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John Maynard Keynes Narrates the Great Depression: His 
Reports to the Philips Electronics Firm†

Robert W. Dimand and Bradley W. Bateman    

ABSTRACT 
In October 1929, the Dutch electronics firm Philips approached John 
Maynatd Keynes to write confidential reports on the state of the 
British and world economies, which he did from January 1930 to 
November 1934, at first monthly and then quarterly. These substan-
tial reports (Keynes’s November 1931 report was twelve typed pages) 
show Keynes narrating the Great Depression in real time, as the 
world went through the US slowdown after the Wall Street crash, 
the Credit-Anstalt collapse in Austria, the German banking crisis 
(summer 1931), Britain’s departure from the gold exchange standard 
in August and September 1931, the US banking crisis leading to the 
Bank Holiday of March 1933, the London Economic Conference of 
1933, and the coming of the New Deal. This series of reports has not 
been discussed in the literature, though the reports and surrounding 
correspondence are in the Chadwyck-Healey microfilm edition of the 
Keynes Papers. We examine Keynes’s account of the unfolding 
events of the early 1930s, his insistence that the crisis would be 
more severe and long-lasting than most observers predicted, and his 
changing position on whether monetary policy would be sufficient 
to promote recovery and relate his reading of contemporary events 
to his theoretical development.

Introduction

On October 23, 1929, just as Wall Street began to crash1 and the world economy moved 
into exceptionally interesting times, Dr. H. F. van Walsem, counsel and secretary to the 
Dutch electronics firm N. V. Philips Gloeilampenfabrieken2, wrote to “J. M. Keynes, 
Esq., C.B. Cambridge” asking him to write a monthly letter to the firm’s Economic 
Intelligence Service about the state of the British economy and the world economy. 
John Maynard Keynes’s letters to Philips, monthly from January 1930 to November 
1931 and then, because of budget cuts to Philips’s Economic Intelligence Service, quar-
terly from February 1932 to November 1934, show Keynes narrating the events of the 
Great Depression as they occurred, and reveal his perception of the convulsions of the 
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world economy as he wrote his General Theory of Employment, Interest and Money 
(1936). This substantial body of Keynes’s commentary on economic fluctuations (the 
November 1931 letter alone is twelve typed, double-spaced pages) has hitherto been 
neglected in the literature on Keynes. Keynes’s reports and the associated correspond-
ence, preserved in the Keynes Papers at King’s College, Cambridge, are included in the 
1993 Chadwyck-Healey microfilm edition of the Keynes Papers (section BM/5 
Memoranda Exchanged with Business Houses), but the expense of this edition (which 
was sold only as a complete set of 170 reels of microfilm, priced at £9,700 or $17,000, 
plus $175 for a hardcover catalogue, Cox 1993) meant that only a few copies were sold. 
According to the WorldCat catalogue, there are five sets in libraries in the United States 
(Library of Congress, Harvard, Yale, Ohio State, and University of Texas at El Paso), 
two in Great Britain (Universities of Oxford and Sheffield), one in Canada (Victoria 
University in the University of Toronto) and a few in Germany (G€ottingen), Italy and 
elsewhere but surprisingly little use has been made even of these copies of Keynes’s let-
ters to N. V. Philips. Neither Moggridge (1992) nor Skidelsky (1983–2000, 2003), major 
biographies of Keynes by the authors who know the Keynes Papers best, mentions 
Keynes’s reports to Philips (but Backhouse and Bateman 2011, 129, have a paragraph 
about Keynes’s July 1930 report). As Jacqueline Cox (1995, 171) notes, the thirty vol-
umes of Keynes’s Collected Writings (1971–1989) include “only a third of the bulk clas-
sified as economic” in the Keynes Papers at King’s and do not include Keynes’s 
philosophical papers there, while “the personal papers were barely touched.” Donald 
Moggridge (2006, 136–137) observes that “There has, inevitably, been heavier use of the 
Keynes Papers in King’s College Cambridge, which have the advantage of being avail-
able elsewhere on microfilm, than, say, his papers in the National Archives or his cor-
respondence with his publishers, the last of which reveals the risks of depending on the 
Cambridge collection alone.” A vast amount of research has been done about Keynes 
and his economics, yet not all the relevant material has been explored (see Backhouse 
and Bateman 2006, Dimand and Hagemann 2019).

These reports reveal Keynes’s reading of what was happening in the British and world 
economies through the first four years of the Great Depression, and provide the empir-
ical counterpart to the record of Keynes’s theoretical development in this period given 
by notes taken by students at Keynes’s lectures from 1932 to 1935 (Rymes 1987, 1989, 
Dimand 1988, Dimand and Hagemann 2019). After the success of The Economic 
Consequences of the Peace (1919), Keynes no longer needed to be paid for lecturing, and 
so gave a single series of eight lectures each year, on the subject of whatever book he 
was writing at the time, so his lectures from 1932 to 1935 are in effect annual drafts of 
the book that became The General Theory. These lectures at Cambridge and the reports 
to N. V. Philips on what was happening in the economy provide theoretical and empir-
ical supplements to Keynes’s Collected Writings (1971–1989), respectively, in following 
Keynes’s intellectual development in the Great Depression, from A Treatise on Money 
(1930) to The General Theory (1936). In Keynes’s workload, his reports to Philips from 
1930 to 1934 took the place of the London and Cambridge Economics Service Special 
Memoranda on commodity markets that he wrote from 1923 to 1930 (Keynes [1923– 
30] 1983, 267–647), which provided an empirical counterpart to his normal backward-
ation theory of futures contracts ([1923] 1983, 1930, Chapter 29).
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Replying on October 31 to von Walsem’s letter inviting him to write the monthly let-
ter to the firm’s Economic Intelligence Service, Keynes was “quite ready to discuss this 
proposal with one of your representatives” but wished to clarify “that there will be no 
question of the publication of the letters and that they will be purely for the informa-
tion of your own people” – and that “it would not be practicable to me to undertake 
such work except in return for a somewhat substantial fee which might be higher than 
you would be willing to offer.” On November 4, von Walsem assured him that the let-
ters would not be published and “There are only two persons who, though not in our 
service, are closely related to our firm, who also receive a copy of our Intelligence 
Service which they, however, are bound to consider as absolutely confidential.” He sug-
gested £100 a year. On November 13, Keynes, having “considered your kind proposal in 
relation to the fees which I have received on previous occasions for somewhat analo-
gous work,” offered to undertake the task for an initial six months, for £150 a year3. 
Although Van Walsem had initially asked for the suggestion of other authors if Keynes 
preferred not take on the task at the suggested £100 a year, and Keynes equally point-
edly offered to suggest such alternative authors if Philips did not care to pay £150 a 
year, Van Walsem accepted Keynes’s terms for Philips on November 22: “We think it 
desirable that one of our gentlemen will see you in order to discuss some details in the 
first half of December next.”

In the event two representatives of Philips (Messrs. Sannes and du Pr�e) met with 
Keynes for a discussion summarized “for good order’s sake” by van Walsem on 
December 21, 1929 (by which time van Walsem had already received a December 18 
note by Keynes on the Australian exchange position). He recorded agreement that 
Keynes’s monthly letter would treat “some important factor in the development of the 
British economic situation and give your opinion as to its effects on trade in general 
and on our business in particular. Also you will draw our attention to important events 
in the domains especially interesting us, in so far as these come to your 
knowledge … Whenever you think it necessary you will give us your views on the situ-
ation in different parts of the British Empire or eventually of other countries. If possible 
we shall suggest [to] you special points to be considered in your letters.” Von Walsem 
wrote again on June 21, 1930 to confirm “that the arrangement has given us full satis-
faction so that we are willing to continue on the same terms” and enclosed a cheque for 
75 pounds. The arrangement also satisfied Keynes; he wrote on January 1, 1931, that “I 
have enjoyed preparing the letters.” Keynes’s letters balanced opinions about trade in 
general with observations about matters affecting Philips more specifically. Thus on 
January 11, 1930, Keynes stated that “The Factory capacity for Radio Sets seems to have 
become quite appalling during 1929” before proceeding more generally “to take this 
opportunity of emphasizing the anxiety which is felt here about the Australian 
position … I think that Australia may have more difficulties with her balance of trade 
during the coming year than the Argentine.”4

The Slump of 1930: Investment, Debts and Deflation

Keynes’s April 1930 letter suggested that, although a general improvement had not yet 
arrived, “there are a fair number of indications that we may be somewhere in the 
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neighborhood of the bottom point.” In particular, “the continuance of cheap money, 
and even more the expectation of such continuance, is bound to be effective in the situ-
ation in the course of a few months,” but the effect on employment would be slower 
than on business feeling and the Stock Exchange and “it would not be surprising to see 
British unemployment figures go on mounting even to the neighborhood of 2,000,000 
up to the end of this calendar year. … The effect of many rationalization schemes now 
in train will be for some time to come to improve profits rather than employment.” 
With a large amount of Australian gold en route to the Bank of England, “there is less anx-
iety about the British exchange position than there has been for a very considerable time 
past” and Keynes expected the creation of the Bank for International Settlements to have a 
positive effect on confidence, a foreshadowing of his emphasis at Bretton Woods on the 
importance of designing appropriate international monetary institutions. Keynes doubted 
that the Federal Reserve Board would reverse its cheap money policy “until business and 
employment in the United States is a great deal better than it is now.” This emphasis on 
expectations would be characteristic of Keynes’s General Theory (although equally in line 
with Irving Fisher’s quantity theoretic concern with expected inflation), as is the measure-
ment of the ease of monetary policy by the cheapness of money, that is, by low nominal 
interest rates. Because nominal interest rates (especially short-term rates such as the 
Treasury Bill rate) were very low in a period of deflation, the Federal Reserve Board contin-
ued to view monetary conditions as easy throughout what Milton Friedman and Anna 
Schwartz (1963) later termed the “Great Contraction” of the US money supply (during 
which the monetary base increased, but not by enough to offset the rise in currency/deposit 
and reserve/deposit ratios), despite Fisher drawing the attention of his former student, 
Federal Reserve Governor Eugene Meyer, to the statistics on the shrinkage of the money 
supply, the sum of currency and demand deposits (Cargill 1992, Dimand 2019).

On June 24, 1930, H. du Pr�e emphasized that, “In reply to your remarks about the 
character of your monthly letters, we assure you that we leave it entirely to you to judge 
in each case which are the topics which are most worth being discussed by you.” 
Nonetheless, “There is one question upon which we particularly should like to have 
your opinion.” Keynes’s monthly letters had repeatedly stated that recovery depended 
on the bond market becoming more active, with new loans being used not just for the 
refunding of floating debt but for new productive investment. “But on the other hand 
these last months many articles in the economic press” saw excessive capacity in many 
industries; “in other words that the world has first to grow into a productive apparatus 
which is too big for immediate needs. If this should be true, can a renewed investment- 
activity soon be hoped for, and if it soon comes, would it really do good? Of course 
there would be less unemployment in a number of industries; but would not prices of 
consumptive commodities, and so cost of living, rise? And especially it might turn out 
after some time, that the new activity has only added to the – supposed – actual over- 
investment, so that the disequilibrium would only be greater. It may of course be that 
entirely new industries are going to take the lead, but we do not yet see any that are 
very likely to do so. We should be much obliged if you would solve this puzzle for us 
or at least give your views on the pretended overcapacity and its probable effects on 
future developments in your next letter.” This letter sheds light on the audience for 
Keynes’s reports in the secretariat of N. V. Philips: not just salesmen looking for tips 
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about the market for radio sets in Great Britain or elsewhere, but thoughtful business-
men pondering sophisticated economic issues such as the dual nature of productive 
investment in creating demand while increasing capacity (a problem to which the war-
ranted growth rate of Harrod 1939 was an attempted solution).

In his July 1930 letter (seven typed pages, plus a six-page note on the bond market), 
Keynes warned that “it is now fully clear the world is in the middle of an international 
cyclical depression of unusual severity … a depression and a crisis of major 
dimensions … I believe that the prevailing opinion in the United States is still not pes-
simistic enough and is relying too much on a recovery in the early autumn, an event 
which is, in my opinion, most improbable. Nothing is more difficult than to predict the 
date of recovery. But all previous experience would show that a depression on this scale 
is not something from which the recovery comes suddenly or quickly.” He felt that 
“The optimism of Wall Street and the hoarding tendencies of France may prevent any 
real recovery of the International Loan Market this year” and considered whether this 
might lead to “a psychological atmosphere in which really drastic scientific measures 
will be taken by Great Britain and the United States in conjunction to do what is 
humanly possible to cause a turn of the tide next spring. But one is traveling here into 
the realm of the altogether uncertain and unpredictable.” In contrast, the Harvard 
Economic Society (founded by Harvard economics professors Charles J. Bullock and 
Warren Persons) stated in its weekly letter on June 28, 1930, that “irregular and con-
flicting movements of business should soon give way to sustained recovery” and on July 
19 that “untoward elements have operated to delay recovery but the evidence neverthe-
less points to substantial improvement” (quoted by Galbraith 1961, 150, see also Walter 
Friedman 2014).

Responding to du Pr�e’s query, Keynes reiterated that recovery would be preceded by 
“a substantial fall in the long-period rate of interest … leading in due course to the 
recovery of investment.” But now he explained that he was not thinking of investment 
in manufacturing industry, “the world’s capacity for which is probably quite ample for 
the present.” Even at the highest estimate, the total cost of bringing Britain’s industrial 
plant up to date “would not use up the country’s savings for more than, say, three 
months. Moreover, when expected profits are satisfactory the rate of expenditure by 
manufacturing industry in fixed plant is not very sensitive to the rate of interest.”

“On the other hand,” in contrast to manufacturing, “the borrowing requirements for 
building, transport and public utilities are not only on a far greater scale, but are 
decidedly sensitive to the rate of interest. If I were to put my finger on the prime trou-
ble to-day, I should call attention to the very high rate of interest for long-term borro-
wers … the long-term rate of interest is higher to-day than it has been in time of peace 
for a very long time past. When, at the same time, there is a big business depression 
and prices are falling, it is not surprising that new enterprise is kept back at the present 
level of interest.” He drew attention to “those who might be called distress borrowers, 
that is say countries which have an urgent need for borrowing to pay off existing debts, 
and are consequently ready to pay a very high rate of interest,” citing prospective 
Austrian, Hungarian and Australian loans on the London bond market, and remarked 
that “the effect of the German Loan has been to supply the French Treasury with funds, 
which it has withdrawn from the French market and is keeping unemployed in the 
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Bank of France.” Keynes’s July 1930 letter (discussed briefly by Backhouse and Bateman 
2011, 129) illuminates both his analysis of the present situation and the role of invest-
ment in his economics. His distinction between investment in manufacturing, respon-
sive to expected profit rather than interest rates, and interest-sensitive investment in 
construction, transport and public utilities clarifies his theory of investment. Increased 
investment was crucial for recovery of the world economy, and low long-term interest 
rates were necessary for high levels of investment in construction, transport and public 
utilities, the largest part of investment (even if manufacturing investment depended 
more on expected profits). In regard to the current situation, Keynes explained the 
forces getting long-term interest rates high even when prices were falling and short- 
term interest rates were low, but felt that “progress has been made toward getting the 
necessitous borrowers out of the way.” On the immediate practical level, Keynes’s dis-
tinction between the determinants of the two categories of investment dealt with du 
Pr�e’s question of how low long-term interest rates could stimulate investment given 
excess productive capacity in manufacturing. And yet, unlike Harrod (1939), Keynes’s 
July 1930 letter did not come to grips with the theoretical point raised by du Pr�e, the 
dual character of investment in creating both demand and productive capacity.

Keynes’s August 1930 letter dissented from the view widely held in the United States “even 
in responsible quarters, that we may expect an autumn recovery with some confidence … a 
good deal of the American optimism is based on analogies drawn from the date of recovery 
after the 1920-21 slump” (compare the Harvard Economic Society’s statement on August 30 
that “the present depression has about spent its force,” quoted by Galbraith 1961, 150). He 
argued that “Too much emphasis cannot be laid on the really catastrophic character of the 
price falls of some of the principal raw materials since a year ago” (even larger than appeared 
from published index numbers, because those included a number of commodities subject to 
price controls), which “must profoundly affect the purchasing power of all overseas markets.” 
Long-term interest rates remained high, reducing new capital investment. In contrast, Keynes 
considered general opinion about the British position to be “perhaps a little too pessimistic.” 
Britain was already in a difficult position before the slump of 1929 and 1930, because of the 
1925 return to the gold exchange standard at the prewar parity (over the eloquent protests of 
Keynes 1925). But the heavy unemployment in the slump was limited to textiles and heavy 
industry (iron and steel, coal, and shipbuilding), export-based sectors already hit by the return 
to gold at an overvalued exchange rate (in his December 1930 letter, Keynes stated that if tex-
tiles, iron and steel, and coal were omitted, there was practically no decline in the Index of 
Production from a year before and an improvement from two years before). Keynes explained 
that British unemployment statistics, when used in international comparisons, “probably over-
state the case” since the British statistics included “a great many workers in definite employ-
ment, but working short time … It is even the case that workers taking their normal summer 
holidays are now included in the figures of the unemployed.” According to The Economist, the 
aggregate profits of all British joint stock companies reporting their earnings in the first half of 
1930 “were not only greater than in the previous year, but were larger than in any previous 
year. This was partly due to the prosperity of British Oil Companies operating abroad, but by 
no means wholly.” Nor did Keynes share the worries of financial opinion in London (and so 
some extent his own previous letter to Philips) about “the constant dribble of gold to France.”
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In Keynes’s September 1930 letter to Philips, he was “still of the opinion that real 
recovery is a long way off. But at the same time it seems to me not unlikely that we are 
at, or near, the lowest point … It is time, therefore, to cease to be a ‘bear’, even if it is 
not yet time to be a ‘bull’.” His February 1931 letter began, “Glancing through the let-
ters of previous months, I find that they were all extremely pessimistic (with a brief 
lapse into modified optimism in September, corrected in October). Nevertheless, in the 
light of the actual course of events they were scarcely pessimistic enough. Nor do I see 
any reason for expecting any appreciable alleviation in the coming months.” His 
September 1930 letter reported that “An extraordinary example of the way in which a 
situation can suddenly turn round, when a tendency has been greatly overdone, has 
been seen on the London Stock Exchange in the last two weeks. There has been no 
recovery of business in Great Britain to account for it. The real facts are much as they 
were a month ago. But market pessimism, aided by bear operations, had brought secur-
ity prices down to an absurdly low level not justified by the circumstances … everyone 
knew in his heart that prices were falling to foolish levels. The result was that within a 
few days the prices of many leading securities had risen from 10 to 20 per cent.” The 
stock market had diverged from any level that could be construed as reflecting underly-
ing fundamentals, but then abruptly bounced back. Keynes again stressed that Britain 
was not doing as badly as the United States in the slump: the fall in the British index of 
production from the previous year “is certainly less than 10 per cent” whereas the US 
index of industrial production for July 1930 was 37% below that for July 1929.

Keynes’s 1930 “October Letter” warned that, “The catastrophic increase in the value 
of money has raised the burden of indebtedness of many countries beyond what they 
can bear … in many parts of the world the fall of prices has now reached a point where 
it is straining the social system at its foundations. Agriculturists and other producers of 
primary materials are being threatened with ruin and bankruptcy all over the world. It 
is useless to expect a recovery of markets in such conditions” (and in his February 1931 
letter he again warned that “The prospect of a long series of defaults [by debtor coun-
tries exporting raw materials] during 1931 is not be excluded”). All of the gains that 
Germany had received in the Young Plan for reparations compared to the Dawes Plan 
were obliterated because “the clause in the Dawes Plan by which her [Germany’s] liabil-
ities in terms of gold were to be modified in the event of a change in prices was not 
included in the Young Plan.” Keynes declared himself “rather more pessimistic … than 
a month ago.” He remarked that in Britain, “Very slight steps have been taken, as yet, 
in the direction of reducing wages, which is probably inevitable, but will not get anyone 
much further if all countries alike embark on wage-cutting policies.”

These themes of Keynes’s October 1930 letter to Philips, the danger of ruin and 
bankruptcy from price deflation in a world where debts are fixed in money terms and 
the futility of wage-cutting, appeared publically in his December article in The Nation 
and Atheneum on “The Great Slump of 1930” (reprinted in his Essays in Persuasion, 
1931). There Keynes (1931, 138–139) warned that, since wage and price deflation 
increases the real burden of debt and wage cuts reduce purchasing power, “neither the 
restriction of output nor the reduction of wages serves in itself to restore equilibrium” 
and went on to emphasize that “Moreover, even if we were to succeed eventually in 
reestablishing output at the lower level of money-wages appropriate to (say) the pre-war 
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level of prices, our troubles would not be at an end. For since 1914 an immense burden 
of bonded debt, both national and international, has been contracted, which is fixed in 
terms of money. Thus every fall of prices increases the value of the money in which it 
is fixed. For example, if we were to settle down to the pre-war level of prices, the 
British National Debt would be nearly 40% greater than it was in 1924 and double what 
it was in 1920; … the obligations of such debtor countries as those of South America 
and Australia would become insupportable without a reduction of their standard of life 
for the benefit of their creditors; agriculturalists and householders throughout the world, 
who have borrowed o mortgage, would find themselves the victims of their creditors. In 
such a situation it must be doubtful whether the necessary adjustments could be made 
in time to prevent a series of bankruptcies, defaults, and repudiations which would 
shake the capitalist order to its foundations” (see also Dimand 2011). Here, before 
Fisher (1932, 1933, see Dimand 2019), was the concern with the effect of deflation on 
the real value of nominal deflation that reappeared in Chapter 19, “Changes in Money 
Wages,” of The General Theory, where Keynes (1936, 264) warned that “if the fall of 
wages and prices goes far, the embarrassment of those entrepreneurs who are heavily 
indebted may soon reach the point of insolvency – with severely adverse effects on 
investment.”

