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We analyze sorting in a frictional labor market when workers and jobs
have multidimensional characteristics. We say that matching is positive
assortative in dimension ( j, k) if workers with higher endowment in skill
k arematched to a jobdistributionwithhigher values of attribute j in the
first-order stochastic dominance sense. Crucial for sorting is a single-
crossing property of technology. Sorting is positive between worker-
job attributes with strong complementarities but negative in other di-
mensions. Finally, sorting is based on comparative advantage: workers
sort into jobs that suit their skill mix rather than their overall skill level.
I. Introduction
The assignment of heterogenous workers to heterogenous jobs matters
for aggregate efficiency if there are complementarities between workers’
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and firms’ productive attributes. Labor market frictions impede the effi-
cient assignment and cause mismatch, which is costly if such complemen-
tarities are strong, less so if they are weak.
A growing body of literature focuses on understanding the sign and

strength of complementarities in frictional markets—a key question for
the design of policies aiming to allocate resources efficiently. With few ex-
ceptions, that literature works under the assumption that job and worker
heterogeneity can both be captured by scalar indexes, that is, that hetero-
geneity is one-dimensional.1 While the restriction to one-dimensional het-
erogeneity is a natural starting point and convenient for modeling, it is
at odds with the fact that typical datasets describe both workers and jobs
in terms ofmany different productive attributes (e.g., cognitive skills, man-
ual skills, or psychometric test scores for workers and numerous task-
specific skill requirements for jobs). If agents sort on multiple attributes,
then accounting for their multidimensional heterogeneity is necessary to
correctly quantify complementarities and mismatch.
In this paper, we develop a theory to help achieve that goal. We incor-

porate multidimensional (multi-D) worker and firm heterogeneity into
a general random-search model. The sorting and mismatch patterns that
arise in this multi-D environment are considerably more involved than
those in one-dimensional (1-D) models. We propose a notion of assorta-
tive matching in this setting and show howmodel primitives—productive
complementarities in particular—shape equilibrium worker-job sorting
in complex yet intuitive ways. Workers face sorting trade-offs, whereby
they accept mismatch along some skill dimension in order to improve
sorting on another, namely, one that is characterized by stronger worker-
job complementarities in technology. The resulting worker-job sorting
is on comparative rather than absolute advantage.
Our environment is that of the widely used random-search/job ladder

model (Burdett and Mortensen 1998; Postel-Vinay and Robin 2002), ex-
cept that workers and firms ( jobs) are endowed with bundles of produc-
tive attributes, x 5 ðx1,⋯, xX Þ ∈ RX for workers and y 5 ðy1,⋯, yY Þ ∈ RY

for jobs. Employed and unemployed workers sample job offers randomly
from an exogenous sampling distribution of job attributes. Utility is trans-
ferable: workers and firms are joint surplus maximizers, implying that
agents’ match formation decisions depend on a scalar value, namely, the
match surplus. Thismakes ourmulti-D problem tractable.
1 A recent exception is a paper by Lise and Postel-Vinay (2020), who focus on the accu-
mulation of skills in various dimensions within a model that can otherwise be seen as a spe-
cial case of ours. Other examples are Roy models with search frictions, as in Moscarini
(2001). Beyond these approaches, a growing applied literature takes explicit account of
these multiple dimensions of productive heterogeneity. Early examples of influential work
are Heckman and Sedlacek (1985) and Heckman and Scheinkman (1987). Recent exam-
ples include Yamaguchi (2012), Sanders (2012), and Guvenen et al. (2020).



multidimensional sorting 3499
In our frictional setting, workers with a given skill bundle are matched
not to a unique job type (as is often the case in the absence of frictions)
but to a whole distribution of job types—there is mismatch. In order to in-
terpret the sorting patterns that arise in equilibrium, we define notions of
positive and negative assortative matching (PAM and NAM, respectively)
in this environment. Our definition is based on the first-order stochastic
dominance (FOSD) ordering of the marginal distributions of job attri-
butes across workers with different skills. If workers with higher skill xk
(e.g., “cognitive skills”) are matched to jobs with stochastically “better”
attributes yj (e.g., “cognitive job complexity”), then PAM occurs between
(yj, xk). Sorting is thus defined dimension by dimension: PAM can arise
in one dimension (e.g., between cognitive skills and cognitive job com-
plexity), while NAM occurs in another (betweenmanual skills and cogni-
tive job complexity).
For expositional clarity and ease of interpretation, we focus on a base-

