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Abstract

This paper provides a unifying explanation for the lack of supply of skilled teachers

in remote locations. I build an empirical model of dynamic two-sided matching to link

teachers’ and schools’ preferences with equilibrium sorting and job-to-job flows. I show

that this mapping is invertible such that preferences can be identified and estimated

from observed matches. Taking these tools to panel data on the assignment of public

teachers in Peru, I show that the spatial disaggregation of labor demand coupled with

the concentration of labor supply in cities imply the existence of a spatial job ladder.

Low quality teachers get displaced in remote schools and move toward urban schools

by climbing up the ladder once they have accumulated experience and skills. Labor

mobility thus magnifies the urban-rural gap in teacher quality by one third. Dynamic

wage contracts that foster retention can largely mitigate this effect.
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1 Introduction

Many public and private services are provided locally and require the presence of a skilled

workforce on-site. In such labor markets, the distribution of workers across locations has

important welfare consequences. Unequal access to essential services such as education,

childcare or healthcare directly contributes to spatial inequalities. Moreover, geographical

differences in the overall quality of local services and amenities are key drivers of the spatial

distribution of human capital, creating a feedback loop that would reinforce existing inequal-

ities (Diamond and Gaubert, 2022). Understanding what drives worker sorting and mobility

across locations is thus a first-order concern.

This paper studies this question in the context of the provision of an essential local public

service: education. Teachers are key inputs of school quality (Rivkin et al., 2005) and strong

predictors of students’ later outcomes (Chetty et al., 2014b). Evidence of heterogeneous

teacher effects further reveals that low ability students can potentially benefit more from

being exposed to good teachers (Ahn et al., 2021; Bobba et al., 2021). This implies that an

unequal access to skilled teachers can harm both equity and efficiency. However, analyzing

sorting and mobility in teachers’ labor markets is challenging as (i) wages are often set

through collective bargaining and do not adjust to local labor market conditions and (ii)

positions are often allocated through frictionless centralized clearinghouses. Job search or

spatial equilibrium models are not tailored to such settings as they rely on wages to clear local

labor markets or search frictions to rationalize sorting and job-to-job flows (Diamond, 2016;

Moscarini and Postel-Vinay, 2018). Instead, an emerging literature has relied on empirical

models of two-sided matching to study the role of workers’ idiosyncratic preferences over

job attributes in shaping sorting when prices are fixed (Agarwal, 2015; Bobba et al., 2021;

Bates et al., 2022). Yet, these papers abstract away from labor market dynamics, making

the analysis of sorting and mobility incomplete.

This paper bridges these literatures by incorporating dynamics into an empirical model

of two-sided matching. It then applies these novel tools to study the causes of teacher

spatial sorting and mobility and their consequences on spatial inequalities in access to skilled

teachers.
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I make several methodological and empirical contributions. First, I build a model of dy-

namic two-sided matching with non-transferable utility where forward-looking agents repeat-

edly meet in a single market and form matches according to their idiosyncratic preferences

and expectations about their future matching opportunities. I propose a tractable large mar-

ket approximation yielding an analytical solution to the model which directly maps agents’

preferences into sorting and job-to-job transitions. Second, I show that this mapping is in-

vertible such that the preferences of participating agents can be nonparametrically identified

from data on realized matches. Third, I take this methodology to panel data on the alloca-

tion of public teachers in Peru and show that (i) the spatial disaggregation of labor demand,

(ii) the concentration of labor supply in cities and (iii) the presence of home bias in teachers’

preferences, lead to the existence of a spatial job ladder. As a result, low quality teachers

get displaced in remote locations, creating a wide urban-rural gap in teacher quality, and

move toward urban schools once they have accumulated experience and skills, which further

magnifies this gap by one third. Finally, I show that dynamic wage contracts can reduce

inequalities in access to skilled teachers by incentivizing teacher retention.

I start the analysis by leveraging countrywide panel data on the centralized allocation of

public teachers in Peru. I document that remoteness is highly predictive of teacher sorting as

high-skilled teachers concentrate in urban schools, while low-skilled teachers mostly work in

remote locations. Teachers working in remote locations switch from job-to-job at a high rate

to get closer to urban centers. This implies that teacher attrition rates in remote villages are

three times greater than in cities. Movers are, on average, of higher quality than those who

replace them. Labor market dynamics thus seem to largely reinforce spatial inequalities in

teacher quality and student achievement.

To understand what drives local labor demand and supply and how they translate into

equilibrium sorting and career paths, I develop an empirical model of dynamic two-sided

matching without transfers. Teachers and schools meet repeatedly in a single market over

several time periods. The observed characteristics of both sides evolve endogenously ac-

cording to their matching decisions. Agents are forward-looking and form preferences over

observed and unobserved job/teacher attributes. I impose few assumptions on preferences

and beliefs: (i) the systematic and unobserved part of the payoff functions are additively
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separable, (ii) the unobserved taste shocks are iid with a type-I upper tail and (iii) agents

have rational expectations about their future match payoffs. I extend the concept of stabil-

ity, widely used in static empirical models of two-sided matching, to this dynamic setting.

I assume that the observed match in each period is stable with respect to teachers’ and

schools’ lifetime utility and that beliefs about future aggregate states are consistent with

their realizations.

To map preferences into sorting, I build on the static framework of Menzel (2015) and

leverage the implications of stability in a large market setting where the number of agents on

both sides grows to infinity. Stability implies that, in each period, each teacher is matched

to her preferred job among the set of jobs that would be willing to hire her and vice versa.

We can thus reinterpret the realized matches as the outcome of two dynamic discrete choice

models with unobserved and endogenous choice sets. Under the assumption that shocks have

a type-I upper tail, I show that the information contained in choice sets, that is necessary

to characterize conditional choice probabilities, can be summarized into sufficient statistics

called inclusive values. In the limit economy, inclusive values converge to the unique solution

of a fixed-point problem, which explicitly models the dependence between preferences and

choice sets. This allows us to derive an analytical expression for the equilibrium conditional

choice probabilities and map preferences into sorting.

I show that the mapping between preferences and observed sorting is invertible. The joint

surplus function can be nonparametrically identified from data on realized matches. Under

appropriate exclusion restrictions or with the availability of additional data, preferences can

be separately identified from the joint surplus. I provide these results in two settings: (i)

finite horizon and nonstationarity of preferences and aggregate states and (ii) infinite horizon

and stationarity. I then propose a maximum likelihood estimator that can be tractably used

for a parametric version of this framework.

Equipped with this methodology, I identify and estimate teachers’ and schools’ preferences

from data on observed matches within the centralized assignment procedure in Peru. To

separately identify preferences from the joint surplus, I use additional data on how schools

rank the applicants they interview. The estimated preference parameters indicate that (i)

geographical proximity to home is highly predictive of teachers’ preferences and (ii) schools
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highly value observed measures of teacher quality, such as experience. This results in the

existence of a spatial job ladder. As labor demand is widely scattered while teachers’ home

location is concentrated in cities, fact (i) implies that teachers have a strong distaste for

remote locations putting rural schools at the bottom of the ladder and urban schools at

the top. As the number of jobs located in urban centers is limited, fact (ii) implies that

excess supply is rationed based on quality such that high-skilled teachers concentrate in

cities while low-skilled teachers are matched to remote schools. The spatial job ladder also

has important consequences on labor market dynamics. Teachers accumulate experience and

human capital throughout their career and climb up the ladder by matching closer to home.

As a consequence, rural schools fail to retain skilled teachers and sustain disproportionately

low levels of teaching experience and quality. Overall, I estimate that teacher mobility along

the spatial job ladder explains one third of the urban-rural gap in teacher quality.

I then investigate the effectiveness of dynamic wage contracts aimed at slowing down labor

mobility and mitigating its adverse effects on spatial inequalities through retention bonuses.

To do so, I simulate the equilibrium response to a policy that would impose a minimum

contract length in exchange for appropriate compensation to prevent teachers from moving

up the ladder. If compensation is too low, this policy creates large shortages as it forces

teachers to commit and prevents them from rematching ex-post. This highlights a key trade

off between recruitment and retention in the presence of a job ladder. Bonuses that would

negate this adverse sorting effect amount to a 20-40% wage increase depending on the contract

length.

I conclude the analysis with a thought experiment simulating the equilibrium in a coun-

terfactual scenario where teachers’ home locations would be scattered across the country

instead of being concentrated in cities. As proximity to home is no longer associated with

proximity to cities, the spatial job ladder collapses. Teachers still aim to match close to

home but face little competition for these positions. Consequently, high quality teachers are

no longer disproportionately matched to urban schools. The rate at which teachers switch

jobs drops by half. Job-to-job flows are no longer directed from rural schools toward urban

schools which shuts down urban-rural inequalities in attrition. This suggests that designing

policies targeting the root causes of the existence of the spatial job ladder, such as investing
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in training local teachers, might be more effective than aiming at slowing down its symptoms

through recruitment or retention policies.

Related literature

This paper relates and contributes to several strands of the literature. First, I contribute to

a growing literature at the intersection of industrial organization and econometrics studying

the empirical content of two-sided matching models with non-transferable utility (NTU).1

Several papers investigate, in a static setting, how preferences of participating agents can be

identified from reported preferences (Fack et al., 2019; Agarwal and Somaini, 2020) or realized

matches (Menzel, 2015; Diamond and Agarwal, 2017; He et al., 2022; Agarwal and Somaini,

2022; Ederer, 2022). Yet, there are few equivalent results for models of dynamic two-sided

matching, despite being increasingly studied in the matching theory literature.2 A handful

of papers study waitlist mechanisms (Agarwal et al., 2021; Waldinger, 2021; Verdier and

Reeling, 2022) or include dynamics in college admissions/school choice models (Larroucau

and Rios, 2020). However, these papers study priority-based assignment mechanisms where

the preferences of one side of the market are known ex-ante. This paper contributes to

this literature by building an empirical model of dynamic two-sided matching where the

preferences of both sides of the market are unknown. It extends the concept of stability

to a dynamic setting to map preferences into sorting and show that preferences can be

nonparametrically identified from data on realized matches.

Second, I contribute to a large literature in labor and urban economics studying the causes

and welfare consequences of spatial skill sorting (Moretti, 2013; Diamond, 2016; Diamond

and Gaubert, 2022). I provide a unifying explanation for the lack of access to local services

requiring skilled labor in remote areas. As labor demand is inherently spatially scattered in

these markets while human capital concentrates in cities, the presence of home bias generates

the existence of a spatial job ladder, which has drastic consequences on spatial sorting and

mobility. The tools provided in this paper could help understand the causes and welfare

1Following the seminal work of Choo and Siow (2006), a large literature on empirical models of two-
sided matching with transferable utility (TU) has evolved separately (Fox, 2010; Galichon and Salanié, 2022;
Gualdani and Sinha, Forthcoming).

2See Baccara and Yariv (2021) for a survey of this rapidly growing literature.
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consequences of important phenomenons such as the existence of medical deserts. I also

contribute to the literature studying sorting and labor mobility through on-the-job search

models (Moscarini and Postel-Vinay, 2018) by showing that labor market dynamics can

alternatively be rationalized by a frictionless dynamic two-sided matching model.3

Third, I contribute to a recent literature on equilibrium models of the teachers’ labor

market (Tincani, 2021; Biasi et al., 2021; Bates et al., 2022; Bobba et al., 2021). These

papers study teacher sorting through static models of two-sided matching. I provide a general

framework nesting the existing approaches and derive conditions under which preferences are

nonparametrically identified from realized matches. I also show the importance of labor

market dynamics in shaping teacher sorting, which is typically ignored in this literature.

Fourth, I relate to a large body of work in the economics of education studying the causes

and consequences of teacher attrition (Boyd et al., 2005; Falch and Strøm, 2005; Falch, 2011;

Hanushek et al., 2016; Bonhomme et al., 2016). This paper provides a unifying framework

to study teacher sorting and mobility. I show that attrition is mostly caused by teachers

leaving rural schools by climbing up the spatial job ladder. I then provide new evidence on

the costs of attrition by quantifying its role in shaping urban-rural inequalities in access to

skilled teachers.

Finally, this paper relates to a literature in public economics studying the design of

incentives to recruit and retain civil servants in underprivileged areas. Several papers explored

the role of wage incentives on recruitment, effort and retention but found mixed results on

retention (Deserranno, 2019; Leaver et al., 2021; Bobba et al., 2021). Instead, I explore the

effect of dynamic wage contracts designed to increase retention. I show that these policies

can have strong adverse effects on recruitment if teachers are not properly compensated for

the implied lack of flexibility. This highlights a trade off between recruiting and retaining

workers in the presence of a job ladder.

3This raises the question of whether search frictions and idiosyncractic preferences over job attributes can
be separately identified from matched employer-employee data in typical search models. I plan to investigate
this in future work.
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Overview

Section 2 briefly describes the institutional setting and the data. Section 3 presents rele-

vant descriptive evidence. Section 4 introduces the equilibrium model and characterizes the

mapping between preferences and sorting. Section 5 states the main identification results.

Sections 6 and 7 discuss the empirical strategy and the results. Section 8 concludes.

2 Context and Data

In this section, I briefly describe the different types of contracts under which teachers can be

employed and how the centralized clearinghouse allocating teaching positions is organized. I

then give a short summary of the different sources of data used throughout the paper.

2.1 Institutional Setting

Public teachers in Peru can be hired under two types of contracts. Temporary contracts last

at least one year and can be renewed up to a second year. Permanent contracts can last

indefinitely and are akin to usual civil servant contracts. Temporary contracts are paid a fixed

rate that does not vary with experience. Permanent teachers can get promoted throughout

their career to higher ranks in the civil servant scale system to get higher wages.4 On the

lowest scale, permanent teachers are paid the same wage as temporary teachers. On the

highest scale, permanent teachers are paid 75% more. In an effort to make remote schools

and schools with difficult teaching conditions more attractive, the Ministry of Education

provides wage bonuses to teachers working in schools belonging to a predetermined set of

categories (see Appendix B.1 for more details). However, the overall spatial variation in

wages induced by this bonus scheme remains very limited.5

Since 2015, the allocation of new teaching positions is organized through a biennial cen-

tralized clearinghouse. All teachers without a permanent contract seeking a position have

4Promotions are awarded through a national standardized evaluation and a decentralized evaluation made
by a committee evaluating teachers’ performance and professional career.

5Table A.2 shows summary statistics on various job characteristics. One standard deviation in wages
corresponds to only 16% of the minimum wage.
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to go through this process.6 The allocation is organized into three steps that take place at

the end of the academic year from November to January. First, all applicants participate

in the national competency exam, which assesses their skills and curricular knowledge. If

their score falls above a given threshold, teachers become eligible for permanent contracts.

Second, eligible applicants participate in the allocation of permanent positions. Teachers

form an unconstrained list of choices within the same province and are then interviewed by

their three top schools.7 Schools then make offers to their preferred candidates. Finally, all

remaining teachers participate in the allocation of temporary contracts. In this step, schools

are passive and cannot express their preferences. Teachers are ranked according to their test

score and choose among the set of available positions by order of priority. Finally, schools

which did not manage to recruit anyone can resort to hiring non-certified teachers through

temporary contracts. More details about the test and the timing of the allocation mechanism

are available in Appendix B.1.

2.2 Data

I combine several sets of administrative data provided by the Ministry of Education in Peru

to create a unique record of teachers’ movements across schools throughout their careers.

Most importantly, I observe teachers repeatedly applying through the centralized assignment

platform, allowing for a deeper investigation of the causes of these movements.8 I briefly

describe these data sources below.9

Teacher assignment data: I observe a panel including all positions and teachers employed

in the public sector in Peru from 2015 to 2021. For each teacher in each year, I know in

which position they work, which type of contract they hold and which wage they receive.

I supplement these data with additional sources of information on jobs and teachers (see

6Permanent teachers seeking to get transferred to another school need to go through a separate decen-
tralized procedure.

7As schools cannot interview more than ten applicants, capacity constraints are rationed using test scores
as priorities.

8Bobba et al. (2021) use similar data but do not exploit the panel dimension of the data and abstract
away from the role of labor dynamics.

9I restrict the analysis to public primary education. Primary schools are evenly distributed across the
country while secondary schools are sometimes missing in remote locations. Teachers’ spatial sorting is thus
a more salient concern for primary education.
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Appendix B.2 for details on the data construction). First, I link teachers national ID to

the Household Targeting System (SISFOH) data containing information about their poverty

status, education level and, most importantly, their home location. It also allows me to link

each teacher to other members of their household and know their marital status, whether they

have children and whether they live with their parents. Second, I link each job to the School

Census containing a wide set of locality and school characteristics. I observe whether a given

locality has access to basic amenities such as water and electricity. I also have information

about the precise geolocalization of the school and the level of poverty and rurality of its

locality.

Centralized assignment data: I have access to detailed information about the biennial

countrywide centralized assignment of new teaching positions from 2015 to 2019. I observe

the universe of participating applicants and positions in each step of the mechanism. The

dataset contains information on applicants’ test scores at the national competency exam.

I also have access to detailed information on the allocation of permanent positions. In

particular, I observe the set of applicants each school interviews and how they rank them.

The dataset also records the final match for both temporary and permanent contracts in

each year. Finally, and key to my analysis, this dataset can also be linked to the teacher

assignment data in order to track applicants and positions across years.

Note that the teacher assignment data and centralized assignment data do not necessarily

overlap. The centralized assignment data contains information about the set of applicants and

vacancies that end up staying unmatched and thus do not appear in the teacher assignment

data. The teacher assignment data contains information about applicants already holding

a permanent contract and non-certified teachers who are not allowed to participate in the

centralized allocation mechanism.

3 Descriptive Evidence

Jobs are geographically scattered across locations which greatly differ in their level of re-

moteness and amenities (see Table A.2). One quarter of positions are located more than four

hours away from the provincial capital. One third of the available positions are located in
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Figure 1: Sorting and Movements Across Locations

a) Sorting b) Job-to-Job Transitions

Notes. This figure uses the teacher assignment data. Panel A plots binned averages of the distance (in hours) between
applicants’ home location and the provincial capital as well as applicants’ matched location and the provincial capital. Each bin
is equally spaced using vigintiles of the distribution of teachers’ test scores. Panel B plots the evolution of the distance between
teachers’ matched schools and the provincial capital over the period 2016-2021 for three groups of teachers starting at different
levels of remoteness in 2016.

schools that have no access to electricity or water. In contrast, teachers’ home locations are

concentrated in cities: 82% of applicants live in a provincial capital (see Table A.3). In this

section, I provide suggestive evidence that this creates an imbalance between local supply

and demand, which shapes teacher spatial sorting and mobility and translates into spatial

inequalities in teaching quality.

3.1 Spatial Sorting and Mobility

I first leverage data on the centralized assignment mechanism to document how teachers

sort across locations, in the cross-section, based on observed measures of teacher quality.

Panel A of Figure 1 plots the relationship between teachers’ test scores and the distance

between their matched school and the provincial capital. I find that high scoring teachers are

disproportionately matched to schools located close to urban centers. Specifically, teachers in

the top decile of the score distribution work on average 45 minutes away from the provincial

capital, while teachers in the bottom decile work 6 hours away. This pattern is not driven by

spatial disparities in the quality of local workers as low scoring teachers live close to urban

centers, on average.

I then document how teachers move across locations throughout their careers using the
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panel structure of the data. Among the set of teachers who started a new job in 2016, 40%

switched jobs at least twice over the period 2016-2021. This number decreases to 25% for

teachers starting in urban areas in 2016 while it increases to 60% for teachers starting in

remote locations. Panel B of Figure 1 plots the time trend of the remoteness of teachers’

matched schools. I find that as teachers switch jobs, they also switch locations and pro-

gressively move closer to urban centers. The rate at which they move increases with the

remoteness of their starting job. Teachers who start in remote locations get closer to the

provincial capital by almost three hours. In contrast, teachers who already start in proximity

to urban centers do not get closer by switching jobs.

These patterns suggest that teachers have a distaste for remoteness, potentially creating

an imbalance between local labor supply and demand. Excess supply in urban locations seems

to be rationed through observed measures of teacher quality such as test scores. As a result,

low-quality teachers work temporarily far from urban centers and switch from job-to-job at

a high rate to move closer to cities.

3.2 Spatial Inequalities

Teacher spatial sorting and movements across locations have direct consequences on the

distribution of teaching quality across space. The sorting patterns described in Figure 1

directly imply that teachers working in remote schools are less qualified than teachers working

in cities. Panel A of Figure 2 shows the resulting urban-rural gap in teacher test scores.

Teachers working in the provincial capital score on average 1.3 standard deviations higher

than teachers working in very remote schools located more than 6 hours away from the

provincial capital. Similarly, the magnitude and direction of the job-to-job flows described in

Figure 1 imply that schools located in rural areas face high attrition rates. Panel B of Figure

2 shows that between 2016 and 2018, the teacher attrition rate in schools located in remote

villages is 50 percentage points higher than in schools located in the provincial capital.

It has been widely documented that teacher attrition negatively affects student learning

through disruption and the resulting loss of experience (Hanushek et al., 2016). I provide

descriptive evidence in line with these results. I compare movers with the teachers who re-

placed them in 2018 over several dimensions. Table 1 shows that movers are significantly
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Figure 2: Spatial Inequalities

a) Teacher Test Score b) Transition 2016-2018

Notes. This figure uses the teacher assignment data and documents urban-rural inequalities in teacher test scores and in the
type of job transitions between 2016 and 2018. Panel A shows the average test score of matched teachers for several bins of the
distance to the provincial capital. Panel B shows the share of teachers that stayed in the same school, moved to another school
or quit teaching in the public sector for several bins of the schools’ distance to the provincial capital.

more experienced than newcomers. Eleven percent of newcomers have no prior experience.

Newcomers are 6 percentage points more likely to be non-certified. I also find that movers

score on average 0.16 standard deviations higher at the national exam compared to newcom-

ers. This is quite substantial as this corresponds to 12% of the urban-rural gap in teacher

test scores.

As the literature points out that observable measures of teacher quality can be poor pre-

dictors of teacher value added (Rockoff, 2004), I also provide additional evidence in Appendix

C that movers are of significantly higher value added than newcomers. To do so, I follow

Chetty et al. (2014a) and estimate teacher value added using matched teacher-classroom

data. I find that movers’ value added is 0.10 standard deviations higher than newcomers.

This corresponds to 50% of a standard deviation in value added which is quite substantial.

This result is consistent with evidence of large value added gains through experience in the

early stages of teachers’ careers (Rockoff, 2004; Rivkin et al., 2005; Araujo et al., 2016).

Overall, these findings suggest that teacher sorting and mobility have important conse-

quences on spatial inequalities. Schools located in remote areas fail to attract high-quality

teachers and face high attrition rates. As movers are replaced by teachers of lower experience

and quality, labor market dynamics sustain and exacerbate spatial inequalities in teaching
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Table 1: Movers vs. Newcomers

Movers Newcomers Difference

Competency Score 0.545 0.389 0.156 (0.017)

Non-certified 0.125 0.181 0.056 (0.006)

Value Added 0.057 -0.042 0.099 (0.031)

Experience

No Experience 0 0.109 -0.109 (0.004)

Between 1 and 2 years 0.166 0.190 -0.024 (0.006)

Between 3 and 5 years 0.308 0.250 0.058 (0.007)

Between 6 and 10 years 0.271 0.187 0.084 (0.007)

Above 10 years 0.123 0.083 0.040 (0.005)

Notes. This table uses the centralized assignment data to compare the temporary teachers that
moved to a different school between 2016 and 2018 to the teachers that were hired to replace them
in 2018 over several dimensions. Details on how value added is estimated are in Appendix C.

quality and student achievement.

