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Abstract

In a dynamic extension of Gul and Pesendorfer’s (2015) (static) Hurwicz Ex-

pected Utility (HEU), preferences are defined over information decision prob-

lems in which a decision-maker can make his choice from a menu of options

contingent on the realization of a signal. Both his static preferences as well as

his interim preferences that guide his choice after receipt of the signal admit

an HEU representation. Furthermore, the interim preferences are invariant to

any choice that the DM could have made had the realization of the signal been

different. This allows us to recover his preferences over information decision

problems recursively, and implies that any plan of action that was ex ante

optimal remains so after receipt of the signal.

In addition, Gul and Pesendorfer’s concept of a source is extended to any

probabilitistically sophisticated source that need only be continuous with respect

to non extreme outcomes. For an information decision problems in which both

the signal and the menu of options are measurable with respect to a particular

non-extreme-outcome (that is, “neo-”)continuous source, it turns out only in

the case of a neo-additive source are interim preferences source consistent in the

sense they can be formulated entirely in terms of the source and the parameters

that characterize the restriction of the decision-maker’s static preferences to

acts that are adapted to that source.
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1 Introduction

In order to develop a dynamic extension of Gul and Pesendorfer’s (2015) (static) model

of Hurwicz Expected Utility (HEU), consider the preferences of a decision-maker

(hereafter, DM) defined over information decision problems (IDPs). The objects of

choice are acts that associate a monetary prize to every state of nature. Each IDP

comprises a signal, which I take to be a function from the state space to a space of

(conceivable) realizations, and a menu of acts, from which the DM makes a choice

after learning the realization of the signal.1

First notice, the DM’s static preferences over acts are naturally embedded in his

preferences over IDPs. Simply attribute a preference for one act over another, should

the DM prefer an IDP with an uninformative signal that has the former act as its

only available option to another IDP also involving the same uninformative signal

that has the latter as its only available option.

Now assume the restriction of his preferences to such IDPs conforms to HEU. This

entails the existence of a prior µ, a Bernoulli utility v, and an ambiguity aversion

(parameter) α that resides in the unit interval. The prior is a probability measure

defined on a (rich) σ-algebra of events that Gul and Pesendorfer refer to as ideal since

they are ones for which the associated uncertainty lends itself to precise quantification

by the prior. Let E denote the domain of µ. Gul and Pesendorfer also refer to any

act adapted to E as ideal.

For any pair of ideal acts g and g′, the DM’s static preferences rank g over g′ if

and only if ∫
v dF µ

g >
∫
v dF µ

g′ ,

where F µ
g (respectively F µ

g′ ) denotes the cumulative distribution function (CDF) in-

duced from g (respectively, g′) by his prior µ.2 That is, the restriction of his static

preferences to ideal acts conforms to subjective expected utility.

Furthermore, the restriction of his preferences to ideal IDPs, by which I mean

those problems in which each of the signal’s information cells (that is, preimages of

its realizations) is an ideal event and every option in the menu is an ideal act, may

be represented by the function that assigns to each ideal IDP comprising a signal σ

1 Assume each menu is finite as is the range of each signal.
2 More precisely, for each outcome x, Fµg (x) is the quantity µ assigns to the (ideal) event the act

g yields an outcome less than or equal to x.
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adapted to E and a menu M of ideal acts, the utility

∑
s∈S:µ(σ−1(s))>0

µ
(
σ−1(s)

)(
max
g∈M

∫
v dF µσs

g

)
,

where: (i) S is the space of conceivable signal realizations with generic element s; (ii)

µ (σ−1(s)) is the ex ante probability the realization of the signal σ is s; and, (iii) for

each outcome x, F
µσs
g (x) denotes the probability the (ideal) act g yields an outcome

no greater than x conditional on the realization of the signal being s.3

Notice that, after learning the realization of the signal, the DM’s choice from the

menu of ideal acts is governed by an interim preference relation whose restriction

to ideal acts admits an expected utility representation characterized by the same

Bernoulli utility and by a posterior that corresponds to the Bayesian update of his

prior conditional on the information cell corresponding to that realization having

obtained. Moreover, these interim preferences are consequentialist as they do not

depend on what (ideal) act would have determined the outcome had the realization

of the signal been different. As a consequence, any plan of action in the ideal IDP

that is ex ante optimal is also dynamically consistent : after learning the realization of

the signal, the DM never has a strict incentive not to follow through with that plan

of action.

An ideal IDP (σ ,M) may also be evaluated recursively. Working backwards, for

each of the possible (and non-null) realizations of the signal, first find the certainty

equivalent of the most preferred act from the menu conditional on the information

cell corresponding to that realization obtaining. Next, construct an act by assigning

each of these conditional certainty equivalents to the corresponding information cell.

The DM’s valuation of (σ ,M) may be expressed as the (static) subjective expected

utility of that act. More precisely, first associate with (σ ,M) an auxiliary act a(σ ,M)

obtained by setting

a(σ ,M)(ω) := v−1

(
max
g∈M

∫
v dF µσs

g

)
whenever µ (σ−1(σ(ω))) > 0.4 Applying the expected utility representation of the

3 More precisely, F
µσs
g (x) := µ

(
{ω ∈ Ω: f(ω) 6 x} ∩ σ−1(s)

)
/µ
(
σ−1(s)

)
, where Ω denotes the

state space with generic element ω.
4 Should µ

(
σ−1(σ(ω))

)
= 0 (that is, the event σ−1(s) in which ω resides is null), we are free to

set ad(ω) equal to any (arbitrary) outcome.
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DM’s static preferences, yields

∫
v dF µ

ad
=

∑
s∈S:µ(σ−1(s))>0

µ
(
σ−1(s)

)(
max
g∈M

∫
v dF µσs

g

)
.

The model developed in section 2 is one that permits such a recursive evaluation of

any IDP. Moreover, the interim preferences that guide the DM’s choice after receipt

of a signal are:

1. model consistent – they admit an HEU representation with the same risk atti-

tudes and the same aversion toward ambiguity as the DM’s static preferences;

2. consequentialist – they are invariant to what act would have determined the

outcome had the realization of the signal been different; and,

3. dynamically consistent – any plan of action that is ex ante optimal will be

followed through.

I shall refer to members of this class as Recursive Hurwicz Expected Utility (R-HEU)

maximizers. I also show an R-HEU maximizer never places a negative value on

information if and only if either (i) every signal is measurable with respect to his

prior, or (ii) he is maximally averse to ambiguity.

Next, I establish in section 3, there exist many other “priors” each of which has the

property that the restriction of an R-HEU maximizer’s static preferences to acts that

are measurable with respect to such a prior admits a probabilistically sophisticated

rank dependent utility (RDU) representation. Not only do these include all the

sources characterized by Gul and Pesendorfer (2015) but, in addition, it also allows

for ones in which the RDU representation of an act adapted to that source need not be

continuous with respect to extreme (that is, best and worst) outcomes. Hence I refer

to this class of priors as non extreme outcome (neo-)continuous sources. One special

subclass corresponds to the neo-additive (capacity) model introduced and analyzed in

Chateauneuf et al. (2007). For IDPs involving signals and acts that are all measurable

with respect to a neo-additive source, both the static and interim preferences admit

neo-EU representations. That is, model consistency holds not just with respect to

HEU but also with respect to the neo-additive model. Furthermore, I establish it is

only the restriction of his preferences to neo-additive source IDPs that exhibit this

more stringent form of model consistency.
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Section 4 contains an axiomatization of the R-HEU model. Underpinning it is the

idea that the DM, when evaluating an IDP, anticipates after receipt of the signal’s

realization, he will know the information cell corresponding to that realization has

obtained while its complement has not. In other words, he knows he will be assigning

that information cell a precise conditional probability of one (and correspondingly,

assigning its complement a conditional probability of zero). So the dynamic restric-

tions imposed jointly on the DM’s ex ante preferences with respect to the signal and

his interim preferences associated with that signal entail the set of effectively ideal

events for his interim preferences consisting of the smallest σ-algebra of events that

includes all the ideal events gleaned from his static preferences as well as the partition

of information cells corresponding to the signal’s possible realizations.

I discuss in Section 5 our approach in the context of some of the extant literature

that includes a detailed comparison with Gul and Pesendorfer’s (2021) recursive and

consequentialist theory of belief revision. I conclude in Section 6. All proofs appear

in Appendix A.

2 The Model

Adopting Gul and Pesendorfer’s (2014) setting of purely subjective uncertainty, Ω

(with generic element ω) denotes the state space, subsets of which are referred to as

events. The non-degenerate interval X = [x , x] comprises the set of prizes and F , the

set of mappings from Ω to X, is the set of (Savage) acts, the objects of choice. Each

outcome x ∈ X is also identified with the (constant) act f in which f(ω) = x for all

ω. And with further (albeit fairly standard) abuse of notation, X will also refer to

the set of constant acts.

For any pair of events B,E ⊆ Ω, B\E shall denote the set of elements that are

in B but not in E. For any pair of acts f and g in F and any event B ⊂ Ω, fBg is

identified with the act that agrees with f on B and with g on Ω\B.

Let S denote the universe of conceivable realizations for any possible signal. It

includes the null realization ∅.

The first component of an information decision problem (IDP) is a signal (struc-

ture) described by a function σ : Ω → S with finite range, with the interpretation

that the DM learns the realization of the signal is s should the event σ−1(s) obtain.