line specification with two-dimensional heterogeneity, a bilinear produc-
tion technology, wage setting by sequential auctions, and positive surplus
of all possible matches—all assumptions that we subsequently relax. In
this baseline case, we present three main results on multi-D sorting.
Our first result is about the sign of sorting: we provide conditions on the

economy’s primitives under which PAMorNAMarises in equilibrium.We
find that matching in, say, the first dimension (y1, x1) is positive assortative
if andonly if the technology satisfies a single-crossing condition, which im-
plies that the complementarity between worker skill x1 and job attribute y1
dominates the complementarity in the competing dimension (y2, x1).
Our second result is that sorting cannot be simultaneously positive be-

tween all skill and job dimensions. Instead, there are sorting trade-offs.We
provide conditions under which PAM arises in the dimension that fea-
tures relatively strong complementarities in production, whileNAMmate-
rializes in the dimension characterized by weaker complementarities.
Third, and connected to these sorting trade-offs, our model predicts

sorting based on comparative advantage rather than on absolute advan-
tage: workers with uniformly higher skills do not sort into jobs with uni-
formly higher skill requirements. Rather, they sort into jobs with a higher
requirement for the skill in which they are relatively strong, possibly at
the cost of a lower requirement for the other skill.
An important insight from our analysis is that the presence of multi-D

heterogeneity is crucial for sorting to arise in this setting. What matters to
workers is not just to match with a productive job in any component of y.
Rather, a worker wants to match with a job that puts much weight on the
skill in which he is strong. Thus, workers with different skill bundles ac-
cept and reject different types of jobs: they climb different job ladders,
which leads to sorting. Multi-D heterogeneity is a new source of sorting in
job ladder models, which makes them amenable to the analysis of sorting
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and mismatch under commonly used assumptions (such as monotone
technology and exogenous search effort) that would preclude sorting in
a 1-D world.2

We generalize our analysis, especially on the sign of sorting, to cases in
which (i) not all possiblematches generate positive surplus (also implying
a sorting-relevant job acceptance decision by the unemployed), (ii) het-
erogeneity is of dimension higher than two, and (iii) the technology is
nonlinear.We show that also in thesemore general environments the core
condition for sorting is a single-crossing property of the technology. We
further show that these results do not hinge on our sequential auction
wage-setting protocol but hold for other common wage-setting models,
such as Nash bargaining, sequential auctions with worker bargaining power,
or wage posting.
A natural question is whether multi-D heterogeneity can be collapsed

into a single scalar index without loss of generality. If so, then existing
1-Dmodels wouldprovide all thenecessary tools for the analysis of sorting.
We show that, in the context of ourmodel, a single-index representation is
valid only in the special case where the single-crossing condition of tech-
nology fails to hold everywhere, thus ruling out sorting in equilibrium.
More generally and beyond our model, multiple dimensions cannot be
mapped into a single dimension while preservingminimal regularity prop-
erties, such as continuity and monotonicity of the surplus function.
We conclude that it will be difficult to ignore multi-D heterogeneity in

settings where this heterogeneity affects economic choices, such as the
sorting of workers into jobs. Multi-D heterogeneity prompts rich sorting
patterns, by combining features of vertical heterogeneity (surplus can be
monotone in each attribute) and horizontal heterogeneity (in the sense
that there is no common ranking of firms by workers of different multi-D
types). As a result, modeling agents with multi-D attributes is particularly
attractive, as it can account for both aspects of the data while circumvent-
ing the issues associated with single-index representations. We provide
a practical framework for the analysis of multi-D sorting and mismatch
in applied work.
Related literature.—Whilemuch is knownabout sortingunder 1-Dhetero-

geneity either without frictions (Becker 1973; Legros and Newman 2007)
or with frictions (Shimer and Smith 2000; Smith 2006; Eeckhout and
Kircher 2010), far less is known about sorting onmulti-D types. Lindenlaub
(2017) studies multi-D sorting in a frictionless assignment game.3 But, to
2 If match surplus depends on a scalar (1-D) job type y and is increasing in y for all worker
types, workers all rank jobs in the same way. Their common strategy is to accept any job with
a higher y than their current one. There is a single job ladder that all workers climb at the
same speed, which rules out sorting.