Contested Budgets, Trade Balance and the Banking and Exchange Crises of 
1931

In 1930, Keynes’s “November Letter” argued that foreign opinion underestimated the 
financial strength that accompanied Britain’s industrial weakness: “it is forgotten that 
the adverse tendencies of the foreign exchanges, until recently, have been due, not to 
the absence of a favorable foreign trade balance, but to the eagerness of British investors 
to take advantage of the high profits or high rates of interest obtainable abroad. In 1929 
the British favorable balance available for new foreign investment was greater than that 
for any other country, greater even than that for the United States. The Bank of 
England’s difficulties were due to the fact that the pressure of savers to take advantage 
of opportunities abroad was even greater.” Subsequent events in Wall Street and else-
where had made overseas investment less appealing to British savers, so that the Bank 
of England was holding twenty million pounds sterling more of gold than a year before. 
In his December 1930 letter, Keynes reported that, even though “The perpetual drain of 
gold to France provides a source of nervousness and irritation in the money market” 
and although thirty million pounds sterling of gold had moved from Britain to France 
in the previous three months, the Bank of England held twenty-two million pounds 
sterling more in gold than a year before (but Keynes’s March 1931 letter reported that a 
drain of twenty million pounds sterling of gold from the Bank of England in the previ-
ous three months “causing nervous talk to prevail in London”). Despite Keynes’s 
repeated insistence on the financial strength of sterling and the growing gold reserves of 
the Bank of England (less than a year before the crisis of August and September 1931 
that forced Britain off the gold exchange standard), the underlying message was that 
capital mobility under fixed exchange rates would constrain even the Bank of England 
from trying to lower long-term interest rates to stimulate investment. Until Britain left 
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the gold standard and allowed sterling to float, Keynes’s letters to Philips monitored the 
strength of protectionist sentiment in the British Government, but he lost interest in 
tariff proposals once the exchange rate was no longer pegged (see Keynes 1931). But 
there was one bright spot for Britain: Keynes’s February 1931 letter stressed that “It 
must not be overlooked that England is gaining enormously by the tremendous drop in 
the price of her imports as compared with that of her exports.”

Keynes’s April 1931 letter to Philips is notable for explaining that Britain’s apparent 
budget deficit of £23.5 million for the fiscal year ending March 31 “is not as bad as it 
sounds, since this figure is reached after allowing for the repayment of £67,000,000 of 
debt. So that, apart from debt repayments, there was a surplus on the year’s workings 
of £43,500,000. It must be doubtful whether any other country is showing so favorable 
a result. Even if the sum borrowed for the unemployment fund, which lies outside the 
budget5, were to be deducted, there would still have on the year a net reduction of 
debt.” The next year’s was expected to be larger, but “If no debt were to be repaid, there 
would probably be no deficit, even for the forthcoming year.” Keynes’s May 1931 letter, 
reporting on the budget presented by Labor Chancellor of the Exchequer Phillip 
Snowden, noted that “there will still be some reduction of debt during the forthcoming 
year, though not on as large as a scale as formerly.” A few months later, when Snowden 
and Prime Minister Ramsay MacDonald broke with their party to join the 
Conservatives in a National Government to deal with a budget and exchange crisis, 
Snowden found it convenient to overlook that the apparent budget deficit was an arti-
fact of budgeting for a reduction in the national debt, and to denounce his former 
Labor Cabinet colleagues for endangering the savings of small depositors by having the 
Post Office Savings Bank lend to the Unemployment Insurance Fund, without men-
tioned that such loans were guaranteed by the Treasury or that he had neglected to 
inform his Cabinet colleagues of the borrowing (as Keynes indignantly explained in two 
paragraphs in the draft of his November 1931 letter, deleted from the final version).

Keynes’s May 1931 letter is also notable, in light of the subsequent exchange crisis that 
forced Britain off gold in September, for insisting that “The improvement in the sterling 
exchanges and the better gold position of the Bank of England, as it appears in the public 
returns, are not deceptive and may be assessed at even more than their face value.” He held 
that “When there is no longer serious pressure on the Bank of England’s gold, the stage 
will be set for really cheap money throughout the world … It will not mean a recovery, but 
it will pave the way for the recovery of investment which must precede the recovery of pri-
ces and profits.” Keynes again emphasized that “the fall in the prices of the commodities 
imported by Great Britain has been so much greater than the fall in the prices of her 
exports. On the visible trade balance Great Britain was £5,000,000 better off in the first 
quarter of 1931 than in either of the preceding years … Thus the main burden of the pre-
sent crisis falls on the raw-material-producing countries, and Great Britain is likely to gain 
gold in spite of the immense decline of her exports.”

By the next month, as the Credit-Anstalt collapsed in Vienna (see Schubert 1991), as 
French and American capital then took flight from Germany (see Balderston 1994), and 
as share prices slumped in London, Wall Street and on most European bourses, Keynes 
felt “that we are now entering the crisis, or panic, phase of the slump. I am inclined to 
think that we look back on this particular slump we shall feel that this phase has been 
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reached in the summer months of 1931, rather than at any earlier date.” He warned 
that “the consequences of a change in the value of money, as reflected in the prices of 
leading commodities, so violent as that which has occurred in the last eighteen months, 
cannot be regarded too gravely. Until prices show a material rise the whole fabric of 
economic society will be shaken. Each decline of commodity prices and each further 
collapse on the Stock Exchanges of the world brings a further group of individuals or 
institutions into a position where their assets doubtfully exceed their liabilities.”

Looking across the Atlantic: The American Slump

Keynes’s July 1931 letter focused on the United States, where 21% of the industrial 
population was unemployed with perhaps another 20% working only two or three days 
a week: “it is quite out of the question that there should be anything which could be 
called a true recovery of trade at any time within, say, the next nine months. The neces-
sary foundations for such a recover simply do not exist.” Many of the loans of small 
banks to farmers or secured by real estate “are non-liquid and probably impaired. Thus 
there is a strong desire for the utmost liquidity while obtainable on the part of the 
ordinary Bank; and general unwillingness to take any unnecessary risks or to embark 
on speculative enterprise, even where the risk may be actuarially a sound one. The ner-
vousness on the part of the Bankers is accompanied by a nervousness of the part of 
their depositors … So there is quite a common tendency to withdraw money from the 
banks and keep resources hoarded in actual cash … It was estimated that in the country 
as a whole as much as $500,000,000 was hoarded in actual cash in this way” (see Fisher 
1933, Friedman and Schwartz 1963, Bernanke 2000). Keynes stressed that, “The 
American financial structure is more able than the financial structure of the European 
countries to support the strain of so great a change in the value of money. The very 
great development of Bank deposit and of bondage indebtedness in the United States 
means that a money contract has been interposed between the real estate on the one 
hand and the ultimate owner of the wealth on the other. The depreciation in the money 
value of the real estate sufficient to cause margins to run off, necessarily tends therefore 
to threaten the solidity of the structure.”

Keynes reported in his July 1931 letter that although US agricultural wages had fallen 
by 20 to 25%, and there had also been large cuts to wages in small-scale industrial 
enterprises, hourly wages were practically unchanged for two thirds of the workers in 
large-scale industrial enterprises while the hourly wages of the other third had been 
reduced by some 10%. In October 1934, however, Keynes stated in his Cambridge lec-
tures that “Labor will and has accepted reductions in money wages, in the USA in 1932, 
and it will not serve to reduce unemployment” with one student’s notes calling the 
money-wage reductions “catastrophic” (Rymes 1987, 131).

Germany Defaults, Britain Abandons the Gold Parity

Turning from the United States, Keynes remarked near the end of his July letter that, “At 
the moment of writing there are heavy gold drains from London; but I do not think that 
this need be regarded with any undue alarm,” a judgment that proved too sanguine. 
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More presciently, he added “The real danger in the situation comes from the possibility 
of the declaration of a general moratorium in Germany and the collapse of the mark 
[Germany defaulted on July 15]. The repercussion of such events on the solvency of the 
banking and money market systems of the world would be most serious.” The next 
month, in his August 1931 newsletter (dated August 4), Keynes reported that “the bulk of 
the remaining short-term German debt is due to British and American banks and accept-
ing houses; many accepting houses being landed with what are certainly frozen and may 
prove doubtful debts. Their own credit has suffered with the inevitable result, since they 
were the holders of large foreign balances, of a drain of gold from London … it would 
seem to be only ordinary prudence to act on the assumption that, while worse develop-
ments in Germany are doubtless possible, even apart from this the general underlying 
position is worse than the ordinary reader of newspapers believes it to be.” While “Great 
Britain is suffering from the temporary shock to confidence due to the difficulties of the 
accepting houses,”6 the situation of the world economy as a whole was more serious: “We 
are certainly standing in the midst of the greatest economic crisis of the modern world. 
Important though the German developments have been I would emphasize that these 
have been essentially consequences of deeper causes which are affecting all countries 
alike … For there is no financial structure which can withstand the strain of so violent a 
disturbance of values.” A handwritten postscript at the end of the typed August 1931 let-
ter warns Keynes’s readers “not to be encouraged even by the appearance of apparently 
good news. The world financial structure is shaken and is rotten in many directions. 
Patching arrangements will be attempted, but they will not do much good, and it would 
be a mistake to place reliance on them.” The next day, August 5, Keynes, writing to 
Prime Minister J. Ramsay MacDonald to urge rejection of the May Report, stated that “it 
is now virtually certain that we shall go off the existing parity at no distant date … when 
doubts, as to the prosperity of a currency, such as now exist about sterling, have come 
into existence, the game’s up” (Keynes 1971–1989, Vol. XX, 591–593; Skidelsky 2003, 
446), but he did not say so in print or to Philips – and he rejected, on patriotic grounds, 
a suggestion by O. T. Falk that the Independent Investment Trust, of which Keynes and 
Falk were directors, should replace a dollar loan with a sterling loan, which Keynes con-
demned as “a frank bear speculation against sterling.” The Independent Investment Trust 
lost ₤40,000 by not switching its financing (Keynes 1971–1989, Vol. XX, 611–612; 
Moggridge 1992, 528–529; Skidelsky 2003, 447).

It was not only the world financial structure that was shaken; so was the Secretary 
Department of N. V. Philips. On August 6, 1931, H. du Pr�e wrote plaintively to Keynes, 
“Though we could hardly expect otherwise from your former letters, we note that you 
are not at all optimistic about the developments in the latter part of this year. These 
last weeks we read in the papers some statements from several Americans (among them 
people of authority), which hold a somewhat more cheerful view for the coming 
months. Must we infer from your letter that they are still, or again, too optimistic or is 
it possible that since your return from America7 there have been some improvements, 
which may lead one to expect some improvement at least for the autumn?” Even Roger 
Babson, who had made his reputation by being bearish about the stock market in 
September 1929 (as he had been since 1926), was bullish by early 1931 (see 
W. Friedman 2014).
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Keynes’s reply on August 12 crushed any hopes: “In response to your enquiry, 
nothing has happened to make me more optimistic. As regards America, I consider 
that recovery this autumn is altogether out of the question. But the minds of all of us 
are of course dominated by the European and indeed the world situation. This still 
seems to me to be, as I have already described it, more serious than the general public 
know. I should recommend as complete inaction as is possible until further crises, or 
further striking events of some kind or another have occurred to clear up the 
situation.”

Keynes’s September letter (dated September 10, 1931), after the Conservative-domi-
nated National Government displaced Labor, warned that “the hysterical concentration 
on Budgeting economy, which has also spread to the curtailment of expenditure by 
Local Authorities is calculated to produce unfavorable developments. For the wide-
spread curtailment of expenditure is certain to reduce business profits and increase 
unemployment and lower the receipts of the Treasury, whilst it will do very little to 
tackle what is the fundamental problem, namely the improvement of the British Trade 
Balance. We seem likely to be faced by a period during which the balance of trade will 
not be sufficient to give confidence to foreign depositors.”

It turned out, however, that one part of the cuts in government spending, the 
reduction in pay of the armed services, did indirectly dispose of the balance of pay-
ments problem. Since the government’s version of equal sacrifice was that a vice- 
admiral earning £5 10s a day would lose 10 shillings a day (a reduction of 1/11), while 
naval lieutenants earning £1 7s a day and able-bodied seamen earning 5 shillings a 
day should each lose a shilling a day, reductions of 1/27 and 1/5, respectively 
(Muggeridge 1940, 109n), a naval mutiny erupted at Invergordon on September 16 
(the first British naval mutiny since 1797), leading to abandonment of a fixed 
exchange rate on September 21 and a prompt 20% depreciation of sterling. Once the 
gold parity was abandoned, interest rates could be lowered without any balance of 
payments crisis. Commander Stephen King-Hall remarked “the strange combination 
of circumstances which caused the Royal Navy to be used by a far-seeing Providence 
as the unconscious means of … releasing the nation from the onerous terms of the 
contract of 1925 when the pound was restored to gold at pre-war parity … In 1805 
the Navy saved the nation at Trafalgar; it may be that at Invergordon it achieved a 
like feat” (quoted by Muggeridge 1940, 111n). As for the budget deficit, Chancellor 
Snowden, who in the preceding Labor government had steadfastly blocked any reduc-
tion in the Sinking Fund contributions for paying down the national debt, now pre-
sented a budget reducing the annual Sinking Fund contribution by £20 million. 
Keynes declared in his October 1931 letter to Philips, “Great Britain’s inevitable 
departure from the gold standard having occurred, it has been received with almost 
universal relief and in industrial circles a spirit of optimism is now abroad … Since 
the City and the Bank of England did their utmost to avoid the change, they feel that 
honor is satisfied. In other quarters the effect is to relieve a tension which was becom-
ing almost unbearable … I have no doubt at all as to the reality of the stimulus which 
British business has obtained.” Fisher (1935), assembling data on twenty-nine coun-
tries, found that recovery began only once a country abandoned the gold parity and 
was able to pursue a looser monetary policy (see Dimand 2003).
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Keynes concluded his October 1931 letter, “The general passion for liquidity is 
bringing the value of cash in terms of everything else to so high a level as to be very 
near breaking point. This does not apply to Great Britain since her crisis was a balance 
of payments crisis rather than a banking crisis strictly so called. Thus the possibility of 
a general European and American banking crisis is the main risk, the possibility of 
which has now to be borne in mind.” The US banking crisis culminated in the “Bank 
Holiday” of March 1933, while all the major German and Italian banks passed into 
government ownership.

On November 3, 1931, Dr. du Pr�e was “very sorry to say that the necessity for the 
strictest economy which makes itself felt in all departments of our concern at pre-
sent, impels us to an important curtailment of the budget of our Economic 
Intelligence Service” which would now issue bulletins every three months, instead of 
monthly. He asked Keynes for quarterly letters for £50 per annum, instead of 
monthly letters for £150 per annum. Keynes replied on November 9 that he read the 
letter “without any great surprise. I had been rather hesitating in my mind as to 
whether it is worth while to continue the arrangement on the new basis. But on the 
whole I feel that I should not like to break the friendly relations which have arisen 
between us, merely because times are bad.” He accepted the offer8, asking to be 
reminded when each quarterly report was due, and enclosed his November letter stating 
that Britain was “to a considerable extent getting the best of both worlds since broadly 
speaking the countries from which we buy our food and raw materials have followed us off 
gold, whilst our manufacturing competitors have remained on the old gold parity.”9 He felt 
that Continental observers were mistaken to think that Britain would want to return to 
gold: “Foreigners always underestimate the slow infiltration of what I have sometimes called 
‘inside opinion’, whilst ‘outside opinion’ remains ostensibly unchanged. Then quite sud-
denly what ‘inside opinion’ becomes ‘outside opinion’. Foreigners are quite taken by sur-
prise, but the change is really one which had been long prepared. In the later months of 
the old gold standard there was a hardly a soul in this country who really believed in it. 
But it was considered that it was our duty for fairly obvious reasons to do everything we 
possibly could to keep where we were.”

Keynes’s May 1932 quarterly letter stressed that, “The most important development, if 
one is thinking not so much of the moment but of laying the foundations for future 
improvement, is to be found in the return to cheap money, which was interrupted by the 
financial crisis of last summer and the departure from gold. I am more and more con-
vinced in the belief, which I have held for some time, that an ultra-cheap money phase in 
the principal financial centers is an indispensable preliminary to recovery … Nevertheless 
it would be imprudent to expect too much at any early date from the stimulus of cheap 
money. The courage of enterprise is now so completely broken, that the effect on prices of 
money however cheap will be very slow. I consider it likely, therefore, that the cheap 
money phase may be extremely prolonged and that it may proceed to unprecedented 
lengths before it produces its effect.” He concluded, “For the time being the world is mark-
ing time, – waiting for it does not quite know what. I emphasize again the fact that the 
position in Great Britain, and in some of her Dominions, is relatively good. But for the 
time being, I see no light anywhere else … It would certainly be much too soon to take 
any steps whatever to be ready for a possible revival.”
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Looking across the Atlantic: Hope from the New Deal

Keynes’s August 1932 memorandum was notable for its explanation of why US stock 
prices had risen sharply and why that need not signal an end to the industrial crisis: the 
financial crisis had driven down stock prices until “the securities of many famous and 
successful companies were standing at little more than the equivalent of the net cash 
and liquid resources owned by those companies … the assets in question would either 
be worth nothing as a result of the general breakdown of contract, or must, in any cir-
cumstances apart from that, be worth a very great deal more than their quotations. 
Consequently, it is logical and right that the fear of their being worth nothing having 
been brought to an end, there should be a rapid recovery of the quotations on a very 
striking scale. It does not need a termination of the industrial crisis, or even an expect-
ation of its early cessation, in order to justify the new levels.”

In his February 1933 memorandum, commenting on the likely futility of the pro-
jected World Economic Conference, Keynes recalled that “I have myself put forward 
more drastic proposals for an international fiduciary currency, which would be the legal 
equivalent of gold. If this were agreed to, the position would be so much eased that 
various other desirable measures would also become practicable. I do not despair of 
converting British opinion to such a plan, but I am told that continental opinion would 
be almost unanimously opposed it.” Keynes had contemplated such proposals long 
before Bretton Woods.

Keynes’s August 1933 memorandum (actually mailed July 20, before Keynes left for 
holidays) held that “My own view is that President’s Roosevelt’s programme is to be 
taken most seriously as a means not only of American, but of world recovery. He will 
suffer set-backs and no one can predict the end of the story. But it does seem fairly 
safe to say that his drastic policies have had the result of turning the tide in the direc-
tion of better security not only in the United States, but elsewhere … Perhaps in the 
end President Roosevelt will devalue the dollar in terms of gold by 30 or 40 per cent.” 
His November 1933 memorandum regretted “the failure of the President during his 
first six months to act inflation as well as talk it. In actual fact Governmental loan 
expenditure in the United States up to the end of September was on quite a trifling 
scale” but since then it seemed to be increasing: “if during the next six months the 
President is at last successful in putting into circulation a large volume of loan 
expenditure, I should expect a correspondingly rapid improvement in the industrial 
prosperity of America. This, if it occurs, would have a great influence on the rest of 
the world and especially on Great Britain … it might pave the way for a rate of 
improvement sufficiently rapid to deserve the name of real recovery.” Keynes’s 
February 1934 memorandum reported that in the United States “everything is moving 
strongly upwards. This is to be largely attributed to the fact that Governmental loan 
expenditure is now at last occurring on a large scale … the disbursement by the 
American Treasury of new money against borrowing has reached or is approaching 
$50,000,000 weekly and should maintain this rate for a few months to come.” In his 
August 1934 memorandum, having visited the United States since his May memoran-
dum, he found there “a recession which is somewhat more than seasonal,” aggravated 
since his visit by a “failure of the corn crop … so acute as to be little short of a 
national disaster” but the actual and prospective level of US Government loan- 
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financed expenditure made him optimistic about prospects for the US economy in the 
autumn and winter. He also reported that “the view is generally held in Great Britain 
that the gold block countries – including Holland not less than the others – cannot 
permanently maintain their present parity with gold without a disaster. Now or later 
it seems to us certain that the necessity for devaluation will be admitted.” The reports 
end with Keynes’s November 1934 memorandum, with no correspondence in the 
Keynes Papers concerning the end of his relationship with the Philips firm.