Let Σ denote the set of signals available to the DM which I take to be a non-empty

subset of all functions from Ω to S. In particular, Σ contains the null (that is, un-
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informative) signal 0, the constant mapping in which 0(ω) = ∅ for all ω in Ω. The

second component is a finite menu of acts M ⊂ F , |M | <∞. Let M denote the set

of menus. As any signal σ ∈ Σ may be paired with any menu M ∈ M to form an

IDP (σ ,M), the set of IDPs thus comprises the product set Σ×M.

A plan (of action) φ assigns to each s ∈ S an act φs ∈ F . A plan of action φ is

feasible in the IDP (σ ,M), if φs ∈ M for each s ∈ σ(Ω). With a slight abuse of the

notation, each feasible plan in an IDP is identified with the act it generates. That

is, a feasible plan φ for the IDP (σ ,M) is identified with the act defined by setting

φ(ω) := φs(ω) if ω ∈ σ−1(s).

For each IDP (σ ,M) in Σ×M, let Φ(σ,M) ⊂ F denote the set of acts generated

by feasible plans in that IDP. I refer to any pair (σ, f) in Σ× F as a signal-act and

note it may be viewed as a the subclass of IDPs in which the menu contains just a

single option. Thus I view and treat Σ × F (the set of signal-acts) as a subset of

Σ×M (the set of IDPs).

The DM is characterized in part by a binary relation % defined over Σ×M that

guides his selection, made ex ante, among IDPs. I refer to the restriction of % to

Σ×F as the DM’s signal-act preferences. For each particular signal σ in Σ, I refer to

the restriction of % to {σ}×F as his ex ante preferences with respect to that signal.

Finally, for those signal-acts involving the null signal 0, I refer to the restriction of %

to {0} × F as his static preferences.

In addition, there is associated with the DM a set of interim preferences

{%σs ⊆ F ×F : σ ∈ Σ , s ∈ σ(Ω) } .

That is, there is an interim preference relation defined over acts for each signal paired

with each of its possible realizations.

A prior is a countably-additive, complete and non-atomic probability measure

defined on a σ-algebra of subsets of Ω. Let Π denote the set of all priors with generic

element π.

Like his counterpart in Gul and Pesendorfer (2015), our DM’s static preferences

are characterized by a triple 〈µ , v , α〉, where µ ∈ Π with domain E is his prior,

v : X → R is his Bernoulli utility, a continuous and strictly increasing function; and,

α ∈ [0 , 1] is his degree of aversion to any ambiguity he perceives present.

For any g measurable with respect to µ, its static subjective expected utility is

given by

V 0
∅ (f) :=

∫
v dF µ

g ,
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where F µ
g is the cumulative distribution function (CDF) over outcomes associated

with g induced by his prior µ.

More generally, for any prior π ∈ Π and any act f measurable with respect to

π, F π
f shall denote the right-continuous non-decreasing function obtained by setting

F π
f (x) := π ({ω ∈ Ω: f(ω) 6 x}).

Consider now how the DM evaluates a signal-act (0 , f), in which the act f need

not necessarily be measurable with respect to µ. Although he may not be able to

associate with f a precise CDF, he can always compute least-upper- and greatest-

lower-bounds.

Since in the sequel I employ this construction for priors (as well as posteriors)

other than µ, I define cumulative probability bounds with respect to a generic prior

π in Π.

Definition 1 (Least-upper- and greatest-lower- cumulative-probabilities) fix

Fix a prior π ∈ Π with domain Eπ. For each act f ∈ F and each outcome x ∈ X , set

F
π

f (x) := inf
B∈Eπ , B⊇{ω∈Ω: f(ω)6x}

π(B) ,

F π
f (x) := sup

B∈Eπ , B⊆{ω∈Ω: f(ω)6x}
π(B) .

By construction both F
π

f and F π
f are right-continuous non-decreasing functions over

X with F
π

f > F π
f . Moreover, F

π

f = F π
f

(
= F π

f

)
whenever f is measurable with

respect to π.

The static Hurwicz expected utility of the signal act (0, f) may now be expressed

as:

V 0
∅ (f) =

∫
v d
[
αF

µ

f + (1− α)F µ
f

]
. (1)

Although this differs from the α-MEU formulation presented in Gul and Pesendorfer

(2015), since∫
v d
[
αF

µ

f + (1− α)F µ
f

]
= α

∫
v dF

µ

f + (1− α)

∫
v dF µ

f ,

their equivalence on the set simple acts, the domain considered by Gul and Pesendor-

fer, follows from the following proposition.
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Proposition 1 For each act f ∈ F in which |f(Ω)| <∞ :∫
v dF

µ

f = min
π∈Πµ

∑
x∈X

v(x)π
(
f−1(x)

)
and

∫
v dF µ

f = max
π∈Πµ

∑
x∈X

v(x)π
(
f−1(x)

)
,

where Πµ ⊂ Π is the set of extensions of µ, that is, π ∈ Πµ, if Eπ ⊃ E and π(E) =

µ(E) for every E in E.

To describe how the DM evaluates an arbitrary signal-act and, more generally, an

arbitrary IDP, entails the use of the measurable split generated by the preimage of a

signal. In order to define this partition of the state space I require some additional

notation and definitions, starting with the inner-measure of µ, denoted by µ∗, which

is defined by setting

µ∗(B) := sup
E⊆B:E∈E

µ (E) for each B ⊆ Ω .

Since µ is countably additive, the infimum is attained. I shall refer to the measurable

event [B]∗ in E , as the inner-sleeve of B, if [B]∗ ⊆ B and µ([B]∗) = µ∗(B). The inner-

sleeve of B may be viewed as the largest meaurable subset of B. Correspondingly,

the outer-sleeve of B, denoted by [B]∗, is defined by setting [B]∗ := Ω\[Ω\B]∗ and

hence may be viewed as the smallest measurable superset of the event B. I refer to

µ∗(B) := µ([B]∗) as the outer-measure of B.5

Definition 2 (A Signal’s Measurable Split) The measurable split generated by

the preimage of a signal σ ∈ Σ, denoted by {Eσ
Q ∈ E : Q ⊆ σ(Ω) , Q 6= ∅}, is a

partition of the state space that is inductively defined as follows:

1. For each realization s ∈ σ(Ω), set Eσ
{s} := [σ−1(s)]∗.

2. For each Q ⊆ σ(Ω) such that |Q| > 1, set

Eσ
Q :=

[
σ−1(Q)

]
∗\

⋃
Q̂⊂Q

Eσ
Q̂

 .

I refer to Eσ
Q as the σ-marginal inner-sleeve of the set of signal realizations Q.

5 Notice that the inner-and outer-sleeves are unique up to a set of µ-measure 0.
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As an illustration, consider the measurable split generated by the preimage image

of a binary signal σ̂ that maps each state to one of two possible realizations, s′ or s′′.

The measurable split is the three element partition of the state-space

{ Eσ̂
{s′}

=

[σ̂−1(s′)]∗

, Eσ̂
{s′′}

=

[σ̂−1(s′′)]∗

, Eσ̂
{s′ ,s′′}

=

Ω\([σ̂−1(s′)]∗∪ [σ̂−1(s′′)]∗)

} .

The first (respectively, second) element corresponds to the largest measurable subset

in which the signal’s realization is s′ (respectively, s′′). For the third element, all the

DM can discern is that the realization will be either s′ or s′′. However, he is unable to

attribute any fraction of the probability his prior assigns to this element of the split

to either s′ or s′′ alone.

More generally for an arbitrary signal σ and for each non-empty set of its real-

izations Q ⊆ σ(Ω), recalling the approach of Dempster (1967) and Shafer (1976), I

interpret µ
(
Eσ
Q

)
(the probability assigned by the prior to the σ-marginal inner-sleeve

of Q) as measuring the weight the DM places on the evidence that directly supports

the realization of the signal residing in Q that cannot be further refined ex ante in

terms of any of its strict subsets.

Analogous to Gul and Pesendorfer’s (2021) two-stage updating procedure for com-

pound random variables, in order to construct his recursive evaluation of an arbitrary

signal-act (σ , f), the DM first forms a proxy of his prior µ that renders all the in-

formation cells of the signal unambiguous. This in turn entails the set of effectively

ideal events of the interim preferences in IDPs involving this signal to comprise the

smallest σ-algebra of events that includes all ideal events of his static preferences as

well as all the information cells of the signal.

So as to avoid any double counting, the DM employs a type of “principle of

indifference” and attributes an equal fraction |Q|−1 of the prior probability µ
(
Eσ
Q

)
to

the weight the proxy assigns to the conjunction the signal realization is s (an element

of Q) and the event Eσ
Q obtains. This implies that the proxy is an extension of the

prior.

Definition 3 (Signal Proxy) Fix a signal σ ∈ Σ. Let Eσ denote the smallest σ-

algebra containing E as well as the pre-image of each realization of σ. The proxy

µσ ∈ Πµ with domain Eσ, that the DM associates with the signal σ is the extension
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of his prior obtained by setting for each B ∈ Eσ :

µσ(B) :=
∑
s∈S

 ∑
Q⊆σ(Ω): s∈Q

µ
(
[B ∩ σ−1 (s)]

∗ ∩ Eσ
Q

)
|Q|


As a check to see that the proxy is indeed an extension of the DM’s prior, notice

that for any ideal event E in E , [E ∩ σ−1 (s)]
∗ ∩Eσ

Q = E ∩ [σ−1 (s)]
∗ ∩Eσ

Q = E ∩Eσ
Q.

