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Abstract

We consider moral hazard problems where a principal has access to rich mon-
itoring data about an agent’s action. Rather than focusing on optimal contracts
(which are known to in general be complicated), we characterize the optimal
rate at which the principal’s payoffs can converge to the first-best payoff as the
amount of data grows large. Our main result suggests a novel rationale for the
widely observed binary wage schemes, by showing that such simple contracts
achieve the optimal convergence rate. Notably, in order to attain the optimal
convergence rate, the principal must set a lenient cutoff for when the agent re-
ceives a high vs. low wage. In contrast, we find that other common contracts
where wages vary more finely with observed data (e.g., linear contracts) ap-
proximate the first-best at a highly suboptimal rate. Finally, we show that the
optimal convergence rate depends only on a simple summary statistic of the
monitoring technology. This yields a detail-free ranking over monitoring tech-
nologies that quantifies their value for incentive provision in data-rich settings
and applies regardless of the agent’s specific utility or cost functions.
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1 Introduction

1.1 Motivation and Overview

A longstanding problem in contract theory is why wage schemes observed in practice
are often “simple,” even though textbook models predict more complicated optimal
contracts.1 In this paper, we suggest a novel perspective on this problem. We consider
a standard static moral hazard setting, where a principal (e.g., employer) designs a
wage scheme to incentivize an agent (e.g., worker) whose costly action choice is not
directly observable to the principal. As a key feature, we assume that the principal
has access to rich data about the agent’s action, as may increasingly be the case
in many workplaces (e.g., due to technological advances such as automated quality
control systems or productivity tracking software). In the limit where the principal is
able to perfectly monitor the agent’s action, there is no moral hazard and the principal
can achieve her first-best payoff. Away from this limit, we are interested in which
contracts allow the principal to efficiently exploit rich but imperfect monitoring data,
and whether, and if so which, simple contracts may be enough for this purpose.

Importantly, to capture the efficient exploitation of rich data, we do not focus on
which contracts are optimal (i.e., maximize the principal’s payoff). Rather, we analyze
the rate of convergence of the principal’s payoff to the first-best as the amount of data
grows rich, and we focus on the less demanding criterion of which contracts achieve
the optimal convergence rate. The convergence rate to the first-best is a natural
measure of efficiency in data-rich settings: Contracts with a higher convergence rate
yield higher payoffs for the principal than contracts with a lower convergence rate
whenever data is rich enough. Moreover, while optimal contracts necessarily converge
to the first-best at the optimal rate, there may be simpler and more realistic classes
of contracts that achieve the same optimal convergence rate.

Indeed, our main result is that the optimal convergence rate is achieved by a
particular class of simple contracts that are widely used in practice: binary payment
schemes, i.e., contracts with only two possible wage levels. Notably, in order to
attain the optimal convergence rate, the principal must set a maximally lenient cutoff
for when the agent receives the high vs. low wage. In contrast, we find that other
common contracts where wages vary more finely with observed data (e.g., linear

1See, e.g., the recent survey by Georgiadis (2022).

2



contracts) approximate the first-best at a highly suboptimal rate. Finally, we show
that the optimal convergence rate depends only on a simple summary statistic of the
monitoring technology. This yields a detail-free ranking over monitoring technologies
that quantifies their value for incentive provision in data-rich settings and applies
regardless of the agent’s specific utility or cost functions.

In our baseline model (Section 2), the principal has access to a monitoring tech-
nology that generates n i.i.d. signals about the agent’s (one-shot) action, where n
parametrizes the richness of the principal’s data. The principal seeks to implement
a target action by designing a contract that specifies a wage payment contingent on
each realized signal sequence, subject to standard individual rationality (IR) and in-
centive compatibility (IC) constraints. The principal is risk-neutral while the agent is
risk-averse. We study the optimal rate at which the principal’s implementation cost
converges to the first-best (i.e., the observable action case) as the amount of data n
grows large.

Our main result (Theorem 1) shows that, regardless of whether the principal
optimizes over general contracts or binary contracts, her payoffs converge to the first-
best at the same exponential rate. This optimal convergence rate is given by the
Kullback-Leibler (KL) divergence between the signal distribution under the target
action and the closest signal distribution under any less costly deviation. Thus, this
rate depends only on the detectability of the hardest-to-detect deviation from the
target action.

The binary contracts that achieve the optimal convergence rate take the form of
statistical tests: The principal uses a score to partition signal sequences into a “pass”
(high wage) and “fail” (low wage) region. In choosing how demanding it is to pass the
test, the principal trades off the risk of false negatives (i.e., failing the test under the
target action) and false positives (i.e., passing the test under a deviation). We show
that false negatives become the dominant source of inefficiency as the amount of data
grows large. Thus, in order to achieve the optimal convergence rate, the principal
must make the pass–fail cutoff as lenient as possible subject to IC.

Binary wage schemes are frequently used in practice (e.g., Murphy, 1999; Pren-
dergast, 1999): A prominent and widely studied example are single-bonus contracts
(a base wage, plus a fixed bonus if performance is sufficiently good), which are com-
mon in many professions.2 Complementing existing explanations in the literature (see

2Another example highlighted by the literature (e.g., Prendergast, 1999) are jobs that feature

3



Section 1.2), Theorem 1 suggests that access to rich data about workers’ actions may
provide a novel rationale for such contracts: Any benefit from using more complex,
non-binary wage schemes has a negligible effect on the convergence to the first-best
as the amount of data grows large. Our finding of leniency may also conform with
evidence about binary contracts used in practice: For example, in the context of
single-bonus contracts, Joseph and Kalwani (1998) observe that organizations tend
to use bonuses to reward “acceptable” rather than “exceptional” performance.3

To illustrate that contracts with more fine-grained wage variation may approxi-
mate the first-best at a highly suboptimal rate, Proposition 1 considers another widely
observed class of contracts, linear wage schemes. Under these contracts, we show that
the convergence to the first-best is much slower than optimal, viz. subexponential.
Thus, compared with binary contracts, linear contracts perform quite poorly at ex-
ploiting rich data. Proposition 2 further adds to the rationale for binary contracts
in data-rich settings, by showing that, as n grows large, any sequence of optimal
contracts approximates a binary contract of the maximally lenient form we identify
above.

Our characterization of the optimal convergence rate in Theorem 1 also yields a
ranking over monitoring technologies that quantifies their value for incentive provi-
sion (Corollary 1): In data-rich settings, monitoring technologies with higher KL-
divergence between the signal distributions under target vs. non-target actions are
more valuable to the principal than those with lower KL-divergence. Notably, this
ranking is independent of the agent’s utility over money and specific cost function,
providing detail-free guidance to a principal choosing between different monitoring
technologies.

We conclude by discussing some variants of our baseline model. Section 4.1 intro-
duces a severe form of limited liability under which IR cannot bind. We show that
binary contracts continue to achieve the optimal convergence rate to the first-best,
but the rate of convergence is slower, reflecting a tradeoff between risk aversion and
rent extraction that is absent in the main model. Finally, beyond our baseline model
with n i.i.d. signal draws about a one-shot action, Section 4.2 extends our main result
to two formulations of rich monitoring data that allow for (i) general sequences of in-
creasingly precise monitoring technologies (e.g., vanishing observation noise, serially

essentially flat wages but entail the threat of being fired in case of sufficiently poor performance.
3See also Johnston and Marshall (2016) (p. 152).
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correlated data) or (ii) repeated but infrequent action adjustments.

1.2 Related Literature

In the standard moral hazard setting à la Holmström (1979) with a risk-averse agent,
binary contracts are optimal only under restrictive, binary monitoring technologies
(i.e., whose distribution of signal likelihood ratios has binary support).4 Several pa-
pers derive the optimality of binary contracts by enriching this setting. For example,
Georgiadis and Szentes (2020) consider a principal who can flexibly design a moni-
toring technology at a cost.5 They show that the principal optimally chooses a bi-
nary monitoring technology, by establishing a connection with an information design
problem. Herweg, Müller, and Weinschenk (2010) and Lopomo, Rigotti, and Shan-
non (2011) consider agents with non-expected utility preferences. Complementary to
these papers, we revisit a standard moral hazard setting with an exogenous monitor-
ing technology and risk-averse expected-utility agent, but we relax the criterion of
exact optimality. Instead, we provide a rationale for binary contracts based on the
idea that in data-rich settings, they allow the principal to approximate the first-best
at the optimal rate. We also highlight the importance of a lenient high–low wage
cutoff for achieving the optimal convergence rate, which is not a general feature of
the optimal binary contracts in the aforementioned settings.6 Several papers identify
natural forces that favor linear contracts (e.g., Holmström and Milgrom, 1987; Car-
roll, 2015; Barron, Georgiadis, and Swinkels, 2020). In contrast, we show that in our
data-rich setting, linear contracts perform significantly worse than binary contracts.

Convergence rates as a measure of the performance of simple but suboptimal mech-
anisms have also been analyzed in other settings. For example, in the context of large
markets, a classic literature studies the rate at which simple trading mechanisms ap-
proximate efficiency as the number of market participants grows large.7 While much

4With a risk-neutral agent, binary contracts can be optimal under various other assumptions (e.g.,
Oyer, 2000; Palomino and Prat, 2003; Levin, 2003), but these findings rely on exact risk neutrality.

5Specifically, the principal chooses when to stop observing the output of a diffusion process whose
drift is the agent’s action, at a cost proportional to the principal’s stopping time.

6Herweg, Müller, and Weinschenk (2010) highlight that the set of signals that result in a high
wage sometimes (but not always) contains some “bad” signals that are more indicative of lower effort.

7See, e.g., Rustichini, Satterthwaite, and Williams (1994); Satterthwaite and Williams (2002);
Hong and Shum (2004); Pakzad-Hurson (2023). In other settings, some papers show that simple
mechanisms can approximate the first-best, without analyzing convergence rates (e.g., Radner, 1985,
in the context of dynamic moral hazard problems where the discount factor grows large).

5



of this literature does not focus on identifying mechanisms that achieve the opti-
mal convergence rate, Satterthwaite and Williams (2002) show that double auctions
achieve the optimal worst-case convergence rate (i.e., when evaluated at the least fa-
vorable trading environment). In contrast, we find that binary contracts can be used
to achieve the optimal convergence rate in all moral hazard environments we consider,
not just the worst-case environment. The optimal convergence rate to the first-best
is not directly comparable to a different notion of approximate optimality that is
often analyzed in the computer science literature: worst-case guarantees, i.e., lower
bounds on the performance ratio of simple vs. optimal mechanisms that are uniform
with respect to some features of the environment (for a survey, see Roughgarden and
Talgam-Cohen, 2019). In moral hazard environments, Dütting, Roughgarden, and
Talgam-Cohen (2019) obtain such a guarantee for linear contracts.

Our ranking over monitoring technologies (Corollary 1) relates to the literature
on the value of monitoring in moral hazard problems (e.g., Holmström, 1979; Gjesdal,
1982; Singh, 1985; Kim, 1995; Jewitt, 2007). Several papers derive partial orders over
monitoring technologies in settings where the principal observes a single signal draw
about the agent’s action. As we discuss in Section 3.3, by quantifying the convergence
rate to the first-best as the amount of data grows large, we obtain a ranking over
monitoring technologies that is a completion of the orders in Kim (1995) and Jewitt
(2007). As such, Corollary 1 is an analog for incentive problems of Moscarini and
Smith (2002): They quantify the value of rich data in learning settings, based on a
different index that characterizes the rate at which a decision-maker who observes
repeated i.i.d. signal draws from an information structure learns the state; this yields
a completion of Blackwell’s (1951) order over information structures.8 Comparisons of
monitoring structures have also been studied in the context of repeated games (e.g,
Kandori, 1992). Some recent papers analyze how the monitoring structure affects
the convergence rate of equilibrium payoffs to the efficient frontier as players become
patient (Hörner and Takahashi, 2016; Sugaya and Wolitzky, 2023a,b).

8Convergence rates are also analyzed to measure efficiency in other learning settings, including
social learning (e.g., Vives, 1993; Harel, Mossel, Strack, and Tamuz, 2021), higher-order beliefs (e.g.,
Frick, Iijima, and Ishii, 2023a), and misspecified learning (e.g., Frick, Iijima, and Ishii, 2023b).

6



2 Model

Environment. Consider the following static moral hazard setting. There is a prin-
cipal (“she”) and an agent (“he”). The agent chooses a one-shot action from a finite
action set A.9 The principal does not observe the agent’s action, but has access to
a monitoring technology µ: This specifies a signal space X, assumed to be a subset
of a Euclidean space, and, for each chosen action a, a distribution µa ∈ ∆(X) over
signals, where ∆(X) denotes the set of Borel probability measures over X.

For all distinct actions a ̸= a′, we impose the identification assumption that the
signal distributions µa and µa′ are different. We also assume that µa′ is absolutely
continuous with respect to µa (with corresponding Radon-Nikodym derivative dµa′

dµa
),

which implies that no signals perfectly reveal the chosen action. Finally, we impose
the regularity condition that the moment-generating functions of signal log-likelihood

ratios are well-defined, i.e.,
∫ (dµa′

dµa
(x)
)λ
dµa(x) <∞ for all λ > 0.

To capture that the principal has access to rich data about the agent’s action, we
assume that after the agent chooses his action a, the principal observes n i.i.d. draws
of signals xn = (x1, . . . , xn) from µa. Here, n parametrizes the richness or precision
of the principal’s data, and we will be interested in settings where n is large. Let Pa
denote the distribution over signal sequences xn conditional on action a; let Ea and
Vara denote the corresponding expectation and variance operators.

Our assumption that the agent chooses a one-shot action which then generates
multiple i.i.d. signals can be seen as an approximation of some real-world settings
with rich monitoring data, such as automated quality control or teaching evalua-
tions.10 However, as Section 4.2 discusses, the analysis generalizes readily to less
stylized settings: First, moving beyond the i.i.d. signal formulation, we can consider
general sequences µn of increasingly precise monitoring technologies (e.g., one-shot
observation of the action perturbed by some vanishing noise, or repeated but serially
correlated signals). Second, moving beyond one-shot action choice, we can allow the
agent to repeatedly adjust his action, as long as action adjustments are infrequent
relative to the number n of signals.

9We do not impose any order assumptions on A; for example, actions may be multi-dimensional.
10In the former case, a represents a factory worker’s assembly of a widget, and upon completion

n signals are generated by a machine that repeatedly scans the widget for various possible errors.
In the latter, a represents an instructor’s effort, and signals take the form of reviews submitted by
the n students at the end of the course.
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Payoffs. The principal is risk-neutral and seeks to implement some target action
a∗ ∈ A by designing a contract, i.e., a wage scheme w : Xn → [w,∞) that specifies a
payment w(xn) contingent on each realized signal sequence xn.11 To rule out “shoot
the agent” arguments à la Mirrlees (1999) (see Remark 1), we impose a lower bound
w ∈ R on wages, which can be arbitrarily low.

The agent’s payoffs are additively separable, consisting of a consumption utility
u : [w,∞) → R over money minus a cost c : A → R for each action. The agent has
an outside option, whose payoff we normalize to 0. We assume the following:

Assumption 1.