Conclusion: The Message of Keynes’s Reports to Philips

Keynes’s letters to the Philips electronics firm reveal he perceived events in the British 
and world economies from the beginning of 1930 through November 1934, and provide 
pungent and insightful commentary. These reports high-light the importance to Keynes 
of cheap money as a stimulus to investment – he was not just concerned with fiscal pol-
icy as the means to recovery, however much he placed emphasis from 1933 onward on 
the loan-financed expenditure of the Roosevelt Administration in the US. Keynes’s 
response to a query from du Pr�e is particularly interesting about Keynes’s distinction 
between those investment expenditures that are sensitive to interest rates and those that 
are not. The reports stress a theme discussed more briefly in Keynes’s 1931 Harris 
Foundation lectures in Chicago (in Wright, ed., 1931) and in Chapter 19 of The 
General Theory, and at greater length by Irving Fisher (1932, 1933) (and later by 
Hyman Minsky 1975): since debt are contracted in nominal terms, a rise in the pur-
chasing power of money increases the risk of bankruptcy, repudiation and default – and 
it is not just actual defaults that are costly, but also the perception of increased riski-
ness. Keynes recognized the exceptional seriousness of the Depression, dissenting firmly 
from predictions of an early recovery, and he saw clearly how defending overvalued 
gold parities forced central banks to keep interest rates high, instead of pursuing ultra- 
cheap money to restore investment. This hitherto-neglected body of evidence allows one 
to watch the unfolding of the world economic crisis of the early 1930s through Keynes’s 
eyes, extraordinary events as viewed and narrated by an extraordinary economist. At 
£12 10s per report (by no means a trivial sum at the time), N. V. Philips certainly got 
their money’s worth.

Notes
1. “Thursday, October 24, is the first of the days which history – such as it is on the subject – 

identifies with the panic of 1929” (Galbraith 1961, 103–104), but already on Monday, 
October 21, Irving Fisher had characterized the fall in stock prices as just the “shaking out of 
the lunatic fringe” and on Tuesday, Charles Mitchell of the National City Bank declared that 
“the decline has gone too far” (Galbraith 1961, 102).

2. Philips Incandescent Lamp Works, later Philips Electronics, successor to a firm founded by 
Lion Philips (originally Presburg), maternal uncle of Karl Marx (Gabriel 2011, 44, 110, 291- 
93, 295, 299, 315, 334, 366). Although relations between uncle and nephew were “strained by 
politics” (Gabriel 2011, 291), Mary Gabriel (2011, 299) refers to Marx’s “fund of last resort, 
his uncle … He had sold himself to this pragmatic businessman as a successful writer only 
temporarily short of cash.” Gabriel (2011, 642) remarks that “Marx’s dabbling in the stock 
market has been questioned by some scholars, who believe he may simply have wanted his 
uncle to believe he was engaged in ‘capital’ transactions, not Capital.” After the death of Lion 
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Philips, his sons did not reply to Marx’s letter asking for help with his daughter Laura’s 
wedding (Gabriel 2011, 364). Anthony Sampson (1968, 95) reported that the firm’s chairman 
Frits Philips was “a keen Moral Rearmer and a fervent anti-communist, embarrassed by the 
fact that his grandfather was a cousin of Karl Marx.”

3. For a sense of what £150 a year might have meant to Keynes: Moggridge (1992, 508, 585) 
and Skidelsky (2003, 417–418, 519, 565) report that Keynes’s net worth fluctuated from 
£44,000 at the end of 1927 to £7,815 at the end of 1929, then rising to over £506,222 at 
the end of 1936, dropping again to £181,244 at the end of 1938. The offer from Philips 
came at a particularly low point in his finances. According to Skidelsky (2003, 265) 
“investment, directorship and consultancy income” accounted for more than 70% of 
Keynes’s income between 1923-24 and 1928-29 (including £1,000 a year as chairman of 
National Mutual Life Assurance), books and articles for another 20%, leaving no more than 
a tenth of income from such academic sources as teaching, examining, being secretary of 
the Royal Economic Society and editor of its journal, and being Bursar and a Fellow of 
King’s College.

4. However, writing to Keynes on January 21, H. du Pr�e was moved “to remark that the latest 
figures from the Argentine which, according to the handwritten note at the bottom of your 
letter, you intended to enclose, were not received here, so that we cannot give you an 
opinion about their importance for us.”

5. When the majority report of the May Committee on National Expenditure projected on July 
31, 1931, that the budget deficit for 1931-32 would be £120 million, necessitating £96 million 
of cuts to unemployment benefits, road construction, and government and armed forces pay, 
it counted all borrowing by the Unemployment and Road funds as “public expenditure on 
current account” as well as “the usual provision for the redemption of debt” of £50 million 
(Winch 1969, 126–130). Keynes accused the majority on the May Committee of not “having 
given a moment’s thought to the possible repercussions of their programme, either on the 
volume of unemployment or on the receipts of taxation” – he estimated it would add 
250,000 to 400,000 to the unemployed, and reduce tax receipts by £70 million (New 
Statesman and Nation, August 15, 1931; Keynes 1971-89, Vol. IX, 141–145; Winch 1969, 130, 
Skidelsky 2003, 446).

6. With regard to Britain, Keynes noted that “There is, however, tremendous pressure of public 
opinion towards the Government Economy, which means in the main a reduction in the 
salaries of Government employees and of the allowances of the unemployed. It is equally 
difficult for the present [Labour] Government either to refuse or concede concessions to this 
trend of opinion. But if a movement in this direction takes place, which is still most 
doubtful, it remains exceedingly open to argument whether the result on the actual level of 
unemployment will be favourable.”

7. Keynes had given three Harris Foundation Lectures on “An Economic Analysis of 
Unemployment” at the University of Chicago in June and July 1931, published in Quincy 
Wright, ed. (1931), and reprinted in Keynes (1971-89), Vol. XIII. These lectures mostly 
expounded the analysis of Keynes’s Treatise, but the third lecture also examined the debt- 
deflation process, the undermining of the financial structure by an increase in the real value 
of debts and fall in the nominal value of collateral (Keynes 1971-89, Vol. XIII, 359–361, see 
Dimand 2011).

8. He also raised a “small personal matter”, asking for advice on buying a new wireless set that 
would “have a thoroughly good loud speaker, both for voice and music reproduction and 
should be able to pick up distant stations such as Moscow.”

9. A passage crossed-out in the draft of Keynes’s November 1931 letter, in the section 
discussing the general election, stated that, “As has been the case in the last three or four 
General Elections, it is that old wretch Lord Rothermere [publisher of the Daily Mail] who 
has been dead right. It is said that he has made a profit on the crisis of £100,000, buying 
majorities on the Stock Exchange.” Skidelsky (2003, 472) relates that Keynes “consistently 
lost money (his own and his friends’) on the results of general elections.”
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We study dynamic matching in exchange markets with easy- and hard-to-match agents. A greedy
policy, which attempts to match agents upon arrival, ignores the positive externality that waiting agents
provide by facilitating future matchings. We prove that the trade-off between a “thicker” market and faster
matching vanishes in large markets; the greedy policy leads to shorter waiting times and more agents
matched than any other policy. We empirically confirm these findings in data from the National Kidney
Registry. Greedy matching achieves as many transplants as commonly used policies (1.8% more than
monthly batching) and shorter waiting times (16 days faster than monthly batching).
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1. INTRODUCTION

We study how to optimally match agents in a dynamic random exchange market. Faster matching
of agents reduces waiting times, but at the same time makes the market thinner, leaving more
agents without a compatible partner. This trade-off naturally arises for kidney exchange platforms
that seek to form exchanges between patient–donor pairs, whose patient cannot receive the donor’s
organ.1 Waiting to match may increase the number of patients receiving a kidney, but this comes
at a cost: receiving a transplant earlier not only improves the quality of life for the patient but
also leads to substantial savings in dialysis costs for society.2 In the last decade, kidney exchange

1. For some early work on kidney exchange in static pools and the importance of creating a thick marketplace,
see Roth, Sönmez and Ünver (2004, 2007).

2. The savings from a transplant over dialysis is estimated by over $270,000 per year over the first 5 years
(Held, McCormick, Ojo and Roberts, 2016).

The editor in charge of this paper was Andrea Galeotti.
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platforms in the US gradually moved from matching roughly every month to matching daily.3

Practitioners are concerned that this behaviour, some of which is driven by competition between
kidney exchanges, is harmful, especially for the most highly sensitized patients. In contrast,
kidney exchange programs in Canada, Australia, and the Netherlands match periodically every 3
or 4 months (Ferrari, Weimar, Johnson, Lim and Tinckam, 2014).

This article analyses the trade-off between agents’ waiting times and the percentage of matched
agents in dynamic markets. We find that, maybe surprisingly, matching greedily minimizes the
waiting time and simultaneously maximizes the chances to find a compatible partner for all agents
in sufficiently large markets. We further quantify the inefficiency associated with other commonly
used policies like monthly matching using data from the National Kidney Registry (NKR).

To analyse this question, we propose a stochastic compatibility model with easy-to-match and
hard-to-match agents. Easy-to-match agents can match with each other with probability q>0 and
with hard-to-match agents with probability p>0, whereas hard-to-match agents can match only
with easy-to-match agents with probability p>0. The main focus of our analysis is on the case
where the majority of agents are hard-to-match, which is in line with kidney exchange pools.
This compatibility model captures two empirical regularities of the patient–donor data from the
NKR. First, as the market grows large, the fraction of patient–donor pairs that are matched in
a maximal matching does not approach 1, which is a consequence of the imbalance between
different pairs’ blood types in kidney exchange (Saidman, Roth, Sönmez, Ünver and Delmonico,
2006; Roth et al., 2007). Second, as the market grows large, the fraction of agents that cannot be
matched in any matching goes to zero.4 Our parsimonious two-type model captures the above
regularities and no single-type model can account for both of them (Propositions 1 and 2).

We study a dynamic model based on the two-type compatibility structure in which easy-
and hard-to-match agents arrive to the market according to independent Poisson processes with
rates mE and mH . Agents depart exogenously at rate d. The market-maker observes the realized
compatibilities and decides when to match compatible agents. We evaluate a policy based on two
measures: match rate and waiting time. The match rate is the probability with which an agent
is matched. The waiting time is the average difference between the time an agent arrives and
the time she leaves, matched or unmatched. Our two-type model captures the potential trade-off
between match rates and waiting times that concerns practitioners in an intuitive way: matching
quickly could lead to easy-to-match agents being paired with each other thereby making it more
difficult for hard-to-match agents to find a partner and thus potentially decreasing the overall
match rate.

We start by analysing the greedy policy, which matches every agent upon its arrival if possible.
We derive the distribution of the number of hard- and easy-to-match agents waiting in the market
in steady state. As the market grows large, many hard-to-match agents will wait in the market
for a compatible partner at any point in time. Consequently, almost every easy-to-match agent is
matched with a hard-to-match agent immediately upon arrival and the probability that an easy-
to-match agent leaves the market unmatched converges to zero (Proposition 3). As their match
rate is close to one and their waiting time is close to zero, the greedy policy is asymptotically
optimal for easy-to-match agents in large markets. As hard-to-match agents are incompatible
with each other and almost every easy-to-match agent is matched with a hard-to-match agent, the
greedy policy also maximizes the match rate of hard-to-match agents. Perhaps less intuitively, the
greedy policy minimizes the waiting time of hard-to-match agents compared to any other policy

3. The NKR and the Alliance for Paired Donation (APD) search for matches on a daily basis, whereas the United
Network for Organ Sharing (UNOS) searches for matches twice per week.

4. A patient–donor pair cannot be matched in any matching if it cannot form a (two-way) exchange with any other
patient–donor pair due to biological compatibility.
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when the market grows large (Proposition 4). This holds since the greedy policy matches weakly
more hard-to-match agents than any other policy. Little’s law implies that the average number of
hard-to-match agents waiting in the market is proportional to their waiting time and thus that the
greedy policy will perform weakly better than any other policy in a sufficiently large market.

The main challenge in the proof is analysing the steady-state distribution of a two-dimensional
Markov chain which keeps track of the number of easy- and hard-to-match agents waiting in
the market. Using the Lyapunov function method, we show that the stationary distribution is
concentrated around the solution of a fixed-point equation that describes the average numbers
of easy- and hard-to-match agents waiting in the pool. These concentration bounds allow us to
compute the agents’ match rate and waiting time.

Next, we quantify the inefficiency associated with batching policies, which are commonly
used. A batching policy periodically (e.g. monthly) matches as many agents as possible. We
derive the waiting time and match rate under batching policies in large markets. Batching less
frequently decreases the match rate and increases the waiting time. Therefore, in a large market,
greedy matching dominates any batching policy with a fixed batch length, as it leads to strictly
shorter waiting times and strictly higher match rates. We also compare batching and greedy
matching in finite markets, where batching may outperform greedy matching. We find that for
parameters in line with our kidney exchange application batching policies need to match more
frequently than daily to not be outperformed by greedy matching.

We also analyse the patient policy introduced by Akbarpour, Li and Gharan (2020). This
policy assumes that agents’ exogenous departure times are observable. It matches an agent at her
departure time if possible, and otherwise the agent leaves the market unmatched. We show that the
patient policy leads to the same match rate as the greedy policy when the market becomes large. In
both policies almost all easy-to-match agents are matched almost upon arrival in a large market.
Moreover, hard-to-match agents wait longer (in first-order stochastic dominance) under the patient
policy compared to the greedy policy. Quantitatively, the waiting time of hard-to-match agents
under the greedy policy equals the waiting time under the patient policy multiplied by

(
1− mE

mH

)
where mE and mH are the arrival rates of easy- and hard-to-match agents. For example, when
one-third of agents are easy-to-match (2mE =mH ), hard-to-match agents will wait twice as long
under the patient policy.

Finally, we test whether the large-market predictions of our model hold in data from the
NKR. These data differ from our assumptions along two dimensions: first, because of blood
and tissue types, it does not match our stylized two-type compatibility structure. Second, it is
unclear that the market is sufficiently large for our results to apply because only a finite number
of agents arrive every year (around 360/year). Nevertheless, the data confirm the predictions of
our model (Section 5): As the market becomes large, the waiting times of patient–donor pairs
who are “easier” to match approach 0, but the waiting times of “harder” to match pairs do not.
Moreover, batching policies result in no improvement to the match rate and lead to longer waiting
times relative to greedy matching (c.f. Table 1). Finally, waiting times under the greedy policy
are significantly lower than under the patient policy. At the same time, we do not find significant
differences between the match rates under greedy and patient policies (Table 1 and Figure 9).

As mentioned earlier, practitioners expressed concerns that kidney exchange platforms in the
US are adopting greedy algorithms, arguably due to competition.5 That is, matching greedily
can potentially squeeze the liquidity generated by easy-to-match pairs in an inefficient manner.

5. See Ashlagi, Bingaman, Burq, Manshadi, Gamarnik, Murphey, Roth, Melcher and Rees (2018) who write:
“..competition among KPD programs to produce transplants may have incentivized programs to perform match runs at high
frequency, which raises a major concern that such frequent matching may lead to fewer transplants.” Gentry and Segev
(2015) raise similar concerns motivated by match failures: “...registries forced by competition to perform match runs very
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TABLE 1
Fraction of pairs matched and average waiting times in days over all pairs in simulations using NKR data

Arrivals
Match rate (%) Waiting time in days

per day Greedy Patient Batching Greedy Patient Batching
7 days 30 days 60 days 7 days 30 days 60 days

0.01 10.7 11.9 10.4 9.9 9.3 322 355 322 324 326
0.05 22.4 23.4 22.2 21.2 20.2 279 324 280 283 288
0.25 34.3 35.4 33.8 32.6 31.2 237 298 238 243 248
0.5 38.5 39.5 38.0 36.8 35.2 222 290 223 228 233
1 42.0 43 41.6 40.2 38.6 209 283 210 215 221
2 45 45.8 44.5 43.1 41.5 198 278 200 205 211
4 47.2 48 46.8 45.4 43.6 190 274 192 196 207

Our theory combined with simulations suggest that matching greedily is not a real source of
inefficiency.

1.1. Related literature

Closely related literature studies dynamic matching on networks when agents’ preferences
are based on compatibilities, motivated by kidney exchanges. This literature, initiated by
Ünver (2010), can be organized into two perspectives. The first perspective seeks to
minimize waiting times in models where agent do not depart exogenously (Ünver, 2010;
Anderson, Ashlagi, Gamarnik and Kanoria, 2017; Ashlagi, Burq, Jaillet and Manshadi, 2016).
The key finding in this literature is that greedy matching minimizes the average waiting time.
The second perspective is concerned with how many agents are matched. Akbarpour et al. (2020)
consider a model with exogenous departures, in which each agent is compatible with any other
agent with a fixed probability. They find that the patient policy leads to an exponentially smaller
loss rate (i.e. fraction of unmatched agents) compared to the greedy policy.6

Each of these perspectives studies one of two objectives: minimizing the time until an agent
is matched, or minimizing the number of agents that leave the market unmatched. The two
perspectives lead to different conclusions about the optimality of the greedy policy and suggest a
trade-off between matching agents quickly and matching as many agents as possible. This article
contributes by studying this trade-off and showing that it vanishes in large kidney-exchange
markets with asymmetric agents. Technically, our article is the first to analyse a model with
both exogenous departures and heterogeneous agents. We further contribute by analysing the
distribution of waiting times rather than just averages and by providing an analysis of finite
markets.

The effectiveness of thickening the market by waiting to increase the number of matches
has also been studied in markets other than kidney exchanges. Liu, Wan and Yang (2018)
compare the match rates of greedy and patient policies in ride-sharing markets for matching
drivers with passengers and find that the waiting increases market thickness and average match
quality but decreases the number of matches. Finally, recent and indirectly related papers study
dynamic matching when agents have preferences beyond compatibility and find that greedy
policies are sometimes inefficient since some waiting can improve the quality of matches
(Doval, 2014; Ashlagi et al., 2019; Baccara et al., 2020; Mertikopoulos, Nax and Pradelski,
2020; Blanchet, Reiman, Shah and Wein, 2020).

frequently cannot take advantage of mathematical optimization, and likely fewer transplants are accomplished nationwide
as a result.”

6. The differences with Akbarpour et al. (2020) are discussed in detail in Section 6.
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Figure 1

Average percentage of pairs without a compatible partner (dashed) and the percentage matched in a maximum matching

(solid). The average for every fixed pool size on the horizontal axis is computed by random sampling from the

combined data set from NKR, APD, UNOS, and Methodist at San Antonio.

2. THE COMPATIBILITY GRAPH

A kidney exchange pool can be represented by a compatibility graph G. Each node in the graph
represents an agent (a patient–donor pair), and a link between two nodes exists if and only if the
two corresponding agents are compatible with each other (so a bilateral exchange between the
nodes is feasible). We restrict attention to bilateral exchanges.

A matching μ is a set of non-overlapping compatible pairs of agents. Denote by M(G) the set
of matchings in G.7 For every compatibility graph G let |G| denote the number of agents in the
graph, and for every matching μ let |μ| denote the number of agents in that matching.

Define the (normalized) size of the maximum matching (SMM) in a graph G to be the fraction
of matched agents in a maximum matching:

SMM= max
μ∈M(G)

|μ|
|G| .

Define the fraction of agents without a partner (FWP) to be the fraction of agents that are not
matched in any matching (thus have no compatible agent):

FWP= |{i∈G : (i,j) /∈M(G) for all j}|
|G| .

Figure 1 depicts the expected SMM and FWP for a subset of a given size drawn uniformly at
random from the patient–donor population acquired from the National Kidney Registry (NKR),
the Alliance for Paired Donation (APD), and the United Network for Organ Sharing (UNOS)
and Methodist at San Antonio. These data include 4992 patient–donor pairs.8 The data allow

7. The article restricts attention to matching only pairs of agents and not through chains. For the effect of matching
through chains see, e.g., Ashlagi, Gilchrist, Roth and Rees (2011) and Anderson et al. (2017).

8. Each data set includes pairs from a different period of time, but no earlier than 2007. The data from NKR, APD
and Methodist were obtained directly and is not publicly available. The data from UNOS can be obtained directly from
the Organ Procurement and Transplantation Network (OPTN), a contractor for the US Department of Health and Human
Services.
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Figure 2

The random compatibility model.

to verify whether each patient and donor are virtually compatible, and therefore whether two
pairs can match. Two features stand out: first, even as the market grows large, the SMM stays
bounded away from 1, i.e., SMM<1. This is a natural consequence of the different blood types
(Roth et al., 2007). Second, when the market grows large, the fraction of pairs that have no
compatible pairs decreases. Roughly, 5.5% of pairs are incompatible with any other pair in these
data (FWP).9 Since compatibility depends only on the characteristics of the patients and donors,
it is independent of pool size, and thus in a sufficiently large pool one would expect that the FWP
would further decrease to zero.

Fact 1. As the kidney exchange patient–donor pool grows large, the compatibility graph
(Figure 1) is such that the size of the maximal matching (SMM) stays bounded away from 1
and the fraction of patient–donor pairs without a compatible partner (FWP) becomes small.

The change in both the SMM and FWP measures captures the benefit of a larger market. Since
a matching policy in a dynamic environment trades off the benefits of a larger market with the
waiting costs incurred by the agents, having a model that accurately represents the SMM and the
FWP is important to correctly describe the costs and benefits of waiting to match.

2.1. A two-type compatibility model

To capture the features of kidney exchange identified in Fact 1, we adopt a stylized and tractable
model with random compatibilities. There are two types of agents, easy-to-match or hard-to-
match, denoted by E and H, respectively. There are more hard-to-match than easy-to-match
agents. Any pair of hard-to-match and easy-to-match agents are compatible independently with
probability p>0, any pair of easy-to-match agents are compatible independently with probability
q>0, and no pair of hard-to-match agents are compatible with each other (Figure 2).

