of the discrepancy in the limit theory motivates the design of a
modified statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 whose limit expression smooths over the discontinuity as 𝑑 → 0 and assists in delivering satisfactory size
performance. The modified statistic has the form

𝐷𝐹 𝜏,𝐻𝐴𝑅 =
𝜌̃𝜏 − 1
𝑠𝜏,𝐻𝐴𝑅

, (19)

where 𝜌̃𝜏 = 𝜌̂𝜏 +
1
2
∑𝜏

𝑡=1 𝛥𝑦
2
𝑡

∑𝜏
𝑡=1 𝑦̄

2
𝑡−1

and 𝛥𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1. This correction is analogous to the weak dependence correction in semiparametric
unit root tests in Phillips (1987a).

Theorem 3.2. Under the same assumptions as Theorem 3.1, for 𝜏 = ⌊𝑛𝑟⌋ with 𝑟 ∈ (0, 1] and 𝑛 → ∞,

𝐷𝐹 𝜏,𝐻𝐴𝑅 ⇒ 𝐹𝑟,𝑑 , for 𝑑 ≥ 0. (20)

here 𝐹𝑟,𝑑 is defined in (18).

12 It can be shown that 𝐷𝐹 ⇒ 𝐹 for 𝑑 > 0.5.
7

𝜏,𝐻𝐴𝑅 𝑟,𝑑
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Theorem 3.2 shows that the limit theory given by 𝐹𝑟,𝑑 provides a smooth transition to 𝐹𝑟,0 as 𝑑 → 0, replacing 𝐹 ∗
𝑟,0 when 𝑑 = 0.

When 𝐻 = 1∕2 we have 𝑊 𝐻 (𝑟) = 𝑊 (𝑟) and 𝐹𝑟,𝑑 → 𝐹𝑟,0 as 𝑑 → 0. The continuity in the limit theory is achieved by simple algebraic
removal of the component 𝑛−1−2𝑑

(
∑𝜏

𝑡=1 𝑢
2
𝑡
)

in the centered LS estimator 𝜌̂𝜏 −1. The component 𝑛−1−2𝑑
(
∑𝜏

𝑡=1 𝑢
2
𝑡
)

is no longer relevant
in the limit theory and there is no abrupt shift in the asymptotic behavior of 𝐷𝐹 𝜏,𝐻𝐴𝑅 at 𝑑 = 0.

To perform a right-tailed unit root test based on the sample {𝑦𝑡}𝜏𝑡=1 with 𝜏 = ⌊𝑛𝑟⌋ the statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 can be used in conjunction
with the 𝛽 × 100% asymptotic critical value 𝑐𝑣𝛽𝑟,𝐻𝐴𝑅(𝑑), for which

Pr
(

𝐹𝑟,𝑑 > 𝑐𝑣𝛽𝑟,𝐻𝐴𝑅(𝑑)
)

= 𝛽, for 𝑟 ∈ (0, 1], (21)

where 𝐹𝑟,𝑑 is defined in (18). This procedure applies to the full sample statistic 𝐷𝐹 𝑛,𝐻𝐴𝑅 with limit variate 𝐹1,𝑑 and corresponding
critical value 𝑐𝑣𝛽1,𝐻𝐴𝑅 satisfying (21).

Remark 3.3. The limit distributions given in Theorem 3.1 and Remark 3.4 below apply when the error term 𝑢𝑡 follows a stationary
ARFIMA(𝑝, 𝑑, 𝑞) process with 𝑑 > 0. Suppose the ARFIMA(𝑝, 𝑑, 𝑞) process 𝑢𝑡 is written as

𝑢𝑡 = 𝛥−𝑑
+ 𝐴(𝐿)𝜖𝑡,

𝐴(𝐿)𝜖𝑡 =
∞
∑

𝑗=0
𝑎𝑡−𝑗𝜖𝑡−𝑗 ,

∞
∑

𝑗=0
|𝑎𝑗 | < ∞.

Silveira (1991), Marinucci and Robinson (2000) show that, as 𝑛 → ∞,

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑡=1
𝑢𝑡 ⇒ 𝜎̃𝑊 𝐻 (𝑟), (22)

for 𝑟 ∈ [0, 1], where 𝜎̃2 =
(

𝐸[𝜖2𝑡 ] + 2
∑∞

𝑘=2 𝐸[𝜖1𝜖𝑘]
)

𝐴(1) with 𝐴(1) =
∑∞

𝑗=0 𝑎𝑗 . In view of the identity

1
𝑛2𝑑

1
𝑛

𝑛
∑

𝑡=1
𝑦𝑡−1𝑢𝑡 =

1
2𝑛2𝑑

(

𝑦2𝑛 − 𝑦20
)

− 1
2𝑛2𝑑

(

1
𝑛

𝑛
∑

𝑡=1
𝑢2𝑡

)

,

the second term on the right-hand side vanishes asymptotically when 𝑑 ∈ (0, 0.5). Hence, adding the ARMA component provides
only a scaling effect on the variance 𝜎̃2 appearing in (22), and the asymptotic distribution of 𝐷𝐹𝜏,𝐻𝐴𝑅 and 𝐷𝐹 𝜏,𝐻𝐴𝑅 are independent
of 𝜎̃2. Hence, the results in Theorem 3.1 and Remark 3.4 continue to apply.

Remark 3.4. Other kernel functions (𝐾2(⋅)) may be used in place of the Bartlett kernel 𝐾𝐵(⋅) and similarly lead to a fixed-b limit
distribution of the corresponding statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 constructed with this kernel. For instance, suppose 𝛺̂𝐻𝐴𝑅 =

∑𝜏
𝑗=−𝜏+1 𝐾2

(

𝑗
𝑀

)

𝛾̂𝑗
with some twice continuously differentiable positive and symmetric kernel function 𝐾2(⋅). Then, for all 𝑑 ∈ [0, 0.5) and 𝜏 = ⌊𝑛𝑟⌋
with 𝑟 ∈ (0, 1] we have the limit theory as 𝑛 → ∞,

𝐷𝐹 𝜏,𝐻𝐴𝑅 ⇒

𝑏𝑟3∕2

2

(

𝑊 𝐻 (𝑟)
)2 − 𝑏𝑟1∕2

(

∫ 𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠

)

𝑊 𝐻 (𝑟)
(

(

∫ 𝑟
0 𝑊̃ 𝐻 (𝑠)2𝑑𝑠

)

∫ 𝑟
0 ∫ 𝑟

0 −𝐾 ′′
2

(

𝑝−𝑞
𝑏𝑟

)

𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑞)𝑑𝑝𝑑𝑞
)1∕2

=∶ 𝐹𝑟,𝑑 , (23)

here 𝐾 ′′
2 (⋅) is the second derivative of 𝐾2(⋅).

emark 3.5. The preceding results are given for long memory time series formulated in terms of Type II FI and the corresponding
imit theory involves Type II fBM. Similar results apply for innovations involving Type I FI time series with limit theory involving a
ype I fBM process. Specifically, when 𝑑 ∈ (0, 0.5) we can replace 𝑢𝑡 = 𝛥−𝑑

+ 𝜖𝑡 in (12) with 𝑢𝑡 = (1 −𝐿)−𝑑𝜖𝑡 =
∑∞

𝑗=0
(𝑑)𝑗
𝑗! 𝜖𝑡−𝑗 and 𝑊 𝐻 (𝑡)

in (18) and (23) with

𝐵𝐻 (𝑡) = 𝑊 𝐻 (𝑡) + 1
𝛤 (𝐻 + 1∕2) ∫

0

−∞
[(𝑟 − 𝑠)𝐻−1∕2 − (−𝑠)𝐻−1∕2]𝑑𝑊 (𝑠).

For discussion of Type I and Type II formulations of fBM see Marinucci and Robinson (1999, 2000), Davidson and Hashimzade
(2009).

Remark 3.6. As in Phillips et al. (2011), a sup statistic sup𝜏∈[𝜏0 ,𝑛]𝐷𝐹 𝜏,𝐻𝐴𝑅 can be constructed from recursive regression for
empirical testing covering subsamples of the full sample. The limit theory can be obtained by continuous mapping in the usual
way (Phillips et al., 2015a,b) and employed in practical work to identify explosive behavior in a subsample. This construction is
discussed in detail in the Online Supplement.

Both 𝑑𝑦 and 𝑑 can be consistently estimated by ELW estimation (Shimotsu and Phillips, 2005) or quasi-maximum likelihood
estimation (QMLE) (Hualde and Robinson, 2011). Let 𝑑 denote the estimate of 𝑑 so obtained. Critical values for testing can then
be found for 𝐹𝑟,𝑑 by simulation. Alternatively, we can tabulate critical values of 𝐹𝑟,𝑑 for a set of grid points for 𝑑 ∈ [0, 0.5) and
interpolation can be employed to obtain the critical value of 𝐹𝑟,𝑑 . Simulations reported in Section 7 show that this plug-in approach
8

delivers good size performance in finite samples even for 𝑛 = 100 and performs nearly as well as the infeasible method where the
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true value of 𝑑 is used to construct critical values. For practical implementation it is convenient to impose bounds in estimation
so that 𝑑𝑦 ∈ [1, 1 + 𝑑] for some 0 < 𝑑 < ∞ when performing optimization in calculating estimates of 𝑑𝑦. Then 𝑑𝑦 ∈ [1, 1 + 𝑑] and
̂∈ [0, 𝑑]. In the simulations of Section 7 we set 𝑑 = 0.49.

The plug-in method does not take into account the randomness in 𝑑. An alternative feasible inferential procedure that does so
s to use the fractional differencing bootstrap algorithm of Kapetanios et al. (2019) to obtain asymptotically correct critical values

or bootstrap 𝑝-values. This approach involves the following five steps.

1. Let 𝑒𝑛,𝑡 = 𝛥1+𝑑
+ 𝑦𝑡 and 𝑒𝑛,𝑡 =

(

𝑒𝑛,𝑡 − 𝑒𝑛,𝑡
)

∕𝜎̂𝑒 where 𝑑 is an estimate of 𝑑, 𝑒𝑛,𝑡 and 𝜎̂𝑒 are the sample mean and sample standard
deviation of 𝑒𝑛,𝑡.

2. Redraw i.i.d. samples
{

𝑒∗𝑛,𝑡
}

from the empirical distribution of 𝑒𝑛,𝑡 with replacement.

3. Let

𝑢∗𝑡 = 𝜎̂𝑒𝛥
−𝑑
+ 𝑒∗𝑛,𝑡, 𝑦

∗
𝑡 = 𝑦∗𝑡−1 + 𝑢∗𝑡 , with 𝑦0 = 0,

and calculate 𝐷𝐹
∗
𝑛,𝐻𝐴𝑅 as in (19).

4. Repeat Steps 2–4 𝐵 times and calculate the bootstrap empirical cdf

𝐹 ∗(𝑥) = 1
𝐵

𝐵
∑

𝑗=1
1(𝐷𝐹

∗,𝑗
𝑛,𝐻𝐴𝑅 ≤ 𝑥).

Define the 𝛽 × 100% bootstrap critical value (𝑏𝑐𝑣𝛽) as the 1 − 𝛽 quantile of 𝐹 ∗ and let the bootstrap 𝑝-value be

𝑝∗(𝐷𝐹 𝑛,𝐻𝐴𝑅) = 1 − 𝐹 ∗(𝐷𝐹 𝑛,𝐻𝐴𝑅). (24)

5. Reject the unit root null hypothesis when 𝐷𝐹 𝑛,𝐻𝐴𝑅 > 𝑏𝑐𝑣𝛽 or 𝑝∗(𝐷𝐹 𝑛,𝐻𝐴𝑅) < 𝛽.

The following theorem shows that this bootstrap approach delivers the correct test size asymptotically.

Theorem 3.3. Suppose we reject the hypothesis 𝜌𝑛 = 1 when 𝑝∗(𝐷𝐹 𝑛,𝐻𝐴𝑅) in (24) is less than 𝛽. Under the assumptions specified in
Theorem 3.1 and if, 𝑛𝛾 (𝑑 − 𝑑)

𝑑
→  (0, 𝑉 ), with 1∕4 < 𝛾 ≤ 1∕2 and 𝑉 > 0, then as 𝑛 → ∞, we have

𝐷𝐹
∗
𝑛,𝐻𝐴𝑅 ⇒ 𝐹1,𝑑 ,

𝑝∗(𝐷𝐹 𝑛,𝐻𝐴𝑅) ⇒ 𝑈 [0, 1].

4. Alternative hypothesis and asymptotic theory

To study the asymptotic behavior of the proposed test statistic under an alternative hypothesis, we follow the literature and use
two popular ways of modeling explosive departures from unity. The first alternative adopts the local to unit root (LUR) framework
of Phillips (1987b) – see Harvey et al. (2016, 2018, 2019). The advantage of using the locally explosive model is that it facilitates the
omputation of local power. The second alternative is the mildly explosive model of Phillips and Magdalinos (2007); see Phillips
t al. (2011), Phillips et al. (2015a), Phillips et al. (2015b) and Phillips and Yu (2011). Under a mildly explosive alternative a
onsistent test is obtained.

.1. Locally explosive model

We first consider the alternative hypothesis with the following locally explosive setting:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑡 =
(

𝑦𝑡−1 + 𝑢𝑡
)

1{𝑡 < 𝜏𝑒} +
(

𝜌𝑛𝑦𝑡−1 + 𝑢𝑡
)

1{𝜏𝑒 ≤ 𝑡 ≤ 𝑛}, 𝑡 = 1,… , 𝑛,

𝑢𝑡 = 𝛥−𝑑
+ 𝜖𝑡, 𝑑 ≥ 0, 𝜖𝑡

𝑖𝑖𝑑∼ (0, 𝜎2), E|𝜖1|2+𝛿 < ∞, 𝛿 > 0, 𝜏𝑒 = ⌊𝑛𝑟𝑒⌋ ,
𝜌𝑛 = 1 + 𝑐∕𝑛, 𝑐 > 0, 1 + 𝑐∕𝑛, 𝑐 > 0,
𝑦0 = 𝑜𝑝

(

𝑛1∕2+𝑑
)

.

