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Which information structures are more effective at eliminating first-
and higher-order uncertainty and hence at facilitating efficient play
in coordination games? We consider a learning setting where players
observemany private signals about the state. First, we characterizemulti-
agent learning efficiency, that is, the rate at which players approximate
common knowledge. We find that this coincides with the rate at which
first-order uncertainty disappears, as higher-order uncertainty vanishes
faster than first-order uncertainty. Second, we show that with enough
signal draws, information structures with higher learning efficiency in-
duce higher equilibrium welfare. We highlight information design im-
plications for games in data-rich environments.
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I. Introduction
Coordination problems under uncertainty about a payoff-relevant state of
the world are ubiquitous in economics, from joint investment decisions
and technology adoption to currency attacks, bank runs, and political rev-
olutions. In such settings, there are two obstacles to coordinating on an
efficient outcome: players’ first-order uncertainty about the state and their
higher-order uncertainty about other players’ beliefs about the state. Thus,
an important question is to understand which information structures are
more effective at reducing both forms of uncertainty and hence at facili-
tating coordination.
In this paper, we address this question by considering a learning setting,

where players have access to many draws of private signals from an infor-
mation structure (capturing, e.g., that data is cheap or abundant). Our
starting point is a classic result due toCripps et al. (2008), which shows that
(under natural conditions) this setting leads to common learning : under any
information structure, players achieve approximate common knowledge
(Monderer and Samet 1989) of the true state as the number of signal draws
goes to infinity. Thus, asymptotically, all information structures eliminate
both first-order and higher-order uncertainty, but the result is silent about
which information structures do so more effectively. To understand the lat-
ter, a natural approach is to compare which information structures lead to
faster common learning—that is, are more likely to induce approximate
common knowledge of the state away from the limit, after any large but
finite number of signal draws.
Our first main result conducts such a comparison by characterizing the

speed of common learning under each information structure. Our key in-
sight is that all that matters is how fast an information structure eliminates
first-order uncertainty: we show that the speed of common learning simply
coincides with the speed at which all players individually learn the state,
because under every information structure, higher-order uncertainty van-
ishes faster than first-order uncertainty. This allows us to characterize the
speed of common learning using a simple multiagent learning efficiency
index. The index depends only on the statistical informativeness (Chernoff
1952; Moscarini and Smith 2002) of the worst-informed player’s private sig-
nals; in contrast, the correlation across different players’ private signals is
irrelevant.
Second, we apply this result to rank information structures in terms

of their value in coordination problems. In particular, we show that for a
rich class of games and objectives that are “aligned at certainty,” informa-
tion structures with higher learning efficiency lead to better equilibrium
Research Fellowship. Frick and Iijima thank Stanford University for hospitality while part of
this research was conducted. This paper was edited by Emir Kamenica.
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outcomes whenever players have access to sufficiently many signal draws.
Our characterization of the speed of common learning is essential for de-
riving this ranking. Moreover, on the basis of the structure of the learning
efficiency index, this ranking yields some robust implications for informa-
tion design in coordination games that are played in data-rich settings.
Section II introduces the learning setting. An information structure I

specifies a joint distribution over players’ private signals in each state, where
both states and signals are assumed finite. We consider a setting where
players receivet independent draws of private signals from I , but I may fea-
ture arbitrary correlation across different players’ private signals.
Section III characterizes the speed of common learning: for each infor-

mation structure I , we consider the probability that players have common
p -belief (for p arbitrarily close to 1) of the true state after t signal draws
from I , and analyze how fast this converges to 1 as t grows large. Common
p -belief is a much more demanding notion than individual knowledge,
as it imposes confidence not only on players’ first-order beliefs about the
state but also on their infinite hierarchy of higher-order beliefs. How-
ever, perhaps surprisingly, theorem 1 shows that the probability of com-
mon p -belief converges to 1 at the same exponential rate at which all
players individually learn the state, which is characterized by the afore-
mentioned learning efficiency index. The proof of theorem 1 relies on a
key information theoretic lemma that uses Kullback-Leibler (KL) diver-
gence to formalize that players’ higher-order uncertainty vanishes faster
than their first-order uncertainty (lemma 1).
Section IV augments the learning setting by assuming that once play-

ers have observed many signal draws from an information structure, they
face an incomplete information game. With each game, we associate an
objective function over action profiles in each state, capturing, for in-
stance, players’ welfare or a designer’s preferences. Theorem 2 provides
a large-sample ranking over information structures: we identify a class of
games and objectives for which information structures with a higher
learning efficiency index induce better (Bayes-Nash) equilibrium out-
comes whenever players observe sufficiently many signal draws. This class
satisfies one substantive assumption, alignment at certainty: we require that
under common knowledge of the state, the first-best outcome (according
to the objective) can be achieved by some strict Nash equilibrium of the
game. A leading instance of this assumption is when the objective is to
maximize utilitarian welfare and the game is a coordination problem,
such as the illustrative joint investment example below, coordinated at-
tack games (example 2), and other important examples in the literature.
As we will see, the fact that the ranking in theorem 2 applies uniformly to
all these environments relies crucially on our finding in theorem 1 that
the speed of common learning coincides with the speed of individual
learning.
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By focusing on settings where players have access to rich data, our anal-
ysis yields some insights into information design in coordination prob-
lems that apply robustly, regardless of the specific game being played.
First, a designer seeking to facilitate coordination should focus on improv-
ing players’ information about the state; in contrast, the effect of provid-
ing additional signals about other players’ signals (that are not directly in-
formative about the state) is negligible. Second, the designer should be
egalitarian, that is, focus on improving the worst-informed player’s infor-
mation about the state.
Example 1 (Illustrative example: joint investment). Consider two

players, i 5 1, 2, with symmetric action sets Ai 5 f0, 1g. Action 1 repre-
sents investment and action 0 no investment. The state v ∈ fv, �vg cap-
tures whether the market fundamental is low (v) or high (�v) and is drawn
according to some nondegenerate prior p0. Each player i’s utility takes
the form

uiða, vÞ 5
1 v5�vf g1 a2i51f g 2 c if  ai 5 1,

0 if  ai 5 0:

(

That is, if i invests, she incurs a cost of c ∈ ð0, 1Þ, and the investment is suc-
cessful (payoff of 1) if andonly if the state is�v andher opponent also invests.
The payoff to unsuccessful or no investment is 0. Under utilitarian welfare,
ð1=2Þðu1ða, vÞ 1 u2ða, vÞÞ, the efficient outcome is to play (1, 1) in state �v
and (0, 0) in state v. These are strict Nash equilibria under common knowl-
edge of v, but incomplete information prevents the efficient outcome from
being an equilibrium.
Now suppose that prior to choosing actions, players learn about state v

from repeated signal draws. Our analysis yields a (generically) complete
ranking over information structures: using our learning efficiency index,
one can compare how fast players achieve approximate common knowl-
edge of v under different information structures and hence how close
the induced (best-case) equilibrium play is to the efficient outcome after
sufficiently many signal draws. For example, consider a simple class of bi-
nary information structures: each player i’s private signal realizations xi
are either v or �v, and the joint probabilities of players’ signals in state v

are summarized by the following table:

x1 5 v x1 ≠ v

x2 5 v gr g (1 2 r)
x2 ≠ v g (1 2 r) 1 2 g (2 2 r)
Here, the individual precision parameter g ∈ ð1=2, 1Þ captures the
probability with which each player’s signal matches the state, and the
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parameter r ∈ ½0, 1� captures the extent of correlation across players’ pri-
vate signals. Higher values of g help to reduce players’ first-order uncer-
tainty about the state, while r influences players’ predictions of their oppo-
nent’s signals, that is, their higher-order uncertainty. Thus, in comparing
two information structures parametrized by (g, r) and (~g, ~r), it might
not be obvious how to trade off these two considerations. Indeed, if play-
ers observe only a small number of signal draws, whether (g, r) or (~g, ~r)
induces better equilibrium play can vary across different priors p0 and in-
vestment costs c.
However, we will show that our learning efficiency index depends only

on g. Thus, for any p0 and c, higher levels of individual precision g allow for
more efficient equilibrium play when players observe sufficiently many
signal draws; in contrast, the effect of correlation r becomes negligible
as the number of signals grows large. This reflects our key insight that
the speedof common learning is the same as the speedof individual learn-
ing, because higher-order uncertainty about opponents’ signals vanishes
faster than first-order uncertainty about the state.
Related literature.—Our paper contributes to the large literature on

higher-order beliefs (e.g., Rubinstein 1989; Carlsson and Van Damme
1993; Kajii and Morris 1997; Morris and Shin 1998; Weinstein and Yildiz
2007). A central insight in this literature is that higher-order uncertainty
about a payoff-relevant state can be an important source of inefficiency
in coordination games. This reflects the fact that even when all players’
first-order uncertainty is small, higher-order uncertainty can be signifi-
cant. In contrast, we highlight that in natural learning settings where
players have access to rich enough data about the state, higher-order un-
certainty vanishes faster than first-order uncertainty and eventually be-
comes negligible relative to first-order uncertainty.
To make this point, we consider the same learning setting as Cripps

et al. (2008).1 As mentioned, our contribution relative to their paper is
to provide a comparison of different information structures based on the
speed at which they induce approximate common knowledge and to
use this to rank information structures in terms of their value in coordi-
nation games. Our proof of theorem 1 builds on Cripps et al.’s (2008)
proof approach, but as section III.B illustrates, we refine their analysis by
introducing information theoretic arguments that are crucial for deriving
the rate of common learning. We obtain a complete ranking over any two
information structures whose learning efficiency indexes are not equal;
1 Other papers (e.g., Steiner and Stewart 2011; Cripps et al. 2013) study common learning
when signals are correlated across draws. Liang (2019) considers non-Bayesian agents who
learn frompublic signals. Acemoglu, Chernozhukov, and Yildiz (2016) consider a setting that
features identification problems due to uncertainty about the information structure.
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more recently, Awaya and Krishna (2022) study the natural complemen-
tary case where information structures have common marginal signal
distributions (and hence equal learning efficiency indexes) but differ in
their correlation structure (see discussion in sec. III.A).
Moscarini and Smith (2002) derive an efficiency index that character-

izes the speed of single-agent learning. Our learning efficiency index
generalizes theirs to multiagent settings. Our key finding is that because
higher-order uncertainty vanishes faster than first-order uncertainty, the
multiagent index simply reduces to the slowest agent’s individual learn-
ing efficiency index and does not depend on the correlation across differ-
ent agents’ signals. The speed of learning has also been analyzed in var-
ious social learning environments, but most work has not focused on the
role of higher-order beliefs.2 A notable exception is Harel et al. (2021),
who consider a setting in which long-lived agents repeatedly observe both
private signals and other agents’ actions, so that higher-order beliefs mat-
ter for agents’ inferences. They derive an upper bound on the speed of
first-order learning that holds uniformly across all population sizes. We
study learning from exogenous signals rather than from others’ actions
but provide an exact characterization of the convergence speed of both
higher-order and first-order beliefs.
More broadly, we relate to the literature on information design in

games (for surveys, see Bergemann and Morris 2019; Kamenica 2019).
In contrast to the typical approach in this literature, we assume that
players observe many independently and identically distributed (i.i.d.)
draws from the chosen information structure, and we rule out informa-
tion structures that fully reveal the state. Our ranking over information
structures has robust design implications that apply to all games and ob-
jectives satisfying alignment at certainty. Our analysis assumes a designer-
preferred equilibrium selection; remark 1 discusses the importance of
this assumption for theorem 2.
Finally, our exercise relates to the literature on comparisons of infor-

mation structures. Blackwell (1951) compares information structures in
terms of their induced payoffs in all single-agent decision problems.
While Blackwell’s order assumes that the agent observes a single signal
draw, Moscarini and Smith’s (2002) aforementioned efficiency index ex-
tends this order to single-agent settings with many i.i.d. signal draws.3 Ex-
tensions of Blackwell’s order to multiplayer games have focused on the
single signal draw case. Becausemore information canbeharmful in some
games (e.g., Hirshleifer 1971), one needs to restrict the class of games and
2 See, e.g., Vives (1993), Duffie andManso (2007),Hann-Caruthers,Martynov, andTamuz
(2018), Dasaratha and He (2019), Rosenberg and Vieille (2019), and Liang and Mu (2020).