1. u is twice continuously differentiable with u′(w) > 0 and u′′(w) < 0 for all
w ∈ [w,∞) and limw→∞ u′(w) = 0;

2. c(A) ⊆ int(u([w,∞)));

3. c(a∗) > c(a) for some a ∈ A and c(a∗) ̸= c(a) for all a ∈ A \ {a∗}.

The first condition requires the agent to be strictly risk-averse, which will play an
essential role in our analysis.12 Throughout, we let h := u−1. The second condition
requires the consumption utility range to be rich enough that (under perfect monitor-
ing) suitable wage payments can make the the agent indifferent between each action
and the outside option; Section 4.1 considers the case when this condition is violated.
To avoid trivialities, the third condition assumes that the target action a∗ is not the
least costly action.

Second-best problem. In the optimal contract, the principal chooses a wage scheme
w to minimize the implementation cost of a∗,13

CSB
n (µ, u, c, a∗) = inf

w:Xn→[w,∞)
Ea∗ [w(xn)], (1)

11Our results extend straightforwardly to the case of a risk-averse principal. As is common in
the literature, we focus on the principal’s incentive design problem and do not explicitly model her
optimization over the target action a∗.

12Assumption 1.1 is satisfied under standard families of utility functions, e.g., CARA or CRRA. If
instead u is linear, standard arguments imply that the principal can achieve the first-best provided
there is an (IC) contract that satisfies (IR) with equality. Under Assumption 1.2, this is the case
provided either the range of u is large enough or n is large enough.

13At all large enough n, the inf in (1) is attained by some wage scheme; see Appendix A.1.2.
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subject to standard incentive compatibility (IC) and individual rationality (IR) con-
straints:

Ea∗ [u(w(xn))]− c(a∗) ≥ Ea[u(w(xn))]− c(a), ∀a ∈ A, (IC)

Ea∗ [u(w(xn))]− c(a∗) ≥ 0. (IR)

We refer to the induced minimal cost CSB
n (µ, u, c, a∗) as the second-best cost. As

is standard, it is convenient to rewrite the principal’s problem in utility terms. That
is, instead of choosing wage schemes w, the principal equivalently chooses maps v :

Xn → u([w,∞)) from signal sequences to consumption utilities,

CSB
n (µ, u, c, a∗) = inf

v:Xn→u([w,∞))
Ea∗ [h(v(xn))]

subject to the IC and IR constraints

Ea∗ [v(xn)]− c(a∗) ≥ Ea[v(xn)]− c(a), ∀a ∈ A, (IC)

Ea∗ [v(xn)]− c(a∗) ≥ 0. (IR)

Convergence rate analysis. As is well-known, the second-best problem gives rise
to wage schemes that depend finely on realized signals, in a potentially complicated
manner that does not in general resemble contracts observed in practice (e.g., binary
or linear contracts). Thus, instead of focusing on the second-best cost for a given n,
we analyze the convergence rate of the second-best cost to the first-best as n grows
large. Formally, let CFB(u, c, a∗) denote the first-best cost, i.e., the minimal cost of
implementing a∗ under perfect monitoring. Under Assumption 1.2, this is the same
as the minimal implementation cost of a∗ when only (IR) is imposed and is given by

CFB(u, c, a∗) = h(c(a∗)).

Clearly, with infinitely many signals, the second-best cost coincides with the first-
best, CSB

∞ (µ, u, c, a∗) = CFB(u, c, a∗), as n = ∞ corresponds to perfect monitoring
given the identification assumption on µ. Instead, we are interested in environments
where the amount n of data is large but finite. To understand such settings, we will
characterize the rate at which the second-best cost CSB

n (µ, u, c, a∗) converges to the
first-best CFB(u, c, a∗) as n → ∞, i.e., the optimal rate at which the principal can
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approximate the first-best.
This will allow us to address two questions: First, are there simple classes of

contracts that attain this same optimal convergence rate? As noted, achieving the
optimal convergence rate to the first-best is a natural criterion for efficient exploita-
tion of rich data: Whenever n is large enough, contracts with a higher convergence
rate yield a lower implementation cost than contracts with a lower convergence rate.
Second, which monitoring technologies are more valuable for incentive provision in
data-rich settings, i.e., how does the optimal rate of convergence vary across µ?

3 Analysis

3.1 Optimal Rate of Convergence

Our main result characterizes the rate at which the second-best cost converges to the
first-best as the amount of data grows large. Moreover, we show that this optimal
rate of convergence can be achieved by a particular class of simple contracts: binary
contracts, i.e., wage schemes w with |w(Xn)| = 2. Let Cbin

n (µ, u, c, a∗) denote the
second-best cost when, instead of optimizing over all IC and IR wage schemes, the
principal is restricted to optimizing over IC and IR binary contracts. Denote by
A−(c, a∗) := {a ∈ A : c(a) < c(a∗)} the set of actions that are less costly to the agent
than the target action a∗, which is nonempty by Assumption 1.3. For all ν, ν ′ ∈ ∆(X),
let KL(ν, ν ′) denote the Kullback-Leibler (KL) divergence of ν relative to ν ′, i.e.,

KL(ν, ν ′) :=


∫
log
(
dν
dν′

(x)
)
dν(x) if ν is absolutely continuous w.r.t. ν ′

∞ otherwise.

Theorem 1. Under both general and binary contracts, the second-best cost converges
to the first-best exponentially at rate mina∈A−(c,a∗)KL(µa, µa∗): We have

CSB
n (µ, u, c, a∗)− CFB(u, c, a∗) = exp[− min

a∈A−(c,a∗)
KL(µa, µa∗)n+ o(n)]; (2)

Cbin
n (µ, u, c, a∗)− CFB(u, c, a∗) = exp[− min

a∈A−(c,a∗)
KL(µa, µa∗)n+ o(n)]. (3)

By (2), when the principal optimizes over all IC and IR wage schemes, she ap-
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proximates the first-best at an exponential rate given by mina∈A−(c,a∗) KL(µa, µa∗).14

To interpret, note that KL(µa, µa∗) is a statistical measure that quantifies how dis-
similar the signal distribution under a deviation to action a ̸= a∗ is from the signal
distribution under the target action a∗. Thus, (2) shows that, for any given monitor-
ing technology µ, the optimal rate of convergence to the first-best depends only on
a simple statistic: the detectability mina∈A−(c,a∗)KL(µa, µa∗) of the hardest-to-detect
deviation to a less costly action.

Crucially, (3) implies that the principal can achieve this same optimal rate of
convergence using binary contracts. Thus, Theorem 1 offers a novel rationale for
binary contracts, which (as discussed in the Introduction) are widely observed in
practice: While for any finite n, binary contracts are in general suboptimal, Theorem 1
shows that binary contracts are an effective way to exploit rich data. As the amount
of data n grows large, any benefit from using more general, non-binary contracts has
at most a second-order effect on the convergence to the first-best: The only potential
difference between (2) and (3) is in the terms o(n), but as these are sublinear (i.e.,
limn→∞

o(n)
n

= 0) they become negligible as n→ ∞; in terms of the principal’s payoffs,
this can be quantified, for instance, by saying that at large n, the benefit of optimizing
over general vs. binary contracts is smaller than the benefit of having access to an
arbitrarily small fraction ε of additional signals.15 As such, in data-rich settings, the
benefit of optimizing over general contracts may plausibly be outweighed by other
(unmodeled) benefits of using simple, binary contracts.

Section 3.2 below illustrates the idea behind Theorem 1 and sheds light on the
structure of the binary contracts that achieve the optimal convergence rate. These
contracts take the form of statistical tests, where the principal uses a score to par-
tition signal sequences xn into a “pass” (high wage) and “fail” (low wage) region.
Importantly, as Section 3.2 will formalize, to achieve the optimal convergence rate,
the pass–fail cutoff must be chosen in the maximally lenient way subject to (IC). As
noted in the Introduction, such leniency may also be in line with binary contracts
observed in practice. Figure 1 illustrates the importance of leniency in an example
with binary actions and signals. We compare binary contracts (with binding (IC) and
(IR)) that pay a high wage if and only if the fraction of high signals exceeds a cutoff.
Here, a lenient binary contract, whose cutoff 0.31 is only slightly above the expected

14By the assumptions on µ, KL(µa, µa∗) ∈ (0,∞) for all a ̸= a∗, so this rate is positive and finite.
15Formally, for any ε > 0, there is N such that for all n ≥ N , CSB

n (µ, u, c, a∗) > Cbin
(1+ε)n(µ, u, c, a

∗).
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implementation
cost

n

Figure 1: Implementation cost of a∗ = 1 as a function of n when A = {0, 1} = X, µ0(0) =
µ1(1) = 0.7, c(0) = 0, c(1) = 2, u(w) = logw. Dashed: first-best cost. Blue: cost under the “lenient”
binary contract that pays a high wage iff the fraction of high signals exceeds 0.31. Red: cost under the
“strict” binary contract that pays a high wage iff the fraction of high signals exceeds 0.6. Yellow: cost
under the optimal utility-linear contract. Wages in the three contracts are pinned down by requiring
(IC) and (IR) to bind.

fraction 0.3 of high signals under the low (non-target) action, already comes close to
the first-best at small values of n. In contrast, under a strict binary contract, whose
cutoff 0.6 is closer to the expected fraction 0.7 of high signals under the high (target)
action, convergence is substantially slower.

Section 3.2 also illustrates that, unlike binary contracts, contracts where the wage
varies finely with the signal realizations may approximate the first-best at a highly
suboptimal rate. Below, we formalize this point for another class of frequently ob-
served wage schemes, linear contracts : Here, there exists bn : X → [w,∞) such
that w(xn) =

∑n
i=1 bn(xi) for all xn ∈ Xn.16 Let C lin

n (µ, u, c, a∗) denote the second-
best cost when, instead of optimizing over all IC and IR contracts, the principal is
restricted to optimizing over IC and IR linear contracts. The following result shows
that the convergence rate to the first-best under linear contracts is subexponential.

Proposition 1. Suppose that infv h
′′(v) > 0.17 Under linear contracts, the second-

best cost converges to the first-best subexponentially: There exists a constant K > 0

16That is, we define linear contracts as linear in empirical frequencies, where the empirical fre-
quency νxn ∈ ∆(X) associated with signal sequence xn is given by νxn(x) := 1

n

∑n
i=1 1{xi=x} for all

x ∈ X. If X ⊆ R, then one example of linear contracts are wage schemes w that are linear in average
signals, i.e., there exist αn > 0, βn ∈ R such that w(xn) = αn

1
n

∑n
i=1 xi + βn for all xn ∈ Xn.

17This is a slight strengthening of the assumption that limw→∞ u′(w) = 0. We conjecture that it
can be relaxed.
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such that
C lin
n (µ, u, c, a∗)− CFB(u, c, a∗) ≥ 1

n
K + o(

1

n
). (4)

Moreover, (4) holds with equality if µa∗ ̸∈ co{µa : a ̸= a∗} and w is sufficiently low.18

Note that, in the perfect monitoring limit where n = ∞, both binary and linear
contracts can achieve the first-best cost (the latter claim requires the regularity as-
sumption on µ in the “moreover” part of Proposition 1).19 However, Proposition 1
shows that, away from this limit, linear contracts are less effective at exploiting rich
data than binary contracts, because they approximate the first-best at a much slower
rate. Thus, regardless of the agent’s utility and cost function and the principal’s
monitoring technology and target action, in the current setting the principal is al-
ways better off using binary contracts when the amount of data is rich enough: That
is, there exists N such that for all n ≥ N ,

Cbin
n (µ, u, c, a∗) < C lin

n (µ, u, c, a∗).

Proposition 1 remains valid under utility-linear contracts, which instead require
the utility contract v = u ◦ w to be linear. Reflecting this, in Figure 1, the lenient
binary contract approximates the first-best significantly faster than does the optimal
utility-linear contract.20

3.2 Illustration of Theorem 1

For expositional simplicity, we focus on binary action sets, A = {0, 1} with a∗ = 1.
Step 1: Variance minimization. Without loss of optimality, consider any

uniformly bounded sequence of contracts vn with binding (IR) (i.e., E1[vn(x
n)] =

18Here co denotes the convex hull operator.
19The first-best is achieved by any w such that w(x∞) = h(c(a∗)) for x∞ whose empirical frequency

is µa∗ and w(x∞) ≤ h(c(a)) for x∞ whose empirical frequency is µa for some a ̸= a∗. Clearly, such w
can always be made binary, and can be made linear under the regularity assumption in Proposition 1.

20Figure 1 focuses on utility-linear contracts for ease of computation. While here the lenient binary
contract outperforms the linear contract at all n, under different parameters linear contracts can
outperform the optimal binary contract at small n. Moreover, while the linear contract outperforms
the strict binary contract in the depicted range of n, the strict binary contract eventually does better
as it also converges to the first-best exponentially (albeit at a lower rate than the lenient contract).
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c(1)). Then

E1[h(vn(x
n))]− CFB(u, c, a∗)︸ ︷︷ ︸
inefficiency

= E1[h(vn(x
n))]− h (E1[vn(x

n)])︸ ︷︷ ︸
Jensen-inequality gap

≈ Var1[vn(x
n)], (5)

where “≈” denotes convergence to 0 at the same exponential rate. That is, the
efficiency loss relative to the first-best is equal to the Jensen-inequality gap of the
convex function h with respect to the random variable vn(xn); by Taylor expansion
arguments (e.g., Liao and Berg, 2019), the latter has the same exponential decay rate
as the variance of vn(xn). Thus, to obtain the optimal convergence rate to the first-
best, the principal must choose v to maximize the decay rate of the agent’s utility
variance Var1[vn(x

n)] subject to (IC). This reflects the familiar tradeoff in moral
hazard problems (e.g., Laffont and Martimort, 2009) of seeking to make contracts as
“safe” for the risk-averse agent as possible without violating incentive compatibility.

Step 2: Binary test contracts. Next, we construct simple binary “test” con-
tracts under which Var1[vn(x

n)] decays at rate KL(µ0, µ1). Denote by

Ln :=
1

n

n∑
i=1

log
dµ1

dµ0

(xi)

the log-likelihood score of the realized signal sequence xn, defined as the average
log-likelihood ratio of action 1 vs. 0. Note that the expected scores under both
actions, E1[Ln] > 0 and E0[Ln] < 0, are independent of n. By standard arguments
(e.g., Laffont and Martimort, 2009), it is without loss to restrict to contracts vn that
are nondecreasing functions of Ln. Consider a sequence of binary contracts of the
form

vn(x
n) =

v+n if Ln ≥ γ

v−n if Ln < γ.
(6)

Here γ is some threshold with γ ∈ (E0[Ln],E1[Ln])), and the utility payments v+n > v−n

are pinned down by requiring (IR) and (IC) to bind, which can be ensured at all large
enough n.21 That is, the agent is rewarded with the higher utility v+n whenever his
score is above the threshold (i.e., he “passes the test”), and he is punished with the
lower utility v−n if his score is below the threshold (i.e., he “fails the test”).