(25)

n model (25), 𝑦𝑡 has a unit autoregressive root generating mechanism before time 𝜏𝑒 and becomes locally explosive after 𝜏𝑒,
roducing a structural break at 𝜏𝑒. During both periods the errors in the AR model have strong dependence with the same memory
arameter 𝑑. We now consider the asymptotic behavior of 𝐷𝐹 𝜏,𝐻𝐴𝑅.

heorem 4.1. Under model (25), for 𝜏 = ⌊𝑛𝑟⌋ with any 𝑟 > 𝑟𝑒, as 𝑛 → ∞,

𝐷𝐹 𝜏,𝐻𝐴𝑅 ⇒

( (

1
2𝐶𝑟,𝑑−

1
𝑟 𝐴𝑟,𝑑𝑊 𝐻 (𝑟)

)

𝑟

𝐵𝑟,𝑑−
1
𝑟 𝐴

2
𝑟,𝑑

+ 𝑐𝑟

)

(

𝐵𝑟,𝑑 − 1
𝑟𝐴

2
𝑟,𝑑

)1∕2

[

2
(

∫ 𝑟 𝐺 (𝑑, 𝑝)2𝑑𝑝 − ∫ (1−𝑏)𝑟 𝐺 (𝑑, 𝑝)𝐺 (𝑑, 𝑝 + 𝑏𝑟)𝑑𝑝
)]1∕2

=∶ 𝐹 𝑐
𝑟,𝑑 , (26)
9

𝑏 0 𝑟𝑒 ,𝑐 0 𝑟𝑒 ,𝑐 𝑟𝑒 ,𝑐
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where

𝐴𝑟,𝑑 ∶= ∫

𝑟

0

(

𝑒(𝑥−𝑟𝑒)𝑐𝑊 𝐻 (𝑟𝑒) + ∫

𝑥

𝑟𝑒
𝑒(𝑥−𝑠)𝑐𝑑𝑊 𝐻 (𝑠)

)

𝑑𝑥,

𝐵𝑟,𝑑 ∶= ∫

𝑟

0

(

𝑒(𝑥−𝑟𝑒)𝑐𝑊 𝐻 (𝑟𝑒) + ∫

𝑥

𝑟𝑒
𝑒(𝑥−𝑠)𝑐𝑑𝑊 𝐻 (𝑠)

)2

𝑑𝑥,

𝐶𝑟,𝑑 ∶=

(

𝑒(𝑟−𝑟𝑒)𝑐𝑊 𝐻 (𝑟𝑒) + ∫

𝑟

𝑟𝑒
𝑒(𝑟−𝑠)𝑐𝑑𝑊 𝐻 (𝑠)

)2

,

𝐺𝑟𝑒 ,𝑐 (𝑝) ∶= 𝑊 𝐻 (𝑝) − 𝑐𝐴𝑝,𝑑 − ∫

𝑟𝑒

0
𝑊 𝐻 (𝑝)𝑑𝑝.

The limit distribution in Theorem 4.1 depends on the non-centrality localizing scale parameter 𝑐. This parameter differentiates
𝐹 𝑐
𝑟,𝑑 from 𝐹𝑟,𝑑 and evidently 𝐹 𝑐

𝑟,𝑑 = 𝐹𝑟,𝑑 for 𝑐 = 0 from (20). Since both 𝐹 𝑐
𝑟,𝑑 and 𝐹𝑟,𝑑 are 𝑂𝑝(1), they may be used to compute local

power of the proposed test.

4.2. Mildly explosive model

Next consider the alternative hypothesis with the following mildly explosive setting

⎧

⎪

⎨

⎪

⎩

𝑦𝑡 =
(

𝑦𝑡−1 + 𝑢𝑡
)

1{𝑡 < 𝜏𝑒} +
(

𝜌𝑛𝑦𝑡−1 + 𝑢𝑡
)

1{𝜏𝑒 ≤ 𝑡 ≤ 𝑛}, 𝑦0 = 𝑜𝑝(𝑛1∕2+𝑑1 )

𝑢𝑡 =

{

𝛥−𝑑1
+ 𝜖𝑡 if 𝑡 < 𝜏𝑒,

𝛥−𝑑2
+ 𝜖𝑡 if 𝜏𝑒 ≤ 𝑡 ≤ 𝑛,

𝜖𝑡
𝑖𝑖𝑑∼ (0, 𝜎2), 𝑑1, 𝑑2 ≥ 0,E|𝜖1|2+𝛿 < ∞, 𝛿 > 0 , (27)

here

𝜌𝑛 = 1 + 𝑐
𝑛𝛼

, 𝑐 > 0, 𝛼 ∈ (0, 1) . (28)

In model (27) 𝑦𝑡 has unit root behavior before 𝜏𝑒 and becomes mildly explosive after 𝜏𝑒, implying a structural break at 𝜏𝑒. For both
periods the errors in the AR model have strong dependence but with memory parameter 𝑑1 prior to the break and memory parameter
𝑑2 after the break. Since the localizing rate parameter 0 < 𝛼 < 1, the specification (28) delivers stronger explosive behavior than the
locally explosive LUR model considered earlier. Note that under the LUR model, the memory parameters have a role in determining
whether the locally explosive trajectory is relevant asymptotically. Suppose that 𝛼 = 1, and 𝑑1 ≠ 𝑑2, model (27) becomes an LUR
model with long memory errors with memory parameters 𝑑1 and 𝑑2 at 𝑡 < 𝜏𝑒 and 𝑡 ∈ [𝜏𝑒, 𝑛], respectively. It can be shown that
the persistence of 𝑦𝑡 is solely determined by max(𝑑1, 𝑑2) as 𝑛 → ∞, and if 𝑑1 > 𝑑2 the locally explosive part will be asymptotically
dominated by the non-explosive episode. But when 𝛼 < 1, the mildly explosive coefficient is sufficient for a consistent test, as shown
in the following result.

Theorem 4.2. Under model (27) with (28), as 𝑛 → ∞,

𝐷𝐹𝑛 = 𝑂𝑝(𝑛1−𝛼∕2)
𝑝
→ ∞ and 𝐷𝐹 𝑛,𝐻𝐴𝑅 = 𝑂𝑝

(

𝑛
1−𝛼
2
) 𝑝
→ ∞.

Theorem 4.2 shows that the statistic 𝐷𝐹𝑛 diverges to infinity under mildly explosive alternatives. Combining with the result in
emma 3.1, divergence of 𝐷𝐹𝑛 may be due to either strongly dependent errors or mildly explosive autoregression. But the modified
AR statistic 𝐷𝐹 𝑛,𝐻𝐴𝑅 diverges only under the alternative hypothesis given by (27) and (28). For any 𝛽 × 100% critical value

𝑐𝑣𝛽𝐻𝐴𝑅(𝑑), we have Pr
(

𝐷𝐹 𝑛,𝐻𝐴𝑅 > 𝑐𝑣𝛽𝐻𝐴𝑅(𝑑)
)

→ 1 under model (27) with condition (28), giving a consistent test for mildly explosive
alternatives. Note that 𝐷𝐹𝑛 diverges at the same rate 𝑛1−𝛼∕2 as that obtained in Phillips et al. (2011) and Phillips et al. (2015a) under
i.i.d. errors. The divergence rate of both statistics does not depend on 𝑑.

Remark 4.1. Unlike the local alternative case where 𝛼 = 1, no assumption about 𝑑1 and 𝑑2 is needed. They can be identical or
different under the mildly explosive setting (28).

Remark 4.2. Phillips and Magdalinos (2007) proposed the mildly explosive specification with 𝜌𝑛 = 1+ 𝑐
𝑘𝑛

where 𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → 0
and 𝑐 > 0. This specification is more general than ours but with a mild additional condition on 𝑘𝑛 the test remains consistent. In
particular and without loss of generality let 𝑐 be normalized to unity (see Phillips (2023) for discussion). Then, under the condition
log(𝑛)𝑘𝑛

𝑛 → 0, our test is shown to be consistent in the Online Supplement.13

emark 4.3. Setting 𝛼 = 0 in (28) leads to a purely explosive alternative, which amplifies explosive behavior. So test divergence
nd consistency in Theorem 4.2 continue to hold. The Online Supplement provides further discussion.

13 We thank an anonymous referee for suggesting this extension.
10
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5. Dating origination and termination

We now discuss estimation of the origination and termination dates of an explosive period. Following Phillips et al. (2011) and
hillips and Yu (2011), we consider the following model:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑦𝑡 =
(

𝑦𝑡−1 + 𝑢𝑡
)

1{𝑡 < 𝜏𝑒} +
(

𝜌𝑛𝑦𝑡−1 + 𝑢𝑡
)

1{𝜏𝑒 ≤ 𝑡 ≤ 𝜏𝑓 }
+

(

∑𝑡
𝑘=𝜏𝑓+1

𝑢𝑘 + 𝑦∗𝜏𝑓

)

1{𝑡 > 𝜏𝑓 }, 𝑦0 = 𝑜𝑝(𝑛1∕2+𝑑1 ),
𝜌𝑛 = 1 + 𝑐

𝑛𝛼 , 𝑐 > 0, 𝛼 ∈ (0, 1) ,

𝑢𝑡 = 𝛥−𝑑𝑡
+ 𝜖𝑡, 𝜖𝑡

𝑖𝑖𝑑∼ (0, 𝜎2), E|𝜖1|2+𝛿 < ∞, 𝛿 > 0,
𝑑𝑡 = 𝑑1 for 𝑡 ∈ [1, 𝜏𝑒) ∪ [𝜏𝑓 + 1, 𝑛], 𝑑𝑡 = 𝑑2 for 𝑡 ∈ [𝜏𝑒, 𝜏𝑓 ], 𝜏𝑒 = ⌊𝑛𝑟𝑒⌋, 𝜏𝑓 = ⌊𝑛𝑟𝑓 ⌋,
𝑦∗𝜏𝑓 = 𝑦𝜏𝑒 + 𝑦∗, and 𝑦∗ = 𝑂𝑝(1).

(29)

his model extends (9) by allowing for potentially strong dependence in the errors. As in (9), the notations 𝜏𝑒 (𝑟𝑒) and 𝜏𝑓 (𝑟𝑓 ) are
he true temporal (fractional) origination and termination dates of the explosive period. Different from model (12) which has no

break, model (29) has two breaks. Before the first break (i.e. 𝑡 < 𝜏𝑒), the model has a unit root in the AR coefficient. After the first
break (i.e. 𝑡 ∈ [𝜏𝑒, 𝜏𝑓 ]), 𝑦𝑡 is mildly explosive with the AR coefficient 𝜌𝑛 = 1 + 𝑐

𝑛𝛼 , 𝑐 > 0. The explosive period ends at 𝜏𝑓 + 1 and
the process returns to a unit root process with a re-initialization at 𝑦∗𝜏𝑓 which lies in an 𝑂𝑝(1) neighborhood of 𝑦𝜏𝑒 . This model also
extends (9) by allowing for different memory parameters in the errors during the explosive period and non-explosive periods.

Break point estimators of 𝑟𝑒 and 𝑟𝑓 are defined by employing the HAR statistic 𝐷𝐹 𝑛,𝐻𝐴𝑅 in the usual criteria

𝑟̂𝐻𝐴𝑅
𝑒 = inf 𝑟≥𝑟0{𝑟 ∶ 𝐷𝐹 𝜏,𝐻𝐴𝑅 > 𝑐𝑣𝑛,𝐻𝐴𝑅},
𝑟̂𝐻𝐴𝑅
𝑓 = inf 𝑟>𝑟̂𝑒+𝛾 ln(𝑛)∕𝑛{𝑟 ∶ 𝐷𝐹 𝜏,𝐻𝐴𝑅 < 𝑐𝑣𝑛,𝐻𝐴𝑅}.

(30)

The following theorem shows that 𝑟̂𝐻𝐴𝑅
𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓 deliver consistent estimates of 𝑟𝑒 and 𝑟𝑓 when 𝑐𝑣𝑛,𝐻𝐴𝑅 passes to infinity at a
controlled rate.

Theorem 5.1. Under model (29) with 𝜏 = ⌊𝑛𝑟⌋, 𝐷𝐹 𝜏,𝐻𝐴𝑅 has the following asymptotic behavior:

𝐷𝐹 𝜏,𝐻𝐴𝑅 = 𝑂𝑝

(

𝑛
1−𝛼
2
) 𝑝

→ ∞ if 𝜏 ∈ [𝜏𝑒, 𝜏𝑓 ],

𝐷𝐹 𝜏,𝐻𝐴𝑅 = 𝑂𝑝

(

𝑛
1−𝛼
2
) 𝑝

→ −∞ if 𝜏 ∈ [𝜏𝑓 + 1, 𝑛].
(31)

If 𝑟𝑒 ≥ 𝑟0 and the critical value 𝑐𝑣𝑛,𝐻𝐴𝑅 satisfies the following condition

1
𝑐𝑣𝑛,𝐻𝐴𝑅

+
𝑐𝑣𝑛,𝐻𝐴𝑅

𝑛(1−𝛼)∕2
→ 0, (32)

then, as 𝑛 → ∞,

𝑟̂𝐻𝐴𝑅
𝑒

𝑝
→ 𝑟𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓
𝑝
→ 𝑟𝑓 .

Under the alternative hypothesis, consistent estimation of the origination and termination dates of an explosive period requires
that the critical value 𝑐𝑣𝑛,𝐻𝐴𝑅 → ∞ but at a rate slower than 𝑛(1−𝛼)∕2. This is a slightly stronger control condition for consistency
than that used in Phillips et al. (2011) for the model without strongly dependent errors (where the rate is required to be slower
than 𝑛(2−𝛼)∕2). The difference is due to the presence of long memory. In Phillips et al. (2011), the critical value is set to

log(log(𝑛𝑟))∕100, 𝑟 ∈ (0, 1] (33)

which is close to the critical value corresponding to a 4% significance level of the DF test in their applications. In our applications,
the diverging factor (33) is also used to construct 𝑐𝑣𝑛,𝐻𝐴𝑅, which leads to a critical value close to 𝑐𝑣0.03𝑛,𝐻𝐴𝑅(𝑑) in (21), corresponding
to a 3% significance level and satisfying the rate required in (32).