3 Azrieli (2014) and Mu et al. (2021) consider a more demanding order that requires
the number of signal draws to be uniform across decision problems.
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objectives to avoid obtaining a highly conservative ranking.4 In particular,
Lehrer, Rosenberg, and Shmaya (2010) focus on common interest games
with utilitarian welfare, while Pęski (2008) compares minmax values in
zero-sum games.5 As we discuss in remark 1, by assuming that agents
observe many signal draws, we obtain a ranking that is a completion of
Lehrer, Rosenberg, and Shmaya’s (2010) order and applies to a richer
class of games and objectives beyond the common interest case.
II. Setting

A. Learning Environment
Throughout the paper, we fix a finite set of agents N, a finite set of states
Θ, and a full-support (common) prior belief p0 ∈ ΔðΘÞ.
An information structure I consists of a finite set of private signals Xi for

each agent i ∈ N , with corresponding set of signal profiles X ≔
Q

i∈NXi,
as well as a distribution mv ∈ ΔðX Þ over signal profiles conditional on
each state v ∈ Θ. Let mv

i ∈ ΔðXiÞ denote the marginal distribution over
agent i’s private signals in state v. We assume that for all agents i and
states v, mv

i has full support and mv
i ≠ mi

v0 for all v0 ≠ v. Note that the joint
distribution mv may display arbitrary correlation.
We consider a setting where agents observe repeated i.i.d. signal draws

from an information structure. Formally, for each information structure
I and t ∈ N, let PI

t ∈ ΔðΘ � X tÞ denote the probability distribution over
states and sequences of signal profiles that results when the state v is
drawn according to prior p0 and, conditional on each state v, a sequence
xt 5 ðxtÞt51, ::: ,t of signal profiles is generated according to t independent
draws from mv. Agent i’s observed sequence of private signals is xt

i 5
ðxitÞt51, ::: ,t .
B. Common Learning
Cripps et al.’s (2008) classic result is that in this setting, agents commonly
learn the state; that is, both their first-order uncertainty about v and their
higher-order uncertainty about other agents’ beliefs about v vanishes as t
grows large.
4 Indeed, Gossner (2000) compares Bayes-Nash equilibrium (BNE) outcomes for general
games and objectives and shows that no two information structures that induce different
(higher-order) beliefs can be compared.

5 Bergemann and Morris (2016) study general games using Bayes-correlated equilibria,
which are equivalent to BNE in a setting with amediator who observes the state and signals.
Brooks, Frankel, and Kamenica (2021) compare the informativeness of different agents’
signals within a multiagent information structure.
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Formally, for any t ∈ N, p ∈ ð0, 1Þ, and event E ⊆Θ � X t , let Bp
t ðEÞ de-

note the event that E is p -believed at t, that is, that all agents assign prob-
ability at least p to E after t draws from I . Formally,

B
p
t ðEÞ ≔ \

i∈N
B

p
itðEÞ, where B

p
itðEÞ ≔ Θ � fxt

i ∈ X t
i :P

I
t ðE ∣ xt

i Þ ≥ pg �
Y
j≠i

X t
j :

Since mv
i ≠ mi

v0 for all i and v ≠ v0, standard arguments imply that all
agents individually learn the true state; that is, for all p ∈ ð0, 1Þ and v ∈
Θ, we have

lim
t →∞

PI
t B

p
t ðvÞ ∣ v

� �
5 1,

where, slightly abusing notation, we also use v to denote the event fvg �
X t .
While individual learning only requires all agents’ first-order beliefs to

eventually assign probability arbitrarily close to 1 to the true state, com-
mon learning additionally considers agents’ higher-order beliefs. Let

C
p
t ðEÞ ≔ \

k∈N
ðBp

t ÞkðEÞ

denote the event that E is commonly p -believed at t, where ðBp
t Þ1ðEÞ ≔

B
p
t ðEÞ and ðBp

t ÞkðEÞ ≔ B
p
t ððBp

t Þk21ðEÞÞ for all k ≥ 2. At Cp
t ðEÞ, the event

E is p -believed, the event Bp
t ðEÞ is p -believed, and so on. The event Cp

t ðvÞ
for p close to 1 captures that agents have approximate common knowl-
edge of state v (Monderer and Samet 1989).Common learning requires that
the true state is eventually commonly p -believed for p arbitrarily close to 1;
that is, for all p ∈ ð0, 1Þ and v ∈ Θ,

lim
t →∞

 PI
t C

p
t ðvÞ ∣ v

� �
5 1: (1)

Common learning is a straightforward consequence of individual
learning when agents’ private signals in I are either independently dis-
tributed or perfectly correlated. On the other hand, if I displays inter-
mediate levels of correlation, this raises the possibility that when agent
i has seen a history that results in her assigning probability greater than
(but close to) p to state v, i may put a significant probability on j having
seen a history that results in a posterior less than p on v. Nonetheless,
Cripps et al. (2008) show that when states and signals are finite, as in
the current setting, then every information structure I gives rise to com-
mon learning.6
6 See sec. VI for a discussion of more general settings.
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III. Multiagent Learning Efficiency

A. Speed of Common Learning
While Cripps et al.’s (2008) result shows that, asymptotically, all informa-
tion structures lead to approximate common knowledge of the state, it
says nothing about which information structures do so more effectively.
To capture this, a natural approach is to compare how different infor-
mation structures I affect the probability PI

t ðCp
t ðvÞ ∣ vÞ of approximate

common knowledge at all large but finite t, that is, to analyze the rate
of convergence in (1). Our first main result provides a simple character-
ization of this rate, allowing us to rank information structures in terms of
their learning efficiency.
We first recall a standard statistical measure that characterizes a single

agent’s rate of individual learning under each information structure I .
Fix any agent i and true state v. Then, for any state v0 ≠ v, one can mea-
sure how difficult i finds it to statistically distinguish v0 from v using the
Chernoff distance (e.g., Cover and Thomas 1999) between i’s marginal sig-
nal distributions in states v and v0:

dðmv
i , mi

v0 Þ ≔ min
ni∈ΔðXiÞ

max KLðni, mv
i Þ, KLðni , mi

v0 Þ� �
: (2)

Here, KLðni, mv
i Þ denotes the KL divergence of ni relative to mv

i .
7 Observe

that any minimizer ni of (2) must satisfy KLðni , mv
i Þ 5 KLðni , mi

v0 Þ. Thus,
dðmv

i , mi
v0 Þ is the distance from mv

i and mi
v0 to their KL midpoint, so smaller

values of dðmv
i , mi

v0 Þ capture that i’s private signal distributions in states v
and v0 are closer to each other. Note that (unlike KL divergence) the
Chernoff distance is symmetric and that dðmv

i , mi
v0 Þ > 0 by the assumption

that mv
i ≠ mi

v0.
Statistical arguments (e.g., Chernoff 1952) yield the following charac-

terization of i’s speed of individual learning in state v: for any p ∈ ð0, 1Þ,
as t →∞, the probability that i achieves individual p -belief of state v goes
to 1 exponentially,8

PI
t B

p
itðvÞ ∣ v

� �
5 1 2 exp½2lv

i ðIÞt 1 oðtÞ�, (3)

where the rate of convergence is given by

lv
i ðIÞ ≔ min

v0∈Θn vf g
dðmv

i , mi
v0 Þ:

Thus, i’s individual learning efficiency under information structure I
is captured by a simple index lv

i ðIÞ that measures how difficult i finds it
7 That is, KLðni , mv
i Þ ≔ oxi∈Xi

niðxiÞ logðniðxiÞ=mv
i ðxiÞÞ. By convention, 0 log 0 5 0=0 5 0 and

logð1=0Þ 5 ∞.
8 Here o(t) denotes a sublinear term, i.e., oðtÞ 5 f ðtÞ for some function f, with

limt →∞f ðtÞ=t 5 0.
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to distinguish state v from the state v0 that generates the most similar pri-
vate signal distribution. Building on this, Moscarini and Smith (2002)
show that lv

i ðIÞ quantifies the value of information in single-agent deci-
sion problems under large samples of signals and prove that this index
extends Blackwell’s order:9 if i’s marginal signal distributions under I
Blackwell dominate those under ~I , then lv

i ðIÞ ≥ lv
i ð~IÞ for all v.

Our first main result is that the rate at which agents commonly learn
state v is given by the multiagent learning efficiency index

lvðIÞ ≔ min
i∈N

 lv
i ðIÞ 5 min

i∈N ,v0∈Θn vf g
dðmv

i , mi
v0 Þ, (4)

which simply considers the slowest agent’s rate of individual learning.
Theorem 1. Fix any information structure I , state v ∈ Θ, and p ∈

ð0, 1Þ. Then individual learning and common learning both occur at
rate lvðIÞ, that is,

PI
t B

p
t ðvÞ ∣ v

� �
5 1 2 exp½2lvðIÞt 1 oðtÞ�,  and (5)

PI
t C

p
t ðvÞ ∣ v

� �
5 1 2 exp½2lvðIÞt 1 oðtÞ�: (6)

The fact that l
vðIÞ characterizes the rate of individual learning is im-

mediate from (3): since single-agent learning is exponential, the rate at
which all agents achieve p -belief of the true state is determined by the
slowest agent’s rate of learning.
The substantive part of theorem 1 is the characterization of the speed

of common learning. As highlighted by a rich literature (see “Related lit-
erature” in sec. I), common p -belief is a much more demanding require-
ment than individual p -belief: Cp

t ðvÞ imposes confidence not only on
agents’ first-order beliefs about the state but also on their entire infinite
hierarchy of higher-order beliefs.10 On the basis of this, it might be nat-
ural to expect common learning to occur more slowly than individual
learning. However, theorem 1 shows that as t →∞, the probability of
common p -belief and the probability of individual p -belief of the true
state v both tend to 1 at the same exponential rate lvðIÞ.11 As we illus-
trate in section III.B, the key observation is that as the number of signal
draws grows large, agents’ higher-order uncertainty about others’ beliefs
vanishes faster than their first-order uncertainty about the state.
9 More precisely, they use the index minv0∈Θnfvgmaxk∈½0,1� 2 logoxi∈Xi
mv
i ðxiÞkmi

v0 ðxiÞ12k, which
is equal to lv

i ðIÞ by the variational formula (e.g., Dupuis and Ellis 2011, lemma 6.2.3.f).
10 Relatedly, Kajii and Morris’s (1997) critical path theorem yields a lower bound on the

probability of Cp
t ðvÞ relative to the probability of Bp

t ðvÞ, but this result applies only when p
is small (p < 1=jN j), reflecting a significant gap between common p -belief and individual
p -belief when p is close to 1.

11 The o(t) terms can differ across (5) and (6) and can depend on p0, p, and features of I
other than lvðIÞ, but these terms become negligible as t →∞.
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The latter observation is also reflected by the structure of the multi-
agent learning efficiency index: l

vðIÞ reduces each information struc-
ture I to a simple one-dimensional measure that focuses on only the
worst-informed agent i and the state v0 that i finds most difficult to distin-
guish from the true state v on the basis of her private signals; in contrast,
the correlation across agents’ signals plays no role. For instance, in the
illustrative example 1, where I is summarized by an individual precision
parameter g and a correlation parameter r, we have lvðIÞ 5 KLðð1=2,
1=2Þ, ðg, 1 2 gÞÞ; this is strictly increasing in g but does not depend on
r. When agents observe a small sample of signals, the probability of com-
mon p -belief in general depends on various other features of an informa-
tion structure, including the correlation across agents’ signals. However,
theorem 1 implies that under sufficiently large samples of signals, these
features become irrelevant and lv

is all that is needed to compare the
probabilities of common p -belief across different information structures:
Corollary 1. Take any information structures I , ~I and state v ∈ Θ

such that l
vðIÞ > lvð~IÞ. Then, for each p ∈ ð0, 1Þ, there is T such that for

all t ≥ T ,

PI
t C

p
t ðvÞ ∣ v

� �
> P

~I
t C

p
t ðvÞ ∣ v

� �
:

Corollary 1 ranks any two information structures whose learning effi-
ciency indexes are not equal, which holds for generic pairs of information
structures.12 One natural setting this excludes is when I and ~I feature the
same marginal signal distributions and differ only in their correlation.
Complementary to corollary 1, Awaya and Krishna (2022) study such set-
tings and show that here higher correlation across agents’ signals can re-
duce the probability of common p -belief at all large enough t.
B. Illustration of Theorem 1
We prove theorem 1 in appendixes B and E. To illustrate the key insight
behind the result, consider the binary information structure from exam-
ple 1 with g 5 3=5 and r 5 5=12.13 Thus, the signal probabilities condi-
tional on each state v are as follows:
12 Given I , the set of in
open and dense in ΔðX ÞΘ