21That is, v+n := c(1)P0[Ln<γ]−c(0)P1[Ln<γ]
P1[Ln≥γ]−P0[Ln≥γ] and v−n := c(0)P1[Ln≥γ]−c(1)P0[Ln≥γ]

P1[Ln≥γ]−P0[Ln≥γ] , which converge to
c(1) and c(0), respectively, as n → ∞. By Assumption 1.2, v+n , v−n ∈ u([w,∞)) for large enough n.
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prob. of
false positives

prob. of
false negatives

Figure 2: Contour curves of Var1[vn(xn)] under contract (6). Given γ, n determines the proba-
bilities of false positives and false negatives, which jointly determine the utility variance.

Clearly, any such sequence approximates the first-best as n→ ∞, because the test
becomes arbitrarily precise, i.e., limn→∞ P1[Ln ≥ γ] = 1 and limn→∞ P0[Ln ≥ γ] = 0,
by the law of large numbers and the fact that γ ∈ (E0[Ln],E1[Ln])). However, we
need to analyze which choice of the threshold γ achieves the fastest convergence rate.

To this end, observe that for any fixed n, the optimal choice of γ must trade-
off reducing two mistakes: On the one hand, the probability of false positives,
P0[Ln ≥ γ], is lower the higher γ; reducing this is relevant for (IC), as it makes action
0 less attractive to the agent. On the other hand, the probability of false negatives,
P1[Ln < γ], is lower the lower γ; reducing this is relevant for both (IC) and (IR), as it
makes action 1 more attractive to the agent. Crucially, we show that as n grows large,
false negatives are the dominant force affecting the agent’s utility variance, because

Var1[vn(x
n)] ≈ P1[Ln < γ].

Thus, as n→ ∞, to minimize utility variance, the principal should optimally choose
a maximally lenient threshold γ ↘ E0[Ln].22 To illustrate, Figure 2 shows the con-
tour curves of Var1[v(xn)] as a function of the probabilities of false positives and false
negatives. Observe that at large values of Var1[vn(xn)] (i.e., at small n), false posi-

22For simplicity, (6) considered sequences of contracts with a fixed threshold γ. In this case, the
optimal decay rate of Var1[vn(xn)] is approximated by choosing γ ∈ (E0[Ln],E1[Ln]) arbitrarily close
to E0[Ln], but γ = E0[Ln] is ruled out by (IC). Exactly attaining the optimal decay rate instead
requires using an appropriate sequence of thresholds γn ∈ (E0[Ln],E1[Ln]) with γn → E0[Ln].
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fail pass

Figure 3: Contract (6) with binary signals. The space of empirical signal frequencies ∆(X) is
divided into two regions, “pass” (Ln ≥ γ) and “fail” (Ln < γ). As γ approaches the maximally
lenient threshold E0[Ln], the cutoff between the two regions approaches µ0.

tives and false negatives have a fairly symmetric effect on utility variance; however,
as Var1[vn(x

n)] approaches 0 (i.e., at large n), the contour curves become arbitrarily
steep, illustrating the dominant effect of false negatives in this region. Intuitively,
when monitoring is near-perfect, (IC) becomes less important than (IR) (as captured
by a vanishing shadow value in the principal’s optimization problem). As a result,
reducing false positives becomes relatively unimportant, as this only affects (IC).

Finally, we observe that as γ approaches the maximally lenient threshold E0[Ln],
the probability of false negatives, and hence the utility variance, decays exponentially
at rate KL(µ0, µ1). This observation essentially corresponds to Stein’s lemma, a
classical result in hypothesis testing (e.g., Cover and Thomas, 1999) and can be
proved using Sanov’s theorem from large deviation theory. Sanov’s theorem states
that for any set D ⊆ ∆(X) that is equal to the closure of its interior, the probability
P1[νn ∈ D] of observing an empirical frequency νn in D conditional on action 1 decays
exponentially at rate infν∈DKL(ν, µ1) (i.e., it decays faster the farther D is from the
theoretical signal distribution µ1 under action 1). Figure 3 illustrates this in the case
of binary signals: Applying Sanov’s theorem to the “fail” region D, the probability
P1[νn ∈ D] of false negatives under the maximally lenient threshold decays at rate
infν∈DKL(ν, µ1) = KL(µ0, µ1).

Step 3: General contracts cannot do better. It remains to show that general,
non-binary contracts cannot converge to the first-best faster than at the exponential
rate KL(µ0, µ1). To illustrate the idea, consider sequences of contracts of the form

vn(x
n) = f(Ln),

for some function f that is continuously differentiable at E1[Ln]. For example, this
includes linear contracts where the wage is a fixed affine function of the score Ln
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at all n.23 If f ′(E1[Ln]) ̸= 0 (i.e., there is some wage variation around E1[Ln], as is
the case for linear contracts), then the delta method implies that Var1[vn(x

n)] is of
order 1

n
f ′(E1[Ln]), as Ln is the sample average of n i.i.d. draws of log dµ1(xi)

dµ0(xi)
. Thus,

the utility variance, and hence, by (5), the efficiency loss relative to the first-best,
vanishes subexponentially, i.e., more slowly than in Step 2.

Therefore, to achieve the optimal convergence rate, f must be flat around E1[Ln],
as is the case for the above binary test contracts. Moreover, as we formalize in
Appendix A.2.2, the convergence rate is higher the greater a flat region f displays
around E1[Ln]. At the same time, to satisfy (IC), the flat region cannot extend below
E0[Ln]. Since the maximally lenient binary contract maximizes the flat region subject
to this constraint, no other contract can outperform its convergence rate KL(µ0, µ1).

Non-binary actions. The above logic extends readily to non-binary action sets.
Specifically, we use binary contracts of the following form: For each a ∈ A−(c, a∗),
consider the log-likelihood score Ln(a) := 1

n

∑n
i=1 log

dµa∗
dµa

(xi) and a threshold γ(a).
Award a high utility payment v+n if Ln(a) ≥ γ(a) for all a ∈ A−(c, a∗) and a low
payment v−n otherwise, where v+n and v−n are again pinned down by requiring (IR)
and (IC) to bind. Here, the optimal rate of convergence is again achieved by setting
each threshold γ(a) ↘ Ea[Ln(a)] to be maximally lenient.

Remark 1 (Contrast with “shoot the agent” contracts). In the setting where n = 1

and there is no lower bound on wages, Mirrlees (1999) shows that, even when the
monitoring technology is highly imprecise, the first-best can (essentially) be achieved
as long as signal likelihood ratios are unbounded. For this purpose, he uses binary
contracts that severely punish the agent at signals with very low log-likelihood scores
(i.e., he considers the limit where both the low wage and the score cutoff become
arbitrarily negative). This argument does not apply in our setting at any n, as we
imposed a lower bound w on wages. As a result, the binary contracts we constructed
above are qualitatively quite different from Mirrlees’ “shoot the agent” contracts. In
particular, Mirrlees’ contracts punish deviations extremely severely but with proba-
bility close to 0; in contrast, our binary contracts punish deviations with a moderately
low wage but with probability close to 1 as n → ∞. Indeed, note that our binary
contracts use a low wage v−n → c(0) > w that remains bounded away from w at large

23The logic extends to general sequences of linear contracts wn(x
n) =

∑n
i=1 bn(xi), where the

functions bn : X → [w,∞) can vary with n.

17



n (see footnote 21).24 Thus, even for arbitrarily low values of w, our binary contracts
are not an approximation of Mirrlees’ construction. ▲

Remark 2 (Limit of optimal contracts). While maximally lenient binary contracts
achieve the optimal convergence rate to the first-best, the illustration above shows
that the same is true for some other contracts: To converge at the optimal rate, we
saw that wage schemes must become flat at likely signal realizations (i.e., empirical
signal frequencies ν within distance KL(µ0, µ1) of µ1). But beyond maximally lenient
binary contracts, this allows for contracts that display additional wage variation at
very rare empirical signal frequencies (farther than distance KL(µ0, µ1) from µ1).

However, even under the general second-best problem, the benefit to introducing
such additional wage variation vanishes as n → ∞: Any convergent sequence of
optimal contracts has as its limit a maximally lenient binary contract.

To state this formally, again assume for simplicity that A = {0, 1} with a∗ = 1

(Appendix A.4 extends the result to non-binary action sets). As noted, we can identify
optimal contracts with functions v∗n of log-likelihood scores Ln.25 Endow the space of
such functions with the topology of weak convergence (under the L2-norm).

Proposition 2. For any weakly convergent sequence of optimal contracts (v∗n),

lim
n→∞

v∗n(L) =

c(1) if L > γ∗,

u(w) if L < γ∗,

where γ∗ := E0[Ln] is the maximally lenient threshold.

Proposition 2 adds to the rationale for maximally lenient binary contracts in
data-rich settings. We note that Proposition 2 is neither implied by nor implies
Theorem 1.26 ▲

3.3 Ranking over Monitoring Technologies

Theorem 1 immediately implies the following ranking over monitoring technologies:
24In contrast, the lower bound w does bind at the general second-best contract at large n.
25More precisely, we treat v∗n as a function on the domain co{log dµ1

dµ0
(x) : x ∈ X}.

26To see the latter point, note that Proposition 2 is silent about the rate of convergence of v∗n to
its binary limit contract. In particular, it does not rule out that this convergence is slower than the
rate at which v∗n approximates the first-best.
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Corollary 1. Take any nonempty A− ⊊ A and any two monitoring technologies µ
and µ′ with mina∈A− KL(µa, µa∗) > mina∈A− KL(µ′

a, µ
′
a∗). Then, for any u and c with

A−(c, a∗) = A−, there exists N such that for all n ≥ N ,

CSB
n (µ, u, c, a∗) ≤ Cbin

n (µ, u, c, a∗) < CSB
n (µ′, u, c, a∗).

Holding fixed a target action a∗, Corollary 1 yields a (generically complete) ranking
over monitoring technologies that quantifies their value to the principal in data-rich
settings: Whenever the amount of data n is rich enough, monitoring technologies µ
are more valuable to the principal the higher is the index mina∈A−(c,a∗) KL(µa, µa∗).
This is because, by Theorem 1, this index captures the optimal convergence rate to
the first-best under µ. Moreover, since the optimal convergence rate is achieved using
binary contracts, the principal is better off using a superior monitoring technology µ
along with a binary contract than optimizing over general contracts under any (even
slightly) lower-ranked monitoring technology µ′.

Notably, Corollary 1 provides the principal with detail-free guidance for selecting
between monitoring technologies: The ranking is independent of the agent’s utility
function u and depends on his cost function c only through the set A−(c, a∗) of actions
that are less costly than the target action.

The following example illustrates a qualitative implication of the ranking:

Example 1 (Precise bad vs. good news). Assume binary actions and signals, A =

X = {0, 1} with a∗ = 1, c(1) > c(0). Consider monitoring technologies µ and µ′ with

µ0(0) = 0.8, µ1(1) = 0.99; µ′
0(0) = 0.99, µ′

1(1) = 0.8.

Under both µ and µ′, signal 1 is “good news” (more indicative of the target action
a∗ = 1) and signal 0 is “bad news” (more indicative of the deviation a = 0). The
only difference is that the error probabilities under the two actions are flipped across
µ and µ′: µ provides precise bad news and relatively less precise good news (i.e.,
µ0(0)
µ1(0)

> µ1(1)
µ0(1)

), while µ′ provides precise good news and relatively less precise bad news.
Observe that KL(µ0, µ1) ≈ 3.2 > KL(µ′

0, µ
′
1) ≈ 1.5. Thus, by Corollary 1, when-

ever data is sufficiently rich, then regardless of the agent’s utility and cost functions,
µ is strictly more valuable to the principal than µ′. Intuitively, as we saw in Sec-
tion 3.2, the principal seeks to design tests under which false negatives decay as fast
as possible, and for this monitoring technologies that provide precise bad news about
the agent’s action are more valuable than ones that provide precise good news. ▲
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The ranking in Corollary 1 relies on the principal observing rich data, which re-
duces the comparison of monitoring technologies to a comparison of the corresponding
convergence rates to the first-best. If the principal only observes a single signal draw
(n = 1), then Kim (1995) and Jewitt (2007) show that requiring µ to be more valu-
able to the principal than µ′ regardless of the agent’s preferences yields an order over
monitoring technologies that extends Blackwell’s (1951) order. However, their order
is more conservative than our ranking:27 For instance, the monitoring technologies in
Example 1 are incomparable based on the n = 1 order.

As noted, Corollary 1 can be viewed as an analog for incentive problems of
Moscarini and Smith’s (2002) rich-data ranking over information structures in learn-
ing settings (see Section 1.2). However, reflecting the difference between the value
of information for incentive provision vs. learning, our ranking is different from their
ranking: For instance, the two monitoring structures in Example 1 are equally valu-
able in the learning setting of Moscarini and Smith (2002).

4 Discussion

4.1 Severe Limited Liability

Our main model (Assumption 1.2) assumed that c(A) ⊆ int (u([w,∞))), which en-
sured that the (IR) constraint could be made to bind at large enough n. In this
section, we suppose this assumption is violated, i.e., limited liability is so severe that
(IR) does not bind. We show that binary contracts continue to achieve the optimal
convergence rate to the first-best. However, the analysis highlights a tradeoff between
rent extraction and risk aversion that was absent in the main setting.

For expositional simplicity, we focus on binary actions, A = {0, 1} with a∗ = 1

and c(0) < c(1); Appendix A.5 considers non-binary A. The assumption c(A) ⊆
int (u([w,∞))) implies u(w) < c(0). Departing from this, we impose the severe limited
liability restriction that u(w) ≥ c(0); thus, even if taking action 0 leads the agent to
be punished with the lowest wage w, he prefers this to his outside option of 0. This,

27Based on the n = 1 order, µ dominates µ′ if, for all a ∈ A−(c, a∗), the distribution of dµa∗
dµa

(x)

under µa is a strict mean-preserving spread of the distribution of dµ′
a∗

dµ′
a
(x) under µ′

a. (This is an
adaptation to our setting of the condition in Kim (1995) and Jewitt (2007), who studied a continuous-
action setting assuming the first-order approach). In this case, by Jensen’s inequality, KL(µa, µa∗) >
KL(µ′

a, µ
′
a∗) holds for all a ∈ A−(c, a∗), so µ dominates µ′ in the sense of Corollary 1.
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together with (IC), implies that (IR) does not bind at any n. Moreover, the first-best
cost, i.e., the implementation cost of action 1 under perfect monitoring, is now

CFB(u, c, a∗) = h (u(w) + c(1)− c(0)) .

We assume u(w) + c(1)− c(0) < limw→∞ u(w), so that CFB(u, c, a∗) is well-defined.
The following result shows that the optimal rate of convergence to the first-best

can again be achieved using binary contracts. However, the rate of convergence is
slower than in Theorem 1: Rather than being given by the KL-divergence KL(µ0, µ1),
the convergence rate is now given by the Chernoff distance

Ch(µ0, µ1) := min
ν∈∆(X)

max{KL(ν, µ0),KL(ν, µ1)}. (7)

Note that Ch(µ0, µ1) captures the KL-divergence from distributions µ0 and µ1 to their
KL-midpoint, as any minimizer ν in (7) must satisfy KL(ν, µ0) = KL(ν, µ1). Thus,
Ch(µ0, µ1) is smaller than KL(µ0, µ1) (and, unlike KL-divergence, is symmetric).