Remark 5.1. Under the null hypothesis of no explosive behavior, i.e. model (12), if 𝑐𝑣𝑛,𝐻𝐴𝑅 → ∞ the probability of detecting an
explosive episode in the data using 𝐷𝐹 𝜏,𝐻𝐴𝑅 goes to zero as 𝑛 → ∞. This is because 𝐷𝐹 𝜏,𝐻𝐴𝑅 ∼ 𝑂𝑝(1) under model (12).

Remark 5.2. As in Phillips et al. (2011), the procedure provides real-time estimates of 𝑟𝑒 and 𝑟𝑓 because the date estimates 𝑟̂𝐻𝐴𝑅
𝑒

and 𝑟̂𝐻𝐴𝑅
𝑓 only use subsamples of data observed to those points.

6. Heteroskedastic model

This section explains how to conduct right-tailed unit root tests in the presence of unconditional heteroskedasticity. Time series
models with unconditionally heteroskedastic errors were studied in Cavaliere and Taylor (2005, 2007) and Xu and Phillips (2008).

ore recently, Harvey et al. (2016, 2018, 2019) and Astill et al. (2023) adopted an AR model with time-varying volatilities and
roposed new tests for explosive behavior in such settings. The following provides an extension of those ideas under strongly
11

ependent errors.
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A

Consider the model
⎧

⎪

⎨

⎪

⎩

𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡, 𝑦0 = 𝑜𝑝(𝑛1∕2+𝑑 ), 𝑡 = 1,… , 𝑛,

𝑢𝑡 = 𝛥−𝑑
+ 𝜖𝑡 = 𝛥−𝑑

+ 𝜎𝑡,𝑛𝜀𝑡 = 𝛥−𝑑
+ 𝑔 (𝑡∕𝑛) 𝜀𝑡, 𝜀𝑡

𝑖𝑖𝑑∼ (0, 1), 𝑑 ≥ 0,
E|𝜀𝑡|𝑞 < 𝐾 < ∞ and 𝑞 ≥ 4,

(34)

where 𝑔 is a strictly positive, non-stochastic and continuously differentiable function on [0, 1] with sup𝑠 𝑔 (𝑠) < 𝐶 < ∞. Model (34)
has strongly dependent errors (captured by the parameter 𝑑) that are also unconditionally heteroskedastic (captured by the weakly
trending function 𝜎𝑡,𝑛 = 𝑔(𝑡∕𝑛)).

Lemma 6.1. Under model (34), as 𝑛 → ∞, we have

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑡=1
𝑢𝑡 ⇒

1
𝛤 (𝐻 + 1∕2) ∫

𝑟

0
𝑔(𝑠)(𝑟 − 𝑠)𝐻−1∕2𝑑𝑊 (𝑠) =∶ 𝑊 𝐻

𝑔 (𝑟). (35)

Remark 6.1. When 𝑑 = 0, Cavaliere (2005), Cavaliere and Taylor (2005, 2007) showed that

𝑛−1∕2
⌊𝑛𝑟⌋
∑

𝑡=1
𝑢𝑡 ⇒ ∫

𝑟

0
𝑔(𝑠)𝑑𝑊 (𝑠),

and Lemma 6.1 extends that result to the case where 𝑑 > 0 and the limit involves a weighted functional of fBM.

Using the functional law (35) yields the corresponding limit theory for the statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 in the case of strong dependence
and unconditional heteroskedasticity.

Theorem 6.1. Under model (34), as 𝑛 → ∞, we have

𝐷𝐹 𝜏,𝐻𝐴𝑅 ⇒

𝑏1∕2
[

𝑟
2

(

𝑊 𝐻
𝑔 (𝑟)

)2
−
(

∫ 𝑟
0 𝑊 𝐻

𝑔 (𝑠)𝑑𝑠
)

𝑊 𝐻
𝑔 (𝑟)

]

[

2 ∫ 𝑟
0

(

𝑊̃ 𝐻
𝑔 (𝑠)

)2
𝑑𝑠

(

∫ 𝑟
0 𝑊 𝐻

𝑔 (𝑝)2 − ∫ (1−𝑏)𝑟
0 𝑊 𝐻

𝑔 (𝑝)𝑊 𝐻
𝑔 (𝑝 + 𝑏𝑟)𝑑𝑝

)

]1∕2
=∶ 𝐹 𝑔

𝑟,𝑑 , (36)

here 𝑊̃ 𝐻
𝑔 (𝑟) = 𝑊 𝐻

𝑔 (𝑟) − 1
𝑟 ∫

𝑟
0 𝑊 𝐻

𝑔 (𝑠)𝑑𝑠, 𝑏 = 𝑀∕𝜏 where 𝑀 = 𝑀𝜏 is the bandwidth in the kernel function used to construct the modified
HAR statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅.

The limit functional 𝐹 𝑔
𝑟,𝑑 depends on the unknown quantities 𝑑 and 𝑔. One approach to operationalize inference is to consistently

estimate 𝑑 and 𝑔 and obtain critical values for the functional 𝐹 𝑔̂
𝑟,𝑑

using these plug-in estimates. For example, we can consistently
estimate 𝑑𝑦 = 1 + 𝑑 directly from the given data, and hence 𝑑, under model (34) by ELW or QML estimation. Then

{

𝑦𝑡
}

can be
filtered using 𝑑 by calculating 𝑢̂𝑡 = 𝛥1+𝑑

+ 𝑦𝑡, and the adaptive kernel method (Beare, 2004; Phillips and Xu, 2006; Xu and Phillips,
2008; Cavaliere et al., 2022; Astill et al., 2023) can be used to estimate 𝑔.

A second approach is to note that, under (34), we have

𝑥𝑝 =
𝑝
∑

𝑡=1
𝛥−𝑑
+

(

𝛥1+𝑑
+ 𝑦𝑡
𝑔(𝑡∕𝑛)

)

=
𝑝
∑

𝑡=1
𝛥−𝑑
+ 𝜀𝑡 = 𝑥𝑝−1 + 𝛥−𝑑

+ 𝜀𝑝.

Hence, based on 𝑑 and 𝑔̂, we can define

𝑥
⌊𝑛𝑠⌋ =

⌊𝑛𝑠⌋
∑

𝑡=1
𝛥−𝑑
+

(

𝛥1+𝑑
+ 𝑦𝑡
𝑔̂(𝑡∕𝑛)

)

, 𝑥0 = 0, for 𝑠 ∈ [0, 1], (37)

where 𝑔̂2(𝑡∕𝑛) =
∑𝜏

𝑖=1 𝑘𝑡𝑖𝜖
2
𝑖 with 𝑘𝑡𝑖 =

𝐾𝜈 (𝑡−𝑖)
∑𝜏

𝑖=1 𝐾𝜈 (𝑡−𝑖)
, 𝜖𝑡 = 𝛥1+𝑑

+ 𝑦𝑡, 𝐾𝜈 (⋅) = 𝐾( ⋅𝜈 ) and 𝐾(⋅) is a kernel function with bandwidth 𝜈. Following
still et al. (2023), we assume that the kernel 𝐾(⋅) satisfies the conditions given in Theorem 6.2.

The following limit theory holds when the 𝐷𝐹 𝜏,𝐻𝐴𝑅 test is applied to {𝑥𝑡}𝜏𝑡=1.

Theorem 6.2. Assume
{

𝑦𝑡
}𝑛
𝑡=1 is generated from model (34). Suppose the kernel function 𝐾 (⋅) satisfies the following conditions: it is

continuously differentiable over the interval (0, 1); 𝐾(𝑥) = 0, for 𝑥 ≤ 0 and 𝑥 ≥ 1; ∫ 1
0 𝐾𝑑𝑥 > 0, ∫ 1

0 |𝐾(𝑥)|𝑑𝑥 < ∞, ∫ 1
0 |𝐾(𝑥)𝑥|𝑑𝑥 < ∞, and

the characteristic function of 𝐾 is absolutely integrable. Suppose that 𝑛𝛾
(

𝑑 − 𝑑
) 𝑑
→  (0, 𝑉 ) with 1∕4 < 𝛾 ≤ 1∕2 and 𝑉 > 0. Furthermore,

assume the bandwidth 𝜈 satisfies 𝜈 → ∞, 𝜈
𝑛 → 0 and 𝜈2

𝑛 → ∞ as 𝑛 → ∞. Let 𝐷𝐹
𝑥
𝜏,𝐻𝐴𝑅 denote the test statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 applied to data

{𝑥𝑡}𝜏𝑡=1 constructed as in (37). As 𝑛 → ∞, we then have

𝐷𝐹
𝑥
𝜏,𝐻𝐴𝑅 ⇒ 𝐹𝑟,𝑑 . (38)

Remark 6.2. Theorem 6.2 states that one can use the same limit distribution as in Theorem 3.2 to obtain critical values for the
12

test under the heteroskedastic model (34). It is therefore possible to extend the bootstrap procedures given earlier to accommodate
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Table 2
Empirical sizes of 𝐷𝐹𝑛 , 𝐷𝐹𝑛,𝐻𝐴𝑅 and 𝐷𝐹 𝑛,𝐻𝐴𝑅 for various 𝑑 based on a nominal 5% right-tailed critical value.

𝑛 = 100

𝑑 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
𝐷𝐹𝑛 0.05 0.09 0.14 0.20 0.26 0.31 0.36 0.41 0.45 0.48
𝐷𝐹𝑛,𝐻𝐴𝑅(𝑑) 0.12 0.12 0.11 0.09 0.06 0.05 0.04 0.03 0.04 0.04
𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑) 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑) 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.06
𝐷𝐹

∗
𝑛,𝐻𝐴𝑅(𝑑) 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06

𝑛 = 500

𝑑 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
𝐷𝐹𝑛 0.05 0.10 0.18 0.27 0.34 0.40 0.45 0.49 0.53 0.56
𝐷𝐹𝑛,𝐻𝐴𝑅(𝑑) 0.15 0.11 0.07 0.03 0.02 0.03 0.03 0.04 0.04 0.05
𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑) 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
𝐷𝐹

∗
𝑛,𝐻𝐴𝑅(𝑑) 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05

the presence of error variance heterogeneity. Simulations, not reported here, were conducted to check size performance in these
tests for different forms of error variance function 𝑔(⋅). Overall, the finite sample performance was found to be comparable to that
based on the statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 for the homogeneous case where 𝜎2 is fixed — see Table 2 in the following section and Table 2 in
the Online Supplement.

7. Monte Carlo studies

This section reports the results of simulation experiments designed (i) to explore the size and power performance of the proposed
tests for the presence of explosive behavior in the data, and (ii) to study performance of the procedures for estimating the origination
and termination dates in finite samples. The reported results relate to the model with homogeneous error variance.14 Normalized
partial sums of 𝑢𝑡 = 𝛥−𝑑

+ 𝜖𝑡, with 𝜖𝑡
𝑖𝑖𝑑∼ (0, 1), were used to approximate the Type II fBM that appears in the limit theory.15 This

approximation allows us to simulate 𝐷𝐹∞, 𝐹𝑟,0 and 𝐹𝑟,𝑑 to obtain the critical values. The number of replications in all experiments
is 2500.

To investigate the empirical size of the tests we use the following DGP,
{

𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡, 𝑡 = 1,… , 𝑛

𝑢𝑡 = 𝛥−𝑑
+ 𝜖𝑡, 𝜖𝑡

𝑖𝑖𝑑∼  (0, 1)
, (39)

with parameter settings: 𝑑 ∈ {0, 0.05, 0.1,… , 0.45}, 𝑦0 = 0, and 𝑛 ∈ {100, 500}.
For each parameter setting right-tailed unit tests were conducted using the statistics 𝐷𝐹𝑛, 𝐷𝐹𝑛,𝐻𝐴𝑅 and 𝐷𝐹 𝑛,𝐻𝐴𝑅. For the

standard right-tailed test based on 𝐷𝐹𝑛, the null hypothesis is rejected when the statistic exceeds the 5% right-tail critical value of
he corresponding asymptotic distribution or bootstrap distribution.16 Critical values for 𝐷𝐹𝑛,𝐻𝐴𝑅 and 𝐷𝐹 𝑛,𝐻𝐴𝑅 were obtained via

simulations. The critical values of 𝐷𝐹𝑛,𝐻𝐴𝑅 were obtained from the simulated limit distribution (18) with the true value of 𝑑 being
eplaced by the ELW estimate 𝑑 (Shimotsu and Phillips, 2005). There are three critical values for our test statistic 𝐷𝐹 𝑛,𝐻𝐴𝑅. First, we
ssume 𝑑 is known and obtain the asymptotic (infeasible) critical value from 𝐹𝑟,𝑑 , which provides a benchmark for calibrating the
mpirical size of the feasible tests. Second, we obtain the feasible asymptotic critical values from 𝐹𝑟,𝑑 .17 Finally, we obtain critical
alues from the bootstrap approach. The fixed-b scale parameter 𝑏 = 0.05 was used for calculating 𝛺̂𝐻𝐴𝑅.18

Table 2 reports the empirical sizes of 𝐷𝐹𝑛, 𝐷𝐹𝑛,𝐻𝐴𝑅 and 𝐷𝐹 𝑛,𝐻𝐴𝑅 with the corresponding 5% critical values. For 𝐷𝐹 𝑛,𝐻𝐴𝑅,
e report the test sizes using critical values obtained from 𝐹𝑟,𝑑 (denoted 𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑)), 𝐹𝑟,𝑑 (denoted 𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑)), and the
ootstrap method (denoted 𝐷𝐹

∗
𝑛,𝐻𝐴𝑅(𝑑)). Several observations can be made on the findings from Table 2. First, 𝐷𝐹𝑛 has satisfactory

erformance only when 𝑑 = 0 and the test is oversized when 𝑑 > 0. For instance, when 𝑑 = 0.3 and 𝑛 = 500, the test rejects the null
bout 40% of the time. These simulation results are consistent with the asymptotic theory in Sowell (1990) and the predictions from
emma 3.1, which imply severe false detection of explosiveness as 𝑑 increases. Second, use of 𝐷𝐹𝑛,𝐻𝐴𝑅 does not lead to a divergent
mpirical size. But, when the true value of 𝑑 is equal to or close to zero, some size distortion in the feasible statistic 𝐷𝐹𝑛,𝐻𝐴𝑅(𝑑) is
oticeable. Finally and most importantly, use of the modified test 𝐷𝐹 𝑛,𝐻𝐴𝑅 shows good size performance irrespective of the value

14 As indicated earlier, similar findings were obtained in the heteroskedastic case with several variance functions. These findings are reported in the Online
upplement only to save space.
15 The sums 1

√

𝑛

∑

⌊𝑛𝑟⌋
𝑡=1 𝜖𝑡 and 1

𝑛1∕2+𝑑
∑

⌊𝑛𝑟⌋
𝑡=1 𝑢𝑡 are used to approximate 𝑊 (𝑟) and 𝑊 𝐻 (𝑟) with 𝑛 = 5000.