The suggestive evidence presented in this section highlights the need for further investi-

gation on the causes of teacher spatial sorting and mobility. More specifically, it is crucial

to understand (i) how teachers trade off geographical proximity against other job/locality

characteristics and (ii) how schools ration excess labor supply. To do so, I develop next a

general model of dynamic two-sided matching mapping teachers’ and schools’ preferences

into equilibrium sorting and job-to-job flows.10

4 Empirical Model of Dynamic Two-Sided Matching

In this section, I build on Menzel (2015) and develop a general model of dynamic two-

sided matching with non-transferable utility incorporating the following features. First, an

empirical model of teachers’ and schools’ preferences able to quantify how agents trade off a

potentially large set of job and teacher attributes. Second, state variables that evolve over

time depending on agents’ matching decisions. Third, forward-looking agents that anticipate

the effect of their current action on the future. Finally, an equilibrium concept mapping

10As reallocation entails costly migration decisions, embedding these decisions within a dynamic framework
is crucial to disentangle moving costs from taste for specific locality characteristics such as amenities or
remoteness (Kennan and Walker, 2011).
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these elements into sorting and job-to-job flows.

This section is divided into two parts. I first describe the environment, the preference

model and introduce the equilibrium concept. Then, I characterize the mapping between

preferences and realized sorting.

4.1 Model

Throughout this section, I refer to one side of the market as teachers and the other side

as schools. I assume that matching is one-to-one meaning that each school only opens

one vacancy. Alternatively, we can consider jobs as separate entities such that matching

is one-to-one by design. To simplify the analysis, I use a large market approximation to

obtain a tractable analytical expression linking primitives to equilibrium sorting. I start

by introducing the relevant parts of the model in the finite economy before defining the

asymptotic sequence that characterizes the limit economy.

4.1.1 Timing

I consider a repeated matching game where a set of schools and teachers meet in a single

market in each period. An extension considering the opposite polar case where matches are

irreversible is in Appendix F. Time is discrete and indexed by t = 1, ..., T . I assume that

T ∈ [1,∞] meaning that the model nests both the static case T = 1, which corresponds

to Menzel (2015), and the infinite horizon case T = ∞. For simplicity, I assume that the

set of participating agents and schools is fixed over time. However, this framework can be

extended to settings where agents enter and exit the market sequentially in an exogenous way.

Teachers are indexed by i ∈ I = {1, ..., nw} and schools are indexed by j ∈ J = {1, ..., nm}.

In each period t, a matching is formed summarized by the functions µwt, which maps I to

J ∪{0} and µmt, which maps J to I ∪{0} where 0 is the option of staying unmatched. The

resulting matching is summarized in µ = (µwt, µmt)
T
t=1.

Teacher i and school j are characterized in each period t by a set of observed characteristics

which are collected into two vectors xit and zjt. I fix the probability distribution functions

of their initial value xi1 and zj1 as w1(x) and m1(z) with support X1 and Z1 and assume

that they are exogenous. Individual states evolve stochastically over time depending on
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agents’ matching decisions µ through the Markov transition probability distribution functions

wt+1(xit+1|xit, zµwt(i)t) and mt+1(zjt+1|xµmt(j)t, zjt). I denote separately m0t+1(zjt+1|zjt) and

w0t+1(xit+1|xit) the transition probability distribution functions for agents choosing to stay

unmatched. Throughout the rest of the paper, I drop the index t from the functions w, w0,

m and m0 for simplicity. Finally, individual matching decisions in period t aggregate into

the probability distribution functions of observed states wt+1 and mt+1 as follows:

wt+1(x,µ) =

∫
Xt

∫
Zt

w(x|s, h)ft(s, h)dhds+

∫
Xt

w0(x|s)ft(s, ∗)ds

mt+1(z,µ) =

∫
Xt

∫
Zt

m(z|s, h)ft(s, h)dhds+

∫
Zt

m0(z|h)ft(∗, h)dh

where ft(x, z), ft(x, ∗) and ft(∗, z) are, respectively, the joint probability distribution func-

tion of the characteristics of matched teachers and schools, of unmatched teachers and of

unmatched schools in period t. A formal definition of these functions is in the next subsec-

tion.

4.1.2 Preferences and Beliefs

Agents are forward looking and anticipate how their current decision affects their lifetime

utility. I define the lifetime utility that teacher i gets from being matched with school j in

period t as:

Uijt = Ut(xit, zjt) + σηijt + βw

∫
U it+1(xit+1)w(xit+1|xit, zjt)dxit+1

whereas the lifetime utility that school j gets from being matched with teachers i in period

t is defined as:

Vijt = Vt(xit, zjt) + σεijt + βm

∫
V jt+1(zjt+1)m(zjt+1|xit, zjt)dzjt+1

Agents’ lifetime utility is first composed of a flow utility, which agents enjoy from their match

in period t. It includes a systematic part Ut(xit, zjt) and Vt(xit, zjt), where the functions

(Ut, Vt) are unknown, and unobserved shocks (ηijt, εijt) which are assumed to enter additively.
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σ is a normalizing sequence which is defined later. I impose the following assumptions on

these objects.

Assumption 1 (i) Ut and Vt are uniformly bounded in absolute value and p ≥ 1 times

differentiable with uniformly bounded partial derivatives in X × Z for all t.

(ii) εijt and ηijt are drawn independently from xit and zjt from a distribution with absolutely

continuous c.d.f. G(s) and density g(s). The upper tail of the distribution G(s) is of type I

with auxiliary function a(s) = 1−G(s)
g(s)

.

Assumption 1.(i) is a standard regularity condition which ensures that the functions Ut

and Vt are well-behaved. Assumption 1.(ii) imposes restrictions on the upper tail of the

distribution of εijt and ηijt but leaves the lower tail unrestricted. As the number of teachers

and schools grows to infinity, the number of independent draws of εijt and ηijt also grows.

All draws of εijt and ηijt from the lower tail of their distribution thus become inconsequential

in determining which is the most preferred school or teacher. As in Menzel (2015), I assume

that G belongs to a class of distributions which has a type I extreme value distributed upper

tail.11 Note that this class of functions encompasses most of the parametric distributions

traditionally used in discrete choice models. For the Gamma distribution or the Gumbel

distribution, Assumption 1.(ii) holds for a(s) = 1. For the standard normal distribution, it

holds for a(s) = 1
s
.

Agents’ lifetime utility is then composed of a continuation value. Teachers and schools

internalize that their matching decisions affect their future states and thus their future pay-

offs. This continuation value is the discounted sum of future expected payoffs. I assume that

teachers discount future utility at a rate βw, while schools discount at a rate βm. I define

U it+1 and V jt+1 as agents’ expectations about Uiµt+1(i),t+1 and Vµt+1(j)j,t+1 conditional on their

future state variables. As agents only observe their current states, I integrate this object over

the transition distribution functions m and w. I impose the following assumptions on U it+1

and V jt+1.

11This class of distribution is also called the domain of attraction of the Gumbel distribution (Resnick
(1987))
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Assumption 2 For each period t, each teacher i = 1, ..., nw and each school j = 1, ..., nm:

U it+1(x) = ESt [Uiµt+1(i),t+1|xi,t+1 = x] and V jt+1(z) = ESt [Vµt+1(j)j,t+1|zj,t+1 = z]

where St is the information set of participating agents in period t:

St = {(m̃s)
T
s=t, (w̃s)

T
s=t, G, (Us)

T
s=t, (Vs)

T
s=t}

Assumption 2 states that agents have rational expectations about the lifetime utility they

will get from their future match conditional on their future state. Agents have incomplete

information about the exact realization of the future observed and unobserved states of other

participants. Instead, I assume that they know the distribution of taste shocks and the pay-

off functions for all subsequent periods. I also assume that they form beliefs (m̃s)
T
s=t, (w̃s)

T
s=t

about the probability distribution functions of future aggregate states (ms(µ))Ts=t, (ws(µ))Ts=t.

I assume that individual agents are atomistic and internalize that their decisions only influ-

ence their own future state and not the future aggregate states.

4.1.3 Normalizations

For the limit economy to predict sorting patterns that are consistent with the finite economy,

I make a few technical assumptions. First, I specify the utility of the outside option as

follows:

Ui0t = σ max
k=1,...,J

ηi0,k + βw

∫
U it+1(xit+1)w0(xit+1|xit)dxit+1

V0jt = σ max
k=1,...,J

ε0j,k + βm

∫
V jt+1(zjt+1)m0(zjt+1|zjt)dzjt+1

I then assume that the size of the market is denoted by n and impose the following normal-

izations on the asymptotic sequence:

Assumption 3 The asymptotic sequence is controlled by n = 1, 2, ... and we define:

(i) nw = [exp(γw)n], nm = [exp(γm)n]

(ii) J = [n1/2]

(iii) σ = 1
a(bn)

where bn = G−1(1− n−1/2)
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Assumption 3.(i) allows to flexibly control the relative sizes of each side of the market

through the parameters γw and γm. Assumption 3.(ii) guarantees that, in each period t, the

probability that teachers or schools stay unmatched does not degenerate to zero in the limit.

If the size of the outside option does not grow with the size of the market, the probability

that it becomes dominated by an alternative option will tend to one given that taste shocks

have unbounded support. Assumption 3.(iii) controls the scale of the unobserved shocks

such that both the unobserved and systematic parts of the payoffs jointly determine agents’

choices in the limit. Given that Ut and Vt are bounded and that the support of taste shocks

is unbounded, Ut and Vt would become irrelevant in the limit without this restriction. More

specifically, if G is Gumbel, then bn � 1
2

log(n) and σn = 1. If taste shocks are standard

normal, bn �
√

log n and σn � bn and for Gamma distributed taste shocks, bn � log(n) and

σn = 1.

4.1.4 Equilibrium

To rationalize the observed matching and link it to the primitives of the model, I impose the

following equilibrium assumptions.

Assumption 4 The match µ is such that, for all i = 1, ..., nw and j = 1, ..., nm in each

period t:

(i) Individually rational in period t: Uiµwt(i)t ≥ Ui0t and Vµmt(j)jt ≥ V0jt.

(ii) No blocking pairs in period t: There exists no pair (i, j) such that Uijt > Uiµwt(i)t and

Vijt > Vµmt(j)jt.

(iii) Consistent beliefs about aggregate states:

w̃t+1(x) = wt+1(x,µ) =

∫
Xt

∫
Zt

w(x|s, h)ft(s, h)dhds+

∫
Xt

w0(x|s)ft(s, ∗)ds

m̃t+1(z) = mt+1(z,µ) =

∫
Xt

∫
Zt

m(z|s, h)ft(s, h)dhds+

∫
Zt

m0(z|h)ft(∗, h)dh

Assumption 4 (i) and (ii) impose that the outcome of the match is stable in each period t

given agents’ lifetime utility. This means that there should exist no teacher-school pair that

would prefer to break their current match to rematch together instead. Note that I impose
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no restriction on preferences such that within a single period there could exist many different

stable outcomes (Roth and Sotomayor, 1992). I define the teacher-optimal stable match in

period t as µWt and the firm-optimal stable match in period t as µMt . Assumption 4 (iii)

imposes that agents’ beliefs about the distribution of future aggregate states are consistent

with the actual realized equilibrium distributions.

4.2 Linking Primitives to Equilibrium Sorting

Equilibrium sorting and job-to-job transitions are summarized by the joint distributions

of matched characteristics in each period t. I define this distribution for a given random

matching µt from a finite economy indexed by n as follows:

Fnt(xit, zjt|µt) =
1

n

nw∑
i=0

nm∑
j=0

P(xit ≤ x, zjt ≤ z, µwt(i) = j)

I then denote Ft the limit of the distribution function Fnt as the size of the market n grows

to infinity. I also define the joint density of matched characteristics as ft. The goal of this

section is to express ft as a function of the primitives of the model.

The proof is divided in four steps. First, I show that stability implies that the realized

matches in each period can be interpreted as the outcome of two dynamic discrete choice

models with endogenous and unobserved choice sets called opportunity sets. Second, I con-

sider a simplified economy with observed and exogenous choice sets and derive the limit of

conditional choice probabilities. Third, I show that the information contained in opportunity

sets which is necessary to characterize conditional choice probabilities can be summarized into

sufficient statistics called inclusive values. Finally, I show that, in the limit, these inclusive

values converge to the unique solution of a fixed point problem. This allows to characterize

conditional choice probabilities and, in turn, ft as a function of agents’ payoff functions.

4.2.1 Opportunity Sets

Given an arbitrary match µ, I define the opportunity set of a teacher in period t as the set

of schools that would be willing to hire her instead of its currently matched employee in the

same period. Similarly, the opportunity set of a school is the set of teachers that would be

19



willing to quit their current employer to work there. Formally, I define the opportunity set

faced by a given teacher i ∈ I in period t given a match µ as:

Mit(µ) = {j ∈ J : Vijt ≥ Vµmt(j)jt}

Similarly, I define the opportunity set of school j ∈ J as:

Wjt(µ) = {i ∈ I : Uijt ≥ Uiµmt(i)t}

I state the first important result:

Proposition 1 Consider a match µ∗ satisfying Assumption 4, for all i = 1, ..., nw and j =

1, ..., nm:

(i) For all t = 1, ..., T :

Uiµ∗wt(i)t
= max

k∈Mit(µ∗)∪{0}
Uikt and Vµ∗mt(j)jt

= max
l∈Wjt(µ∗)∪{0}

Vljt

(ii) Under Assumption 2, for all t < T :

U it+1(x) = ESt
[

max
k∈Mit+1(µ∗)∪{0}

Uikt+1|xit+1 = x

]

V jt+1(z) = ESt
[

max
l∈Wjt+1(µ∗)∪{0}

Vljt+1|zjt+1 = z

]
See Appendix D.1 for a proof of this result. Proposition 1.(i) states that a match µ∗t is

stable if and only if each teacher i ∈ I is matched to her preferred school among her oppor-

tunity set and each school j ∈ J is matched to its preferred teacher among its opportunity

set. Proposition 1.(ii) thus follows immediately from (i). This result implies that an equi-

librium match µ∗ can be rewritten as the outcome of two dynamic discrete choice models

where each agent’s choice set is its opportunity set. The characterization of optimal choices

within dynamic discrete choice models has been extensively studied and used in a variety

of settings. However, existing results cannot be transposed to this problem as opportunity

sets (i) depend on agents’ preferences and are thus unobserved and (ii) depend on the overall
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equilibrium match and are thus potentially endogenous. The rest of the proof shows that

these two issues can be circumvented thanks to a large market approximation.

4.2.2 Conditional Choice Probabilities

To simplify the analysis, I start by characterizing the limit of conditional choice probabilities

(CCPs) and expected future payoffs under arbitrary exogenous choice sets and by fixing the

aggregate states distributions. I assume that Mit = {1, ..., J} and Wjt = {1, ..., J} for all t

and I fix mt and wt for all t.

Proposition 2 Consider a given teacher i ∈ I. Under Assumption 1-3 we have:

(i) For all t, as J →∞:

JP(Uijt ≥ Uikt, k = {0, 1, ..., J}|xit, zjt) −→

exp

{
Ut(xit, zjt) + βw

∫
U t+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+
∫

exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

P(Ui0t ≥ Uikt, k = {0, 1, ..., J}|xit) −→

exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+
∫

exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

(ii) For all t:

U t+1(x) = log

(
exp

{
βw

∫
U t+2(s)w0(s|x)ds

}
+

∫
exp

{
Ut+1(x, h) + βw

∫
U t+2(s)w(s|x, h)

}
mt+1(h)dh

)
+ log(J) + γ + o(1)

where γ ≈ 0.5772 is Euler’s constant. See Appendix D.2 for a proof of this result. The

same result holds symmetrically for the school side. Proposition 2 shows that, under the

assumption that unobservables have a type-I upper tail, CCPs converge to the usual Logit
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formula when the number of alternatives grow to infinity. Similarly, expectations about future

payoffs can be computed using the logsum formula commonly used in dynamic discrete choice

models with type-I errors.12

Note that the conditional choice probability of choosing a particular alternative j would

converge to zero if we do not weight it by J , the rate at which the total number of alternatives

increases. Lemma 1 in Appendix D.4 establishes that the size of opportunity sets increases

at a rate
√
n which justifies Assumption 3.(ii).

4.2.3 Inclusive Values

I now introduce that opportunity sets are unobserved and endogenous and show that the

implications of Proposition 2 allow us to tackle both of these issues.

Endogeneity arises as shifting teacher i’s unobserved preferences in a given period t could

affect her own opportunity set by triggering a chain of rematches. As in Menzel (2015), I find

that, as the size of the market increases, the probability for such an event to occur vanishes

to zero. This result stems from two implications of Proposition 2: (i) the probability that

school j rematches with a specific teacher i vanishes to zero as the size of opportunity sets

increases to infinity and (ii) the probability of choosing the outside option instead, which

would terminate such a chain of rematches, is nondegenerate in the limit. This implies that

the dependence between taste shocks and opportunity sets vanishes in the limit. Note that

this claim can only be proven for the opportunity sets derived from the school-optimal and

teacher-optimal stable matchings µMt and µWt . The distribution of taste shocks conditional

on opportunity sets is only well defined for the extremal matchings, given that they are the

only stable matchings that always exist irrespective of the size of the market. This result is

formalized in Lemmas 2 and 3 in Appendix D.4.

I now consider a sequence of school-optimal stable matches µM . As opportunity sets’

endogeneity vanishes in the limit for extremal matchings, we can then use Proposition 2 (i)

to bound13 teachers’ CCPs in period t, assuming that we would observe the corresponding

12These CCPs exhibit the independence of irrelevant alternatives (IIA) property which limits the model’s
ability to allow for flexible substitution patterns. Introducing unobserved discrete types or random coefficients
to relax this assumption is possible.

13Note that I only provide bounds given that there are several potential stable matches µ∗t such that
Mit(µ

∗
t ) = Mit(µ

M
t ) and Wjt(µ

∗
t ) = Wjt(µ

M
t ).
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opportunity set Mit(µ
M
t ) and future expected payoff function U

M

it+1:

n1/2P(Uijt ≥ max
k∈Mit(µM

t )∪{0}
Uikt|xit, zjt, (zkt)k∈Mit(µM

t ),Miτ (µMt ), U
M

it+1) ≤ (1)

exp

{
Ut(xit, zjt) + βw

∫
U
M

it+1(s)w(s|xit, zjt)ds
}

exp

{
βw
∫
U
M

it+1(s)w0(s|xit)ds
}

+ n−1/2
∑

k∈Mit(µM
t )

exp

{
Ut(xit, zkt) + βw

∫
U
M

it+1(s)w(s|xit, zkt)ds
} + o(1)

Similar bounds can be computed for a sequence of teacher-optimal stable match µW where

the direction of the inequality is reversed. The same result also holds for the school side with

the direction of the inequality reversed. Using Proposition 2 (ii), we can also bound agents’

expectations about their match payoff under a sequence of school-optimal stable matches µM

as follows:

U
M

it (x) ≥ log

(
exp

{
β

∫
U
M

it+1(s)w0(s|x)ds

}
(2)

+ n−1/2
∑

k∈Mit(µM
t )

exp

{
Ut(x, zkt) + β

∫
U
M

it+1(s)w(s|x, zkt)ds
})

+
1

2
log(n) + γ + o(1)

where again similar bounds can be computed for the teacher-optimal stable match and for

the school side with the direction of the inequality reversed.

In Equations (1) and (2), n−1/2
∑

k∈Mit(µMt ) exp
{
Ut(xit, zkt)+βw

∫
U
M

it+1(s)w(s|xit, zkt)ds
}

serves as a sufficient statistic that collapses all the information contained in opportunity sets

which is needed to approximate CCPs and expectations about future payoffs. These objects

are called inclusive values. More generally, I define teacher i’s inclusive value given a sequence

of realized matches µ∗ as:

I∗wit = n−1/2
∑

k∈Mit(µ∗t )

exp

{
Ut(xit, zkt) + βw

∫
U
∗
it+1(s)w(s|xit, zkt)ds

}

Similarly, I define school j’s inclusive value given µ∗ as:

I∗mjt = n−1/2
∑

l∈Wjt(µ∗t )

exp

{
Vt(xlt, zjt) + β

∫
V
∗
jt+1(s)m(s|xlt, zjt)ds

}
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I also define IMwit and IMmjt as the inclusive values that would arise under a sequence of school-

optimal stable matches µM in period t and IWwit and IWmjt as the inclusive values that would

arise under a sequence of teacher-optimal stable matches µW in period t.

4.2.4 Fixed point characterization

Inclusive values are unobserved as we do not observe opportunity sets, we do not know which

stable match is selected and we do not know agents’ expectations about future match payoffs.

The rest of the proof shows that the inclusive values arising from an equilibrium match µ∗

can be approximated by the solution of a fixed point problem.

I first show that, as in the static case (Menzel (2015)), inclusive values arising from a

sequence of school-optimal and teacher-optimal stable matches in a given period t can be

approximated by expected inclusive value functions. I rewrite IMwit as:

IMwit =
1

n

nm∑
k=1

exp

{
U(xit, zkt) + βw

∫
U
M

it+1(s)w(s|xit, zkt)ds
}
×
√
n1{k ∈Mit(µ

M
t )}

=
1

n

nm∑
k=1

exp

{
U(xit, zkt) + βw

∫
U
M

it+1(s)w(s|xit, zkt)ds
}√

n1{Vikt ≥ max
l∈Wkt(µ

M
t )∪{0}

Vlkt}

The inclusive value of a given teacher is determined by the set of schools that would accept

her, which in turn depends on the preferences of all schools as well as their opportunity sets.

Using the school analogous of Equation (1), I thus show that:

IMwit ≥ Γ̂Mwt(xit) + op(1) and IMmjt ≤ Γ̂Mmt(zjt) + op(1)

where Γ̂Mwt and Γ̂Mmt are the school-optimal expected inclusive value function of teachers and

schools in period t which are defined as:

Γ̂Mwt(xit) =
1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + Vt(xit, zkt) + β

∫
U
M

it+1(s)w(s|xit, zkt)ds+ β
∫
V
M

kt+1(s)m(s|xit, zkt)ds
}

exp

{
β
∫
V
M

kt+1(s)m0(s|zkt)ds
}

+ IMmkt

24



Γ̂Mmt(zjt) =
1

n

nw∑
l=1

exp

{
Ut(xlt, zjt) + Vt(xlt, zjt) + β

∫
U
M

lt+1(s)w(s|xlt, zjt)ds+ β
∫
V
M

jt+1(s)m(s|xlt, zjt)ds
}

exp

{
β
∫
U
M

lt+1(s)w0(s|xlt)ds
}

+ IMwlt

where I define U
M

it+1 and V
M

jt+1 as follows:

U
M

it+1(x) = log

(
exp

{
β

∫
U
M

it+2(s)w0(s|x)ds

}
+ IMwit+1

)

V
M

jt+1(z) = log

(
exp

{
β

∫
V
M

jt+2(s)m0(s|z)ds

}
+ IMmjt+1

)
Note that similar bounds can be established for the inclusive values that would arise

under the teacher-optimal stable match:

IWwit ≤ Γ̂Wwt(xit) + op(1) and IWmjt ≥ Γ̂Wmt(zjt) + op(1)

A formal exposition and proof of this result can be found in Lemma 4 in Appendix D.4. The

inclusive value of a given teacher can be approximated by a function of schools’ preferences

and inclusive values. Similarly, the inclusive value of a given school can be approximated by

a function of teachers’ preferences and inclusive values. Hence, the two-sided nature of the

problem gives rise naturally to a fixed point problem characterizing these inclusive values.

Dynamics add a layer of complexity as expectations about future payoffs depend on future

inclusive values. There is thus dependence between inclusive values within and across periods.