Proposition 1 shows that this simple model is indeed able to capture the features of real kidney
exchanges identified in Fact 1.

Proposition 1. Consider a compatibility graph with m easy-to-match agents and (1+λ)m hard-
to-match agents where λ>0. Compatibilities between pairs of agents are generated as described
in Section 2.1. Then, as m grows large SMM= 2

2+λ and FWP=0 hold with high probability.10

That the size of the maximal matching cannot exceed 2
2+λ is intuitive: since H agents cannot

match with each other and there are more H agents than E agents, some H agents must remain

9. In practice, some patients can receive a kidney from blood-type incompatible donors due to advanced technology.
For the sake of simplicity, we ignore this in our simulations, but it is worth noting that the FWP drops to less than 3%
when this form of compatibility is allowed.

10. We say a sequence of events E1,E2,... hold with high probability when limk→∞P[Ek]=1.
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unmatched when the pool is large. An upper bound on the fraction of agents that can be matched
equals twice the fraction of E agents 1

2+λ . Furthermore, note that this fraction is achieved whenever
there exists a matching in which all E agents are matched with H agents. It follows from a standard
result in random graph theory that the probability that such a “perfect matching” exists approaches
1 as the pool grows large. Furthermore, as the pool grows large, any H agent will be compatible
with some E agent, since compatibilities between agents are drawn independently. Thus, the FWP
converges to 0. The parameter λ of the model measures the degree of imbalance between hard-
and easy-to-match agents. So λ=0 corresponds to a balanced pool. Figure 1 suggests that the
size of the maximal matching in the data converges to roughly 60% when the pool becomes large,
implying that λ≈1.33 in the context of our model.

Proposition 1 establishes that our two-type model can match the empirical behaviour of the
SMM and FWP measures observed in Fact 1. Proposition 2 establishes that no model with a single
type can replicate the empirical features of real kidney exchanges that the size of the maximal
matching is less than one while the FWP goes to zero, even when allowing the probability of
compatibility between two agents to depend on the market size in arbitrary ways.

Proposition 2. Consider a model with m homogeneous agents, in which every pair of agents
are compatible independently with probability p(m)>0 that may depend on the market size. The
following two conditions cannot be satisfied simultaneously:

lim
m→∞E[SMM]<1,and (1)

lim
m→∞E[FWP]=0. (2)

The proof is constructive. It begins with assuming that every agent has a compatible partner
when the pool grows large, i.e., (2) is satisfied. It then introduces an algorithm which constructs
a matching that includes all agents with high probability as the pool grows large. This implies
that (1) and (2) cannot hold together in any random graph model with homogeneous agents.

Economically, this observation implies that heterogeneity of agents plays a major role in
kidney exchanges.11 Our two-type model is arguably the simplest random compatibility model
that captures these features of the compatibility graph. It may be useful to illustrate the connection
with kidney exchanges while restricting attention to blood-type compatibilities. One may think
of A–O and O–A patient–donor pairs as easy- and hard-to-match, respectively. More generally
patient–donor pairs with blood types X–O for X �=O, AB–A, and AB–B are blood-type compatible
with a pair of the same category and can be considered as easy-to-match, whereas those with blood
types O–X for X �=O, A–AB, and B–AB are not, and hence can be considered as hard-to-match.
Typical exchange pools have fewer easy-to-match than hard-to-match pairs simply because a
patient who is compatible with her intended donor will be transplanted directly. For example, an
A patient and her intended O donor may be compatible and would not join the exchange (they
only need to join if they are tissue-type incompatible).

3. DYNAMIC MATCHING

We embed the static compatibility model from Section 2.1 in a dynamic model that allows to study
matching policies in a dynamic setting. We consider an infinite-horizon dynamic model, in which

11. This is consistent with Roth et al. (2007) and Agarwal, Ashlagi, Azevedo, Featherstone and Karaduman (2019),
who demonstrate that the types of patients and donors play a crucial role for efficiency.

1090 REVIEW OF ECONOMIC STUDIES

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/90/3/1084/6653316 by Yale U

niversity School of M
edicine user on 09 February 2024



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[19:06 19/12/2022 OP-REST220045.tex] RESTUD: The Review of Economic Studies Page: 8 1–41

agents can match bilaterally. Easy-to-match agents arrive to the market according to a Poisson
process with rate m, and hard-to-match agents arrive to the market according to an independent
Poisson process with rate (1+λ)m. We assume that the majority of agents are hard-to-match, that
is λ>0, unless explicitly stated otherwise. We sometimes refer to m as the market size.

An agent that arrives to the market at time t becomes critical after Z units of time in the
market, where Z is distributed exponentially with mean d, independently between agents. We
refer to 1/d as the criticality rate. The latest an agent can match is the time she becomes critical,
t+Z; immediately after this time the agent leaves the market unmatched. The planner observes
when an agent gets critical and can attempt to match the agent immediately at that time before
she departs.12

Matching policies. Denote by Gt the compatibility graph induced by the agents that are
present at time t. A dynamic matching policy selects at any time t a matching μt ∈M(Gt),
which may be empty. Whenever a non-empty matching is selected, all matched agents leave the
market.

Several kidney exchange platforms in the US attempt to match pairs as soon as they arrive to
the market (Ashlagi et al., 2018). A tractable approximation of this behaviour is a greedy policy.

Definition 1 (Greedy) In the greedy policy, an agent is matched upon arrival with a compatible
agent if such an agent exists. If she is compatible with more than one agent, H agents are prioritized
over E agents and otherwise ties are broken randomly.

Some platforms identify matches only periodically, allowing the pool to thicken
and possibly offer more matching opportunities. For example, UNOS matches twice a
week, whereas national platforms in the UK and the Netherlands identify matches every
3 months (Biro, Burnapp, Bernadette, Hemke, Johnson, van de Klundert and Manlove, 2017).
This behaviour is approximated with the following batching policy.

Definition 2 (Batching) A batching policy executes a maximal match every T units of time. If
there are multiple maximal matches, select randomly one that maximizes the number of matched
H agents. The parameter T is called the batch length.13

We also consider the patient policy, proposed by Akbarpour et al. (2020), which attempts to
match an agent only once she becomes critical. In the context of kidney exchange, this means
that two patient–donor pairs in the pool are matched only if the condition of one of these pairs is
such that it cannot match at a later point in time.

Definition 3 (Patient) In the patient policy, an agent that becomes critical is matched with
a compatible agent if one exists. If she is compatible with more than one agent, H agents are
prioritized over E agents, and otherwise ties are broken randomly.

The patient policy can be viewed as a theoretical benchmark, as predicting the time at which
the patient will become too sick to transplant is generally not feasible. Observe that the greedy

12. As we will show that the asymptotically optimal policy does not condition on this information, thus allowing
for this larger set of policies strengthens our results.

13. We note that every agent leaves the market either because of being matched to another agent or because of
getting critical. Thus, in the batching policy, (only) the agents who are in an executed matching are removed from the
market at the time the matching is executed.
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and patient policies match at most two agents at any given time because no two agents ever arrive
or become critical at the same time. The batching policy, however, can match multiple agents
when it executes a matching.

Measures for performance. Denote by θi ∈{E,H} agent i’s type, by αi ≥0 her arrival
time, by ϕi ≥0 how long she is present in the market, and indicate by μi ∈{0,1} whether
she is matched. To study the performance of a matching policy, we focus on two measures.
One is the match rate q�(m)∈[0,1] of each type �∈{E,H}, which is the fraction of
agents of type � that get matched. Formally, we define the match rates for each arrival
rate m by

q�(m)= lim
t→∞E

[ |{i : μi =1 and αi ≤ t and θi =�}|
|{i : αi ≤ t and θi =�}|

]
.

The other is the expected waiting time (or simply waiting time) w�(m) of agents of type �,
whether eventually matched or not. Formally, we define the waiting time for each arrival rate m
by

w�(m)= lim
t→∞E

[ ∑
i : αi≤t and θi=�ϕi

|{i : αi ≤ t and θi =�}|
]
.

One reason for studying match rate and waiting time is that they together determine the payoff of
a risk-neutral expected-utility-maximizer (EU) who assigns a fixed value to being matched and
incurs a constant cost while waiting in the market.

We are interested in optimal policies for large pools and denote by q�= limm→∞q�(m) and
w�= limm→∞w�(m) the match rate and waiting time when the market becomes (infinitely) large,
i.e., when the arrival rate m goes to infinity.14 We consider the following notion of optimality:

Definition 4 (Asymptotic optimality) A policy is asymptotically optimal if for every ε>0 there
exists mε such that, when m≥mε , no type of agent can improve its match rate q�(m) or expected
waiting time w�(m) by more than ε when changing to any other policy.

This optimality notion is demanding, since it requires the policy to be optimal for every type of
agent simultaneously. It is unclear whether an asymptotically optimal policy exists, since a policy
that is optimal for H agents might be suboptimal for E agents.

3.1. Results

In this section, we present a characterization of the match rates and waiting times associated with
the greedy, batching and patient matching policies and discuss its implications.

Theorem 1. The greedy policy is asymptotically optimal, whereas the batching policy (for any
fixed batch length) and the patient policy are not asymptotically optimal.

We further compute the match rates and expected waiting times under these policies.

Proposition 3. As the arrival rate m grows large:

14. Throughout, we restrict attention to policies where these limits are well defined. This assumption could be
relaxed by considering the liminf and limsup in the definitions.
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Figure 3

Illustration of Proposition 3 when λ=1.33 and d equals 360 days. The points represent the predictions of our model for

large markets, which are derived in Proposition 3.

(i) The match rates of hard- and easy-to-match pairs under the greedy policy are
(
qG

H ,q
G
E

)=( 1
1+λ ,1

)
, respectively, and their expected waiting times are

(
wG

H ,w
G
E

)=( λd
1+λ ,0

)
.

(ii)A batching policy with batch length T achieves match rates of
(
qB

H ,q
B
E

)=( 1−e−T/d

(1+λ)T/d ,
1−e−T/d

T/d

)
.

Furthermore, the expected waiting time for each type� is wB
�=d(1−q�). Also, qB

�<qG
�, whereas

qB
� approaches qG

� as T approaches 0. In addition, wB
�>wG

�, whereas wB
� approaches wG

� as T
approaches 0.
(iii)The match rates of hard- and easy-to-match pairs under the patient policy approach(
qP

H ,q
P
E

)=( 1
1+λ ,1

)
, respectively, and their expected waiting times approach d and 0, respectively.

Figure 3 illustrates the match rates and waiting times of H and E agents under the different
policies as found in Proposition 3. In the figure, the values for λ,d are chosen to match the
imbalance and criticality rate in the NKR data (λ=1.33,d =360). As Figure 3 illustrates, each
batching policy leads agents to wait longer and get matched with a smaller probability than
under the greedy policy. For example, in comparison to greedy, under a monthly batching policy
hard-to-match agents wait on average 6 days longer and easy-to-match agents 15 days longer.
Hard- and easy-to-match agents get matched with 1.7% and 4% lower probability. Similarly, the
patient policy matches equally many agents as the greedy policy but leads to a substantially longer
expected waiting time for hard-to-match agents (155 more days).

Remark 1. It is important to note that Theorem 1 and Proposition 3 do not imply that batching
policies are suboptimal for a fixed market size. For a fixed market size, a batching policy which
matches very frequently will achieve (almost) the same outcome as the greedy policy and thus
will also be close to optimal in large markets.15 We investigate this in detail in Section 4 and show
how frequent batching policies must match to be close to optimal.

We now provide rough intuition for the differences between greedy, batching and patient
matching policies. In Section 3.2, we sketch the argument for the various parts of the
results. Section 4 provides a more extensive comparison of these three policies, including a
non-asymptotic analysis.

15. We formally establish this in Proposition 6.
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Intuition for the optimality of greedy. As there are more hard- than easy-to-match agents,
hard-to-match agents will accumulate and a large number of them will be waiting to be matched
at any time under any policy.16 This implies that under greedy matching, easy-to-match agents
will have upon arrival, with high probability, a compatible hard-to-match agent and are therefore
matched immediately. So every easy-to-match agent is matched with a hard-to-match agent,
implying that greedy matching asymptotically achieves the optimal match rate. Intuitively, the
market for hard-to-match agents already thickens under the greedy policy and further thickening
the market is not beneficial for increasing the match rate.

Under the batching policy, each agent waits at least from the time of her arrival until the next
time a matching is identified. Thus each agent waits on average at least half the length of the
batching interval. Furthermore, each agent becomes critical during that time with strictly positive
probability. Thus, easy-to-match agents are worse off under the batching policy than under the
greedy policy where they get matched immediately with probability 1. As some easy-to-match
agents leave the market unmatched, hard-to-match agents are matched with a smaller probability.
Consequently there are, on average, more hard-to-match agents waiting in the market. Little’s
law, which states that the arrival rate multiplied by the average waiting time equals the average
number of waiting agents (Little and Graves, 2008), implies that hard-to-match agents also wait
longer under any batching policy than under a greedy matching policy. As both types are worse
off, batching policies are not asymptotically optimal.

Under the patient policy, so many hard-to-match agents accumulate that an easy-to-match
agent will, with high probability, match with a critical hard-to-match agent almost immediately
upon arrival. This implies that the policy asymptotically achieves the optimal match rate. As hard-
to-match agents get matched only when they become critical, the distribution and expectation
of their waiting time is the same as if they do not match at all. Hence, hard-to-match agents
get matched faster under a greedy policy, implying that the patient policy is not asymptotically
optimal.

Intuitively, when the departure rate is small, increasing the market size and making the market
thicker by waiting are loosely speaking substitutes in the sense that they increase the match rate.
This is an intuition for why the greedy policy becomes optimal when the market grows large and
the benefit of thickening the market vanishes. We note that thickening the market through waiting
and increasing the market size exogenously lead to quite different compositions of waiting agents.
If the arrival rate increases, under a greedy policy, only hard-to-match agents will accumulate
(as in a large market easy-to-match agents will match immediately). In contrast, if the market is
thickened by waiting in a batching policy, both hard- and easy-to-match agents accumulate.

3.2. Discussion of results

In this section, we provide a proof sketch for the various parts of Theorem 1 and Proposition 3
as well as additional results on the waiting time distributions. We first establish an upper bound
on the performance of any policy.

Proposition 4 (Upper bound on the performance of any policy) For any market size m, and
under any policy, the match rate of hard-to-match agents is at most 1

1+λ and their expected

waiting time is at least λd
1+λ .

16. On the other hand, if there are more easy- than hard-to-match agents, then under the greedy policy only a small
number of hard-to-match agents would be in the pool at any time; because otherwise, arriving easy-to-match agents will
often be matched to hard-to-match agents, which will reduce the number of hard-to-match agents in the pool over time.
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The result on the match rate follows from the fact that H agents cannot match with other H
agents. The arrival rate of E agents is only m per unit of time, compared to (1+λ)m for H agents.
Thus, the strong law of large numbers implies that a fraction of λ

1+λ of the H agents remain
unmatched in the long run. The result on waiting times is less immediate. We prove it by first
deriving a policy-specific lower bound on the match rate; this lower bound holds with equality
in policies where every agent who gets critical leaves the market unmatched.17 Combining this
lower bound on the match rate with the previously derived upper bound gives us a lower bound on
the average number of H agents present in the market, which, through an application of Little’s
law, yields a lower bound on their waiting time.

3.2.1. Greedy policy. Next, we analyse the performance of the greedy policy as
the market grows large. The following proposition includes the results in the first part of
Proposition 3.

Proposition 5 (Performance of the greedy policy) Consider the greedy policy as the market
grows large, i.e., m→∞. The match rate of H agents converges to 1

1+λ and their waiting time

converges to an exponential distribution with mean λd
1+λ . The match rate of E agents converges

to 1 and their waiting time converges to 0.

We first provide intuition for the waiting time distribution. Consider greedy matching in
a deterministic setting where every E agent is compatible with every H agent, agents arrive
deterministically, and get critical after precisely d units of time. In this setting, E agents will be
matched upon arrival with H agents. This means that there will be no E agents waiting in the
market, and their waiting time equals zero. Denote by x the steady-state number of H agents
present in the market. Per unit of time, the number of H agents arriving to the market equals
(1+λ)m, and m of them are matched with E agents. Furthermore, x

d of the waiting agents are
expected to depart unmatched per unit of time. At the steady state, the number of unmatched
departing agents equals the number of unmatched arriving agents. Thus, x solves the balance
equation

x

d
=λm ⇒ x=λmd. (3)

Therefore, if the matching partner for an E agent is chosen at random, each H agent is matched
at rate m

λmd = 1
λd . The time at which a never-departing H agent would be matched is therefore

exponentially distributed with rate 1
λd . The time until an H agent becomes critical is exponentially

distributed with rate 1/d. Since, the minimum of two exponentially distributed random variables
is again exponentially distributed with rate equal to the sum of the rates, the waiting time of an
H agent is exponentially distributed with the rate 1+λ

λd , and thus with mean λd
1+λ .

The formal proof of Proposition 5 is more complex as it needs to deal with the randomness
in compatibilities, arrivals, and criticality times. Our analysis is based on the Lyapunov function
method.18 In our case, a Markov chain tracks the number of easy- and hard-to-match agents in the

17. Thus, the lower bound holds with equality in the greedy and batching policies, but not in the patient policy.
18. Variations of this method are widely used to identify stable points of ordinary differential equations and to

analyse steady states of stochastic systems (see e.g. Khalil, 2009; Brémaud, 2013). The idea is defining a function on
the state space of a Markov chain such that the expected change of the function is negative outside of a “small box”
and possibly positive inside that box. The fact that the expected change of the function equals zero at the steady-state
distribution implies a bound on the time the process can spend outside the box. This idea can be used to provide bounds
on the expectation of a given function f defined over a Markov chain (Anderson et al., 2017).

1095ASHLAGI ET AL. MATCHING IN DYNAMIC IMBALANCED MARKETS

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/90/3/1084/6653316 by Yale U

niversity School of M
edicine user on 09 February 2024



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[19:06 19/12/2022 OP-REST220045.tex] RESTUD: The Review of Economic Studies Page: 13 1–41

pool, and the Lyapunov function argument translates into a concentration bound for the number
of easy- and hard-to-match agents in the pool. The number of H agents in the pool at any time is,
with high probability, not more than an additive factor of

√
mlogm away from the solution of the

balance equation (3). As this distance grows slow relative to the market size, the Markov chain
is well-approximated by the dynamics of the deterministic setting described earlier.

3.2.2. Batching policy. We next sketch the analysis for the match rates and waiting times
under the batching policy, as given in the second part of Proposition 3. We start by providing
lower and upper bounds on the match rate of E agents. A simple upper bound on the match rate
can be derived based on the fact that an arriving agent should wait until the next matching period

and may not get matched if she becomes critical before that. We compute γT ,d = 1−e−T/d

T/d as the
probability that an agent does not become critical before the first matching period after her arrival.
This is clearly an upper bound on the match rate of E agents. Then, from the fact that H agents
are compatible only with E agents, we imply that the match rate of H agents is at most γT ,d

1+λ .
Providing a lower bound on the match rate of E agents is more involved. The key idea is

showing that, every time when a matching is executed, the number of H agents matched is at least
the number of E agents who are present in the pool at that time and arrived after the previous
matching execution. The proof for this fact is based on a probabilistic analysis argument and uses
augmenting path techniques from Berge’s lemma in matching theory19. By this fact, almost every
E agent who participates in at least one execution of the matching is matched to an H agent.
This translates into an asymptotic lower bound of γT ,d on the match rate of E agents, and an
asymptotic lower bound of γT ,d

1+λ on the match rate of H agents. Finally, the claim about the match
rates follows immediately from the fact that the upper and the lower bound coincide.

To compute expected waiting times, we first note that y/d =m(1−qE(m)), where y is the
time-average number of E agents in the pool and 1−qE(m) is the probability of an E agent not
getting matched. This holds because, under the batching policy, the number of E agents that get
critical equals the number of E agents that do not get matched. We then note that the probability
1−qE(m) converges to 1−γT ,d as m approaches infinity, since the match rate of E agents is γT ,d .
Thus, d(1−γT ,d)= y

m . The right-hand side is the expected waiting time of E agents, by Little’s
law. Hence, the expected waiting time of E agents equals d(1−γT ,d). A similar argument proves
the claim for the waiting time of H agents.

Batching with vanishingly batch length. We next strengthen our previous analysis and show
that a batching policy is asymptotically optimal if and only if the batch length vanishes with the
market size.

Proposition 6. A market size dependent batching policy with batch length Tm is asymptotically
optimal if and only if the batch length goes to zero as the market becomes large limm→∞Tm =0.

The intuition for the only if direction is that if Tm>δ>0 for every m, then the probability
that a newly arrived agent becomes critical before a matching is executed is positive and does not
vanish as the market grows large. Thus, the match rate of E agents would be below their match
rate under the greedy policy. To prove the if direction, one cannot just take the limit T →0 of
the expressions for match rate and waiting time obtained in Proposition 3, since the limits with
respect to time and market size are not interchangeable. In particular, as Tm approaches 0, the

19. See, e.g., West (2000) for more on Berge’s lemma and augmenting paths.
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Poisson concentration bounds on the number of arrivals in each period that we use to establish
Proposition 3 become arbitrarily weak. Instead, we show that there is always a large number of
H agents waiting in the pool, and an arriving E agent would be matched to one of these agents
with high probability.