Theorem 2. Assume A = {0, 1} with a∗ = 1. Under both general and binary con-
tracts, the second-best cost converges to the first-best exponentially at rate Ch(µ0, µ1):

CSB
n (µ, u, c, a∗)− CFB(u, c, a∗) = exp[−Ch(µ0, µ1)n+ o(n)];

Cbin
n (µ, u, c, a∗)− CFB(u, c, a∗) = exp[−Ch(µ0, µ1)n+ o(n)].

The difference between Theorems 1 and 2 reflects that different binary contracts
yield the optimal rate of convergence to the first-best in each setting. While the
optimal convergence rate in Theorem 1 was achieved by a binary test contract with
maximally lenient threshold γ ↘ E0[Ln], in the current setting it is achieved by
a binary test contract with symmetric threshold γ = 0. Indeed, as discussed in
Section 3.2, using a maximally lenient threshold maximizes the rate at which false
negatives decay, which was the dominant consideration in our main model at large
n. In contrast, in the current setting, it turns out that both false positives and false
negatives remain important sources of inefficiency even at large n. This necessitates
using a symmetric binary test, as such a test equalizes the decay rates of false negatives
and false positives, both of which equal Ch(µ0, µ1) (e.g., Cover and Thomas, 1999).

The equal concern for false positives and false negatives in the current setting re-
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flects a tradeoff between risk aversion and rent extraction that was absent in the main
model. To illustrate, we can decompose the difference between the implementation
cost under any contract v and the first-best cost as follows:

E1[h(v(x
n))]− CFB(u, c, a∗)

= E1[h(v(x
n))]− h(E1[v(x

n)])︸ ︷︷ ︸
Jensen-inequality gap

+ h(E1[v(x
n)])− h(u(CFB(u, c, a∗)))︸ ︷︷ ︸

information rent

.

The first term is the Jensen-inequality gap under v, which reflects the agent’s risk
aversion. As in Section 3.2, this gap decays at the same rate as Var1[v(xn)] as n→ ∞,
which under binary contracts is governed by the decay rate of false negatives. The
second term reflects that the agent’s consumption utility E1[v(x

n)] = E0[v(x
n)] +

c(1) − c(0) (by (IC)) exceeds his utility u(CFB(u, c, a∗)) = u(w) + c(1) − c(0) under
the first-best; that is, even at large n, the agent receives an information rent. Reducing
the probability of false positives reduces the size of this rent. The second term was
absent in our main model, as there (IR) could be made to bind at large n, giving the
agent zero rent.

Notably, with non-binary actions, Appendix A.5 shows that the above tradeoff
applies only to the least costly deviation â ∈ argminA c, while the logic for all other
deviations is analogous to our main model. As a result, the optimal convergence rate is
achieved by a binary contract that employs a mix of maximally lenient and symmetric
tests.28 Depending on which deviation is the dominant source of inefficiency at large
n, the convergence rate is either mina∈A−(c,a∗)\{â}KL(µa, µa∗) as in Theorem 1 or
Ch(µâ, µa∗) as in Theorem 2.

Remark 3 (Risk-neutral case). Under severe limited liability (unlike in our baseline
model), there is a gap between the first-best and second-best at each n even when u
is linear. As is well-known, the optimal contract in this setting (if it exists) is binary
if |A| = 2, but otherwise is in general complicated (e.g., Dütting, Roughgarden,
and Talgam-Cohen, 2019). Moreover, even if |A| = 2, the optimal binary contract
takes an extreme, “minimally lenient” form very different from the contracts used in
Theorems 1–2: It pays a high wage only if xn maximizes the log-likelihood score Ln,
an event whose probability vanishes as n→ ∞ even under the target action. ▲

28Specifically, as in Section 3.2, this contract sets thresholds γ(a) for each a ∈ A−(c, a∗), and pays
a high wage iff the score Ln(a) exceeds γ(a) for all a. Here γ(a) ↘ Ea[Ln(a)] is maximally lenient for
all a ∈ A−(c, a∗), except for the least costly action â, for which γ(â) = 0 is the symmetric threshold.
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4.2 More General Formulations of Rich Monitoring Data

4.2.1 Non-i.i.d. Signals

While our main model assumed that the principal observes n i.i.d. draws of signals
from a fixed monitoring technology µ, Theorem 1 extends to settings where n indexes
more general sequences of increasingly precise monitoring technologies.

Appendix A.6.1 formalizes this by considering sequences (µn) of monitoring tech-
nologies on a signal space Z with the following key property: Under each chosen
action a, the distributions of the log-likelihood scores Ln(a′) = 1

n
log

dµn
a∗

dµn
a′
(z) (a′ ̸= a∗)

concentrate on deterministic limits as n → ∞, where these limits are distinct across
different chosen actions a and the convergence is described by a well-behaved rate
function Ia (in the sense of the large deviation principle). Beyond our main model,
this setting nests other natural examples of rich or precise monitoring data, such as:

Vanishing observation noise: When the agent chooses action a ∈ A ⊆ R, the
principal observes a single signal x = a + κnε, where ε is a standard normal noise
term and the scaling factor κn → 0 as n→ ∞.

Serially correlated signals: When the agent chooses action a, the principal observes
n signals x1, . . . , xn. However, instead of being i.i.d., these signals follow a (well-
behaved) Markov chain whose transition kernel depends on a.

In this more general setting, Theorem A.2 in Appendix A.6.1 shows that max-
imally lenient binary contracts again achieve the optimal convergence rate to the
first-best. The only novelty is that the KL-based convergence rate in Theorem 1 is
replaced by a more general expression based on the rate function Ia∗ .

4.2.2 Adjustable Actions

Our main model assumed that the principal observes n i.i.d. signals about a fixed,
one-shot action a. However, Theorem 1 generalizes to settings where the agent can
repeatedly adjust his action, as long as adjustments are infrequent relative to the
frequency of signals.29

Appendix A.6.2 formalizes this by assuming that the agent can adjust his action T
times, i.e., sequentially chooses actions a1, . . . , aT ∈ A at a total cost of 1

T

∑T
t=1 c(at).

Each action at generates n
T

i.i.d. draws of signals from µat that are observed by both

29This may capture, for instance, the use of digital productivity monitoring software, which tracks
employees’ on-screen activity at extremely small time intervals.
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the principal and agent. The agent can condition his choice at on all past signal
realizations. To keep the departure from the main model minimal, we continue to
assume that the principal chooses contracts that offer a (one-shot) payment w(xn) as
a function of the entire sequence xn of n signals, and that the principal’s first-best
payoff is attained by a constant action profile with at = a∗ for all t. To capture that
action adjustments are infrequent relative to the number of signals, we consider the
rate of convergence of the principal’s second-best payoff to her first-best payoff in the
data-rich limit as n→ ∞, while holding fixed T .

Theorem A.3 in Appendix A.6.2 shows that this convergence rate is again the
same under general and binary contracts, and is given by 1

T
mina∈A−(c,a∗) KL(µa, µa∗).

Thus, inefficiency is greater the more frequently the agent can adjust his action.
Similar to our main model, the optimal convergence rate is achieved by a binary
contract that employs a sequence of maximally lenient tests (one for each possible
deviation at each t) and requires the agent to pass all tests to receive the high wage.
Notably, the optimal convergence rate is the same as in the setting where the agent
chooses an action sequence (a1, . . . , aT ) but does not observe the signals generated
by past actions; the latter can be viewed as a special case of our main model with
T -dimensional actions and signals. Thus, whether or not the agent can condition his
action choices on past data has a negligible effect on efficiency as the amount of data
grows rich.

4.3 Concluding Remarks

In this paper, we studied moral hazard problems in settings where the principal has
access to rich monitoring data. Rather than focusing on optimal contracts, we ana-
lyzed the optimal convergence rate of the principal’s payoffs to the first-best as data
grows rich. We found that this optimal rate is achieved by a particular class of widely
observed contracts—binary wage schemes—that are simple in the sense of featuring
the coarsest possible wage variation. In contrast, linear contracts, another common
compensation scheme that requires wages to vary finely with observed data (albeit in
an arguably simple manner), approximate the first-best at a highly suboptimal rate.

In settings such as ours where optimal contracts are known to be complicated,
convergence rates are a useful measure to quantify and compare the performance of
simple but suboptimal contracts. Moreover, as a one-dimensional statistic, conver-
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gence rates do not depend on all the specifics of the environment (e.g., the agent’s
preferences or the fine details of the monitoring technology), thus allowing for sharp
predictions. At the same time, a disadvantage of the convergence rate approach is
that it is silent about outcomes at quite small n. This can be partly remedied by
conducting numerical analysis: For instance, Figure 1 and related examples exhibit
settings where lenient binary contracts start to be highly efficient at small n. Alter-
natively, it may be valuable to derive analytical bounds on the second-order terms
o(n). Such bounds would depend on the details of the environment but would allow
one to bound the number n beyond which the conclusions of the convergence rate
analysis hold (e.g., the finding that binary contracts outperform linear contracts).

Finally, an important assumption for our analysis was that the agent’s action
space is discrete (in the sense of KL(µa, µa∗) being bounded away from 0). With
this, we intend to capture settings where monitoring data is rich enough that it can
effectively detect even relatively small deviations from the target action a∗: In partic-
ular, as n grows large, the principal can design statistical tests that detect deviations
with exponentially small errors. Our analysis applies for any arbitrarily small value
of mina∈A−(c,a∗) KL(µa, µa∗) > 0, but more data n is needed to design such accurate
tests the smaller is mina∈A−(c,a∗) KL(µa, µa∗), leading to a slower convergence rate. In
the extreme case where A is continuous (and µa is appropriately continuous in a),
the convergence to the first-best would be subexponential under both optimal and
binary contracts. An analogous remark applies to the adjustable action setting in
Section 4.2.2, which relied on signal arrivals being frequent relative to action adjust-
ments (i.e., letting n→ ∞ while fixing T ). If instead action adjustments and signals
are equally frequent (i.e., n = T ), then the impact of a single deviation becomes too
small as n → ∞ to be detected effectively by a statistical test. The analysis of the
continuous action or frequent action adjustment settings would require a different
approach from the current paper, as the large-deviation tools we relied on no longer
apply. Thus, we leave this as a direction for future work.

A Appendix

A.1 Preliminaries

Throughout the Appendix, we denote by Ln(a) := 1
n

∑n
i=1 log

dµa∗
dµa

(xi) the log-likelihood
score for each a ∈ A\{a∗} and by Ln := (Ln(a))a̸=a∗ the vector of log-likelihood scores.
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A.1.1 Cramér’s Theorem and Other Statistical Preliminaries

For each a ∈ A, a′ ∈ A \ {a∗} and ℓ ∈ R, define

Ia,a′(ℓ) := sup
λ∈R

(
λℓ− log

∫ (
dµa∗

dµa′
(x)

)λ
dµa(x)

)
.

By Cramér’s theorem (Dembo and Zeitouni, 2010, Theorem 2.2.3), function Ia,a′

describes the rate at which, under action a, the distribution of the log-likelihood score
Ln(a

′) concentrates on its expectation L̂a(a
′) := Ea[Ln(a′)] as n → ∞: Specifically,

Ia,a′ is continuous (on its effective domain), convex, and uniquely minimized at L̂a(a′)
with Ia,a′(L̂a(a′)) = 0, and for any measurable set B ⊆ R,

− inf
ℓ∈clB

Ia,a′(ℓ) ≥ lim sup
n→∞

1

n
logPa[Ln(a′) ∈ B]

≥ lim inf
n→∞

1

n
logPa[Ln(a′) ∈ B] ≥ − inf

ℓ∈intB
Ia,a′(ℓ).

(8)

For each ℓ ∈ R, Lemma 6.2.3(f) in Dupuis and Ellis (2011) implies that

Ia∗,a(ℓ) = inf
ν∈∆(X)

KL(ν, µa∗) s.t.
∫

log
dµa∗

dµa
(x)dν(x) = ℓ. (9)

The following lemma characterizes the two statistical distances used in the paper:

Lemma A.1. For all a ∈ A \ {a∗}, we have the following two equalities:

KL(µa, µa∗) = min
ν∈∆(X)

KL(ν, µa∗) s.t.
∫

log
dµa∗

dµa
(x)dν(x) ≤ Ea[Ln(a)]; (10)

Ch(µa, µa∗) = min
ν∈∆(X)

KL(ν, µa∗) s.t.
∫

log
dµa∗

dµa
(x)dν(x) ≤ 0

= min
ν∈∆(X)

KL(ν, µa) s.t.
∫

log
dµa∗

dµa
(x)dν(x) ≥ 0.

(11)

Proof. To show (10), take any ν ∈ ∆(X). Since
∫
log dµa∗

dµa
(x)dν(x) = KL(ν, µa) −

KL(ν, µa∗) and Ea[Ln(a)] =
∫
log dµa∗

dµa
(x)dµa(x) = −KL(µa, µa∗), the constraint can

be written as KL(ν, µa)+KL(µa, µa∗) ≤ KL(ν, µa∗). By Gibbs’ inequality, this implies
that the minimum is achieved at ν = µa. Equation (11) follows from standard
information-theoretic arguments (e.g., Cover and Thomas, 1999, Section 11.9).
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A.1.2 Optimal Contracts

We briefly note some features of optimal contracts. First, for all large enough n, an
optimal contract, i.e., a solution to the second-best problem (1), exists. To see this,
note that for each large enough n, there is a contract under which (IC) and (IR)
hold with strict inequality; for example, such a contract can be obtained by adding
a positive constant to the binary test contract vn defined in the proof of Theorem 1
below. Given this, the existence of an optimal contract v∗n at all large enough n follows
from Section 4 in Ke and Xu (2023). By standard arguments, v∗n can be written as a
weakly increasing function of log-likelihood vectors Ln ∈ RA\{a∗}.

Second, given the existence of contracts where (IC) and (IR) hold strictly, standard
arguments (e.g., Luenberger, 1997, Section 8.3) imply that the optimal contracts v∗n
satisfy the Kuhn-Tucker conditions

h′(v∗n(Ln)) = λn +
∑

a∈A\{a∗}

κn(a) (1− exp[−nLn(a)]) if v∗n(Ln) > u(w)

0 ≥ λn +
∑

a∈A\{a∗}

κn(a) (1− exp[−nLn(a)]) if v∗n(Ln) = u(w),
(12)

where λn ≥ 0 is the multiplier for (IR) and κn(a) ≥ 0 is the multiplier for the (IC)
constraint with respect to deviation a ̸= a∗. This implies

v∗n(Ln) = max

(h′)−1

λn + ∑
a∈A\{a∗}

κn(a) (1− exp[−nLn(a)])

 , u(w)

 . (13)

Finally, we note that the sequence (v∗n) is uniformly bounded. To see this, it is
sufficient by (13) to verify that lim supn→∞ λn +

∑
a̸=a∗ κn(a) < ∞. Suppose for a

contradiction that limk→∞ λnk
+
∑

a̸=a∗ κnk
(a) = ∞ for some subsequence (nk). Then

for every strictly positive L ∈ RA\{a∗} (i.e., with strictly positive entries), (12) implies
limk→∞ h′(v∗nk

(L)) = ∞ and thus limk→∞ h(v∗nk
(L)) = ∞. By the weak law of large

numbers, Ln converges in probability to Ea∗ [Ln], which is strictly positive. Thus,
lim supn→∞ Ea∗ [h(v∗n(Ln))] = ∞, which contradicts optimality.
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A.2 Proof of Theorem 1

Henceforth, let A−(c, a∗) := {a ∈ A : c(a) < c(a∗)}, as in the main text, and
A+(c, a∗) := {a ∈ A : c(a) > c(a∗)}. We omit the dependency of A− and A+ on c

and a∗ when there is no risk of confusion. By Assumption 1.3, A = A− ∪A+ ∪ {a∗}.