The rest of the proof entails characterizing this fixed point problem and showing that

inclusive values arising from an equilibrium match µ∗ can be approximated by its solution. I

define the fixed point mappings as follows:

Ψ̂wt[Γ](x) =
1

n

nm∑
k=1

exp
{
Ut(x, zkt) + Vt(x, zkt) + β

∫
U t+1[Γ](s)w(s|x, zkt)ds+ β

∫
V t+1[Γ](s)m(s|x, zkt)ds

}
exp

{
β
∫
V t+1[Γ](s)m0(s|zkt)ds

}
+ Γmt(zkt)

Ψ̂mt[Γ](z) =
1

n

nw∑
l=1

exp
{
Ut(xlt, z) + Vt(xlt, z) + β

∫
U t+1[Γ](s)w(s|xlt, z)ds+ β

∫
V t+1[Γ](s)m(s|xlt, z)ds

}
exp

{
β
∫
U t+1[Γ](s)w0(s|xlt)ds

}
+ Γwt(xlt)
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U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)

V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)

I then show that for a given equilibrium match µ∗, for any x ∈ X and z ∈ Z in each

period t:

Γ̂∗wt(x) = Ψ̂wt[Γ̂
∗](x) + op(1) and Γ̂∗mt(z) = Ψ̂mt[Γ̂

∗](z) + op(1) (3)

meaning that inclusive values in period t arising from an equilibrium match µ∗ can be ap-

proximated by fixed points of the mappings Ψ̂wt, Ψ̂mt. To characterize the limit of inclusive

values, I then consider the limit version of this fixed point problem:

Γwt = Ψwt[Γ] and Γmt = Ψmt[Γ] ∀t (4)

where Ψwt and Ψmt are defined in Appendix D.3. The final step of the proof shows that this

population fixed point problem has a unique solution and that the approximate solution of

the finite sample fixed point problem converges to it. This is stated in the following result:

Theorem 1 Under Assumption 1-4:

(i) The mapping (log Γw, log Γm) 7→ (log Ψm[Γ], log Ψw[Γ]) is a contraction.

(ii) The fixed point problem described in Equation (4) always has a unique solution Γ∗m,Γ
∗
w.

(iii) For any equilibrium µ∗, I∗wit −→ Γ∗wt(xit) and I∗mjt −→ Γ∗mt(zjt) for all i, j and t.

The complete proof of this result can be found in Appendix D.4. Theorem 1 has several

implications. First, it implies that for any arbitrary equilibrium match µ∗, inclusive values

converge to the same limit. Consequently, even if there might exist several matches which

satisfy the equilibrium conditions in Assumption 4, all are observationally equivalent in the

limit. Second, it implies that we can easily characterize conditional choice probabilities as

inclusive value functions can be derived by iterating a contraction mapping.
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4.2.5 Main result

From Theorem 1 and Proposition 2, we can fully characterize analytically the equilibrium of

the model as a function of teachers’ and schools’ payoff functions. The limit joint density of

matched characteristics ft can be derived from the limit of conditional choice probabilities

and has the following expression:

ft(x, z)

wt(x)mt(z)
=

exp

{
Ut(x, z) + Vt(x, z) + β

∫
U
∗
t+1(s)w(s|x, z)ds+ β

∫
V
∗
t+1(s)m(s|x, z)ds+ γw + γm

}
(

exp

{
β
∫
U
∗
t+1(s)w0(s|x)ds

}
+ Γ∗wt(x)

)(
exp

{
β
∫
V
∗
t+1(s)m0(s|z)ds

}
+ Γ∗mt(z)

)

ft(x, ∗)
wt(x)

=

exp

{
β
∫
U
∗
t+1(s)w0(s|x)ds+ γw

}
(

exp

{
β
∫
U
∗
t+1(s)w0(s|x)ds

}
+ Γ∗wt(x)

)

ft(∗, z)
mt(z)

=

exp

{
β
∫
V
∗
t+1(s)m0(s|z)ds+ γm

}
(

exp

{
β
∫
V
∗
t+1(s)m0(s|z)ds

}
+ Γ∗mt(z)

)
where ft(x, ∗) and ft(∗, z) are, respectively, the density of the characteristics of unmatched

teachers and unmatched schools. I define the equilibrium expected future payoff functions

U
∗
t+1 and V

∗
t+1 recursively as:

U
∗
t+1(x) = log

(
exp

{
β

∫
U
∗
t+2(s)w0(s|x)ds

}
+ Γ∗wt+1(x)

)

V
∗
t+1(z) = log

(
exp

{
β

∫
V
∗
t+2(s)m0(s|z)ds

}
+ Γ∗mt+1(z)

)
and the equilibrium aggregate states distribution w∗t and m∗t as:

w∗t (x) =

∫
Xt

∫
Zt

w(x|s, h)ft−1(s, h)dhds+

∫
Xt

w0(x|s)ft−1(s, ∗)ds

m∗t (z) =

∫
Xt

∫
Zt

m(z|s, h)ft−1(s, h)dhds+

∫
Zt

w0(x|s)ft−1(∗, h)dh

To simulate the equilibrium in practice, one first needs to solve for inclusive values given

27



the specified payoff functions, the initial aggregate distribution of states m1 and w1 and the

transition distribution functions. From there, it is then possible to construct Uijt and Vijt

given a simulated set of taste shocks ε and η. To reach a stable match and simulate the

equilibrium in a given period t, any version of the Deferred Acceptance algorithm can be

used as they are observationally equivalent. Monte Carlo simulations testing the validity of

the convergence results derived in this section can be found in Appendix E.

5 Identification and Estimation

The previous section built an equilibrium model of dynamic two-sided matching and provided

a tractable way to map preferences into sorting. This section shows that this mapping can

be inverted such that one can identify and estimate preferences from observed sorting.

5.1 Sampling Process

I assume that the available data is a random sample of a panel of individuals from the

population regardless of whether they are schools or teachers. One observation in a given

period t is thus composed of this individual alone, in the case where it is unmatched, or along

with its matched partner otherwise. The probability that a matched individual is selected by

this sampling process is thus twice the probability that an unmatched individual is selected.

The joint density function of matched characteristics ht arising from this sampling process

relates to ft in the following way:

ht(x, z) =
2ft(x, z)

exp{γwt}+ exp{γmt}

where ht(x, z) is the mass of schools with observed characteristics z matched with teachers

with observed characteristics x in period t arising from the sampling scheme defined above

and exp{γw} + exp{γm} is the total mass of teachers and schools available in this economy.

Similarly, I define:

ht(x, ∗) =
ft(x, ∗)

exp{γw}+ exp{γm}
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ht(∗, z) =
ft(∗, z)

exp{γw}+ exp{γm}

where ht(∗, z) is the mass of unmatched schools with observed characteristics z and ht(x, ∗)

is the mass of unmatched teachers.

I also assume that we observe the aggregate distribution of observed states mt and wt as

this can be easily recovered from ft as follows:

∫
Zt

ft(x, z)dz + ft(x, ∗) = wt(x) exp{γw}

∫
Xt

ft(x, z)dx+ ft(∗, z) = mt(z) exp{γm}

Finally, I assume that the Markov transition density functions m, m0, w and w0 can be

directly identified from data on observed state transitions.

5.2 Identification

The primitives of the model that we do not observe and wish to identify and estimate from

the data are the payoff functions (Ut)
T
t=1 and (Vt)

T
t=1 and the discount factors βw and βm.

We know from the literature on dynamic discrete choice models that intertemporal prefer-

ences cannot be identified from observed choices without further assumptions (Magnac and

Thesmar (2002)).14 I thus fix the value of the discount factors from now onward. Similarly,

I cannot allow for T = ∞ while having a nonstationary setting. I thus consider two polar

cases: (i) T <∞ and nonstationarity and (ii) T =∞ and stationarity.

5.2.1 Finite horizon

Given the recursive structure of the problem, the identification argument in the finite horizon

case can be done by backward induction. Starting from the last period T , we can identify

the joint surplus as follows:

UT (x, z) + VT (x, z) = log

(
fT (x, z)

fT (x, ∗)fT (∗, z)

)
14Similarly, the flow utility of one alternative needs to be fixed in each period. This is already done through

normalizing the option of staying unmatched.
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We can also identify Γ∗wT and Γ∗mT from the distribution of unmatched teachers and schools:

Γ∗wT (x) =
wT (x) exp(γwT )

fT (x, ∗)
− 1

Γ∗mT (z) =
mT (z) exp(γmT )

fT (∗, z)
− 1

UT and V T can then be computed by backward induction:

UT (x) = log(1 + Γ∗wT (x)) + γ

V T (z) = log(1 + Γ∗mT (z)) + γ

From there, we can then repeat the same steps to identify the inclusive value functions and

the joint surplus in period T−1. Finally, we iterate the procedure to identify the joint surplus

and the inclusive value functions in all periods t. This results in the following proposition.

Proposition 3 Under Assumption 1-4 and for T <∞:

(i) The joint surplus function Ut + Vt and the inclusive value functions Γ∗wt and Γ∗mt are

identified for all t from ft, the limiting joint distribution of matched characteristics in period

t.

(ii) Without further restrictions, we cannot separately identify Ut and Vt for all t.

We face a similar identification challenge as in the static case (Menzel, 2015) as preferences

are not separately identified from the joint surplus. However, note that this is not necessarily

a negative result. Given that the joint distribution of matched characteristics is solely driven

by the joint surplus, knowing the joint surplus is enough to perform counterfactuals where

we would change the distribution of teachers’ and schools’ observed attributes. Nevertheless,

we might be interested in identifying and estimating preferences as these might be objects

of interest. Exclusion restrictions might be useful to disentangle preferences from the joint

surplus, as in the static case (Ederer, 2022). In the empirical analysis, I use additional

data on how schools rank the applicants they interview to disentangle teachers’ and schools’

preferences from the joint surplus.
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5.2.2 Infinite horizon

To allow for T =∞, I impose the following assumptions.

Assumption 5 (i) Stationarity of preferences: Ut = U and Vt = V for all t.

(ii) Stationarity of aggregate states distribution: mt = m and wt = w for all t.

Assumption 5 has the direct implication that inclusive value functions are also stationary

Γmt = Γm and Γwt = Γw for all t. As a consequence, U t = U and V t = V . However,

Assumption 5 (ii) is fairly restrictive as it forces aggregate states to remain on a predetermined

stationary path which might not be consistent with what the model predicts. Showing

existence of a stationary equilibrium which would satisfy consistency requirements is left for

future work. Assumption 5 then implies that we can write:

f(x, ∗)
w(x)

=

exp

{
β
∫
U
∗
(s)w0(s|x)ds

}
(

exp

{
β
∫
U
∗
(s)w0(s|x)ds

}
+ Γ∗w(x)

)

=

exp

{
β
∫
U
∗
(s)w0(s|x)ds

}
exp

{
U
∗
(x)− γ

} = exp

{
β

∫
U
∗
(s)w0(s|x)ds− U∗(x) + γ

}

From there, we can invert this mapping to recover U
∗
. We can follow the same steps to

recover V from f(∗, z). It is then immediate to see that we can identify U + V from f(x, z).

Proposition 4 Under Assumption 1-5 and for T =∞:

(i). The joint surplus function U + V and the inclusive value functions Γ∗w and Γ∗m are

identified from the limiting joint distribution of matched characteristics in each period f .

(ii). Without further restrictions, we cannot separately identify U and V .

Note that in the stationary case, a single cross section is sufficient to identify and estimate

U + V as the joint distribution of matched characteristics does not depend on t anymore.

However, this does not mean that dynamics do not play a role as agents still make forward

looking decisions.
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5.3 Estimation

I consider a parametric version of this framework where I define the payoff functions as

U(x, z;θt) and V (x, z;θt) such that U and V are known for all (x, z) up to a vector of

unknown parameters θt. I assume that we observe a random sample of K individuals over

each period t, drawn from the sampling scheme described in Section 5.1, along with their

respective matches. For a given observation k in period t, we observe a vector (xt(k), zt(k))

which is encoded differently depending on the type of match we observe. For an unmatched

teacher, indexed by wt(k) = 0, I record its characteristics in xt(k) and encode zt(k) as missing.

Similarly, for an unmatched school, indexed by mt(k) = 0, I record its characteristics in zt(k)

and encode xt(k) as missing. For a matched teacher or school, indexed by mt(k) = wt(k) = 1,

I record their characteristics in (xt(k), zt(k)). We can then construct the following sample

average log-likelihood:

L(x, z;θ) =
1

KT

T∑
t=1

K∑
k=1

log
[
1{wt(k) = 0}ht(xt(k), ∗,θt) + 1{mt(k) = 0}ht(∗, zt(k),θt)

+ 1{mt(k) = 1, wt(k) = 1}ht(xt(k), zt(k),θt)
]

Calculating the likelihood function for a given parameter vector θ first involves solving the

fixed point problem described in Equation 4 to derive the inclusive values. This can be

achieved by setting up an inner loop which will apply the contraction mapping until conver-

gence. The estimator proposed is then defined as:

θ̂ = arg max
θ∈Θ

L(x, z;θ)

Asymptotic inference for θ̂ is then standard if the size of the sample is not too large relative to

the size of the overall economy. As noted in Menzel (2015) and Diamond and Agarwal (2017),

the inherent structure of matching markets could introduce dependence between observations.

A bootstrap procedure could then be used for inference otherwise (Diamond and Agarwal,

2017; Menzel, 2021). Monte Carlo simulations testing the validity of the proposed estimation

strategy can be found in Appendix E.
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6 Empirical Strategy

The rest of the paper leverages the above general methodology to identify and estimate teach-

ers’ and schools’ preferences and investigate the determinants of the observed spatial sorting

and job-to-job flows. Before showing the results of the empirical analysis, I briefly describe

how I adapt the model to the context under study by defining the estimation sample, how

model primitives are parameterized and discussing the identification strategy.

Estimation Sample: Throughout the empirical analysis, I consider one side as being teachers

and the other side as jobs such that matching is one-to-one.15 I use several parts of the

centralized assignment data for identification and estimation. First, I use information on

the universe of applicants and positions that participate in the centralized allocation for the

academic years 2016, 2018 and 2020. This allows me to identify directly from the data the

distribution of aggregate states mt and wt for t = {2016, 2018, 2020}. I then use data on

realized matches following the sampling process described in Section 5 in order to identify

the joint distribution of matched characteristics ft for t = {2016, 2018, 2020}. Finally, I sup-

plement the analysis with additional data on how schools rank the applicants they interview.

This allows me to overcome the negative result highlighted in Proposition 3 by separately

identifying preferences from the joint surplus. As the horizon of the data is limited, I fix the

distribution of aggregate states and the payoff functions to be stationary from 2020 onward

and set the horizon of the model to T = ∞. This avoids assuming that the continuation

value of a match in 2020 is zero.

Permanent vs. Temporary Contracts : I consider the joint allocation of permanent and tem-

porary positions. Permanent contracts have several non-standard features that the model

needs to account for. Teachers are forced to stay at least three years in the first permanent

job they accept. Once a teacher accepts a permanent position, it can no longer participate

in the centralized allocation mechanism (see Appendix B for more details). This has several

15In a static setting, observing the same school making several choices brings additional identification
power to pin down schools’ unobserved preference heterogeneity (Ederer, 2022). Investigating whether this
result also holds in a dynamic setting is left for future work.
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implications. First, this implies that choosing a permanent contract is a commitment to stay

at least three years in the same location. It is thus crucial to model how agents sort between

these two types of contracts in order to explain teachers movements across locations.16 Sec-

ond, this means that choosing a permanent position is a terminating action as teachers exit

the market if they do so. I thus specify the lifetime utility that teacher i gets from choosing

a permanent position j as follows:

Uijt = U(xit, zjt,θperm) + σηijt

while the utility that teacher i gets from choosing a temporary position k is defined as:

Uikt = U(xit, zkt,θtemp) + σηikt + βw

∫
U it+1(xit+1)w(xit+1|xit, zkt)dxit+1

Similarly, on the school side, I assume that accepting to match with a teacher with a

permanent contract is a terminating action. I thus define the utility that a school with a

permanent vacancy j gets from being matched with teacher i as:

Vijt = V (xit, zjt,γ) + σεijt

As for temporary jobs, the allocation mechanism is priority-based and schools cannot express

their preferences, I assume that the utility that a school with a temporary vacancy j gets

from being matched with teacher l is:

Vljt = slt

where slt is teacher l’s test score in period t. This slightly simplifies the problem as we can

directly observe which temporary jobs are in teachers’ opportunity sets.

Parametrization Payoffs : As one time period spans two academic years, I first set the dis-

count factor βw to 0.9. The model aims to capture (i) how teachers trade off geographical

16Figure A.2 shows that sorting across permanent and temporary contracts explains a large part of the
observed attrition patterns.
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proximity with other job characteristics such as wages and amenities and (ii) how schools

value observed measures of teacher quality. I thus parametrize teachers’ payoff function as

follows:

U(xit, zjt;θ) = θ0 + θ1wjt + a′jtθ2 + d′ijθ3 +m′ijtθ4 + z′jtθ5 + x′itθ6

Where wjt is the monthly wage offered in school j in year t, ajt is a vector of indicators

measuring the local level of amenities through the availability of a range of services such

as electricity, sewage, medical centers, internet and libraries, dij is a spline of the distance

between school j and teacher i’s home location and mijt is a set of dummies indicating if

teacher i’s current location is in the same region or province as school j. I also include other

teacher characteristics xit such as experience, marital status, gender and age as well as other

school/locality characteristics zjt part of the bonus scheme driving the variation in wages. I

then parametrize schools’ payoff function as:

V (xit, zjt;γ) = γ0 + s′itγ1 + e′itγ2 + z′jtγ3 + x′itγ4

Where sit is a vector of the different components of teacher i’s test score in period t, eit is a

vector of dummies dividing the experience level of teacher i in period t in discrete categories.

I also include various additional teacher and school characteristics in xit and zjt. Note that

I exclude wages, amenities and geographical proximity from schools’ preferences. I directly

test for these exclusion restrictions by estimating schools’ preferences separately and find that

we cannot reject that the parameters associated to these characteristics are jointly equal to

zero.

The main parameters of interest on the teacher side are (θ1, θ2,θ3,θ4). They quantify

the trade offs between wages, amenities and geographical proximity which drive how mobile

labor supply is. On the school side, the main parameters of interest are γ1,γ2 as they are

likely to explain how the demand side rations excess supply and thus how teacher quality is

distributed across locations.

Transition processes : I separate state variables evolving over time in several groups. I assume
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that age and experience evolve deterministically and exogenously by getting incremented by

one every year. The competency score sit, which is contained in xit, evolves stochastically

and exogenously. I assume that the transition distribution function of sit is conditionally

normal such that:

sit+1|xit, zjt ∼ N (x′itβx + z′jtβz, σ
2)

I estimate (βx,βz) via an auxiliary linear regression and report the estimates in Table A.4.

Finally, mijt evolves deterministically and endogenously. Each move across provinces or

regions updates teachers’ current location such that they internalize that moving again in

the next period might be costly.

Additional identifying variation: To overcome the negative result of Proposition 3 and sep-

arately identify teachers’ and schools’ preferences from the joint surplus, I use additional

data on how schools rank the applicants they interview. As the set of interviewees in each

school is determined by teachers’ rank-ordered list and priority index, schools’ choice sets

are independent of schools’ unobserved preferences by construction. Schools do not have

incentives to misreport their preferences at this stage as job offers are automatically sent in

order of the reported ranks. I thus assume that these rankings are truthful and use them to

construct the corresponding exploded logit conditional choice probabilities. The log of these

CCPs then enters additively in the log-likelihood derived in Section 5.17

Discussion of the stability assumption: While I cannot directly test whether the observed

matching is stable, several properties of the allocation mechanism, described in Section 2,

limit the presence of frictions that could lead to the existence of blocking pairs. First, the al-

location of temporary positions is implemented via serial dictatorship by sequentially asking

teachers to choose their preferred position by order of priority. This procedure is equivalent

to Deferred Acceptance and thus leads to a stable allocation. Second, the allocation of inter-

views for permanent positions is also done via serial dictatorship, which ensures that teachers

get interviewed by their preferred schools by order of priority, if they reveal their true prefer-

17As this likelihood is not exact, I correct for standard errors using the standard formula for the asymptotic
variance of QMLE.
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ences. Still, as the number of interviews per teacher is limited to three, two issues might arise:

(i) teachers might end up unmatched because they failed all their interviews while schools

with unfilled positions might be willing to hire them and (ii) teachers might anticipate this

possibility and try to avoid it by being strategic when forming their rank-ordered lists.18

To mitigate the first concern, the Ministry implemented an aftermarket such that all

unassigned permanent positions and teachers can meet and match in order to minimize

justified envy. Modeling potential mismatches generated by the second concern would be

challenging as this would entail having access to data on teachers’ beliefs about their chances

to succeed at the interviews and developing a dynamic model of strategic reporting where

preferences of both sides of the market are unknown. This is beyond the scope of the

available data and the proposed methodology and is left for future research. Instead, I

propose a test assessing the validity of the estimated parameters by leveraging the cutoffs

determining eligibility to permanent positions in a regression discontinuity design.19 Teachers

just above the cutoff have both permanent and temporary positions in their choice sets while

teachers just below the cutoff only have temporary positions in their choice sets. Comparing

the matching outcomes of these two groups allows to pin down how teachers trade off job

attributes depending on whether the position is permanent or temporary. I thus verify

whether the estimated model can replicate the threshold crossing effect on the characteristics

of teachers’ matched schools. Figure A.4 shows that the model predictions match the observed

responses at the threshold. Eligible teachers are more likely to choose a permanent position

and are willing to trade off the benefits of permanent contracts with geographical proximity.

18Additionally, teachers might have ex-post justified envy if they refuse a permanent position and realize
ex-post that the available temporary positions are worse. To solve this issue, one could instead model the
allocation of permanent and temporary contracts sequentially and not jointly. However, the results derived
in Appendix F show that these two models are observationally equivalent in the limit if teachers have rational
expectations about their future match payoffs when choosing a permanent contract.

19Using an external source of data to separately identify schools’ preferences using truthful rankings also
allows to mitigate these concerns.

37



7 Results

7.1 Preferences and the Spatial Job Ladder

I report in Panel A of Table 2 the estimated willingness to pay of teachers for amenities,

proximity to home and moving away from their current location. Consistently with the

migration literature, I find a large distaste for moving (Kennan and Walker, 2011). Teachers

would be willing to give up 309 USD from their monthly wage to avoid moving 10 kilometers

away from home. This is quite substantial as this corresponds to 61 % of the base monthly

teacher wage. Similarly, teachers’ willingness to pay to avoid moving out of their current

location is large. The cost of moving out of their current province is estimated at 677 USD

while the cost of changing regions is estimated at 1,146 USD. In comparison, the willingness

to pay for local amenities is quite small and ranges from 16 USD to 98 USD.20

To quantify how much these attributes explain the variation in teachers’ preferences,

I simulate teachers’ lifetime utility by drawing random Gumbel shocks and by using the

estimated parameters to compute their flow utility and continuation value for each job. I

then plot the ranking of each job according to its predicted lifetime utility against its ranking

in terms of distance, amenities and wages. Panel A of Figure 3 shows that distance very

strongly predicts how teachers rank jobs. The correlation between the ranking with respect

to utility and the ranking with respect to distance is 0.68. On the other hand, I find that

wages and amenities are poor predictors of how teachers rank jobs. This implies that labor

markets are very local as labor supply is not mobile, which is consistent with the findings of

Manning and Petrongolo (2017).

Panel B of Table 2 shows the results of the estimation of schools’ preferences. I find

that schools highly value observed measures of teacher quality such as test scores and ex-

perience. I investigate how much of the ranking of teachers with respect to schools’ utility

can be explained by their ranking with respect to test scores. Panel B of Figure 3 plots

the relationship between the two for both permanent and temporary jobs. Mechanically, the

20I report how the willingness to pay for different job attributes differ depending on whether the contract
is permanent or temporary, under the assumption that agents are myopic, in Table A.5. I strongly reject
that θperm = θtemp which is equivalent to rejecting that agents are myopic, as permanent and temporary
contracts do not differ in the first years of employment.
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Table 2: Selected Preference Estimates

Panel A: Teachers’ Preferences (in monthly USD)

Amenities -

Electricity 97.67 (34.71)

Sewage 16.76 (12.79)

Library 29.41 (15.78)

Internet 15.96 (19.86)

Spline Distance from Home Location -

Slope < 20km -30.94 (1.96)

Slope ∈ [20km,100km] -7.11 (0.50)

Slope ≥ 100km -1.38 (0.10)

Moving Costs -

6= Province -676.95 (51.43)

6= Region -469.62 (57.21)

Panel B: Schools’ Preferences

Constant -0.488 (0.082)

Experience -

< 3 years -0.737 (0.041)

> 10 years 0.057 (0.040)

Competency Score -

Reading 0.669 (0.023)

Logic 0.571 (0.020)

Curricular Knowledge 1.397 (0.022)

Notes. This table shows selected estimates of θ and γ from the specification
of teachers and schools preferences. θ1 is normalized to one such that teachers’
preference estimates are expressed in terms of monthly willingness to pay in USD.

relationship is one-to-one for temporary jobs, as test scores are used as priorities to allocate

seats. The relationship is also very strong for permanent jobs as the correlation between the

utility ranking and the test score ranking is 0.6.