3.2.3. Patient policy. We next quantify the performance of the patient policy. The
following proposition includes the third part of Proposition 3.

Proposition 7 (Performance of the patient policy) Consider the patient policy when the pool
grows large, i.e., m→∞. The match rate of H agents converges to 1

1+λ and their waiting time
converges to an exponential distribution with mean d. The match rate of E agents converges to 1
and their waiting time converges to 0.

To get some intuition for this result, consider again the hypothetical case in which every
H agent is compatible to every E agent, and agents arrive and get critical deterministically. In
steady state, there are almost no E agents in the market and the number of H agents in the
market is approximately (1+λ)md. To see why, suppose this is indeed the state of the market
at the beginning of time. H agents get critical and attempt to match with E agents at a rate of
(1+λ)md

d = (1+λ)m. Since this rate is much larger than the arrival rate of E agents m, then E
agents are matched almost immediately at the steady state. Thus, their number remains close
to zero at any time. Consequently, almost no E agent becomes critical, and almost all matches
are initiated due to an H agent becoming critical. Since H agents arrive at rate (1+λ)m and get
critical at rate 1/d, their number in the pool remains close to (1+λ)md, and the steady state is
maintained. As H agents are the ones that initiate matches, their average waiting time equals the
average time until they become critical, d.

4. COMPARISON OF BATCHING AND GREEDY POLICIES IN FINITE MARKETS

Our results imply that, in a large market, greedy will outperform batching if the length of the
batching interval does not go to zero (Theorem 1 and Proposition 6). It is natural to ask how
frequent batching policies must execute matches to (potentially) outperform the greedy policy
in a finite market. We address this question in two ways. First, we derive an upper bound on the
batch length such that any batching policy with a larger batch length matches fewer agents and
has a higher waiting time than the greedy policy. Second, we run simulations based on the model
and real data that indicate that at realistic market sizes and parameters in the context of kidney
exchanges, greedy matching dominates batching policies that match less frequently than daily.

4.1. An analytical bound on the performance of batching in finite markets

The next result combines non-asymptotic upper bounds on the performance of batching policies
with lower bounds on the performance of the greedy policy to establish a bound on the batch
length such that less frequent batching will be dominated by the greedy policy in a finite market.

Proposition 8. Let m>0 be an arbitrary fixed arrival rate. Define z∗ to be the steady-state
probability that an easy-to-match agent, upon her arrival, is matched to a hard-to-match agent
under the greedy policy. Then, for every agent type (easy- and hard-to-match), the match rate
and waiting time of that type under the batching policy are respectively smaller and larger than
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Figure 4

The batch length above which greedy dominates batching for various arrival rates per day, λ=1.33,p=0.037, and

average criticality time d =360 days. The bound T∗ is independent of q∈[0,1] and is decreasing in p.

under the greedy policy if the batch length T satisfies T>T∗, where

T∗ =
z∗W

(
− e−1/z∗

z∗
)
+1

z∗/d (4)

and W (·) is the Lambert W function.20

The above proposition involves the exact value for the steady-state probability of an easy-to-match
agent being matched to a hard-to-match agent upon her arrival. In Supplementary Appendix ii,
we compute a lower bound on this probability using the Lyapunov function method and combine
it with the above result to get an upper bound for T∗, namely T∗. Therefore, a batching policy
that makes matches less frequently than T∗ is dominated by the greedy policy for the fixed arrival
rate m. Figure 4 visualizes this bound. Recall that λ=1.33 is consistent with the NKR data (see
Section 2.1). Using the same data, we can calibrate the compatibility probabilities between the
types by defining easy-to-match agents as those who are part of every maximal matching, which
leads to empirical compatibilities of p≈0.037,q≈0.087.21 For these parameters, matching less
frequently than daily leads to a lower match rate than greedy for any arrival rate of m≥0.7 per
day (roughly twice the size of the NKR). We note that Proposition 8 provides a sufficient but not
necessary condition. The next section uses simulations to explore smaller arrival rates.

4.2. Numerical simulations

We run simulations based on our two-type model to compare greedy and batching for various
batch lengths and different parameters. The first set of simulations varies the total arrival rate
per day m̄=m+(1+λ)m, the imbalance λ and compatibility structure (p,q). In line with our
calibration to the NKR data, the base case values are set to λ=1.33 and (p,q)= (0.037,0.087).

20. We recall that the Lambert W function is the inverse of the function F(w)=wew.
21. It is important to note that the patient–donor pairs identified as hard-to-match are not necessarily blood-type

incompatible. Typically, patients of blood-type compatible pairs are much more sensitized, which means they have a
lower chance to match with a random blood-type compatible donor. As there are few donors who can match highly
sensitized patients, highly sensitized blood-type compatible pairs are typically not part of every maximal matching and
our calibration thus identifies them as hard-to-match. The simulation results that use these calibrations are also confirmed
by simulations that directly use real compatibility data.
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(a) (b)

(d)(b)

Figure 5

Comparison of the greedy (dashed line) and the batching (solid line) policies in terms of the fraction of matched agents

and waiting times. Batch lengths are in days. Comparisons are plotted for different total arrival rates m̄ (a, b), different

imbalance values λ (c), and different compatibilities (d).

The total arrival rate (sum of arrival rates of both types) of agents is set to m̄=0.25, i.e., an
agent every 4 days (and thus lower than the arrival rate at the NKR). Agents become critical on
average after 360 days. This exercises suggests that even in moderately sized markets batching
needs to be very frequent for the batching policy not to be outperformed by the greedy policy. The
results are reported in Figure 5. In each of these simulations, a batching policy which matches
less frequently than once a day will result in a lower match rate than greedy while matching more
frequently than daily will be indistinguishable from greedy matching.22

Similar results hold for a wide range of parameters in the two-type model that are consistent
with kidney exchange. A natural question is whether it is the case for all parameterizations of the
model that greedy matching dominates batching in the two-type model. This turns out not to be
true and we next provide a counter example.

An example where batching is beneficial. We identify a non-asymptotic setting where
batching leads to a higher match rate than greedy. Consider the scenario in which all easy-
to-match agents are compatible q=1 and hard- and easy-to-match agents are rarely compatible

22. Figure 5d also plots results for values of (p,q)= (0.3,0.15) that are chosen to match the empirical frequency
with which blood-type compatible and incompatible pairs can match.
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Figure 6

The difference between the match rates of batching and greedy policies for extreme match probabilities p=0.02,q=1,

and various market imbalances.

p=0.02.23 The total arrival rate equals m̄=2 agents per day and agents become critical after
d =360 days. Intuitively, as in this market many easy-to-match agents have no hard-to-match
partner, the greedy policy frequently matches easy-to-match agents to themselves; this results
in more unmatched hard-to-match agents compared to the batching policy which matches fewer
easy-to-match agents to themselves. As shown in Figure 6, when the market is balanced (λ=0)
a batching policy with a batch length of two days leads to matching about 2.6% more agents
than greedy. The parameters in this example are carefully chosen and the benefit from batching
vanishes when either the market size grows large—as predicted by Theorem 1—or as the market
imbalance grows large.

The effect of imbalance. To see why imbalance has an effect on the optimality of the greedy
policy, note that the number of H agents in the pool under greedy is less than λmd−k

√
md

with probability at most O(e−k).24 When the number of H agents is at least λmd−k
√

md, the

probability that an arriving E agent is not matched to an H agent is at most (1−p)λmd−k
√

md . A
union bound then implies that the probability that an arriving E agent is not matched to an H agent

is at most of the order of e−k +e−p(λmd−k
√

md) for every k>0. Setting k =λ√md/2 implies that

this probability is of the order of e−λ√md/2, which approaches zero exponentially fast in λ
√

md.
So, the inefficiency that results from E agents being matched to each other in the greedy policy
vanishes if the market is either large (m is large) or imbalanced (λ is large).

5. EMPIRICAL FINDINGS

While the greedy policy is optimal in a sufficiently large or imbalanced market, it is ultimately
an empirical question whether our results hold in practice. We next complement our theoretical
predictions with simulations using kidney exchange data. These simulations indicate that the

23. These parameters are not in line with kidney exchange data as blood-type compatible patient–donor pairs are
selected to have highly sensitized patients and therefore typically have a low chance to be compatible to each other.

24. This follows from our concentration bounds; see Theorem 4 in the Appendix.
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(a) (b)

Figure 7

Match rate (left) and average waiting times (right) under greedy (dashed line) and batching (solid line) policies. Batch

length given in days. m̄ is the total arrival rate per day.

greedy policy dominates batching in terms of match rate and waiting time and have a much better
waiting time compared to patient and a slightly worse match rate.25

The simulations presented here use data from the NKR. The NKR data include 1881 de-
identified patient–donor pairs between July 2007 to December 2014.26 We use patients’ and
donors’ blood types, antigens and antibodies to verify (virtual) compatibility between each donor
and each patient. On average, approximately one patient–donor pair arrives per day to the NKR,
and the average criticality time of a pair is estimated to be 360 days.27 Arrivals of pairs are
generated according to a Poisson process with a fixed arrival rate. We vary the arrival rate capturing
market sizes from one-tenth to four times the size of the NKR. Pairs become critical according to
an independent exponentially distributed random variable with mean equal to 360 (days), based
on the empirical estimate. We simulate greedy, patient, and batching policies until 10 million
pairs arrive to the market and report match rate and waiting time by taking averages over all or
over a predefined subset of pairs of a certain type.

Table 1 reports the fraction of matched pairs and average waiting time. For the batching policy,
we report results for weekly, monthly, and bimonthly batching (T =7,30,60 days). The patient
policy always results in the highest match rate, and the greedy and weekly batching result in a
slightly lower match rate (and larger batch lengths result in a lower match rate). Moreover, the
average waiting time under greedy matching is the smallest among all policies.

Next, we compare the greedy policy and batching policies with a finer range of batch lengths.
The results are plotted in Figure 7 for three different total arrival rates (m̄). In all cases, the greedy
policy outperformed the batching policy in match rate and waiting time.

In the next simulations, we address the concern that some types might be harmed by the
greedy policy. To do so, we compute average waiting times and match rates separately for two
types of pairs, under-demanded and over-demanded. These can be thought of as hard- and easy-to-
match, respectively. Under-demanded patient–donor pairs are blood type incompatible with each

25. Note here that the patient policy constitutes a theoretical benchmark as it is often impossible to observe criticality.
The greedy and batching policies do not use any criticality information.

26. Our focus is on bilateral matching and we therefore omit altruistic donors from the data.
27. Hazard rates vary only slightly across pair types, such that for the sake of simplicity we aggregate all pairs and

use a simple hazard rate model from Agarwal et al. (2019) to estimate criticality rate.
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(a) (b)

Figure 8

Average waiting times (WT) and match rate (MR) in days under greedy (G) and patient (P) policies. The left and right

axes are WT and MR. The label (*) excludes pairs who have no match in the data.

other (these include blood types patient–donor pairs O–X for X �=O, A–AB, and B–AB).28 Over-
demanded pairs are blood type compatible with each other (but not tissue-type compatible) and
include pairs X–O for X�=O, AB–A, and AB–B.29 Figure 8 reports the results. The waiting times
(solid lines) of over-demanded pairs steadily decrease as the market becomes thicker, whereas the
average waiting times of under-demanded pairs change only slightly. This finding is in line with the
predictions from Proposition 3. Despite the heterogeneity in the data, the theoretical predictions
(of the stylized two-type model) are aligned with the experiments when we categorize pairs as
either over-demanded or under-demanded. These patterns hold even though patients belonging
to over-demanded pairs are, on average, more sensitized than those in under-demanded pairs.30

We also report the statistics for the set of pairs that have at least one match in the historical data
(dotted lines labelled with *).

In the last simulation, we run greedy and patient policies under the base case scenario (with
an arrival rate of 1 pair per day). For each pair, we compute the average waiting time over the
copies of this pair sampled in the simulation as well as the fraction of the copies that are matched
(i.e. the empirical probability of getting matched). For each of the 1881 pairs in the NKR data
set, this simulation gives an average waiting time and an empirical probability of being matched
under both the greedy and patient policies. Figure 9(a) shows that for each pair, the average
waiting time is shorter under the greedy policy than under the patient policy; all of the dots
are above the 45◦ line. This observation suggests that the waiting time distribution under the
greedy policy first-order stochastically dominates the waiting time distribution under the patient
policy.31 Figure 9(b) reports the match rates under the greedy and patient policies. Observe that
for most pairs the empirical probabilities of matching under the greedy and patient policies are
“close” to the 45 degree line suggesting that the probability of being matched is roughly the same
for every pair. Interestingly, Figure 9(b) suggests that under the greedy policy, easy-to-match
pairs are slightly worse off because they are matched with slightly lower probability, whereas
hard-to-match pairs are better off.

28. An X–Y patient–donor pair contains a patient with bloodtype X and a donor with bloodtype Y.
29. Observe that A–O pairs (which are over-demanded) can match potentially match with each other and with O–A

pairs (under-demanded) but O–A pairs cannot match with each other.
30. More than 40% of patients in over-demanded pairs have less than a 5% chance of being tissue-type compatible

with a random donor. Furthermore, about 10% of over-demanded pairs have no match within this data set, which is why
the average waiting times do not drop all the way to zero.

31. A detailed analysis of the simulation results confirms that this is indeed the case. We omit the details.
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(a) (b)

Figure 9

Averages of waiting times (left) and chance of matching (right) taken over copies for each pair in the data. The axes

correspond to the greedy and patient policies.

6. A DETAILED DISCUSSION OF OUR MODELLING ASSUMPTIONS

From a modelling perspective, there are three major differences between our paper and the
closely related literature on dynamic matching (Ünver, 2010; Ashlagi, Jaillet and Manshadi,
2013; Anderson et al., 2017; Akbarpour, Combe, He, Hiller, Shimer and Tercieux, 2019;
Akbarpour et al., 2020; Nikzad, Akbarpour, Rees and Roth, 2019):

(i) Compatibilities in our model depend on the agents’ types (blood types) and a random
component (sensitization of the patient).32

(ii) We focus on markets where the compatibility probabilities do not vanish with the market
size.

(iii) The objective of expected waiting time and probability of being matched differs from
the objectives considered in some of the literature.

The two-type compatibility model. One may interpret our two-type model as a stylized way
of capturing both blood types and randomness due to tissue-type incompatibilities. Intuitively,
hard-to-match agents in our model correspond to pairs who cannot match with each other due
to blood type incompatibility (for instance O–A blood type patient–donor pairs).33 Due to the
presence of such agents in kidney exchanges, not all agents can be matched even when the market
grows large. As we have argued in Section 2.1, no single-type model can reproduce this feature
of real kidney exchanges while at the same time providing each pair at least one potential match.
Furthermore, one motivation for our article is the concern, sometimes raised by practitioners,
that greedy matching might harm hard-to-match agents. This concern can by definition not be
addressed in a single-type model where all agents are equally difficult to match.

32. Anderson et al. (2017); Akbarpour et al. (2020) are examples of papers that consider a single-type model. A
notable exception is Ünver (2010) who analyses matching policies in a deterministic compatibility model with multiple
compatibility types, but without agent criticality times or random compatibility.

33. Similar type of asymmetries across agents also appear in Nikzad et al. (2019). They are concerned with a
proposal for global kidney exchange, which incorporates international pairs to domestic kidney exchange pools. Their
model takes a reduced form approach where there is a continuum of international pairs who do not get matched to
each other and a continuum of domestic pairs who can get matched to each other and to the international pairs. The
compatibilities (between measures of pairs) are determined by a “matching function”. They do a steady-state analysis to
answer whether the savings from dialysis can cover the surgery costs of international pairs.
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As a robustness exercise we also ran simulations for our model when there is only a single type,
i.e., λ=−1. We report the result in Section vi in the Supplementary appendix. These simulations
indicate that the greedy policy remains optimal in large markets even with a single type.

Non-vanishing compatibility. Previous literature (Ashlagi et al., 2013; Anderson et al.,
2017; Akbarpour et al., 2019, 2020; Nikzad et al., 2019) considered models with vanishing
compatibility probabilities, i.e., when the arrival rate of agents equals m, the probability of
compatibility of some pairs of agents equals c

m . In contrast, the probability of two patient–
donor pairs being compatible in our model is independent of the market size. Assuming that the
compatibility probability depends on the market size is intended to capture small and sparse kidney
exchanges. In contrast, assuming that this probability is unaffected by the market size is natural
when considering large kidney exchanges. Whether a given market is approximated by either
compatibility model depends on the specific context and is ultimately an empirical question. As we
explained in Section 2.1, the combination of having two types and non-vanishing compatibilities
allows us to capture crucial features of the compatibility graph in kidney exchanges.

We provide simulations for our model with vanishing compatibility probabilities in the
Supplementary Appendix. These simulations indicate if the compatibility probability approaches
zero at rate 1√

m
, greedy is optimal in a large market while the patient and batching policies with a

fixed batch length are not (Section vi in the Supplementary appendix). The simulations also show
that this is not necessarily true if the compatibility probability vanishes at rate 1

m . In this case,
there is a trade-off and the greedy policy leads to a lower waiting time while the patient policy
matches more agents.

Different objectives. Another difference with some of the literature is the objective we
consider. Akbarpour et al. (2020) consider the loss rate, denoted by Lπ ∈[0,1] for a policy π ,
which is the probability that an agent is not matched under the policy π . To compare two policies
π,π ′, they consider the ratio of loss rates Lπ/Lπ ′ . We focus on the probability of being matched
in a policy and expected waiting time. One reason for studying match rate and waiting time is
that they together determine the payoff of a risk-neutral EU who assigns a fixed value to being
matched and incurs a constant cost while waiting in the market, whereas the ratio between the loss
rates is not related to EU preferences. For example, we can have two policies π,π ′ which both
match almost everyone (and thus achieve a loss rate close to zero) such that the ratio of loss rates
Lπ/Lπ ′ is arbitrarily large yet policy π matches agents much faster than π ′. In the limit, every
risk-neutral EU maximizer prefers π over π ′ even though the policy π ′ is arbitrarily much better
according to the ratio of loss rate.34 In our model, the loss rates will converge to the same non-
zero limit in a large market for the greedy and patient policy (as we established in Proposition 1).
Thus, the greedy and patient policies are not ordered according to the ratio of loss rates, but any
decision maker who considers a combination of the loss rates and the waiting time would prefer
the greedy over the patient policy in a sufficiently large market. In the kidney exchange context
both policies lead to almost the same probability of receiving a match, whereas pairs match much
faster under the greedy policy than under the patient policy (see our experiments in Section 5).

34. Consider an EU agent, with utility uπ =vp−ct under policy π , whose value for being matched is v>0 and
her waiting cost per unit of time is c>0. Consider two policies π,π ′, with match rates p,p′ and waiting times t,t′.
Suppose p=1−10−k,p′ =1−10−2k , and t = t′, where k is a sufficiently large positive number. Then, Lπ/Lπ ′ =10k ,

whereas uπ −uπ ′ = (10−k −10−2k)v approaches 0 as k grows large. Furthermore, when tâŁ™−t> (10−k−10−2k )v
c , it holds

that uπ ′ <uπ . Hence, even though there is large gap between the loss ratios of the policies (in favour of π ′), the agent’s
expected utility would be larger under π .
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7. CONCLUSION

This article studies matching policies in a random dynamic market in which some agents are easier
to match than others. We show theoretically as well as empirically that the greedy matching policy
is arbitrarily close to optimal for all agents in sufficiently large markets. This finding has direct
practical implications for kidney exchanges that may not employ greedy matching policies out of
concern that greedy matching may harm those patients for whom it is hardest to find a compatible
partner (Ferrari et al., 2014). Our simulations further suggest that matching frequently does not
reduce the number of transplants even for realistic market sizes.35

This article has some limitations in the context of kidney exchange. We only considered
pairwise matchings and ignored frictions that occur in practice. Simulations in Ashlagi et al.
(2018) account for such frictions, three-way cycles, and chains.36 They find that the greedy policy
is optimal among a class of batching policies. We conjecture that this holds also true within our
model, and that the benefit of matching in chains or longer cycles vanishes in a sufficiently large
markets. It remains an interesting question to study these questions theoretically in small markets.

Throughout, we abstracted away from match qualities and assumed that agents are indifferent
to whom they match with. When preferences over match partners play an important role, the
greedy policy might not be optimal. For example, if matching easy-to-match agents with each
other creates a much larger value than matching an easy-to-match agent to a hard-to-match
one, the greedy policy can be suboptimal since almost all easy-to-match agents will match with
hard-to-match agents in a large market (for studies with match qualities, see Baccara et al.,
2020; Li, Lieberman, Macke, Carrillo, Ho, Wellen and Das, 2019; Mertikopoulos et al., 2020;
Blanchet et al., 2020; Aquilina, Budish and O’Neill, 2020).