3 Our restriction on the technology to obtain sorting is most closely related (but not
equivalent) to that needed in the multi-D frictionless assignment problem analyzed by
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the best of our knowledge, this paper is the first to develop a theory of
multi-D sorting under random search—an environment of great impor-
tance for applied work, since it carries a well-defined notion of mismatch
and allows for policy analysis.
Our work not only shifts the focus tomulti-D heterogeneity but also dif-

fers in another important way from that theoretical literature on sorting.
All of the aforementioned papers analyze assignment problems, meaning
that agents on either side of the market can be matched with at most
one agent from the other side (matching is one to one). While this as-
sumption is certainly appropriate in partnership models, it is less com-
mon in analyses of the labor market, where a firm usually employs many
workers. By contrast, here we follow the growing applied-search literature
that assumes that firms operate constant-return technologies without ca-
pacity constraints.
The no-capacity-constraint assumption greatly increases the tractabil-

ity of structural searchmodels.4 But it also eliminates onemajormotive for
sorting in assignment models: the scarcity of jobs. As a consequence, job
ladder models with 1-D heterogeneity tend to predict a lack of sorting
under two common assumptions—monotone technology and exogenous
search effort—as workers share a common ranking of firms, climb the
same economy-wide job ladder at the same speed, and match with the
same distribution of jobs in equilibrium.
Deviating from either of these two assumptions can restore equilibrium

sorting in the 1-D analogue of our model. Bagger and Lentz (2019), who
build on Lentz (2010), include endogenous search intensity in a 1-D se-
quential auction model. Under complementarities in production, high-
type workers havemore to gain frommatching with high-type firms, hence
searchmore intensively, and therefore endup inbetter firms in equilibrium.
Another way to introduce sorting is to assume that the technology is non-
monotonic in firm type. Specifically, if workers’ optimal firm type differs
across skills—that is, if there is horizontal heterogeneity (similar to Gautier,
Teulings, and van Vuuren 2006, 2010)—then different worker types climb
different job ladders, and sorting arises even under 1-D heterogeneity. A
popular example of this technology is of the form pðx, yÞ 5 A 2 ðx 2 yÞ2,
Lindenlaub (2017), who also has to discipline complementarities across tasks to ensure
PAM within tasks. But compared to Lindenlaub, the introduction of random search and
no-capacity constraint changes the technical nature of the problem (for instance, we can-
not rely on optimal-transport theory here) as well as the insights (in our framework with fric-
tions, we can analyze sorting on the unemployment-to-employment [UE] and employment-
to-employment [EE] margins, heterogenous job ladders, mismatch, and policy).

4 For instance, it obviates the need for a complex existence proof involving a fixed-point
problem in the distribution of unmatched agents that is common in one-to-one assign-
ment models under search frictions (Shimer and Smith 2000). Moreover, the lack of capac-
ity constraints also helps simplify the equilibrium value of a job vacancy, which is typically
pinned down by a firm optimality (or “free-entry”) condition.
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A > 0, which is a special case of Tinbergen (1956). As we discuss below,
however, the assumption of nonmonotonic technology poses challenges
for the identification of 1-D types in thedata.Moreover,modeling produc-
tive heterogeneity as purely horizontal is problematic, as certain worker
and job traits have a quintessentially vertical dimension.
Our paper highlights a new source of sorting in search models without

capacity constraints that stems from a natural feature of the data: multi-D
heterogeneity. Multidimensionality of skills causes different workers to
rank jobs differently and climb different job ladders, leading to sorting.
Multi-D heterogeneity also creates the incentive to sort in Roymodels with
search frictions (based on Roy 1951), such as in Moscarini (2001) and Pa-
pageorgiou (2014), where workers have bundles of skills and can search
for jobs in two sectors.5 Ourmodel has in commonwith this literature that
sorting is on comparative rather than absolute advantage—a feature of the
labormarket that has found empirical support already (see, e.g., Heckman
and Sedlacek 1985 and Heckman and Scheinkman 1987). Beyond this
common feature, our work has a different focus: we characterize sorting
patterns between workers’multiple skills and jobs’multiple skill require-
ments, starting from assumptions on the model primitives.
The rest of the paper is organized as follows. Section II illustrates our

main theoretical insights via a simple example. Section III introduces our
model. Section IV provides a definition of sorting in multiple dimensions
under random search. Section V contains our main results on the sign of
sorting, sorting based on comparative advantage, and the arising sorting
trade-offs, all established within our baseline model with bilinear technol-
ogy and two-dimensional heterogeneity. Generalizations are discussed in
section VI. Section VII offers a discussion of two important assumptions:
lack of capacity constraint andmulti-Dheterogeneity. SectionVIII concludes.
II. An Illustrative Example
We begin by illustrating our main theoretical insights using a simple ex-
ample, the foundations of which are explored when we introduce our
full model in section III. Consider a labor market, in which workers are
characterized by two-dimensional skills x 5 ðx1, x2Þ ∈ R2