Overall, the estimated preference parameters indicate that (i) geographical proximity

is highly predictive of how teachers rank the available jobs and (ii) schools mostly value

observed measures of teacher quality such as teachers’ test scores. These two facts have

strong implications for spatial sorting and inequalities.

I first show that the combination of fact (i) with the concentration of teachers’ home

location in cities and the dispersion of jobs across the country, documented in Section 3,

implies the existence of a spatial job ladder. As teachers’ home location is concentrated in
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Figure 3: Spatial Job Ladder

a) Supply b) Demand

Notes. Panel A plot the relationship between the rank of teachers’ lifetime utility Uijt estimated using the results displayed
from Table 2 and the ranks of various job attributes such as: the distance between teachers’ home location and the school’s
locality, the wage offered by the schools and the level of local amenities. Panel B performs the same exercise and plot the ranks
of schools’ estimated utility Vijt against the ranks of teachers’ test scores for both temporary and permanent positions.

cities, teachers’ distaste for working far from their home location implies a strong distaste for

schools located in remote areas. Additionally, as schools are geographically scattered, cities

offer very few positions compared to the total number of applicants. Overall, this implies

that remoteness becomes the main driver of how teachers rank the available jobs. This results

in the existence of a spatial job ladder where jobs located in remote areas are at the bottom

whereas jobs located in cities are at the top. As a result, schools in cities face excess supply

and are free to hire the teachers they prefer from the set of new applicants or poach their

preferred teachers from schools which are on a lower rung of the ladder.21 This has direct

implications on labor market dynamics, as teachers which start at the bottom of the ladder

switch jobs at a higher rate to climb up toward urban areas. Consequently, schools located

in remote areas face higher attrition rates than schools located in cities.

The extent to which the spatial job ladder translates into spatial inequalities in education

provision depends on which teacher attributes schools value. If schools would select teachers

at random, lucky teachers would be able to move to urban schools but this would not generate

21This contrasts with traditional models of the job ladder where productive firms offer higher wages to
poach skilled workers from unproductive firms (Moscarini and Postel-Vinay, 2018). In this setting, where
wage differentiation is very limited, the job ladder is instead determined by non-pecuniary factors such as
geographical location.
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unequal sorting with respect to teaching quality.22 Fact (ii) implies that urban schools ration

excess supply using observed measures of teacher quality such as test scores and experience.

Consequently, the spatial job ladder creates large spatial inequalities in teaching quality

through two channels. First, among the set of new applicants, urban schools systematically

select the highest scoring teachers while rural schools are left with the lowest scoring teachers.

Second, urban schools poach teachers who have accumulated sufficient experience and human

capital throughout their career from rural schools. The latter thus fail to retain skilled

teachers and sustain disproportionately low levels of teaching experience and quality.

Reducing spatial inequalities in teaching quality thus requires shutting down the mecha-

nisms through which the spatial job ladder operates or directly targeting the causes of the

existence of the spatial job ladder. Next, I use the tools developed in Section 4 along with

the estimated teachers’ and schools’ payoff functions to perform several counterfactual ex-

periments aiming at achieving these goals. Before doing so, I assess the credibility of the

equilibrium predictions generated by the model by testing its ability to predict patterns

consistent with the data.

7.2 Model Fit

I perform several checks to assess how well the model predicts the patterns generated by the

spatial job ladder. I first test whether the cross-sectional spatial sorting patterns predicted

by the model match the ones observed in the data. I then simulate job-to-job flows and

check whether the model can replicate the observed movements of teachers from rural to

urban areas.

To simulate the status quo equilibrium matching, I first derive U(xit, zjt, θ̂) and V (xit, zjt, γ̂)

for all t. I then randomly draw Extreme Value Type I taste shocks εijt and ηijt for all (i, j, t)

to construct the flow utilities. I solve the fixed point problem described in Equation 4 by

fixing the aggregate distributions of observables in 2016 as the baseline m1 and w1 to obtain

the equilibrium inclusive values for each agent. Given the inclusive values, I then compute

teachers’ continuation value from choosing a temporary contract. I then simulate forward

22Still, attrition would be higher in rural schools which could have a disruptive effect on student learning
and imply a net efficiency loss in teaching quality due to the loss of school specific experience. See Appendix
C for estimates of the net loss in teacher value added implied by a move from one school to another.
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Figure 4: Model Fit

a) Sorting: Remoteness b) Sorting: Distance

c) Job-to-Job Transitions: Data d) Job-to-Job Transitions: Model

Notes. This figure uses the centralized assignment data from 2016 to 2020 and compares realized sorting patterns and job-to-job
transitions with model predictions. Panel A plots averages of the remoteness of teachers’ matched schools based on equally
spaced bins of the distribution of teachers’ test scores both in the actual data and in the simulated equilibrium. Panel B shows
the result of a similar exercise using the distance between teachers’ matched schools and their home location. Panel C plots the
evolution over time of teachers’ matched schools observed in the data depending on the remoteness of the school in which they
started in 2016. Panel D plots the same trend using the job-to-job transitions simulated by the model.
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by constructing the lifetime utilities Uij1 and Vij1, deriving the teacher-optimal stable match

using the teacher-proposing Deferred Acceptance algorithm and updating teachers’ location,

experience, age and test scores using the estimated transition process. I then iterate this

procedure to simulate the entire non-stationary equilibrium path.

Panel A of Figure 4 shows a binned scatter plot of the relationship between teachers’

test scores and the remoteness of their matched school. The model is able to replicate the

rationing of excess supply through test scores and generate the strong negative relationship

between remoteness and test scores. Panel B of Figure 4 also shows that the model is able

to replicate sorting with respect to geographical proximity. Overall, this indicates that the

main drivers of spatial sorting are well captured by the estimated preferences.

Panel C and D of Figure 4 compare the career paths of teachers depending on where they

started on the spatial job ladder with their simulated counterparts. Specifically, I compare

the job-to-job flows from rural to urban areas as teachers climb up the ladder. I find that

the model captures the trend that teachers originally matched to rural schools climb the job

ladder by moving toward urban areas. The model is thus able to replicate the important

labor market dynamics that characterize the spatial job ladder.

7.3 Counterfactuals

In this section, I first quantify the gains of shutting down labor mobility along the job ladder

to isolate the role of labor market dynamics in explaining the observed urban-rural gap in

teaching quality. I then explore the effectiveness of retention policies that would prevent

teachers from climbing up the ladder. More specifically, I simulate the effect of imposing a

minimum contract length, which is a commonly used retention policy in the public sector.

Finally, I explore the equilibrium effects of tackling directly the root causes of the existence

of the spatial job ladder. To do so, I simulate equilibrium sorting and mobility under the

scenario where teachers’ home location would be scattered across the country instead of being

concentrated in cities.
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Figure 5: Labor Market Dynamics and Spatial Inequalities

Notes. This figure shows the result of artificially increasing teachers utility for their matched school in 2016 in order to
quantify the share of the urban rural gap in teacher quality explained by teacher mobility. It plots the difference between the
average teacher score (in standard deviations) in schools located in cities and schools located more than six hours away from
the provincial capital along the transition path triggered by this counterfactual exercise over 60 years.

7.3.1 Labor Market Dynamics and Spatial Inequalities

Teacher mobility likely contributes to a large extent to the urban-rural gap in teacher quality

as teachers matched to rural areas leave toward urban areas once they have accumulated

skills and experience. As shown in Section 3, movers are of significantly higher quality that

those who replace them as the job ladder rewards teachers with higher test scores and more

experience. To quantify how much of the urban-rural gap in teaching quality is explained

by labor mobility, I start by simulating the equilibrium path under a counterfactual scenario

where agents would have a very high preference for staying in their current job. Assuming

that µ∗2016 is the equilibrium match under the status quo in 2016, I thus artificially increase

Uiµ∗2016(i)t for all teachers i and all subsequent years t > 2016 and simulate the long-run

equilibrium paths. This counterfactual exercise shuts down voluntary moves away from rural

areas such that rural schools no longer lose their most qualified and experienced teachers and

can benefit from the accumulation of human capital on-the-job.

Figure 5 plots the evolution of the urban-rural gap in teacher quality from 2016 onward

under this counterfactual. I find that shutting down labor mobility makes the urban-rural

gap in teacher test score sharply drops from 1.3 to 0.8 standard deviation in the long run.

This decline is stronger in the short run as the gap decreases by 0.1 standard deviation after
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four years only.23

This exercise allows us to decompose the channels through which the spatial job ladder

fuels spatial inequalities in teaching quality by shutting down labor market dynamics. Schools

at the bottom of the ladder can now retain their highest skilled teachers while schools at the

top of the ladder, on the contrary, can no longer poach skilled teachers from rural schools.

Overall, this exercise shows that labor market dynamics explain 38% of the existing urban-

rural gap in teacher quality. The remaining 62% are explained by initial unequal sorting in

2016 that cannot be offset by human capital accumulation on-the-job. This result highlights

the importance of labor market dynamics in explaining spatial sorting and inequalities, even

in a frictionless setting with rigid wages. It also suggests that there might be important

benefits in investing in retaining existing teachers rather than aiming at recruiting higher

quality teachers.

7.3.2 Evaluating Retention Policies

I then investigate the effectiveness of retention policies aiming at shutting down labor mobility

and its adverse effects on spatial inequalities. Using the estimated model, I simulate the effects

of removing teachers’ option to rematch by enforcing a minimum contract length. If agents

were myopic, I find that this policy would reach the same results as described in Figure 5

and close the urban-rural gap in teaching quality by 38% in the long-run by stopping skilled

teachers from leaving rural schools. However, as agents are forward looking, teachers react

ex-ante to this policy and their labor market participation plunges creating large shortages.

Panel A of Figure 6 shows the share of filled vacancies under the status quo and under the

policy which would enforce a minimum contract length of four years. As this policy forces

teachers to commit and does not allow them to rematch and climb the ladder, they prefer to

wait until they get better matching opportunities in the future. This results in a sharp drop

in the share of filled vacancies. This finding highlights a key trade off between recruitment

and retention. In the presence of a job ladder, retention policies that make rematching more

difficult imply a significant decrease in the continuation value of accepting a job and generate

23This is driven by the fact that teachers test scores evolve more rapidly when they start from lower initial
values, as suggested by the estimates in Table A.4.
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Figure 6: Compulsory Service Policy

a) Adverse Sorting b) Retention Bonuses

Notes. Panel A of this figure plots the share of filled vacancies for different bins of schools’ remoteness in the status quo and
under the counterfactual scenario where we would enforce a minimum contract length of four years. Panel B plots the effect of
enforcing this policy on the urban rural gap in teacher test scores (in standard deviations) along with the monthly wage bonuses
that would offset the adverse sorting effect shown in Panel A. The x-axis represents the minimum length of the contract.

strong adverse sorting responses. To avoid the latter, such policies should compensate workers

for preventing them to improve their matching outcomes through job switching.

I then compute the amount that should be given as compensation to avoid this adverse

sorting effect. I define the status quo match as µ∗ and compute the monthly wage bonuses

bi for each teacher i which solve the following equation:

Uiµ∗t (i)t = U(xit, zjt, θ̂) + θ̂1bi + ηijt + 0.9

(∫ ∫
U(x, z, θ̂)w(x|xit, zjt)m(z|xit, zjt) + θ̂1bi + γ

+ 0.9

∫
U t+2(s)w(s|x, z)dsdxdz

)

The bonus bi solving this equation makes teacher i indifferent between matching to a school

for at least two years and matching to the same school for at least four years. Implementing

this retention bonus scheme thus avoids the adverse sorting effect documented in Panel A of

Figure 6. A similar equation can be formulated to compute the bonuses necessary to retain

teachers for an additional τ years. I denote the solution to these equations for teacher i bτi .

I compute bτi for τ ∈ {2, 4, 6, ..., 40} and plot its average for each τ in Panel B of Figure 6.

I also report the effect of this policy on the urban rural gap in teacher test scores measured

in standard deviations on the same figure. Imposing a minimum contract length of four years
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would entail compensating teachers by a 100 USD bonus on their monthly salary on average.

This number gradually increases as the minimum contract length increases before reaching

a plateau of approximately 200 USD.24

Overall, this result shows that retention policies have large potential benefits in the long

run but come at a cost which should be benchmarked against other alternatives. I find

that this policy would reduce the urban-rural gap in teacher quality by 38% for an average

monthly cost of 200 USD per teacher, which corresponds to a 40% increase in their monthly

salaries.

7.3.3 Shutting Down the Spatial Job Ladder

The existence of the spatial job ladder is mainly caused by three factors: (i) teachers’ distaste

for moving far from home, (ii) the concentration of teachers’ home location in cities and

(iii) the geographical dispersion of schools. As the spatial job ladder is responsible for the

observed spatial inequalities, the most effective way of reducing inequalities would be to

target its fundamental causes. In this section, I take (i) and (iii) as given and explore, as

a thought experiment, what would be the consequences of shutting down (ii). To do so, I

perform a counterfactual exercise that randomly changes teachers’ home locations such that

they are scattered across the country. I randomly draw teachers’ new home location from

the set of localities in which schools are situated. I then simulate equilibrium sorting and

movements across locations.

Panel A of Figure 7 plots teacher sorting with respect to test scores and schools’ re-

moteness under this counterfactual exercise. I find that the spatial job ladder collapses. As

labor supply is scattered across the country, competition for local jobs disappears. Teachers

match overall close to home and no longer have a systematic distaste for remote schools.

High skilled teachers are thus no longer disproportionately matched to schools located in

cities. Labor market dynamics are also strongly affected. The rate at which teachers move

throughout the period 2016-2020 drops by half as low quality teachers are no longer sent

far from home. Panel B of Figure 7 shows that the direction of the flows also changes as

24The concavity of the wage bonus scheme comes from the fact that agents discount the future at an
increasing rate.
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Figure 7: Random Home Location

a) Sorting b) Job-to-Job Flows

Notes. This figure shows the results of a counterfactual experiment which would reallocate teachers’ home location randomly
across Peru. I randomly draw the location of each teacher from the list of localities in which school are situated and recompute
the equilibrium. Panel A plots binned averages of teachers matched school’s remoteness in the status quo and under this
counterfactual. Panel B plots the counterfactual evolution of the remoteness of teachers matched schools from 2016 to 2020
starting from different initial levels of remoteness.

teacher no longer leave rural schools to get closer to urban centers. As a result, urban-rural

inequalities in teacher attrition disappear and rural schools can benefit from experience and

skill accumulation on-the-job. These results shows that designing policies targeting the root

causes of the existence of the spatial job ladder, such as investing in training local teachers,

might be more effective than aiming at slowing down its symptoms through recruitment or

retention policies.

8 Conclusion

This paper investigates the causes of teacher spatial sorting and mobility and their con-

sequences on spatial inequalities in teaching quality. To this end, I develop an empirical

framework of dynamic matching without transfers. I assume that agents make forward-

looking matching decisions and that their payoff functions depend on a various set of job

and teacher attributes. I provide a tractable way to map teachers’ and schools’ preferences

into sorting and job-to-job flows. I then show that one can invert this mapping and identify

agents’ preferences from data on realized sorting.

Using this methodology, I then show the existence of a spatial job ladder. Teachers
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concentrate in cities while jobs are scattered geographically. As teachers have a strong distaste

for moving, this creates excess supply in cities which is rationed using observed measures of

teacher quality. As a consequence, teacher quality is highly unequally distributed and teachers

working in remote areas leave toward urban areas as soon as they have accumulated enough

experience. Overall I find that labor mobility magnifies inequalities in teaching quality by one

third. Finally, I assess the effectiveness of retention policies aimed preventing teachers from

rematching along the job ladder. I find that this triggers a massive flow out of the teaching

profession such that the positive effects of retention are largely outweighed by the losses

incurred through teacher shortages. This highlights a key trade off between recruitment and

retention in the presence of a job ladder and shows that retention policies should compensate

for the implied lack of flexibility.
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A Additional Tables and Figures

Table A.1: Data Description

2016 2017 2018 2019 2020 2021

Panel A: Teacher Assignment Data

# Teachers 116,559 116,939 116,128 115,358 115,233 116,024

Permanent 94,162 89,604 91,683 90,889 89,106 87,507

Temporary 22,397 27,361 24,466 24,505 26,174 28,516

Panel B: Centralized Allocation Mechanism

# Test Takers 77,594 - 78,758 68,301 71,586 -

in Permanent Position Alloc. 6,770 - 9,777 5,905 4,005 -

in Temporary Position Alloc. 60,853 - 66,280 - 60,294 -

in Both 3,436 - 4,195 - 2,517 -

in None 13,407 - 6,896 - 9,804 -

# Vacancies 18,493 - 36,113 9,818 17,858 -

in Permanent Position Alloc. 6,460 - 13,620 9,818 5,014 -

in Temporary Position Alloc. 15,372 - 30,645 - 16,481 -

in Both 3,339 - 8,152 - 3,637 -

Notes. Panel A shows the total number of employed teachers in each year depending as well as the number of teachers
holding a temporary or a permanent contract. Panel B displays the number of participants to the national competency
test in each year it took place. It also shows the number of applicants and vacancy which participated in the allocation
of temporary and permanent positions.
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Table A.2: Summary Statistics: Job Characteristics

Mean
Std.

Deviation
Min 25% Pctile 75% Pctile Max

Job Characteristics

Baseline Monthly Wage (USD) 537.286 50.234 507.614 507.614 532.995 799.492

Temporary 0.186 0.389 0.000 0.000 0.000 1.000

Multigrade 0.207 0.405 0.000 0.000 0.000 1.000

Single Teacher 0.0462 0.210 0.000 0.000 0.000 1.000

Bilingual 0.107 0.309 0.000 0.000 0.000 1.000

School Characteristics

Distance Prov. Capital (hours) 1.406 4.073 0.000 0.0609 1.144 72.000

Population 1143.708 2593.554 0.001 0.382 350.766 7567.716

Altitude (meters) 1506.684 1501.124 1.000 120.000 3104.000 5002.000

Local Amenities

Electricity 0.952 0.215 0.000 1.000 1.000 1.000

Water 0.853 0.354 0.000 1.000 1.000 1.000

Sewage 0.726 0.446 0.000 0.000 1.000 1.000

Medical Center 0.770 0.421 0.000 1.000 1.000 1.000

Internet 0.582 0.493 0.000 0.000 1.000 1.000

Bank 0.388 0.487 0.000 0.000 1.000 1.000

Library 0.303 0.460 0.000 0.000 1.000 1.000

Notes. This table uses the teacher assignment data to show summary statistics on the characteristics of the jobs filled in
2016. The baseline monthly wage does not contain experience bonuses.
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Table A.3: Summary Statistics: Teacher Characteristics

Mean
Std.

Deviation
Min 25% Pctile 75% Pctile Max

Age 33.676 7.458 19.000 32.000 42.000 78.000

Female 0.707 0.455 0.000 0.000 1.000 1.000

Lives in Provincial Capital 0.819 0.385 0.000 1.000 1.000 1.000

Married 0.471 0.499 0.000 0.000 1.000 1.000

Total Test Score 97.672 29.895 0.000 74.500 119.500 191.500

Score 1: Reading 29.626 9.710 0.000 22.000 38.000 50.000

Score 2: Logical Reasoning 21.963 9.323 0.000 14.000 28.000 50.000

Score 3: Curricular Knowledge 46.083 15.881 0.000 35.000 57.500 97.500

Experience < 3 years 0.237 0.426 0.000 0.000 0.000 1.000

Experience > 10 years 0.130 0.337 0.000 0.000 0.000 1.000

Notes. This table shows summary statistics on the characteristics of the applicants to the centralized assignment platform
in 2017.
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Figure A.1: Sorting and Movements Across Locations: Wages

a) Sorting

b) Job-to-Job Transitions

Notes. This figure uses the teacher assignment data to document teacher sorting and movements along other dimensions such
as wages and amenities. Panel A plots binned averages of the monthly wage teachers receive as well as the level of amenities
in the locality of their matched school based on their test scores. Bins are equally spaced based on vigintiles of the test score
distribution. Panel B plots the evolution of the wage received by teachers over the period 2016-2021 depending on where they
start in 2016. The purple line corresponds to teachers which start in schools located between 6 and 8 hours away from the
provincial capital. The blue line corresponds to teachers which start in schools located between 4 and 6 hours. The green line
corresponds to teachers which start in schools located between 2 and 4 hours.
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Figure A.2: Temporary vs. Permanent Contracts

a) Sorting Temporary vs. Permanent

b) Transition 2016-2018: Permanent c) Transition 2016-2018: Temporary

Notes. Panel A of this figure uses the teacher assignment data to document how teachers sort across types of contract depending
on the distance of their matched school to the provincial capital. Panel B and C show, for both permanent and temporary
contracts, the share of teachers that stayed in the same school, moved to another school or quit teaching in the public sector for
several bins of the schools’ distance to the provincial capital.
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Table A.4: Transition Process Test Scores

Estimate Std. Error

Constant 0.104 0.104

Teacher Characteristics

Test Score t 0.868 0.007

Female -0.008 0.011

Age < 30 0.102 0.011

Age > 50 -0.040 0.023

Experience < 3 -0.037 0.016

Exerience > 10 0.016 0.014

Married with kids -0.030 0.011

School Characteristics

Wage -0.040 0.042

Frontier -0.017 0.020

Bilingual 0.008 0.015

VRAEM -0.017 0.021

log(Population) -0.000 0.015

log(Population)2 0.001 0.002

log(Population)3 -0.000 0.000

Distance to Capital -0.003 0.008

Distance to Capital2 0.000 0.000

Distance to Capital3 -0.000 0.000

log(pop) × Distance 0.000 0.001

Notes. This table displays the estimates of the coefficients of the following
linear regression: sit+1 = x′itβx + z′

µwt(i)t
βz + εit. The estimation sample

is composed of the set of teachers who took the test both in 2015 and 2017 as
well as the set of teachers who took the test both in 2017 and 2019. Test scores
are standardized to have mean 0 and standard deviation 1.
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Table A.5: Teachers Preferences: Temporary vs. Permanent

Temporary × Permanent

Constant 356.22 (94.29) 4188.93 (504.84)

School/Locality Characteristics

Amenities 23.40 (7.02) 50.24 (35.34)

Bilingual -60.32 (10.51) -721.86 (55.22)

Frontera 20.01 (11.36) -15.71 (75.54)

VRAEM -91.25 (14.99) 144.13 (101.53)

Preference for Home

Dist (< 20km) -18.18 (0.50) -13.75 (2.50)

20km ≤ Dist < 100km -6.02 (0.14) -0.49 (0.62)

Dist ≥ 100km -0.63 (0.02) -0.56 (0.10)

Moving Costs

6= Province -520.44 (14.39) 425.44 (50.34)

6= Region -121.98 (14.34) -1006.74 (52.66)

Other Wage Determinants

log(Pop) 83.30 (20.42) -161.06 (125.39)

log(Pop)2 -14.48 (2.12) 19.70 (13.78)

log(Pop)3 0.54 (0.07) -0.81 (0.47)

Distance to Capital 90.43 (12.89) -277.86 (62.11)

Dist2 -0.66 (1.76) 0.42 (5.44)

Dist3 0.01 (0.08) 0.01 (0.24)

Dist × log(Pop) -9.40 (1.46) 25.52 (6.66)

Teacher Characteristics

Female -58.77 (5.75) -173.92 (40.28)

Urban -62.59 (7.83) -194.23 (68.31)

Married with kids -11.96 (5.36) 99.66 (34.66)

Age < 30 18.32 (5.65) 396.84 (35.24)

Age > 50 -47.80 (15.64) -141.33 (101.07)

Exp. < 3 14.68 (7.65) 20.88 (56.92)

Exp. > 10 -101.81 (8.55) 106.56 (52.92)

Notes. This table displays the estimates of θtemp and θperm − θtemp assuming that β = 0,
meaning that agents are myopic. The wage coefficient is normalized to 1 such that estimates
are expressed in monthly willingness to pay in USD. Standard errors are in parenthesis.
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Table A.6: Preference Estimates: Schools

(1)

Constant -0.488 (0.082)

Female -0.349 (0.022)

Married with kids -0.038 (0.022)

Age < 30 0.128 (0.023)

Age > 50 -0.067 (0.089)

Experience < 3 -0.737 (0.041)

Experience > 10 0.057 (0.040)

Score 1: Reading 0.669 (0.023)

Score 2: Logic 0.571 (0.020)

Score 3: Curricular Knowledge 1.397 (0.022)

Notes. This table displays the estimates of γ which are
schools’ preference parameters defined in Section 6. Stan-
dard errors are in parentheses.
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Figure A.3: Model Fit Spatial Sorting: Additional Figures

a) Amenities

b) Wages

Notes. This figure uses the centralized assignment data in 2018 and compares realized sorting patterns with model predictions.
Panel A plots averages of level of amenities of teachers’ matched schools based on equally spaced bins of the distribution of
teachers’ test scores both in the actual data and in the simulated equilibrium. Panel B shows the result of a similar exercise
with wages instead.
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Figure A.4: Validation RDD: Eligibility Cutoff

Notes. This figure displays the effect of crossing the test score threshold determining eligibility to permanent contracts on
the probability to choose a permanent contract, the distance between teachers’ matched schools and their home location, and
the wage received from their matched schools. It computes these threshold crossing effects both in the actual data and in the
equilibrium match simulated by the model and compares them.
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B Context & Data: Details

B.1 Additional Institutional Details

B.1.1 Contracts and Wages

Public teachers in Peru can be hired under two types of contract. Temporary contracts

last at least one year and can be renewed up to a second year, if both the school and the

teacher agree. After two years, the position is either destroyed, if the allocated budget was

fixed, or proposed again on the labor market. The same teacher could eventually teach in

the same position but would have to apply again to get hired. Permanent contracts can

last indefinitely. The coexistence of these two types of contracts is a common feature of civil

servants’ labor markets around the world. Permanent contracts are akin to usual civil servants

contracts which make the profession attractive by insuring teacherss against unemployment.