Hence

µσ(E) =
∑
s∈S

 ∑
Q⊆σ(Ω): s∈Q

µ
(
E ∩ Eσ

Q

)
|Q|


=

∑
Q⊆σ(Ω)

(∑
s∈Q

µ
(
E ∩ Eσ

Q

)
|Q|

)
=

∑
Q⊆σ(Ω)

µ
(
E ∩ Eσ

Q

)
= µ(E) .

The DM next updates this proxy according to Bayes’s rule and uses these updated

beliefs to form the conditional HEU preferences that determine the conditional cer-

tainty equivalents of f for each of the signal’s information cells. For each realization

s ∈ S such that µσ(σ−1(s)) > 0, let µσs denote the Bayesian update of µσ conditional

on σ−1(s) obtaining. That is, for each B ∈ Eσ set

µσs(B) :=
µσ(B ∩ σ−1(s))

µσ(σ−1(s))
.

Notice by definition, µ0
∅ ≡ µ. Furthermore, since

µσ(·) =
∑

s∈S : µσ(σ−1(s))>0

µσ
(
σ−1(s)

)
µσs(·) ,

for each act f in F wehave:∫
v d
[
αF

µσ

f + (1− α)F µσ

f

]
=

∑
s∈S : µσ(σ−1(s))>0

µσ
(
σ−1(s)

)(∫
v d
[
αF

µσs
f + (1− α)F

µσs
f

])
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All the elements required to define the class of Recursive HEU maximizers have

now been assembled.

Definition 4 (The Class of Recursive HEU Maximizers) An ex ante prefer-

ence relation % over IDPs that has associated with it the set of interim preferences

{%σs ⊂ F ×F : σ ∈ Σ , s ∈ σ(Ω) } is a member of the class of Recursive Hurwicz Ex-

pected Utility Maximizers if there exists a prior µ (with domain E), a Bernoulli utility

v, and an ambiguity aversion α, such that the ex ante and the interim preferences

admit representations V : Σ×M→ R, and V σ
s : F → R, respectively, where

(i) for each signal σ ∈ Σ, each of its realizations s ∈ σ(Ω) in which µσ(σ−1 (s)) > 0,

and each act f ∈ F :

V σ
s (f) =

∫
v d
[
αF

µσs
f + (1− α)F

µσs
f

]
;

(ii) and, for each IDP (σ ,M) in Σ×M :

V (σ ,M) = V 0
∅
(
a(σ ,M)

)
where a(σ ,M) is the auxiliary act associated with (σ,M) obtained by setting

a(σ,M)(ω) :=

 v−1(maxf∈M V σ
s (f)) if ω ∈ σ−1 (s) and µσ(σ−1(s)) > 0

x otherwise

By construction, for any act f that is adapted to a signal σ (that is, f(ω) = f(ω̂)

whenever σ(ω) = σ(ω̂)), we have V (σ , f) = V (0 , f). To interpret this property,

notice that (σ , f) (respectively, (0 , f)) is a signal-act in which all uncertainty resolves

early (respectively, late). Hence we view the DM assigning both signal acts the

same utility as embodying a time-neutrality property as we are requiring the DM be

indifferent between any pair of signal-acts in which the outcome is determined by the

same act, and where all uncertainty resolves either early or late.6 Hence, unlike the

compound risk models of Kreps and Porteus (1978), Epstein and Zin (1989) and Grant

et al. (1998), an R-HEU maximizer cannot exhibit an intrinsic love of or aversion to

information.

6 This is also a feature of Gul and Pesendorfer’s (2021) belief revision model under ambiguity.
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2.1 When is Information Always (Weakly) Valuable?

Turning now to the question of when an R-HEU maximizer values information, for

each signal-act (σ , f) in Σ×F , I show in Lemma 1 in Appendix A that

F
µ

f > F
µσ

f > F µσ

f > F µ
f .

That is, these CDFs are ranked in terms of the partial ordering of first-order stochastic

dominance.

I interpret a strict preference (0 , f) � (σ , f) as the DM exhibiting, in the context

of the act f , an intrinsic aversion to the information embodied in the signal σ (com-

pared to the baseline of no information). If, however, σ is measurable with respect

to µ, then since µσ = µ, we have F
µ

f = F
µσ

f and F µσ

f = F µ
f , which in turn implies

V (0 , f) = V (σ , f), or equivalently, (0 , f) ∼ (σ , f). That is, if σ is measurable

with respect to the DM’s prior, then he cannot exhibit, in the context of any act, an

intrinsic aversion to the information embodied in that signal.

Alternatively, if an R-HEU maximizer exhibits maximal aversion to ambiguity,

that is, α = 1, then from the well-known result that all expected utility maximizers

agree with the partial ordering of first-order stochastic dominance we have V (0 , f) =∫
v dF

µ

f 6
∫
v dF

µσ

f 6
∫
vF

µ

a(σ,f) = V (σ , f). That is, for no signal can the DM

exhibit, in the context of any act, an intrinsic aversion to the information embodied

in that signal.

Conversely, in order for an R-HEU maximizer to exhibit, in the context of some

act, an intrinsic aversion to the information embodied in some signal, he cannot

be maximally ambiguity averse and there must exist at least one signal that is not

measurable with respect to his prior.

Adding the standard instrumental value of information from the DM being able

to make his choice contingent on the signal’s realization, leads to the following char-

acterization as to when information is always (weakly) valuable.

Proposition 2 Consider a DM who is an R-HEU maximizer characterized by the

triple 〈µ , v , α〉. The following are equivalent.

1. The DM’s evaluation of information is never negative, that is,

(σ ,M) % (0 ,M) for all (σ ,M) ∈ Σ×M .

2. Either every σ ∈ Σ is measurable with respect to µ or α = 1.
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2.2 The Equal Distribution of the “Harsanyi Dividend”.

I conclude this section with the following observation. Fix a signal σ in Σ. We can

associate with σ a cooperative game in which each realization s in σ(Ω) is deemed

a “player”. The value of the coalition Q ⊆ σ(Ω) of players is set equal to the

inner-measure of that coalition’s preimage, that is, µ∗(σ
−1(Q)). Notice that µ(Eσ

Q),

the probability the prior assigns to the σ-marginal inner-sleeve of Q, corresponds to

what Harsanyi (1982) dubbed the “dividend” generated by the coalition Q. Take the

“value” of player s to be the weight the proxy µσ assigns σ−1(s), the information cell

associated with the realization s. Applying Definition 3 this value may be expressed

as ∑
Q⊆σ(Ω)

(∑
s∈Q

µ
(
Eσ
Q

)
|Q|

)
.

That is, the assignment entails sharing the Harsanyi dividend of each coalition equally

among the players in that coalition.7 We shall see in section 4 below that this equal

sharing of the dividend generated by a set of realizations among its members underpins

the derivation of the DM’s proxy that renders each information cell unambiguous.

3 Neo-continuous sources

As well as accommodating Ellsberg-style evidence of non-neutral attitudes toward

ambiguity, a key feature of the HEU model is its ability to address source-preference

and Allais-style violations of expected utility theory. This is because in addition to

his prior µ, there are other (indeed many other) “priors” for which the restriction of

the DM’s static preferences to acts measurable with respect to such a prior admit

a particular probabilistically sophisticated generalized expected utiity representation,

namely, the Rank Dependent Utility (RDU) model first introduced and axiomatized

by Quiggin (1982).8

For each prior π ∈ Π with domain Eπ, let Fπ denote the set of acts that are

measurable with respect to π. The restriction of the DM’s static preferences to Fπ

admits an RDU representation if there exists a probability transformation τ : [0 , 1]→
7 Harsanyi shows this equal distribution rule results in each player being assigned her Shapley

value.
8 We are using the term probabilistically sophistication in the sense of Machina and Schmeidler

(1992).
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[0 , 1] which is strictly increasing and normalized with τ(0) := 0 and τ(1) := 1,9 such

that for every pair of acts f and f ′ in Fπ :∫
v d
(
τ ◦ F π

f

)
>
∫
v d
(
τ ◦ F π

f ′

)
⇐⇒ V (0 , f) > V (0 , f ′)

In line with the motivation that underpins Gul and Pesendorfer’s (2015) notion

of a source, the focus here is on those priors that can rationalize the restriction of the

static preferences between pairs of binary bets for given stakes involving events that

reside in the domain of that prior.

Definition 5 (Non-extreme-outcome (neo)-continuous sources) A prior π ∈
Π is a neo-continuous source if for every pair of events A and B in Eπ and every pair

of outcomes x > y :

(0 , xAy) % (0 , xBy) ⇐⇒ π(A) > π(B) .

To provide a rationale for the terminology employed here as well as to see the

connection between my notion of a (neo-continuous) source and and that of Gul

and Pesendorfer, let’s begin by recalling Gul and Pesendorfer refer to a function

γ : [0, 1] → [0, 1] as a power series if there is a sequence a = (a1, a2, . . .) such that

ai ∈ [0, 1],
∑

i ai = 1 and γ(t) =
∑

i ai · ti. Let Γ denote the set of all power series.