A.2.1 Upper Bound on Inefficiency under Binary Contracts

We first show that, as n→ ∞, Cbin
n (µ, u, c, a∗)−CFB(u, c, a∗) vanishes at least as fast

as at the exponential rate mina∈A− KL(µa, µa∗).
For each a ∈ A−, fix some γ(a) ∈ (Ea[Ln(a)],Ea∗ [Ln(a)]). For each a′ ∈ {a∗}∪A−,

define pa′,n := Pa′ [Ln(a) ≥ γ(a), ∀a ∈ A−]. Observe that, by the weak law of large
numbers and the choice of γ(a), we have

lim
n→∞

pa∗,n = 1 and lim
n→∞

pa,n = 0 for all a ∈ A−.

Consider the sequence of binary contracts (vn) given by

vn(x
n) =

v+n if Ln(a) ≥ γ(a) for all a ∈ A−

v−n otherwise,

where v+n and v−n are defined by

v+n :=
(1−maxa∈A− pa,n)c(a

∗)− (1− pa∗,n)mina∈A− c(a)

pa∗,n −maxa∈A− pa,n
,

v−n :=
pa∗,nmina∈A− c(a)−maxa∈A− pa,nc(a

∗)

pa∗,n −maxa∈A− pa,n
.

Note that, up to restricting to large enough n, these contracts are well-defined (i.e.,
v+n , v

−
n ∈ u([w,∞))), because limn→∞ v+n = c(a∗), limn→∞ v−n = mina∈A− c(a) and

c(A) ⊆ intu([w,∞)) by Assumption 1.2. Moreover, the choice of v+n and v−n implies

pa∗,nv
+
n + (1− pa∗,n)v

−
n − c(a∗) = 0 and

pa∗,nv
+
n + (1− pa∗,n)v

−
n − c(a∗) = max

a∈A−
pa,nv

+
n + (1− max

a∈A−
pa,n)v

−
n − min

a∈A−
c(a).

The first line ensures that (IR) holds with equality, as the LHS is the agent’s expected
payoff under vn to choosing action a∗. The second line ensures that choosing any
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a ∈ A− is (weakly) suboptimal for the agent. Moreover, choosing any a ∈ A+ yields
expected payoff strictly less than 0 for all large enough n, as limn→∞ v+n = c(a∗) <

c(a). Thus, vn also satisfies (IC) for all large enough n.
Observe that

lim
n→∞

1

n
log(1− pa∗,n) = lim

n→∞

1

n
log
(
Pa∗ [∃a ∈ A− s.t. Ln(a) < γ(a)]

)
≤ − min

a∈A−
inf

ℓ≤γ(a)
Ia∗,a(ℓ),

(14)

where the inequality holds by Cramér’s theorem (8). Thus, for all large enough n,

Cbin
n (µ, u, c, a∗)− CFB(u, c, a∗) ≤ Ea∗ [h(vn(xn))]− h(c(a∗))

= pa∗,n
(
h
(
v+n
)
− h(c(a∗))

)
+ (1− pa∗,n)

(
h
(
v−n
)
− h(c(a∗))

)
≤ pa∗,n

(
h
(
v+n
)
− h(c(a∗))

)
≤ exp[−n min

a∈A−
inf

ℓ≤γ(a)
Ia∗,a(ℓ) + o(n)].

Here, the penultimate inequality uses limn→∞ v−n = mina∈A− c(a) < c(a∗), and the last
inequality uses (14) and the fact that v+n − c(a∗) =

(1−pa∗,n)(mina∈A− c(a)−c(a∗))
pa∗,n−maxa∈A− pa,n

vanishes
at the same exponential rate as 1− pa∗,n.

Finally, for each a ∈ A−, we have

sup
γ>Ea[Ln(a)]

inf
ℓ≤γ

Ia∗,a(ℓ) = inf
ℓ≤Ea[Ln(a)]

Ia∗,a(ℓ) = KL(µa, µa∗),

where the second equality holds by (9)–(10) and the continuity of Ia∗,a. Thus, by
choosing γ(a) to be arbitrarily close to the maximally lenient threshold Ea[Ln(a)] for
each a ∈ A−, it follows that Cbin

n (µ, u, c, a∗) − CFB(u, c, a∗) vanishes at least as fast
as at the exponential rate mina∈A− KL(µa, µa∗).

A.2.2 Lower Bound on Inefficiency under General Contracts

Second, to complete the proof of Theorem 1, we show that, as n→ ∞, CSB
n (µ, u, c, a∗)−

CFB(u, c, a∗) vanishes no faster than at the exponential rate mina∈A− KL(µa, µa∗).
Pick any action â ∈ argmina∈A− KL(µa, µa∗). Consider the relaxed problem where

the agent’s action set is restricted to {a∗, â}. Below, we show that the difference
between the principal’s value under this relaxed problem and CFB(u, c, a∗) cannot
vanish faster than at the exponential rate KL(µâ, µa∗) = mina∈A− KL(µa, µa∗). This
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yields the desired conclusion, because under the original problem, CSB
n (µ, u, c, a∗) −

CFB(u, c, a∗) must vanish at a weakly slower rate than under the relaxed problem.
Consider any sequence of contracts (vn) under the relaxed problem, where (without

loss of optimality) we write each vn as a weakly increasing function of Ln := Ln(â).
Let L̂a := Ea[Ln] for each a ∈ {a∗, â}.

We first show that in order for the agent’s utility variance to decay (at least)
exponentially, the contracts vn must become asymptotically flat on some interval
around L̂a∗ , where this interval must be larger the greater the rate of decay:

Lemma A.2. Consider any sequence of contracts (vn) such that Vara∗ [vn(Ln)] ≤
exp[−λn+o(n)] for some λ > 0. Then for any interval [γ, γ] ∋ L̂a∗ with infγ<γ Ia∗,â(γ) <

λ and infγ>γ Ia∗,â(γ) < λ,
lim
n

(
vn(γ)− vn(γ)

)
= 0.

Proof. Suppose for a contradiction that the result fails. Then, since each vn is weakly
increasing, there is a subsequence (nk) such that limk

(
vnk

(γ)− vnk
(γ)
)
> 0. Thus,

writing mnk
:= Ea∗ [vnk

(Lnk
)], we have

lim inf
k→∞

1

nk
log Vara∗ [vnk

(Lnk
)] = lim inf

k→∞

1

nk
logEa∗ [(vnk

(Lnk
)−mnk

)2]

≥ lim inf
k→∞

1

nk
log

(
min

{
Pa∗ [Lnk

≤ γ],Pa∗ [Lnk
≥ γ]

}(vnk
(γ)− vnk

(γ)

2

)2
)

≥ −max

{
inf
γ<γ

Ia∗,â(γ), inf
γ>γ

Ia∗,â(γ)

}
> −λ,

where the second inequality uses Cramér’s theorem (8). This contradicts the assump-
tion that Vara∗ [vnk

(Lnk
)] ≤ exp[−λnk + o(nk)].

Next, we show that under (IC) the agent’s utility variance cannot vanish faster
than at the exponential rate KL(µâ, µa∗):

Lemma A.3. Consider any uniformly bounded sequence (vn) of contracts satisfying
(IC) under the relaxed problem. Then Vara∗ [vn(Ln)] ≥ exp[−KL(µâ, µa∗)n+ o(n)].

Proof. Suppose otherwise. Then there exists λ > KL(µâ, µa∗) such that Vara∗ [vn(Ln)] ≤
exp[−λn + o(n)]. By (9)–(10), KL(µâ, µa∗) = Ia∗,â(L̂â), so λ > Ia∗,â(L̂â). Thus, by
continuity of Ia∗,â, there is γ < L̂â with infγ<γ Ia∗,â(γ) < λ. Moreover, by continuity
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of Ia∗,â and the fact that Ia∗,â(L̂a∗) = 0, there is γ > L̂a∗ with infγ>γ Ia∗,â(γ) < λ. By
Lemma A.2, limn→∞

(
vn(γ)− vn(γ)

)
= 0.

At the same time, for each a ∈ {a∗, â}, the fact that L̂a is in the interior of [γ, γ]
and the weak law of large numbers implies that limn→∞ Pa

[
Ln ∈ [γ, γ]

]
= 1. Since the

sequence of contracts is bounded, this implies limn→∞ (Ea∗ [vn(Ln)]− Eâ[vn(Ln)]) = 0.
But then vn violates (IC) for all large enough n, a contradiction.

Finally, consider a sequence (v∗n) of optimal contracts under the relaxed prob-
lem. By Appendix A.1.2, such a sequence exists (up to restricting to large n) and is
uniformly bounded. The difference between the principal’s cost and the first-best is

Ea∗ [h(v∗n(Ln))]− h(c(a∗)) = Ea∗ [h(v∗n(Ln))]− h(Ea∗ [v∗n(Ln)]) + h(Ea∗ [v∗n(Ln)])− h(c(a∗))

≥ Ea∗ [h(v∗n(Ln))]− h(Ea∗ [v∗n(Ln)])

≥ Vara∗ [v
∗
n(Ln)]

infLn h
′′(vn(Ln))

2
,

where the first inequality holds because Ea∗ [v∗n(Ln)] ≥ c(a∗) by (IR) and the second
inequality uses the variance-based estimate of the Jensen-inequality gap (Liao and
Berg, 2019). Here infLn h

′′(vn(Ln)) > 0, where the infimum is taken over all possi-
ble realizations of Ln, is bounded away from zero uniformly in n. This follows by
observing that (i) the contract wages are uniformly bounded, by the Kuhn-Tucker
conditions (12) and the assumption that limw→∞ u′(w) = 0, and (ii) u is C2. Thus,
by Lemma A.3, the difference relative to the first-best cannot vanish faster than at
the exponential rate KL(µâ, µa∗).

A.3 Proof of Proposition 1

Proof of (4): Suppose for a contradiction that (4) fails, i.e.,

C lin
n (µ, u, c, a∗)− CFB(u, c, a∗) = o(1/n). (15)

Thus, we can pick a sequence of IR and IC linear contracts (wn) with wn(xn) =
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1
n

∑
i=1 bn(xi) such that Ea∗ [wn(xn)]− CFB(u, c, a∗) = o(1/n). Note that

Ea∗ [wn(xn)]− CFB(u, c, a∗) = Ea∗ [wn(xn)]− h(Ea∗ [u(wn(xn))]) + h(Ea∗ [u(wn(xn))])− h(c(a∗))

≥ infv h
′′(v)

2
Vara∗ [u(wn(x

n))] + h(Ea∗ [u(wn(xn))])− h(c(a∗))︸ ︷︷ ︸
≥0 by IR

by the variance-based estimate of the Jensen-inequality gap (Liao and Berg, 2019).
Thus, Ea∗ [wn(xn)]−CFB(u, c, a∗) = o(1/n) requires that Ea∗ [u(wn(xn))] → c(a∗) and
Vara∗ [u(wn(x

n))] = o(1/n) since infv h
′′(v) > 0. By a Taylor expansion argument, the

latter implies Vara∗ [wn(x
n)] = o(1/n). As Vara∗ [wn(x

n)] = 1
n
Vara∗ [bn(x1)] for each n,

this implies limn→∞ Vara∗ [bn(x1)] = 0. Thus, Ea∗ [u(wn(xn))] → c(a∗) implies that for
any ε > 0, limn→∞ µa∗({x : |bn(x) − h(c(a∗))| > ε}) = 0. This in turn implies that
for all a ̸= a∗,

lim
n→∞

µa({x : |bn(x)− h(c(a∗))| > ε}) = 0, (16)

because, by the data-processing inequality, µa(X ′) log µa(X′)
µa∗ (X′)

+µa(X\X ′) log µa(X\X′)
µa∗ (X\X′)

≤
KL(µa, µa∗) <∞ for all measurable X ′ ⊆ X.

The agent’s expected payoff to choosing a is then

Ea

[
u

(
1

n

n∑
i=1

bn(xi)

)]
− c(a) ≥ Ea [u(bn(x1))]− c(a),

by concavity of u. By (16) and the fact that u is bounded below, the lim sup of the
RHS as n→ ∞ is no less than c(a∗)− c(a) . Thus, since Ea∗ [u(wn(xn))]− c(a∗) → 0,
(IC) fails for any a with c(a) < c(a∗) at all large enough n.

“Moreover” part: We show that (4) holds with equality if µa∗ ̸∈ co{µa : a ̸= a∗}
and w is sufficiently low. We first exhibit a linear contract that achieves the first-
best cost at n = ∞. This can be done by finding b : X → [w,∞) such that (i)∫
b(x)dµa∗(x) = h(c(a∗)) and (ii)

∫
b(x)dµa(x) < h(c(a)) for each a ̸= a∗. Indeed, (i)

ensures that (IR) binds, i.e., u
(∫

b(x)dµa∗(x)
)
− c(a∗) = 0. Given this, (ii) ensures

that (IC) holds strictly, i.e., u
(∫

b(x)dµa(x)
)
− c(a) < 0 for each a ̸= a∗. To find such

a b, observe that, by a separation theorem (Dunford and Schwartz, 1988) and the
assumption that µa∗ ̸∈ co{µa : a ̸= a∗}, there is a bounded function b : X → R with∫
b(x)dµa∗(x) >

∫
b(x)dµa(x) for all a ̸= a∗. By scaling b if necessary, we can ensure∫

b(x)dµa∗(x)−h(c(a∗)) >
∫
b(x)dµa(x)−h(c(a)) for all a ̸= a∗. By adding a constant
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to b if necessary, we can ensure 0 =
∫
b(x)dµa∗(x)− h(c(a∗)) >

∫
b(x)µa(x)− h(c(a))

for all a ̸= a∗. Since b is bounded, b(X) ⊆ [w,∞) if w is sufficiently low.
To establish that (4) holds with equality, we modify the linear contract obtained

above for each n by setting wn(xn) = 1
n

∑n
i=1(b(xi)+εn) =

∑
x νxn(x)b(x)+εn, where

εn ∈ R+ is a constant and νxn ∈ ∆(X) denotes the realized empirical signal frequency.
The constant εn is pinned down for all large enough n by requiring (IR) to bind, i.e.,
Ea∗ [u(

∑
x νxn(x)b(x) + εn)]− c(a∗) = 0.