We also abstracted away from the incentives agents might have to misreport their private
information, such as arrival time, type, and realized compatibilities. One may ask what policy
would be optimal if any of these would be the agent’s private information. Under greedy the
agent would have no incentive to delay reporting her arrival or claiming to be incompatible with
agents whom she is compatible with; doing so would lead her to be matched later and less often.
However, easy-to-match agents, after some histories, may prefer to misreport their type since our
greedy policy break ties in favour of hard-to-match agents. To satisfy incentive compatibility,
one would need to break ties uniformly, which does not affect the asymptotic optimality of the
greedy policy. Notably, this conclusion holds since agents are indifferent between who they match
with.37

Acknowledgments. We want to thank Mohammad Akbarpour, Aaron Bodoh-Creed, Yeon-Koo Che, Yuichiro
Kamada, and Olivier Tercieux for useful comments and suggestions. Ashlagi acknowledges the research support of
the National Science Foundation grant (SES-1254768). Philipp Strack was supported by a Sloan fellowship.

Supplementary Data

Supplementary data are available at Review of Economic Studies online.

35. Independent of the policy, increasing the market size by merging pools can improve the match rate and waiting
times of agents. So, competition between different kidney exchanges can harm the number of transplants but not because
of frequent matching.

36. For many exchanges, chains are not a practical concern as numerous programs have very low enrolment of
altruistic donors that initiate chains and, in some countries like France, Poland, and Portugal, chains are not even feasible
since altruistic donation is illegal (Biro et al., 2017).

37. Baccara et al. (2020) study incentive compatible matching policies in a setting with match qualities.
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APPENDIX

A. PROOFS FOR PROPOSITIONS 1 AND 2

Proof of Proposition 1 Note that, as there are more E agents than H agents and H agents cannot match to themselves,
2

2+λ is an upper bound on the fraction of agents which can be matched for any m. Note, that the size of the maximal

matching (SMM) equals 2
2+λ if the bipartite graph with m easy-to-match agents and m hard-to-match agents on the other

side admits a perfect matching. The probability that such a perfect matching exists converges to one as m→∞ (see e.g.
Theorem 5.1 page 77 in Frieze and Karoński (2015)). This proves the claim about SSM.

The probability that a hard-to-match agent has no partner is given by (1−p)m. Because the compatibilities between
hard-to-match and easy-to-match agents are drawn independently, the probability that all hard-to-match agents have at
least one partner is given by (1−(1−p)m)m(1+λ). This probability converges to one as m→∞. The same argument shows
that the probability that all easy-to-match agents have at least one partner approaches one as m approaches infinity. �

Proof of Proposition 2 The proof is by contradiction; suppose such p(m) exists. The chance that an agent has no other
compatible agents is (1−p(m))m. If p(m)=O(1/m), then for sufficiently large m we have

(1−p(m))m>e−2mp(m) =e−O(1),

since 1−α>e−2α forα∈ (0, 1
2 ). Thus, (2) cannot be satisfied. Therefore, suppose that p(m)= ω(m)

m , where limm→∞ω(m)=
∞. Next, we use this property to show that (1) cannot be satisfied.

The proof is constructive. We propose a simple algorithm that chooses a matching μ with size |μ| such that
limm→∞ |μ|

m =1. Our algorithm is a greedy algorithm, defined as follows. It orders agents of the graph from 1 to m
and visits the agents one by one. When visiting agent i, if there are no agents left that are compatible with agent i, then
the algorithm passes agent i and moves to agent i+1. Otherwise, the algorithm chooses one of the neighbours of agent
i arbitrarily, namely agent j, and adds the pair (i,j) to the matching. The algorithm then visits the next available agent in
the ordering. This process continues until the algorithm visits all agents.

We claim that the algorithm produces a matching μ which satisfies limm→∞ |μ|
m =1. Let φ(m) be a function that

grows faster than m
w(m) but slower than m. Then, during the algorithm, so long as there are φ(m) unvisited agents, the

chance that a visited agent has no compatible agents is

(1−w(m)/m)φ(m) ≤e− w(m)φ(m)
m =o(1).

Hence, so long as there are φ(m) agents left in the graph, the agent visited by the algorithm will be matched with a
probability at least 1−q(m) where limm→∞q(m)=0. By linearity of expectation, the expected number of unmatched
agents by the end of the algorithm is then at most φ(m)+(m−φ(m))·q(m). Noting that limm→∞ φ(m)+(m−φ(m))·q(m)

m =0
completes the proof. �

B. PRELIMINARIES

Let m� denote the arrival rate of agents of type �∈{E,H}. We use the terms E pool and H pool to denote the pools
containing only E agents and only H agents, respectively. The criticality clock of an agent refers to the exponential random
variable that determines the exogenous time that an agent becomes critical. Immediately after the criticality clock of an
agent present in the pool ticks, she departs the pool. (Throughout the draft, the term departure is used to refer to the event
of an agent leaving the pool, either matched or unmatched.)

We next describe how the greedy and patient policies break ties between feasible matches. Consider an agent, say a,
who arrives to the market under the greedy policy or gets critical under the patient policy. At the time of this event, both
policies attempt to match a as follows. First, a strict order over all H agents in the market is selected uniformly at random,
and a is matched with the first compatible H agent according to the selected order. If such an H agent does not exist, then
a strict order over all E agents in the pool is selected uniformly at random, and a is matched with the first compatible E
agent in that order if such an agent exists.

B.1. Asymptotic notions

We say a statement S(i) holds for sufficiently large i if there exists i0 such that S(i) holds for all i> i0. Let E(i) be an event
parameterized by a positive integer i. We say that E(i) occurs with high probability as i grows large if limi→∞P[E(i)]=1.
We often let the parameter i be m, the arrival rate of easy-to-match agents. When this is clearly known from the context,
we simply say that E(m) occurs with high probability or, briefly, E(m) occurs whp.

Furthermore, we say that E(i) occurs with very high probability as i grows large if there exists α>1 such that
limi→∞ 1−P[E(i)]

e−(lni)α =0. We often let the parameter i be m, the arrival rate of easy-to-match agents. When this is clearly
known from the context, we simply say that E(m) occurs with very high probability or, briefly, E(m) occurs wvhp.
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For any two functions f ,g :R+ →R+ we adopt the notation f =o(g) when for every positive constant ε there exists
a constant iε such that f (i)≤εg(i) holds for all i> iε . We define f =O(g) if there exist positive constants i0, such that
f (i)≤g(i) holds for all i> i0.

B.2. Markov chains

We denote the state space of a Markov chain X by V (X ).

Proposition 9 (Anderson et al., 2017, Proposition EC.4) Let X = (X0,X1,X2,X3,...) be a discrete time positive
recurrent Markov chain with a countable state space and steady-state distribution η. Also, let Ex[·] denote the expectation
operator conditional on X0 =x. Suppose that there exist real numbers α,β≥0 and γ >0, a set B⊂S, and functions
U :V (X )→R+ and f :V (X )→R+ such that for x∈V (X )\B,

Ex [U(X1)−U(X0)]≤−γ f (x), (B.1)

and for x∈B,

f (x)≤α, (B.2)

Ex [U(X1)−U(X0)]≤β. (B.3)

Then,

EX∼η
[
f (X)

]≤α+ β

γ
. (B.4)

The stochastic processes associated with our matching policies are continuous-time processes. The above proposition,
however, is applicable to discrete-time processes. To close this gap, we use the notion of embedded Markov chain.

Embedded Markov chain Let X be a continuous-time Markov chain with a countable state space. For any two
states of X , namely i,j, let ni,j denote the transition rate from state i to state j. Let N be the transition rate matrix for X ,
i.e., Ni,j =ni,j for i �= j, and the entries on the diagonal of N are set so that each row in N sums to 0.

Definition 5. The embedded Markov chain of X , denoted by X̂ , is a discrete-time Markov chain with the same state
space as X . The transition probability from state i to state j in X̂ is denoted by n̂i,j and is defined by

n̂i,j =
{ ni,j∑

k �=i ni,k
if i �= j

0 if i= j.

Fact 2 (Harchol-Balter (2013)) Let X be an ergodic continuous-time Markov chain with a unique stationary
distribution ρ and transition rate matrix N. Then, the embedded Markov chain of X , namely X̂ has a unique steady-state
distribution, namely ρ̂. Furthermore, for every state i∈V (X ),

ρ(i)= ρ̂(i)/Ni,i∑
j∈V (N ) ρ̂(j)/Nj,j

.

B.3. Inequalities

Fact 3 (Canonne, 2019) For a Poisson random variable X with mean μ, it holds that

P[|X −μ|>z]≤2e− z2
μ+z . (B.5)

Chernoff bounds are concentration inequalities that bound the deviations of a weighted sum of Bernouli random
variables from its mean. Below we present their multiplicative form.

Fact 4 (Chernoff bound Brémaud 2017) Let X1,...,Xn be a sequence of n independent random binary variables such
that Xi =1 with probability pi and Xi =0 with probability 1−pi. Let α1,...,αn be arbitrary real numbers in the unit
interval. Also, let S =∑n

i=1αiE[Xi]. Then, for any ε with 0≤ε≤1, we have:

Pr
[∑n

i=1αiXi> (1+ε)S
]≤e−ε2S/3,

Pr
[∑n

i=1αiXi< (1−ε)S
]≤e−ε2S/2.
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Fact 5. For reals A,B, at every x �=−B, the function g(x)= x+A
x+B is increasing in x iff A≤B.

Proof. We observe that g′(x)= B−A
(B+x)2 . Hence, when x �=−B, g′(x)≥0 holds iff A≤B. �

Fact 6. For every real A,B, at every x �=−B/2, the function g(x)= x−A
2x+B is increasing in x.

Proof. Observing that g′(x)= 2A+B
(B+2x)2 proves the claim. �

C. PROOF OF PROPOSITION 4

We fix λ>0 throughout the proof.

Definition 6. For a policy τ and every agent type �∈{E,H}, let qτ�(m) and wτ�(m), respectively denote the match
rate and the expected waiting time of agents of type � under the policy τ when the arrival rates of E and H agents are
respectively m and m(1+λ).

Lemma 1. For every agent type �∈{E,H}, qτ�(m)≥1− wτ�(m)
d .

Proof. Let Et[·],Pt[·] denote the expectation and probability operator conditional on all information the planner has at
time t. Consider an agent i with an arbitrary type�∈{E,H}. Recall that ϕi is the random variable denoting the difference
between the time an agent i arrives to the market and the time that she departs (whether matched or not). Let κi be
the difference between the time an agent i arrives to the market and the time she becomes critical. By definition, κi is
exponentially distributed with mean d. Since the policy does not observe the value of κi before the agent becomes critical,
then

Pαi [ϕi< t |κi = t]=Pαi [ϕi< t |κi ≥ t].
This implies that the probability that the agent departs strictly before she becomes critical is given by

Pαi [ϕi<κi]=
∫ ∞

0
Pαi [ϕi<κi |κi = t] 1

d
e− 1

d tdt =
∫ ∞

0
Pαi [ϕi< t |κi ≥ t] 1

d
e− 1

d tdt

=
∫ ∞

0
(1−Pαi [ϕi ≥ t |κi ≥ t]) 1

d
e− 1

d tdt =1−
∫ ∞

0
Pαi [ϕi ≥ t |κi ≥ t]Pαi [κi ≥ t] 1

d
dt

=1−
∫ ∞

0
Pαi [ϕi ≥ t] 1

d
dt =1− 1

d
E[ϕi].

As the agent always departs the market matched whenever she departs before becoming critical, then a lower bound on
the probability that this agent is matched is given by 1− 1

d Eαi [ϕi], i.e., 1− 1
d Eαi [ϕi]≤Eαi [μi]. Taking the average over

agents of type � and using the law of iterated expectations yields that

1− wτ�(m)

d
=1− 1

d
lim

t→∞E

[ ∑
i : αi≤t and θi=�ϕi

|{i : αi ≤ t and θi =�}|

]
= lim

t→∞E

[∑
i : αi≤t and θi=�1− 1

d ϕi

|{i : αi ≤ t and θi =�}|

]

= lim
t→∞E

[∑
i : αi≤t and θi=�1− 1

d Eαi [ϕi]
|{i : αi ≤ t and θi =�}|

]
≤ lim

t→∞E

[∑
i : αi≤t and θi=�Eαi [μi]

|{i : αi ≤ t}|

]

= lim
t→∞E

[∑
i : αi≤t and θi=�μi

|{i : αi ≤ t}|

]
=qτ�(m).

�

Proof of Proposition 4 Consider a policy τ , and let At and Bt , respectively denote the number of hard-to-match and
easy-to-match agents that arrive prior to time t under the policy τ . Since hard-to-match agents can be matched only to
easy-to-match agents, the match rate of hard-to-match agents is at most limt→∞ Bt

At
, by the Ergodic theorem. By the strong

law of large numbers, limt→∞ Bt/t
At/t

= 1
1+λ . This proves that qτH (m)≤ 1

1+λ and establishes the claim about the match rate.

To prove the result for waiting time, we use Lemma 1 to write qτH (m)≥1− wτH (m)
d . On the other hand, we showed

that 1
1+λ ≥qτH (m). Hence, 1

1+λ ≥1− wτH (m)
d , which means that wτH (m)≥ dλ

1+λ . �
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D. GREEDY MATCHING: CONCENTRATION BOUND

Here, we analyse the stochastic process corresponding to the greedy policy and develop a concentration bound on the
number of hard-to-match agents present in the pool. Because one can renormalize the time scale and the arrival rates
linearly with a factor of 1/d, we suppose that d =1 throughout this section. This is without generality, as speeding up or
slowing down time does not change the steady-state distribution of the number of hard- or easy-to-match agents in the
pool. We further assume that m≥1 throughout this section, i.e., at least one agent arrives per year.

The main technical results established by this analysis are a lower and an upper concentration bound for the number
of hard-to-match agents in the greedy policy, developed respectively in Sections D.2 and D.3. Using these concentration
bounds, we will be able to prove the results on the match rate and waiting time under the greedy policy, which appear in
Section E.

D.1. Modelling the dynamics

We use a two-dimensional continuous-time Markov chain, which we denote by M, to model the dynamics of the market.
First, we set up some notation before proceeding to the description. For a Markov chain M, we recall that V (M) denotes
the state space of M. We represent each state by a pair (x,y) where x,y respectively denote the number of H agents and
the number of E agents. In other words, we have

V (M)={(x,y) : x,y∈Z and x,y≥0}.
By definition, the Markov chain is at state (x,y) if there are x hard-to-match and y easy-to-match agents in the pool.

Lemma 2. M has a unique stationary distribution.

The above lemma is proved in the Supplementary Appendix, Section i. The proof uses standard arguments that bound
the expected return time to a fixed state.

Definition 7. Let π denote the stationary distribution of M, with πx,y denoting the probability that π assigns to a state
(x,y), and let πx =∑∞

y=0πx,y be the associated marginal distribution of x.

D.2. A large market lower concentration bound for greedy matching

In this section, we provide the core technical result for the analysis of greedy matching: Theorem 3. This theorem provides
a concentration bound for the stochastic process associated with the greedy policy. We state and prove Theorem 3 in
Section D.2.4, after the following preliminary analysis.

We first define and analyse a new stochastic process called simplified greedy which differs from greedy in that E
agents are not matched with each other. We prove that the number of H agents present in the market in the new process
is lower (in first-order stochastic dominance) than the number of H agents present under the greedy policy, and use this
to prove the concentration bound.

D.2.1. The simplified greedy process and its associated Markov chain.

Definition 8. The simplified greedy process is the same as the greedy process with the difference that, in the simplified
greedy process, E agents are considered to be incompatible (and therefore are never matched to each other).

We denote by N the two-dimensional, continuous-time Markov chain counting the number of H and E agents present
at every point in time under the simplified greedy policy. As before, we denote by x the number of H agents and by y the
number of E agents. We next describe the transition rates of N . A transition can only happen from a state (x,y) to its (at
most) four neighbours,

{(x′,y′)∈Z
2+ : |x−x′|+|y−y′|=1}.

See Figure D.1 for a visual depiction of the neighbours and transition rates. To simplify the definition of transition rates
from a node to its neighbours, we define the following notations: Let Nx = (1−p)x and N̄x =1−Nx . (Thus, Nx is the
probability that an E agent is incompatible with x H agents.) For each state (x,y), we denote the transition rates from
this state to its neighbour on the top, right, bottom, and left by ux,y,rx,y,dx,y,lx,y, respectively. These rates are defined as
follows:
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Figure D.1

An illustration of the transitions from node (x,y) to its neighbours.

• ux,y =mNx is the transition rate from the node (x,y) to node (x,y+1). This holds because E agents arrive with rate
m; after the arrival of an E agent, the number of E agents increases by one if the arriving E agent is not compatible
to any H agent present in the pool.

• rx,y =m(1+λ)Ny is the transition rate from the node (x,y) to node (x+1,y). This holds because H agents arrive
with rate (1+λ)m; after the arrival of an H agent, the number of H agents increases by one if the arriving H agent
is incompatible to all E agents in the pool.

• dx,y =y+m(1+λ)N̄y is the transition rate from the node (x,y) to node (x,y−1). This holds because the number
of E agents goes down by one when (i) a new H agent arrives who is compatible to an E agent; this happens with
rate m(1+λ)N̄y; (ii) an existing E agent becomes critical and departs the pool; this happens with rate y.

• lx,y =x+mN̄x is the transition rate from the node (x,y) to node (x−1,y). This holds because the number of H
agents goes down by one when (i) a new E agent arrives who is compatible to an H agent; this happens with rate
mN̄x ; (ii) an existing H agent becomes critical and departs the pool; this happens with rate x.

Lemma 3. N has a unique stationary distribution.

Proof. The proof is identical to the proof of Lemma 2, but for the letter M replaced with N . �

Definition 9. Let ρ denote the stationary distribution of N , with ρx,y denoting the probability that ρ assigns to the state
(x,y). Also, let ρx =∑∞

y=0ρx,y.

Next we show that, at the steady state, fewer hard-to-match agents wait in the simplified greedy process N than in
the original greedy process M in the sense of first-order stochastic dominance.

Lemma 4. For every x≥0,
∑x

i=0πi ≤∑x
i=0ρi .

The proof of the lemma is technical and is deferred to the Supplementary Appendix, Section i. The proof idea is defining
a coupling of M and N such that, in the coupled process, there are more H agents in the pool under M than under N
at any time, and fewer E agents.

Definition 10. Let N̂ denote the embedded Markov chain corresponding to N . Also, let ρ̂ denote its unique stationary
distribution.

In the above definition, we recall that ρ̂ exists and is unique by Fact 2.
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D.2.2. Applying Proposition 9 to N̂ . We develop a concentration bound for ρ̂ using Proposition 9. This bound
is parameterized by a number k>0. We let k>0 be an arbitrary real number in the following analysis.

Let x∗ =λm. Define Bk ={(x,y)∈Z
2+ : |x−x∗|+|y|<k

√
m}. Let the functions f ,U be:

f (x,y)=1(x,y)�∈Bk , U(x,y)=e
y+|x−x∗|√

m ,

where 1(x,y)�∈Bk is the indicator function that equals 1 if (x,y) �∈Bk . We will apply Proposition 9 to N̂ . To this end, we
need the following definitions.

Definition 11. Conditional on the Markov chain N̂ being at a state (x,y), let the random variable (x1,y1) denote the
next state that the Markov chain moves to. Define

(x,y)=E
[
U(x1,y1)

]−U(x,y).

Definition 12. For every z≥0, define

H(z)=−e
z√
m

(
1√
m

z−2m(1+λ)Nz

2m(1+λ)+z
− 1

m

)
.

Lemma 5. For every x>x∗ and y≥0, (x,y)≤H(y+x−x∗).

Proof. To shorten notation, let n= (1+λ)m, θ=m+n+x+y, and z=y+x−x∗. Note that z=y+|x−x∗|. Using this

notation, we can write U(x,y)=e
z√
m . Recall that we defined Nα= (1−p)α and N̄α=1−Nα for every real α>0. Then,

(x,y)=e
z+1√

m

(
mNx +nNy

θ

)
+e

z−1√
m

(
x+mN̄x +y+nN̄y

θ

)
−e

z√
m (D.6)

=e
z√
m

(
e

1√
m

mNx +nNy

θ
+e

− 1√
m

(
x+mN̄x +y+nN̄y

θ

)
−1

)

≤e
z√
m

((
1+ 1√

m
+ 1

m

)
mNx +nNy

θ
+
(

1− 1√
m

+ 1

m

)(
x+mN̄x +y+nN̄y

θ

)
−1

)
(D.7)

=e
z√
m

(
1√
m

2mNx +2nNy −m−n−x−y

θ
+ 1

m

)
(D.8)

=e
z√
m

(
1√
m

2mNx +2nNy −θ
θ

+ 1

m

)
. (D.9)

To see why (D.6) holds, observe that mNx
θ

and
nNy
θ

are the transition probabilities of N̂ from the state (x,y) to the states

(x,y+1) and (x+1,y), respectively. When either of these transitions occur, the value of U changes from e
z√
m to e

z+1√
m .

Also, x+mN̄x
θ

and
y+nN̄y
θ

are the transition probabilities of N̂ from the state (x,y) to the states (x−1,y) and (x,y−1),
respectively. Note that these transition probabilities are 0 if x−1 or y−1 are negative. When either of these transitions

occur, the value of U changes from e
z√
m to e

z−1√
m . Inequality (D.7) holds because eα≤1+α+α2 holds for everyα∈[−1,1].