Extending Gul and Pesendorfer’s notion, a prior π ∈ Π conforms conditionally on the

ideal event E (in E) to the power series γ ∈ Γ if

µ∗(A) =

 µ(E)γ(π(A)) , if π(A) < 1

1 if π(A) = 1
for all A ∈ Eπ . (2)

Gul and Pesendorfer consider the (special) case of a prior conforming to the power

series on the entire state space, and so require µ∗(A) = γ(π(A)).

Just as Gul and Pesendorfer established HEU permits infinitely many distinct

sources and that a power series characterizes each one, the following generalizes their

Proposition 2.

Proposition 3 (i) A prior is a neo-continuous source if and only if it conforms

conditionally on some non-null ideal event to some power series; (ii) for every non-

9 Gul and Pesendorfer (2015) also require τ to be continuous but I include probability transfor-
mations that allow for jumps at 0 and at 1.
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null ideal event and every power series, there exists a neo-continuous source that

conforms conditionally on that event to that power series.

Notice, by fixing a neo-continuous source π that conforms conditionally on the

ideal event E to the power series γ, it readily follows for any non-null and non-

universal event A from that source (that is, the event is in Eπ and the probability π

assigns it is strictly positive but less than one), its outer-measure is given by

µ∗(A) = 1− µ∗(Ω\A) = 1− µ(E)γ (π (Ω\A))

= 1−µ(E) + µ(E)− µ(E)γ (1−π (A))

= 1−µ(E) + µ(E) γ̂ (π (A))

where γ̂(p) := 1− γ (1−p) is the conjugate dual of γ. Hence for any bet based on A

involving the stakes x > y, we have

V 0
∅ (xAy) = (αµ∗ (A) + (1−α)µ∗ (A)) v (x) + (1− αµ∗ (A)− (1−α)µ∗ (A)) v(y)

= ((1− λ) [αγ (p) + (1−α) γ̂ (p)] + (1−α)λ) v (x)

+ ((1− λ) [αγ̂ (1− p) + (1− α) γ (1− p)] + αλ) v (y)

= (1− λ) ([αγ (p) + (1−α) γ̂ (p)] v (x) + [αγ̂ (1− p) + (1− α) γ (1− p)] v (y))

+ λ ((1−α) v (x) + αv (y))

where λ = 1−µ(E) and p = π(A). That is, the utility of the bet may be expressed

as a (1−λ, λ)-convex combination of

[αγ (p) + (1−α) γ̂ (p)] v (x) + [αγ̂ (1− p) + (1− α) γ (1− p)] v (y) (3)

and

(1−α) v (x) + αv (y) (4)

Expression (3) corresponds to the RDU of the bet xAy (for which F π
xAy

(y) = 1−p) with

respect to the (continuous) probability transformation τ = αγ̂ + (1−α)γ. Expression

(4), on the other hand, is the convex combination of the utilities of the worst and

best outcomes in that bet in which the weight on the utility of the worst outcome

14



equals the DM’s amibiguity aversion.

The next proposition states for any act adapted to a neo-continuous source, its

static HEU representation can be expressed in terms of such a convex combination.

To state it, we introduce the following notation. For any CDF F , let xF (respectively,

xF ) denote the greatest lower (respectively, least upper) bound of the support of F .

That is, xF := sup {y : F (y) = 0} and xF := inf {y : F (y) = 1}.

Proposition 4 Suppose a prior π ∈ Π is a neo-continuous source that conforms

conditionally on the ideal event E ∈ E to the power series γ. Set λ := 1−µ(E) and

τ := α γ̂ + (1−α)γ. Then for each act f ∈ Fπ :

V 0
∅ (f) = (1− λ)

∫
v d
[
τ ◦ F π

f

]
+ λ

(
αv(xFπf ) + (1− α) v(xFπf )

)
. (5)

Thus we see the restriction of the static preferences to acts in Fπ admits a repre-

sentation defined over the CDFs of the acts induced by the source, characterized by

the quartet, comprising (i) the Bernoulli utility v, (ii) the ambiguity aversion α, (iii)

the parameter λ, and (iv) the power series γ.

For the special case in which γ is the identity, the righthand side of expression

(5) collapses to the neo-expected utility of an act which is how a decision maker from

the neo-additive capacity model introduced by Chateauneuf et al. (2007) evaluates

acts. Chateauneuf et al. interpret the parameter λ as a measure of the amount

of ambiguity the DM perceives he is facing with the complementary weight 1 − λ

measuring the confidence he places on the probability π. We shall refer to λ as the

DM’s lack of confidence in the source. In evaluating F π
f (the CDF of the act f induced

by the source π), the DM places weight 1− λ on the RDU computed with respect to

the probability transformation τ = αγ̂ + (1−α) γ. He then accounts for his lack of

confidence in the source by assigning a fraction α of the remaining weight λ to the

utility of the worst outcome in the support of F π
f , with the residual placed on the

utility of the best outcome in the support of F π
f .

3.1 Updating neo-additive sources

Fix a prior π ∈ Π that is a neo-continuous source with respect to some non-null ideal

event E. Analogous to the class of ideal IDPs discussed in the introduction, an IDP

(σ,M) is a π-IDP if: (i) σ−1(s) ∈ Eπ with π(σ−1(s)) > 0 for every realization s in

σ(Ω); and, (ii) M ⊂ Fπ.10

10 We observe that the class of ideal IDPs is the class of µ-IDPs.
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To see how we may express the representation of the restriction of the DM’s

preferences to π-source IDPs in which π is a neo-additive source, consider first a

signal-act (σ , f) that is a π-source IDP. Set nσ := | {s ∈ S : π (σ−1(s)) > 0} | and for

each realization s such that π (σ−1(s)) > 0, let πσs (·) denote the update of π conditional

on the realization of σ is s. It is defined by setting for each A in Eπ,

πσs (A) :=
µ(A ∩ σ−1(s) ∩ E) /µ(E)

µ(σ−1(s) ∩ E) /µ(E)
=
π(A ∩ σ−1(s))

π(σ−1(s))
.

Applying the definitions and results from above yields∫
v d
[
αF

µσ

f + (1− α)F µσ

f

]
=
∑
s∈σ(Ω)

µ (σ−1(s) ∩ E
)︸ ︷︷ ︸

(1−λ)π(σ−1(s))

∫
v dF

πσs
f +

λ

nσ

(
αv
(
x
F
πσs
f

)
+ (1− α) v

(
x
F
πσs
f

))

=
∑
s∈σ(Ω)

(
(1− λ) π

(
σ−1 (s)

)
+ λ

1

nσ

)
︸ ︷︷ ︸

pσs :=µσ(σ−1(s))

 (1− λ) π (σ−1 (s))

(1− λ) π (σ−1 (s)) + λ/nσ︸ ︷︷ ︸
1−λσs

∫
v dF

πσs
f

+
λ/nσ

(1− λ) π (σ−1 (s)) + λ/nσ︸ ︷︷ ︸
λσs

(
αv
(
x
F
πσs
f

)
+ (1− α) v

(
x
F
πσs
f

))

=
∑
s∈σ(Ω)

pσs

[
(1− λσs )

∫
v dF

πσs
f + λσs

(
αv
(
x
F
πσs
f

)
+ (1− α) v

(
x
F
πσs
f

))]
where

pσs = (1− λ) π
(
σ−1 (s)

)
+ λ

1

nσ
,

λσs =
λ/nσ
pσs

=
λ

(1− λ)
(
π(σ−1(s))

1/nσ

)
+ λ

,
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Hence, if for each realization s ∈ S for which π (σ−1(s)) > 0 we set

V σ
s (f) := (1− λσs )

∫
v dF

πσs
f + λσs

(
αv(x

F
πσs
f

) + (1− α) v(x
F
πσs
f

)
)
.

then for the π-IDP (σ,M), we have

V (σ ,M) = (1− λ)

∫
v dF π

a(σ,M) + λ
(
αv(xFπ

a(σ,M)
) + (1− α) v(xFπ

a(σ,M)
)
)

where a(σ,M) is the auxiliary act associated with (σ,M) constructed by setting

a(σ,M)(ω) :=

 v−1(maxf∈M V σ
s (f)) if ω ∈ σ−1(s) and π (σ−1(s)) > 0

x otherwise
.

The signifcance of the above algebraic manipulations is that they demonstrate for

any IDP adapted to a given neo-additive source π, the signal’s realization-contingent

parameters of the neo-EU representation of the interim preferences, may be formu-

lated entirely in terms of the quartet 〈π , v , α , λ〉, comprising the source, the Bernoulli

utility, the aversion to ambiguity, and the lack of confidence in the source. That is,

not only are the interim preferences model-consistent in terms of remaining within

the HEU model, but they remain within the neo-EU model and admit formulations

that eshew any (explicit) reference to the DM’s prior µ.

An implication of the next proposition is that if for each source there is at least one

non-degenerate binary signal adapted to that source, then it is only the neo-additive

source IDPs that exhibit this more stringent source model consistency property.

Proposition 5 Without loss of generality, set v(x̄) := 1 and v(x) := 0. Take π ∈ Π

(with domain Eπ) to be a source that conforms to the power series γ(p) = pn.11

Suppose there exists an event A ∈ Eπ with π(A) ∈ (0, 1) and a signal σ ∈ Σ, for

which σ(ω) = s′ if ω ∈ A and σ(ω) = s′′, otherwise. Then for any Â ∈ Eπ such that

Â ⊂ A and π(Â) ∈ (0, π(A)) :

V
(
σ, x̄Âx

)
=
(
αγ (π(A)) + (1−α)γ̂ (π(A))V σ

s′

(
xÂx

)
where

V σ
s′

(
x̄Âx

)
= αγ

π
(
Â
)

π (A)

+ (1−α) γ̂

π
(
Â
)

π (A)

 ,

11 That is, π conforms conditionally on Ω to γ(p) = pn.
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if and only if γ(p) ≡ p, that is, n = 1.