Temporary contracts are more precarious and are usually meant for schools to get a flexible

access to a larger pool of applicants and react to unexpected transfers and/or the creation

of new classrooms.

Wages are set by the government at the country level and vary along several dimensions.

Temporary contracts are paid a fixed rate which does not vary with experience. To make

the profession more attractive and keep up with inflation, the base monthly wage increased

gradually from S/1,396 (363.19$) in 2016 to S/2,000 (520.33$) in 2017 and S/2,200 (572.36$)

in 2019 to finally reach S/2,400 (624.39$) in 2021. Regarding permanent contracts, the pay

scale is divided in six categories and teachers can apply once a year for a promotion through

a centralized platform.25 At the highest scale, the wage is 75% higher than the starting

wage. Note that, at the exception of 2016 where it was S/1,550 (403.25$), the starting wage

is exactly similar to the base wage for temporary contracts and followed the same time trend.

A wage bonus scheme was implemented by the Ministry of Education in order to make

schools located in distressed areas or with worse teaching conditions more attractive. Teachers

handling several grades receive a monthly wage bonus of S/140, schools with a single teacher

provide a bonus of S/200, schools located in guerilla zones (VRAEM) provide a bonus of

25Promotions are awarded through a national standardized evaluation and a decentralized evaluation made
by a committee which evaluates teachers’ performance and professional career.
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S/300, schools located close to the country borders provide a bonus of S/100 and schools

which teach in several languages provide a bonus of S/50. Finally a set of wage bonuses

ranging from S/70 to S/500 based on arbitrary cutoff rules compensates teachers based on

the remoteness of the school’s locality. Bobba et al. (2021) use these threshold in a regression

discontinuity design to estimate the causal impact of increasing wages on recruitment and

student achievement.

B.1.2 Allocation Mechanism

To make the allocation process of teaching positions more transparent, the Ministry of Ed-

ucation switched from a decentralized to a centralized application system in 2015. The use

of centralized clearinghouses to allocate public sector jobs is becoming increasingly common

(Roth, 2018) as they allow to reduce search frictions by regrouping all offers and applicants

on the same market. The allocation of both temporary and permanent contracts is organized

sequentially between November and March. Note that once teachers get awarded a perma-

nent contract, they need to go through a separate procedure in order to be transferred to

another school.26

National Competency Test : Before teaching positions are allocated, all applicants take a

test evaluating their teaching competency. They get graded on three skills: (i) reading com-

prehension, (ii) logic reasoning and (iii) curricular knowledge. To be eligible for a permanent

position, a teacher should get a score of at least 30/50 in part (i) and (ii) of the test and a

score of a least 60/100 in part (iii) of the test. These are stringent requirements since only

9% of applicants end up being eligible (see Table A.1).

Allocation of permanent positions : The Ministry first publishes the list of available posi-

tions. Teachers eligible for a permanent position then form a list of choices within the same

province.27 Applicants are then assigned for interviews to their preferred three schools, with

a total of 10 available slots per school.28 For schools that are oversubscribed, test scores are

used as priorities. Schools then interview and rank each applicant. Finally, they make offers

26Transfers are handled every year in a decentralized way. Priority in the transfer application system
depends on seniority and other criterias which are not made public by the Ministry of Education.

27The maximum length of the list went from five in 2015 to being unrestricted from 2017 onwards.
28In 2015, applicants were assigned to two schools maximum and there were 20 slots per school.
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sequentially to their preferred applicants. All unassigned applicants can then participate to

an exceptional stage that allocates the remaining unfilled slots. At the end of this round,

unassigned teachers can decide to participate in the allocation of temporary positions which

takes place shortly after.

Allocation of temporary positions : All ineligible applicants along with eligible applicants

which did not choose a permanent position participate in the allocation of temporary con-

tracts. Teachers choose first a province. Within each province, serial dictatorship is used

to assign teachers to schools using test scores as priorities. Schools do not have any role in

the allocation process and cannot express their preferences over applicants. As in the allo-

cation of permanent positions, unfilled vacancies are proposed to unassigned teachers from a

different province in an exceptional stage.

This mechanism took place every year from 2015 to 2021 except in 2016. Note that in

2018 and 2020, only permanent positions were proposed.

B.2 Data Construction

I combine several sources of data provided by the Ministry of Education in Peru to construct

the teacher assignment data and centralized assignment data described in Section 2.

Teacher occupation and payroll system (NEXUS): This dataset records annually each

teacher and its matched position over the period 2012-2021. I restrict the data to primary

school teachers which hold either a permanent or temporary contract. I exclude teachers

working in several jobs by acting as a temporary replacement for other teachers on leave.

Each teacher and position are identified by a unique ID which can be linked to other data

sources. Each position is linked to the corresponding school which is also identified by a

unique ID.

School census: This dataset contains information on a wide range of schools’ and localities’

characteristics. I observe detailed information on access to a wide range of services at the

locality level such as electricity, water, sewage, medical centers, libraries or internet. I also

observe the travel time between the locality and the closest provincial capital. I observe the

number of inhabitants in the locality. I know whether the school has a second language of

instruction, whether it has a single classroom. I also have access to the precise geocoordinates
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of the locality.

Household Targeting System (SISFOH): This dataset comes from Bobba et al. (2021)

and contains information on the socio-economic status of the population of Peru in order to

better target social benefits. It regroups individuals into households and records their home

location, highest level of education, gender and their poverty status. I also observe their role

with respect to the head of the household meaning that I can identify if individuals have

children, are married or live with their parents.

Survey Centralized Allocation: The Ministry of Education surveys all the applicants that

participate in the centralized allocation mechanism. I have thus additional information about

applicants’ level of experience in the public and private sector. I know which languages they

speak and in which university or institute they went.

Centralized Allocation Mechanism: This dataset contains all the details of each step of

the centralized allocation mechanism over the period 2015-2019. I observe the results of the

national competency test for each applicant. I observe the set of applicants and positions

participating in the allocation of permanent positions. I know where teachers apply, which

schools interview them, how schools rank them and the final match. Finally, I observed the

set of applicants and positions participating in the allocation of temporary positions. I do

not observed teachers’ final decision but I infer their match using the teacher assignment

data.

The teacher assignment data combines the NEXUS with the school census and the SIS-

FOH. The centralized assignment data combines the centralized allocation mechanism with

the survey, the SISFOH and the school census.
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C Value Added Model

I use data on the national evaluation of students in 2nd and 4th grade. I observe standardized

test scores in math and in Spanish and I can match each classroom to its corresponding

teacher. I can also match students to the SISFOH data to recover parental characteristics

such as their education level or their poverty status.

Following closely Chetty et al. (2014a), I assume that each student i in year t is assigned

to classroom c = c(i, t) and that each teacher j(c) is assigned to a classroom c. I restrict the

analysis to primary schools meaning that teachers only teach one class per year. I denote µjt

the value added of teacher j in year t normalized to have mean 0 and measured in student

test scores standard deviations. I allow value added to drift over time. Finally, I assume that

student i’s test score in year t A∗it relates to value added in the following way:

A∗it = X ′itβ + µjt + θc + εit

where Xit includes a set of student, classroom and school characteristics, θc is an exogenous

shock at the classroom level and εit is an idiosyncratic shock at the student-year level. I as-

sume that the stochastic processes µjt and εit are stationary meaning that E[µjt|t] = E[εit|t] =

0, Cov(µjt, µjt+s) = σµs, Cov(εit, εit+s) = σεs and Var(µjt) = σ2
µ for all t.

I estimate µjt using the following procedure. First, I estimate β by regressing test scores

A∗it on Xit and teacher fixed effects αj. Estimating β using within-teacher variation avoids

attributing the teacher effect to variation in Xit.
29 I then construct the following residualized

test scores:

Ait = A∗it −X ′itβ̂

and average them at the teacher-year level to construct Ajt = 1
n

∑
i∈{i:j=j(c(i,t))}Ait for all

j, t. Finally, I shrink these estimates by projecting Ajt on past residualized test scores A−tj =

29Table C.1 shows that not including teacher FE introduces severe bias in the coefficients associated with
classroom and school characteristics.
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(Aj1, ..., Ajt−1). The estimator of VA µ̂jt can thus be written as:

µ̂jt =
t−1∑
s=1

ψsAjs

where ψ = (ψ1, ..., ψt−1) are the coefficients of the OLS regression of Ajt on A−tj . Note that

I only use t− 1 to predict VA such that ψ =
σA,1

σ2
A

=
Cov(Ajt,Ajt−1)

Var(Ajt)
.

The results of the estimation of µ̂jt are displayed in Table C.2. The auto-correlation ψ

is estimated at 0.466. To get a proper estimate for the standard deviation of value added

σµ = σA,0 in elementary schools, Chetty et al. (2014a) perform a non-linear extrapolation

from their estimates of σA,s for 1 ≤ s ≤ 7. However, I do not have access to test score data

prior to 2016 making the replication of this exercise impossible. As pointed out in Chetty et

al. (2014a), σA,0 ≥ σA,1 making
√
σ̂A,1 an estimator of a lower bound on σµ. I estimate this

lower bound to be 0.3 which is substantially larger than previous estimates.30

I then perform the usual checks for forecast unbiasedness of µ̂jt following Chetty et al.

(2014a). I first regress Ait on µ̂jt and find a coefficient of 1.030 with 95% confidence interval

[0.944, 1.116]. Standard errors are clustered at the school level. This regression should

give us a coefficient of 1 which is not rejected by the data. I then project Ait on parental

characteristics that are excluded from Xit such as socio-economic status and regress µjt on

this projection. I find a coefficient of 0.008 with a tight 95% confidence interval [0.002, 0.014]

meaning that we can rule out any substantial sorting of students across teachers based on

parental characteristics.31

To estimate the cost of attrition, I use teacher switching as a quasi-experiment as in Chetty

et al. (2014a) to test two hypotheses: (i) skills are not perfectly transferable across schools

and (ii) attrition implies a net loss for the origin school. If skills are perfectly transferable

across schools, switching to a different school after a long employment spell should have

no effect on value added. I assume that switching decisions are independent of unobserved

30Chetty et al. (2014a) estimate σµ = 0.163 and Bates et al. (2022) estimate σµ = 0.249. This could be
explained by the fact that most other studies use data on urban districts while the data used in this paper
covers the universe of teachers in Peru. If high value added teachers are concentrated in cities, estimating
σµ in urban districts could understate its population value.

31I explore the relationship between µ̂jt and Ait as well as between µ̂jt and predicted scores using parental
SES non parametrically in Figure C.1. To do this, I construct averages for 20 equal sized bins of value added
to get an approximation of the conditional expectation function.
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factors that could affect drift in value added. This rules out scenarios where teachers decide

to switch to a different school because they anticipate that they will have a higher value added

there. I then compare the difference in value added between 2016 and 2018 for teachers that

stayed in the same school with the same difference for teachers that moved to a different

school. To do so, I estimate β in the following two-way fixed effects regression:

µgt = αg + δt + βDgt + εgt (5)

where µgt = 1
Ngt

∑
j∈g µ̂jt, αg is a group fixed effect, δt is a time fixed effect and Dgt is

group g’s treatment status in period t. In this simple setting g ∈ {Movers, Stayers} and t ∈

{2016, 2018} and I assume that DStayers,t = 0 for all t and DMovers,2016 = 0 and DMovers,2018 = 1.

In this setting, β corresponds to the ATT.

Table C.3 shows the results of the estimation of β with standard errors clustered at the

teacher level. In Panel A, I estimate β conditional on movers having more than one year of

experience in the school they taught in before switching. I find that moving implies a net

loss of value added of 0.056σ corresponding to 26% of a standard deviation of teacher value

added. This is consistent with the hypothesis that skills are not perfectly transferable across

schools. As a placebo test, I consider movers with no prior experience in the schools they

were before switching in Panel B. They should not have accumulated school specific skills

prior to moving which is consistent with the zero effect found in Table C.3. These results

show that job-to-job transitions imply a sizeable aggregate loss in value added.

I then perform a second exercise quantifying the loss in productivity following a move

at the school level. I find that leavers are substantially of higher quality than the teachers

who replace them. Using value added prior to moving I find a difference of 0.10 standard

deviation which corresponds to around 50% of a standard deviation in value added.
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Table C.1: Value Added: Estimation of β

(1) (2)

Constant 0.781 (0.047) 0.559 (0.133)

t = 2018 0.020 (0.005) 0.023 (0.005)

Student Level Controls

Lagged Math Score 0.431 (0.006) 0.444 (0.005)

Lagged Math Score2 0.010 (0.002) 0.012 (0.002)

Lagged Math Score3 -0.027 (0.002) -0.029 (0.001)

Lagged Spanish Score 0.236 (0.005) 0.444 (0.005)

Lagged Spanish Score2 0.010 (0.002) 0.012 (0.002)

Lagged Spanish Score3 -0.012 (0.001) -0.029 (0.001)

Female -0.112 (0.005) -0.111 (0.005)

Age -0.071 (0.005) -0.052 (0.005)

Ethnicity: Quechua 0.045 (0.027) 0.058 (0.025)

Ethnicity: Native -0.022 (0.026) -0.036 (0.023)

Classroom Level Controls

Ethnicity: Quechua 1.657 (0.094) 0.379 (0.160)

Ethnicity: Native -1.303 (0.093) -0.478 (0.151)

Size 0.003 (0.000) -0.001 (0.001)

School Level Controls

Lagged Math Score -0.052 (0.018) -0.384 (0.073)

Lagged Math Score2 0.004 (0.016) -0.213 (0.058)

Lagged Math Score3 0.074 (0.016) 0.031 (0.045)

Lagged Spanish Score 0.245 (0.019) 0.483 (0.073)

Lagged Spanish Score2 -0.047 (0.015) 0.140 (0.057)

Lagged Spanish Score3 -0.001 (0.012) 0.038 (0.037)

Teacher FE 7 X

Notes. This table displays the estimates of β from the linear regression of student
test scores on student, classroom and school characteristics described in Section D.
Column 1 shows the results of this regression without teacher fixed effects. Column 2
includes teacher fixed effects. Standard errors are in parentheses
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Table C.2: Value Added: Structural Parameters

Parameter Estimate Std. Error 95% CI

σA,1 0.089 0.005 [0.079, 0.100]

σA 0.192 0.007 [0.179, 0.205]

ψ 0.466 0.019 [0.446, 0.485]

Lower Bound σµ 0.300 0.009 [0.282, 0.316]

Notes. This Table displays the estimates of the structural parameters of the teacher
value added model described in Section D.
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Figure C.1: Value Added: Robustness Checks

a) Actual Score

b) Predicted Score using Parental SES

Notes. Panel A of this figure plot averages of the test score residuals Ait for 20 equally spaced bins of the forecasted teacher
value added. Panel B of plot averages of the test score residuals Ait projected onto parental socio-economic status for 20 equally
spaced bins of the forecasted teacher value added. The reported coefficients correspond to the slope of the blue line. Standard
errors are in parentheses.
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Table C.3: Imperfectly Transferable Skills

Estimate Std. Errors 95% CI

Panel A: Past Tenure

ATE Movers: β -0.056 0.023 [−0.102,−0.011]

αStayers -0.005 0.004 [−0.014, 0.003]

αMovers -0.026 0.020 [−0.066, 0.024]

δ2018 0.004 0.005 [−0.005, 0.013]

Panel B: No Past Tenure

ATE Movers: β 0.004 0.018 [−0.031, 0.038]

αStayers -0.004 0.004 [−0.012, 0.005]

αMovers -0.021 0.014 [−0.048, 0.007]

δ2018 0.004 0.005 [−0.006, 0.013]

Notes. This table displays the results of the estimation of Equation (5). Panel A restricts the sample to
teachers which have been in the same school prior to 2016 for more than three years. Panel B restricts the
sample to teachers which have been in the same school prior to 2016 for less than three years. Standard errors
are clustered at the teacher level.
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D Proofs

D.1 Proof of Proposition 1

I first show that part (i) of Proposition 1 is a direct implication of Assumption 4 (i) and (ii),

i.e that the match is stable in period t.

Consider a match µt and suppose first that either Assumption 4 (i) or (ii) is violated such

that µt is not stable. First, suppose that (i) does not hold meaning that there exists a

teacher-school pair (i, j) such that Uijt > Uiµwt(i)t and Vijt > Vµmt(j)jt. This would mean that

j ∈ Mit(µt) and Uijt > Uiµwt(i)t which contradicts that Uiµwt(i)t = maxk∈Mit(µt)∪{0} Uikt. Now,

suppose that (ii) does not hold meaning that Ui0t > Uiµwt(i)t or V0jt > Vµmt(j)jt. In both cases,

this would contradict that Uiµwt(i)t = maxk∈Mit(µt)∪{0} Uik or Vµmt(j)jt = maxl∈Wjt(µt)∪{0} Vljt.

Now, suppose that for a given i, Uiµwt(i)t < maxk∈Mit(µt)∪{0} Uikt. This means that there

exists a school k′ ∈ Mit(µ) ∪ {0} such that Uik′t > Uiµwt(i)t. If k′ = 0 this immediately

contradicts stability. If k′ ∈ Mit(µ) this implies that Vik′t ≥ Vµmt(k′)k′t and Uik′t > Uiµwt(i)t.

If Vik′t = Vµmt(k′)k′t this implies that k′ = µw(i) and we reach a contradiction. Otherwise we

have that Uik′t > Uiµwt(i)t and Vik′t > Vµm(k′)k′t which contradicts stability. The argument is

symmetric for the school’s side.

Part (ii) of Proposition 1 is a direct consequence of part (i) and Assumption 2.

D.2 Proof of Proposition 2

As U t+1 is independent of ηijt under Assumption 1 and with exogenous choice sets, I treat it

as fixed and rewrite Uijt = uijt + σηijt for simplicity. The proof of part (i) of Proposition 2

is then identical to the proof of Lemma 3.1 in Menzel (2015).

P(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫
P(Uijt ≥ Uikt, k ∈ I − {j}|(uikt)Jk=1, ηijt = s)g(s)ds

=

∫ ∏
k∈I−{j}

G(σ−1(uijt − uikt) + s)g(s)ds
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=

∫ 2J∏
k=1

G(σ−1(uijt − uikt) + s)
g(s)

G(s)
ds

As in Menzel (2015), I then do the change of variables s = aJh + bJ where aJ = a(bJ) and

bJ = G−1(1− J−1/2) and multiply by J on both sides:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫
exp

(
1

J

2J∑
k=1

J logG(aJ(uijt − uikt + h) + bJ)

)
JaJg(aJh+ bJ)

G(aJh+ bJ)
dh

Following Resnick (1987) and under Assumption 1 we can show that:

J logG(aJ(uijt − uilt + h) + bJ)→ −e−(uijt−uikt+h)

JaJg(aJh+ bJ)

G(aJh+ bJ)
→ e−h

We thus have under Assumption 1:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫
exp

(
− 1

J

2J∑
k=1

e−(uijt−uikt+h)

)
e−hdh+ o(1)

=

∫
exp

(
− 1

J

2J∑
k=1

e−he(uikt−uijt)

)
e−he−hdh+ o(1)

I then do a final change of variable s = e−h such that we get:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫ +∞

0

exp

(
− 1

J

2J∑
k=1

se(uikt−uijt)

)
sds+ o(1)

=
exp(uijt)

1
J

∑2J
k=1 exp(uikt)

+ o(1)

From this we can finally show that:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|xit, (zkt)Jk=1) =

exp

{
Ut(xit, zjt) + βw

∫
U t+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+ 1

J

∑J
k=1 exp

{
Ut(xit, zkt) + βw

∫
U t+1(s)w(s|xit, zkt)ds

} + o(1)
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which implies that:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|xit, zjt) −→

exp

{
Ut(xit, zjt) + βw

∫
U t+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+
∫

exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

which finishes the proof of part (i) of Proposition 2.

Using similar steps as in McFadden et al. (1973), we can then show that:

E( max
k=0,1,...,J

Uikt|xit, (zkt)Jk=1) = log

(
exp

{
βw

∫
U t+1(s)w0(s|xit)ds

}
+

1

J

J∑
k=1

exp

{
Ut(xit, zkt) + βw

∫
U t+1(s)w(s|xit, zkt)ds

})
+ log(J) + γ + o(1)

where γ is Euler’s constant. Under Assumption 1, we can finally apply the law of large

numbers to show that:

E( max
k=0,1,...,J

Uikt|xit, (zkt)Jk=1) = log

(
exp

{
βw

∫
U t+1(s)w0(s|xit)ds

}
+

∫
exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

)
+ log(J) + γ + o(1)

which concludes the proof of part (ii) of Proposition 2.