16 The critical values for 𝐷𝐹𝑛 were obtained from Table B.6 in Hamilton (1994).
17 We also estimate 𝑑 by the QMLE method of Hualde and Robinson (2011). The empirical sizes are similar to those based on the ELW method.
18 This value of 𝑏 was chosen because extensive simulations showed that for any 𝑏 > 0.05 the test delivered empirical size close to the nominal value. Notably,
owever, lower values of 𝑏 were found to yield higher power, as is known from other applications of fixed-b methods.
13
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Fig. 2. The empirical power of the 𝐷𝐹 𝑛,𝐻𝐴𝑅 test as a function of 𝛼 and 𝑑.

Table 3
The empirical rejection rates of 𝐷𝐹 𝑛,𝐻𝐴𝑅.

𝑑 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

𝛼 = 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
𝛼 = 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
𝛼 = 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
𝛼 = 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98
𝛼 = 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96
𝛼 = 0.85 0.32 0.35 0.37 0.39 0.40 0.41 0.40 0.37 0.34 0.30

of 𝑑 and alternative ways of obtaining the critical value. The simulation evidence suggests that 𝐷𝐹 𝑛,𝐻𝐴𝑅(𝑑) with critical values
obtained from 𝐹𝑟,𝑑 delivers overall good size performance in finite samples across all values of 𝑑.

Given its good size performance, the finite sample power properties of the 𝐷𝐹 𝑛,𝐻𝐴𝑅 test were explored next. The experiment was
designed using model (27) with the following parameter settings: 𝑛 = 100, 𝑦0 = 100, 𝑟𝑒 = 0.5, 𝑑1 = 𝑑2 = 𝑑 ∈ {0, 0.01, 0.02,… , 0.49},
𝜌𝑛 = 1 + 𝑐∕𝑛𝛼 , 𝑐 = 1, and 𝛼 ∈ {0.50, 0.55, 0.56,… , 1}, which corresponds to the autoregressive root 𝜌𝑛 ranged from 1.1 to 1.01.19

Table 3 reports the empirical rejection rates (empirical power) under selected values of 𝛼 and 𝑑. Fig. 2 plots power as a function
of 𝛼 and 𝑑. Several finding are notable. First, the smaller the value of 𝛼 the higher is the power. This is expected since stronger
explosiveness enhances detection. A sharp contrast can be observed when 𝑑 = 0.45 in which case the empirical rejection rate is
1 at 𝛼 = 0.50 whereas the rejection rate is 0.12 at 𝛼 = 1 for an LUR alternative. Second, when 𝛼 is small, variations in memory
parameter only have a small effect on the empirical rejection rates. It can be seen that for 𝛼 less than or equal to 0.7, different values
of 𝑑 only slightly change the empirical rejection rate, whereas different values of 𝑑 can materially change the empirical rejection
rate as 𝛼 moves closer to 1. These simulation findings show that our method is more reliable when 𝛼 ≤ 0.7, and less powerful as 𝛼
approaches unity. When 𝛼 = 1 the model is an LUR process, 𝐷𝐹 𝜏,𝐻𝐴𝑅 does not diverge, and the tests are not consistent. Similarly,
when 𝛼 approaches unity 𝑦𝑡 becomes close to an LUR process and, as expected, empirical power drops.20 Additional simulations for
the empirical rejection rates under various 𝑐 and 𝑛 are reported in the Online Supplement.

19 The initial condition 𝑦0 = 100 is used to ensure a positive sample path for the simulated data and produce an explosive episode that has an upward
trajectory. This choice matches the real data considered later.

20 In particular, when 𝛼 = 0.85, the detection rate drops from close to 100% to the 30%–40% range, as seen in Table 3.
14
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Table 4
Finite sample performance of 𝑟̂𝐻𝐴𝑅

𝑒 , 𝑟̂𝐻𝐴𝑅
𝑓 when 𝑟𝑒 = 0.5, 𝑟𝑓 = 0.7.

𝑑 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

𝛼 = 0.50
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90
𝑟̂𝐻𝐴𝑅
𝑒 0.50 0.51 0.51 0.51 0.51 0.51 0.52 0.52 0.53 0.53

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.04) (0.05)
𝑟̂𝐻𝐴𝑅
𝑓 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

𝛼 = 0.55
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.88
𝑟̂𝐻𝐴𝑅
𝑒 0.51 0.51 0.51 0.51 0.52 0.52 0.52 0.53 0.53 0.54

(0.01) (0.01) (0.02) (0.02) (0.02) (0.03) (0.04) (0.04) (0.05) (0.06)
𝑟̂𝐻𝐴𝑅
𝑓 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02)

𝛼 = 0.60
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.90 0.88 0.85
𝑟̂𝐻𝐴𝑅
𝑒 0.51 0.51 0.51 0.52 0.52 0.53 0.53 0.54 0.54 0.55

(0.01) (0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05) (0.06) (0.06)
𝑟̂𝐻𝐴𝑅
𝑓 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.02)

𝛼 = 0.65
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.90 0.88 0.85 0.82
𝑟̂𝐻𝐴𝑅
𝑒 0.51 0.52 0.52 0.52 0.53 0.53 0.54 0.55 0.55 0.56

(0.02) (0.02) (0.03) (0.03) (0.04) (0.05) (0.06) (0.07) (0.07) (0.08)
𝑟̂𝐻𝐴𝑅
𝑓 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.71 0.71

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)

𝛼 = 0.70
Detect. Rate 0.90 0.90 0.91 0.90 0.90 0.90 0.88 0.83 0.77 0.71
𝑟̂𝐻𝐴𝑅
𝑒 0.52 0.52 0.53 0.53 0.54 0.55 0.55 0.56 0.56 0.57

(0.02) (0.03) (0.04) (0.04) (0.05) (0.06) (0.07) (0.08) (0.08) (0.09)
𝑟̂𝐻𝐴𝑅
𝑓 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.701 0.71 0.71

(0.00) (0.00) (0.00) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.03)

To study the accuracy of the date detectors 𝑟̂𝐻𝐴𝑅
𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓 in finite samples, we used an experimental design based on model
29) with the following parameter settings: 𝑛 = 100, 𝑦0 = 100, 𝑐 = 1, 𝛼 ∈ {0.5, 0.55,… , 0.7, 0.85},21 𝑑1 = 𝑑2 = 𝑑 ∈ {0, 0.05, 0.1,… , 0.45},
𝜖𝑡

𝑖𝑖𝑑∼  (0, 1), 𝑦∗𝜏𝑓 = 𝑦𝜏𝑒 , 𝑟𝑒 = 0.5, 𝑟𝑓 = 0.7, 𝑟0 = 0.4, and 𝛾 ln(𝑛)∕𝑛 = 0.1. To obtain 𝑟̂𝐻𝐴𝑅
𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓 , we first calculate {𝐷𝐹 𝜏,𝐻𝐴𝑅}𝑛𝜏=⌊𝑛𝑟0⌋
nd then obtain {𝑑𝜏}𝑛𝜏=𝜏0 using ELW estimation based on

{

𝑦𝑡
}𝜏
𝑡=1. The following critical values for 𝑐𝑣𝑛,𝐻𝐴𝑅 are employed

𝑐𝑣𝑛,𝐻𝐴𝑅 = 𝑐𝑣0.03𝑛,𝐻𝐴𝑅
(

𝑑𝜏
)

+
ln(ln(𝑛𝑟))

100
, (40)

where 𝑛𝑟 is proportional to the sample size 𝑛 and 𝑟 ∈ (0, 1] is the corresponding fraction of the sample. These critical values are
constructed using the 3% critical value of 𝐷𝐹 𝑛,𝐻𝐴𝑅 under 𝑑𝜏 augmented with the slowly diverging factor ln(ln(𝑛𝑟))

100 .22 This factor
uarantees that 𝑐𝑣𝑛,𝐻𝐴𝑅 satisfies condition (32) asymptotically, leading to consistent break point estimates 𝑟̂𝐻𝐴𝑅

𝑒 and 𝑟̂𝐻𝐴𝑅
𝑓 . However,

n our finite sample setting ln(ln(𝑛𝑟))
100 takes values between 0.01 and 0.015 and 𝑐𝑣0.03𝑛,𝐻𝐴𝑅

(

𝑑𝜏
)

has a greater magnitude than ln(ln(𝑛𝑟))
100 .

Table 4 reports the successful detection rate and the means of 𝑟̂𝐻𝐴𝑅
𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓 where successful detection is obtained. The numbers
n parentheses below the means are the root mean square errors of the estimates. Successful detection is defined whenever 𝑟̂𝐻𝐴𝑅

𝑒
alls into the interval

[

𝑟𝑒, 𝑟𝑓
]

(i.e. 𝑟̂𝐻𝐴𝑅
𝑒 ∈

[

𝑟𝑒, 𝑟𝑓
]

). Several findings emerge from this simulation. First, when 𝛼 is small, the successful
etection rate is only slightly affected by changes in the memory parameter: the successful detection rate in Table 4 drops only by
.01 when 𝛼 = 0.50 and 𝑑 increases from 0 to 0.45, whereas it drops by 0.19 when 𝛼 = 0.70. Further, the estimates of 𝑟̂𝐻𝐴𝑅

𝑒 and
𝑟̂𝐻𝐴𝑅
𝑓 are less accurate when both 𝛼 and 𝑑 are large: the root mean square errors of 𝑟̂𝐻𝐴𝑅

𝑒 and 𝑟̂𝐻𝐴𝑅
𝑓 are 0.09 and 0.03 respectively

hen 𝑑 = 0.45 and 𝛼 = 0.70, in contrast to the corresponding root mean square errors of 0.01 and 0.00 when 𝑑 = 0 and 𝛼 = 0.50.

. Empirical application

To highlight the usefulness of the proposed test and date-stamping strategy we conduct an empirical study using the same time
eries as in Table 1. We calculate the 𝐷𝐹 𝑛,𝐻𝐴𝑅 statistic and use 10%, 5% and 1% critical values when performing the right-tailed

21 The main simulation results cover the domain 𝛼 ≤ 0.7; and, as remarked above, for values of 𝛼 closer to unity such as 𝛼 = 0.85, sample paths of 𝑦𝑡 become
loser to those of an LUR process and successful detection rates (defined below) fall and can be significantly lower than 50% as apparent in the final row of
able 3. Estimates of the break points 𝑟𝑒 and 𝑟𝑓 are also inaccurate when 𝛼 moves closer to unity.
22 The 3% critical value is adopted here as extensive simulations suggest that it yields a higher successful detection rate (defined below) than the 5% critical
15

alue in most cases.
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Table 5
Empirical results for the S&P 500 with 𝐷𝐹 𝑛,𝐻𝐴𝑅 and critical values.

Sampling period 𝑑 𝐷𝐹 𝑛,𝐻𝐴𝑅 𝑐𝑣10%𝐻𝐴𝑅

(

𝑑
)

𝑐𝑣5%𝐻𝐴𝑅

(

𝑑
)

𝑐𝑣1%𝐻𝐴𝑅

(

𝑑
)

(a) Jan 1872 to Feb 1880 0.24 1.25 0.70 0.92 1.30
(b) Jun 1882 to May 1887 0.32 0.62 0.76 0.97 1.36
(c) May 1940 to Feb 1946 0.34 0.89 0.77 0.98 1.38
(d) Jun 1948 to Nov 1955 0.29 1.54 0.74 0.94 1.33
(e) May 1979 to Mar 1987 0.21 1.28 0.67 0.90 1.26
(f) May 1989 to Aug 1997 0.24 1.18 0.70 0.92 1.30

Table 6
Empirical results for bubble origination and termination (𝑟̂𝐻𝐴𝑅

𝑒 , 𝑟̂𝐻𝐴𝑅
𝑓 ).

Sampling period 𝑟̂𝐻𝐴𝑅
𝑒 𝑟̂𝐻𝐴𝑅

𝑓 Duration

(a) Jan 1872 to May 1880 Oct 1879 Apr 1880 6 months
(d) Jun 1948 to Feb 1957 Dec 1954 Feb 1956 14 months
(e) May 1979 to Jan 1988 Feb 1987 Sep 1987 7 months
(f) May 1989 to Jan 1998 Feb 1997 Nov 1997 9 months

unit root test. Since these data are price–dividend ratios which take account of fundamental values, explosive behavior in the time
series is indicative of a rational bubble.

Table 5 reports the HAR test statistic 𝐷𝐹 𝑛,𝐻𝐴𝑅 together with 10%, 5%, and 1% critical values computed for the six different
sample periods. In Table 1 it was found that standard testing using the 𝐷𝐹𝑛 statistic exceeded the 5% critical value for each sample
period, indicating strong evidence for the presence of bubbles. Table 5 updates the analysis by using the new HAR statistic to allow
for the possible presence of strong dependence in the data. The results show that for the sample period (b) the test fails to reject
a unit root null at the 10% level; for period (c) the test rejects the null at the 10% level but fails to reject a unit root null at the
5% level; and for periods (a), (d), (e) and (f), the test rejects the null at the 5% level. Thus, using the conventional 5% level the
four periods (a), (d), (e) and (f) show significant evidence of being bubble episodes in the S&P stock market. Taking into account
the findings for the other periods, it is clear that allowing for the presence of strong dependence does change the outcomes, giving
statistical evidence only for the existence of explosive behavior in periods (a), (d), (e) and (f). However, these results continue to
support the presence of stock market bubble behavior, including the internet bubble of the late 1990s even in the presence of strong
dependence.