4 Characterization

To state the axioms for the characterization requires the following definitions, many

taken from Gul and Pesendorfer (2015) albeit suitably adapted for a dynamic setting.

The event E is ideal if both the event and its complement Ω\E exhibit a form of

Savage’s property P2 with respect to the DM’s static preferences. Formally, the event

E is deemed ideal if for every quartet of acts f , f ′, f̂ and f̃ in F :[
(0, fE f̂) % (0, f ′E f̂) and (0, f̂Ef) % (0, f̂Ef

′)
]

=⇒[
(0, fE f̃) % (0, f ′E f̃) and (σ, f̃Ef) % (0, f̃Ef

′)
]
.

As Gul and Pesendorfer observe for an HEU maximizer, ideal events represent

those events for which the DM associates the least uncertainty (corresponding to the

events in the domain of the prior µ in Definition 4). The DM uses ideal events to

quantify the uncertainty of other, non-ideal events. Let E denote the set of all ideal

events. We refer to an act as ideal if it is adapted to E . Formally, an act g is ideal if

g−1(Y ) ∈ E for all Y ∈ B(X) where B(X) is the smallest σ-algebra of subsets of X

containing all open subsets of X.12 Let G ⊂ F denote the set of ideal acts.

An event B is null if (0 , f̂Bf) ∼ (0 , f) for all f , f̂ ∈ F . Let N denote the

set of null events. For each non-null event A /∈ N and each act f ∈ F , define

f+(A) := inf{Y ∈ B(X) : A\f−1(Y ) ∈ N}. We interpret f+(A) as the “support” of

the act f on the non-null event A.

An event D is diffuse if for every non-null ideal event E in E\N :

E ∩D 6= ∅ 6= E ∩ Ω\D .

From the perspective of the DM’s static preferences, diffuse events are the most

uncertain, since they (and their complements) contain no non-null ideal events. Let

D denote the set of all diffuse events. We say an act h is diffuse if for every Y ∈ B(X),

h−1(Y ) ∈ D whenever h−1(Y ) /∈ N and h−1(X \Y ) /∈ N . That is, whenever it is

neither impossible nor certain an element from the set of outcomes Y will result, the

DM is unable to use ideal events to quantity with any more precision the likelihood

12 Equivalently, g is ideal if g−1({y : y 6 x}) ∈ E for all x ∈ X.
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an outcome from that set Y will occur. Let H ⊂ F denote the set of diffuse acts.

With these preliminaries in hand I begin by assuming the DM’s static preferences

admit an HEU representation.13

Assumption H (Static HEU Maximization) There exists a prior µ with domain

E, a Bernoulli utility v, and an ambiguity aversion α, such that for all f and f ′ in

F , (0 , f) % (0 , f ′) if and only if∫
v d
[
αF

µ

f + (1− α)F µ
f

]
>
∫
v d
[
αF

µ

f ′ + (1− α)F µ
f ′

]
Next consider a signal-act (σ , f) in which the act is adapted to the signal, that is,

f(ω) = f(ω̂) whenever σ(ω) = σ(ω̂). This as a signal-act in which all the uncertainty

is resolved early, since once the DM learns the realization of the signal he knows what

outcome will result. Alternatively, by replacing σ with 0, the signal act that results,

(0 , f), also has all its uncertainty resolved at one point in time, albeit now late. The

first axiom states the DM cannnot express an intrinsic strict preference between all

early versus all late resolution of uncertainty.

Axiom 1 (Timing Neutrality) For each signal σ ∈ Σ: (0 , f) ∼ (σ , f) for every

act in which σ(ω) = σ(ω̂) =⇒ f(ω) = f(ω̂).

The following two axioms are adapted from Ghirardato (2002). The first requires

that the interim preferences associated with a given signal and any of its non-null re-

alizations should not depend on how the acts behave on states outside the information

cell corresponding to that realization. The second imposes a dynamic restriction on

the DM’s ex ante preferences with respect to a given signal and the interim preferences

associated with each of the signal’s non-null realizations.

Axiom 2 (Consequentialism) Fix a signal σ ∈ Σ. For every realization s ∈ σ(Ω)

such that σ−1(s) /∈ N and every pair of acts f , f̃ in F : f ∼σs fσ−1(s)f̃ .

Axiom 3 (Dynamic Consistency) Fix a signal σ ∈ Σ. For every realization s ∈
σ(Ω) such that σ−1(s) /∈ N and every pair of acts f , f̃ in F :

13 In Appendix B we provide an axiomatic characterization of Assumption H that draws heavily
on the representation result in Gul and Pesendorfer (2015). Gul and Pesendorfer’s result in turn
relies on their characterization of the EUU model in Gul and Pesendorfer (2014). As Grant et al.
(2023) have recently shown, however, those axioms are not sufficient to ensure the preferences admit
an EUU representation. Hence our axiomatization also utilizes the modifications suggested by Grant
et al. (2023).
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f %σs f̃ =⇒ (σ , fσ−1(s)f̃) % (σ , f̃)

Echoing the intuition offered by Ghirardato for requiring dynamic consistency

take this form, I interpret Axiom 3 as saying that if the DM anticipates he would

(weakly) prefer the act f over the act f̃ were he told the realization of the signal

σ was s, then given a (default) plan of action that is identified with the act f̃ , the

possibility to postpone his choice until actually observing the realization s does not

make him any worse off.

I next require every event identified as ideal with respect to the static preferences

remains so for each of the interim preferences. Formally, the axiom states for any

interim preference relation each ideal event is both “left-ideal” (it satisfies Savage’s

postulate P2) and “right-ideal” (its complement satisfies P2). From Lemma B0 in Gul

and Pesendorfer (2014, p25) it then follows that the event is ideal for these interim

preferences.

Axiom 4 (Preservation of Ideal Events) For every signal σ ∈ Σ, every realiza-

tion s ∈ σ(Ω), every ideal event E ∈ E and every pair of acts f and f ′ in F :

fEf
′ %σs f

′ =⇒ f %σs f
′
Ef and f ′Ef %

σ
s f
′ =⇒ f %σs fEf

′ .

To provide some intuition for the next axiom, consider a signal and its associated

measurable split as specified in definition 2. Recall in the discussion immediately

following that definition, the probability assigned by the prior to an element of the

measurable split associated with a set of possible realizations of the signal was inter-

preted as measuring the weight the DM places on evidence that directly supports the

signal’s realization coming from that set that cannot be further refined in terms of

any of its strict subsets. So, in line with his inability to refine that probability any

further, should the DM be informed the signal’s realization is a particular element

in that set, then the probability he assigns to an ideal event conditional on that el-

ement of the measurable split obtaining should remain unchanged. More generally,

the axiom requires the DM’s betting preferences be invariant over such conditional

bets.

Axiom 5 (Invariant Interim Risk Preferences) Fix a signal σ ∈ Σ with associ-

ated measurable split {Eσ
Q ∈ E : Q ⊆ σ(Ω) , Q 6= ∅}. For each Q ⊆ σ(Ω) such that

Eσ
Q /∈ N , and each s ∈ Q :

(
0 , (xEy)EσQx

)
%
(
0 , zEσQx

)
⇐⇒ (xEy)EσQx %

σ
s zEσQx ,
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for all ideal E ∈ E and all outcomes x , y , and z in X.

Motivation for the next axiom comes from the following property of the static

preferences that stems from them admitting an HEU representation.

Proposition 6 Suppose % satisfies Assumption H. Fix a signal σ ∈ Σ with associated

measurable split {Eσ
Q ∈ E : Q ⊆ σ(Ω) , Q 6= ∅}. Then for each Q ⊆ σ(Ω) such that

Eσ
Q /∈ N ,

(0,
(
xσ−1(s)y

)
EσQ
f) ∼ (0,

(
xσ−1(s′)y

)
EσQ
f) ,

for any pair of realizations s , s′ in Q, any pair of outcomes x > y, and any act f .

In terms of the DM’s static preferences, we see from Proposition 6 that condi-

tional on Eσ
Q obtaining, the DM is indifferent between a bet on σ−1(s) and a bet

on σ−1(s′). In other words, from the perspective of his static preferences the pair of

events Eσ
Q∩σ−1(s) and Eσ

Q∩σ−1(s′) are exchangeable. This exchangeability property

exhibited by his static preferences, suggests that when constructing the proxy that

renders each information cell of the signal unambiguous, the DM should distribute

the “Harsanyi dividend” associated with each “coalition of realizations” Q (that is,

the weight his prior attaches to the event Eσ
Q) uniformly among its members. The

following definition along with the next axiom embody this line of reasoning.

Definition 6 (Equally-Distributed Harsanyi-Dividend Ideal Partition) Fix a

signal σ ∈ Σ, with associated measurable split {Eσ
Q ∈ E : Q ⊆ σ(Ω) , Q 6= ∅}. For

each non-empty Q ⊆ σ(Ω), let {Eσ
Q,s : s ∈ Q} denote an ideal partition of Eσ

Q that

comprises |Q| uniformly weighted elements. That is, µ(Eσ
Q,s) = µ(Eσ

Q)/|Q| for each

s ∈ Q.