13 With these paramete
each state, but this featur
x1 5 v x1 ≠ v

x2 5 v .25 .35
x2 ≠ v .35 .05
formation struc
endowed with t
r values, agents’
e is not importa
tures ~I such tha
he Euclidean to
signals are nega
nt for our gener
t l
vðIÞ ≠ lvð~IÞ holds for all v is

pology.
tively correlated conditional on
al arguments.
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Fix any p ∈ ð0, 1Þ. Let nit ∈ ΔðXiÞ denote the empirical distribution of
agent i’s signals up to t; that is, nitðvÞ ≔ ð1=tÞot

t511fxit5vg is the frequency
with which i’s realized signals are equal to v. Observe that nit is a sufficient
statistic for i’s (first-order and higher-order) beliefs. Hence, the events
B

p
t ðvÞ and C

p
t ðvÞ can be described as subsets of ΔðX1Þ � ΔðX2Þ. In partic-

ular, as depicted in figure 1 (left), for all large enough t, one can show
that Bp

t ðvÞ and C
p
t ðvÞ are approximated by

B
p
t ðvÞ ≈ nitðvÞ ∈ 1

2
, 1

� �
, 8 i 5 1, 2

� 	
, 

C
p
t ðvÞ ≈ nitðvÞ ∈ 1

2
,
9

11

� 

, 8 i 5 1, 2

� 	
: (7)

The expression for Bp
t ðvÞ is intuitive: at large t, i becomes confident in

state v as long as the majority of i’s signals matches v. To see the idea be-
hind C

p
t ðvÞ, note that for any realized signal frequency nitðvÞ 5 a ∈

ð1=2, 1� of agent i and all large enough t, i assigns high probability to j’s
realized signal frequency njt (v) being approximately14

E njtðvÞ ∣ v, nitðvÞ 5 a
� �

5 a
0:25

0:6
1 ð1 2 aÞ 0:35

0:4
: (8)

Observe that (8) exceeds 1/2 only if a < 9=11. Thus, for i to be confident
both in state v and in the fact that j is confident in state v, we need nitðvÞ ∈

(7)
FIG. 1.—Left, approximation of Bp
t ð�vÞ and C

p
t ð�vÞ at large t. Right, rate of decay of higher-

order belief failures (KL distance of dashed arrows) and first-order belief failures (KL dis-
tance of solid arrows) in state �v.
14 This holds because i becomes confident in v, so i’s beliefs about njt (v) concentrate on
the expectation E½njtðvÞ ∣ v, nitðvÞ 5 a� by a law of large numbers argument.
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ð1=2, 9=11Þ. Conversely, if nitðvÞ ∈ ð1=2, 9=11Þ, then (8) is itself in (1/2,
9/11). This yields the approximation for Cp

t ðvÞ.15
To consider the rate of common learning, assume that the true state is

�v. By (7), at large t, the event ðCp
t ð�vÞÞc that common p -belief of �v fails

can be decomposed into two types of failures:

1. First-order belief failures: ðBp
t ð�vÞÞc ≈ fnitð�vÞ ≤ 1=2 for some ig.

2. Higher-order belief failures: Bp
t ð�vÞnCp

t ð�vÞ ≈ fnitð�vÞ ≥ 1=2 8 i, nitð�vÞ ≥
9=11 for some ig.

Reflecting that common p -belief is more demanding than individual
p -belief, the second event, Bp

t ð�vÞnCp
t ð�vÞ, remains bounded away from the

empty set even as t →∞. However, the key insight behind theorem 1 is
that as t grows large, the probability of higher-order belief failures van-
ishes much faster than the probability of first-order belief failures and
hence becomes negligible for the rate of common learning.
Formally, we invoke Sanov’s theorem from large deviation theory. If

we let nt ∈ ΔðX Þ denote the joint empirical distribution of agents’ sig-
nals, this states that for any set D ⊆ ΔðX Þ that is the closure of its interior,

PI
t ðnt ∈ D ∣ �vÞ 5 exp½2inf

n∈D
KLðn, m�vÞt 1 oðtÞ�:

That is, as t grows large, the probability of event D vanishes exponentially
at the rate given by the KL distance between D and the theoretical signal
distribution m

�v. In the current setting, this implies that the probability
PI

t ðBp
t ð�vÞnCp

t ð�vÞ ∣ �vÞ of higher-order belief failures vanishes at rate

KL
9

11
,
2

11

� 

, m

�v
i

� 

5 KL

9

11
,
2

11

� 

,

3

5
,
2

5

� 
� 

,

as illustrated by either of the dashed distances in figure 1 (right).16 In con-
trast, as the solid distances illustrate, the probability PI

t ððBp
t ð�vÞÞc ∣ �vÞ of

first-order belief failures vanishes at rate

KL
1

2
,
1

2

� 

, m

�v
j

� 

5 KL

1

2
,
1

2

� 

,

3

5
,
2

5

� 
� 

5 l

�vðIÞ:

Crucially, the latter rate is strictly smaller than the former. Thus, as t
grows large, the ratio of PI

t ððBp
t ð�vÞÞc ∣ �vÞ to PI

t ðBp
t ð�vÞnCp

t ð�vÞ ∣ �vÞ explodes.

15 More precisely, on the basis of these observations, one can show that for all large

enough t, there is an event Ft ≈ fnitðvÞ ∈ ð1=2, 9=11�, 8 i 5 1, 2g such that Ft ⊆ B
p
t ðvÞ and

Ft ⊆ B
p
t ðFtÞ (i.e., Ft is p-evident), which by Monderer and Samet (1989) implies that

Ft ⊆ C
p
t ðvÞ.

16 The n ∈ ΔðX Þ that attains the infimum inf n∈Bp
t ð�vÞnCp

t ð�vÞKLðn, m�vÞ satisfies margXi
n 5

ð9=11, 2=11Þ and nð�jxiÞ 5 m
�vð�jxiÞ for each xi, so KLðn, m�vÞ depends only on i’s marginal dis-

tributions (by the chain rule for KL divergence). The arrows in fig. 1 should be interpreted
as depicting KL distances in the space of marginal distributions.
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Hence, higher-order belief failures become negligible relative to first-
order belief failures, and the rate of common learning coincides with
the rate of individual learning l

�vðIÞ.
Finally, to see the more general idea, note that by (8), ð1=2, 1=2Þ 5

E½njt ∣ �v, nit 5 ð9=11, 2=11Þ�. Thus, the inequality KLðð1=2, 1=2Þ, m�v
j Þ <

KLðð9=11, 2=11Þ, m�v
i Þ is an instance of the following general result that

plays a crucial role in the proof of theorem 1:
Lemma 1. Fix any v ∈ Θ and distinct i, j ∈ N . For each t and realized

empirical signal distribution nit ∈ ΔðXiÞ, we have

KLðE½njt ∣ v, nit �, mv
j Þ ≤ KLðnit , mv

i Þ: (9)

Moreover, the inequality is strict whenever mv has full support and nit ≠ mv
i .

In appendix A, we derive lemma 1 from the chain rule for KL diver-
gence, a central result in information theory. To interpret (9), note that
the right-hand side captures how much i’s signal observations nit deviate
from i’s theoretical signal distribution mv

i in state v, while the left-hand
side quantifies how much i’s expectation of j’s observations deviates
from j’s theoretical signal distribution mv

j . Thus, (9) says that when i
forms an estimate of j’s signal observations based on i’s own signal obser-
vations, then (conditional on any state v) this estimate is less atypical
than i’s own signal observations.17 Generalizing the above illustration,
we can use this to show that as t grows large, the event that agents learn
v but believe other agents to have incorrect first-order beliefs vanishes
faster than the event that agents have incorrect first-order beliefs.
The inequality in lemma 1 is reminiscent of the contraction principle

in Cripps et al. (2008), whereby themap ni ↦ E½E½nit jv, njt � ∣ v, nit 5 ni � is an
L1-norm contraction on Δ(Xi) if mv has full support (see their lemma 4).
This contraction principle can be used to show that the probability of
higher-order belief failures vanishes as t →∞ and hence that common
learning obtains, but it does not deliver the rate at which higher-order be-
lief failures vanish. A key difference of our information theoretic lemma 1
is its use of KL divergence. This is essential for being able to apply large
deviation theory (Sanov’s theorem) to obtain this rate and yields the new
insight that common learning occurs just as fast as individual learning.
IV. Ranking Information Structures in Coordination
Problems
We now return to the question of which information structures are more
valuable for coordination. For this, we consider incomplete information
17 For example, if i and j’s signals are independent, then regardless of her own observa-
tions, i’s estimate of j’s observations is always the theoretical distribution (i.e., the left-hand
side of (9) is 0). If i and j’s signals are perfectly correlated, then i expects j to observe the
same signals as herself, so (9) holds with equality.
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games that are played after a large number of signal draws, and we apply
theorem 1 to rank information structures in terms of the induced equi-
librium outcomes.
A. Games and Objective Functions
A basic game G consists of a finite set of actions Ai for each agent i, with
corresponding set of action profiles A ≔

Q
i∈NAi, as well as a utility func-

tion ui : A � Θ→R over action profiles and states for each agent i. For
each basic game G and information structure I , we consider the (static)
incomplete information game GtðIÞ, where agents’ information is parame-
trized by the full-support common prior p0 ∈ ΔðΘÞ and t draws of signals
from I . That is, states v and signal sequences xt are drawn according to
PI

t , and a strategy jit : X t
i → ΔðAiÞ for agent i maps i’s observed sequence

of private signals xt
i to a mixed action in Ai. Let BNEtðG, IÞ denote the set

of Bayes-Nash equilibria (BNE) of GtðIÞ.
To compare equilibrium outcomes across different information struc-

tures, we associate with any basic game G an objective function W : A �
Θ→R. This can be interpreted as capturing a designer’s preferences
over outcomes in the game. A benevolent designer might seek to maxi-
mize agents’ welfare, for example, via utilitarian aggregation, W 5
ð1=jN jÞoi∈N ui. However, we also allow for objective functions that do not
relate to agents’ utilities in any particular way.We assume that in each state
v,W is maximized by a unique action profile, fav,W g 5 argmaxa∈AW ða, vÞ.
For any information structure I and strategy profile jt 5 ðjitÞi∈N of

game GtðIÞ,
Wtðjt , IÞ ≔ o

v∈Θ,xt∈X t ,a∈A
PI

t ðv, xtÞjtða ∣ xtÞW ða, vÞ

denotes the induced ex ante expected value of the objective. The objec-
tive value

WtðG, IÞ ≔ sup
jt∈BNEtðG,IÞ

Wtðjt , IÞ (10)

is the ex ante expected value of the objective under the best BNE of
GtðIÞ (remark 1 discusses the focus on best BNE).
We seek to compare the objective values WtðG, IÞ and WtðG, ~IÞ under

any two information structures I and ~I when the number t of signal
draws is large. We will see that, using our learning efficiency index, this
comparison can be carried out robustly for a rich class of games G and
objective functions W. The one substantive restriction we impose is the
following joint assumption on G and W. Let SNEðG, vÞ⊆ A denote the
set of strict Nash equilibria of G under common knowledge of v.
Assumption 1 (Alignment at certainty). For each v ∈ Θ, av,W ∈

SNEðG, vÞ.
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Assumption 1 requires that when there is common knowledge of any
state v, theW first-best outcome a v,W is achievable as a strict Nash equilib-
rium of G. The condition does not require a v,W to be the only strict Nash
equilibrium of G at v.
WhenW represents utilitarian welfare, assumption 1 is satisfied by our

motivating application of incomplete information coordination games,
such as the joint investment game in example 1 and other leading exam-
ples in the literature: here, coordination on the efficient outcome is a
strict Nash equilibrium under common knowledge of the state, but first-
order and higher-order uncertainty may impede efficient coordination.
An extreme special case are common interest games G, where ui 5 uj 5
W for all i, j. However, under common interest, agents’ incentives in G
are fully aligned withW even away from common knowledge, in the sense
thatmaximization of the expected objective is a BNE of G under any infor-
mation structure. This is much stronger than assumption 1, which only re-
quires alignment at certainty and imposes no restriction on agents’ incen-
tives in G or the relationship with W away from common knowledge.18

Finally, under more general objective functions W, assumption 1 in-
cludesmany other games G. In particular, as long as G admits a strict Nash
equilibrium av ∈ SNEðG, vÞ in each state, assumption 1 is trivially satisfied
under the objective functionW ða, vÞ 5 1fa5avg. In this case, the objective
value WtðG, IÞ simply measures the ex ante probability that after t draws
of signals from I , agents are able to play the common knowledge equilib-
rium a v in each state v.
B. Ranking of Information Structures
Under assumption 1, we now rank information structures I and ~I in
terms of their objective values WtðG, IÞ and WtðG, ~IÞ at large t. For expo-
sitional simplicity, we additionally assume that maximizingW requires all
agents to distinguish all states:
Assumption 2 (Full separation). For all i ∈ N and distinct v, v0 ∈ Θ,

av,W
i ≠ av0,W

i .
Assumption 2 is satisfied, for instance, in the joint investment game in

example 1. However, this assumption is not essential for our analysis, and
in appendix C, we extend theorem 2 when assumption 2 is dropped.
Define the (ex ante) learning efficiency index by

lðIÞ ≔ min
v∈Θ

lvðIÞ 5 min
i∈N ,v,v0∈Θ,v0≠v

dðmv
i , mi

v0 Þ: (11)
18 For example, assumption 1 allows for environments where, away from the common
knowledge limit, improving agents’ information can lead to worse equilibrium outcomes;
see the discussion of Lehrer, Rosenberg, and Shmaya (2010) in remark 1.
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That is, lðIÞ considers the worst case across all states of the conditional
learning efficiency indexes l

vðIÞ.
Theorem 2. Take any information structures I , ~I with lðIÞ > lð~IÞ.