Note that limn→∞ εn = 0 by the law of large numbers and construction of b. We
moreover show that εn = K

n
+ o(1/n) for some K > 0. To see this, observe that

inf
w∈co{(b(x)+εn:x∈X}

−u
′′(w)

2
Vara∗

[∑
x

νxn(x)b(x)

]

≥ u

(
Ea∗

[∑
x

νxn(x)b(x) + εn

])
− Ea∗

[
u

(∑
x

νxn(x)b(x) + εn

)]

≥ u

(
Ea∗

[∑
x

νxn(x)b(x)

])
+ εnu

′

(
Ea∗

[∑
x

νxn(x)b(x) + εn

])
− c(a∗)

= εnu
′

(
Ea∗

[∑
x

νxn(x)b(x) + εn

])
,

where the first inequality uses the variance-based estimate of the Jensen-inequality
gap (note inf −u′′ > 0 on the relevant domain of w, as b is bounded), the second
inequality uses the concavity of u and construction of εn, and the last equality uses
the construction of b. Since the variance term in the first line is o( 1

n
), we have

εn = K
n
+ o( 1

n
) for some K > 0.

Because εn → 0 and the original linear contract satisfies (IC) strictly at n = ∞,
the modified contracts satisfy (IC) for all large enough n. Under these contracts, the
principal’s cost difference relative to the first-best cost is εn = K

n
+ o( 1

n
), as required.

A.4 Proof of Proposition 2

We prove the following generalization of Proposition 2 to an arbitrary finite action
space. As usual, we write contracts vn as functions of log-likelihood scores.

Proposition A.1. For any weakly convergent sequence of optimal contracts (v∗n),
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there exists γ : A− → R such that

lim
n→∞

v∗n(L) =

c(a∗) if L(a) > γ(a) for each a ∈ A \ {a∗}

u(w) if L(a) < γ(a) for some a ∈ A \ {a∗},

where γ(â) = Eâ[Ln(â)] is maximally lenient for all â ∈ argmina∈A− KL(µa, µa∗).

A.4.1 The Limit Contract is Binary

By Appendix A.1.2, for all large enough n, v∗n is given by (13) for multipliers λn and
κn(a) for each a ̸= a∗. Since (v∗n) approximates the first-best, limn→∞ Ea∗ [v∗n(Ln)] =
c(a∗). Since Ln converges in probability to Ea∗ [Ln] > 0, (13) implies

lim
n→∞

(
λn +

∑
a̸=a∗

κn(a)

)
= h′(c(a∗)). (17)

Up to restricting to an appropriate subsequence, we can assume that limn→∞
1
n
log κn(a) =:

γ(a) exists (allowing for −∞) for each a ̸= a∗. Since κn(a) is bounded by (17),

lim
n→∞

κn(a) (1− exp[−nL(a)]) =

limn→∞ κn(a) if L(a) > γ(a)

−∞ if L(a) < γ(a).

Thus, by (13),

lim
n→∞

v∗n(L) =

c(a∗) if L(a) > γ(a) for each a ∈ A \ {a∗}

u(w) if L(a) < γ(a) for some a ∈ A \ {a∗}.
(18)

A.4.2 Maximal Leniency of Limit Thresholds

It remains to show that in (18), γ(â) = Eâ[Ln(â)] for all â ∈ argmina∈A− KL(µa, µa∗).
By the weak convergence of (v∗n) and (18), for any ε > 0 there is nε such that
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v∗n(L) ≤ u(w) + ε if L(a) ≤ γ(a)− ε for some a ̸= a∗ and n ≥ nε. Thus

lim inf
n

1

n
log Vara∗ [v

∗
n(Ln)] = lim inf

n

1

n
logEa∗ [(Ea∗ [v∗n(Ln)]− v∗n(Ln))

2]

≥ lim inf
n

1

n
logPa∗ [Ln(a) < γ(a)− ε for some a ̸= a∗](c(a∗)− u(w)− 2ε)2

= lim inf
n

1

n
logPa∗ [Ln(a) < γ(a)− ε for some a ̸= a∗] ≥ −min

a̸=a∗
inf

ℓ<γ(a)−ε
Ia∗,a(ℓ)

where the first inequality uses that Ea∗ [v∗n(Ln)] ≥ c(a∗)− ε for all large enough n and
the second inequality uses Cramér’s theorem (8). Since ε > 0 is arbitrary, we have
lim infn

1
n
log Vara∗ [v

∗
n(Ln)] ≥ −mina̸=a∗ infℓ<γ(a) Ia∗,a(ℓ).

Since Vara∗ [v∗n(Ln)] vanishes at exponential rate mina∈A− KL(µa, µa∗) (by the proof
of Theorem 1), it follows that (using (9)) that

min
a∈A−

KL(µa, µa∗) ≤ min
a̸=a∗

inf
ℓ<γ(a)

Ia∗,a(ℓ) = inf
a̸=a∗, ν∈∆(X) s.t.∫
log

dµa∗
dµa

(x)dν(x)<γ(a)

KL(ν, µa∗). (19)

Suppose for a contradiction that γ(â) ̸= Eâ[Ln(â)] for some â ∈ argmina∈A− KL(µa, µa∗).
If γ(â) > Eâ[Ln(â)], then since Eâ[Ln(â)] = −KL(µâ, µa∗) by definition of the log-
likelihood score, Lemma A.1 and the strict convexity of KL-divergence implies that

KL(µâ, µa∗) > inf
ν∈∆(X) s.t.

∫
log

µa∗ (x)

µâ(x)
dν(x)<γ(â)

KL(ν, µa∗),

which contradicts (19). If instead γ(â) < Eâ[Ln(â)], there exists a ̸= a∗ such that

γ(a) ≥ Eâ[Ln(a)] =
∫

log
dµa∗

dµa
(x)dµâ(x),

as otherwise limn→∞ Pâ[Ln(a) > γ(a) for all a ̸= a∗] = 1 by the weak law of large
numbers, which leads to a violation of (IC) at all large enough n. Let B := {ν ∈
∆(X) : KL(ν, µa∗) ≤ KL(µâ, µa∗)}. Then (19) implies that, for every ν ∈ B, γ(a) ≤∫
log dµa∗

dµa
(x)dν(x).30 Thus, γ(a) =

∫
log dµa∗

dµa
(x)dµâ(x), as µâ ∈ B. By the strict

convexity of KL-divergence, this shows that µâ is the unique point at which B is
tangent to the hyperplane {ν ∈ ∆(X) : γ(a) =

∫
log dµa∗

dµa
(x)dν(x)}. Likewise, by

30If γ(a) >
∫
log dµa∗

dµa
(x)dν(x), one can find ν′ close to ν with KL(ν′, µa∗) < KL(µâ, µa∗) and

γ(a) >
∫
log dµa∗

dµa
(x)dν′(x) (based on the convexity of KL-divergence), which violates (19).
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construction of B and Lemma A.1, µâ is the unique element in B that is tangent to
the hyperplane {ν ∈ ∆(X) : KL(µâ, µa∗) =

∫
log µa∗ (x)

µâ(x)
dν(x)}. By µa∗ ̸= µa, these

two hyperplanes are not parallel to each other. As every boundary point of B has a
unique tangent space (by strict convexity of KL-divergence), this is a contradiction.

A.5 Proof of Theorem 2

We prove the following generalization of Theorem 2 that allows for non-binary actions.
For simplicity, we assume there is a unique action â that minimizes c. We consider
the case where Assumption 1.2 is violated, in the sense that c(â) ≤ u(w). Then
the first-best cost is CFB(u, c, a∗) = h (u(w) + c(a∗)− c(â)). As in the main text, we
assume that u(w) + c(a∗)− c(â) < limw→∞ u(w), so CFB(u, c, a∗) is well-defined.

Theorem A.1. Under both general and binary contracts, the second-best cost con-
verges to the first-best exponentially at rate ρ(µ) := min{Ch(µâ, µa∗),mina∈A−\{â}KL(µa, µa∗)}:

CSB
n (µ, u, c, a∗)− CFB(u, c, a∗) = exp[−ρ(µ)n+ o(n)];

Cbin
n (µ, u, c, a∗)− CFB(u, c, a∗) = exp[−ρ(µ)n+ o(n)].

To understand the convergence rate ρ(µ), it is helpful to distinguish two cases.
First, suppose Ch(µâ, µa∗) < mina∈A−\{â}KL(µa, µa∗); intuitively, a deviation to
the least costly action â is relatively harder to detect than other deviations. In
this case, we show based on a similar intuition as in the binary-action case (The-
orem 2) that the convergence rate is Ch(µâ, µa∗). Second, suppose Ch(µâ, µa∗) >

mina∈A−\{â}KL(µa, µa∗); intuitively, a deviation to â is easier to detect than some
other deviations. In this case, we show based on a similar logic as in Theorem 1 that
the convergence rate is given by mina∈A−\{â}KL(µa, µa∗).

A.5.1 Upper Bound on Inefficiency under Binary Contracts

We first show that, as n→ ∞, Cbin
n (µ, u, c, a∗)−CFB(u, c, a∗) vanishes at least as fast

as at the exponential rate ρ(µ). For each a ∈ A−, fix some γ(a) ∈ (Ea[Ln(a)],Ea∗ [Ln(a)]).
For each a′ ∈ {a∗} ∪ A−, define pa′,n := Pa′ [Ln(a) ≥ γ(a)∀a ∈ A−]. Observe that, by
the weak law of large numbers and the choice of γ(a), we have

lim
n→∞

pa∗,n = 1 and lim
n→∞

pa,n = 0 for all a ∈ A−.

36



Consider the sequence of binary contracts (vn) given by

vn(x
n) =

v+n if Ln(a) ≥ γ(a) for all a ∈ A−

u(w) otherwise,

where v+n := u(w) + c(a∗)−c(â)
pa∗,n−pâ,n

.
Note that, up to restricting to large enough n, these contracts are well-defined,

because limn→∞ v+n = u(w) + c(a∗) − c(â). Moreover, by choice of v+n , we have
Ea∗ [vn(xn)]− c(a∗) = Eâ[vn(xn)]− c(â), i.e., (IC) holds with equality at deviation â.
Furthermore, limn→∞ Ea∗ [vn(xn)]− c(a∗) = u(w)− c(â) > limn→∞ Ea[vn(xn)]− c(a) =
u(w)−c(a) for all a ∈ A−\{â}, so deviations to any other action in A− are also subop-
timal at large enough n. Finally, the agent’s expected payoff to choosing any a ∈ A+ is
bounded above by u(w)+c(a∗)−c(â)−c(a) < u(w)−c(â) = limn→∞ Ea∗ [vn(xn)]−c(a∗).
Thus, (IC) holds for all large enough n.

For all large enough n, the difference between the principal’s cost under vn and
the first-best can be decomposed as

Ea∗ [h(vn(xn))]− h(u(w) + c(a∗)− c(â))

= Ea∗ [h(vn(xn))]− h(Ea∗ [vn(xn)]) + h(Ea∗ [vn(xn)])− h(u(w) + c(a∗)− c(a))

= Ea∗ [h(vn(xn))]− h(Ea∗ [vn(xn)]) + h (Eâ[vn(xn)] + c(a∗)− c(â))− h(u(w) + c(a∗)− c(â)),

where the second equality uses the binding (IC) against â.
As in the proof of Theorem 1, Ea∗ [h(vn(xn))]− h(Ea∗ [vn(xn)]) vanishes at least as

fast as at the exponential rate mina∈A− infℓ≤γ(a) Ia∗,a(ℓ). Moreover, for each a ∈ A−,
Lemma A.1, (9), and the continuity of Ia∗,a implies that

sup
γ>Ea[Ln(a)]

inf
ℓ≤γ

Ia∗,a(ℓ) = inf
ℓ≤Ea[Ln(a)]

Ia∗,a(ℓ) = KL(µa, µa∗) and inf
ℓ≤0

Ia∗,a(ℓ) = Ch(µa, µa∗).

Thus, by choosing γ(a) to be arbitrarily close to the maximally lenient threshold
Ea[Ln(a)] for each a ∈ A− \ {â} and setting γ(â) = 0, Ea∗ [h(vn(xn))]−h(Ea∗ [vn(xn)])
can be made to vanish at a rate arbitrarily close to the exponential rate ρ(µ).

Next, note that the rate at which h(Eâ[vn(xn)] + c(a∗)− c(â))− h(u(w) + c(a∗)−
c(â)) vanishes is the same as the rate at which Pâ[Ln(a) ≥ γ(a) ,∀a ∈ A−] vanishes.
Moreover, Pâ[Ln(a) ≥ γ(a) ,∀a ∈ A−] ≤ Pâ[Ln(â) ≥ γ(â)], and the latter vanishes at
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rate Ch(µâ, µa∗) since we set γ(â) = 0.
The previous two paragraphs imply the desired conclusion.

A.5.2 Lower Bound on Inefficiency under General Contracts

Next, we show that Cn(µ, u, c, a∗) − CFB(u, c, a∗) vanishes at most as fast at the
exponential rate ρ(µ). We consider two cases:

Case (i): ρ(µ) = mina∈A−\{â}KL(µa, µa∗). Take any a′ ∈ argmina∈A−\{â}KL(µa, µa∗).
Consider the relaxed problem where the agent’s action space is A = {a∗, a′} and his
outside option yields payoff u(w) − c(â). This is indeed a relaxation of the original
problem, as the agent’s expected utility of choosing â is no less than u(w)−c(â). Take
a sequence of optimal contracts (vn) under the relaxed problem, where we write each
vn as a weakly increasing function of Ln := Ln(a

′). Suppose for a contradiction that
the principal’s cost in this problem converges to the first-best h(u(w) + c(a∗)− c(â))

faster than at some exponential rate λ > ρ(µ) = KL(µa′ , µa∗). Observe that

Ea∗ [h(vn(Ln))]− h(u(w) + c(a∗)− c(â))

= Ea∗ [h(vn(Ln))]− h(Ea∗ [vn(Ln)]) + h(Ea∗ [vn(Ln)])− h(u(w) + c(a∗)− c(â))

≥ Ea∗ [h(vn(Ln))]− h(Ea∗ [vn(Ln)]),

where the inequality uses the (IR) constraint of the relaxed problem. Thus, Ea∗ [h(vn(Ln))]−
h(Ea∗ [vn(Ln)]) vanishes faster than at rate λ > KL(µa′ , µa∗). As in Appendix A.2.2,
this implies that (IC) fails for all large enough n, a contradiction.

Case (ii): ρ(µ) = Ch(µâ, µa∗). Consider the relaxed problem with action space
A = {a∗, â} and outside option 0. Take a sequence of optimal contracts (vn) under
the relaxed problem, where we write each vn as a weakly increasing function of Ln :=

Ln(â). Let L̂a := Ea[Ln] for a ∈ {a∗, â}. Suppose for a contradiction that the
principal’s cost in this problem converges to the first-best h(u(w) + c(a∗) − c(â))

faster than at some exponential rate λ > ρ(µ) = Ch(µâ, µa∗). Observe that

Ea∗ [h(vn(Ln))]− h(u(w) + c(a∗)− c(â))

= Ea∗ [h(vn(Ln))]− h(Ea∗ [vn(Ln)]) + h(Ea∗ [vn(Ln)])− h(u(w) + c(a∗)− c(â))

≥ Ea∗ [h(vn(Ln))]− h(Ea∗ [vn(Ln)]) + h(Eâ[vn(Ln)] + c(a∗)− c(â))− h(u(w) + c(a∗)− c(â)),

where the inequality uses (IC). Thus, both Ea∗ [h(vn(Ln))]−h(Ea∗ [vn(Ln)]) and h(Eâ[vn(Ln)]+
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c(a∗)− c(â))−h(u(w)+ c(a∗)− c(â)) vanish faster than at rate λ > Ch(µâ, µa∗). The
latter also implies that Eâ[vn(Ln)]− u(w) vanishes faster than at rate λ.