Equations (D.8) and (D.9) hold by rearrangement of terms.

Claim 1. Let a,b,c be positive reals such that a<b. The function g(s)= (1−p)b−s +c(1−p)s−a is convex over [a,b].

Proof. Observe that

g′′(s)= (1−p)−s log2(1−p)
(

c(1−p)2s−a +(1−p)b
)
≥0,

which means that g is convex when p∈ (0,1). Also, when p=1, g(s)=0 for every s∈[a,b]. �

Claim 2.

e
z√
m

(
1√
m

2m(Nλm+z +1+λ)−θ
θ

+ 1

m

)
≤H(z).

Proof. Recall that θ=m+n+x+y, which means that θ=2m(1+λ)+z. Hence, to prove the claim, which says that

e
z√
m

(
1√
m

2m(Nλm+z +1+λ)−θ
θ

+ 1

m

)
≤e

z√
m

(
1√
m

2m(1+λ)Nz −z

2m(1+λ)+z
+ 1

m

)
,
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it suffices to prove that
2m(Nλm+z +1+λ)−θ≤2m(1+λ)Nz −z,

or equivalently, 2mNλm+z −z≤2m(1+λ)Nz −z. The latter inequality holds as Nλm+z ≤Nz . �

Claim 3.

e
z√
m

(
1√
m

2m(Nλm +(1+λ)Nz)−θ
θ

+ 1

m

)
≤H(z)

Proof. Recall that θ=2m(1+λ)+z. Hence, to prove that

e
z√
m

(
1√
m

2m(Nλm +(1+λ)Nz)−θ
θ

+ 1

m

)
≤e

z√
m

(
1√
m

2m(1+λ)Nz −z

2m(1+λ)+z
+ 1

m

)
,

it suffices to prove that
2m(Nλm +(1+λ)Nz)−θ≤2m(1+λ)Nz −z,

or equivalently, 2mNλm −θ≤−z. The latter inequality holds as θ−z=2m(1+λ) and Nλm ≤1. �

Recall that z=y+x−x∗ =y+x−λm. We next complete the proof of the Lemma 5 by showing that

(x,y)≤e
z√
m

(
1√
m

2mNx +2nNy −θ
θ

+ 1

m

)
≤H(z).

The first inequality holds by (D.9). To prove the second inequality, we observe that

e
z√
m

(
1√
m

2mNx +2nNy −θ
θ

+ 1

m

)

≤e
z√
m

(
1√
m

2mmax{Nλm+z +(1+λ)N0,Nλm +(1+λ)Nz}−θ
θ

+ 1

m

)
(D.10)

≤max

{
e

z√
m

(
1√
m

2m(Nλm+z +1+λ)−θ
θ

+ 1

m

)
,e

z√
m

(
1√
m

2m(Nλm +(1+λ)Nz)−θ
θ

+ 1

m

)}
(D.11)

≤H(z),

where (D.10) holds due to the convexity property established by Claim 1, (D.11) holds by rearrangement of terms, and
the last inequality holds because each of the expressions in the max are at most H(d), by Claims 2 and 3. �

Lemma 6. For every x≤x∗ and y≥0, (x,y)≤H(y+x∗ −x).

Proof. Let z=y+x∗ −x, n= (1+λ)m, and θ=m+n+x+y. The proof considers two cases: either x<x∗ or x=x∗. First,
we suppose that x<x∗. Then,

(x,y)=e
z+1√

m

(
m+x

θ

)
+e

z−1√
m

(
y+n

θ

)
−e

z√
m (D.12)

=e
z√
m

(
e

1√
m

m+x

θ
+e

− 1√
m

(
y+n

θ

)
−1

)

≤e
z√
m

((
1+ 1√

m
+ 1

m

)
m+x

θ
+
(

1− 1√
m

+ 1

m

)(
n+y

θ

)
−1

)
(D.13)

=e
z√
m

(
1√
m

m+x−n−y

θ
+ 1

m

)
=e

z√
m

(
1√
m

−z

θ
+ 1

m

)
(D.14)

≤e
z√
m

(
1√
m

−z+2nNz

θ
+ 1

m

)
=H(z). (D.15)

To see why (D.12) holds, observe that x+mN̄x
θ

and Nx
θ

are the transition probabilities of N̂ from the state (x,y) to the states
(x−1,y) and (x,y+1), respectively; these transition probabilities sum up to m+x

θ
. When either of these transitions occur,

the value of U changes from e
z√
m to e

z+1√
m . Also,

nNy
θ

and
y+nN̄y
θ

are the transition probabilities of N̂ from the state (x,y)

to the states (x+1,y) and (x,y−1), respectively; these transition probabilities sum up to y+n
θ

. (Note that the transition

probabilities are 0 if x−1 or y−1 are negative.) When either of these transitions occur, the value of U changes from e
z√
m
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to e
z−1√

m . Inequality (D.13) holds because eα≤1+α+α2 holds for every real number in [−1,1], and (D.15) holds because
Nz ≥0.

To complete the proof, it remains to prove the claim for the case of x=x∗. In this case, when a transition from (x,y)

to (x,y+1) occurs, the value of U changes from e
z√
m to e

z+1√
m (whereas in the above case, the value of U changes to e

z−1√
m

when this transition occurs). Accounting for this difference slightly changes the above calculations, but leads to the same
conclusion:

(x,y)e
z+1√

m

(
m+x+nNy

θ

)
+e

z−1√
m

(
y+nN̄y

θ

)
−e

z√
m

≤e
z√
m

((
1+ 1√

m
+ 1

m

)
m+x+nNy

θ
+
(

1− 1√
m

+ 1

m

)(
y+nN̄y

θ

)
−1

)

=e
z√
m

(
1√
m

m+x+nNy −y−nN̄y

θ
+ 1

m

)

=e
z√
m

(
1√
m

−z+2nNz

θ
+ 1

m

)
=H(z),

where the penultimate equality follows from x=x∗ =n−m and y=z. �

Lemma 7. For every x,y≥0 (x,y)≤H(y+|x−λm|).

Proof. By Lemma 5, if x>x∗, then (x,y)≤H(y+x−x∗). By Lemma 6, if x≤x∗, then (x,y)≤H(y+x∗ −x). The
claim follows immediately from the two latter bounds and the fact that x∗ =λm. �

Lemma 8. For every k>0 satisfying supz≥k
√

m H(z)<0 it holds that

∑
(x,y)�∈Bk

ρ̂x,y ≤−
sup

0≤z≤k
√

m
H(z)

sup
z≥k

√
m

H(z)
.

Proof. Applying Proposition 9 on N̂ directly implies that∑
(x,y)�∈Bk

ρ̂x,y ≤α+ β

γ
(D.16)

holds if there exist α,β≥0 and γ >0 such that

∀(x,y) �∈Bk,(x,y)≤−γ f (x,y),

∀(x,y)∈Bk,f (x,y)≤α,
∀(x,y)∈Bk,(x,y)≤β.

Since f (x,y)=1(x,y)�∈Bk by definition, then we can set α=0. Recall that

Bk ={(x,y)∈Z
2+ : |x−x∗|+|y|<k

√
m}.

Hence, Lemma 7 implies that

sup
(x,y)∈Bk

(x,y)≤ sup
0≤z≤k

√
m

H(z).

Therefore, we can set

β= sup
0≤z≤k

√
m

H(z). (D.17)

We note that β>0 holds since H(0)=e
1√
m −1>0.

Finally, we observe that by Lemma 7,

sup
(x,y)�∈Bk

(x,y)≤ sup
z≥k

√
m

H(z).

Therefore, we can set

γ =− sup
z≥k

√
m

H(z). (D.18)

Since supz≥k
√

m H(z)<0 holds by assumption, then γ >0.
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We have set α=0, and have set β,γ by (D.17) and (D.18), respectively. This choice of parameters, together with
(D.16), directly proves the claim. �

D.2.3. A Concentration Bound for ρ.

Corollary 1 (of Lemma 8) For every k>0 satisfying supz≥k
√

m {H(z)}<0 it holds that

∑
(x,y)�∈Bk

ρx,y ≤−
sup

0≤z≤k
√

m
H(z)

sup
z≥k

√
m

H(z)
· 2(1+λ+k/

√
m)

2+λ .

Proof. For a subset S ∈Z
2+, let ρ[S] denote

∑
(x,y)∈Sρx,y. Similarly, let ρ̂[S] denote

∑
(x,y)∈S ρ̂x,y. We denote Z

2+\S by S.

If ρ[Bk ]≤ ρ̂[Bk ], then the claim holds by the upper bound on ρ̂[Bk ] provided by Lemma 8. So, suppose that this is
not the case; i.e.,

ρ[Bk]<ρ̂[Bk]. (D.19)

Define wx,y = 1
m(2+λ)+x+y . We note that w0,0 ≥wx,y holds for every (x,y)∈Z

2+. Also, define w=wλm+k
√

m,k
√

m. We
note that w≤wx,y for every (x,y)∈Bk .

By Fact 2, regarding the steady-state distribution of Embedded Markov chains, it holds that

ρ[Bk ]
ρ[Bk] ≤ ρ̂[Bk ]

ρ̂[Bk] · w0,0

w
.

This implies that

ρ[Bk ]≤ρ[Bk] ρ̂[Bk ]
ρ̂[Bk] · w0,0

w
.

The above inequality, together with (D.19), implies that

ρ[Bk ]≤ ρ̂[Bk ]· w0,0

w
= ρ̂[Bk ]· 2(1+λ+k/

√
m)

2+λ .

The above bound, together with Lemma 8, implies that

ρ[Bk]≤−
sup

0≤z≤k
√

m
H(z)

sup
z≥k

√
m

H(z)
· 2(1+λ+k/

√
m)

2+λ .

�

Theorem 2. For every k>0, define

Q(k)=ek

(
1√
m

k
√

m−2m(1+λ)Nk
√

m

2m(1+λ)+k
√

m
− 1

m

)
,

R(k)= sup
0≤z≤k

√
m

H(z),

�(k)= R(k)

Q(k)
· 2(1+λ+k/

√
m)

2+λ .

Then,
∑

(x,y) �∈Bk
ρx,y ≤�(k) holds if Q(k)>0.

Proof. First, we prove the following claim.

Claim 4. supz≥k
√

m H(z)≤−Q(k).
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Proof. Observe that for every z≥k
√

m,

H(z)=−e
z√
m

(
1√
m

z−2m(1+λ)Nz

2m(1+λ)+z
− 1

m

)

≤−e
z√
m

(
1√
m

(
z

2m(1+λ)+z
− 2m(1+λ)Nz

2m(1+λ)+z

)
− 1

m

)

≤−e
z√
m

(
1√
m

(
k
√

m

2m(1+λ)+k
√

m
− 2m(1+λ)Nz

2m(1+λ)+z

)
− 1

m

)
(D.20)

≤−e
z√
m

(
1√
m

(
k
√

m

2m(1+λ)+k
√

m
− 2m(1+λ)Nk

√
m

2m(1+λ)+k
√

m

)
− 1

m

)
(D.21)

≤−ek
(

1√
m

(
k
√

m

2m(1+λ)+k
√

m
− 2m(1+λ)Nk

√
m

2m(1+λ)+k
√

m

)
− 1

m

)
(D.22)

=−Q(k).

where (D.20) holds by Fact 5, (D.21) holds by the fact that z≥k
√

m, and (D.22) holds since Q(k)>0. �

By the above claim, supz≥k
√

m H(z)<0. Thus, Corollary 1 applies, which implies that

∑
(x,y) �∈Bk

ρx,y ≤−
sup

0≤z≤k
√

m
H(z)

sup
z≥k

√
m

H(z)
· 2(1+λ+k/

√
m)

2+λ ≤ R(k)

Q(k)
· 2(1+λ+k/

√
m)

2+λ ,

where the last inequality holds by Claim 4. This completes the proof. �

D.2.4. A concentration bound for π .

Lemma 9. For every α≥0 and z≤2α(1+λ)
√

m, it holds that H(z)≤e2α(1+λ)
(

1√
m

+ 1
m

)
.

Proof. Observe that

H(z)=e
z√
m

(
1√
m

2m(1+λ)Nz −z

2m(1+λ)+z
+ 1

m

)
≤e

z√
m

(
1√
m

+ 1

m

)
≤e2α(1+λ)

(
1√
m

+ 1

m

)
, (D.23)

where the last inequality holds because z≤2α(1+λ)
√

m. �

Lemma 10. For every α≥3, m≥max{36,p−2}, and z≥2α(1+λ)
√

m, H(z)≤ 1√
m

− 1
m e

z√
m .

Proof. Observe that

H(z)=e
z√
m

(
1√
m

2m(1+λ)Nz −z

2m(1+λ)+z
+ 1

m

)
≤e

z√
m

(
1√
m

2m(1+λ)e−pz −z

2m(1+λ)+z
+ 1

m

)
(D.24)

≤ 1√
m

2m(1+λ)e
z√
m

−pz

2m(1+λ)+z
− 1√

m

ze
z√
m

2m(1+λ)+z
+ 1

m
e

z√
m

≤ 1√
m

+e
z√
m

(
− 1√

m

z

2m(1+λ)+z
+ 1

m

)
(D.25)

≤ 1√
m

+e
z√
m

(
− 1√

m

2α(1+λ)
√

m

2m(1+λ)+2α(1+λ)
√

m
+ 1

m

)
(D.26)

≤ 1√
m

+e
z√
m

(
− 1

m/α+√
m

+ 1

m

)
≤ 1√

m
− 1

m
e

z√
m (D.27)

where (D.24) holds because 1−α≤e−α for every real α, (D.25) holds because z√
m

−pz≤0 (which holds since m≥p−2),

(D.26) holds by Fact 5, and (D.27) holds because α≥3 and m≥36. �

Corollary 2. For every m≥max{36,p−2} and every z≥0, it holds that H(z)≤e6(1+λ)
(

1√
m

+ 1
m

)
.
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Proof. Let α=3. Lemma 9 proves the claim for when z≤2α(1+λ)
√

m. On the other hand, when z≥2α(1+λ)
√

m, then
Lemma 10 implies that

H(z)≤ 1√
m

− 1

m
e

z√
m <

1√
m
.

�

Theorem 3 (Large market lower concentration bound) There exist positive constants m0,k0,c0 such that for every
m>m0 and k>k0,

λm−k
√

m∑
x=0

πx ≤c0mke−k .

Proof. Let m0 =max{36,p−2} and k0 =max{6(1+λ),logm}. By Lemma 10, for every m≥m0 and z≥k0
√

m, it holds that

H(z)≤ 1√
m

− 1
m e

z√
m . Hence, for every k>k0 and m>m0,

H(k
√

m)≤ 1√
m

− 1

m
ek ≤ 1√

m
−1<0.

Consequently, Corollary 1 implies that for every m>m0 and k>k0,

∑
(x,y)�∈Bk

ρx,y ≤−
sup

0≤z≤k
√

m
H(z)

sup
z≥k

√
m

H(z)
· 2(1+λ+k/

√
m)

2+λ . (D.28)

By Corollary 2, for every m>m0 and z≥0, H(z)≤e6(1+λ) holds, which implies that

sup
0≤z≤k

√
m

H(z)≤e6(1+λ). (D.29)

On the other hand, Lemma 10 implies that for every m>m0, k>k0, and z≥k
√

m, it holds that H(z)≤ 1√
m

− 1
m e

z√
m ,

which implies that

sup
z≥k

√
m

H(z)≤ 1√
m

− 1

m
ek ≤− 1

2m
ek, (D.30)

where the last inequality holds because 1√
m

≤ 1
2m ek holds when m>m0. We next observe that (D.28), (D.29), and (D.30)

together imply that ∑
(x,y)�∈Bk

ρx,y ≤ e6(1+λ)

1
2m ek

· 2(1+λ+k/
√

m)

2+λ ≤2e6(1+λ)me−k4k =8e6(1+λ)kme−k,

where the last inequality holds because 2(1+λ+k/
√

m)
2+λ ≤4k for every k>k0.

The above bound, together with Lemma 4, implies that

λm−k
√

m∑
x=0

πx ≤
λm−k

√
m∑

x=0

ρx ≤
∑

(x,y)�∈Bk

ρx,y ≤8e6(1+λ)kme−k .

Setting c0 =8e6(1+λ) concludes the proof. �

We next provide an upper concentration bound for the greedy policy.

D.3. An upper concentration bound for the greedy policy

In this section, we complement Theorem 3 by providing an upper concentration bound for the greedy process. The main
idea is defining a simpler process that is coupled with M, namely Mu. This process is defined such that the number of
unmatched H agents in M is stochastically dominated by the number of unmatched H agents in Mu.

D.3.1. Definition of Mu. Consider a Markov process which is the same as M but with the following differences:

1. Matches are made only between H agents and E agents.

2. Matches are made greedily only upon the arrival of E agents.
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3. E agents do not stay in the market: If upon the arrival of an E agent she is not matched to an H agent, then the E agent
departs the market immediately.

The number of H agents in this random process is a one-dimensional Markov chain Mu. The state space of Mu is
V (Mu)={0,1,2,...}. The Markov chain is at state x when the number of H agents present in the pool is x. The transition
rate from a state x to state x+1 is rx =m(1+λ), since H agents arrive at a rate of m(1+λ). The transition rate from a
state x to state x−1 (when it exists) is lx =m(1−Nx)+x. The first summand corresponds to the event that an arriving E
agent is compatible to an H agent, and the second corresponds to the departures of H agents.

Since Mu is irreducible and positive recurrent, it has a unique stationary distribution (Norris (1997), Theorem 3.5.3),
which we denote by πu. Let πu

i be the probability that πu assigns to state i.

Lemma 11. The steady-state distribution of the number of H agents in Mu stochastically dominates the steady-state
distribution of the number of H agents in M.

The proof of the lemma is technical and is deferred to the Supplementary Appendix, Section i. The proof idea is
defining a coupling of M and Mu such that, in the coupled process, there are fewer H agents in the pool under M than
under Mu at any time, and more E agents.

Lemma 12. Suppose that m≥4(1+λ)2 and pλ≥ lnm
2m . Then, for every positive integer k we have

πu
λm+k ≤e

− k√
m

+(3+2λ)
.

Proof. For notational simplicity, we denote πu by η throughout this proof. We start by writing the balance equations,
according to which, for every positive integer i, ηi

ηi−1
= ri

li−1
.

Let x∗ =λm, and suppose i≥x∗. Then,

ηi

ηi−1
= (1+λ)m

i+m(1−Ni)
= 1+λ

i/m+1−Ni
.

When i≥x∗ +2(1+λ)
√

m+me−pλm, and m≥4(1+λ)2, we can write

ηi

ηi−1
= 1+λ

i/m+1−Ni
≤ 1+λ

1+λ+(i−x∗)/m−e−pλm
≤ 1+λ

1+λ+2(1+λ)/
√

m
(D.31)

≤ 1

1+2/
√

m
≤1− 1√

m
, (D.32)

where (D.31) uses the fact that Ni ≤e−ip and that i≥2(1+λ)
√

m+me−pλm, and (D.32) uses the fact that 1
1+α ≤1−α/2

for every positive α≤1.
For every positive integer k, we have

ηx∗+k
ηx∗ =∏k−1

j=0
ηx∗+j+1
ηx∗+j

. Then, for every integer k ≥2(1+λ)
√

m+me−pλm, we

can use (D.32) to write

ηx∗+k ≤ ηx∗+k

ηx∗
≤e

− k−2(1+λ)
√

m−me−pλm√
m ≤e

− k√
m

+(3+2λ)
, (D.33)

where the last inequality holds because pλm≥ lnm
2 .

On the other hand, for every non-negative integer k<2(1+λ)
√

m+me−pλm, we have

ηx∗+k ≤1<e
− k−2(1+λ)

√
m−me−pλm√
m ≤e

− k√
m

+(3+2λ)
, (D.34)

where the last inequality holds because pλm≥ lnm
2 . Finally, (D.33) and (D.34) conclude the proof. �

Theorem 4 (Large market upper concentration bound) Suppose that m≥4(1+λ)2 and pλ≥ lnm
2m . Also, let π denote

the steady-state distribution of M. Then, for every positive integer k we have

∞∑
j=k

πλm+j ≤ m√
m−1

e
− k√

m
+3+2λ

.

Proof. By Lemma 12, for every positive integer j we have πu
λm+j ≤e

− j√
m

+(3+2λ)
. On the other hand, by Lemma 11, the

steady-state distribution of the number of H agents in Mu stochastically dominates the steady-state distribution of the
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number of H agents in M. Therefore,

∞∑
j=k

πλm+j ≤
∞∑

j=k

πu
λm+j ≤

∞∑
j=k

e
− j√

m
+(3+2λ) =e3+2λ e

− k√
m

1−e
− 1√

m

≤e3+2λ e
− k√

m

1√
m

− 1
m

,

where the last inequality holds because ez ≤1+z+z2 for every real number in [−1,1]. �

E. MATCH RATE AND WAITING TIME UNDER THE GREEDY POLICY

E.1. Match rates under the greedy policy

Claim 5. qG
E (m)≥1−O(1/m).

Proof. Fix an E agent, namely a, who has just arrived to the market. Let xa,ya respectively denote the size of the H pool
and the E pool just before a arrives. By the PASTA property of the Poisson process,38 the probability distribution of
(xa,ya) is the same as the steady-state distribution π . Therefore, theorem 3 implies that for sufficiently large m,

Pπ

[
xa<m−3logm

√
m
]≤e−3logm3c0mlogm≤m−1.