D.3 Definition Ψwt and Ψmt

Ψwt[Γ](x) =

∫
exp

{
Ut(x, h) + Vt(x, h) + β

∫
U t+1[Γ](s)w(s|x, h)ds+ β

∫
V t+1[Γ](s)m(s|x, h)ds

}
exp

{
β
∫
V t+1[Γ](s)m0(s|h)ds

}
+ Γmt(h)

mt[Γ](h)dh

Ψmt[Γ](z) =

∫
exp

{
Ut(h, z) + Vt(h, z) + β

∫
U t+1[Γ](s)w(s|h, z)ds+ β

∫
V t+1[Γ](s)m(s|h, z)ds

}
exp

{
β
∫
U t+1[Γ](s)w0(s|h)ds

}
+ Γwt(h)

wt[Γ](h)dh

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)
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V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)
wt[Γ](x) =

∫
Xt

∫
Zt

w(x|s, h)ft−1[Γ](s, h)dhds+

∫
Xt

w0(x|s)ft−1[Γ](s, ∗)ds

mt[Γ](z) =

∫
Xt

∫
Zt

m(z|s, h)ft−1[Γ](s, h)dhds+

∫
Zt

m0(z|s)ft−1[Γ](∗, h)dh

D.4 Proof of Theorem 1

I start by proving part (i) and (ii) of Theorem 1. Throughout the rest of the proof I set

WLOG γw = γm = 0 and βw = βm = β for simplicity. I first restrict the space of functions to

which the solutions to the fixed point problem described in Equation (4) can belong. Namely,

I show that we can restrict ourselves to a Banach space of continuous functions. Assume that

there exists a set of 2× T functions Γ∗wt and Γ∗mt for all t = 1, ..., T that solve the fixed point

problem. I start by showing that these solutions are bounded from above. By definition of

Ψwt and U t and using that Γ∗mt ≥ 0 for all t, we can proceed by backward induction and

show:

Γ∗wT (x) = ΨwT [Γ∗](x) =

∫
exp{UT (x, s) + VT (x, s)}

1 + Γ∗mT (s)
mT (s)ds

≤
∫

exp{UT (x, s) + VT (x, s)}mT (s)ds

≤ exp{Ū + V̄ }

where Ū and V̄ are the upper bounds of the functions Ut and Vt for all t, respectively. From

there we can bound U
∗
T as follows:

U
∗
T (x) = log (1 + Γ∗wT (x))

≤ log
(
1 + exp{Ū + V̄ }

)
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Similar bounds can be derived on the school side. We can then iterate this procedure and

bound ΓwT−1 and UT−1:

Γ∗wT−1(x) =

∫
exp{UT−1(x, h) + VT−1(x, h) + β

∫
UT (s)w(s|x, h)ds+ β

∫
V T (s)m(s|x, h)ds}

1 + Γ∗mT−1(h)
mT−1(h)dh

≤ exp

{
U + V + 2β log(1 + exp{U + V })

}

U
∗
T−1(x) = log

(
exp

{
β

∫
U
∗
T (s)w0(s|x)ds

}
+ Γ∗wT−1(x)

)
≤ log

(
exp

{
β log

(
1 + exp{U + V }

)}
+ exp

{
U + V + 2β log

(
1 + exp{U + V }

)})

Boundedness of Γ∗wt is thus implied by boundedness of U t+1 which is in itself implied by

boundedness of Γ∗wt+1 and U t+2. By induction we can thus show that boundedness of Γ∗wT

implies boundedness of Γ∗wt for all t = 1, ..., T . The same argument applies to Γ∗mt. Continuity

of Γ∗wt and Γ∗mt follows from continuity of U and V and that the integrals are nonnegative.

Differentiability of Γ∗wt and Γ∗mt also follows from differentiability of U and V which is stated

in Assumption 1. We can thus restrict the spaces in which Γ∗wt and Γ∗mt belong to a Banach

space of nonnegative bounded continuous functions which I call C.

I now turn to the proof that the mapping (log Γw, log Γm) 7→ (log Ψm[Γ], log Ψw[Γ]) is a

contraction. Consider two sets of functions Γ = (Γmt,Γwt)
T
t=1 and Γ̃ = (Γ̃mt, Γ̃wt)

T
t=1 belong-

ing to C2T . I show that there always exists a constant λ < 1 such that:

∣∣∣∣∣∣ log Ψw[Γm]− log Ψw[Γ̃m]
∣∣∣∣∣∣
∞
≤ λ

∣∣∣∣∣∣ log Γm − log Γ̃m

∣∣∣∣∣∣
∞

The mean value inequality for vector valued functions defined on Banach spaces implies that:

∣∣∣∣∣∣ log Ψw[Γm](x)− log Ψw[Γ̃m](x)
∣∣∣∣∣∣
∞
≤

sup
a∈[0,1]

∣∣∣∣∣∣D log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ log Γm(x)− log Γ̃m(x)
∣∣∣∣∣∣
∞
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where D log Ψw are the Gateaux derivatives of log Ψw. The rest of the proof consists in

showing that these derivatives are strictly bounded below 1.

Starting with t = 1, I rewrite log Ψw1 such that:

log Ψw1[log Γ](x) =

log

∫
exp

{
U1(x, h) + V1(x, h) + β

∫
U2[log Γ](s)w(s|x, h)ds+ β

∫
V 2[log Γ](s)m(s|x, h)ds

}
exp{β

∫
V 2[log Γ](s)m0(s|h)ds}+ exp{log Γ∗m1(h)}

m1(h)dh

where U2 and V 2 are defined as:

U2[log Γ](x) = log

(
exp

{
β

∫
U3[log Γ](s)w0(s|x)ds

}
+ exp{log Γw2(x)}

)

V 2[log Γ](z) = log

(
exp

{
β

∫
V 3[log Γ](s)m0(s|z)ds

}
+ exp{log Γm2(z)}

)
The Gateaux derivative of log Ψw1 with respect to log Γm1 can be bounded in absolute value

as:∣∣∣∣∣− 1

Ψw1[Γ](x)

∫
Γm1(h)

exp{β
∫
V 2[Γ](s)m0(s|h)ds}+ Γm1(h)

×

exp
{
U1(x, h) + V1(x, h) + β

∫
U2[Γ](s)w(s|x, h)ds+ β

∫
V 2[Γ](s)m(s|x, h)ds

}
exp{β

∫
V 2[Γ](s)m0(s|h)ds}+ Γm1(h)

m1(h)dh

∣∣∣∣∣
≤ λ1

Ψw1[Γ](x)

∫
exp

{
U1(x, h) + V1(x, h) + β

∫
U2(s)w(s|x, h)ds+ β

∫
V 2(s)m(s|x, h)ds

}
exp{β

∫
V 2(s)m0(s|h)ds}+ Γm1(h)

m1(h)dh

= λ1

where λ1 is an upper bound of the ratio

Γ∗m1(h)

exp{β
∫
V 2[log Γ](s)m0(s|h)ds}+ Γ∗m1(h)

≤ ΓU

exp{βUU}+ ΓU
= λ1 < 1

A similar bound can be computed for the Gateaux derivative of log Ψm1 with respect to

log Γw1.

I use a similar argument to show that the Gateaux derivative of log Ψw1 with respect to
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log Γmt for t > 1 can be bounded in absolute value by the upper bound of the following

expression:

β

∫
DmtV2[log Γ](s)m(s|x, h)ds− β

∫
DmtV2[log Γ](s)m0(s|h)ds

exp{β
∫
V 2(s)m0(s|h)ds}

exp{β
∫
V 2(s)m0(s|h)ds}+ Γ∗m1(h)

where I define DmtV2 as the Gateaux derivative of V2 with respect to log Γmt. From there,

we can show that for all 1 < t < T :

DmtVt[log Γ](z) =
Γ∗mt(z)

exp{β
∫
V t+1(s)m0(s|z)ds}+ Γ∗mt(z)

≤ λ1 (6)

From this result, we proceed by induction and show that for all 1 < t < T :

Dmt+1Vt[log Γ](z) = β

∫
Dmt+1V t+1[log Γ](s)m0(s|z)ds

exp{β
∫
V t+1(s)m0(s|z)ds}

exp{β
∫
V t+1(s)m0(s|z)ds}+ Γ∗mt(z)

≤ βλ1
exp{βUU}

exp{βUU}+ ΓU
= βλ1λ2

We can iterate this procedure to show that for all 1 < t ≤ t′ < T :

Dmt′Vt[log Γ](x) ≤ βt
′−tλ1λ

t′−t
2 < 1 (7)

For t′ = T we can easily verify that:

DmTVt[log Γ](x) ≤ βT−tλ2
1λ

T−t−1
2 < 1

This implies that we can bound from above the first term of the derivative of log Ψw1 with

respect to log Γmt for all 1 < t < T by:

βt−1λ1λ
t−2
2 < 1

while the second term can be bounded by:

βt−1λ1λ
t−1
2 < 1
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This implies that the difference between the two is strictly below 1. Similarly for t = T , we

can bound the first term from above by

βT−1λ2
1λ

T−3
2 < 1

while the second term can be bounded by:

βT−1λ2
1λ

T−2
2 < 1

Again, this holds symetrically for Ψm1. This finishes to show that the Gateaux derivatives

of log Ψw1 and log Ψm1 are strictly bounded below 1.

I now consider log Ψwt such that 1 < t < T . I rewrite log Ψwt such that:

log Ψwt[log Γ](x) =

log

∫
exp

{
Ut(x, h) + Vt(x, h) + β

∫
U t+1[log Γ](s)w(s|x, h)ds+ β

∫
V t+1[log Γ](s)m(s|x, h)ds

}
exp{β

∫
V t+1[log Γ](s)m0(s|h)ds}+ exp{log Γmt(h)}

mt[log Γ](h)dh

where U t+1, V t+1 and mt are defined as:

U t+1[log Γ](x) = log

(
exp

{
β

∫
U t+2[log Γ](s)w0(s|x)ds

}
+ exp{log Γwt+1(x)}

)

V t+1[log Γ](z) = log

(
exp

{
β

∫
V t+2[log Γ](s)m0(s|z)ds

}
+ exp{log Γmt+1(z)}

)
mt[log Γ](z) =

∫
Xt−1

∫
Zt−1

m(z|s, h)ft−1[log Γ](s, h)dhds+

∫
Zt−1

m0(z|s)ft−1[log Γ](∗, h)dh

and ft−1 can be expressed as follows:

ft−1(x, z) =

exp

{
Ut−1(x, z) + Vt−1(x, z) + β

∫
U t(s)w(s|x, z)ds+ β

∫
V t(s)m(s|x, z)ds

}
wt−1[log Γ](x)mt−1[log Γ](z)(

exp

{
β
∫
U t(s)w0(s|x)ds

}
+ exp{log Γwt−1(x)}

)(
exp

{
β
∫
V t(s)m0(s|z)ds

}
+ exp{log Γmt−1(z)}

)
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ft−1(∗, z) =

exp

{
β
∫
V t(s)m0(s|z)ds

}
(

exp

{
β
∫
V t(s)m0(s|z)ds

}
+ exp{log Γmt−1(z)}

)mt−1[log Γ](z)

I first consider the derivative of log Ψwt with respect to log Γmt−1 and write is as:

− 1

Ψwt[Γ](x)

∫
exp

{
Ut(x, h) + Vt(x, h) + β

∫
U t+1[Γ](s)w(s|x, h)ds+ β

∫
V t+1[Γ](s)m(s|x, h)ds

}
exp{β

∫
V t+1[Γ](s)m0(s|h)ds}+ Γmt(h)

× Dmt−1mt[Γ](h)

mt[Γ](h)
mt[Γ](h)dh

where I define Dmt−1mt as the derivative of mt with respect to log Γmt−1 which can be

written as:

Dmt−1mt[Γ](z) =

∫
Xt−1

∫
Zt−1

m(z|s, h)ft−1(s, h)

[
− Γmt−1(h)

exp{β
∫
V t(s)m0(t|h)dt}+ Γmt−1(h)

+
Dmt−1mt−1[Γ](h)

mt−1(h)

]
dhds

+

∫
Z1

m0(z|h)f1(∗, h)

[
− Γmt−1(h)

exp{β
∫
V t(s)m0(t|h)dt}+ Γmt−1(h)

+
Dmt−1mt−1[Γ](h)

mt−1(h)

]
dh

≤ mt(z)

[
−λ1 +

Dmt−1mt−1[Γ](h)

mt−1(h)

]

Similarly, we can iterate once more and write using Equation 6

Dmt−1mt−1[Γ](z) =

∫
Xt−2

∫
Zt−2

m(z|s, h)ft−2(s, h)

[
β

∫
Dmt−1V t−1(s)m(t|s, h)dt

− β
∫
Dmt−1V t−1(s)m0(t|h)dt

exp{β
∫
V t−1(s)m0(t|h)dt}

exp{β
∫
V t−1(s)m0(t|h)dt}+ Γ∗mt−2(h)

+
Dmt−1mt−2[Γ](h)

mt−2(h)

]
dhds

+

∫
Z1

m0(z|h)f1(∗, h)

[
β

∫
Dmt−1V t−1(s)m0(t|s, h)dt

− β
∫
Dmt−1V t−1(s)m0(t|h)dt

exp{β
∫
V t−1(s)m0(t|h)dt}

exp{β
∫
V t−1(s)m0(t|h)dt}+ Γ∗mt−2(h)

+
Dmt−1mt−2[Γ](h)

mt−2(h)

]
dh

≤ mt−1(z)

[
βλ1 − βλ1λ2 +

Dmt−1mt−2[Γ](h)

mt−2(h)

]

85



Using Equation 7, we then iterate further:

Dmt−1mt−1[Γ](z) ≤ mt−1(z)

[
βλ1 − βλ1λ2 + β2λ1λ2 − β2λ1λ

2
2 +

Dmt−1mt−3[Γ](h)

mt−3(h)

]
≤ mt−1(z)

[
βλ1 − β2λ1λ

2
2 +

Dmt−1mt−3[Γ](h)

mt−3(h)

]

Given that Dmt−1m1 = 0 by definition and that λ1 < 1,λ2 and β < 1, we can thus conclude

by induction that:
Dmt−1mt−1[Γ](h)

mt−1(h)
< 1

which directly implies that:
Dmt−1mt[Γ](h)

mt(h)
< 1

and that the derivative of log Ψwt with respect to log Γmt−1 is strictly bounded from above

in absolute value by 1. Similar steps can be used to show the same result for the Gateaux

derivative of log Ψwt with respect to any log Γmt′ or log Γwt′ with t 6= t′. Symmetrical results

apply for log Ψmt.

Overall this implies that:

sup
a∈[0,1]

∣∣∣∣∣∣D log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞
< 1

which finishes to prove that there exists a constant λ < 1 such that:

∣∣∣∣∣∣ log Ψw[Γm]− log Ψw[Γ̃m]
∣∣∣∣∣∣
∞
≤ λ

∣∣∣∣∣∣ log Γm − log Γ̃m

∣∣∣∣∣∣
∞

I thus conclude that the mapping (log Γw, log Γm) 7→ (log Ψw[Γ], log Ψm[Γ]) is a contraction

which proves claim (i) of Theorem 1. The proof of part (ii) is a direct implication of the

Banach fixed point theorem.

Before proving part (iii) of Theorem 1, intermediary steps are needed. In what follows,

I follow Menzel (2015) and first prove that the size of opportunity sets grow at a rate
√
n.

From this, I then show that the dependence between opportunity sets and taste shocks under

the extremal matchings vanishes as n grows to infinity. I then use this result to show that we

can approximate inclusive values arising from any stable match by inclusive value functions
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which have an approximate fixed point representation. I then finally prove that the solution

to the finite sample fixed point problem converges to the unique solution of the population

fixed point problem which concludes the proof of Theorem 1.(iii).

D.4.1 Rate of Size of Feasible Choice Sets

Define, for a given stable matching µ∗t , the number of schools feasible to teacher i and the

number of teachers feasible to school j in period t as:

J∗wit =
nm∑
j=1

1{Vijt ≥ max
l∈Wjt(µ∗t )∪{0}

Vljt} and J∗mjt =
nw∑
i=1

1{Uijt ≥ max
k∈Mit(µ∗t )∪{0}

Uikt}

Similarly, define the number of school that teacher i would accept and the number of teachers

that school j would accept:

L∗wit =
nm∑
j=1

1{Uijt ≥ max
k∈Mit(µ∗t )∪{0}

Uikt} and L∗mjt =
nw∑
i=1

1{Vijt ≥ max
l∈Wjt(µ∗t )∪{0}

Vljt}

I now state the following result:

Lemma 1 Under Assumptions 1-3 and for any stable matching µ∗t , we have:

n1/2 exp(−V̄ − βV U
+ γm)

1 + exp(Ū + V̄ + βU
U

+ βV
U

+ γw)
≤ J∗wi ≤ n1/2 exp(V̄ + βV

U
+ γm)

n1/2 exp(−Ū − βUU
+ γw)

1 + exp(Ū + V̄ + βU
U

+ βV
U

+ γm)
≤ J∗mj ≤ n1/2 exp(Ū + βU

U
+ γw)

n1/2 exp(−Ū − βUU
+ γm)

1 + exp(Ū + V̄ + βU
U

+ βV
U

+ γm)
≤ L∗wi ≤ n1/2 exp(Ū + βU

U
+ γm)

n1/2 exp(−V̄ − βV U
+ γw)

1 + exp(Ū + V̄ + βU
U

+ βV
U

+ γw)
≤ L∗mj ≤ n1/2 exp(V̄ + βV

U
+ γw)

for each i = 1, ..., nw and j = 1, ..., nm with probability approaching 1 as n→∞.

Proof: As in Menzel (2015), we can define exogenous sets W jt = {i : Uijt ≥ Ui0t} and

M it = {j : Vijt ≥ V0jt} such that Wjt(µ
∗
t ) ⊂ W jt and Mit(µ

∗
t ) ⊂ M it as well as W ◦

jt =
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{i : Uijt ≥ maxk∈M it(µ∗t )∪{0} Uikt} and M◦
it = {j : Vijt ≥ maxl∈W jt(µ∗t )∪{0} Vljt} such that

W ◦
jt ⊂ Wjt(µ

∗
t ) and M◦

it ⊂Mit(µ
∗
t ).

From this, I construct the following bounds on J∗wi:

J◦wit =
nm∑
j=1

1{j ∈M◦
it} ≤

nm∑
j=1

1{j ∈Mit(µ
∗)} ≤

nm∑
j=1

1{j ∈M it} = Jwit

from there, using Proposition 2, we can show that:

E[Jwit|xit, z1t, ..., znmt] =
1

J

nm∑
j=1

exp{V (xit, zjt) + β
∫
V jt+1(s)m(s|xit, zjt)ds}

1 + 1
J

exp{V (xit, zjt) + β
∫
V jt+1(s)m(s|xit, zjt)ds}

+ o(1)

≤ nm
J

exp{V̄ + βV
U}+ o(1)

which implies under Assumption 3 that:

E[Jwit] ≤ n1/2 exp{V̄ + βV
U

+ γm}+ o(1)

Following the same steps as Menzel (2015) we can then show that the variance of Jwit

converges to zero which implies that:

n−1/2(Jwit − E[Jwit])→ 0

We have thus established that J∗wit ≤ n1/2 exp{V + βV
U

+ γm} with probability approaching

1 as n→∞. Following the same steps, we can show symmetrically that:

J∗mjt ≤ n1/2 exp{Ū + βU
U

+ γw}

L∗wit ≤ n1/2 exp{V̄ + βV
U

+ γm}

L∗mjt ≤ n1/2 exp{Ū + βU
U

+ γw}

with probability approaching 1 as n → ∞. We now consider the lower bound J◦wit. We can

88



again use Proposition 2 to show that:

E[J◦wit|(xlt)l∈W jt
, (zkt)

nm
k=1] =

1

J

nm∑
j=1

exp{Vt(xit, zjt) + β
∫
V jt+1(s)m(s|xit, zjt)ds}

1 + 1
J

∑
l∈W jt

exp{V (xlt, zjt) + β
∫
V jt+1(s)m(s|xlt, zjt)ds}

+ o(1)

≥ nm
J

exp{−V̄ − βV U}
1 +

Jmjt

J
exp{V̄ + βV

U}
+ o(1)

Using the higher bound for J∗mj derived just above and Jensen’s inequality, we can finally

show that:

E[J◦wit] ≥ n1/2 exp{−V̄ − βV U
+ γm}

1 + exp{V̄ + Ū + βV
U

+ βU
U

+ γw}
+ o(1)

Following Menzel (2015) we can then also show that the variance of J◦wit converges to zero

which implies that:

n−1/2(J◦wit − E[J◦wit])→ 0

This establishes that J∗wit ≥ n1/2 exp{−V̄−βV U
+γm}

1+exp{V̄+Ū+βV
U

+βU
U

+γw}
with probability approaching 1 as

n→∞. Following the same steps, we can show that symmetrically, we have:

J∗mjt ≥ n1/2 exp{−Ū − βUU
+ γw}

1 + exp{V̄ + Ū + βV
U

+ βU
U

+ γm}

L∗wit ≥ n1/2 exp{−Ū − βUU
+ γm}

1 + exp{V̄ + Ū + βV
U

+ βU
U

+ γm}

L∗mjt ≥ n1/2 exp{−V̄ − βV U
+ γw}

1 + exp{V̄ + Ū + βV
U

+ βU
U

+ γw}

with probability approaching 1 as n→∞. This concludes the proof of Lemma 1.

D.4.2 Exogeneity of Feasible Choice Sets

We now need to show that as n → ∞, the dependence between agents taste shocks and

opportunity sets vanishes. As there taste shocks are independent across periods under As-

sumption 1, the dependence between unobserved preferences and opportunity sets can only

arise within period. The proof thus mirrors very closely Menzel (2015) which proves the same

result in the static case.
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For the rest of the proof, I define the following set of indicator functions E∗ijt = 1{i ∈

Wjt(µ
∗
t )} and D∗ijt = 1{j ∈ Mit(µ

∗
t )} for all teachers i = 1, ..., nw and schools j = 1, ..., nm.

The first result to establish is that the probability that changing one availability indicator

affects another agents’ opportunity set converges to zero as n→∞. I first prove the following

result:

Lemma 2 Suppose Assumption 1-3 hold and suppose we change one availability indicator

E∗ijt exogenously to Ẽijt = 1 − E∗ijt and then iterate the deferred acceptance algorithm from

this point until convergence. Denote the resulting availability indicators {Ẽlkt, D̃lkt : l =

1, ..., nw, k = 1, ..., nm}. We have for any teacher l and school k:

(i). P(D̃l 6= D∗l |D∗l , D∗ij = 0) = P(Ẽk 6= E∗k |E∗l , D∗ij = 0) = 0

(ii). There exist constants a <∞ and 0 < λ < 1 such that:

P(D̃l 6= D∗l |D∗l , D∗ijt = 1) ≤ n−1/2 a

1− λ

P(Ẽk 6= E∗k |E∗l , E∗ijt = 1) ≤ n−1/2 a

1− λ

The same result holds for an exogenous change of Dijt to D̃ijt = 1−Dijt.

Proof: Suppose we change E∗jit exogenously to Ẽjit = 1 − Ejit and that we iterate the

deferred acceptance algorithm from this stage. This will only trigger a chain of rematches if

this affects the indirect utility of either i or j. Suppose D∗ijt = 0 and that E∗ijt = 0 meaning

that school j is not feasible to teacher i and vice versa. Suppose now that Ẽjit = 1−E∗ijt = 1,

meaning that suddenly teacher i’s preference for school j increase such that teacher i becomes

feasible for school j. This will not affect the indirect utility of school j nor teacher i given that

school j is not feasible to teacher i. This change will thus not trigger a chain of rematches.

A similar argument can be used in the case where E∗ijt changes from 1 to Ẽjit = 1−E∗ijt = 0.

This establishes part (i) of Lemma 2.

Now suppose that D∗ijt = 1 such that if Ẽijt = 1 − E∗ijt = 1, now school j and teacher

i will want to rematch together or if Ẽijt = 1 − E∗ijt = 0 school j and teacher i will break
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their current match. This will trigger a chain of rematches than can potentially cycle back

to teacher i or school j’s opportunity set. I start by showing that, at each step s of these

subsequent rematches, there is at most one indicator in the vector D
(s)
l corresponding to a

school k with E
(s)
lkt = 1 that will change. The idea of the proof is the following: suppose that

a given teacher l matched to school k in step (s− 1) becomes unavailable to school k in step

s. This school will then replace this teacher by its most preferred feasible applicant, which

will only change the availability indicator of this school to this newly hired teacher. On the

other hand, if a given teacher becomes available to a school while this school prefers this

teacher to its matched employee, then it will replace them by this new employee, making this

school unavailable to the kicked out employee. In both cases, this will only change at most

one availability indicator among the teachers who are willing to match with this school. Note

that at each of these steps, there is a chance that the chain is terminated if the next preferred

feasible option is the outside option. A similar argument can be used symmetrically from

the teachers perspective.

The rest of the proof now consists in bounding the probability that the chain is terminated

by either (a) school k or teacher l preferring the outside option to any other option in their

opportunity set or (b) a change in availability indicators of teacher k Dk. I define µst the

state of the match in iteration s of the deferred acceptance algorithm following an exogenous

change of Eijt to Ẽijt = 1 − Eijt. The first step bounds the probability that the chain is

terminated by the outside option at stage s.