For every basic game G and objective functionW satisfying assumptions 1
and 2, there is T such that WtðG, IÞ > WtðG, ~IÞ for all t ≥ T .
Theorem 2 shows that for all games G and objectives W satisfying as-

sumptions 1 and 2, the learning efficiency index eventually permits a ge-
nerically complete ranking over information structures: except when the
efficiency indexes lðIÞ and lð~IÞ are equal, I and ~I can be ranked, and
the information structure with the higher efficiency index strictly out-
performs that with the lower index whenever agents observe sufficiently
many signals.
In the proof (apps. D, E), we show that for every BNE sequence

jt ∈ BNEtðG, IÞ,

12 o
v∈Θ,xt∈X t

PI
t ðv, xtÞjtðav,W ∣ xtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

probability of  inefficiency

≥ exp½2tlðIÞ 1 oðtÞ� (12)

and that (12) holds with equality for some BNE sequence (j*t ). That is,
under information structure I , the index lðIÞ is the fastest rate at which
inefficiency (i.e., not choosing a v,W at some v) can vanish in equilibrium.
If lðIÞ > lð~IÞ, then WtðG, IÞ > WtðG, ~IÞ for all large enough t, because
WtðG, IÞ approaches the first-best payoff ovp0ðvÞW ðav,W , vÞ faster than
does WtðG, ~IÞ. Notably, the index lðIÞ does not depend on the prior
p0. This is because, conditional on each state v, inefficiency vanishes at
the exponential rate lvðIÞ; thus, at sufficiently large t, the ex ante prob-
ability of inefficiency is driven solely by the state v with the slowest rate of
convergence.
As the following example illustrates, this argument relies crucially on

our findings that the efficiency index lðIÞ characterizes the (ex ante ex-
pected) rate of common learning and that this coincides with the rate of
individual learning:
Example 2 (Coordinated attack). Consider a coordinated attack

game à la Morris and Shin (1998), with binary states Θ 5 f�v, vg and bi-
nary actions Ai 5 f0, 1g. Each agent i’s utility function takes the form

uiða, vÞ 5
1 v5�vf g1 oj≠i aj≥k

� � 2c if  ai 5 1,

0 if  ai 5 0:

(

Here c ∈ ð0, 1Þ denotes the cost of attacking (ai 5 1) and an attack is
successful if and only if the state is �v and at least k ∈ f0, 1, ::: , jN j 2 1g
other agents also attack. Under utilitarian welfare, W 5 ð1=jN jÞoi∈N ui,
the efficient action profiles are a�v 5 ð1, ::: , 1Þ and av 5 ð0, ::: , 0Þ. Note
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that assumptions 1 and 2 are satisfied and example 1 corresponds to the
special case with jN j 5 2 and k 5 1.

To see why ex post inefficiency vanishes at least as fast as lðIÞ, note
that common p -belief of state v is sufficient for coordination on the effi-
cient outcome a v, as av is a strict Nash equilibrium under common knowl-
edge of v. More precisely, if p ∈ ð0, 1Þ is sufficiently large, then for every t,
there is a BNE j*t under which a v is played, conditional on event Cp

t ðvÞ.
Under sequence (j*t ), inefficiency vanishes at least as fast as the (ex ante
expected) rate of common learning, which is lðIÞ by theorem 1.
Why can inefficiency not vanish faster than the rate of common learn-

ing? This is less immediate, as common p -belief is in general not neces-
sary for coordination on the efficient outcome.19 Indeed, if k < jN j 2 1,
a successful attack does not require all agents to attack, so there can be
BNE in which a�v is played without there being common p -belief of state
�v. However, note that in any BNE, a�v can be played only whenever all
agents at least have individual p -belief of �v for some p > 0. Hence, in-
equality (12) follows from the fact that the rate lðIÞ of common learning
coincides with the rate of individual learning.20

By focusing on data-rich settings, theorem 2 yields some robust impli-
cations for information design in coordination games (and other envi-
ronments satisfying assumptions 1 and 2) that apply regardless of the spe-
cific game being played. Specifically, as long as agents have access tomany
signal draws, the structure of the index lðIÞ suggests two general princi-
ples for facilitating coordination:
Focus on first-order uncertainty.—A designer should focus on improving

agents’ information about the state, whereas providing signals about other
agents’ signals (that do not convey any additional information about the
state) has a negligible effect. Thus, in contrast with the insight in the liter-
ature that uncertainty about opponents’ signals can be a significant obsta-
cle to coordination, our results suggest that in data-rich settings, reducing
such higher-order uncertainty should be a second-order concern.
Egalitarianism.—A designer should focus on improving the worst-

informed agent’s information about the state.
Remark 1 (Focus on best equilibrium). The definition of the objec-

tive valueWtðG, IÞ in (10) considers the best BNE. Thus, our comparison
of information structures isolates the extent to which they reduce ineffi-
ciency due to first-order and higher-order uncertainty about the funda-
mental rather than due to equilibrium selection. While the assumption
19 See, e.g., Oyama and Takahashi (2020) for systematic analysis of this issue.
20 When assumption 2 is dropped, coordination on the efficient outcome need not even

require all agents to have individual p -belief of the true state. Reflecting this, the general-
ization of theorem 2 in app. C employs a modified learning efficiency index that, for any G
and W, captures the rate at which each agent i learns to distinguish those states that entail
different efficient actions av,W

i for i.
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of designer-preferred equilibrium selection is also common in the liter-
ature on information design (“Related literature” in sec. I), some nota-
ble exceptions (e.g., Morris, Oyama, and Takahashi 2020) assume adver-
sarial equilibrium selection, and the latter assumption could reverse the
ranking in theorem 2.21 At the same time, appendix G (apps. G–I are
available online) shows that the learning efficiency index also character-
izes the rate at which the entire equilibrium set BNEtðG, IÞ approaches
the set of common knowledge equilibria in each state.

Comparison with t 5 1.—Lehrer, Rosenberg, and Shmaya (2010) as-
sume that agents observe one signal draw from each information struc-
ture and show that a generalization of Blackwell’s single-agent garbling
condition characterizes whenW1ðG, IÞ exceedsW1ðG, ~IÞ for any common
interest game G and utilitarianW. In contrast, theorem 2 yields a ranking
that (i) is a completion of Lehrer, Rosenberg, and Shmaya’s (2010) order
and (ii) applies to a richer class of environments that allows for mis-
aligned incentives.22 Both points i and ii rely on agents observing suffi-
ciently many signal draws: when t 5 1, many information structures are
incomparable even when focusing on common interest games; more-
over, even if I is more informative than ~I in the sense of Lehrer, Rosen-
berg, and Shmaya (2010), I can be strictly worse than ~I in environments
that satisfy assumptions 1 and 2 but are not common interest.

Bounds on T.—A natural question is howmany signal draws are needed
for our ranking to apply. In some specific environments, one can bound
the number of draws T beyond which the ranking in theorem 2 applies,
but the boundmay in general depend on G,W, the prior p0, and I and ~I .
It is worth noting that the proof of theorem 2 does not require that
WT ðG, IÞ and WT ðG, ~IÞ are close to the first-best payoff, so the payoff gap
under I versus ~I can in general still be nonnegligible at T.23
V. Discussion

A. Information Design in Games with Cheap Data
The learning efficiency index can be used to solve constrained informa-
tion design problems where information comes at a small cost. Beyond
21 For example, if (10) instead considers the worst BNE and assumption 1 is replaced with
the assumption that W ð�, vÞ is strictly minimized by some action profile in SNEðG, vÞ (cap-
turing settings with a strong misalignment between the designer’s objective and agents’ in-
centives), then theorem 2 (applied to the objective 2W) implies that information struc-
tures with a lower learning efficiency index are better for the designer at all large t.

22 For point i, note that Lehrer, Rosenberg, and Shmaya’s (2010) order implies that each
agent’s marginal signal distributions under I Blackwell dominate those under ~I , which en-
sures lðIÞ ≥ lð~IÞ.

23 Relatedly, while corollary 1 yields T such that the probability of common p -belief of
the true state under I exceeds that under ~I , these probabilities need not be close to 1
at T.
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the ordinal implications highlighted following theorem 2, here the car-
dinal value that lðIÞ assigns to each information structure is relevant.
Concretely, given any game G and objective W, consider the optimal

choice of an information structure from some set I subject to a budget
constraint:

max
I∈I,t∈N

WtðI , GÞ subject to tcðIÞ ≤ k: (13)

That is, the designer optimally selects both an information structure I ∈
I and the number t of signal draws from I , subject to a marginal cost of
cðIÞ > 0 per draw from I and an overall budget of k > 0.
The preceding analysis implies the following:
Corollary 2. Fix any G and W satisfying assumptions 1 and 2 and

any finite set I of information structures. Whenever the budget k is suf-
ficiently large (i.e., information is sufficiently cheap), the designer’s
problem (13) simplifies to

max
I∈I

lðIÞ
cðIÞ :

Thus, the optimal information structure can be determined solely on
the basis of the learning efficiency index and per-sample cost, and the
solution is robust across all games and objectives satisfying assumptions 1
and 2. On the basis of this observation, one can explore properties of
the optimal information structure, depending on the nature of the cost
function c.
B. Convergence of Belief Hierarchies
SinceRubinstein (1989), there is a discussion in the literature aboutwhich
topologies over belief hierarchies are appropriate for measuring proxim-
ity to common knowledge. Theorem 1 implies that as far as the speed of
convergence to common knowledge in our setting is concerned, the
choice of topology may be less important: the learning efficiency index
lvðIÞ characterizes this speed under several commonly used topologies.
Recall that a belief hierarchy for agent i is a sequence ti ≔ ðt1i , t2i , :::Þ ∈

Zi 5 ðZ 1
i , Z

2
i , :::Þ, whereZ 1

i ≔ ΔðΘÞ and Zk
i ≔ ΔðΘ �Qj≠iZ

k21
j Þ denotes the

space of agent i’s kth order beliefs, subject to standard coherency require-
ments across the kth order beliefs tki for different k (e.g., Brandenburger
and Dekel 1993).24 Given any information structure I , each realized sig-
nal sequence xt

i induces a belief hierarchy tiðxt
i Þ ∈ Zi for agent i. Let
24 For any topological space Y, we let Δ(Y) denote the space of Borel probability mea-
sures over Y and endow it with the topology of weak convergence.
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tiðvÞ ∈ Zi denote i’s belief hierarchy when there is common certainty of
state v.
Let rproduct

i denote a metric on Zi that induces the product topology over
agent i’s belief hierarchies. For example, define r

product
i ðti , ~tiÞ ≔

ð1 2 bÞokb
krkðtki , ~tki Þ, where b ∈ ð0, 1Þ and rk denotes the Prokhorov

metric over kth order beliefs (we endow v with the discrete metric). The
literature has pointed out that the product topology may in general be
too coarse (e.g., Lipman 2003; Weinstein and Yildiz 2007) and has pro-
posed several alternative metrics that refine this topology. For instance,
the metric for the uniform weak topology (Chen et al. 2010) is given by
runiform
i ðti, ~tiÞ ≔ supkr

kðtki , ~tki Þ.
Theorem 1 implies the following:
Corollary 3. Fix any information structure I and state v ∈ Θ. Un-

der both the product and uniform weak topologies, the rate of conver-
gence to common certainty of v is given by l

vðIÞ: for all sufficiently small
ε > 0, we have

PI
t ðfmax

i
r
product
i ðtiðxt

i Þ, tiðvÞÞ ≤ εg ∣ vÞ 5 1 2 exp½2lv ðIÞt 1 oðtÞ�,  and
PI

t ðfmax
i

runiform
i ðtiðxt

i Þ, tiðvÞÞ ≤ εg ∣ vÞ 5 1 2 exp½2lvðIÞt 1 oðtÞ�:

Thus, although differences between these topologies can play a signif-
icant role in general, these differences do not matter for the speed of
convergence to common certainty in the current learning setting. In-
deed, a key difference between these topologies is that convergence to
common certainty under the uniform weak topology requires common
p -belief (with p→ 1), whereas this is not the case under the product to-
pology.25 However, we have seen that in our setting, the rate of conver-
gence to common p -belief coincides with the rate of individual learning.
Thus, corollary 3 is a result of the fact that both these topologies agree
on the metric over first-order beliefs.26
C. Higher-Order Expectations
Beyond its use in this paper, lemma 1 can shed light on the informative-
ness of agents’ higher-order expectations, which plays an important role,
for instance, in beauty contest games (e.g., Morris and Shin 2002; Golub
and Morris 2017).
25 One manifestation of this difference is that Rubinstein’s (1989) email game generates
approximate common knowledge in the sense of rproduct but not in the sense of runiform.