11 (e.g., cognitive
and manual skills). Workers can be either employed or unemployed, and
they face search frictions in that they sample job offers randomly and se-
quentially. Jobs are also characterized by a two-dimensional vector of attri-
butes y 5 ðy1, y2Þ ∈ R2

11 (e.g., cognitive and manual skill requirements).
5 Taber and Vejlin (2020) also introduce search frictions into a Roy model, but they fo-
cus on a match output function that does not feature complementarities between worker
skills and firm attributes, which precludes the systematic worker-job sorting that is the sub-
ject of our analysis.
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A match between a worker with skills x and a job with attributes y gener-
ates surplus j(x, y).
Further assuming that jobs and workers are joint surplus maximizers, a

meeting between a type-x unemployed worker and a type-y job will result
in a match if and only if jðx, yÞ ≥ 0. A meeting between a type-x worker,
employed in job y, and an alternative job y0 will result in the worker accept-
ing the type-y0 job if and only if jðx, y0Þ > jðx, yÞ.
For illustration, we consider the following bilinear surplus:

jðx, yÞ 5 2x1y1 1 x2y2:

(We treat j as a primitive of the model for now. Below, we spell out condi-
tions and provide a wide class ofmodels for which that is warranted.) First,
note that, in this example, jðx, yÞ ≥ 0 for all pairs (x, y), implying that all
matches out of unemployment will be accepted. Furthermore, comple-
mentarities within the first dimension of heterogeneity (the cognitive di-
mension, say) and within the second dimension (the manual dimension)
are positive, while complementarities between dimensions are zero. This
implies that complementarities are larger among cognitive attributes—
that is, in (y1, x1)—than between manual job traits and cognitive skills—
that is, between (y2, x1)—which ensures that the following single-crossing
condition holds:

∂
∂x1

∂j=∂y1
∂j=∂y2

� �
> 0:

In words, the marginal rate of substitution between job attributes (y1, y2)
in the surplus function varies across workers with different skill x1.
We now examine two situations that illustrate our main insights in

intuitive ways. First, consider two unemployed workers, one with skills
ðx1, x2Þ 5 ð1, 1Þ and the other with ðx1, x2Þ 5 ð2, 1Þ. These two workers
have equal levels of manual skills, x2, but the second worker has more of
cognitive skill, x1. Assume that both workers receive the same sequence
of job offers over time, ðy1, y2Þ 5 fð2:3, 2:3Þ, ð3, 1Þ, ð3:4, 0Þg, which implies
the following acceptance decisions based on surplus comparisons across
jobs.

Job Offer 1 Job Offer 2 Job Offer 3
y 5 (2.3, 2.3) y 5 (3, 1) y 5 (3.4, 0)

Worker x 5 (1, 1) Accept ⟶ Accept ⟶ Reject
Worker x 5 (2, 1) Accept ⟶ Accept ⟶ Accept
Both workers, when employed in job 1, accept job offer 2: They are
willing to accept jobs with higher cognitive content y1 at the expense of
lower manual requirements y2, because the marginal return to higher y1
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in the surplus function is, ceteris paribus, twice as high as the marginal
return to higher y2. But the worker with higher cognitive skill x1 is even
more inclined to do so because of the complementarity between x1 and
y1. Indeed, he accepts job offer 3—a job with a yet higher cognitive re-
quirement but zero manual content—whereas the worker with lower cog-
nitive skill rejects it.6 This is why in equilibrium, ceteris paribus (i.e., for
given x2), workers with more cognitive skills x1 will be matched to a distri-
bution of jobs with “better” cognitive attributes y1. There is PAM in the cog-
nitive dimension, caused by the relatively strong complementarity in (y1, x1)
that stems from the single-crossing condition of the surplus function. This
is our first insight.
Following from the same intuition, workers with high cognitive skills x1