An equally-distributed Harsanyi-dividend ideal partition, {Eσ
s : s ∈ σ(Ω}, that

can be associated with the signal σ is then formed by setting for each s in σ(Ω) :

Eσ
s :=

⋃
Q⊆σ(Ω): s∈Q

Eσ
Q,s .

Notice that,

[σ−1(s)]∗
(

= Eσ
{s}
)
⊆ Eσ

s ⊆

 ⋃
Q⊆σ(Ω): s∈Q

Eσ
Q =

 [σ−1(s)]∗

for each s in σ(Ω).
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The next axiom requires after the DM learns the signal’s realization, his interim pref-

erences over bets on elements of the measurable split conform to his static preferences

over conditional versions of such bets where the conditioning event is the element of

an associated equally-distributed Harsanyi-dividend ideal partition corresponding to

that realization.

Axiom 6 (Equal distribution of Harsanyi Dividend) Fix a signal σ ∈ Σ with

associated measurable split {Eσ
Q ∈ E : Q ⊆ σ(Ω) , Q 6= ∅}. Let {Eσ

s : s ∈ σ(Ω} denote

an equally-distributed Harsanyi-dividend ideal partition that can be associated with σ.

For each Q ⊆ σ(Ω) such that Eσ
Q /∈ N , and each s ∈ Q :(

0 , (xEσQy)Eσs x
)
%
(
0 , zEσs x

)
⇐⇒ xEσQy %

σ
s z ,

for all outcomes x , y , and z in X.

I also require the DM’s attitude toward any (remaining) ambiguity he perceives

present remains unchanged. In particular, the unconditional certainty equivalent of

a diffuse act equates with the interim conditional certainty equivalent of any diffuse

act with the same (conditional) support.

Axiom 7 (Invariant Uncertain Outcome Preferences) Fix a signal σ ∈ Σ. For

any realization s ∈ σ(Ω) with σ−1(s) /∈ N , any pair of diffuse acts h and ĥ in H, any

outcome z in X, and any event E ∈ Eσ such that E ⊆ σ−1(s) and E /∈ N ,

if h+(Ω) = ĥ+(E) then (0 , h) % (0 , z) ⇐⇒ ĥ %σs zEĥ .

Finally, the DM may only express a preference for one IDP over another when

there exists an available plan of action in the former that dominates according to her

signal-act preferences all available plans of action in the latter.

Axiom 8 (Ex ante optimal planning) For any pair of IDPs (σ,M) and (σ′,M ′)

in Σ × M, (σ,M) % (σ′,M ′) if and only if there exists φ ∈ Φ(σ,M) for which

(σ , φ) % (σ′ , φ′) for all φ′ ∈ Φ(σ,M ′) .

The representation theorem follows.

Theorem 1 Suppose Assumption H holds. Then the relation % with associated in-

terim preferences {%σs ⊂ F×F : σ ∈ Σ , s ∈ σ(Ω) } are those of an R-HEU maximizer

if and only if Axioms 1 – 8 hold.
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5 Related Literature

In the standard model of subjective expected utility, where beliefs are represented by

a probability measure, the rule applied almost universally to incorporate information

is Bayesian updating. And indeed, as noted in the introduction, for the class of ideal

IDPs, an R-HEU maximizer’s updated beliefs are simply the Bayesian update of

his prior conditional on the information cell corresponding to the signal’s realization

having obtained.

For non-additive beliefs there have been two major approaches in the literature.

The first is a statistical approach that considers for different updating rules the sta-

tistical properties of the conditional expectations derived from such rules. Examples

include Denneberg (1994, 2002), Jaffray (1992), Lapied et al. (2012), Lehrer (2005),

Shafer (1976), Walley (1991), and, more recently and most relevant here, Gul and

Pesendorfer (2021).

The other approach and the one taken in this paper, is decision-theoretic. The

updating rule arises from axioms imposed on the preferences both ex ante and interim:

a nonexhaustive list of examples includes Epstein and Schneider (2003), Gilboa and

Schmeidler (1993), Hanany and Klibanoff (2007), Pires (2002), Siniscalchi (2011),

Sarin and Wakker (1998), and Wang (2003).

In contrast to all of the above, however, without any need to impose any a priori

restriction on the domain of acts and/or signals, our dynamic extension of HEU allows

for a DM with ex ante and interim preferences that not only both conform to HEU

but are also consequentialist and dynamically consistent.14

At first blush this might seem at odds with Ghirardato (2002) who established,

even without requiring a priori the ex ante preferences be SEU: imposing both of his

notions of dynamic consistency and consequentialism entailed the ex ante preferences

conforming to SEU. However, his result can be reconciled with the current framework

by noting a key difference is that the set of interim preferences we consider is richer.

Recall, the DM’s interim preferences are allowed to depend not just on the condition-

ing event (that is, the information cell corresponding to the realization of the signal)

but also on the entire partition of information cells induced by all the signal’s possible

realizations.

14Hanany and Klibanoff (2006), Siniscalchi (2006), and Sarin and Wakker (1998) drop consequen-
tialism and retain dynamic consistency. Epstein and Schneider (2003) retain both in a multiple
prior model for a fixed signal and then require the set of priors to be rectangular with respect to the
information cells of the signal.
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Gul and Pesendorfer’s (2021) recursive and consequentialist theory of belief re-

vision also allows updated beliefs and hence conditional evaluations to (potentially)

depend on the entire signal and not just the information cell corresponding to a

particular realization. To compare their approach with the one here, first notice a

compound random variable in their setting may naturally be identified with a signal-

act (σ, f) in ours. They encode the DM’s prior perception of uncertainty with a

totally monotone capacity, ν. In their model the DM evaluates a signal-act (0, f)

(that is, one involving the null signal 0) by setting

V gp(0, f) :=

∫
v◦f dν ,

the Choquet integral of the state-contingent utility v ◦ f with respect to ν.15 Notice

if we take ν to be µ∗, the inner-measure associated with an R-HEU maximizer’s prior

µ, then since
∫
v ◦ f dµ∗ =

∫
v ◦ f dF µ

f , these static preferences correspond to those of

an HEU maximizer with an extreme aversion to any ambiguity he perceives present,

that is, α = 1.

For signal-acts involving a non-null signal, analogous to what an R-HEU maxi-

mizer does with his prior probability, their DM first forms a “proxy” capacity, which

we shall denote by νσ, that is derived from ν in a manner rendering each of the in-

formation cells of the signal unambiguous, just as the proxy prior does for an R-HEU

maximizer.

The DM next updates the proxy for each realization s, for which νσ(σ−1(s)) > 0,

according to Bayes’ rule,

νσs (A) :=
νσ(A ∩ σ−1(s))

νσ(σ−1(s))
,

and computes
∫
v◦f dνσs (the Choquet integral of v◦f with respect to the conditional

capacity νσs ). Finally he assigns the signal-act (σ , f) utility

V gp(σ, f) :=

∫
vσf dν ,

where vσf is any state-contingent utility in which vσf (ω) =
∫
v ◦ f dνσs whenever ω ∈

15 If, without loss of generality, we set v(x) := 0 and v(x) := 1, then∫
v◦f dν =

∫
ν ({ω ∈ Ω: v (f (ω)) > u}) du .

where the righthand side of the equality is a (standard) Lebesgue integral.
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σ−1(s) and νσ(σ−1(s)) > 0.

In Gul and Pesendorfer’s setting the state space is (essentially) finite.16 This

allows them to define the proxy capacity via a modification of the prior capacity’s

Möbius transform. In the current setting, however, in which the initial beliefs are

characterized by a prior that is a convex-ranged probability, it seems more appropriate

to follow the approach we took in Definition 3 above, and derive the proxy capacity

via a modification of the prior probability. Furthermore, since in their apportionment

of the weights of the Möbius transform of the prior capacity “no event that intersects

multiple elements of the information partition is given weight by the Möbius transform

of the proxy capacity” (Gul and Pesendorfer, 2021, p8) this suggests the following

modification be made to the prior probability to derive an analog of their proxy

capacity in our setting. Let µσgp denote a “Gul and Pesendorfer (2021) inspired”

proxy prior probability defined over Eσ, that is obtained by setting for each event

B ∈ Eσ :

µσgp(B) :=

∑
s∈S µ ([B ∩ σ−1 (s)]∗)∑

s∈S µ ([σ−1 (s)]∗)

And take the proxy capacity to be the inner-measure of µσgp. That is, set

νσ(A) := sup
B⊆A:B∈Eσ

µσgp(B) for each A ⊆ Ω .

Notice that νσ does indeed render each information cell unambiguous in the sense

that, for each s ∈ S :

νσ
(
σ−1(s)

)
+ νσ

(
Ω\σ−1(s)

)
=

µ ([σ−1(s)]∗)∑
s′∈S µ ([σ−1(s′)]∗)

+

∑
s′ 6=s µ ([σ−1(s′)]∗)∑
s′∈S µ ([σ−1(s′)]∗)

= 1 .