26 The result extends to other topologies considered in the literature, e.g., the strategic
topology (Dekel, Fudenberg, and Morris 2006), which is in between the product and uni-
form weak topologies.
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Consider a finite set of types Ti for each agent i, with T ≔
Q

i∈NTi. Let
p ∈ ΔðT Þ be a (full-support) common prior over type profiles, with
marginals pi ∈ ΔðTiÞ. Each type ti ∈ Ti of agent i induces a conditional
distribution pð� ∣ tiÞ ∈ ΔðT Þ over type profiles. By identifying each
tj ∈ Tj with the point mass distribution dtj ∈ ΔðTjÞ, we can associate with
pð� ∣ tiÞ a sequence of higher-order expectations about other agents’
types. In particular, Eti ½tj � ≔ otj∈Tj

pðtj ∣ tiÞdtj ∈ ΔðTjÞ is ti’s expectation of
j’s type, EtiEtj ½tk� ≔ otj∈Tj ,tk∈Tk

pðtj ∣ tiÞpðtk ∣ tjÞdtk ∈ ΔðTkÞ is ti’s expectation of
j’s expectation of k’s type, and so on.
A seminal result due to Samet (1998) is that any such sequence of

higher-order expectations converges to the prior distribution as the
number of iterations grows large. Formally, consider any sequence of
agents i0, i1, ::: ∈ N in which all i ∈ N appear infinitely often and any
initial type ti0 ∈ Ti0 . Then his result adapted to the current setting implies
that27

k  Eti0Eti1⋯ Etik21
½tik � 2 pikk→ 0 as k →∞:

By applying lemma 1 to this setting, we can formalize a sense in which
agents’ higher-order expectations grow closer to the prior distribution at
each step of the iteration. In particular, lemma 1 implies that

KLðEti0 ½ti1 �, pi1Þ ≥ KLðEti0Eti1 ½ti2 �, pi2Þ,

and iteratively, for each k,

KLðEti0Eti1⋯ Etik21
½tik �, pikÞ ≥ KLðEti0Eti1⋯ Etik ½tik11

�, pik11
Þ:

Thus, complementing Samet’s asymptotic result, this clarifies that the in-
formativeness of agents’ higher-order expectations—asmeasured by their
KLdivergence relative to the prior distribution—decreasesmonotonically
along any sequence. While Samet’s insight can be applied to analyze equi-
librium behavior in beauty contests in the limit as coordination motives
become strong (Golub and Morris 2017), our nonasymptotic finding may
be useful for conducting comparative statics with respect to coordination
motives away from the limit.
VI. Conclusion
This paper conducted a comparison ofmultiagent information structures
in a learning settingwhere players have access to richdata.We showed that
27 See the proof of his proposition 6. A precursor in the mathematics literature is Ame-
miya and Andô (1965).
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the speed of common learning under each information structure coin-
cides with the speed of individual learning and used this to rank informa-
tion structures in terms of their value in coordination games.
As a natural starting point, we assumed that signal and state spaces are

finite and signals are i.i.d. across draws. This allowed us to build onCripps
et al.’s (2008) result that this setting always gives rise to common learning.
With infinite signals, Cripps et al. (2008) exhibit an example in which
common learning fails even though individual learning is successful. At
the same time, there are other natural infinite-signal (finite-state) set-
tings—in particular, Gaussian signal structures—that do give rise to com-
mon learning (for general sufficient conditions for common learning un-
der infinite signals, see Faingold and Tamuz 2022). Appendix H analyzes
such Gaussian environments and shows that common and individual
learning again occur at the same exponential rate. In contrast, it is known
that with continuous states, common learning fails under a broad class of
signal distributions.28

A simple setting where signals are not identically distributed across
draws is when draws independently alternate across two different infor-
mation structures I and ~I . However, this is equivalent to considering re-
peated independent draws from the product information structure I � ~I
and thus is a special case of our setting in this paper. Appendix I analyzes
when the learning efficiency index lðI � ~IÞ of alternating draws from I
and ~I is greater or less than the sumlðIÞ 1 lð~IÞ of their separate indexes,
shedding light on whether I and ~I are complements or substitutes.
When signals are correlated across draws, there are some known set-

tings in which common learning fails even though individual learning is
successful and others in which common learning succeeds (e.g., Steiner
and Stewart 2011; Cripps et al. 2013).We leave the analysis of such settings
for future work, in particular, the question of whether common learning
can be successful but occur at a slower rate than individual learning.
Farther afield, one might consider settings in which players engage in

basic game G not only once, at t, but repeatedly following each signal
draw. In this case, players’ past actions can reveal information about their
private signals. Basu et al. (2020) and Sugaya and Yamamoto (2020) study
such settings and construct equilibria that lead to common learning. An
interesting open question is to analyze the speed of common learning
and how this is affected by players’ strategic incentives.
28 As noted by Cripps et al. (2008), if both states and signals follow a Gaussian distribu-
tion, then common learning fails by an analogous logic as in the global games literature.
Dogan (2018) shows that with continuous states, common learning fails under mild con-
ditions even when signals are finite.
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Appendix A

Preliminaries

A1. Preliminary Definitions

The following will be used throughout the appendix. As in Cripps et al. (2008),
given any information structure I and agents i and j, we consider the matrix
M v

ij ∈ RXi�Xj with (xi, xj)th entry

M v
ij ðxi , xjÞ 5 mvðxj ∣ xiÞ:

As Cripps et al. (2008) observed, if agent i’s empirical signal distribution at t is nit,
then conditional on state v, i’s expectation of j’s empirical distribution is given by
E½njt ∣ v, nit �5 nitM v

ij (treating nit ∈ ΔðXiÞ⊆R1�Xi as a vector). Moreover, mv
iM

v
ij 5 mv

j .
For each d < lvðIÞ and t, define the event

Ftðv, dÞ ≔ \
i∈N

Fitðv, dÞ,  where Fitðv, dÞ ≔ KLðnit , mv
i Þ ≤ d

� �
:

Finally, we call an information structure I fully private if the joint distribution
mv has full support on X in all states v. We call I public if signals are perfectly cor-
related across agents.29

A2. Proof of Lemma 1

Fix v ∈ Θ, distinct i, j ∈ N , and ni ∈ ΔðXiÞ. Define m,m 0 ∈ ΔðXi � XjÞ by
mðxi , xjÞ ≔ niðxiÞM v

ij ðxi , xjÞ, m 0ðxi , xjÞ ≔ mv
i ðxiÞM v

ij ðxi , xjÞ
for each xi ∈ Xi , xj ∈ Xj . Note that suppðmÞ⊆ suppðm 0Þ and that the marginals of
m, m0 on Xi are ni , mv

i , and the marginals on Xj are niM v
ij , m

v
j , respectively.

30

Let mð� ∣ xiÞ, mð� ∣ xjÞ, m 0ð� ∣ xiÞ, m 0ð� ∣ xjÞ denote the corresponding condi-
tional distributions; conditional on a zero-probability signal, we specify these dis-
tributions arbitrarily. By the chain rule for KL divergence, we have

KLðm,m 0Þ 5 KLðni , mv
i Þ 1 o

xi∈suppðniÞ
niðxiÞKLðmð� ∣ xiÞ,m 0ð� ∣ xiÞÞ

5 KLðniM v
ij , m

v
j Þ 1 o

xj∈suppðniM v
ij Þ
ðniM v

ij ÞðxjÞKLðmð� ∣ xjÞ,m 0ð� ∣ xjÞÞ:

Since mð� ∣ xiÞ 5 m 0ð� ∣ xiÞ 5 M v
ij ðxi , �Þ for every xi ∈ suppðniÞ, we have

o
xi∈suppðniÞ

niðxiÞKL mð� ∣ xiÞ,m 0ð� ∣ xiÞð Þ 5 0,

which implies the weak inequality KLðni , mv
i Þ ≥ KLðniM v

ij , m
v
j Þ.
29 That is, Xi 5 Xj for all i, j, and for each x ∈ X and v,

mvðxÞ 5 mv
i ðxiÞ  if  xi 5 xj  for all i, j ,

0  otherwise:

(

.
30 Note that m0 is the marginal of mv over Xi � Xj .
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To show the strict inequality, suppose that ni ≠ mv
i and mv has full support on X.

Then there exist xi, x 0
i such that niðxiÞ > mv

i ðxiÞ and niðx 0
iÞ < mv

i ðx 0
iÞ. For any xj ∈

suppðniM v
ij Þ,

mðxi ∣ xjÞ
mðx 0

i ∣ xjÞ 5
niðxiÞM v

ij ðxi , xjÞ
niðx 0

iÞM v
ij ðx 0

i , xjÞ ≠
mv
i ðxiÞM v

ij ðxi , xjÞ
mv
i ðx 0

i ÞM v
ij ðx 0

i , xjÞ 5
m 0ðxi ∣ xjÞ
m 0ðx 0

i ∣ xjÞ ,

where the inequality holds since M v
ij ðxi , xjÞ,M v

ij ðx 0
i , xjÞ > 0 by the full-support as-

sumption on mv. By Gibbs’s inequality, this guarantees

o
xj∈suppðniM v

ij Þ
ðniM v

ij ÞðxjÞKLðmð� ∣ xjÞ,m 0ð� ∣ xjÞÞ > 0,

and hence KLðni , mv
i Þ > KLðniM v

ij , m
v
j Þ. QED

A3. Other Preliminary Lemmas

Let k⋅k denote the sup norm for finite-dimensional real vectors. The following
result is proved by Cripps et al. (2008, their lemma 3) using a concentration in-
equality argument:

Lemma A.1. For any ε > 0 and q < 1, there is T such that for all t ≥ T , v ∈ Θ,
i ∈ N , and xt

i ,

PI
t ðfknitM v

ij 2 njtk < ε, 8 j ≠ ig ∣ xt
i , vÞ > q:

Let F2itðv, dÞ ≔ \j≠iFjtðv, dÞ. The following result follows from lemma 1 and
lemma A.1 and plays a key role in the proofs of theorems 1–C.1:

Lemma A.2. Take any collection of partitions ðΠiÞi∈N over Θ, v ∈ Θ, p ∈ ð0, 1Þ,
and d ∈ ð0, mini∈N ,v0∉ΠiðvÞdðmv

i , mi
v0 ÞÞ. Assume that mv has full support. There exists T

such that for all i ∈ N and t ≥ T ,

KLðnit , mv
i Þ ≤ d ⟹ PI

t [
v0∈ΠiðvÞ

ðfv0g \ F2itðv0, dÞÞ ∣ xt
i

� 

≥ p: (14)

Proof. The proof proceeds through two claims.