will be matched to jobs with “worse” manual content y2 relative to work-
ers with lower x1. While PAM arises in the dimension of strong technologi-
cal complementarities (y1, x1), NAM arises in the dimension of relatively
weak complementarities (y2, x1). This shows that there are sorting trade-offs
guided by technology, which is our second insight.
Next, we examine a second scenario, in which we compare the job ac-

ceptance choices of two workers who can be strictly ranked in both skill
dimensions. Consider a worker with skill bundle x 5 ð2, 1:1Þ, who ismore
skilled than a worker with x 5 ð1, 1Þ on all accounts. Assume that they
start in unemployment and receive the same sequence of job offers over
time.
6 The
x1, since
while fo
Job Offer 1 Job Offer 2
y 5 (2.3, 2.3) y 5 (3.4, 0)

Worker x 5 (1, 1) Accept ⟶ Reject
Worker x 5 (2, 1.1) Accept ⟶ Accept
last job offer, with high y1 bu
his surplus comparison y

r the worker with lower x1, j
t very low y2, is accepte
ields jðð2, 1Þ, ð3:4, 0Þ
ðð1, 1Þ, ð3:4, 0ÞÞ 5 6:8
d only by th
Þ 5 13:6 >
< 7 5 jðð
Here, only themore skilled worker accepts job offer 2, y 5 ð3:4, 0Þ, which
scores higher in the first but lower in the second dimension, compared to
the job with y 5 ð2:3, 2:3Þ. Thus, workers with uniformly better skills do
not sort into jobs with uniformly better attributes. Instead, they sort into
jobs that best fit their skill mix. Sorting in this multi-D setting is based on
comparative rather than absolute advantage—our third insight.
The intuitive reason why these sorting patterns arise in our context is

that workers with different skill bundles have different “specialties” and,
under the single-crossing condition, rank jobs in different ways. In other
words, they climb different job ladders over time. In contrast, if there
were no differences in the relative complementarities across dimensions,
e worker with higher
13 5 jðð2, 1Þ, ð3, 1ÞÞ,
1, 1Þ, ð3, 1ÞÞ.
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then different workers would share the same ranking of jobs. To illus-
trate this, change the technology to jðx, yÞ5 2x1y1 1 2x1y2 1 x2y11x2y2,
which implies that single crossing does not hold:

∂
∂x1

∂j=∂y1
∂j=∂y2

� �
5 0:

One can easily check that all workers would reject the last job offer y 5
ð3:4, 0Þ in this case. This is no coincidence. This surplus function can be
written as jðx, yÞ 5 ð2x1 1 x2Þðy1 1 y2Þ, and the model is isomorphic to
one with 1-D heterogeneity, where workers have a single skill x 5 2x11
x2 and jobs a single attribute y 5 y1 1 y2—the economy has a single-
index representation. In such a 1-D world, in which the technology is
monotone in y, workers share the same ranking of jobs and climb the
same job ladder and there is no sorting (as is the case, e.g., in Postel-
Vinay and Robin 2002).
Inwhat follows, we show that the insights fromour example are general.
III. The Model

A. The Environment
Time t is continuous. The economy is populated by infinitely lived work-
ers and firms. There is a fixed unit mass of workers, each characterized
by a time-invariant skill bundle x 5 ðx1,⋯, xX Þ ∈ X 5 � X

k51½xk , �xk �, where
X denotes the number of different skill dimensions. We normalize the
lowest worker skill to xk 5 0 and allow �xk ∈ R1 [ f1∞g, with �xk > xk .
Skills are distributed with cumulative distribution function (cdf) L and
strictly positive density ‘.7 Firms can be thought of as single jobs (possibly
vacant) or as collections of independent, perfectly substitutable jobs.
Jobs are characterized by a vector of time-invariant productive attributes,
or “skill requirements,” y 5 ðy1,⋯, yY Þ ∈ Y 5 � Y

j51½yj , �yj �, where Y de-
notes the number of different job attributes, yj ∈ R1, �yj ∈ R1 [ f1∞g,
and �yj > y

j .8

Workers can be matched to a job or be unemployed. They search for
jobs in both cases. Ifmatched, they lose their job at Poisson rate d anddraw
alternative job offers from an exogenous job sampling cdf Γ at rate l1.
We assume that Γ has a strictly positive, twice continuously differentiable
7 We adopt the following notational conventions throughout the paper. We denote cdfs
with uppercase letters (e.g., L), densities with the associated lowercase letters (e.g., ‘), and
survivor functions with a bar over the cdf (e.g., �L 5 1 2 LÞ. Also, we state that a function is
increasing/decreasing or positive/negative if this is the case in the weak sense. Strict prop-
erties are mentioned explicitly.