16 Formally, their state space is homeomorphic to the set of natural numbers but they assume the
prior capacity has a finite support.
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Updating νσ via Bayes rule then yields

νσs (A) :=
µ̂σ∗ (A ∩ σ−1 (s))

µ̂σ∗ (σ−1 (s))
=

µ([A ∩ σ−1 (s)]∗)∑
s′∈S µ([σ−1 (s′)]∗)

×
∑

s′∈S µ([σ−1 (s′)]∗)

µ([σ−1 (s)]∗)

=
µ([A ∩ σ−1 (s)]∗)

µ ([σ−1 (s)]∗)
=
µ∗(A ∩ σ−1 (s))

µ∗(σ−1 (s))

=
ν(A ∩ σ−1 (s))

ν(σ−1 (s))
.

The simplicity of this expression and particularly the property that, for any pair

of signals σ and σ′ and pair of realizations s and ŝ, the conditional capacity νσs
equals ν σ̂ŝ whenever σ−1(s) = σ̂−1(ŝ) (that is, the two realizations correspond to the

same conditioning event obtaining), might make this seem an appealing and tractable

approach to follow. However, except for the case of a signal adapted to ideal events,

µσgp is not an extension of µ. In particular, for any subset of signals Q ⊆ σ(Ω) with

more than one element, none of the weight µ
(
Eσ
Q

)
(the probability assigned by the

prior to the σ- marginal inner-sleeve of Q) is apportioned to the proxy νσ and hence

to the updated capacities. So recalling again the approach of Dempster (1967) and

Shafer (1976), we interpret this as the DM only weighting evidence that directly

supports a particular realization obtaining. Correspondingly this means his interim

preferences after the learning the realization of the signal effectively ignore all of the

evidence that only indirectly supports that realization occurring.

In light of the above, I contend the approach taken in the current setting rests on

more solid evidential foundations.

6 Concluding Remarks

yet to be written
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A Proofs

Proof of Proposition 1

Fix π ∈ Πµ. Consider f ∈ F with f(Ω) = {x1, · · · , xn} where x1 < · · · < xn and f

is measurable with respect to π. Since π is an extension of µ, for all π-measurable

events B ⊂ Ω,

µ∗(B) 6 π(B) 6 1− µ∗ (Ω\B) .

Set F π
f (x) := π({ω ∈ Ω : f(ω) 6 x}). Hence F π

f (x) 6 F
µ

f (x) for all x ∈ X by

definition of F
µ

f , that is, F π
f first-order stochastically dominates F

µ

f . Thus,

∫
v ◦ f dπ =

∫
v dF π

f >
∫
v dF

µ

f

Since π is arbitrary,

min
π∈Πµ

∫
v ◦ f dπ >

∫
v dF

µ

f

Let Rf be the σ algebra generated by {f−1(x) : x ∈ f(Ω)} and define a probability

measure π′ on Rf ∪R by setting

π′(E) =
∑

xi∈f(E),i 6=1

(F
µ

f (xi)− F
µ

f (xi−1)) + F
µ

f (x1)1{1∈f(E)}

if E ∈ Rf and π′(E) = µ(E) otherwise. By construction π′ ∈ Πµ and so

min
π∈Πµ

∫
v ◦ f dπ 6

∫
v ◦ f dπ′ =

∫
v dF

µ

f

Therefore, we have minπ∈Πµ

∫
v ◦ f dπ =

∫
v dF

µ

f . We can construct an analogous

argument to show the second equality in Proposition 1 holds.

Proof of Proposition 2

Let E ⊂ E ′ with corresponding probability measure µ and µ′. For all E ∈ E , µ(E) =

µ′(E). We can define the least upper CDF and greatest lower CDF w.r.t. µ and µ′,
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which we denote by F
µ
, F

µ′

, F µ and F µ′ , respectively.

Lemma 1 For any f ∈ F , the following inequalities hold:

F
µ

f > F
µ′

f > F µ′

f > F µ
f

Proof. By the definition of least upper CDF, given x ∈ X, we have

F
µ

f (x) = inf
E∈E, E⊇{ω∈Ω: f(ω)6x}

µ(E) > inf
E∈E ′, E⊇{ω∈Ω: f(ω)6x}

µ′(E) = F
µ′

f (x)

since the infimum is taken over the larger set on the RHS of the above equality.

Similarly, we have F µ′

f (x) > F µ
f(x) for all x ∈ X.

We are now ready to prove the proposition. Suppose to the contrary that 0 6 α <

1. Let E ⊂ Eσ and E 6= Eσ, that is, there is B ∈ Eσ but B /∈ E . We can simply let

σ(ω) = s1, if ω ∈ B and σ(ω) = s2 otherwise, and consider the act xBx. Statement

1 of Proposition 2 implies

αv(x) + (1− α)v(x) 6 µσ(B)v(x) + (1− µσ(B))v(x)

and so α > µσ(E). Since µσ(B) is arbitrary, α > 1, which leads to a contradiction. �

Proof of Proposition 3

(i) Fix a prior π. If π conforms conditionally on conditionally on the non-null ideal

event E ∈ E\N to the power series γ in Γ, then for any pair of events A and B in Eπ

and any pair of outcomes x > y, it follows from expression (3) that (0, xAy) % (0, xBy)

if and only if π(A) > π(B). Hence π is a neo-continuous source.

(ii) Fix a non-null ideal event E ∈ E \N and a power series γ ∈ Γ. Adapting

the constructions employed by Gul and Pesendorfer (2015) in their proof of their

Proposition 2(ii), it follows there exists a σ-algebra of events, EE, and a probability

π with support E such that for each A ∈ EE µ∗(A) = µ(E)γ (π(A)).

As π is convex-valued we can construct the following sequence of π-measurable

partitions of E, (E1, . . . ,En, . . .).

1. E1 := {E1
0 , E

1
1} where π(E1

0) = π(E1
1) = 1/2
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2. E2 := {E2
00, E

2
00, E

2
10, E

2
11, } where E2

0 = E2
00 ∪ E2

01, E1
1 = E2

10 ∪ E2
11 and π(B) =

1/4 for all B ∈ E2.

...

n. En := {. . . , En
b0, E

n
b1 . . .}, where b is an n− 1 bit binary number, and where for

each b, En−1
b = En

b0 ∪ E1
b1 and π(En

b0) = π(E1
b1) = 2−n

...

Gul and Pesendorfer (2014) show if the continuum hypothesis holds, then there

exists a collection of pairwise disjoint diffuse events {D1, D2, . . .} such that
⋃
iDi = Ω.

Consider the following sequence of partitions of Ω.

1. P1 := {E1
0 ∪
⋃
i (D2i−1 ∩ (Ω\E)) , E1

1 ∪
⋃
i (D2i ∩ (Ω\E))}

2. P2 :=

{
E2

00 ∪
⋃
i

(D4i−3 ∩ (Ω\E)) , E2
01 ∪

⋃
i

(D4i−2 ∩ (Ω\E)) ,

E2
10 ∪ (D4i−1 ∩ (Ω\E)) , E2

11 ∪
⋃
i

(D4i ∩ (Ω\E))

}

...

Notice each partition in this sequence is a refinement of its predecessor and for each n,

each element in the partition Pn has inner measure (1−λ)γ(2−n), where λ = 1−µ(E).

So consider the sequence of σ-algebras (En)∞n=1 in which En is the σ- algebra generated

by the partition Pn. For each n and each A ∈ En, set πn(A) := π(A).

By construction, we have for each A ∈ En,

µ∗(A) :=

 (1−λ) γ (πn(A)) if πn (A) < 1

1 otherwise

Hence the restriction of % to binary bets xAy, with x > y and A ∈ En admits a

biseparable representation of the form νn(A)v(x) + (1−νn(A))v(y) where ν is the
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capacity given by:

νn (A) =

 (1−λ) γ (πn(A)) + λ (1−α) if πn(A) ∈ [2−n, 1)

1 if πn(A) = 1

Finally, take (π̄, E π̄) to be the completion of (π∞,
⋃
n En), where π∞ is the measure

on
⋃
n En obtained by setting π∞(A) := π(A) for every A ∈

⋃
n En. . �

Proof of Proposition 4

Proof of Proposition 5

Without any essential loss of generality, we can model the state space as an n-

dimensional unit hyper-cube:

Ω = [0, 1]× [0, 1]× . . .× [0, 1]︸ ︷︷ ︸
n times

and take µ to be the Lebesgue product measure. As we noted above in the proof of

proposition 3, Gul and Pesendorfer (2014) show if the continuum hypothesis holds,

then there exists a collection of pairwise disjoint diffuse events {D1, D2, . . . , } such

that
⋃
iDi = Ω. For each Borel subset B of the unit interval [0, 1], set

AB := (B × [0, 1]× [0, 1]× . . .× [0, 1]× [0, 1] ∩D1)

∪ ([0, 1]×B × [0, 1]× . . .× [0, 1]× [0, 1] ∩D2)

∪ ([0, 1]× [0, 1]×B × . . .× [0, 1]× [0, 1] ∩D3)

...

∪ ([0, 1]× [0, 1]× [0, 1]× . . .× B × [0, 1] ∩Dn−1)

∪
(

[0, 1]× [0, 1]× [0, 1]× . . .× [0, 1]× B ∩
⋃∞

i=n
Di

)
Notice

[
AB
]
∗ = B ×B × . . .× B︸ ︷︷ ︸ = Bn

n times

and
[
AB
]∗

= Ω\ ([0, 1] \B)n
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For each Borel subset of [0, 1], B, set π̂(AB) := ν(B), where ν is the Lebesgue

measure defined over the Borel subsets of the unit interval [0, 1].