The bubble dating methodology was used to estimate the origination and termination dates 𝑟𝑒 and 𝑟𝑓 in sample periods (a), (d),
(e) and (f) where bubble behavior was evident in the data. For this implementation 48 monthly observations were used to initialize
estimation, the minimum explosive episode duration was 4 months, and the statistic 𝐷𝐹 𝜏,𝐻𝐴𝑅 and critical value 𝑐𝑣3%𝑛,𝐻𝐴𝑅

(

𝑑𝜏
)

were
computed recursively, as in Phillips et al. (2015a).

Table 6 reports the estimates 𝑟̂𝐻𝐴𝑅
𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓 and associated bubble duration (in months) for episodes (a), (d), (e) and (f). The
following conclusions can be drawn from these results. First, in episode (a) a rational bubble is found to originate in October 1879
and collapse in April 1880, lasting six months. Second, in episode (d), the bubble lasts for fourteen months from December 1954
to February 1956. Third, in episode (e), the explosive period begins in February 1987 and ends in September 1987, lasting seven
months. Finally, in episode (f), the bubble starts in February 1997 and ends in November 1997, lasting night months.

These findings coincide with those of Phillips et al. (2015a) in rational bubble identification. In particular, the explosive episodes
in the Great Depression, postwar boom, before Black Monday, and the dotcom bubble period are also found using our estimation
method. However, while explosive behavior is detected using our methods, the episode durations are often shorter than those
obtained by Phillips et al. (2015a). In Phillips et al. (2015a) the explosive episodes in the Great Depression, postwar boom, Black
Monday, and dotcom bubble periods were estimated to last for 18 months, 15 months, 15 months and 87 months, respectively.
The explosive episodes identified by our method last for 6 months, 14 months, 7 months and 9 months, respectively. The presence
of strong dependence in the data therefore does affect bubble duration. Nonetheless, the most striking overall result is that the
empirical findings in Phillips et al. (2015a) of several major bubble episodes in the historical S&P 500 data are sustained using
methods that are robust to data dependence, including possible long memory in the data.

9. Conclusion

This paper introduces a new right-tailed test and new dating algorithm to detect the presence of explosive episodes in time
series data. The approach is motivated by showing empirical evidence of strong dependence in the errors of the autoregressive
model employed for estimation and inference. Strongly dependent errors lead to divergent unit root test statistics, thereby leading
to potential spurious detection of explosive behavior in traditional right-tailed unit root test statistics. To avert problems of
spurious detection, this paper proposes a robust approach to inference using an appropriately self-normalized HAR statistic that
accommodates potential strong dependence in the errors. Recursive implementation of this procedure enables consistent estimation
of the origination and termination dates of explosive episodes in the data. The proposed test and asymptotics are extended to models
16

with unconditional heteroskedasticity, thereby accommodating features that are known to be relevant in practice, particularly in
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financial data. Simulations show reliable finite sample performances of the new method in terms of both size and power. An empirical
application corroborates the robustness of earlier findings on certain bubble episodes in historical S&P 500 data but leads typically
to shorter duration periods of financial exuberance.

This paper has not addressed the complex additional issue of possible multiple bubble episodes in the same time series sample.
owever, the procedures developed here can be extended to allow for such multiple periods and break points in the data in precisely

he same way as Phillips et al. (2015a) and Phillips et al. (2015b). This extension simply involves replacing the use of the 𝐷𝐹𝜏 statistic
by 𝐷𝐹 𝜏,𝐻𝐴𝑅 in the PSY algorithm and imposing the conditions used here for consistency in the presence of strong dependence. We
expect that when modified in this way the algorithm will retain validity for multiple bubble detection using the robust statistic
𝐷𝐹 𝜏,𝐻𝐴𝑅. This investigation is left for future study.

Appendix A

The main results rely on several lemmas which are given, with proofs, in the Online Supplement.

A.1. Proofs of Theorem 3.1 and Theorem 3.2

Write

𝐷𝐹𝜏,𝐻𝐴𝑅 =
𝜌̂𝜏 − 1
𝑠𝜏,𝐻𝐴𝑅

=
𝜏
(

𝜌̂𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2
, (41)

𝐷𝐹 𝜏,𝐻𝐴𝑅 =
𝜏
(

𝜌̃𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2
. (42)

and to show the limit we first study the denominator in (41) and (42). Note that 𝑠2𝜏,𝐻𝐴𝑅 = 𝛺̂𝐻𝐴𝑅
∑𝜏

𝑡=1 𝑦̄
2
𝑡−1

. For 𝛺̂𝐻𝐴𝑅, letting 𝐾𝑖,𝑗 = 𝐾
(

𝑖−𝑗
𝑏𝜏

)

and 𝑆𝑡 =
∑𝑡

𝑖=1 𝛥𝑦𝑖, we have

𝛺̂𝐻𝐴𝑅 =
𝜏
∑

𝑗=−𝜏+1
𝐾

(

𝑗
𝑏𝜏

)

𝛾̂𝑗 =
1
𝜏

𝜏
∑

𝑖=1

𝜏
∑

𝑖=1
𝛥𝑦𝑖𝐾𝑖,𝑗𝛥𝑦𝑗

= 1
𝜏

𝜏−1
∑

𝑖=1

1
𝜏

𝜏−1
∑

𝑗=1
𝜏2

[

(𝐾𝑖,𝑗 −𝐾𝑖,𝑗+1) − (𝐾𝑖+1,𝑗 −𝐾𝑖+1,𝑗+1)
] 1
√

𝜏
𝑆̂𝑖

1
√

𝜏
𝑆̂𝑗

= 1
𝜏

𝜏−1
∑

𝑖=1

1
𝜏

𝜏−1
∑

𝑗=1
𝜏2𝐷𝜏

(

𝑖 − 𝑗
𝑏𝜏

)

1
√

𝜏
𝑆𝑖

1
√

𝜏
𝑆𝑗 , (43)

where 𝐷𝜏

(

𝑖−𝑗
𝑏𝜏

)

= (𝐾𝑖,𝑗 −𝐾𝑖,𝑗+1) − (𝐾𝑖+1,𝑗 −𝐾𝑖+1,𝑗+1). The last equality follows from Equation (A.1) in Kiefer and Vogelsang (2002b).
Straightforward calculations show that

𝐷𝜏

(

𝑖 − 𝑗
𝑏𝜏

)

=

⎧

⎪

⎨

⎪

⎩

2
𝑏𝜏 if |𝑖 − 𝑗| = 0
− 1

𝑏𝜏 if |𝑖 − 𝑗| = ⌊𝑏𝜏⌋
0 otherwise,

hich implies

𝛺̂𝐻𝐴𝑅 =
𝜏−1
∑

𝑖=1

𝜏−1
∑

𝑗=1
𝐷𝜏

(

𝑖 − 𝑗
𝑏𝜏

)

1
√

𝜏
𝑆𝑖

1
√

𝜏
𝑆𝑗

= 2
𝑏𝜏

𝜏−1
∑

𝑖=1

(

1
√

𝜏
𝑆𝑖

)2

− 2
𝑏𝜏

𝜏−⌊𝑏𝜏⌋−1
∑

𝑖=1

(

1
√

𝜏
𝑆𝑖

)(

1
√

𝜏
𝑆𝑖+⌊𝑏𝜏⌋

)

= 2
𝑏

𝑛
⌊𝑛𝑟⌋

1
𝑛

𝜏−1
∑

𝑖=1

(

1
√

𝜏
𝑆𝑖

)2

− 2
𝑏

𝑛
⌊𝑛𝑟⌋

1
𝑛

𝜏−⌊𝑏𝜏⌋−1
∑

𝑖=1

(

1
√

𝜏
𝑆𝑖

)(

1
√

𝜏
𝑆𝑖+⌊𝑏𝜏⌋

)

. (44)

Thus, with 𝑖 = ⌊𝑛𝑝⌋ and under the assumption 𝜌𝑛 = 1, we have 𝑆𝑖 =
∑𝑖

𝑗=1 𝛥𝑦𝑗 =
∑

⌊𝑛𝑝⌋
𝑗=1 𝑢𝑗 . This implies that

1
𝑛𝑑

1
√

𝜏
𝑆
⌊𝑛𝑝⌋ =

( 𝑛
𝜏

)1∕2 1
𝑛1∕2+𝑑

⌊𝑛𝑝⌋
∑

𝑡=1
𝑢𝑖 ⇒

𝜎
𝑟1∕2

𝑊 𝐻 (𝑝). (45)

herefore

1
2𝑑

𝛺̂𝐻𝐴𝐶 = 2𝑛 1
𝜏−1
∑

(

1
𝑑

1
√

𝑆
⌊𝑛𝑝⌋

)2

− 2𝑛 1
𝜏−⌊𝑏𝜏⌋−1
∑

(

1
𝑑

1
√

𝑆𝑖

)(

1
𝑑

1
√

𝑆𝑖+⌊𝑏𝜏⌋

)
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⇒
2
𝑏𝑟 ∫

𝑟

0

(

𝜎
𝑟1∕2

𝑊 𝐻 (𝑝)
)2

𝑑𝑝 − 2
𝑏𝑟 ∫

(1−𝑏)𝑟

0

𝜎2

𝑟
𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝 (46)

= 2𝜎2

𝑏𝑟2

(

∫

𝑟

0

(

𝑊 𝐻 (𝑝)
)2 𝑑𝑝 − ∫

(1−𝑏)𝑟

0
𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝

)

, (47)

where we have applied (45) and continuous mapping to obtain the limit (46).
Combining (A.1.3) in the Online Supplement and (46), upon normalization we have

𝜏2𝑠2𝜏,𝐻𝐴𝑅 =
( 𝜏
𝑛

)2
1
𝑛2𝑑

𝛺̂𝐻𝐴𝑅

1
𝑛2+2𝑑

(

∑𝜏
𝑡=1 𝑦

2
𝑡−1 − 𝜏−1

(
∑𝜏

𝑡=1 𝑦𝑡−1
)2
)

⇒
2
(

∫ 𝑟
0 𝑊 𝐻 (𝑝)2𝑑𝑝 − ∫ (1−𝑏)𝑟

0 𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝
)

𝑏 ∫ 𝑟
0
(

𝑊̃ 𝐻 (𝑠)
)2 𝑑𝑠

. (48)

We now proceed to obtain the limit of 𝐷𝐹𝜏,𝐻𝐴𝑅. When 𝑑 = 0, we have

𝐷𝐹𝜏,𝐻𝐴𝑅 =
𝜏
(

𝜌̂𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2
=

⌊𝑛𝑟⌋
𝑛𝑟

𝑟
𝑛
(

𝜌̂𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2

⇒
𝑟 ∫ 𝑟

0 𝑊̃ (𝑠)𝑑𝑊 (𝑠)

∫ 𝑟
0
(

𝑊̃ (𝑠)
)2 𝑑𝑠

⎛

⎜

⎜

⎜

⎝

𝑏 ∫ 𝑟
0 𝑊̃ (𝑠)2𝑑𝑠

2
(

∫ 𝑟
0 (𝑊 (𝑝))2 𝑑𝑝 − ∫ (1−𝑏)𝑟

0 𝑊 (𝑝)𝑊 (𝑝 + 𝑏𝑟)𝑑𝑝
)

⎞

⎟

⎟

⎟

⎠

1∕2

=
𝑏1∕2𝑟 ∫ 𝑟

0 𝑊̃ (𝑠)𝑑𝑊 (𝑠)
[

2 ∫ 𝑟
0
(

𝑊̃ (𝑠)
)2 𝑑𝑠

(

∫ 𝑟
0 (𝑊 (𝑝))2 𝑑𝑝 − ∫ (1−𝑏)𝑟

0 𝑊 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝
)]1∕2

,

where the standard result 𝑛
(

𝜌̂𝜏 − 1
)

⇒ ∫ 𝑟
0 𝑊̃ (𝑠)𝑑𝑊 (𝑠)∕ ∫ 𝑟

0
(

𝑊̃ (𝑠)
)2 𝑑𝑠 and (48) are used with 𝐻 = 1∕2.

For 𝑑 ∈ (0, 0.5), similarly write

𝐷𝐹𝜏,𝐻𝐴𝑅 =
𝜏
(

𝜌̂𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2

⇒

𝑟
2

(

𝑊 𝐻 (𝑟)
)2 −

(

∫ 𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠

)

𝑊 𝐻 (𝑟)

∫ 𝑟
0
(

𝑊̃ 𝐻 (𝑠)
)2 𝑑𝑠

⎛

⎜

⎜

⎜

⎝

𝑏 ∫ 𝑟
0 𝑊̃ 𝐻 (𝑠)2𝑑𝑠

2
(

∫ 𝑟
0
(

𝑊 𝐻 (𝑝)
)2 𝑑𝑝 − ∫ (1−𝑏)𝑟

0 𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝
)

⎞

⎟

⎟

⎟

⎠

1∕2

=
𝑟𝑏1∕2

2

(

𝑊 𝐻 (𝑟)
)2 − 𝑏1∕2

(

∫ 𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠

)

𝑊 𝐻 (𝑟)
[

2 ∫ 𝑟
0
(

𝑊̃ 𝐻 (𝑠)
)2 𝑑𝑠

(

∫ 𝑟
0
(

𝑊 𝐻 (𝑝)
)2 𝑑𝑝 − ∫ (1−𝑏)𝑟

0 𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝
)]1∕2

, (49)

here the limit is obtained using (A.1.5) in the Online Supplement and (48).
For 𝐷𝐹 𝜏,𝐻𝐴𝑅, using (A.1.6) in the Online Supplement and (48), we have

𝐷𝐹 𝜏,𝐻𝐴𝑅 =
𝜏
(

𝜌̃𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2

⇒

𝑟𝑏1∕2

2

(

𝑊 𝐻 (𝑟)
)2 − 𝑏1∕2

(

∫ 𝑟
0 𝑊 𝐻 (𝑠)𝑑𝑠

)

𝑊 𝐻 (𝑟)
[

2 ∫ 𝑟
0
(

𝑊̃ 𝐻 (𝑠)
)2 𝑑𝑠

(

∫ 𝑟
0 𝑊 𝐻 (𝑝)2𝑑𝑝 − ∫ (1−𝑏)𝑟

0 𝑊 𝐻 (𝑝)𝑊 𝐻 (𝑝 + 𝑏𝑟)𝑑𝑝
)]1∕2

,

hich completes the proof of Theorems 3.1 and 3.2. ■

.2. Proof of Theorem 3.3

In this proof, random sequences are assumed to belong to an expanded common probability space in which a weakly convergent
equence can be represented by a sequence that converges almost surely via the Skorohod representation (see, e.g. Pollard (1984)).