A3.1. Claim 1

Claim 1. There exist k ∈ ð0, mini∈N ,v0∉ΠiðvÞdðmv
i , mi

v0 Þ 2 dÞ and T 0 > 0 such that
for all t ≥ T 0 and v0 ∈ Θ,

KLðnit , mi
v0 Þ ≤ d 1 k ⟹ PI

t ðF2itðv0, dÞ ∣ xt
i , v

0Þ ≥ ffiffiffi
p

p
:

Proof. Lemma 1 implies that for all j ≠ i, ni ∈ ΔðXiÞ, and v0 ∈ Θ,

KLðni , mi
v0 Þ ≤ d ⟹ KLðniMij

v0 , mj
v0 Þ ≤ KLðni , mi

v0 Þ ≤ d:

Moreover, the first inequality on the right-hand side is strict when ni ≠ mi
v0 (by

lemma 1), and the second inequality on the right-hand side is strict when ni 5
mi

v0 . Note that KL(⋅, mi) is continuous for each full-support mi ∈ ΔðXiÞ. Thus, since
Δ(Xi) is compact, there exists h > 0 such that for all j ≠ i, ni ∈ ΔðXiÞ, and v0 ∈ Θ,



3402 journal of political economy
KLðni , mi
v 0 Þ ≤ d ⟹ KLðniMij

v 0
, mj

v 0 Þ ≤ d 2 h:

Given this, there exists k ∈ ð0, mini∈N ,v0∉ΠiðvÞdðmv
i , mi

v 0 Þ 2 dÞ such that for all j ≠ i,
ni ∈ ΔðXiÞ, and v0 ∈ Θ,

KLðni , mv 0

i Þ ≤ d 1 k⟹ KLðniM v 0

ij , m
v 0

j Þ ≤ d 2
h

2
:

Moreover, there exists ε > 0 such that for all j ≠ i, ni ∈ ΔðXiÞ, and v 0 ∈ Θ,

KLðni , mi
v0 Þ ≤ d 1 k and  kniMij

v 0
2 njk ≤ ε

� �
⟹ KLðnj , mj

v 0 Þ ≤ d:

Combined with lemma A.1, this yields the desired conclusion. QED

A3.2. Claim 2

Claim 2. Consider any k as found in claim 1. There exists T 00 such that for all
t ≥ T 00 and i ∈ N ,

KLðnit , mv
i Þ ≤ d ⟹ PI

t ðfv0 ∈ ΠiðvÞ : KLðnit , mi
v 0 Þ ≤ d 1 kg ∣ xt

i Þ ≥
ffiffiffi
p

p
:

Proof. Take any t ≥ 1 and xt
i such that KLðnit , mv

i Þ ≤ d. Then for each v0 ∉ ΠiðvÞ,
we have KLðnit , mi

v 0 Þ > d 1 k. Indeed, otherwise KLðnit , mv
i Þ, KLðnit , mi

v 0 Þ ≤ d 1 k <
dðmv

i , mi
v 0 Þ, contradicting the definition of dðmv

i , mi
v0 Þ.

Thus, whenever KLðnit , mv
i Þ ≤ d, then for any v0 such that either v0 ∉ ΠiðvÞ or

KLðnit , mi
v 0 Þ > d 1 k, we have

logPI
t ðv0 ∣ xt

i Þ ≤ log
PI

t ðv0jxt
i Þ

PI
t ðvjxt

i Þ 5 log
p0ðv0Þ
p0ðvÞ 1 to

xi∈Xi

nitðxiÞ log mi
v0 ðxiÞ

mv
i ðxiÞ

5 log
p0ðv0Þ
p0ðvÞ 1 tðKLðnit , mv

i Þ 2 KLðnit , mi
v0 ÞÞ

≤ log
p0ðv0Þ
p0ðvÞ 2 tk:

Hence, by choosing T 00 > 0 large enough, we have that for all t ≥ T 00 and all v0

such that either v0 ∉ ΠiðvÞ or KLðnit , mv0 Þ > d 1 k,

KLðnit , mv
i Þ ≤ d ⟹ PI

t ðv0jxt
i Þ < 1 2

ffiffiffi
p

p
Θj j ,

proving claim 2. QED
Finally, to prove lemma A.2, let T 5 maxfT 0, T 00g, with T 0 and T 00 as found in

claims 1 and 2. Then, whenever t ≥ T and KLðnit , mv
i Þ ≤ d, we have

PI
t ð [

v0∈ΠiðvÞ
ðfv0g \ F2itðv0, dÞÞ ∣ xt

i Þ ≥ o
v0∈ΠiðvÞ s:t: KLðnit ,mv0 Þ≤d1k

PI
t ðfv0g \ F2itðv0, dÞ ∣ xt

i Þ

5 o
v0∈ΠiðvÞ s:t: KLðnit ,mv0 Þ≤d1k

PI
t ðF2itðv0, dÞ ∣ xt

i , v
0ÞPI

t ðv0 ∣ xt
i Þ

≥ o
v0∈ΠiðvÞ s:t: KLðnit ,mv0 Þ≤d1k

ffiffiffi
p

p � PI
t ðv0 ∣ xt

i Þ ≥ p,
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where the second inequality uses claim 1 and the last inequality uses claim 2.
QED
Appendix B

Proof of Theorem 1 (Fully Private Case)

This appendix proves theorem 1, assuming for ease of exposition that informa-
tion structure I is fully private (as defined in app. sec. A1). Appendix E extends
the proof to general information structures.

Fix any v ∈ Θ and p ∈ ð0, 1Þ. We first establish that

limsup
t →∞

1

t
log 1 2 PI

t ðCp
t ðvÞ ∣ vÞ� �

≤ 2lvðIÞ: (15)

Take any d ∈ ð0, lvðIÞÞ. Applying lemma A.2 to the case with ΠiðvÞ 5 fvg for
each i ∈ N , there exists T > 0 such that for all t ≥ T , (i) Ftðv, dÞ⊆ B

p
t ðvÞ and

(ii) Ftðv, dÞ⊆ B
p
t ðF ðv, dÞÞ, that is, Ft(v, d) is p -evident. Thus, by Monderer and

Samet (1989), we have Ftðv, dÞ⊆ C
p
t ðvÞ for all t ≥ T . Therefore,

limsup
t →∞

1

t
log 1 2 PI

t ðCp
t ðvÞ ∣ vÞ� �

≤ limsup
t →∞

1

t
log 1 2 PI

t ðFtðv, dÞ ∣ vÞ� �
≤ limsup

t →∞

1

t
log o

i

PI
t ðfKLðnit , mv

i Þ > dg ∣ vÞ
� 


5 max
i

limsup
t →∞

1

t
logPI

t ðfKLðnit , mv
i Þ > dg ∣ vÞ

5 2d,

where the last equality follows from Sanov’s theorem. Since this holds for all d <
lvðIÞ, this establishes (15).

We next establish that

liminf
t →∞

1

t
log 1 2 PI

t ðBq
t ðvÞ ∣ vÞ� �

≥ 2lvðIÞ: (16)

Take i ∈ N and v0 ≠ v such that dðmv
i , mi

v0 Þ 5 lvðIÞ. Take any d > dðmv
i , mi

v0 Þ. Then
there is ni ∈ ΔðXiÞ such that KLðni , mv

i Þ 5 KLðni , mi
v0 Þ < d. Hence, for some n0i close

to ni,

KLðn0i , mi
v0 Þ < KLðn0i , mv

i Þ < d:

Thus, there exist ε > 0 and an open set Ki ∋ n0i of signal distributions such that for
all n00i ∈ Ki ,

KLðn00i , mi
v0 Þ 1 ε < KLðn00i , mv

i Þ < d:

Then, for all large enough t, Bp
itðvÞ \ fnit ∈ Kig 5 ∅, because by standard argu-

ments, i’s beliefs at large t concentrate on states whose signal distributions min-
imize KL divergence relative to nit. Thus,
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liminf
t →∞

1

t
log 1 2 PI

t ðBp
itðvÞ ∣ vÞ� �

≥ liminf
t →∞

1

t
logPI

t ðfnit ∈ Kig ∣ vÞ ≥ 2d ,

where the final inequality holds by Sanov’s theorem. Since this is true for all d >
lvðIÞ, this establishes (16). QED
Appendix C

Ranking of Information Structures without Assumption 2

This appendix generalizes the ranking in theorem 2 when assumption 2 is
dropped; that is, playing the W-optimal action profile a v,W need not require all
agents to distinguish all states. The idea is to construct generalized learning effi-
ciency indexes that account for the presence of equivalent states for some players.

Formally, given any objective functionW, define a partitionΠW
i overΘ for each

agent i, whose cells are given by

ΠW
i ðvÞ ≔ fv0 ∈ Θ : av,W

i 5 av0,W
i g for each v;

that is, ΠW
i divides Θ into equivalence classes of states in which theW-optimal ac-

tion profile features the same action for agent i. LetΠW ≔ ðΠW
i Þi∈N denote the col-

lection of all agents’ partitions.
Given any collection of partitions Π 5 ðΠiÞi∈N over Θ, we define the learning

efficiency index31

lðI ,ΠÞ ≔ min
i∈N ,v,v0∈Θ,v0∉ΠiðvÞ

dðmv
i , mi

v0 Þ:

That is, in identifying the worst-informed agent and hardest to distinguish
states, we do not consider all agents and pairs of states as in (11). Instead, for
each agent i, we restrict attention to pairs of states at which i’sW-optimal actions
are different.

In the following result, we restrict attention to information structures that are
either fully private or public (as defined in app. sec. A1).

Theorem C.1. Fix any collection Π 5 ðΠiÞi∈N of partitions over Θ. Take any
information structures I and ~I , each of which is either fully private or public,
with lðI ,ΠÞ > lð~I ,ΠÞ. For every ðG,W Þ satisfying assumption 1 and ΠW 5 Π,
there exists T such that WtðI , GÞ > Wtð~I , GÞ for all t ≥ T .

Theorem C.1 extends theorem 2 by dropping assumption 2. Using the gener-
alized learning efficiency indexes lð�,ΠÞ, we again obtain a (generically com-
plete) ranking over the equilibrium outcomes induced by different information
structures at large enough t: this ranking applies for all games and objective func-
tions that are aligned at certainty and give rise to the same partitions Π of equiva-
lent states. The proof of theorem C.1 is in appendix D.
31 Slightly abusing notation, we set the index to be ∞ when Π is degenerate (i.e.,
ΠiðvÞ 5 Θ for all i).
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Appendix D

Proof of Theorem 2 (Fully Private Case) and Theorem C.1

Below we prove theorem C.1. When I and ~I are either fully private or public, the-
orem 2 then follows as the special case in whichΠiðvÞ 5 fvg for all v and i. Appen-
dix E proves theorem 2 for general information structures. To simplify notation,
we drop the superscript W from a v,W when there is no risk of confusion.
D1. Bounds on Inefficiency

For any I , G, and W, we first derive bounds on the probability of inefficient play
(i.e., not playing a v in state v) as t grows large. The following result provides a lower
bound on this probability for arbitrary sequences of strategy profiles (jt):

Lemma D.1. Fix any I , G, andW. For any sequence of strategy profiles (jt) of
GtðIÞ,

liminf
t →∞

max
v

1

t
log 1 2 o

xt∈X t

PI
t ðxt ∣ vÞjtðav ∣ xtÞ

 !
≥ 2lðI ,ΠW Þ:

Proof. Pick i, v, and v0 ∉ ΠW
i ðvÞ such that lðI ,ΠW Þ 5 dðmv

i , mi
v0 Þ. Consider any

sequence of strategy profiles (jt) of GtðIÞ. Consider modified strategies (~jit) for
player i such that for each xt

i ,

1. ~jitðav
i ∣ xt

i Þ ≥ jitðav
i ∣ xt

i Þ and ~jitðai
v0 ∣ xt

i Þ ≥ jitðai
v0 ∣ xt

i Þ; and
2. ~jitðav

i ∣ xt
i Þ 1 ~jitðav0

i ∣ xt
i Þ 5 1.

That is, (~jit) is obtained by shifting all weight (jit) puts on actions other than av
i ,

ai
v0 to av

i , ai
v0 at all signal realizations.

We also consider the sequence of strategies (j*it ) given by

j*it ðav
i ∣ xt

i Þ 5 1 if  KLðnit , mv
i Þ ≤ KLðnit , mv0

i Þ,
j*it ðav0

i ∣ xt
i Þ 5 1 if  KLðnit , mv

i Þ > KLðnit , mv0

i Þ,

(

where nit is the empirical signal distribution associated with xt
i . Note that j*it can

be seen as a likelihood ratio test (with threshold 1). Thus, the Neyman-Pearson
lemma for randomized tests (theorem 3.2.1 in Lehmann and Romano 2006) im-
plies that for each t,

o
xt
i ∈X t

i

PI
t ðxt

i jvÞ~jitðav
i jxt

i Þ ≤ o
xt
i ∈X t

i

PI
t ðxt

i jvÞj*it ðav
i jxt

i Þ

or o
xt
i ∈X t

i

PI
t ðxt

i jv0Þ~jitðai
v0 jxt

i Þ ≤ o
xt
i ∈X t

i

PI
t ðxt

i jv0Þj*it ðai
v0 jxt

i Þ:
(17)

Hence,
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liminf
t →∞

1

t
log max 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ vÞjitðav
i jxt

i Þ, 1 2 o
xt
i ∈X t

i

PI
t ðxt

i ∣ v0Þjitðai
v0 jxt

i Þ
( ) !