By (9) and (11), we have Ia∗,â(0) = Iâ,â(0) = Ch(µâ, µa∗). Thus, by the continuity
of the rate functions, there is an interval Γ ∋ 0 such that λ > Ia∗,â(ℓ), Iâ,â(ℓ) for all
ℓ ∈ Γ. By the same argument as in Appendix A.2.2, in order for Ea∗ [h(vn(Ln))] −
h(Ea∗ [vn(Ln)]) to vanish faster than at rate λ, we must have limn→∞ vn(L̂a∗)−vn(0) =
0. Thus, u(w) + c(a∗) − c(â) = limn→∞ vn(L̂a∗) = limn→∞ vn(0). By an analogous
argument, in order for Eâ[vn(Ln)] − u(w) to vanish faster than at rate λ, we must
have limn→∞ vn(0)− u(w) = 0. This contradicts c(a∗) > c(â).

A.6 Details for Section 4.2

A.6.1 Non-i.i.d. Signals

Consider a sequence µ = (µn) of monitoring technologies indexed by n. Fix a measur-
able signal space Z that is common across n (without loss of generality) and endowed
with some σ-finite measure ν. For each n and a ∈ A, the monitoring technology
µn specifies a (not necessarily full-support) signal distribution µna ∈ ∆(Z) that is
absolutely continuous with respect to ν, so that µna admits a density function gna .
Assume that for each a, a′ ∈ A \ {a∗}, the log-likelihood score Ln(a′) := 1

n
log

gn
a∗ (z)

gn
a′ (z)

is
well-defined µna-almost surely.

The remaining setup and assumptions on payoffs are the same as in Section 2. In
particular, the principal’s second-best cost solves

CSB
n (µ, a∗, u, c) = inf

w:Z→[w,∞)

∫
w(z) dµna∗(z)

subject to the IC and IR constraints∫
u(w(z)) dµna∗(z)− c(a∗) ≥

∫
u(w(z)) dµna(z)− c(a), ∀a ∈ A, (IC)

∫
u(w(z)) dµna∗(z)− c(a∗) ≥ 0. (IR)

The following key requirement captures that monitoring technologies become very
precise as n→ ∞: We assume that, under any chosen action a ∈ A, the distributions
of the log-likelihood score Ln(a′) for each a′ ̸= a∗ obey the large-deviation principle
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with respect to some rate function Ia,a′ : R → R+ as n → ∞. That is, for each
measurable set B ⊆ R,

− inf
ℓ∈intB

Ia,a′(ℓ) ≤ lim inf
n→∞

1

n
logPa[Ln(a′) ∈ B]

≤ lim sup
n→∞

1

n
logPa[Ln(a′) ∈ B] ≤ − inf

ℓ∈clB
Ia,a′(ℓ).

(20)

Intuitively, Ia,a′(ℓ) measures how atypical it is, under the chosen action a, for the
score Ln(a′) to take value ℓ when n is large. We impose an identification condition:
For each a ∈ A and a′ ̸= a∗, Ia,a′ is uniquely minimized by some value L̂a(a′), where
L̂a(a

′) ̸= L̂â(a
′) for a ̸= â. Thus, the distribution of Ln(a′) under a concentrates on

the deterministic limit L̂a(a′) as n becomes large, where the limit is distinct across
different actions a, thus allowing the principal to identify the agent’s chosen action
as n → ∞. We also impose the following regularity conditions: For each a ∈ A and
a′ ̸= a∗, Ia,a′ has compact level sets,31 and Ia∗,a′ is continuous at L̂a′(a′) and L̂a∗(a′).

This setting encompasses several natural examples of rich/precise monitoring data:

Example A.1 (Many signals). Suppose Z =
⋃
nX

n, i.e., n represents the number of
signals observed by the principal, as in our main model. However, beyond i.i.d. signals,
we can allow for correlated signals: The signal sequence (x1, . . . , xn) is generated by
a Markov transition matrix Ma(·|x) ∈ ∆(X) that depends on the chosen action a.
Assume for simplicity that X is finite, each Ma(·|x) has full support, and the initial
signal x1 is drawn from some full-support distribution that can depend on a and n.

This setting satisfies our assumptions, with a rate function that is the solution to
the following optimization problem (e.g., Dembo and Zeitouni, 2010):

Ia,a′(ℓ) = inf
ν∈∆(X×X)

∑
x

ν(x)KL (ν(·|x),Ma(·|x)) subject to

∑
x,x′

ν(x, x′) log
Ma∗(x

′|x)
Ma′(x′|x)

= ℓ and
∑
x′∈X

ν(x, x′) =
∑
x′∈X

ν(x′, x) for each x ∈ X,

where ν(x) :=
∑

x′′∈X ν(x, x
′′) for each x and ν(x′|x) := ν(x,x′)

ν(x)
for each x, x′ ∈ X with

ν(x) > 0. In our main model where each Ma(·|x) is independent of x, this expression
reduces to the rate function (9) from Cramér’s theorem.32 ▲

31That is, {L ∈ R : Ia,a′(L) ≤ k} is compact for each k ∈ R+.
32This is because in this case it is without loss of generality to minimize over product measures
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We can also capture a principal who, instead of observing many signals, observes
a single signal, which becomes increasingly precise as n→ ∞:

Example A.2 (Vanishing observation noise). Suppose A ⊆ R. If the agent chooses
action a, the principal observes signal x = a + κnε, where ε is a random shock that
follows the standard normal distribution.33 Under the scaling factor κn = 1√

n
, we

have

Ia,a′(ℓ) = inf
x∈R

(x− a)2

2
subject to

(x− a′)2 − (x− a∗)2

2
= ℓ. ▲

The following result extends Theorem 1 to the current setting:

Theorem A.2. Under both general and binary contracts, the second-best cost con-
verges to the first-best exponentially at rate ρ(µ) := mina∈A− Ia∗,a(L̂a(a)):

CSB
n (µ, a∗, u, c)− CFB

n (a∗, u, c) = exp[−ρ(µ)n+ o(n)];

Cbin
n (µ, a∗, u, c)− CFB

n (a∗, u, c) = exp[−ρ(µ)n+ o(n)].

To understand the convergence rate, recall that, for each a ̸= a∗, Ia∗,a(L̂a(a)) mea-
sures how atypical it is, if the chosen action is a∗, to observe the score value Ln(a) =
L̂a(a) (i.e., the limit score under a deviation to a). Thus, ρ(µ) := mina∈A− Ia∗,a(L̂a(a))

is again a measure of the detectability of the hardest-to-detect deviation. Under i.i.d.
signals, Ia∗,a(L̂a(a)) = KL(µa, µa∗), so Theorem A.2 reduces to Theorem 1. The proof
of Theorem A.2 follows similar steps as that of Theorem 1 and is presented in Online
Appendix B.1. To achieve the optimal convergence rate, we again construct binary
contracts based on the maximally lenient thresholds γ(a) ↘ L̂a(a) for each a ∈ A−.

A.6.2 Adjustable Actions

Fix T ∈ N\{0} and assume that the agent sequentially chooses T actions, a1, . . . , aT ∈
A. Each action at generates n

T
i.i.d. draws of signals, xnt = (xt,1, . . . , xt, n

T
) ∈ X

n
T , from

µat ∈ ∆(X), where we restrict attention to n that are divisible by T and impose
the same assumptions on the monitoring technology µ as in Section 2. Signals are

ν ∈ ∆(X ×X), due to the convexity of KL-divergence.
33We conjecture that we can also allow for shocks ε that follow other distributions (subject to

some assumptions).
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observed by both the principal and agent. Thus, a strategy of the agent is described
by a collection of mappings α = (αt)

T
t=1, where αt : X

(t−1)n
T → A specifies the agent’s

action at after each history of past signal realizations (xn1 , . . . , x
n
t−1) (and xn0 denotes

the empty history).
We continue to assume that the agent has additively separable payoffs, with a

consumption utility u : [w,∞) → R over money and a total cost 1
T

∑T
t=1 c(at) over

action sequences a1, . . . , aT , where u and c satisfy Assumption 1.1–2. The principal
designs a contract v : Xn → [w,∞) that specifies a one-shot utility payment v(xn) as
a function of the entire sequence xn = (xn1 , . . . , x

n
T ) of n signals. In the current setting,

the principal may want the agent to choose different actions at depending on past
signal realizations (xn1 , . . . , xnt−1). To accommodate this, instead of exogenously fixing
a target action profile, we assume that the risk-neutral principal receives a monetary
payoff 1

T

∑T
t=1 g(at) from the agent’s actions, for some function g : A→ R.

In the second-best problem, the principal jointly chooses a contract v and agent-
strategy α to maximize her payoff,

GSB
n := sup

v,α
Eα

[
1

T

T∑
t=1

g(at)− h(v(xn))

]
,

subject to the IC and IR constraints

Eα

[
v(xn)− 1

T

T∑
t=1

c(at)

]
≥ Eα′

[
v(xn)− 1

T

T∑
t=1

c(at)

]
, ∀α′, (IC)

Eα

[
v(xn)− 1

T

T∑
t=1

c(at)

]
≥ 0. (IR)

Let Gbin
n denote the principal’s value under the restriction to binary contracts.

As before, we also consider the first-best problem, which corresponds to only
imposing (IR). We assume there is a∗ ∈ A such that it is strictly optimal to set
αt(·) = a∗ for all t under the first-best problem at each n.34 Thus, the principal’s
first-best payoff is GFB = g(a∗)− h(c(a∗)).

Given a∗, we impose Assumption 1.3 and let A− := {a ∈ A : c(a) < c(a∗)} and
34For some specifications of g, u, and c, the first-best solution may require the agent to choose

different actions at depending on past signal realizations. We rule out these cases to keep the
departure from the main model parsimonious.
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A+ := {a ∈ A : c(a) > c(a∗)}. For technical convenience, we also impose the following
richness condition on µ: For each p ∈ (0, 1) and a ∈ A, there is a set of signals Y ⊆ X

such that µa(Y ) = p.35

The following result fixes T and characterizes the optimal convergence rate to the
first-best in the limit as n→ ∞:

Theorem A.3. Under both general and binary contracts, the second-best payoff con-
verges to the first-best exponentially at rate 1

T
mina∈A− KL(µa, µa∗) as n→ ∞:

GFB −GSB
n = exp[− 1

T
min
a∈A−

KL(µa, µa∗)n+ o(n)];

GFB −Gbin
n = exp[− 1

T
min
a∈A−

KL(µa, µa∗)n+ o(n)].

Theorem A.3 shows that that the optimal convergence rate is again achieved by
binary contracts, extending Theorem 1, which can be viewed as the special case T = 1.
In the proof (Online Appendix B.2), we show that achieving the optimal convergence
rate again relies on binary contracts that employ a sequence of maximally lenient tests.
As noted in the main text, the convergence rate 1

T
mina∈A− KL(µa, µa∗) is decreasing

in the frequency T of the agent’s action adjustments, but is the same as in the setting
where the agent chooses an action sequence (a1, . . . , aT ) without observing the signals
generated by past actions.
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Mira Frick, Ryota Iijima, and Yuhta Ishii

B Proofs for Appendix A.6

B.1 Proof of Theorem A.2

B.1.1 Properties of Rate Functions

Let Ia,a′ denote the rate functions associated with sequence (µn).

Lemma B.1. For each a ̸= a∗ and ℓ ∈ R, we have:

1. Ia∗,a(ℓ)− Ia,a(ℓ) = −ℓ.

2. Ia∗,a(ℓ) ≥ Ia∗,a(L̂a(a)) if ℓ ≤ L̂a(a).

Proof. First part: For any ε > 0, let Γε := [ℓ− ε, ℓ+ ε]. By the mediant inequality,

ℓ− ε ≤ 1

n
log

Pa∗ [Ln(a) ∈ Γε]

Pa[Ln(a) ∈ Γε]
≤ ℓ+ ε.

Fix any ε′ > 0. Since Ia∗,a is lower-semicontinuous, by choosing ε sufficiently small,
we have Ia∗,a(ℓ′) ≥ Ia∗,a(ℓ)− ε′ for all ℓ′ ∈ Γε. Then

lim
n→∞

1

n
log

Pa∗(Ln(a) ∈ Γε)

Pa(Ln(a) ∈ Γε)
= − inf

ℓ′∈Γε

Ia∗,a(ℓ
′) + inf

ℓ′∈Γε

Ia,a(ℓ
′)

≤ −Ia∗,a(ℓ) + ε′ + Ia,a(ℓ),

where the equality uses (20). Thus, ℓ − ε ≤ −Ia∗,a(ℓ) + ε′ + Ia,a(ℓ). Since ε, ε′ can
be chosen arbitrarily small, we have ℓ ≤ −Ia∗,a(ℓ) + Ia,a(ℓ). A symmetric argument
yields ℓ ≥ −Ia∗,a(ℓ) + Ia,a(ℓ).

Second part: Observe that for any ℓ ≤ L̂a(a) with Ia∗,a(ℓ) <∞, we have

Ia∗,a(ℓ) = Ia,a(ℓ)− ℓ ≥ Ia,a(L̂a(a))− L̂a(a) = Ia∗,a(L̂a(a)),

where the two equalities use the first part and the inequality uses Ia,a(L̂a(a)) = 0 ≤
Ia,a(ℓ).

B.1.2 Upper Bound on Inefficiency under Binary Contracts

We first show that, as n→ ∞, Cbin
n (µ, u, c, a∗)−CFB(u, c, a∗) vanishes at least as fast

as at the exponential rate ρ(µ).

1



By the first part of Lemma B.1 and the identification condition, we have −L̂a(a) =
Ia∗,a(L̂a(a))−Ia,a(L̂a(a)) = Ia∗,a(L̂a(a)) > 0 and −L̂a∗(a) = Ia∗,a(L̂a∗(a))−Ia,a(L̂a∗(a)) =
−Ia,a(L̂a∗(a)) < 0 for each a ̸= a∗. By the choice of γ(·), for each a ∈ A−,

inf
ℓ<γ(a)

Ia∗,a(ℓ) > 0 and inf
ℓ≥γ(a)

Ia,a(ℓ) > 0.

Thus, by (20),

lim
n→∞

pa∗,n = 1 and lim
n→∞

pa,n = 0 for each a ∈ A−. (21)

As in the proof of Theorem 1, we can use (21) to construct binary test contracts (vn)
with thresholds γ(a) that satisfy (IR) with equality and (IC) for large enough n. Note
that

lim
n→∞

1

n
log(1− pa∗,n) = lim

n→∞

1

n
log(Pa∗ [Ln(a) < γ(a) for some a ∈ A−])

= max
a∈A−

lim
n→∞

1

n
log(Pa∗ [Ln(a) < γ(a)])

≤ − min
a∈A−

inf
ℓ≤γ(a)

Ia∗,a(ℓ).

Thus, as in the proof of Theorem 1,

Cbin
n (µ, u, a∗, c)− CFB(u, a∗, c) ≤ Ea∗ [h(vn(xn))]− h(c(a∗))

≤ exp[−n min
a∈A−

inf
ℓ≤γ(a)

Ia∗,a(ℓ) + o(n)].