We first show that the bootstrap residuals fall into the class of 𝑟(𝐾,𝑀, 𝜃) in Lemma 1.4 of the Online Supplement and verify
the three conditions in the lemma. The first condition is satisfied because the residuals are centered. For the third condition, note
that

1+𝑑 1+𝑑
18

𝑒𝑛,𝑡 = 𝛥+ 𝑦𝑡 = 𝛥+ 𝑦𝑡 + 𝑅𝑛 = 𝜀𝑡 + 𝑅𝑛,
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where 𝑅𝑛 = 𝑂𝑝(𝑚−1 log 𝑛), and the second equality is established from Lemma 1.3 in the Online Supplement. Further,

1
𝑛

𝑛
∑

𝑡=1
|𝑒𝑛,𝑡|

𝑟 = 1
𝑛

𝑛
∑

𝑡=1
|𝜀𝑡 + 𝑅𝑛|

𝑟 ≤ 𝐶𝑟
1
𝑛

𝑛
∑

𝑡=1
|𝜀𝑡|

𝑟 + 𝐶𝑟
1
𝑛

𝑛
∑

𝑡=1
|𝑅𝑛|

𝑟. (50)

Note that the first term 1
𝑛
∑𝑛

𝑡=1 |𝜀𝑡|
𝑟 is bounded almost surely by virtue of the strong law of large numbers, and with Lemma 1.3 in

the Online Supplement, the second term converges almost surely to zero via the Skorohod representation theorem. This verifies the
third condition in Lemma 1.4 in the Online Supplement.

For the second condition, since 𝑒𝑛,𝑡 ≡
1
𝑛
∑𝑛

𝑡=1 𝑒𝑛,𝑡
𝑎𝑠
→ 0 and 𝜎̂2𝑒 ≡ 1

𝑛
∑𝑛

𝑡=1(𝜀𝑡 + 𝑅𝑛)2
𝑎𝑠
→ 𝜎2, therefore

1
𝑛

𝑛
∑

𝑡=1
𝑒∗𝑛,𝑡

2 − 1 = 1
𝑛

𝑛
∑

𝑡=1

( 𝑒𝑛,𝑡 − 𝑒𝑛,𝑡
𝜎̂𝑒

)2
− 1 = 1

𝜎̂2𝑒

(

1
𝑛

𝑛
∑

𝑡=1

(

𝑒2𝑛,𝑡 − 2𝑒𝑛,𝑡𝑒𝑛,𝑡 + 𝑒2𝑛,𝑡
)

)

− 1

= 1
𝜎̂2𝑒

(

1
𝑛

𝑛
∑

𝑡=1
𝑒2𝑛,𝑡 − 2𝑒𝑛,𝑡

1
𝑛

𝑛
∑

𝑡=1
𝑒𝑛,𝑡 + 𝑒2𝑛,𝑡

)

− 1
𝑎𝑠
→ 1 − 1 = 0.

iven that E[|𝜀𝑡|2+𝛿] < ∞, the sample variance estimator has a non-trivial convergence rate. Therefore, there exist a positive 𝜃 which
allows us to verify the second condition and apply the approximation in (A.1.8) of the Online Supplement.

Note that 𝑦∗𝑡 = 𝑦∗𝑡−1 + 𝑢∗𝑡 with 𝑢∗𝑡 = 𝛥−𝑑
+ 𝑒∗𝑛,𝑡 and so 𝑦∗𝑡 = 𝛥−(1+𝑑)

+ 𝑒∗𝑛,𝑡. Let 𝜋𝑑
𝑗 = 𝛤 (𝑗−𝑑)

𝛤 (𝑗+1)𝛤 (−𝑑) and applying a similar argument to (A.1.7)
in the Online Supplement we have

𝑦∗𝑡 = 𝜎̂𝑒𝛥
−(1+𝑑)
+ 𝑒∗𝑛,𝑡 = 𝜎̂𝑒𝛥

−(1+𝑑)
+ 𝑒∗𝑛,𝑡 + 𝑂𝑝(𝑚−1)

= 𝜎̂𝑒𝛥
−𝑑𝑦
+ 𝑒∗𝑛,𝑡 + 𝑂𝑝(𝑚−1) = 𝜎̂𝑒

𝑡
∑

𝑗=1
𝜋
𝑑𝑦
𝑡−𝑗𝑒

∗
𝑛,𝑗 + 𝑂𝑝(𝑚−1).

Set 𝜙 = ⌊𝑛𝑟⌋, 𝑆∗
𝑗 =

∑𝑗
𝑡=1 𝑒

∗
𝑛,𝑡, 𝑌 ∗

⌊𝑛𝑟⌋ = 𝑛1∕2−𝑑𝑦𝑦∗
⌊𝑛𝑟⌋ and write

𝑌 ∗
⌊𝑛𝑟⌋ = 𝑛1∕2−𝑑𝑦 𝜎̂𝑒

⌊𝑛𝑟⌋
∑

𝑗=1
𝜋
𝑑𝑦
𝑡−𝑗𝑒

∗
𝑛,𝑗 + 𝑜𝑝(1) = 𝑛1∕2−𝑑𝑦 𝜎̂𝑒

𝜙
∑

𝑗=1
𝜋
𝑑𝑦
𝑡−𝑗

(

𝑆∗
𝑗 − 𝑆∗

𝑗−1

)

+ 𝑜𝑝(1).

ollowing Silveira (1991), letting 𝑉𝑗 =
∑𝑗

𝑖=1 𝑧𝑖 and 𝑧𝑡
𝑖𝑖𝑑∼  (0, 1), we have

𝑌 ∗
𝑛 (𝑟) = 𝑄1𝑛(𝑟) +𝑄2𝑛(𝑟) +𝑄3𝑛(𝑟) +𝑄4𝑛(𝑟) + 𝑜𝑝(1),

here

𝑄1𝑛(𝑟) = 𝜎̂𝑒

(

𝑛1∕2−𝑑𝑦
𝜙−1
∑

𝑗=1

(𝜙 − 𝑗)𝑑𝑦−1

𝛤 (𝑑𝑦)
(

𝑉𝑗 − 𝑉𝑗−1
)

)

,

𝑄2𝑛(𝑟) = 𝜎̂𝑒𝑛
1∕2−𝑑𝑦

𝜙−1
∑

𝑗=1
𝜋
𝑑𝑦
𝜙−𝑗

[(

𝑆∗
𝑗 − 𝑆∗

𝑗−1

)

−
(

𝑉𝑗 − 𝑉𝑗−1
)

]

,

𝑄3𝑛(𝑟) = 𝜎̂𝑒𝑛
1∕2−𝑑𝑦

𝜙−1
∑

𝑗=1

(

𝜋
𝑑𝑦
𝜙−𝑗 −

(𝜙 − 𝑗)𝑑𝑦−1

𝛤 (𝑑𝑦)

)

(

𝑉𝑗 − 𝑉𝑗−1
)

,

𝑄4𝑛(𝑟) = 𝜎̂𝑒𝑛
1∕2−𝑑𝑦

(

𝑆∗
𝜙 − 𝑆∗

𝜙−1

)

.

ilveira (1991) shows that

𝑛1∕2−𝑑𝑦
𝜙−1
∑

𝑗=1

(𝜙 − 𝑗)𝑑𝑦−1

𝛤 (𝑑𝑦)
(

𝑉𝑗 − 𝑉𝑗−1
)

⇒ 𝑊 𝐻 (𝑟),

𝑛1∕2−𝑑𝑦
𝜙−1
∑

𝑗=1

(

𝜋
𝑑𝑦
𝜙−𝑗 −

(𝜙 − 𝑗)𝑑𝑦−1

𝛤 (𝑑𝑦)

)

(

𝑉𝑗 − 𝑉𝑗−1
) 𝑝
→ 0.

e can also show 𝑄4𝑛(𝑟) = 𝑜𝑝(1) by applying Donsker’s theorem for martingale difference arrays (MDAs) as in Theorem 27.14
f Davidson (1994). Coupled with 𝜎̂𝑒

𝑝
→ 𝜎, we find that 𝑄1𝑛(𝑟) ⇒ 𝜎𝑊 𝐻 (𝑟), 𝑄3𝑛(𝑟) = 𝑜𝑝(1), and 𝑄4𝑛(𝑟) = 𝑜𝑝(1).

To show 𝑄2𝑛(𝑟) = 𝑜𝑝(1), note that

sup
𝑟

|𝑄2𝑛(𝑟)| ≤ 𝜎̂𝑒 sup
𝑟

𝜙−1
∑

𝑗=1
|𝜋

𝑑𝑦−1
𝜙−𝑗 | sup

𝑗≤𝑛
𝑛1∕2−𝑑𝑦 ||

|

𝑆𝑗 − 𝑉𝑗
|

|

|

= 𝜎̂𝑒
1
𝑛𝑑

sup
𝑟

𝜙−1
∑

𝑗=1
|𝜋

𝑑𝑦−1
𝜙−𝑗 | sup

𝑗≤𝑛

|

|

|

|

|

𝑆𝑗 − 𝑉𝑗
𝑛1∕2

|

|

|

|

|

≤ 𝐶𝜎̂𝑒
1
𝑛𝑑

𝑛−1
∑

𝑗=1
(𝑛 − 𝑗)𝑑𝑦−2 sup

𝑗≤𝑛

|

|

|

|

|

𝑆𝑗 − 𝑉𝑗
𝑛1∕2

|

|

|

|

|

= 𝐶𝜎̂𝑒
1
𝑛𝑑

𝑛−1
∑

𝑗𝑑𝑦−2 × 𝑂𝑝(𝑛−𝛿), (51)
19

𝑗=1
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where 𝐶 is a constant and 𝑆𝑗 =
∑𝑗

𝑡=1 𝑒𝑡 with 𝑒𝑡 ∼𝑖.𝑖.𝑑.  (0, 1). Note that sup𝑟
∑𝜙−1

𝑗=1 |𝜋
𝑑𝑦−1
𝜙−𝑗 | ≤

∑𝑛−1
𝑗=1(𝑛 − 𝑗)𝑑𝑦−2 is obtained by applying

Lemma 3-A-2 in Silveira (1991) and the last equality is due to Lemma 1.4 in the Online Supplement.
If 𝑑 = 0, ∑𝑛−1

𝑗=1 𝑗
𝑑𝑦−2 =

∑𝑛−1
𝑗=1

1
𝑗 diverges at the log 𝑛 rate and is dominated by 𝑂𝑝(𝑛−𝛿). If 𝑑 > 0, ∑𝑛−1

𝑗=1 𝑗
𝑑𝑦−2 diverges at the 𝑛𝑑 rate

nd this divergence is neutralized by the factor 1
𝑛𝑑 , so that the whole term in (51) is of order 𝑂𝑝(𝑛−𝛿) in this case. We deduce that

𝑄2𝑛(𝑟) = 𝑜𝑝(1) and 1
𝑛1∕2+𝑑

𝑦∗
⌊𝑛𝑟⌋ ⇒ 𝜎𝑊 𝐻 (𝑟). Then by repeated applications of the continuous mapping theorem (CMT) and analysis

analogous to Lemma 1.2 in the Online Supplement and Theorem 3.2, we obtain 𝐷𝐹 𝜏,𝐻𝐴𝑅 ⇒ 𝐹𝑟,𝑑 .
This result implies that the CDF of 𝐷𝐹 𝑛,𝐻𝐴𝑅 converges to the CDF of 𝐹1,𝑑 uniformly in probability. Therefore, 𝑝∗(𝐷𝐹 𝑛,𝐻𝐴𝑅) ⇒

𝑈 [0, 1]under the null hypothesis and the proof of Theorem 3.3 is completed. ■

.3. Proof of Theorem 4.1

From (44)

𝛺̂𝐻𝐴𝑅 = 2
𝑏

𝑛
⌊𝑛𝑟⌋

1
𝑛

𝜏−1
∑

𝑖=1

(

1
√

𝜏
𝑆𝑖

)2

− 2
𝑏

𝑛
⌊𝑛𝑟⌋

1
𝑛

𝜏−⌊𝑏𝜏⌋−1
∑

𝑖=1

(

1
√

𝜏
𝑆𝑖

)(

1
√

𝜏
𝑆𝑖+⌊𝑏𝜏⌋

)

, (52)

where 𝑆
⌊𝑛𝑝⌋ =

∑

⌊𝑛𝑝⌋
𝑖=1 𝛥𝑦𝑖. Write the partial sum 𝑆

⌊𝑛𝑝⌋ =
∑

⌊𝑛𝑝⌋
𝑖=1 𝛥𝑦𝑖 as

𝑆
⌊𝑛𝑝⌋ =

𝜏𝑒−1
∑

𝑖=1
𝛥𝑦𝑖 +

⌊𝑛𝑝⌋
∑

𝑖=𝜏𝑒

𝛥𝑦𝑖 =
𝜏𝑒−1
∑

𝑖=1
𝑢𝑖 +

𝑐
𝑛

⌊𝑛𝑝⌋
∑

𝑖=𝜏𝑒

𝑦𝑖−1 +
⌊𝑛𝑝⌋
∑

𝑖=𝜏𝑒

𝑢𝑖

=
⌊𝑛𝑝⌋
∑

𝑖=1
𝑢𝑖 +

𝑐
𝑛

⌊𝑛𝑝⌋
∑

𝑖=1
𝑦𝑖−1 −

𝑐
𝑛

𝜏𝑒−1
∑

𝑖=1
𝑦𝑖−1.

pon normalization, we have

1
𝑛1∕2+𝑑

𝑆̂
⌊𝑛𝑝⌋ = 1

𝑛1∕2+𝑑

⌊𝑛𝑝⌋
∑

𝑖=1
𝑢𝑖 +

𝑐
𝑛3∕2+𝑑

⌊𝑛𝑝⌋
∑

𝑖=1
𝑦𝑖−1 −

𝑐
𝑛3∕2+𝑑

𝜏𝑒−1
∑

𝑖=1
𝑦𝑖−1

⇒ 𝜎
(

𝑊 𝐻 (𝑝) + 𝑐𝐴𝑝,𝑑 − ∫

𝑟𝑒

0
𝑊 𝐻 (𝑝)𝑑𝑝

)

∶= 𝜎𝐺𝑟𝑒 ,𝑐 (𝑝). (53)

Thus, combining (52) and (53), as 𝑛 → ∞,

1
𝑛2𝑑

𝛺̂𝐻𝐴𝑅 ⇒
2𝜎2

𝑏𝑟2

(

∫

𝑟

0
𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝)

2𝑑𝑝 − ∫

(1−𝑏)𝑟

0
𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝)𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝 + 𝑏𝑟)𝑑𝑝

)

.