≥ liminf
t →∞

1

t
log max 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ vÞ~jitðav
i jxt

i Þ, 1 2 o
xt
i ∈X t

i

PI
t ðxt

i ∣ v0Þ~jitðai
v0 jxt

i Þ
( ) !

≥ liminf
t →∞

1

t
log min 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ vÞj*it ðav
i jxt

i Þ, 1 2 o
xt
i ∈X t

i

PI
t ðxt

i ∣ v0Þj*it ðai
v0 jxt

i Þ
( ) !

5 min
v00∈ v,v0f g

liminf
t →∞

1

t
log 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ v00Þj*it ðai
v00 jxt

i Þ
 !

,

where the first inequality follows from the construction of (~jit) and the second
inequality uses (17). The last line is equal to 2dðmv

i , mi
v0 Þ 5 2lðI ,ΠW Þ, because

the asymptotic error rate under a likelihood ratio test with threshold 1 is given by
Chernoff information (theorem 3.4.3 in Dembo and Zeitouni 2010),32 that is,

lim
t →∞

1

t
log 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ vÞj*it ðav
i jxt

i Þ
 !

5 lim
t →∞

1

t
log 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ v0Þj*it ðai
v0 jxt

i Þ
 !

5 2dðmv
i , mi

v0 Þ:
This implies that

liminf
t →∞

max
v00∈Θ

1

t
log 1 2 o

xt
i ∈X t

i

PI
t ðxt

i ∣ v00Þjitðai
v00 jxt

i Þ
 !

≥ 2lðI ,ΠW Þ,

as claimed. QED
Under assumption 1, the following result provides an upper bound on the

probability of inefficient play under some equilibrium sequence (jt):
Lemma D.2. Fix any I that is either fully private or public and any ðG,W Þ

satisfying assumption 1. There exists a sequence of BNE strategy profiles
ðjtÞ ∈ BNEtðG, IÞ such that for all v ∈ Θ,

limsup
t →∞

1

t
log 1 2 o

xt∈X t

PI
t ðxt ∣ vÞjtðav ∣ xtÞ

 !
≤ 2lðI ,ΠW Þ:

Proof. Take p ∈ ð0, 1Þ sufficiently close to 1 such that for all i and v, choosing
av
i is ui -optimal whenever i’s belief about the state and opponents’ actions assigns
probability at least p to {ðv0, a2i

v0 Þ : v0 ∈ ΠW
i ðvÞ}. Such a p exists because by assump-

tion 1, av
i is the unique maximizer of uið�, a2i

v0 , v0Þ for each v0 ∈ ΠW
i ðvÞ.

Fix any d < lðI ,ΠW Þ ≔ mini∈N ,v∈Θ,v0∉ΠiðvÞdðmv
i , mi

v0 Þ. Let Σit(d) denote the set
of i’s strategies at t such that jitðav

i ∣ xt
i Þ 5 1 whenever KLðnit , mv

i Þ ≤ d. This set
is well defined by the choice of d, that is, there is no ni ∈ ΔðXiÞ such that
KLðni , mv

i Þ, KLðni , mi
v 0 Þ ≤ d for some v and v0 ∉ ΠW

i ðvÞ.
32 This in turn follows from a simple application of Sanov’s theorem.
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We show that there exists T such that for any t > T , there is a BNE jt of GtðIÞ,
with jit ∈ ΣitðdÞ for every i. To see this, first consider the case in which I is fully pri-
vate. Then, by lemmaA.2with p as chosen above, there isT such that (14) holds for
all i, v, and t ≥ T . Thus, for all t ≥ T , each agent i’s best response against any strat-
egy profile in

Q
j≠iΣjtðdÞmust be in Σit(d), because whenever KLðnit , mv

i Þ ≤ d, then i
assigns probability at least p to {ðv0, a2i

v0 Þ : v0 ∈ ΠW
i ðvÞ}. Thus, for every t ≥ T , apply-

ing Kakutani’s fixed point theorem to the best-response correspondences defined
on the restricted strategy space ∏i Σit(d) (which is convex), we obtain a BNE jt of
GtðIÞ such that jit ∈ ΣitðdÞ for every i. Next, suppose that I is public. In this case,
all players’ posteriors coincide, that is, PI

t ð�jxi
t Þ 5 PI

t ð�jx j
tÞ for all i, j, and t. More-

over, KLðnit , mv
i Þ ≤ d ⇔ KLðnjt , mv

j Þ ≤ d for all i, j, t. Thus, if we choose T large
enough, the same argument as in claim 2 in the proof of lemma A.2 ensures that

KLðnit , mv
i Þ ≤ d ⟹ PI

t ðfv0 ∈ \
j
ΠjðvÞg ∣ xt

i Þ ≥ p

for all t ≥ T . On the basis of this observation, the same argument as in the fully
private case yields a sequence of BNE jt ∈

Q
iΣitðdÞ for all t ≥ T .

The above implies that there is a sequence of BNE (jt) such that for all v, we
have that as t →∞,

1 2 o
xt∈X t

PI
t ðxt jvÞjtðav ∣ xtÞ ≤ o

i

PI
t ðfKLðnit , mv

i Þ > dg ∣ vÞ 5 exp½2td 1 oðtÞ�,

where the equality follows from Sanov’s theorem. Since this holds for all d <
lðI ,ΠW Þ, this yields the desired conclusion. QED

D2. Remaining Proof

Fix any information structures I and ~I , each of which is either fully private or
public, and any ðG,W Þ satisfying assumption 1 and ΠW 5 Π. Suppose lðI ,ΠÞ >
lð~I ,ΠÞ. Since A is finite and favg 5 argmaxaW ða, vÞ for each v ∈ Θ, there exist
constants c ≥ ~c > 0 such that for all t, strategy profiles jt of GtðIÞ and ~jt of Gtð~IÞ,
and all v ∈ Θ,

W ðav, vÞ 2o
xt ,a

PI
t ðxt ∣ vÞjtða ∣ xtÞW ða, vÞ ≤ c 1 2o

xt

PI
t ðxt ∣ vÞjtðav ∣ xtÞ

 !
, (18)

W ðav, vÞ 2o
~xt ,a

P
~I
t ð~xt ∣ vÞ~jtða j ~xtÞW ða, vÞ ≥ ~c 1 2o

~xt

P
~I
t ð~xt ∣ vÞ~jtðavj~xtÞ

 !
: (19)

By lemma D.2, there exists a sequence of BNE jt ∈ BNEtðG, IÞ such that

2l ðI ,ΠÞ ≥ max
v

limsup
t →∞

1

t
log 1 2o

xt

PI
t ðxt ∣ vÞjtðavjxtÞ

 !

5 limsup
t →∞

1

t
logo

v

p0ðvÞ 1 2o
xt

PI
t ðxt ∣ vÞjtðavjxtÞ

 !
,

which by (18) implies
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limsup
t →∞

1

t
logo

v

p0ðvÞ W ðav, vÞ2o
xt

PI
t ðxt ∣ vÞjtðav∣xtÞW ða, vÞ

 !
≤ 2lðI ,ΠÞ: (20)

Let ~jt denote a strategy profile that maximizes Wtð�, ~IÞ. By lemma D.1,

2l ð~I ,ΠÞ ≤ liminf
t →∞

maxv

1

t
log 1 2o

~xt

P
~I
t ð~xt ∣ vÞ~jtðav ∣ ~xtÞ

 !

≤ liminf
t →∞

1

t
logo

v

p0ðvÞ 1 2o
~xt

P
~I
t ð~xt ∣ vÞ~jtðav ∣ ~xtÞ

 !
,

which by (19) implies

liminf
t →∞

1

t
logo

v

p0ðvÞ W ðav, vÞ2o
~xt

P
~I
t ð~xt ∣vÞ~jtðav∣~xtÞW ða, vÞ

 !
≥ 2lð~I ,ΠÞ: (21)

Thus, for all large enough t, we have WtðG, IÞ ≥ Wtðjt , IÞ > Wtð~jt , ~IÞ ≥ WtðG, ~IÞ,
where the strict inequality follows from (20) and (21) and the assumption that
lðI ,ΠÞ > lð~I ,ΠÞ. QED
Appendix E

Proofs of Theorems 1 and 2 (General Case)

E1. Overview

In this section, we extend the proofs of theorems 1 and 2 to general information
structures that need not be fully private. The main complication stems from the
fact that the strict inequality part of lemma 1 need not hold when mv does not have
full support. We handle this issue by modifying the events Ft (v, d) appropriately.

Fix any information structure I and state v. Let X v ⊆ X denote the support of
mv. Conditional on state v, defineH v

i 5 ðhv
i ðxÞÞx∈X v to be agent i’s information par-

tition of X v based on observing her own private signal; that is,

hv
i ðxÞ ≔ fx 0 ∈ X v : x 0

i 5 xig for all x ∈ X v:

For any distribution n ∈ ΔðX vÞ and any partition H of X v, let nH ∈ ΔðH Þ denote
the induced distribution over the cells in H; that is, nH ðhÞ ≔ ox∈hnðxÞ for all h ∈
H . Letting nt ∈ ΔðX vÞ denote the joint empirical distribution of signals up to t,
note that ðntÞH v

i
can be identified with i’s empirical distribution nit. For each sub-

set of agents S ⊆N , define H v
S ≔ ∧i∈SH v

i to be the finest common coarsening of
all the partitions H v

i such that i ∈ S . For any joint empirical signal distribution nt,
distribution ðntÞH v

S
is commonly known among all agents in S.

Finally, for any d > 0 and ε1, ::: , εjN j ∈ ½0, dÞ, define the following event:

Ftðv, d, ε1, ::: , ε Nj jÞ ≔ xt ∈ ðX vÞt : KL ðntÞH v
S
, mv

H v
S

� �
≤ d 2 ε Sj j, 8 S ⊆ I

� �
:

Note that for any i ∈ S , KLðnit , mv
i Þ ≥ KLððntÞH v

S
, mv

H v
S
Þ. Thus, Ftðv, d, 0, ::: , 0Þ 5

Ftðv, dÞ. Observe also that if mv has full support, then H v
S 5 fXg for all non-

singleton S, so Ftðv, d, ε1, ::: , εjN jÞ 5 Ftðv, d 2 ε1Þ.
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The main step in extending the proofs of theorems 1 and 2 is the following
result, which we prove in appendix E1.

Proposition E.1. Take any d ∈ ð0, lvðIÞÞ and ε ∈ ð0, dÞ. There exists a se-
quence ε 5 εn > ⋯ > ε2 > ε1 5 0 such that for all p ∈ ð0, 1Þ, there exists T such
that

PI
t vf g \ Ftðv, d, ε1, ::: , ε Nj jÞ ∣ xt

ið Þ ≥ p

holds for every i ∈ N , t ≥ T , and signal sequence xt ∈ Ftðv, d, ε1, ::: , εjN jÞ.
Using proposition E.1, the proof of theorem 1 extends as follows. It suffices to

prove (15) for general I , as the argument for (16) in appendix B did not rely on
the full-support assumption. To prove (15), take any d ∈ ð0, lvðIÞÞ and ε ∈ ð0, dÞ.
Then for all p ∈ ð0, 1Þ and large enough t, the events Ftðv, d, ε1, ::: , εjN jÞ constructed
in proposition E.1 satisfy

Ftðv, d, ε1, ::: , ε Nj jÞ⊆ C
p
t ðvÞ,

since proposition E.1 ensures that these events are p-evident and Ftðv, d,
ε1, ::: , εjN jÞ⊆ B

p
t ðvÞ at large t. Moreover, by Sanov’s theorem and the fact that

Ftðv, d, 0, ::: , 0Þ 5 Ftðv, dÞ,

lim
εk → 08 k

lim
t →∞

1

t
log 1 2 PI

t Ftðv, d, ε1, ::: , ε Nj jÞ ∣ vð Þ� �
5 lim

t →∞

1

t
log 1 2 PI

t Ftðv, dÞ ∣ vð Þ� �
5 2d:

Since this holds for all d < lvðIÞ, (15) follows.
To extend the proof of theorem 2, it is sufficient to establish lemma D.2 for

general I under assumption 2, as the remaining steps of the proof in appendix D
did not rely on the full-support assumption. To this end, fix p ∈ ð0, 1Þ and
d ∈ ð0, lðIÞÞ as in the original proof of lemma D.2, and take any ε ∈ ð0, dÞ. Apply-
ing proposition E.1 and following the same steps as in the original proof of
lemma D.2, we construct a BNE sequence (jt) such that for all large enough t and
each v, we have jtðavjxtÞ 5 1 at all signal sequences xt ∈ Ftðv, d, ε1, ::: , εjN jÞ. Thus,

lim
t →∞

1

t
log 12 o

xt∈X t

PI
t ðxt jvÞjtðav∣xtÞ

 !
≤ lim

t →∞

1

t
log 1 2 PI

t Ftðv, d, ε1, ::: , ε Nj jÞ∣vð Þ� �
:

As above, the right-hand side tends to 2d as εk → 0 for each k. Since this holds
for all d < lðIÞ, we obtain the desired conclusion.
E2. Proof of Proposition E.1

E2.1. Generalization of Lemma 1

The key step inprovingpropositionE.1 is the followinggeneralizationof lemma1.
For each i ∈ N and n ∈ ΔðX vÞ with ni 5 margXi

n, define distribution nM v
i ∈ ΔðX vÞ

by

ðnM v
i Þðxi , x2iÞ ≔ niðxiÞmvðx2i jxiÞ for all ðxi , x2iÞ ∈ X v: (22)
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When the joint empirical signal distribution is nt, then ntM v
i is i’s expectation of

this joint distribution conditional on state v and on observing nit.
Lemma E.1. Take any n ∈ ΔðX vÞ, i ∈ N , and S ⊆N . Then KLððnM v

i ÞH v
S
, mv

H v
S
Þ ≤

KLðnH v
i
, mv

H v
i
Þ. Moreover, the inequality is an equality only if nH v

i
ð�jhÞ 5 mv

H v
i
ð�jhÞ for

every h ∈ H v
i ∧H v

S such that nH v
i ∧H v

S
ðhÞ > 0.