8 The restriction that x and y are positive is not essential but simplifies the economic
interpretation.
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density g over Y.9 Unemployed workers sample job offers from the same
sampling distribution at rate l0. The output flow in a match between
a worker with skills x and a job with attributes y is p(x, y), where
p :RX � RY →R.10 We denote the income flow of an unemployed worker
with skill x by p0(x).
There is no capacity constraint on the firm side (firms are happy to

hire any worker with whom they generate positive surplus), andmatched
jobs do not search for alternate workers. As a result, this setup is really a
(partial equilibrium) model of the labor market rather than one of sym-
metric, one-to-one matching, in which the distributions of unmatched
types change endogenously on both sides of the market as matches form.
The assumption that firms have no capacity constraint is ubiquitous in
the labor-search literature and provides our analysis with the necessary
tractability; we discuss it further in section VII.A.
B. Rent Sharing and Value Functions
Workers and firms are risk neutral and have the same time discounting
rate r > 0. Under those assumptions, the total present discounted value
of a type-(x, y) match is independent of the way in which it is shared and
depends only onmatch attributes (x, y). We denote this match value P(x,
y). We further denote the value of unemployment U(x) and the worker’s
value of being employed under his current wage contract W, where
W ≥ U ðxÞ (otherwise, the worker would quit into unemployment) and
W ≤ Pðx, yÞ (otherwise, the firm would fire the worker). Assuming that
the employer’s value of a job vacancy is zero, the total surplus generated
by a type-(x, y) match is P ðx, yÞ 2 U ðxÞ.
We assume in themain text that wage contracts are set as in the sequen-

tial auction model without worker bargaining power of Postel-Vinay and
Robin (2002). This is mainly to simplify exposition. We show in appen-
dix OC (apps. OA–OD are available online) that most of our results ex-
tend to other common wage-setting rules, such as Nash bargaining (Mor-
tensen and Pissarides 1994; Moscarini 2001), wage/contract posting
(Burdett and Mortensen 1998; Moscarini and Postel-Vinay 2013), or se-
quential auctions with worker bargaining power (Cahuc, Postel-Vinay,
and Robin 2006).
In the sequential auctionmodel, firms offer take-it-or-leave-it wage con-

tracts to workers.Wage contracts are long-termcontracts specifying a fixed
wage that can be renegotiated by mutual agreement only. In particular,
9 We assume that density g has strictly positive mass over its entire support, Suppg 5 Y.
This ensures that the support of g is a lattice under the natural (component-wise) partial
order in Rn , which is a technical requirement for some of our proofs for cases when Y ≥ 3.

10 We assume that the production function is defined over the entire space RX � RY , not
just the set X � Y of observed (x, y). This is to streamline some proofs but can be relaxed.
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when an employed worker receives an outside offer, the current and out-
side employers Bertrand-compete for the worker. Consider a type-xworker
who is employed at a type-y firm and receives an outside offer from a firm
of type y0. Bertrand competition between the type-y and type-y0 employers
results in the workermatching with the employer at which the total match
value is higher, while extracting the full surplus from the lower-surplus
match. This implies that he stays in his initial job if P ðx, yÞ ≥ Pðx, y0Þ and
moves to the type-y0 job otherwise. He ends up with a new wage contract
worth W 0 5 minfPðx, yÞ, Pðx, y0Þg (provided that W 0 exceeds the value of
the worker’s initial contract, W, as otherwise the worker would not have
initiated the contract renegotiation in the first place).
It follows that the total value of a type-(x, y) match, P(x, y), solves the

equation

rPðx, yÞ 5 pðx, yÞ 1 d U ðxÞ 2 Pðx, yÞð Þ:
The annuity value of the match, rP(x, y), equals the output flow p(x, y)
plus the expected capital loss dðU ðxÞ 2 P ðx, yÞÞ of the firm-worker pair
from job destruction.11