This implies that, upon her arrival, agent a has a compatible H agent with probability at least

(1−m−1)
(

1−(1−p)λm−3logm
√

m
)
=1−O(m−1). (E.35)

This probability is a lower bound for qG
E (m). �

Claim 6. qG
H (m)∈

(
1

1+λ −O(m−1/3), 1
1+λ +O(m−1/3

)
.

Proof. Fix m>0. Suppose that the market starts at time 0 when there are no agents in the market. For any t>0, let
mE (t),mH (t), respectively denote the number of E agents and H agents that arrive from time 0 to time t. Also, let ψH (t)
denote the number of H agents that are matched from time 0 to time t.

By the Ergodic theorem, limt→∞ψH (t)/mH (t)=qG
H (m). Hence, it suffices to prove the claim for the left-hand side

of the equality. Since E agents arrive according to a Poisson process with rate m, then, for any t>1, the event mE (t)∈
[mt−(mt)2/3,mt+(mt)2/3] holds with very high probability. This holds by the concentration bound of Fact 3 for the
Poisson distribution. Similarly, since H agents arrive according to a Poisson process with rate (1+λ)m, for any t>1, the
event

mH (t)∈[(1+λ)mt−((1+λ)mt)2/3,(1+λ)mt+m2/3]
holds with very high probability due to Fact 3. This implies that, for any t>1,

ψH (t)

mH (t)
≤ mE (t)

mH (t)
≤ mt+(mt)2/3

(1+λ)mt−((1+λ)mt)2/3
(E.36)

holds with very high probability.
Next, we provide a lower bound for ψH (t)

mH (t) . Recall from (E.35) that, upon her arrival, any E agent is matched to an H

agent with probability at least 1−O(m−1). Therefore,

ψH (t)

mH (t)
≥ mE (t)(1−O(m−1))

(1+λ)mt+((1+λ)mt)2/3
≥ (mt−(mt)2/3)(1−O(m−1))

(1+λ)mt+((1+λ)mt)2/3
. (E.37)

Now observe that, for any t>1, (E.36) and (E.37) together imply that

ψH (t)

mH (t)
∈
(

1

1+λ−O(m−1/3),
1

1+λ+O(m−1/3)

)
holds with very high probability. Since, by the Ergodic theorem, limt→∞ψH (t)/mH (t) exists and converges to qG

H (m)
almost surely in any sample path, then we have

qG
H (m)∈

(
1

1+λ−O(m−1/3),
1

1+λ+O(m−1/3)

)
.

�

38. PASTA, or Poisson Arrivals See Time Averages, is a well-known property in the queuing literature; e.g., see
Harchol-Balter (2013).
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Lemma 13. Under the greedy policy, the match rate of hard-to-match agents qG
H (m) is 1

1+λ −o(1) and the match rate

of easy-to-match agents qG
E (m) is 1−o(1).

Proof. The lemma follows immediately from Claims 5 and 6. �

E.2. Distribution of waiting time under greedy matching

We show that as m approaches infinity, the waiting time for easy-to-match agents converges in distribution to the degenerate
distribution at 0, and the waiting time for hard-to-match agents converges to the exponential distribution with rate
1/d+1/λ.

Lemma 14. Under the greedy policy, as m approaches infinity, the waiting time of an easy-to-match agent converges
in distribution to the degenerate distribution at 0.

Proof. Fix an E agent, e, and let we denote the waiting time for e. For any fixed constant t>0, we will show that
limm→∞P[t>we]=1. This will prove the claim. Recall from (E.35) that upon her arrival, agent e is matched to an H
agent with probability 1−O(m−1). Therefore, P[we =0]=1−O(m−1), which implies that, limm→∞P[t>we]=1 holds
for any t>0. �

Lemma 15. As m approaches infinity, the waiting time of hard-to-match agents converges in distribution to the
exponential distribution with rate 1

d + 1
λ

.

We sketch the proof below. The formal proof is technical and is presented in the Supplementary Appendix, Section i. We
will use Exp(x) to denote the exponential distribution with rate x.

Proof sketch We define a new process, namely P , in which there are no easy-to-match agents. Instead, attach an
exponential clock to each hard-to-match agent which ticks at rate 1/λ. We call this clock the match clock of the agent. We
consider an agent to be matched if the match clock ticks before the agent becomes critical. Without providing a formal
proof in this proof sketch, we suppose that H agents in the new process P have approximately the same waiting time as
in the original process (the greedy policy). Given this assumption, we compute the distribution for the waiting time of a
hard-to-match agent h in P .

Consider the agent h and suppose she has entered the pool at time t0. Note that h is matched if and only if it is matched
before her criticality clock ticks. Let t1,t2 be random variables such that t1 ∼Exp(1/λ),t2 ∼Exp(1/d). These random
variables are interpreted as follows. The agent becomes critical at time t0 +t2 if she is not matched by then, i.e., if the
match clock attached to her has not ticked by then. The agent’s match clock ticks at time t0 +t1. So, the agent is matched
if and only if t1< t2. Alternatively, we can say the agent is matched if and only if t1 = tmin where tmin =min{t1,t2}.
Since tmin is distributed according to Exp(1/d+1/λ), and since tmin equals the waiting time of the agent, the claim
is proved. �

E.3. Proof of Proposition 5

Proof of Proposition 5 The claim about the match rate was proved in Lemma 13, where we showed that under the greedy
policy, the match rate of hard-to-match agents qG

H (m) is 1
1+λ −O( 1

(1+λ)
√

m
) and the match rate of easy-to-match agents

qG
E (m) is 1−o(1). The claim about waiting times was proved in Lemmas 14 and 15, for easy- and hard-to-match agents,

respectively. �

F. ANALYSIS OF THE BATCHING POLICY

F.1. Preliminary graph theory results

For every graph G, we let V (G) denote the set of its nodes and E(G) denote the set of its edges. An independent set in a
graph G is a subset of nodes S ⊆V (G) such that no two nodes in S are adjacent (i.e. are connected by an edge) in G.

We denote a bipartite graph by G(X,Y ) where X,Y denote the set of nodes on each side of G. (That is, V (G)=X ∪Y ,
and both X,Y are independents sets in G.) A matching is a set of edges such that no two of the edges have a common
node. The size of a matching is the number of the edges that it contains. A perfect matching in G(X,Y ) is a matching with
size min{|X|,|Y |}.
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Lemma 16. Let G(X,Y ) be a randomly drawn bipartite graph with non-random X,Y being its partitions where |X|=
|Y |=n. Suppose that the probability that a node u∈X is connected a node v∈Y equals p∈ (0,1) independently across

all pairs (u,v). Then, the graph contains a perfect matching with probability at least 1−n22npn2/4.

Proof. By the König–Egerváry Theorem, there exists a perfect matching in G if and only if the size of the maximum
independent set is at most n (West, 2000).

For X ′ ⊆X and Y ′ ⊆Y , let E(X ′,Y ′) denote the event in which no node in X ′ is adjacent to a node in Y ′. We note
that if E(X ′,Y ′) happens then X ′ ∪Y ′ is an independent set. Also, let the set E ′ be the set of all pairs (X ′,Y ′) such that
X ′ ⊆X,Y ′ ⊆Y , and |X ′|+|Y ′|=n+1. Therefore,

⋃
(X ′,Y ′)∈E ′ E(X ′,Y ′) is the event that there exists an independent set of

size larger than n (which also means that no perfect matching exists). By a union bound, the probability that a perfect
matching does not exist in G is then at most

P

⎡⎣ ⋃
(X ′,Y ′)∈E ′

E(X ′,Y ′)

⎤⎦≤
∑

(X ′,Y ′)∈E ′
P
[
E(X ′,Y ′)

]
. (F.38)

Consider (X ′,Y ′) with |X ′|+|Y ′|=n+1, and let i=|X ′|. The probability that E(X ′,Y ′) holds then equals pi(n−i+1).
Therefore, ∑

(X ′,Y ′)∈E ′
P
[
E(X ′,Y ′)

]= n∑
i=1

(
n

i

)(
n

n−i+1

)
(1−p)i(n−i+1) =

n∑
i=1

(
n

i

)(
n

i−1

)
(1−p)i(n−i+1)

≤
n∑

i=1

22n(1−p)i(n−i+1) ≤n22n(1−p)n2/4,

where the penultimate inequality follows from the fact that the product of the binomial coefficients
(n

i

)( n
i−1

)
is bounded

by 22n, as each of the multiplicands is bounded by 2n. �

Corollary 3 (Corollary of Lemma 16) Let G(X,Y ) be a random bipartite graph with X,Y being its partitions where
|Y |=n and |X|< |Y |. A node u∈X is adjacent to a node v∈Y with probability p, independently across all pairs (u,v).
Then, G contains a matching of size |X| with probability at least 1−n22npn2/4.

Proof. Construct a graph H from G by adding n−|X| dummy nodes to X . Let each dummy node x′ and each node y∈Y
be adjacent independently with probability p.

Let p denote the probability that H contains a matching of size n, and q denote the probability that G contains a
matching of size |X|. As any matching of size n=|Y | in H must cover every node in X , then q>p. By Lemma 16,

p≥1−n22npn2/4. This concludes the proof. �

Definition 13. In a bipartite graph G(X,Y ), a subset S ⊆X ∪Y is called an (x,y)-independent set if S is an independent
set in G such that |S∩X|=x and |S∩Y |=y.

Lemma 17. Let α,β,γ >0 be arbitrary constants such that α,β∈ (0,1). Let G(X,Y ) be a bipartite graph such that
|Y |=γ |X| and, furthermore, for every pair of nodes u∈X and v∈Y, u is adjacent to v independently with probability
p>0. Then, with high probability as |X| grows large, G contains no (α|X|,β|Y |)-independent set.

Proof. Consider arbitrary subsets X ′ ⊆X and Y ′ ⊆Y such that |X ′|=α|X| and |Y ′|=β|Y |. The probability that X ′ ∪Y ′ is
an independent set is (1−p)αβ|X|·|Y |. Hence, the probability that there exists at least one (|X ′|,|Y ′|)-independent set in G
is bounded by ( |X|

|X ′|
)( |Y |

|Y ′|
)

(1−p)αβ|X|·|Y | ≤2|X|(1+γ )(1−p)αβγ |X|2 .

The right-hand side of the above inequality approaches 0 as |X| approaches infinity. �

F.2. Preliminary definitions and lemmas

In the analysis, we suppose that time is indexed by non-negative real numbers. The batching policy makes matches at
times iT for every positive integer i; these times are called matching times. For every i≥0, the interval (iT ,(i+1)T ] is
called period i.
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The batching policy executes a matching at the end of every period i: at time (i+1)T , it finds the largest matching in
the pool. If there are several such matchings, it selects the matching among them which has the maximum number of H
agents. The policy then executes the selected matching and removes the agents involved in that matching from the pool.

For any matching time t, xt and yt , respectively denote the number of H agents and the number of E agents in the
pool after the execution of the matching at time t. If t is not a matching time, let xt and yt denote the number of H and E
agents in the pool at time t, respectively.

We note that the sequence 〈(xiT ,yiT )〉i≥0 is a discrete-time Markov chain with a state space Z
2+. Since this Markov

chain is Ergodic, it has a steady-state distribution. Since we are performing a steady-state analysis, we suppose that
(x0,y0) is drawn from the steady-state distribution. This assumption is without loss of generality by the Ergodic theorem
for Markov chains.

Lemma 18. The match rate of agents of type � equals 1−wτ�(m)/d if τ is either the batching or greedy policy.

The proof of Lemma 18 is identical to the proof of Lemma 1 adjusting for the fact that instead of an upper bound on
the match rate we know its exact value; i.e., the probability that the agent is matched is given by 1− 1

d Eαi [ϕi]=Eαi [μi].

Lemma 19. Consider a time interval (a,b) and let c=b−a. Conditional on an agent arriving in the interval (a,b), the

criticality time of the agent is larger than b with probability γc,d = 1−e−c/d

c/d .

Proof. By the properties of the Poisson process, the distribution of the arrival time of an agent conditional on the agent
arriving in an interval [a,b] equals the uniform distribution over the interval [a,b]. Hence, the chance that the criticality
time of the agent is larger than b equals ∫ c

0

1

c
e−(c−s)/dds= d(1−e−c/d )

c
.

�

F.3. Analysis of match rate

We first provide an upper bound for match rate, and then a matching lower bound for it.

Lemma 20. Under a batching policy with batch length T, qB
E (m)≤γT ,d and qB

H (m)≤ γT ,d
1+λ .

Proof. Let i>0 be an arbitrary integer. Conditional on an E agent arriving at a time in the interval (iT ,(i+1)T ], the agent
is present in the pool at time (i+1)T with probability γT ,d by Lemma 19. Therefore, the match rate of E agents is at most
γT ,d .

To prove the claim for H agents, observe that H agents can be matched only to E agents. Under the batching policy,
only a fraction γT ,d of the E agents would not become critical before the first matching time after their arrival. Hence,
the match rate of H agents is at most

γT ,d
1+λ . �

To provide lower bounds on match rate, we need the following definitions and lemmas.

Definition 14. For an integer i≥0, an agent present in the pool at time (i+1)T is called a new agent if she has arrived
later than time iT.

Definition 15. In a graph G whose nodes correspond to E and H agents, an edge (u,v) is a cross-edge if u,v are agents
of different types.

Lemma 21. Let ei denote the number of new E agents who are present in the pool at time (i+1)T. Then, the matching
executed at the matching time (i+1)T involves at least ei cross-edges, whp.

Proof. We first construct a bipartite graph G(X,Y ), where X and Y , respectively denote the set of H agents in the pool at
time (i+1)T before the matching is executed, and the set of new E agents in the pool at time (i+1)T before the matching
is executed.

Claim 7. Whp, it holds that |Y |< (1+λ/2)γT ,dmT< |X|.

Proof. By Lemma 19, conditional on an agent arriving to the pool after time iT , that agent remains in the pool until
time (i+1)T with probability γT ,d , independently. (The independence is due to the independence of the criticality times.)
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Therefore, the random variable |Y | is a Poisson random variables with mean γT ,dmT . This holds because E agents arrive
with rate m but are present in the pool in the next batching time after their arrival only with probability γT ,d . This fact,
together with the concentration bound of Fact 3 for the Poisson distribution, implies that |Y |< (1+λ/2)γT ,dmT holds
whp.

Let X ′ denote the set of new H agents in the pool at time (i+1)T before the matching is executed. By Lemma 19, |X ′|
is a Poisson random variables with mean γT ,d (1+λ)mT . (This holds by the same argument for the case of E agents, with
the difference that the arrival rate of H agents is (1+λ)m.) This fact, together with the concentration bound of Fact 3 for
the Poisson distribution, implies that |X ′|> (1+λ/2)γT ,dmT holds whp. Since X ′ ⊆X, therefore, |X|> (1+λ/2)γT ,dmT
holds whp. The proof is complete. �

Recall that ei =|Y |. By Claims 7 and 3, whp there exists a matching of size |Y | in G. Given this fact, the next claim
concludes the proof.

Claim 8. If there exists a matching of size |Y | in G, then the matching executed at time (i+1)T involves at least |Y |
cross-edges.

Proof. Let M denote a matching of size |Y | in G. Let M ′ denote the maximum matching chosen by the batching policy
to be executed at time (i+1)T . We construct a graph, G′, where V (G′) is the set of all of the agents present in the pool at
time (i+1)T , before the matching is executed, and E(G′)=E(M)∪E(M ′). Thus, G′ must be a union of paths and cycles
(West, 2000). Let C,Pe,Po, respectively denote the set of cycles, the set of paths of even length, and the set of paths of
odd length in G′.

For a subgraph F of G′, let D(F) denote the set of cross-edges of F. For two subgraphs F1,F2 of G′, let F1F2

denote the subgraph of G′ with the set of edges E(F1)∪E(F2)−(E(F1)∩E(F2)).
First, we show that for every cycle or path of even length Z ∈C∪Pe,

|D(Z)∩E(M)|≤|D(Z)∩E(M ′)|. (F.39)

Suppose not. Then, observe that M ′Z would be a matching with the same size as M ′ but a larger number of cross-edges.
This contradicts the definition of M ′. Hence, (F.39) must hold.

Next, we show that for every path of odd length Z ∈Po,

|D(Z)∩E(M)|≤|D(Z)∩E(M ′)|. (F.40)

To see why, first note that the first and last edges in Z must belong to M ′. Otherwise M ′Z would be a matching with
a larger size than M ′, which would be a contradiction. Now, consider a cross-edge (e,h) belonging to both Z and M,
where e,h are respectively E and H agents. Since the first and last edges in Z must belong to M ′, then there must exist a
cross-edge (e′,h) belonging to M ′. This means that for every cross-edge (e,h) belonging to both Z and M, there exists a
cross-edge (e′,h) belonging to both Z and M ′. Therefore, (F.40) holds.

Finally, (F.39) and (F.40) together imply that the number of cross-edges in M ′ is at least as large as the number of
cross-edges in M, which equals |Y |. �

This completes the proof of Lemma 21. �

Lemma 22. For a batching policy with batch length T, qB
E (m)≥γT ,d −o(1) and qB

H (m)≥ γT ,d
1+λ −o(1).

Proof. Recall that ei denotes the number of E agents who arrived after time iT and are present in the pool at time (i+1)T
before the execution of the matching. By Lemma 19, for every integer i≥0 we have that E[ei]=γT ,dmT . By Lemma 21,
the matching executed at the matching time (i+1)T involves at least ei cross-edges whp. Therefore, the expected number
of E agents matched in every executed matching is at least γT ,dmT (1−o(1)), which is also a lower bound on the expected
number of matched H agents. The following bounds thus hold for the match rates of E and H agents:

qB
E (m)≥ 1

mT
γT ,dmT (1−o(1))=γT ,d (1−o(1)),

qB
H (m)≥ 1

(1+λ)mT
γT ,dmT (1−o(1))= 1

1+λγT ,d (1−o(1)). �

Proposition 10. For a fixed batching policy with batch length T, the match rates of E agents and H agents as m grows
large are qB

E =γT ,d and qB
H = γT ,d

1+λ , respectively.

Proof. For every agent type, Lemma 20 provided an upper bound for the match rate of agents of that type, and Lemma
22, provided a matching lower bound. The upper and lower bounds are γT ,d for E agents, and

γT ,d
1+λ for H agents. This

concludes the proof. �
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Recall that γT ,d = 1−e−T/d

T/d . The above proposition directly proves the claim of part ii of Proposition 3 about the match
rates under the batching policy.

F.4. Analysis of waiting time

Lemma 23. For every agent type �∈{E,H}, wB
�(m)=d(1−qB

�(m)).

Proof. The proof follows directly from Lemma 18. By that lemma, qB
�(m)=1− wB

�(m)
d . Rearranging the equality implies

that wB
�(m)=d(1−qB

�(m)). �

G. PROOFS FOR PROPOSITION 3 AND THEOREM 1

Proof of Proposition 3 We analysed the match rate and waiting time under the greedy and batching policies respectively
in Sections E and F. In particular, the claims about the match rate and waiting time under greedy policy (i.e. part (i) of the
proposition) were proved in Sections E.1 and E.2, respectively. The claims about the match rate and waiting time under
the batching policy (i.e. part (ii) of the proposition) were proved in Sections F.3 and F.4, respectively. The analysis of the
patient policy is deferred to the Supplementary Appendix, Section v. The claims about the match rate and waiting time
under the patient policy (i.e. part (iii) of the proposition) are proved there. �

Proof of Theorem 1 In Proposition 4, we showed that, under any policy, the match rate of hard-to-match agents is at
most 1

1+λ and their expected waiting time is at least λd
1+λ . On the other hand, in part (i) of Proposition 3, we showed

that as m approaches infinity, the match rates of hard- and easy-to-match agents under the greedy policy approach
(qG

H ,q
G
E )= ( 1

1+λ ,1), respectively, and their expected waiting times approach (wG
H ,w

G
E )= ( λd

1+λ ,0). This proves the first part
of the theorem about the optimality of the greedy policy. It remains to show that the batching and patient policies are not
asymptotically optimal.

Claim 9. For every T>0, 1−e−T/d

T/d <1.

Proof. For all z>0, 1−z<e−z . Setting z=T/d and rearranging the terms proves the claim. �

Recall that by part (ii) of Proposition 3, as m grows large a batching policy with batch length T>0 achieves match

rates of (qB
H ,q

B
E )= ( 1−e−T/d

(1+λ)T/d ,
1−e−T/d

T/d ), for hard- and easy-to-match agents, respectively. This fact, together with 9, implies

that qB
H <

1
1+λ =qG

H and qB
E<1=qG

E . This proves the claim about the sub-optimality of the batching policy.
To show that the patient policy is not asymptotically optimal, we recall part (iii) of Proposition 3, which shows that

the expected waiting time of hard-to-match pairs under the patient policy approaches wP
H =d as m grows large. On the

other hand, under the greedy policy, the expected waiting time of hard-to-match agents approaches wG
H = λd

1+λ as m grows

large, which is strictly smaller than wP
H . Therefore, the patient policy is not optimal. �
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