With Lemma 1.5 in the Online Supplement,

𝜏2𝑠2𝜏,𝐻𝐴𝑅 =
( 𝜏
𝑛

)2
1
𝑛2𝑑

𝛺̂𝐻𝐴𝑅

1
𝑛2+2𝑑

(

∑𝜏
𝑡=1 𝑦

2
𝑡−1 − 𝜏−1

(
∑𝜏

𝑡=1 𝑦𝑡−1
)2
)

⇒

2
𝑏

(

∫ 𝑟
0 𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝)

2𝑑𝑝 − ∫ (1−𝑏)𝑟
0 𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝)𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝 + 𝑏𝑟)𝑑𝑝

)

𝐵𝑟,𝑑 − 1
𝑟𝐴

2
𝑟,𝑑

. (54)

Hence,

𝐷𝐹 𝜏,𝐻𝐴𝑅 =
⌊𝑛𝑟⌋
𝑛𝑟

𝑛𝑟
(

𝜌̃𝜏 − 1
)

(

𝜏2𝑠2𝜏,𝐻𝐴𝑅

)1∕2

⇒

(

1
2𝐶𝑟,𝑑−

1
𝑟 𝐴𝑟,𝑑𝑊 𝐻 (𝑟)

)

𝑟

𝐵𝑟,𝑑−
1
𝑟 𝐴

2
𝑟,𝑑

+ 𝑐𝑟

√

2
𝑏

(

∫ 𝑟
0 𝐺𝑟𝑒,𝑐 (𝑑,𝑝)

2𝑑𝑝−∫ (1−𝑏)𝑟
0 𝐺𝑟𝑒,𝑐 (𝑑,𝑝)𝐺𝑟𝑒,𝑐 (𝑑,𝑝+𝑏𝑟)𝑑𝑝

)

𝐵𝑟,𝑑−
1
𝑟 𝐴

2
𝑟,𝑑

=

( (

1
2𝐶𝑟,𝑑−

1
𝑟 𝐴𝑟,𝑑𝑊 𝐻 (𝑟)

)

𝑟

𝐵𝑟,𝑑−
1
𝑟 𝐴

2
𝑟,𝑑

+ 𝑐𝑟

)

(

𝐵𝑟,𝑑 − 1
𝑟𝐴

2
𝑟,𝑑

)1∕2

[

2
𝑏

(

∫ 𝑟
0 𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝)

2𝑑𝑝 − ∫ (1−𝑏)𝑟
0 𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝)𝐺𝑟𝑒 ,𝑐 (𝑑, 𝑝 + 𝑏𝑟)𝑑𝑝

)]1∕2
,

where the limit holds by applying Lemma 1.5.6 in the Online Supplement and (54) since ⌊𝑛𝑟⌋
𝑛𝑟 → 1. This completes the proof of

Theorem 4.1. ■
20
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w

d

T

A

A.4. Proofs of Theorems 4.2 and 5.1

These proofs are similar and are combined. Since the error 𝑢𝑡 involves two memory parameters in non-explosive periods and
the explosive period (viz., 𝑑1 and 𝑑2), we write 𝑢𝑡 as 𝑢𝑡,𝑑 when 𝑢𝑡 is an 𝐹𝐼(𝑑) process. Let 𝐵 = [𝜏𝑒, 𝜏𝑓 ] be the bubble period and
𝑁0 ∈ [1, 𝜏𝑒) and 𝑁1 = [𝜏𝑓 + 1, 𝑛] be the normal market periods before and after the bubble period.

Recall 𝐷𝐹𝜏 = 𝜌̂𝜏−1.
𝑠𝜏

and suppose that 𝜏 ∈ 𝐵. Applying Lemma 1.9.1, 1.13.1 and 1.14 in the Online Supplement, we obtain

𝜌̂𝜏 − 1
𝑠𝜏

= 𝑂𝑝(𝑛1+𝛼∕2)
𝑐
𝑛𝛼

= 𝑂𝑝(𝑛1−𝛼∕2). (55)

This proves the first claim in Theorem 4.2.

Note that 𝐷𝐹 𝜏,𝐻𝐴𝑅 =
(

∑𝜏
𝑖=1 𝑦̄

2
𝑖−1

𝛺̂𝐻𝐴𝑅

)1∕2
(𝜌̃𝜏 − 1). Suppose that 𝜏 ∈ 𝐵. As in showing (55), we find that

(
∑𝜏

𝑖=1 𝑦̄
2
𝑖−1

𝛺̂𝐻𝐴𝑅

)1∕2

(𝜌̃𝜏 − 1) = 𝑂𝑝

⎛

⎜

⎜

⎝

𝑛1+𝛼+2𝑑1𝜌2(𝜏−𝜏𝑒)𝑛

𝑛2𝑑1𝜌2(𝜏−𝜏𝑒)𝑛

⎞

⎟

⎟

⎠

1∕2

𝑐
𝑛𝛼

= 𝑂𝑝

(

𝑛
1−𝛼
2
)

→ ∞,

hich gives the second claim of Theorem 4.2.
Suppose that 𝜏 ∈ 𝑁1. Applying the results in Lemma 1.9.1, 1.13.2 and 1.14 in the Online Supplement, we have

(
∑𝜏

𝑖=1 𝑦̄
2
𝑖−1

𝛺̂𝐻𝐴𝑅

)1∕2

(𝜌̃𝜏 − 1) = 𝑂𝑝

⎛

⎜

⎜

⎝

𝑛1+𝛼+2𝑑1𝜌
2(𝜏𝑓−𝜏𝑒)
𝑛

𝑛2𝑑1𝜌2(𝜏−𝜏𝑒)𝑛

⎞

⎟

⎟

⎠

1∕2
(

− 𝑐
𝑛𝛼

)

= −𝑂𝑝

(

𝑛
1−𝛼
2
)

→ −∞.

To show 𝑟̂𝐻𝐴𝑅
𝑒

𝑝
→ 𝑟𝑒 and 𝑟̂𝐻𝐴𝑅

𝑓
𝑝
→ 𝑟𝑓 , note that if 𝜏 ∈ 𝑁0,

lim
𝑛→∞

Pr(𝐷𝐹 𝜏,𝐻𝐴𝑅 > 𝑐𝑣𝑛,𝐻𝐴𝑅) = Pr
(

𝐹𝑟,𝑑 > ∞
)

= 0.

If 𝜏 ∈ 𝐵, lim𝑛→∞ Pr(𝐷𝐹 𝜏,𝐻𝐴𝑅 > 𝑐𝑣𝑛,𝐻𝐴𝑅) = 1, given that 𝑐𝑣𝑛,𝐻𝐴𝑅
𝑛(1−𝛼)∕2

→ 0. If 𝜏 ∈ 𝑁1, lim𝑛→∞ Pr(𝐷𝐹 𝜏,𝐻𝐴𝑅 > 𝑐𝑣𝑛,𝐻𝐴𝑅) = 0, as

𝐷𝐹 𝜏,𝐻𝐴𝑅 = −𝑂𝑝

(

𝑛
1−𝛼
2
)

. It follows that, for any 𝜂, 𝜗 > 0, we have

Pr(𝑟̂𝐻𝐴𝑅
𝑒 > 𝑟𝑒 + 𝜂) → 0, and Pr(𝑟̂𝐻𝐴𝑅

𝑓 < 𝑟𝑓 + 𝜗) → 0,

ue to the fact that Pr(𝐷𝐹 (

𝜏𝑒+𝛼𝜂∕𝑛
)

,𝐻𝐴𝑅 > 𝑟𝑒 + 𝜂) → 1 for all 0 < 𝛼𝜂 < 𝜂 and Pr(𝐷𝐹 (

𝜏𝑓−𝛼𝜗∕𝑛
)

,𝐻𝐴𝑅 > 𝑐𝑣𝑛,𝐻𝐴𝑅) → 1 for all
0 < 𝛼𝜗 < 𝜗. As 𝜂 and 𝜗 are arbitrary and Pr(𝑟̂𝐻𝐴𝑅

𝑒 < 𝑟𝑒) → 0 and Pr(𝑟̂𝐻𝐴𝑅
𝑓 > 𝑟𝑓 ) → 0, we deduce that Pr(|

|

𝑟̂𝐻𝐴𝑅
𝑒 − 𝑟𝑒|| > 𝜂) → 0

and Pr(||
|

𝑟̂𝐻𝐴𝑅
𝑓 − 𝑟𝑓

|

|

|

> 𝜗) → 0 as 𝑛 → ∞, provided that

1
𝑐𝑣𝑛,𝐻𝐴𝑅

+
𝑐𝑣𝑛,𝐻𝐴𝑅

𝑛(1−𝛼)∕2
→ 0.

his completes the proof of Theorem 5.1. ■

.5. Proof of Theorem 6.2

We shall only prove that under the assumptions in Theorem 6.2, we have
1

𝑛1∕2+𝑑
𝑥
⌊𝑛𝑠⌋ ⇒ 𝑊 𝐻 (𝑠), (56)

as when (56) holds we can use the steps in proving Theorem 3.1 to establish the claim in Theorem 6.2. We first show the following
two results which will be useful in establishing (56).

Letting 𝑚 = 𝑛𝛾 , we have

sup
1≤𝑡≤𝑛

|

|

|

𝛥1+𝑑
+ 𝑦𝑡 − 𝛥1+𝑑

+ 𝑦𝑡
|

|

|

= 𝑂𝑝(𝑚−1 ln 𝑛), (57)

and

max
1≤𝑡≤𝑛

|

|

|

𝑔2(𝑡∕𝑛) − 𝑔2(𝑡∕𝑛)||
|

= 𝑜𝑝(1). (58)

Set 𝜉𝑛 = 𝑑 − 𝑑 and 𝑧𝑡 = 𝛥1+𝑑
+ 𝑦𝑡 = 𝑔(𝑡∕𝑛)𝜀𝑡. To show (57), note that

𝛥1+𝑑
+ 𝑦𝑡 = 𝛥𝑑−𝑑

+
(

𝛥1+𝑑
+ 𝑦𝑡

)

= 𝛥𝜉𝑛
+ 𝑧𝑡, and

𝛥𝜉𝑛
+ 𝑧𝑡 =

𝑡−1
∑

(

𝜉𝑛
)

(−𝐿)𝑘𝑧𝑡 = 𝑧𝑡 − 𝜉𝑛

( 𝑡−1
∑ 𝑧𝑡−𝑘

)

+ 𝑂𝑝(𝜉2𝑛 ). (59)
21
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Therefore

sup
1≤𝑡≤𝑛

|

|

|

𝛥1+𝑑
+ 𝑦𝑡 − 𝛥1+𝑑

+ 𝑦𝑡
|

|

|

= sup
1≤𝑡≤𝑛

|

|

|

|

|

|

−𝜉𝑛

( 𝑡−1
∑

𝑘=1

𝑧𝑡−𝑘
𝑘

)

+ 𝑂𝑝(𝜉2𝑛 )
|

|

|

|

|

|

≤ |𝜉𝑛| sup
1≤𝑡≤𝑛

|

|

|

|

|

|

𝑡−1
∑

𝑘=1

𝑧𝑡−𝑘
𝑘

|

|

|

|

|

|

+ 𝑂𝑝(𝜉2𝑛 ). (60)

Note that 𝜉𝑛 is dependent on 𝑛 but not 𝑡. Also, for any 1 ≤ 𝑡 ≤ 𝑛, by Chebyshev’s inequality, we have, for any 𝛿 > 0 and some positive
constant 𝐶 < ∞,

𝑃𝑟

(

|

|

|

|

|

|

𝑡−1
∑

𝑘=1

𝑧𝑡−𝑘
𝑘

|

|

|

|

|

|

≥ 𝛿

)

≤ sup
1≤𝑡≤𝑛

𝑔
( 𝑡
𝑛

)2
𝜎2

∑𝑡−1
𝑘=1

1
𝑘2

𝛿2
< 𝐶

∑∞
𝑡=1

1
𝑘2

𝛿2
= 𝐶 𝜋

6
1
𝛿2

,

so that ||
|

∑𝑡−1
𝑘=1

𝑧𝑡−𝑘
𝑘

|

|

|

= 𝑂𝑝(1) for all 1 ≤ 𝑡 ≤ 𝑛, and then (60) and 𝜉𝑛
𝑝
→ 0 give (57).