I start from the following observation: given that P(Vlkt > Vk,(q)(Wk(µ
s))|xl, zk) ≥

P(Vlk > Vk,(1)(Wk(µ
s))|xl, zk) and that W ◦

k,(1) ⊂ W ∗
k ⊂ W k, we have from Proposition 2

and Lemma 1 that for any school k and teacher l:

P(Vlkt > max
l∈Wkt(µ

s
t )∪{0}

Vlkt|xlt, zkt)

≥ P(Vlkt > max
l∈Wkt∪{0}

Vlkt|xlt, zkt)

= n−1/2 exp(V (zkt, xlt) + β
∫
V kt+1(s)m(s|xlt, zkt)ds)

1 + 1
J

∑
i∈Wkt

exp(V (zkt, xit) + β
∫
V kt+1(s)m(s|xit, zkt)ds)

+ o(1)

≥ n−1/2 exp(V (zkt, xlt) + β
∫
V kt+1(s)m(s|xlt, zkt)ds)

1 + exp(Ū + V̄ + βV
U

+ βU
U

+ γw)
+ o(1)
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This implies that, conditional on D∗i and as n approaches infinity:

P(V0kt > max
l∈Wkt(µ

s
t )∪{0}

Vlkt|D∗i , xit, zkt) ≥
1

1 + exp(Ū + V̄ + βV
U

+ βU
U

+ γw)
=: ps

Following now the same steps as Menzel (2015), we have, by Bayes law that:

P(V0kt > max
l∈Wkt(µ

s
t )∪{0}

Vljt|D∗l , D̃
(s)
lkt = 1, xlt, zkt) ≥

Lps

L(1− ps) + Lps

where L and L are respectively the upper and lower bounds on L∗mj taken from Lemma 1.

From there, we finally get that:

1−P(V0kt > max
l∈Wkt(µ

s
t )∪{0}

Vljt|D∗l , D̃
(s)
lkt = 1, xlt, zkt) ≤

L exp(Ū + V̄ + βV
U

+ βU
U

+ γw)

L exp(Ū + V̄ + βV
U

+ βU
U

+ γw) + L
=: λ < 1

This essentially means that the probability that the chain is not terminated at stage s is

bounded away from 1.

Now we bound the probability that the chain leads to a change in Dl at stage s. We can

thus bound the following probability using Proposition 2 and Lemma 1:

P(Vlkt > max
l∈Wkt(µ

s
t )∪{0}

Vlkt)|xlt, zkt)

≤ P(Vlkt > max
l∈W ◦kt∪{0}

Vlkt|xlt, zkt)

= n−1/2 exp(V (zkt, xlt) + β
∫
V kt+1(s)m(s|xlt, zkt)ds)

1 + 1
J

∑
i∈W ◦kt

exp(V (zkt, xit) + β
∫
V kt+1(s)m(s|xit, zkt)ds)

+ o(1)

≤ n−1/2 exp(V̄ + βV
U

) + o(1)

This implies that for n sufficiently large, we have:

P(D̃
(s)
l 6= D∗l |D∗l , D̃

(s)
lkt = 1, xl, zk)

≤ n−1/2 exp(V̄ + βV
U

)L

n−1/2 exp(V̄ + βV
U

)L+ L
≤ n−1/2 exp(V̄ + βV

U
)
L

L
= n−1/2a

Using the law of total probability, we can thus bound as n→∞ the conditional probability
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that D̃l 6= D∗l

P(D̃l 6= D∗l |D∗l ) ≤
∞∑
s=1

λsn−1/2a ≤ n−1/2a

1− λ

which proves part (b) of Lemma 2.

From there, I state the main result that the dependence between taste shocks and agents’

opportunity sets vanishes as n→∞. I first define the joint distribution of ηi = (ηi1, ..., ηinm)′,

εj = (ε1j, ..., εnwj)
′ and the availability indicators DW

i , EW
j , DM

i , EM
j corresponding to

the teacher-optimal and the school-optimal stable matches. Note that I consider these

two specific matches since the teacher-optimal and school-optimal stable matches are de-

fined with probability 1 conditional on the realization of the taste shocks ηi and εj. In-

deed, the distribution of availability indicators arising from an arbitrary stable match D∗i

would not be well defined. I also define: DW
i,−j = (DW

i1 , ..., D
W
i(j−1), D

W
i(j+1), ..., D

W
inm

) and

E−i,j = (EW
1j , ..., E

W
(i−1)j, E

W
(i+1)j, ..., E

W
nwj) with analogous notations for the school optimal

match. I then define the conditional c.d.f.s:

GW
η|D(η|d) = P(ηi ≤ η|DW

i = d), d ∈ {0, 1}nm

GW
η,ε|D,E(η, ε|d, e) = P(ηi ≤ η, εj ≤ ε|DW

i,−j = d, EW
−i,j = e), d ∈ {0, 1}nm−1, e ∈ {0, 1}nw−1

with analogous definitions for the school-optimal stable match and associated p.d.f.s gWη|D and

gWη,ε|D,E. The main result is the following:

Lemma 3 Under Assumption 1 and 2, we have:

(i). gWη|D and gMη|D satisfy:

lim
n

∣∣∣gWη|D(η|DW
i )

gη(η)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η|DM
i )

gη(η)
− 1
∣∣∣ = 1

(ii). gWη,ε|D,E and gMη,ε|D,E satisfy:

lim
n

∣∣∣gWη|D(η, ε|DW
i,−j, E

W
−i,j)

gη,ε(η, ε)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η, ε|DM
i,−j, E

M
−i,j)

gη,ε(η, ε)
− 1
∣∣∣ = 1
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The same results holds for the school side of the market.

Proof: Let gWη,D be the joint p.d.f. of taste shocks and availability indicators under the

teacher optimal stable match. We can rewrite, by definition of a conditional density:

gWη|D(η|DW
i )

gη(η)
=

gWη,D(η,DW
i )

gη(η)P (DW
i )

=
P (DW

i |ηi = η)gη(η)

gη(η)P (DW
i )

=
P (DW

i |ηi = η)

P (DW
i )

I then follow similar steps as in Menzel (2015) to show that:

∣∣∣P (DW
i |ηi = η)

P (DW
i )

− 1
∣∣∣ ≤ sup

η1,η2

∣∣∣P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1
∣∣∣

such that I only need to bound the probability that shifting ηi from η1 to η2 changes teacher

i’s opportunity set. We know from Lemma 2 that changing an availability indicator will

trigger a chain of rematches that could change teacher i’s opportunity set with probability

less than n−1/2a
1−λ as n approaches infinity. Here, we can show that shifting agent i’s taste

shocks would trigger at most two chains of rematches. Indeed, if the shift in taste shocks

makes agent i prefers school l with Dil = 1 instead of her current employer school j, this

changes both Eij from 1 to 0 and Eil from 0 to 1. Thus, this would trigger two chains of

rematches where both school j and the teacher which was displaced from school l by teacher

i would need to find a new match. We can thus conclude that:

P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1 ≤ 2
n−1/2a

1− λ

as n→∞ which can be shown to hold also in absolute value. As the right hand side converges

to 0 as n→∞, this proves the first part of claim (i). The same result holds symetrically for

the school side.

For part (ii), note that the argument can be extended in a similar way. If you change

both school j and teacher i’s taste shocks this can trigger at most 4 chains of rematches such

that we can bound the probability of a shift in opportunity sets by n−1/2 4a
1−λ which can be

made arbitrarily close to 0 as n approaches infinity.
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D.4.3 Bounds for Inclusive Values

Since I have established exogeneity of opportunity sets under the school-optimal and teacher-

optimal stable matches, the rest of the analysis focuses on characterizing the limit of inclusive

values that arise under these extremal matchings. As in Menzel (2015), I show that both

converge to a unique limit, implying that inclusive values arising from any stable matching

also converge toward this limit.

I define IWwit = Iwit(µ
W
t ) and IWmjt = Imjt(µ

W
t ) the inclusive values that arise from the

sequence of teacher-optimal stable matches µW in period t. Similarly, I define IMwit and IMmjt

as the inclusive values that arise from the sequence of school-optimal stable matches µM such

that for any stable match µ∗t , we have IWwit ≥ Iwit(µ
∗
t ) ≥ IMwit and IWmjt ≤ Iwit(µ

∗
t ) ≤ IMmjt for

all t. I state the following result:

Lemma 4 Under Assumption 1-3:

(i). For all i = 1, ..., nw and j = 1, ..., nm:

IMwit ≥ Γ̂Mwt(xit) + op(1) and IMmjt ≤ Γ̂Mmt(zjt) + op(1)

where the analogous result holds for the teacher-optimal stable match with the side of inequal-

ities reversed.

(ii). If the weight functions ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

x, then

sup
x∈X

1

n

nm∑
j=1

ω(x, zjt)(I
M
mjt − Γ̂Mmt(zjt)) ≤ op(1)

and

inf
z∈Z

1

n

nw∑
i=1

ω(xit, z)(I
M
wit − Γ̂Mwt(xit)) ≥ op(1)

The analogous conclusion holds for the teacher-optimal stable match where the sign of the

inequalities is reversed and if ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

z.

Proof: I first show that we can bound conditional choice probabilities given an opportunity

set arising from a stable match using the extremal matchings. I first define the conditional
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probability that teacher i chooses school j given the realization of opportunity set MM arising

from the school-optimal stable match:

ΛM
wt(x, z,M

M) = P(Uijt ≥ max
k∈MM

it ∪{0}
Uikt|(MM

iτ )Tτ=t = MM , xit = x, zjt = z)

and the expectations about future match payoffs given future opportunity sets as:

U
M

t+1(x,MM) = E

[
max

k∈MM
it+1∪{0}

Uikt+1|(MM
iτ )Tτ=t+1 = MM , xit+1 = x

]

I also define the conditional choice probabilities and expectations about future payoffs in

period t under exogenous opportunity sets as:

Λwt(x, z,M) = P(Uijt ≥ max
k∈M∪{0}

Uikt|xit = x, zjt = z)

U t+1(x,M) = E
[

max
k∈M∪{0}

Uikt+1|xit+1 = x

]
As there are several stable matches such that M∗

i = MM
i and W ∗

j = WM
j we can show that:

JΛM
wt(x, z, (M

M
iτ )Tτ=t) ≤ JΛwt(x, z, (M

M
iτ )Tτ=t) + op(1)

U
M

t+1(x, (MM
iτ )Tτ=t+1) ≥ U t+1(x, (MM

iτ )Tτ=t+1) + op(1)

Using Proposition 2, we can then show that for i = 1, ..., nw, l1 = 1, ..., nm and l2 6= l1:

E
[
J

(
DM
il1t

exp

{
β

∫
U
M

it+1(s)w(s|xit, zl1t)ds
}

− ΛM
mt(xit, zl1t, (I

M
ml1τ

)Tτ=t) exp

{
β

∫
U
M

t+1(s, (MM
iτ )Tτ=t+1)w(s|xit, zl1t)ds

})∣∣∣∣(IMml1τ )Tτ=t, xit, zl1t

]
→ 0

and

E
[
J2

(
DM
il1t

exp

{
β

∫
U
M

it+1(s)w(s|xit, zjt)ds
}

− ΛM
mt(xit, zl1t, (I

M
ml1τ

)Tτ=t) exp

{
β

∫
U
M

t+1(s, (IMwiτ )
T
τ=t+1)w(s|xit, zl1t)ds

})
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×DM
il2t

exp

{
β

∫
U
M

it+1(s)w(s|xit, zl1t)ds
}

− ΛM
mt(xit, zl2t, (I

M
ml2τ

)Tτ=t) exp

{
β

∫
U
M

t+1(s, (IMwiτ )
T
τ=t+1)w(s|xit, zl2t)ds

}
∣∣∣∣(IMml1τ )Tτ=t, (I

M
ml2τ

)Tτ=t, (I
M
wiτ )

T
τ=t+1, xit, zl1t, zl2t

]
→ 0

Therefore, since under Assumption 1, we know that exp(Ut(xit, zjt)) is bounded, we can thus

conclude that:

Var

(
1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + β

∫
U
M
t+1(s, (IMwiτ )Tτ=t+1)w(s|xit, zkt)ds

}
J(DM

ik − ΛMmt(xit, zkt, (I
M
mkτ )Tτ=t))

)
→ 0

which implies that:

1

n

nm∑
k=1

exp

{
Ut(xit, zkt)+β

∫
U
M

t+1(s, (IMwiτ )
T
τ=t+1)w(s|xit, zkt)ds

}
J(DM

ikt−ΛM
mt(xit, zkt, (I

M
mkτ )

T
τ=t)) = op(1)

Given that from Proposition 2:

JΛM
mt(x, z, (W

M
jτ )Tτ=t) ≥

exp

{
Vt(x, z) + βm

∫
V
M

t+1(s)m(s|x, z)ds

}
exp

{
βm
∫
V
M

t+1(s)m0(s|x)ds

}
+ IMmjt

+ op(1)

This implies that:

1

n

nm∑
k=1

exp{Ut(xit, zkt)}

JDM
ikt −

exp

{
Vt(xit, zkt) + βm

∫
V
M

t+1(s)m(s|xit, zkt)ds
}

exp

{
βm
∫
V
M

t+1(s)m0(s|zkt)ds
}

+ IMmjt

 ≥ op(1)

which proves the first claim of part (i) of Lemma 4. Similar steps can be used to bound

inclusive values on the school side and for the teacher optimal sequence of stable matches.

Part (ii) follows from part (i) of the Lemma and the boundedness condition on ω which

implies pointwise convergence. The Glivenko-Cantelli condition on ω then implies uniform

convergence. This concludes the proof of Lemma 4.
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The next step consists in establishing uniform convergence with respect to Γwt ∈ Twt and

Γmt ∈ Tmt of the fixed point mappings Ψ̂wt and Ψ̂mt to their population counterparts. I

define:

Ψ̂wt[Γ](x) =
1

n

nm∑
j=1

ψwt(zjt, x; Γ)

where ψwt is defined as:

ψwt(zjt, x; Γ) =

exp

{
Ut(x, zjt) + Vt(x, zjt) + βw

∫
U t+1(s)w(s|x, zjt)ds+ βm

∫
V t+1(s)m(s|x, zjt)ds

}
exp

{
βm
∫
V t+1(s)m0(s|zjt)ds

}
+ Γmt(zjt)

Similarly, I define:

Ψ̂mt[Γ](z) =
1

n

nw∑
i=1

ψmt(z, xit; Γ)

where ψmt is defined as:

ψmt(z, xit; Γ) =

exp

{
Ut(xit, z) + Vt(xit, z) + βw

∫
U t+1(s)w(s|xit, z)ds+ βm

∫
V t+1(s)m(s|xit, z)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+ Γwt(xit)

I define the class of functions Fw : {ψw(., x; Γ) : x ∈ X ,Γ ∈ T } and Fm : {ψm(z, ; Γ) : z ∈

Z,Γ ∈ T }.

Lemma 5 Under Assumption 1:

(i). The classes of functions Fw and Fw are Glivenko-Cantelli.

(ii). As n→∞ and for all t:

(Ψ̂wt[Γ](x), Ψ̂mt[Γ](z))→ (Ψwt[Γ](x),Ψmt[Γ](z))

uniformly in Γ ∈ T , and (x, z) ∈ X × Z.

Proof: Under Assumption 1, exp{U(x, z) + V (x, z)} is Lipschitz in x and z such that this

class of functions is Glivenko-Cantelli. Γmt and Γwt are bounded and have bounded p ≥ 1

derivatives for all t which makes the class of functions T Glivenko-Cantelli. Finally, as m and
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w are continuous densities and that U and V are continuous note that the transformation

ψm(g, h) = g
1+h

is bounded and continuous since h and g are bounded and continuous and

h ≥ 0. Theorem 3 in van der Vaart and Wellner (2000) implies claim (i) of Lemma 5. Part

(ii) of Lemma 5 is a direct implication of part (i).

D.4.4 Proof of Theorem 3.1 (iii)

I finally turn to the proof of part (iii) of Theorem 1. I first apply Lemma 4 to show that for

any q ≥ 1:

Γ̂Mwt(xit) =
1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + Vt(xit, zkt) + β

∫
U
M

it+1(s)w(s|xit, zkt)ds+ β
∫
V
M

kt+1(s)m(s|xit, zkt)ds
}

exp

{
β
∫
V
M

kt+1(s)m0(s|zkt)ds
}

+ IMmkt

≥ 1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + Vt(xit, zkt) + β

∫
U
M

t+1(s)w(s|xit, zkt)ds+ β
∫
V
M

t+1(s)m(s|xit, zkt)ds
}

exp

{
β
∫
V
M

t+1(s)m0(s|zkt)ds
}

+ Γ̂Mmt(zkt)

+ op(1)

Analogous bounds can be formed for the inclusive value functions of the teacher-optimal

stable match. We thus have that:

Γ̂Mwt ≥ Ψ̂M
wt[Γ̂

M ] + op(1) and Γ̂Mmt ≤ Ψ̂M
mt[Γ̂

M ] + op(1)

Γ̂Wwt ≤ Ψ̂W
wt[Γ̂

W ] + op(1) and Γ̂Wmt ≥ Ψ̂W
mt[Γ̂

W ] + op(1)

Given that Ψ̂wt[Γ] and Ψ̂mt[Γ] are nonincreasing and Lipschitz continuous in Γ, we have:

Γ̂Mwt ≥ Ψ̂M
wt[Γ̂

M ] + op(1) ≥ Ψ̂M
wt[Ψ̂

M [Γ̂M ]] + op(1)

Thus for any Γ∗ solving the fixed point problem:

Γ∗wt = Ψ̂wt[Γ
∗] + op(1) and Γ∗mt = Ψ̂mt[Γ

∗] + op(1)

we thus have:

Γ̂Mwt ≥ Γ∗wt + op(1) and Γ̂Mmt ≤ Γ∗mt + op(1)
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However, we know that the mapping Ψ̂ is a contraction in logs, which means that it has a

unique fixed point Γ∗. In addition, the school-optimal stable match is unanimously preferred

by schools while the teacher-optimal stable match is unanimously preferred by teachers (Roth

and Sotomayor (1992)). This implies that Mit(µ
M) ⊂ Mit(µ

∗) ⊂ Mit(µ
W ) and Wit(µ

W ) ⊂

Wit(µ
∗) ⊂ Wit(µ

M) which means that for all i and j:

IMwit ≤ I∗wit ≤ IWwit and IWmjt ≤ I∗mjt ≤ IMmjt

This in turn implies that for all (x, z):

Γ̂Mwt(x) ≤ Γ̂∗wt(x) ≤ Γ̂Wwt(x) and Γ̂Wmt(z) ≤ Γ̂∗mt(z) ≤ Γ̂Mmt(z)

which implies that:

Γ∗wt + op(1) ≥ Γ̂Wwt ≥ Γ̂Mwt ≥ Γ∗wt + op(1)

Γ∗mt + op(1) ≤ Γ̂Wmt ≤ Γ̂Mmt ≤ Γ∗mt + op(1)

which in turn implies that:

Γ̂Mwt = Γ∗wt + op(1) and Γ̂Mmt = Γ∗mt + op(1)

Γ̂Wwt = Γ∗wt + op(1) and Γ̂Wmt = Γ∗mt + op(1)

Combining this with Lemma 3, this gives us for all i = 1, ..., nw and all j = 1, ..., nm:

IMwit = Γ∗wt + op(1) and IMmjt = Γ∗mt + op(1)

IWwit = Γ∗wt + op(1) and IMmjt = Γ∗mt + op(1)

Note that given that inclusive value functions that would arise under any stable match µ∗t

defined as I∗wit and I∗mjt are such that IMwit ≤ I∗wit ≤ IWwit and IMmjt ≥ I∗mjt ≥ IWmjt the equality

written above holds also for any I∗wit and I∗mjt.

I have shown that inclusive values can be approximated by the solution of the finite

sample fixed point problem. Lemma 5 finally implies that the solution of the finite sample
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fixed point problem converges toward the solution of its population equivalent. This proves

Theorem 1.(iii).
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E Monte Carlo Simulations

To gain confidence in the validity of the theoretical results described in Section 4 and 5,

I perform two Monte Carlo exercises. First, I simulate data from a market with different

numbers of participating agents to verify whether empirical matching frequencies converge

to their theoretical limit. Then, I then evaluate the performance of the Maximum Likelihood

Estimator proposed in 5. I consider a market with three periods T = 3, normalize γw =

γm = 0, and set βw = βm = 0.9. I then specify the flow payoffs as U(x, z;θ) = θ1 + θ2z

and V (x, z;θ) = θ1 + θ3x for all t and set θ = (1, 1, 1). I assume that xi1 ∼ N (0, 1) and

zj1 ∼ N (0, 1). I assume the following laws of motion for x and z:

xit+1 =

xi1 + 1 if µwt(i) 6= 0

xi1 if µwt(i) = 0

, zjt+1 =

zj1 + 1 if µmt(j) 6= 0

zj1 if µmt(j) = 0

This simulates a setting where teachers and schools become less attractive when they stay

unmatched.

E.1 Convergence of Matching Frequencies

In this Monte Carlo exercise, I simulate data from the DGP described above for different

market sizes indexed by n. In order to simulate the equilibrium, I first solve the fixed point

problem described in Equation 4 to recover Γ∗wt and Γ∗mt and solve recursively for U t+1 and

V t+1 for t = {1, 2}. I then draw a set of taste shocks εijt and ηijt for each period and each

teacher-school pair and construct the lifetime utilities Uijt and Vijt. I then use the Deferred

Acceptance algorithm to recover the teacher-optimal stable match in each period. The goal

of this exercise is to evaluate whether the observed matching frequencies converge to their

limit. More specifically I will look at whether the share of unmatched teachers in each period

converges to its limit. Table E.1 shows the results of this exercise. We can clearly see that as

the size of the market increases, the share of unmatched teachers observed in the simulated

data converges to its limit, which is displayed in the bottom line. This shows that, even with

moderate sample sizes, the limit economy seems to be a relatively good approximation for

the finite economy.
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E.2 Estimation

In this second experiment, I simulate data by following the same procedure for different

values of n. I then estimate θ using the procedure described in Section 5. Table E.2 shows

that the estimator is unbiased even with small sample sizes. It is also consistent given that

the standard deviation of the estimator decreases as the sample sizes increases.
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Table E.1: Monte Carlo: Share of Unmatched teachers

n t = 1 t = 2 t = 3

20 0.2600 0.1870 0.2675

50 0.2439 0.1734 0.2447

100 0.2389 0.1640 0.2339

200 0.2314 0.1565 0.2237

500 0.2263 0.1509 0.2147

1000 0.2228 0.1469 0.2095

2000 0.2206 0.1432 0.2053

Model 0.2076 0.1384 0.1965

Notes. This table reports the average share of unmatched
schools and teachers in each period taken over 200 sample draws
for different sample sizes n.
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Table E.2: Monte Carlo: MLE

n θ̂1 θ̂2 θ̂3

20 0.952 0.986 1.023

(0.475) (0.352) (0.334)

50 0.962 0.988 1.010

(0.292) (0.223) (0.204)

100 0.969 0.994 1.007

(0.192) (0.156) (0.140)

200 0.977 0.991 1.003

(0.133) (0.104) (0.105)

500 0.984 0.994 1.003

(0.088) (0.067) (0.063)

1000 0.992 0.995 1.002

(0.060) (0.047) (0.046)

True value 1 1 1

Notes. This table reports the average and standard deviation
of the ML estimator of θ over 500 sample draws for different
sample sizes n.
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F Alternative Model: Irreversible Matches

In this section, I present an alternative to the model discussed in Section 4. I consider a

setting where matches are irreversible and the match is stable in each period given agents’

continuation value of staying unmatched, as in Doval (2022), and show that all the results

derived in this paper extend.