Proof. To show the inequality, first note that

KL nM v
i , m

v
� �

5 KL ðnM v
i ÞH v

i
, mv

H v
i

� �
1 o

h∈H v
i

ðnM v
i ÞH v

i
ðhÞKLððnM v

i Þð�jhÞ, mvð�jhÞÞ

5 KL nH v
i
, mv

H v
i

� �
,

(23)

where the first equality uses the chain rule for KL divergence and the second one
holds because nH v

i
5 ðnM v

i ÞH v
i
and ðnM v

i Þð�jhÞ 5 mvð�jhÞ for each h ∈ H v
i by (22).

The chain rule also implies that

KLðnM v
i , m

vÞ 5 KL ðnM v
i ÞH v

S
, mv

H v
S

� �
1 o

h∈H v
S

ðnM v
i ÞH v

S
ðhÞKL ðnM v

i Þð�jhÞ ∣ mvð�jhÞ� �
≥ KL ðnM v

i ÞH v
S
, mv

H v
S

� �
:

(24)

Combining (23) and (24) yields KLððnM v
i ÞH v

S
, mv

H v
S
Þ ≤ KLðnH v

i
, mv

H v
i
Þ.

For the “moreover” part, suppose that KLððnM v
i ÞH v

S
, mv

H v
S
Þ 5 KLðnH v

i
, mv

H v
i
Þ. Then,

by (23) and (24), for every h ∈ H v
S such that ðnM v

i ÞH v
S
ðhÞ > 0, we have ðnM v

i Þð�jhÞ 5
mvð�jhÞ. In addition, for any h ∈ H v

i such that ðnM v
i ÞH v

i
ðhÞ > 0, (22) implies

ðnM v
i Þð�jhÞ 5 mvð�jhÞ. These two observations yield that for any h ∈ H v

i ∧H v
S

with ðnM v
i ÞH v

i ∧H v
S
ðhÞ > 0, we have ðnM v

i Þð�jhÞ 5 mvð�jhÞ, and hence ðnM v
i ÞH v

i
ð�jhÞ 5

mv
H v

i
ð�jhÞ. But by (22), ðnM v

i ÞH v
i
5 nH v

i
and ðnM v

i ÞH v
i ∧H v

S
5 nH v

i ∧H v
S
. Thus, nH v

i
ð�jhÞ 5

mv
H v

i
ð�jhÞ for all h ∈ H v

i ∧H v
S such that nH v

i ∧H v
S
ðhÞ > 0. QED

Lemma E.1 yields the following corollary:
Corollary E.1. Take any d > 0 and ε ∈ ð0, dÞ. There exists r ∈ ð0, εÞ such

that for all S ⊆N , i ∉ S , and n ∈ ΔðX vÞ with

KLðnH v
i
, mv

H v
i
Þ ≤ d  and  max

S 0j j5 Sj j11
KLðnH v

S 0
, mv

H v

S 0
Þ ≤ d 2 ε,

we have KLððnM v
i ÞH v

S
, mv

H v
S
Þ < d 2 r.

Proof. Consider any S ⊆N , i ∉ S , and n ∈ ΔðX vÞ with KLðnH v
i
, mv

H v
i
Þ ≤ d and

maxjS 0 j5jS j11KLðnHS 0
v , mv

HS 0
vÞ ≤ d 2 ε. It suffices to prove that KLððnM v

i ÞH v
S
, mv

H v
S
Þ < d,

as the left-hand side of this inequality is continuous in n and Δ (X v) is compact.
To show the latter inequality, note that lemma E.1 implies KLððnM v

i ÞH v
S
, mv

H v
S
Þ ≤

KLðnH v
i
, mv

H v
i
Þ ≤ d. Thus, we can focus on the case in which KLððnM v

i ÞH v
S
, mv

H v
S
Þ 5

KLðnH v
i
, mv

H v
i
Þ. In this case,

KLðnH v
i
, mv

H v
i
Þ 5 KL nH v

i ∧H v
S
, mv

H v
i ∧H v

S

� �
1 o

h∈H v
i ∧H v

S

nH v
i ∧H v

S
ðhÞKL nH v

i
ð�jhÞ, mv

H v
i
ð�jhÞ� �

5 KL nH v
i ∧H v

S
, mv

H v
i ∧H v

S

� �
≤ d 2 ε,

where the first equality uses the chain rule and the second one holds by the
“moreover” part of lemma E.1. QED
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E2.2. Completing the Proof

To prove proposition E.1, we first set εjN j 5 ε. By corollary E.1, there exists
rjN j21 ∈ ð0, εjN jÞ such that for all i ∈ N and S 5 N nfig, whenever

KLðnH v
i
, mv

H v
i
Þ ≤ d and KLðnH v

N
, mv

H v
N
Þ ≤ d 2 ε,

we have KLððnM v
i ÞH v

S
, mv

H v
S
Þ < d 2 rjN j21.

Next, choose some εjN j21 ∈ ð0, rjN j21Þ and proceed inductively in the same man-
ner. In particular, once we have constructed εk11, use corollary E.1 to find
rk ∈ ð0, εk11Þ such that for all i ∈ N and S ⊆N with jS j 5 k and i ∉ S , whenever

KLðnH v
i
, mv

H v
i
Þ ≤ d and max

S 0j j5k11
KLðnH v

S 0
, mv

H v

S 0
Þ ≤ d 2 εk11,

we have KLððnM v
i ÞH v

S
, mv

H v
S
Þ < d 2 rk .

This yields a sequence

ε 5 ε Nj j > r Nj j21 > ε Nj j21 > ⋯ > ε2 > r1 > ε1 5 0

with the property that whenever

KLðnH v
S
, mv

H v
S
Þ ≤ d 2 ε Sj j for all S ⊆N ,

we have KLððnM v
i ÞH v

S
, mv

H v
S
Þ < d 2 rjS j for all S ⊆N and i ∉ S .

We now show that this sequence is as required by proposition E.1. By the same
argument as in the proof of lemma A.2, for any p ∈ ð0, 1Þ and sufficiently large t,
we have Ftðv, d, ε1, ::: , εjN jÞ⊆ B

p
t ðvÞ. Thus, it suffices to show that for any p ∈ ð0, 1Þ,

i ∈ N , and S ⊆N , there exists T such that

PI
t KL ðntÞH v

S
, mv

H v
S

� �
≤ d 2 ε Sj j

� �
∣ xt

i , v
� �

≥ p (25)

holds for every t ≥ T and signal sequence xt ∈ Ftðv, d, ε1, ::: , εjN jÞ.
To show (25), fix any p ∈ ð0, 1Þ. First, consider i ∈ N and S ⊆N with i ∈ S .

ThenH v
S is coarser thanH v

i . Hence, for any t ≥ 1 and signal sequence x t with cor-
responding empirical distribution ~nt ∈ ΔðX vÞ, we have

PI
t nt ∈ ΔðX vÞ : ðntÞH v

S
5 ð~ntÞH v

S

� �
∣ xt

i , v
� �

5 1:

Thus, if xt ∈ Ftðv, d, ε1, ::: , εjN jÞ, then
PI

t KL ðntÞH v
S
, mv

H v
S

� �
≤ d 2 ε Sj j

� �jxt
i , v

� �
5 1 > p,

as required.
Next, consider i ∈ N and S ⊆N with i ∉ S . Then the way in which se-

quence ðεk , rkÞk51, ::: ,jN j was constructed ensures that for any t ≥ 1 and xt ∈
Ftðv, d, ε1, ::: , εjN jÞ with corresponding empirical frequency ~nt , we have

KL ð~ntM v
i ÞH v

S
, mv

H v
S

� �
≤ d 2 r Sj j: (26)

Since rjS j > εjS j and Δ(X v) is compact, there exists k > 0 such that for all n, n0 ∈
ΔðX vÞ,

KL n0H v
S
, mv

H v
S

� �
≤ d 2 r Sj j and  kn

0 2 nk < k ⇒ KL nH v
S
, mv

H v
S

� �
≤ d 2 ε Sj j: (27)
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By the same law of large numbers argument as in the full-support case, there
exists T such that for all t ≥ T and signal sequences x t with empirical distribution
~nt , we have

PI
t knt 2 ~ntM

v
i k < k

� �
∣ xt

i , v
� �

≥ p:

Combined with (26) and (27), this implies that (25) holds for every t ≥ T and
signal sequence xt ∈ Ftðv, d, ε1, ::: , εjN jÞ. QED
Appendix F

Proofs for Section V

F1. Proof of Corollary 2

Fix any I ∈ I. Let tk denote an optimal number of signal draws from I under bud-
get k. The analysis in section IV.B implies that for every BNE sequence jtk ∈
BNEtkðG, IÞ,

1 2 o
v∈Θ,xtk∈X tk

PI
tk ðv, xtkÞjtkðav,W ∣ xtkÞ ≥ exp½2tklðIÞ 1 oðtkÞ� (28)

and that (28) holds with equality for some BNE sequence ðj*tk Þ. Note that
limk→∞tk 5 ∞ holds by optimality, as otherwise the designer’s value is bounded
away from the first-best payoff as k→∞. Thus,maximizing the rate of convergence
on the right-hand side of (28) under the budget constraint implies limk→∞tk=k 5
1=cðIÞ. Hence, the difference between the first-best payoff ∑v p0(v)W(av,W, v)
and the designer’s value under each information structure I takes the form
exp½2kðlðIÞ=cðIÞÞ 1 oðkÞ�.

Since I is finite, there then exists k* such that for all k ≥ k* and I , I 0 ∈ I with
lðIÞ=cðIÞ > lðI 0Þ=cðI 0Þ, it is suboptimal for the designer to choose I0. QED

F2. Proof of Corollary 3

The convergence under the product topology cannot be faster than lvðIÞ. To see
this, fix any ε < bð1 2 bÞ. Then there exists p ∈ ð0, 1Þ such that

PI
t ðfmax

i
r
product
i ðtiðxt

i Þ, tiðvÞÞ ≤ εg ∣ vÞ ≤ PI
t ðBp

t ðvÞ ∣ vÞ 5 1 2 exp½2lvðIÞt 1 oðtÞ�:

The convergence under the uniform weak topology cannot be slower than
lvðIÞ. To see this, fix any ε > 0. Note that the proof of proposition 6 in Chen
et al. (2010) implies that the ε-ball around ti(v) consists of all belief hierarchies
for player i that have common (1 2 ε)-belief on v. Thus,

PI
t ðfmax

i
runiform
i ðtiðxt

i Þ, tiðvÞÞ ≤ εg ∣ vÞ 5 PI
t ðC12ε

t ðvÞ ∣ vÞ 5 1 2 exp½2lvðIÞt 1 oðtÞ�:

Finally, by definition, convergence under the uniform weak topology cannot
be faster than under the product topology. QED
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