To show (58), note that

𝑔2
( 𝑡
𝑛

)

=
𝜏
∑

𝑗=1
𝑘𝑡𝑗

(

𝛥1+𝑑
+ 𝑦𝑗

)2
=

𝜏
∑

𝑗=1
𝑘𝑡𝑗

[

𝑔(𝑗∕𝑛)𝜀𝑗 + 𝑅𝑛
]2

=
𝜏
∑

𝑗=1
𝑘𝑡𝑗𝑔

2(𝑗∕𝑛)𝜀2𝑗 + 2𝑅𝑛

𝜏
∑

𝑗=1
𝑘𝑡𝑗𝑔(𝑗∕𝑛)𝜀𝑗 + 𝑅2

𝑛, (61)

where 𝑅𝑛 is 𝑂𝑝(𝑚−1 ln 𝑛), as indicated by (57).
We now show that the second term in (61) is 𝑜𝑝(1). Note that

𝜏
∑

𝑗=1
𝑘𝑡𝑗𝑔(𝑗∕𝑛)𝜀𝑗 =

∑𝜏
𝑗=1 𝐾

(

𝑡−𝑗
𝜈

)

𝑔(𝑗∕𝑛)𝜀𝑗
∑𝜏

𝑖=1 𝐾
(

𝑡−𝑖
𝜈

) . (62)

First consider the numerator of (62). As in Theorem 2.8 of Pagan and Ullah (2006), write
𝜏
∑

𝑗=1
𝐾

(

𝑡 − 𝑗
𝜈

)

𝑔(𝑗∕𝑛)𝜀𝑗 = 1
2𝜋

𝜏
∑

𝑗=1
∫ exp

(

−𝑖𝑣
(

𝑡 − 𝑗
𝜈

))

𝑔(𝑗∕𝑛)𝜀𝑗𝜙(𝑣)𝑑𝑣

= 1
2𝜋 ∫

𝜏
∑

𝑗=1
exp

(

𝑖𝑣𝑗
𝜈

)

𝑔(𝑗∕𝑛)𝜀𝑗𝜙(𝑣) exp
(−𝑖𝑣𝑡

𝜈

)

𝑑𝑣

= 𝜈
2𝜋 ∫

𝜏
∑

𝑗=1
exp (𝑖𝑥𝑗) 𝑔(𝑗∕𝑛)𝜀𝑗𝜙(𝜈𝑥) exp (−𝑖𝑥𝑡) 𝑑𝑥,

where 𝜙(⋅) is the characteristic function of 𝐾 and we let 𝑣 = 𝜈𝑥 to obtain the third equality. Thus,

max
𝑡<𝜏

|

|

|

|

|

|

𝜏
∑

𝑗=1
𝐾

(

𝑡 − 𝑗
𝜈

)

𝑔(𝑗∕𝑛)𝜀𝑗
|

|

|

|

|

|

= max
𝑡<𝜏

|

|

|

|

|

|

𝜈
2𝜋 ∫

𝜏
∑

𝑗=1
exp (𝑖𝑥𝑗) 𝑔(𝑗∕𝑛)𝜀𝑗𝜙(𝜈𝑥) exp (−𝑖𝑥𝑡) 𝑑𝑥

|

|

|

|

|

|

≤ 𝜈
2𝜋 ∫

|

|

|

|

|

|

𝜏
∑

𝑗=1
exp (𝑖𝑥𝑗) 𝑔(𝑗∕𝑛)𝜀𝑗

|

|

|

|

|

|

(

max
𝑡<𝜏

|exp (−𝑖𝑥𝑡)|
)

|𝜙(𝜈𝑥)| 𝑑𝑥

≤ 𝜈
2𝜋 ∫

|

|

|

|

|

|

𝜏
∑

𝑗=1
exp (𝑖𝑥𝑗) 𝑔(𝑗∕𝑛)𝜀𝑗

|

|

|

|

|

|

|𝜙(𝜈𝑥)| 𝑑𝑥.

Note that

1
√

𝑛

𝜏
∑

𝑗=1
exp (𝑖𝑥𝑗) 𝑔(𝑗∕𝑛)𝜀𝑗 = 1

√

𝑛

𝜏
∑

𝑗=1
cos(𝑥𝑗)𝑔(𝑗∕𝑛)𝜀𝑗 + 𝑖 1

√

𝑛

𝜏
∑

𝑗=1
sin(𝑥𝑗)𝑔(𝑗∕𝑛)𝜀𝑗

= 𝑂𝑝(1),

which implies ∑𝜏
𝑗=1 exp (𝑖𝑥𝑗) 𝑔(𝑗∕𝑛)𝜀𝑗 = 𝑂𝑝(

√

𝑛). Therefore,

max
𝑡<𝜏

|

|

|

|

|

|

𝜏
∑

𝑗=1
𝐾

(

𝑡 − 𝑗
𝜈

)

𝑔(𝑗∕𝑛)𝜀𝑗
|

|

|

|

|

|

≤ 𝜈
2𝜋

𝑂𝑝(
√

𝑛)∫ |𝜙(𝜈𝑥)| 𝑑𝑥 = 𝑂𝑝(
√

𝑛).

Note that the denominator in (62) is 𝑂(𝜈). Hence, the second term in (61) is

𝑅𝑛

𝑡
∑

𝑘𝑡𝑗𝑔(𝑗∕𝑛)𝜀𝑗 = 𝑂𝑝(𝑚−1 ln 𝑛)
𝑂𝑝(

√

𝑛)
𝑂(𝜈)

= 𝑂𝑝

(

𝑛1∕2−𝛾

𝜈
ln 𝑛

)

= 𝑂𝑝

(

(

𝑛
2

)1∕2 ln 𝑛
𝑛𝛾

)

= 𝑜𝑝(1).
22
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m
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W

w

F

For the first term in (61), given the rate condition of 𝜈 and the kernel function of 𝐾(⋅), Lemma 1 in Astill et al. (2023) shows
ax𝑡

|

|

|

∑𝜏
𝑖=1 𝑘𝑡𝑖𝑔

2(𝑖∕𝑛)𝜀2𝑖 − 𝑔2(𝑡∕𝑛)||
|

= 𝑜𝑝(1). This implies that

max
1≤𝑡≤𝑛

|

|

|

𝑔2(𝑡∕𝑛) − 𝑔2(𝑡∕𝑛)||
|

= 𝑜𝑝(1). (63)

ince 𝛥1+𝑑
+ 𝑦𝑡 = 𝑔(𝑡∕𝑛)𝜀𝑡 + 𝑂𝑝(𝑚−1), letting 𝑅𝑛 = 𝑂𝑝(𝑚−1 ln 𝑛) we have

1
𝑛1∕2+𝑑

𝑡
∑

𝑠=1
𝛥−𝑑
+

(

𝛥1+𝑑
+ 𝑦𝑠
𝑔(𝑠∕𝑛)

)

= 1
𝑛1∕2+𝑑

𝑡
∑

𝑠=1
𝛥−𝑑
+

[

𝑔(𝑠∕𝑛)𝜀𝑠
𝑔(𝑠∕𝑛)

+
𝑅𝑛

𝑔(𝑠∕𝑛)

]

= 1
𝑛1∕2+𝑑

𝑡
∑

𝑠=1
𝛥−𝑑
+

𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

𝜀𝑠 +
1

𝑛1∕2+𝑑

𝑡
∑

𝑠=1
𝛥−𝑑
+

𝑅𝑛

𝑔(𝑠∕𝑛)
. (64)

Eq. (63) implies that second term of (64) is 𝑂𝑝(𝑛−1∕2−𝛾 ). By Stirling’s approximation, for large enough 𝑆 there is a constant 𝐶 such
that, as 𝑛 → ∞,

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ 𝑅𝑛 ≤

1
𝑛1∕2+𝑑

𝐶 + 𝑅𝑛
𝐶

𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=𝑆
𝑠𝑑−1 ≤ 𝑅𝑛

𝐶
𝑛1∕2+𝑑 ∫

𝑛

0
𝑠𝑑−1𝑑𝑠 =

𝑅𝑛𝐶
𝑛1∕2

→ 0.

Further, (63) implies that 𝑔2(𝑡∕𝑛) = 𝑂𝑝(1) for all 𝑡. Therefore, the second term of (64) is 𝑂𝑝(𝑛−1∕2−𝛾 ).
For the first term in (64), let 𝑡 = ⌊𝑛𝑟⌋ and note that

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

𝜀𝑠

= 1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

[(

𝑔(𝑠∕𝑛) − 𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

+ 1
]

𝜀𝑠

= 1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ 𝜀𝑠 +

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

𝑔(𝑠∕𝑛) − 𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

𝜀𝑠. (65)

e shall prove

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ 𝜀𝑠 ⇒ 𝑊 𝐻 (𝑟) and (66)

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

𝑔(𝑠∕𝑛) − 𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

𝜀𝑠 = 𝑜𝑝(1). (67)

Since

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ 𝜀𝑠 =

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑+𝑑
+

(

𝛥−𝑑
+ 𝜀𝑠

)

,

using the same technique as in (59), we have

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑+𝑑
+

(

𝛥−𝑑
+ 𝜀𝑠

)

= 1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1

(

𝛥−𝑑
+ 𝜀𝑠 + 𝜉𝑛

(𝑠−1
∑

𝑗=1

𝛥−𝑑
+ 𝜀𝑠−𝑗
𝑗

))

+
⌊𝑛𝑟⌋
𝑛1∕2+𝑑

𝑂𝑝(𝜉2𝑛 )

= 1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ 𝜀𝑠 +

𝜉𝑛
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1

𝑠−1
∑

𝑗=1

𝛥−𝑑
+ 𝜀𝑠−𝑗
𝑗

+ 𝑜𝑝(1), (68)

here ⌊𝑛𝑟⌋
𝑛1∕2+𝑑

𝑂𝑝(𝜉2𝑛 ) = 𝑂𝑝(𝑛−(1∕2+𝑑−1+2𝛾)) = 𝑜𝑝(1) because 𝛾 > 1∕4.
For the first term in (68), by Lemma 1.1,

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ 𝜀𝑠 ⇒ 𝑊 𝐻 (𝑟).

or the second term in (68), suppose that 𝑑 ≥ 0. In particular, to simplify notation let 𝑢𝑠 = 𝛥−𝑑
+ 𝜀𝑠. Then

𝜉𝑛
1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠−1
∑ 𝛥−𝑑

+ 𝜀𝑠−𝑗
𝑗

=
𝜉𝑛

1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠−1
∑ 𝑢𝑠−𝑗

𝑗
=

𝜉𝑛
1∕2+𝑑

⌊𝑛𝑟⌋−1
∑ 1

𝑗

⌊𝑛𝑟⌋−𝑗
∑

𝑢𝑠
23

𝑛 𝑠=1 𝑗=1 𝑛 𝑠=1 𝑗=1 𝑛 𝑗=1 𝑠=1
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T

B

A

R

A
A

B
B
B
B
C
C
C
C
C
C
C
D
D
D
G

H
H

H
H

H

= 𝜉𝑛
⌊𝑛𝑟⌋−1
∑

𝑗=1

1
𝑗

(

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋−𝑗
∑

𝑠=1
𝑢𝑠

)

= 𝜉𝑛
⌊𝑛𝑟⌋−1
∑

𝑗=1

1
𝑗
𝑂𝑝(1) = 𝜉𝑛

⌊𝑛𝑟⌋−1
∑

𝑗=1
𝑂𝑝

(

1
𝑗

)

= 𝑂𝑝
(

𝜉𝑛 ln 𝑛
)

= 𝑜𝑝(1).

herefore, 𝜉𝑛
𝑛1∕2

∑

⌊𝑛𝑟⌋
𝑠=1

∑𝑠−1
𝑗=0

𝜀𝑠−𝑗
𝑗 = 𝑜𝑝(1) and (66) is established.

To show (67), note that

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

𝑔(𝑠∕𝑛) − 𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

𝜀𝑠 =
1

𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

𝑔(𝑠∕𝑛) − 𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

𝜀𝑠 + 𝑜𝑝(1),

and that

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

𝑔(𝑠∕𝑛) − 𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

𝜀𝑠 =
1

𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1

𝑠−1
∑

𝑗=0

(𝑑)𝑗
𝑗!

(

𝑔(𝑗∕𝑛) − 𝑔(𝑗∕𝑛)
𝑔(𝑗∕𝑛)

)

𝜖𝑠−𝑗

≤ max
𝑗

|

|

|

|

𝑔(𝑗∕𝑛) − 𝑔(𝑗∕𝑛)
𝑔(𝑗∕𝑛)

|

|

|

|

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1

𝑠−1
∑

𝑗=0

(𝑑)𝑗
𝑗!

|

|

|

|𝜖𝑠−𝑗
|

|

|

= max
𝑗

|

|

|

|

𝑔(𝑗∕𝑛) − 𝑔(𝑗∕𝑛)
𝑔(𝑗∕𝑛)

|

|

|

|

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ |𝜖𝑠|

= 𝑜𝑝(1)
1

𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ |𝜖𝑠|

= 𝑜𝑝(1)

[

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

|

|

𝜀𝑠|| − E |

|

𝜀𝑠||
)

+ 1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+ E |

|

𝜀𝑠||

]

. (69)

y Lemma 1.1,

1
𝑛1∕2+𝑑

⌊𝑛𝑟⌋
∑

𝑠=1
𝛥−𝑑
+

(

|

|

𝜀𝑠|| − E |

|

𝜀𝑠||
)

= 𝑂𝑝(1).

And for 1
𝑛1∕2+𝑑

∑

⌊𝑛𝑟⌋
𝑠=1 𝛥−𝑑

+ E |

|

𝜀𝑠|| in (69), there exists a bound for which 𝐶
𝑛1∕2+𝑑

1
𝛤 (𝑑)

∑

⌊𝑛𝑟⌋
𝑠=1 𝑠𝑑−1 < 𝐶

𝑛1∕2+𝑑
1

𝛤 (𝑑) 𝑛
𝑑 → 0, with a positive constant

𝐶. This implies 1
𝑛1∕2+𝑑

∑

⌊𝑛𝑟⌋
𝑠=1 𝛥−𝑑

+

(

𝑔(𝑠∕𝑛)−𝑔(𝑠∕𝑛)
𝑔(𝑠∕𝑛)

)

𝜀𝑠 = 𝑜𝑝(1).
Combining (65), (66) and (67), we have 1

𝑛1∕2+𝑑
𝑥
⌊𝑛𝑠⌋ ⇒ 𝑊 𝐻 (𝑠). The limit theorem in (38) follows in a straightforward way. ■

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105626.
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