F.1 Model

In this model, in each period t, agents can either decide to form a match with an agent from

the other side or decide to stay unmatched and wait to get better opportunities in period

t+ 1. The timing works as follows:

Period 1 : The set of teachers I1 and schools J1 arrive in the market. A matching µ1

occurs and all teachers i ∈ I1 that stay unmatched such that µw1(i) = 0 move on to the

second period. Similarly, all schools j ∈ J1 which choose to leave their slot empty such that

µm1(j) = 0 move on to the second period. I define the set of teachers that choose to stay

unmatched in period 1 as I0
1 (µ). Similarly I define the set of schools that choose to leave

their vacancy empty as J 0
1 (µ).

Period t: The set of teachers It and schools Jt arrive in the market along with the teach-

ers that chose to stay unmatched in the previous period I0
t−1(µ) and the schools that chose

to keep their slots empty in the previous period J 0
t−1(µ). We define the set of teachers

available in period t as It(µ) = It ∪ I0
t−1(µ) and the set of school available in period t as

Jt(µ) = Jt ∪ J 0
t−1(µ). A matching µt occurs and all teachers i ∈ It(µ) such that µwt(i) = 0

and schools j ∈ Jt(µ) such that µmt(j) = 0 participate in the next period. I define the set

of teachers that choose to stay unmatched in period t as I0
t (µ). Similarly, I define the set of

schools that choose to leave their vacancy empty as J 0
t (µ).

Period T : The set of teachers IT and schools JT arrive in the market along with the teachers

in I0
T−1 and the schools in J 0

T−1. We define the set of teachers available in period T as
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IT (µ) = IT ∪ I0
T−1(µ) and the set of schools available in period T as JT (µ) = JT ∪J 0

T−1(µ).

From there a matching µT occurs and all teachers and schools choosing the outside option

at this stage stay unmatched forever. The resulting matching is defined by µ = (µt)
T
t=1.

Firms and teachers are characterized by their observed attributes which collapse into

two vectors of random variables xit and zjt. I assume that the observed state variables of

the new entrants in period t are drawn from the probability distribution functions m◦t and

w◦t . I then assume that state variables evolve exogenously according to the Markov transition

distribution functions m and w. This implies that aggregate states according to the following

rule:

wt+1(x,µ) =

∫
Xt

w(x|s)ft(s, ∗)ds+ w◦t+1(x)

mt+1(z,µ) =

∫
Zt

m(z|s)ft(∗, h)dh+ w◦t+1(x)

I define the lifetime utility that teacher i gets from being matched with school j in period t

as:

Uijt = Ut(xit, zjt) + σηijt

whereas the lifetime utility that school j gets from being matched with teacher i in period t

is defined as:

Vijt = Vt(xit, zjt) + σεijt

I then define the lifetime utility that teacher i gets from staying unmatched and that school

j gets from leaving its slot empty in period t as Ui0t and V0jt:

Ui0t = σ max
k=1,...,J

ηi0,k + βw

∫
U it+1(xit+1)w(xit+1|xit)dxit+1 − βw log(J)

V0jt = σ max
k=1,...,J

ε0j,k + βm

∫
V jt+1(zjt+1)m(zjt+1|zjt)dzjt+1 − βm log(J)

I then assume that Assumption 1-4 (ii) hold. I simply adjust 4 (iii) as the law of motion

for aggregate states is defined as above. I also slightly modify Assumption 3 (i) such that

|It| = [exp(γwt)n], |Jt| = [exp(γmt)n].
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F.2 Linking Primitives to Equilibrium Sorting

I follow the same steps as in Section 4.2. I define F for a given random matching µt from a

finite economy indexed by n as follows:

Fnt(xit, zjt|µt) =
1

n

∑
i∈It(µ)

∑
j∈Jt(µ)

P(xit ≤ x, zjt ≤ z, µwt(i) = j)

I then denote Ft the limit of the distribution function Fnt as the size of the market n grows

to infinity. I also define the joint density of matched characteristics as ft.

As in the standard setting, I define the opportunity set faced by a given teacher i ∈ It in

period t given a match µ as:

Mit(µ) = {j ∈ Jt : Vijt ≥ Vµmt(j)jt}

Similarly, I define the opportunity set of school j ∈ Jt as:

Wjt(µ) = {i ∈ It : Uijt ≥ Uiµmt(i)t}

The analogous of Proposition 1 follows directly from Assumption 4:

Proposition F.1 Consider a match µ∗ satisfying Assumption 4, for all i ∈ It and j = Jt:

(i) For all t = 1, ..., T :

Uiµ∗wt(i)t
= max

k∈Mit(µ∗)∪{0}
Uikt and Vµ∗mt(j)jt

= max
l∈Wjt(µ∗)∪{0}

Vljt

(ii) Under Assumption 2, for all t < T :

U it+1(x) = ESt
[

max
k∈Mit+1(µ∗)∪{0}

Uikt+1|xit+1 = x

]

V jt+1(z) = ESt
[

max
l∈Wjt+1(µ∗)∪{0}

Vljt+1|zjt+1 = z

]
The proof is identical to the proof of Proposition 1. This result implies that an equilibrium

match µ∗ can be rewritten as the outcome of two dynamic discrete choice models where each
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agent’s choice set is its opportunity set. However, each alternative, except the option of

staying unmatched, is a terminating action.

I characterize the limit of conditional choice probabilities (CCPs) and expected future

payoffs under arbitrary exogenous choice sets and by fixing the aggregate states distributions.

I assume that Mit = {1, ..., J} and Wjt = {1, ..., J} for all t and I fix mt and wt for all t.

Proposition F.2 Consider a given teacher i ∈ It. Under Assumption 1-3 we have:

(i) For all t, as J →∞:

JP(Uijt ≥ Uikt, k = {0, 1, ..., J}|xit, zjt) −→

exp

{
Ut(xit, zjt)

}
exp

{
βw
∫
U t+1(s)w(s|xit)ds

}
+
∫

exp

{
Ut(xit, h)

}
mt(h)dh

P(Ui0t ≥ Uikt, k = {0, 1, ..., J}|xit) −→

exp

{
βw
∫
U t+1(s)w(s|xit)ds

}
exp

{
βw
∫
U t+1(s)w(s|xit)ds

}
+
∫

exp

{
Ut(xit, h)

}
mt(h)dh

(ii) For all t:

U t+1(x) = log

(
exp

{
βw

∫
U t+2(s)w0(s|x)ds

}
+

∫
exp

{
Ut+1(x, h)

}
mt+1(h)dh

)
+ γ + o(1)

where γ ≈ 0.5772 is Euler’s constant. Again, the proof is identical to the proof of Proposition

2. The same result holds symmetrically for the school side.

I now introduce that opportunity sets are unobserved and endogenous and show that

the implications of Proposition F.2 allow us to tackle both of these issues. Using the same

argument as in the standard case, Proposition F.2 implies that: (i) the probability that school

j rematches with a specific teacher i vanishes to zero as the size of opportunity sets increases

to infinity and (ii) the probability of choosing the outside option instead is nondegenerate

in the limit. This implies that the dependence between taste shocks and opportunity sets
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vanishes in the limit.

I now consider a sequence of school-optimal stable matches µM . As opportunity sets’

endogeneity vanishes in the limit for extremal matchings, we can then use Proposition F.2

(i) to bound teachers’ CCPs in period t, assuming that we would observe the corresponding

opportunity set Mit(µ
M
t ) and future expected payoff function U

M

it+1:

n1/2P(Uijt ≥ max
k∈Mit(µM

t )∪{0}
Uikt|xit, zjt, (zkt)k∈Mit(µM

t ),Miτ (µMt ), U
M

it+1) (8)

≤
exp

{
Ut(xit, zjt)

}
exp

{
βw
∫
U
M

it+1(s)w(s|xit)ds
}

+ n−1/2
∑

k∈Mit(µM
t )

exp

{
Ut(xit, zkt)

} + o(1)

Similar bounds can be computed for a sequence of teacher-optimal stable match µW where

the direction of the inequality is reversed. The same result also holds for the school side with

the direction of the inequality reversed. Using Proposition F.2 (ii), we can also bound agents’

expectations about their match payoff under a sequence of school-optimal stable matches µM

as follows:

U
M

it (x) ≥ log

exp

{
β

∫
U
M

it+1(s)w(s|x)ds

}
+ n−1/2

∑
k∈Mit(µM

t )

exp

{
Ut(x, zkt)

}+ γ + o(1) (9)

where again similar bounds can be computed for the teacher-optimal stable match and for

the school side with the direction of the inequality reversed.

In Equations (8) and (9), n−1/2
∑

k∈Mit(µMt ) exp
{
Ut(xit, zkt)

}
serves as a sufficient statistic

that collapses all the information contained in opportunity sets which is needed to approxi-

mate CCPs and expectations about future payoffs.

I define teacher i’s inclusive value given a sequence of realized matches µ∗ as:

I∗wit = n−1/2
∑

k∈Mit(µ∗t )

exp

{
Ut(xit, zkt)

}
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Similarly, I define school j’s inclusive value given µ∗ as:

I∗mjt = n−1/2
∑

l∈Wjt(µ∗t )

exp

{
Vt(xlt, zjt)

}

I also define IMwit and IMmjt as the inclusive values that would arise under a sequence of school-

optimal stable matches µM in period t and IWwit and IWmjt as the inclusive values that would

arise under a sequence of teacher-optimal stable matches µW in period t.

Inclusive values arising from a sequence of school-optimal and teacher-optimal stable

matches in a given period t can be approximated by expected inclusive value functions. I

rewrite IMwit as:

IMwit =
1

n

∑
k∈Jt(µ)

exp

{
U(xit, zkt)

}
×
√
n1{k ∈Mit(µ

M
t )}

=
1

n

∑
k∈Jt(µ)

exp

{
U(xit, zkt)

}√
n1{Vikt ≥ max

l∈Wkt(µ
M
t )∪{0}

Vlkt}

The inclusive value of a given teacher is determined by the set of schools that would accept

her, which in turn depends on the preferences of all schools as well as their opportunity sets.

Using the school analogous of Equation (1), I thus show that:

IMwit ≥ Γ̂Mwt(xit) + op(1) and IMmjt ≤ Γ̂Mmt(zjt) + op(1)

where Γ̂Mwt and Γ̂Mmt are the school-optimal expected inclusive value function of teachers and

schools in period t which are defined as:

Γ̂Mwt(xit) =
1

n

∑
k∈Jt(µ)

exp

{
Ut(xit, zkt) + Vt(xit, zkt)

}
exp

{
β
∫
V
M

kt+1(s)m(s|zkt)ds
}

+ IMmkt

Γ̂Mmt(zjt) =
1

n

∑
l∈It(µ)

exp

{
Ut(xlt, zjt) + Vt(xlt, zjt)

}
exp

{
β
∫
U
M

lt+1(s)w(s|xlt)ds
}

+ IMwlt
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where I define U
M

it+1 and V
M

jt+1 as follows:

U
M

it+1(x) = log

(
exp

{
β

∫
U
M

it+2(s)w0(s|x)ds

}
+ IMwit+1

)

V
M

jt+1(z) = log

(
exp

{
β

∫
V
M

jt+2(s)m0(s|z)ds

}
+ IMmjt+1

)
Note that similar bounds can be established for the inclusive values that would arise

under the teacher-optimal stable match:

IWwit ≤ Γ̂Wwt(xit) + op(1) and IWmjt ≥ Γ̂Wmt(zjt) + op(1)

The proof follows the same steps as the proof of Lemma 4 in Appendix D.4.

The rest of the proof entails characterizing the fixed point problem and showing that

inclusive values arising from an equilibrium match µ∗ can be approximated by its solution. I

define the fixed point mappings as follows:

Ψ̂wt[Γ](x) =
1

n

∑
k∈Jt(µ)

exp
{
Ut(x, zkt) + Vt(x, zkt)

}
exp

{
β
∫
V t+1[Γ](s)m(s|zkt)ds

}
+ Γmt(zkt)

Ψ̂mt[Γ](z) =
1

n

∑
l∈It(µ)

exp
{
Ut(xlt, z) + Vt(xlt, z)

}
exp

{
β
∫
U t+1[Γ](s)w(s|xlt)ds

}
+ Γwt(xlt)

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)

V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)
For a given equilibrium match µ∗, for any x ∈ X and z ∈ Z in each period t:

Γ̂∗wt(x) = Ψ̂wt[Γ̂
∗](x) + op(1) and Γ̂∗mt(z) = Ψ̂mt[Γ̂

∗](z) + op(1) (10)

meaning that inclusive values in period t arising from an equilibrium match µ∗ can be ap-

proximated by fixed points of the mappings Ψ̂wt, Ψ̂mt. To characterize the limit of inclusive
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values, I then consider the limit version of this fixed point problem:

Γwt = Ψwt[Γ] and Γmt = Ψmt[Γ] ∀t (11)

where

Ψwt[Γ](x) =

∫
exp

{
Ut(x, h) + Vt(x, h)

}
exp

{
β
∫
V t+1[Γ](s)m(s|h)ds

}
+ Γmt(h)

mt[Γ](h)dh

Ψmt[Γ](z) =

∫
exp

{
Ut(h, z) + Vt(h, z)

}
exp

{
β
∫
U t+1[Γ](s)w(s|h)ds

}
+ Γwt(h)

wt[Γ](h)dh

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)

V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)
wt[Γ](x) =

∫
Xt

w(x|s)ft−1[Γ](s, ∗)ds+ w◦t (x)

mt[Γ](z) =

∫
Zt

m(z|s)ft−1[Γ](∗, h)dh+m◦t (z)

The final step of the proof shows that this population fixed point problem has a unique

solution and that the approximate solution of the finite sample fixed point problem converges

to it. This is stated in the following result:

Theorem F.1 Under Assumption 1-4:

(i) The mapping (log Γw, log Γm) 7→ (log Ψm[Γ], log Ψw[Γ]) is a contraction.

(ii) The fixed point problem described in Equation (11) always has a unique solution Γ∗m,Γ
∗
w.

(iii) For any equilibrium µ∗, I∗wit −→ Γ∗wt(xit) and I∗mjt −→ Γ∗mt(zjt) for all i, j and t.

The complete proof of this result can be found in Appendix F.4. Finally, from Theorem

F.1 and Proposition F.2, we can fully characterize analytically the equilibrium of the model

as a function of teachers’ and schools’ payoff functions. The limit joint density of matched

characteristics ft can be derived from the limit of conditional choice probabilities and has

the following expression:
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ft(x, z)

wt(x)mt(z)
=

exp

{
Ut(x, z) + Vt(x, z) + γwt + γmt

}
(

exp

{
β
∫
U
∗
t+1(s)w(s|x)ds

}
+ Γ∗wt(x)

)(
exp

{
β
∫
V
∗
t+1(s)m(s|z)ds

}
+ Γ∗mt(z)

)

ft(x, ∗)
wt(x)

=

exp

{
β
∫
U
∗
t+1(s)w0(s|x)ds+ γwt

}
(

exp

{
β
∫
U
∗
t+1(s)w(s|x)ds

}
+ Γ∗wt(x)

)

ft(∗, z)
mt(z)

=

exp

{
β
∫
V
∗
t+1(s)m0(s|z)ds+ γmt

}
(

exp

{
β
∫
V
∗
t+1(s)m(s|z)ds

}
+ Γ∗mt(z)

)
where ft(x, ∗) and ft(∗, z) are, respectively, the density of the characteristics of unmatched

teachers and unmatched schools. I define the equilibrium expected future payoff functions

U
∗
t+1 and V

∗
t+1 recursively as:

U
∗
t+1(x) = log

(
exp

{
β

∫
U
∗
t+2(s)w(s|x)ds

}
+ Γ∗wt+1(x)

)

V
∗
t+1(z) = log

(
exp

{
β

∫
V
∗
t+2(s)m(s|z)ds

}
+ Γ∗mt+1(z)

)
and the equilibrium aggregate states distribution w∗t and m∗t as:

w∗t (x) =

∫
Xt

w(x|s)ft−1[Γ](s, ∗)ds+ w◦t (x)

m∗t (z) =

∫
Zt

m(z|s)ft−1[Γ](∗, h)dh+m◦t (z)

F.3 Identification

The identification strategy follows the same steps as Section 5. I thus fix the value of the

discount factors and consider two polar cases: (i) T <∞ and nonstationarity and (ii) T =∞

and stationarity.
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F.3.1 Finite horizon

The identification argument in the finite horizon case can be done by backward induction.

Starting from the last period T , we can identify the joint surplus as follows:

UT (x, z) + VT (x, z) = log

(
fT (x, z)

fT (x, ∗)fT (∗, z)

)

We can also identify Γ∗wT and Γ∗mT from the distribution of unmatched teachers and schools:

Γ∗wT (x) =
wT (x) exp(γwT )

fT (x, ∗)
− 1

Γ∗mT (z) =
mT (z) exp(γmT )

fT (∗, z)
− 1

UT and V T can then be computed by backward induction:

UT (x) = log(1 + Γ∗wT (x)) + γ

V T (z) = log(1 + Γ∗mT (z)) + γ

From there, we can then repeat the same steps to identify the inclusive value functions and

the joint surplus in period T−1. Finally, we iterate the procedure to identify the joint surplus

and the inclusive value functions in all periods t. This results in the following proposition.

Proposition F.3 Under Assumption 1-4 and for T <∞:

(i) The joint surplus function Ut + Vt and the inclusive value functions Γ∗wt and Γ∗mt are

identified for all t from ft, the limiting joint distribution of matched characteristics in period

t.

(ii) Without further restrictions, we cannot separately identify Ut and Vt for all t.

115



F.3.2 Infinite horizon

To allow for T =∞, I impose Assumption 5 which implies Γmt = Γm and Γwt = Γw for all t,

U t = U and V t = V . This implies that we can write:

f(x, ∗)
w(x)

=

exp

{
β
∫
U
∗
(s)w0(s|x)ds

}
(

exp

{
β
∫
U
∗
(s)w0(s|x)ds

}
+ Γ∗w(x)

)

=

exp

{
β
∫
U
∗
(s)w0(s|x)ds

}
exp

{
U
∗
(x)− γ

} = exp

{
β

∫
U
∗
(s)w0(s|x)ds− U∗(x) + γ

}

From there, we can invert this mapping to recover U
∗
. We can follow the same steps to

recover V from f(∗, z). It is then immediate to see that we can identify U + V from f(x, z).

Proposition F.4 Under Assumption 1-5 and for T =∞:

(i). The joint surplus function U + V and the inclusive value functions Γ∗w and Γ∗m are

identified from the limiting joint distribution of matched characteristics in each period f .

(ii). Without further restrictions, we cannot separately identify U and V .

F.4 Proof Theorem F.1

I will start by proving part (i) of Theorem F.1. A first step is to restrict the space of functions

in which the solutions to the fixed point problem described in Equation 11 can belong to.

Namely, I will start by showing to we can restrict ourselves to a Banach space of continuous

functions.

We start by constructing bounds for the solutions of this fixed point problem. Note that

for all t, we can see that Ψwt[Γm](x) ≥ 0 and Ψmt[Γw](x) ≥ 0 for all (x, z) which implies that

the solutions of this fixed point problem must be bounded from below by 0. To construct an

upper bound we first need to construct a lower bound on U t and V t. We proceed by backward

induction. We know that UT (x) = log(1 + ΓwT (x)) + γ which implies that UT (x) ≥ γ for all

x. Iterating this procedure, we can then show that UT−1(x) ≥ γ(1 + βw) and more generally

that U t+1(x) ≥ γ
∑T−t

τ=0 β
τ
w and V t+1(z) ≥ γ

∑T−t
τ=0 β

τ
m for all (x, z). We also know from
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Assumption 1, that Ut and Vt are bounded from above. We can thus show that

Ψwt[Γm](x) ≤ exp{Ut + Vt}
γ
∑T−t

τ=1 β
τ−1
m

∀x ∈ X

Ψmt[Γw](z) ≤ exp{Ut + Vt}
γ
∑T−t

τ=1 β
τ−1
w

∀z ∈ Z

To prove continuity of the mappings Ψwt[Γm] and Ψmt[Γw] we proceed by backward

induction. Starting from t = T , we can rewrite ΨwT [Γm] as:

ΨwT [Ψm[Γw]](x) =

∫
exp{UT (x, s) + VT (x, s)}

1 +
∫ exp{UT (t,s)+VT (t,s)}

1+ΓwT (t)
wT [Γw](t)dt

mT [Ψm[Γw]](s)ds

which shows that continuity of the solution of ΓwT = ΨwT [Ψm[Γw]] follows directly from

continuity of UT and VT as stated in Assumption 1. From there we can infer that UT (x) is

also continuous and we know that it is a non negative function which implies that ΨwT−1[Γm]

will also be continuous. We can then iterate this argument to prove that the solutions of the

fixed point problem described in Equation 11 must be continuous and bounded functions.

We now turn to the proof that the mapping (log Γw, log Γm) 7→ (log Ψm[Γw], log Ψw[Γm])

is a contraction. We will start by showing that for alternative sets of functions Γm = (Γmt)
T
t=1

and Γ̃m = (Γ̃mt)
T
t=1, there always exist a constant λ < 1 such that:

∣∣∣∣∣∣ log Ψw[Γm]− log Ψw[Γ̃m]
∣∣∣∣∣∣
∞
≤ λ

∣∣∣∣∣∣ log Γm − log Γ̃m

∣∣∣∣∣∣
∞

The mean value inequality for vector valued functions defined on Banach spaces implies that:

∣∣∣∣∣∣ log Ψw[Γm](x)−log Ψw[Γ̃m](x)
∣∣∣∣∣∣
∞
≤ sup
a∈[0,1]

∣∣∣∣∣∣D log Ψw[a log Γm+(1−a) log Γ̃m](x)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ log Γm(x)−log Γ̃m(x)
∣∣∣∣∣∣
∞

where D log Ψw are the Gateaux derivatives of log Ψw. I will thus characterize and bound

the following object for any t ∈ [0, 1] and any x ∈ X :

D log Ψw[a log Γm + (1− a) log Γ̃m](x)
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Note first that we can rewrite log Ψwt[log Γm](x) as:

log

∫
exp

{
Ut(x, h) + Vt(x, h)

}
exp

{
β
∫
V t+1[log Γm](s)m(s|h)ds

}
+ exp{log Γmt(h)}

mt[log Γm](h)dh

where

mt[log Γm](z) =

∫
Zt

m(z|s)ft−1[log Γm](∗, h)dh+m◦t (z)

V t+1[log Γm](z) = log

(
exp

{
β

∫
V t+2[log Γm](s)m(s|z)ds

}
+ Γmt+1(z)

)

ft−1[log Γm](∗, z) =

exp

{
β
∫
V
∗
t (s)m(s|z)ds

}
(

exp

{
β
∫
V
∗
t (s)m(s|z)ds

}
+ Γ∗mt−1(z)

)mt−1[log Γm](z)

Using the same steps as in the proof of Theorem 1 (i), we can show that:

sup
a∈[0,1]

∣∣∣∣∣∣D log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞
< 1

which implies that for any alternative sets of functions Γm = (Γmt)
T
t=1 and Γ̃m = (Γ̃mt)

T
t=1

there always exist a constant λ < 1 such that:

∣∣∣∣∣∣ log Ψw[Γm]− log Ψw[Γ̃m]
∣∣∣∣∣∣
∞
≤ λ

∣∣∣∣∣∣ log Γm − log Γ̃m

∣∣∣∣∣∣
∞

Symmetrical arguments can be applied to find that there for any alternative sets of functions

Γw = (Γwt)
T
t=1 and Γ̃w = (Γ̃wt)

T
t=1 always exist a constant λ < 1 such that:

∣∣∣∣∣∣ log Ψm[Γw]− log Ψm[Γ̃w]
∣∣∣∣∣∣
∞
≤ λ

∣∣∣∣∣∣ log Γw − log Γ̃w

∣∣∣∣∣∣
∞

This concludes the proof of part (i) of Theorem F.1 and shows that the mapping (log Γw, log Γm) 7→

(log Ψm[Γw], log Ψw[Γm]) is a contraction.
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Part (ii) of Theorem F.1 directly follows from part (i) and from the Banach fixed point

theorem. Part (iii) follows from the same steps as the proof of Theorem 1 (iii).
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