Take π to be the (unique) probability measure that extends π̂ to Eπ, the smallest

σ-algebra containing all the elements in{
AB : B is a Borel subset of [0, 1]

}
.

For ease of exposition and without any loss of generality we take our R-HEU max-

imizer to be one that exhibits extreme aversion to ambiguity, that is, one for which

α = 1.

Consider the binary signal

σ (ω) =

 s′ if ω ∈ AB

s′′ if ω /∈ AB

where B is some Borel subset of the unit interval [0, 1]. Its ideal split is

{
Eσ
{s′}, E

σ
{s′,s′′}, E

σ
{s′′}
}

=
{[
AB
]
∗ ,
[
Ω\AB

]
∗ ,Ω\

([
AB
]
∗ ∪
[
Ω\AB

]
∗

)}
= {Bn, ([0, 1]\B)n ,Ω\ (Bn ∪ ([0, 1]\B)n)}

Now consider a bet on AB̂, with stakes x > x, where B̂ is a subset of B, thus making

AB̂ a subset of AB. We have π
(
AB̂
)

= ν(B̂) < ν(B) = π(AB). Moreover,

µσ
(
AB
)

= µ
([
AB
]∗ ∩ Eσ

{s′}
)

+
1

2
µ
([
AB
]∗ ∩ Eσ

{s′,s′′}
)

= ν (Bn) +
1

2
ν (Ω\ (Bn ∪ ([0, 1]\B)n))

= ν (B)n +
1

2
[1− ν (B)n − (1− ν ([B))n]

=
1 + ν (B)n − (1− ν ([B))n

2
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Hence,

v
(
V σ
s′

(
x̄Âx

))
= µσs′

(
AB̂
)

=
µσ
(
AB̂
)

µσ(AB)

=
2ν
(
B̂
)n

1 + ν (B)n − (1− ν (B))n
6=
ν
(
B̂
)n

ν (B)n
=

π
(
AB̂
)

π(AB)

n

whenever n 6= 1.

�

Proof of Theorem 1

A.1 Outline of sufficiency proof

Fix a signal σ ∈ Σ with associated measurable split {Eσ
Q ∈ E : Q ⊆ σ(Ω) , Q 6= ∅}.

Let {Eσ
s : s ∈ σ(Ω} denote an equally-distributed Harsanyi-dividend ideal partition

that can be associated with σ.

Part I. Construction of proxy and representation of conditional risk preferences.

1. Fix s ∈ σ(Ω). By Axiom 2 (consequentialism) Ω\σ−1(s) is a null event as are

all of its subsets. In conjunction with Axiom 4 (preservation of ideal events),

set of ideal events Eσ for %σs is smallest sigma-algebra containing E and the

information cells corresponding to the signal’s realizations. So restriction of %σs
to acts adapted to Eσ admits an SEU representation (v′, µσs ).

2. For each s ∈ σ(Ω), set µσ(σ−1(s)) := µ(Eσ
s ).

3. For each E ∈ E , set

µσ(E) :=
∑

s∈S : µσ(σ−1(s))>0

µσs (E)µσ
(
σ−1(s)

)
.

By Axiom 2 (consequentialism) it follows

µσ
(
E ∩ Eσ

Q ∩ σ−1(s)
)

= µσs(E ∩ Eσ
Q)µσ

(
σ−1(s)

)
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4. Applying Axiom 5 we have v′ = v and for all Q ⊂ σ(Ω) and all ideal E

µσs
(
E ∩ Eσ

Q

)
µσs
(
Eσ
Q

) =
µ
(
E ∩ Eσ

Q

)
µ
(
Eσ
Q

) . (6)

Hence, if µσ(σ−1(s)) > 0 then from (6), we obtain

µσ
(
E ∩ Eσ

Q ∩ σ−1(s)
)

µσ
(
Eσ
Q ∩ σ−1(s)

) =
µ
(
E ∩ Eσ

Q

)
µ
(
Eσ
Q

) . (7)

5. Invoking Axiom 6, we have by applying the HEU representation of static pref-

erences that LHS preference statement corresponds to the following inequality

µ
(
Eσ
Q ∩ Eσ

s

)
µ (Eσ

s )
v(x) +

[
1−

µ
(
Eσ
Q ∩ Eσ

s

)
µ (Eσ

s )

]
v(y) > v(z)

But notice that by the construction of Eσ
s ,

µ
(
Eσ
Q ∩ Eσ

s

)
=
µ
(
Eσ
Q

)
|Q|

So applying the SEU representation of the interim preferences, the RHS pref-

erence statement corresponds to the following inequality

µσs (Eσ
Q)v(x) +

[
1− µσs (Eσ

Q)
]
v(y) > v(z)

But notice that

µσs(E
σ
Q) =

µσ
(
Eσ
Q ∩ σ−1(s)

)
µσ(σ−1(s))

When the two inequalities hold with equality we have

µ(Eσ
Q)/|Q|

µ(Eσ
s )

=
µσ
(
Eσ
Q ∩ σ−1(s)

)
µσ(σ−1(s))
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And since we have

µσ
(
Eσ
Q ∩ σ−1(s)

)
=
µ
(
Eσ
Q

)
|Q|

substituting this into equation (7) yields:

µσ
(
E ∩ Eσ

Q ∩ σ−1(s)
)

=
µ
(
E ∩ Eσ

Q

)
|Q|

.

Hence for all E ∈ E we have

µσ
(
E ∩ σ−1(s)

)
=

 ∑
Q⊆σ(Ω): s∈Q

µ
(
E ∩ Eσ

Q

)
|Q|

 .

Moreover, for all B ∈ Eσ :

µσ(B ∩ σ−1(s)) :=

 ∑
Q⊆σ(Ω): s∈Q

µ
(
[B ∩ σ−1 (s)]

∗ ∩ Eσ
Q

)
|Q|

 .

Part II Deriving certainty equivalent of arbitrary signal-act.

1. By Axiom 7, we have α′ = α

2. Assigning utility to arbitrary signal-act (σ , f) ∈ Σ×F .

(a) Repeated application of Axiom 3 (Dynamic Consistency) yields

(σ , f) ∼ (σ , φf )

where φf : S → X is a plan of action in which for each (non-null) realization

s ∈ σ(Ω), φf (s) ∼σs f .

(b) Applying Axiom 1 (Timing Neutrality) yields (σ , φf ) ∼ (0 , φf ).

(c) Applying HEU representation of static preferences set V (σ , f) := V (0 , φf ).

3. Assigning utility to arbitrary IDP. Applying Axiom 8 set

V (σ,M) := max
φ∈Φ(σ,M)

V (σ , φ) .
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B An Axiomatization of Assumption H

Four of the following axioms are taken directly from Gul and Pesendorfer (2015) but

adapted so that they apply to signal-acts involving the null signal. We refer the reader

to the discussion in Gul and Pesendorfer (2014) for the motivation and explanation of

the role played by these axioms in their characterization of (static) HEU Maximizers.

And following Grant et al. (2023), we strengthen the analog to Gul and Pesendorfer’s

(2015) third axiom and make a slight modification to the analog of the first part of

their sixth (continuity) axiom. As Grant et al. (2023) show, the former rules out

state-dependence of the interval utility (which in the context of Axiom H.4 ensures

the state independence of the ambiguity aversion α) while the latter is required to

establish the set of ideal events is countably additive.

Axiom H.1 (Ordering) For any three acts f , f ′ , f ′′ in F :

(i) either (0 , f) % (0 , f ′) or (0 , f ′) % (0 , f), or both; and,

(ii) if (0 , f) % (0 , f ′) and (0 , f ′) % (0 , f ′′) then (0 , f) % (0 , f ′′) .

Axiom H.2 (Statewise Monotonicity) For any pair of acts f , f ′ in F : if f(ω) >

f ′(ω) for all ω ∈ Ω then (0 , f) � (0 , f ′) .

Axiom H.3 (Invariant Conditional Certainty Equivalents for Diffuse Bets)

For any pair of outcomes x , y in X, any ideal event E in E, and any pair of diffuse

events D ,D′ in D : (0 , yDx) % z =⇒ (0 , (y′Dx)Ex) % zEx .

Axiom H.4 (Comparative Probability) For any pair of events A and B, and

any pair of outcomes x > y, if (0 , xAy) % (0 , xBy) then (0 , wAz) % (0 , wBz), for all

pairs of outcomes w > z.

Axiom H.5 (Small ideal-event continuity) For any pair of ideal acts g and g′

in G, if (0 , g) � (0 , g′) then there exists a finite partition of Ω, {E1, . . . , En} in which

each Ei ∈ E for all i = 1, . . . , n, such that (0 , xEig) � (0 , xEig
′) for all i = 1, . . . , n .

Axiom H.6 (Pointwise and uniform continuity) For any acts f , f ′, g and h,

any sequence of acts fn and any (decreasing) sequence of ideal events En with En+1 ⊂
En :

(i) Suppose (0, g % fEnf ′) % (0, h) for all n. Then (0, g) % (0, f∩Enf ′) % (0, h).
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(ii) Suppose (0, g) % (0, fn) % (0, h) for all n. Then fn ∈ F converges uniformly to

f implies (0, g) % (0, f) % (0, h).

As an immediate corollary of Gul and Pesendorfer’s (2015) Proposition 1 (p. 470)

we have the following.

Lemma 2 Fix a preference relation % over Σ×F . The restriction to {0}×F satisfies

Axioms H.1 – H.6 if an only if Assumption H holds.
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