Finally, note that for each a ∈ A−,

sup
γ(a)>L̂a(a)

inf
ℓ≤γ(a)

Ia∗,a(ℓ) = inf
ℓ≤L̂a(a)

Ia∗,a(ℓ) = Ia∗,a(L̂a(a)),

where the second equality uses the second part of Lemma B.1 and the local continuity
of Ia∗,a. Thus, by choosing γ(a) arbitrarily close to L̂a(a) for each a ∈ A−, it follows
that Cbin

n (µ, u, c, a∗)−CFB(u, c, a∗) vanishes at least as fast as at the exponential rate
mina∈A− Ia∗,a(L̂a(a)) = ρ(µ).

B.1.3 Lower Bound on Inefficiency under General Contracts

Next, we show that, as n→ ∞, CSB
n (µ, u, c, a∗)−CFB(u, c, a∗) vanishes no faster than

at the exponential rate ρ(µ).
Let â ∈ argmina∈A− Ia∗,a(L̂a(a)), i.e., ρ(µ) = Ia∗,â(L̂â(â)). We consider a relaxed

problem with action set {a∗, â}. As in the proof of Theorem 1, it is sufficient to
show that the difference between the second-best cost under the relaxed problem and
CFB(u, c, a∗) cannot vanish faster than at the exponential rate Ia∗,â(L̂â(â)).

2



As in the proof of Theorem 1, we consider a sequence of optimal contracts (vn)
for the relaxed problem, where each vn is written as a weakly increasing function of
Ln. The sequence is uniformly bounded by the same argument as in Appendix A.1.2.

Lemma A.2 from the proof of Theorem 1 and its proof generalizes to the current
setting by using the general large-deviation principle (20) instead of Cramér’s theo-
rem. Lemma B.2 below generalizes Lemma A.3 to the current setting. Given this,
the remaining proof follows the same arguments as the proof of Theorem 1.

Lemma B.2. Consider any uniformly bounded sequence (vn) of contracts satisfying
(IC) under the relaxed problem. Then Vara∗ [vn(Ln)] ≥ exp[−Ia∗,a(L̂â(â))n+ o(n)].

Proof. Suppose to the contrary that Vara∗ [vn(Ln)] ≤ exp[−λn + o(n)] for some λ >
Ia∗,â(L̂â(â)). By local continuity of Ia∗,â, there is γ < L̂â(â) with Ia∗,â(γ) < λ.
Moreover, by local continuity of Ia∗,â and the fact that Ia∗â(L̂a∗(â)) = 0, there is γ >
L̂a∗(â) with Ia∗,â(γ) < λ. By (the generalized) Lemma A.2, limn→∞

(
vn(γ)− vn(γ)

)
=

0.
At the same time, for each a ∈ {a∗, â}, the fact that Ia,â achieves 0 only at L̂a(â) ∈

(γ, γ) and that the lower level sets are compact implies infγ∈(−∞,γ]∪[γ,∞) Ia,â(γ) > 0.
Thus, Pa[Ln(â) ∈ [γ, γ]] → 1 by (20). As the sequence of contracts is uniformly
bounded, this implies limn→∞ (Ea∗ [vn(Ln)]− Eâ[vn(Ln)]) = 0. Then (IC) is violated
for all large enough n, a contradiction.

B.2 Proof of Theorem A.3

B.2.1 Upper Bound on Inefficiency under Binary Contracts

We first show that, as n→ ∞, GFB−Gbin
n vanishes at least as fast as at the exponential

rate 1
T
mina∈A− KL(µa, µa∗).

For each a ̸= a∗ and t = 1, . . . , T , define

Lt,n(a) :=
T

n

n
T∑
i=1

log
dµa∗

dµa
(xt,i).

For each a ∈ A−, fix some γ(a) ∈ (Ea[Lt,n(a)],Ea∗ [Lt,n(a)]); note that the expectations
Ea′ [Lt,n(a)] do not depend on n and t. For each a′ ∈ A, define

pa′,n := Pa′ [Lt,n(a) ≥ γ(a), ∀a ∈ A−, t = 1, . . . , T ].

By the weak law of large numbers and the choice of γ(a), we have

lim
n→∞

pa∗,n = 1 and lim
n→∞

pa,n = 0 for all a ∈ A−. (22)
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Consider the recommended strategy α∗ given by α∗
1 ≡ a and, for all t = 2, . . . , T ,

α∗
t (x

n
1 , . . . , x

n
t−1) =

{
a∗ if Lτ,n(a) ≥ γ(a) for all a ∈ A−, τ = 1, . . . , t− 1

a otherwise

for some a ∈ argmina∈A c(A). Consider the sequence of binary contracts (vn) of the
form

vn(x
n) =

{
v+n if Lk,n(a) ≥ γ(a) for all a ∈ A−, k = 1, . . . , T

v−n otherwise.

Here

v+n :=
(1− pnp

T−1
a∗,n)β

∗
n − (1− pTa∗,n)βn

pT−1
a∗,n(pa∗,n − pn)

, v−n :=
pTa∗,nβn − pnp

T−1
a∗,nβ

∗
n

pT−1
a∗,n(pa∗,n − pn)

,

where

pn := max
a∈A−

pa,n, β∗
n := Eα∗

[∑T
t=1 c(at)

T

]
, βn := min

a∈A−
Eα∗

a

[∑T
t=1 c(at)

T

]
,

and α∗
a denotes the strategy defined by a one-shot deviation from α∗ to a ̸= a∗ at

t = 1. Note that, by (22),

lim
n→∞

v+n = lim
n→∞

β∗
n = c(a∗) and lim

n→∞
v−n = lim

n→∞
βn = c(a), (23)

so v+n , v−n ∈ u([w,∞)) for all sufficiently large n. Moreover, contracts (vn) satisfy

pTa∗,nv
+
n + (1− pTa∗,n)v

−
n − β∗

n = 0,

pTa∗,nv
+
n + (1− pTa∗,n)v

−
n − β∗

n = pnp
T−1
a∗,nv

+
n + (1− pnp

T−1
a∗,n)v

−
n − βn.

The first line implies that (IR) binds under strategy α∗, as the LHS is the agent’s
expected payoff under α∗. The second line ensures that one-shot deviations from α∗

to any action in A− at t = 1 are not strictly profitable for the agent.
Conditional on any history at which α∗ prescribes a, the wage becomes constant,

so the agent has no incentive to deviate. Let Un,t(a) denote the agent’s expected
total payoff from a one-shot deviation from α∗ to a ̸= a∗ at some t and history
(xn1 , . . . , x

n
t−1) at which α∗ prescribes a∗. (Note that this value is independent of the

particular history). Observe that, absent any deviation, the agent’s expected total
payoff conditional on such histories tends to 0 as n → ∞ by (22)-(23) and binding
(IR), where the convergence is uniform across histories.
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For any a ∈ A− and t ≥ 2, (22)-(23) imply

lim
n→∞

Un,t(a) =
tc(a)− c(a)− (t− 1)c(a∗)

T
< 0,

where the inequality follows from c(a) ≤ c(a) < c(a∗). Thus, there is no incentive
to deviate to actions in A− at large enough n. For any a ∈ A+ and t ≥ 1, (22)-(23)
imply

lim sup
n→∞

Un,t(a) = lim sup
n→∞

pa,n
c(a∗)− c(a)

T
+ (1− pa,n)

tc(a)− c(a)− (t− 1)c(a∗)

T
< 0,

where the inequality follows from c(a) < c(a∗) < c(a). Thus, there is no incentive to
deviate to actions in A+ at large enough n.

As in the proof of Theorem 1, we can show that 1−pa∗,n = exp[− n
T
mina∈A− infℓ<γ(a) Ia∗,a(ℓ)+

o
(
n
T

)
]. Moreover, observe that 1− pTa∗,n and β∗

n − c(a∗) also vanish at the same rate
as 1− pa∗,n. Thus,

GFB −Gbin
n

≤
T−1∑
t=1

pt−1
a∗,n(1− pa∗,n)

t(g(a∗)− g(a))

T
+ pTa∗,n

(
h
(
v+n
)
− h(c(a∗))

)
+(1− pTa∗,n)

(
h
(
v−n
)
− h(c(a∗))

)
≤

T−1∑
t=1

pt−1
a∗,n(1− pa∗,n)

t(g(a∗)− g(a))

T
+ pTa∗,n

(
h
(
v+n
)
− h(c(a∗))

)
= exp[−n

T
min
a∈A−

inf
ℓ<γ(a)

Ia∗,a(ℓ) + o
(n
T

)
],

where the last line follows from observing that

v+n − c(a∗) =
(1− pTa∗,n)(β

∗
n − βn)

pT−1
a∗,n(pa∗,n − pn)

+ β∗
n − c(a∗)

vanishes at the same exponential rate as 1− pa∗,n.
The remaining step of letting γ(a) ↘ Ea∗ [Lt,n(a)] for each a ∈ A− is analogous to

the proof of Theorem 1.

B.2.2 Lower Bound on Inefficiency under General Contracts

Next, we show that, as n→ ∞, GFB−GSB
n vanishes no faster than at the exponential

rate 1
T
mina∈A− KL(µa, µa∗).

By standard arguments, GSB
n can be written in a recursive manner by taking

the agent’s continuation value as a state variable: Let GSB
n,T+1(z) := −h(z) for each

5



z ∈ u([w,∞)). For each t = T, T − 1, . . . , 1 and z ∈ u([w,∞)) − T−t+1
T

c(A), we
inductively define GSB

n,t(z) := maxa∈AG
SB
n,t(z, a), where for each a ∈ A,

GSB
n,t(z, a) := sup

ψ:X
n
T →u([w,∞))−T−t

T
c(A)

b(a)

T
+ Ea[Gn,t+1(ψ(x

n
t ))]

subject to IC

−c(a)
T

+ Ea[ψ(xnt )] ≥ −c(a
′)

T
+ Ea′ [ψ(xnt )] ∀a′ ∈ A (24)

and promise keeping

−c(a)
T

+ Ea[ψ(xnt )] = z, (25)

where ψ(·) specifies the agent’s continuation value as a function of the realized xnt .36

The optimal value of the principal is then given by GSB
n = GSB

n,1(0).
The first-best value can be written analogously: Let GFB

n,T+1(z) := −h(z) for each
z ∈ u([w,∞)). For each t = T, T − 1, . . . , 1 and z ∈ u([w,∞)) − T−t+1

T
c(A), we

inductively define GFB
n,t (z) := maxa∈AG

FB
n,t (z, a), where for each a ∈ A,

GFB
n,t (z, a) := sup

ψ:X
n
T →u([w,∞))−T−t

T
c(A)

b(a)

T
+ Ea[GFB

n,t+1(ψ(x
n
t ))]

subject to promise keeping (25). Then GFB = GFB
n,1(0). By the richness condition on

µa, in the above problem the principal can induce any randomization over continuation
values subject to promise keeping by appropriately choosing ψ. Thus, by standard
arguments for information design problems,

GFB
n,t (z, a) =

b(a)

T
+ cavGFB

n,t+1

(
z +

c(a)

T

)
,

where cav denotes the concavification operator. Consequently, GFB
n,t is independent of

n, so we drop the subscript n and simply write GFB
t .

As we show in Appendix B.2.3 below, there is a C2 function f : u([w,∞)) −
(T−1)c(A)

T
→ R that upper-boundsGFB

2 and such that f ′ < 0, f ′′ < 0, infw f ′(w) = −∞,
and f( c(a

∗)
T

) = (T−1)b(a∗)
T

+ h(c(a∗)).
Since f(·) ≥ GSB

n,2(·), we have that GSB
n,1(0, a

∗) is weakly lower than the value of the

36The existence of an optimal policy in this problem is guaranteed by analogous arguments as in
Appendix A.1.2 when n is sufficiently large.
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problem

max
ψ:X

n
T →u([w,∞))−T−1

T
c(A)

b(a∗)

T
+Ea∗ [f(ψ(xn1 ))] =

b(a∗)

T
− min
ψ:X

n
T →u([w,∞))−T−1

T
c(A)

Ea∗ [−f(ψ(xn1 ))]

(26)
subject to (24) and (25) with a = a∗ and z = 0.

Observe that the minimization problem in (26) can be viewed as the second-
best problem of our baseline model in Section 2, by treating c(·)

T
and −f(·) as the

agent’s cost function and inverse utility function, respectively. Thus, by Theorem 1,
the difference between b(a∗)

T
+ f( c(a

∗)
T

) = b(a∗) + h(c(a∗)) and the value in (26) is
exp[− n

T
mina∈A− KL(µa, µa∗)+o(

n
T
)]. Therefore, GSB

n,1(0, a
∗) cannot converge to b(a∗)+

h(c(a∗)) = GFB faster than at rate 1
T
mina∈A− KL(µa, µa∗).

Finally, for any a ̸= a∗, we have GFB
1 (0, a) < GFB

1 (0, a∗) = GFB by the assumption
that it is strictly optimal to implement a1 = a∗ under the first-best problem. Thus,
GSB
n,1(0, a), which is weakly lower than GFB

1 (0, a), is bounded away from the first-best
GFB. Combined with the above observations, this shows that GSB

n = maxa∈AG
SB
n,1(a

∗)
cannot converge to b(a∗)+h(c(a∗)) = GFB faster than at rate 1

T
mina∈A− KL(µa, µa∗).

B.2.3 Details of Bounding GFB
2

Since by construction cavGFB
2 is a concave and decreasing function,it is dominated

by some linear and decreasing function. To ensure that the bound f can be chosen
to be appropriately concave, we make some preliminary observations.

Because it is strictly optimal under the first-best problem to implement a∗ at all
t and (t−1)c(a∗)

T
is the agent’s (on-path) continuation value, we have

cavGFB
t

(
(t− 1)c(a∗)

T
+ ε

)
= GFB

t

(
(t− 1)c(a∗)

T
+ ε

)
=

(T − t+ 1)g(a∗)

T
−h(c(a∗)+ε)

whenever |ε| is sufficiently small. This in particular implies that cavGFB
2

(
c(a∗)
T

)
=

(T−1)g(a∗)
T

− h(c(a∗), and hence

cav(GFB
2 )′

(
c(a∗)

T

)
= −h′(c(a∗) < 0 and cav(GFB

2 )′′
(
c(a∗)

T

)
= −h′′(c(a∗) < 0.

(27)
Let â be an action that maximizes b(·) among argmina∈A c(a). Since h′(z) → ∞

as z → supw u(w), we have cavGFB
T (z) = GFB

T (z) = g(â)
T

− h(z + c(â)
T
) for all large

enough z. By induction, for each t = T, T − 1, . . . , 1 and sufficiently large z,

cavGFB
t (z) = GFB

t (z) =
(T − t+ 1)g(â)

T
− h(z).

7



Thus,
cav(GFB

2 )′(z) → −∞ (28)

as z tends to the upper-bound of the range of cav(GFB
2 ). Then based on (27)-(28),

there is a C2 function f that upper-bounds GFB
2 and such that f ′ < 0, f ′′ < 0,

infw f
′(w) = −∞, and f( c(a

∗)
T

) = GFB
2 ( c(a

∗)
T

) = (T−1)b(a∗)
T

+ h(c(a∗)).
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