Given that U(x) is independent of firm type, the optimal mobility choices
of workers hinge on the comparison of match surplusPðx, yÞ 2 U ðxÞ across
jobs. It solves ðr 1 dÞðPðx, yÞ 2 U ðxÞÞ 5 pðx, yÞ 2 rU ðxÞ. In what follows,
we mostly reason in terms of the match flow surplus:

jðx, yÞ ; pðx, yÞ 2 rU ðxÞ:
A worker x employed in a job y accepts an offer from a job y0 if and only if
Pðx, y0Þ 2 U ðxÞ > P ðx, yÞ 2 U ðxÞ. This is equivalent to jðx, y0Þ > jðx, yÞ,
so that the optimal strategy to accept/reject a job is entirely based on the
comparison of flow surpluses. Likewise, an unemployed worker x accepts
a job of type y if jðx, yÞ ≥ 0. In turn, the optimal strategy of firm y is to
accept any worker x if jðx, yÞ ≥ 0. It follows that the dynamic optimiza-
tion problem of the agents is solved simply by flow-surplus comparisons
(as hinted at in the example of sec. II).
Finally, note that, in the sequential auction case, the value of unemploy-

ment,U(x), is given by rU ðxÞ 5 p0ðxÞ, implying jðx, yÞ 5 pðx, yÞ 2 p0ðxÞ.
That is, flow surplus j is pinned down by technology. As a result, optimal
mobility decisions are entirely determined by technology.
11 Note that, under the sequential auction model, the realization of the “other” risk
faced by the firm-worker pair, namely, the receipt of an outside job offer by the worker, gen-
erates zero capital gain for thematch. Either the worker rejects the offer and stays, in which
case the continuation value of the match is still P(x, y), or the worker accepts the offer and
leaves, in which case he receives P(x, y) while his initial employer is left with a vacant job
worth 0, so that the initial firm-worker pair’s continuation value is again P(x, y).
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C. Steady-State Distribution of Matches
In our analysis of sorting below, the key object is the steady-state equilib-
rium density of type-(x, y) matches, denoted by h(x, y), which indicates
who matches with whom. It is determined by the following flow-balance
equation, derived from optimal mobility decisions:12

d 1 l1EΓ 1 jðx, y0Þ > jðx, yÞf g½ �ð Þhðx, yÞ
5 l0gðyÞ1 jðx, yÞ ≥ 0f guðxÞ1l1gðyÞ

ð
1 jðx, yÞ > jðx, y0Þf ghðx, y0Þ dy0, (1)

where u(x) is the measure of type-x unemployed workers in the economy.
The left-hand side of equation (1) is the outflow from the stock of type-
(x, y)matches, comprisingmatches that are destroyed at rate d andmatches
that are dissolved because the worker receives a dominating outside offer.
The flow probability of this latter event is l1EΓ½1fjðx, y0Þ > jðx, yÞg�, the
product of the arrival rate of offers l1 and the probability of drawing a
job type y0 that yields a higher flow surplus for the worker than the cur-
rent type-y job. The right-hand side of equation (1) is the inflow into
the stock of type-(x, y) matches and is composed of two groups: unem-
ployed type-x workers who draw a type-y job with flow probability l0g(y)
and accept it (which they do if the flow surplus is positive), and type-x
workers employed in any type-y0 job whodraw a type-y offer with flowprob-
ability l1g(y) and accept it (which they do if the flow surplus with that job
exceeds the one with their initial type-y0 job). The measure of type-x un-
employed workers solves the following flow-balance equation with similar
interpretation:

l0EΓ 1 jðx, y0Þ ≥ 0Þf g½ �uðxÞ 5 d

ð
hðx, y0Þ dy0: (2)

Finally, note that, consistent with equations (1) and (2), the total mea-
sure of workers with skill bundle x in the economy solves ‘ðxÞ 5 uðxÞ 1Ð
hðx, y0Þ dy0.
Note that the job acceptance rule of an employed worker in a type-(x, y)

match hinges on the comparison of two scalars, j(x, y0) and j(x, y), de-
spite the underlying multi-D heterogeneity of workers and firms. It is
therefore convenient to introduce the conditional sampling cdf Fjjx of
flow surplus j, given x (with density fjjx).With this notation, the job accep-
tance probability for an employed worker x is EΓ½1fjðx, y0Þ > jðx, yÞg� 5
�Fjjxðjðx, yÞÞ, and that for an unemployed worker is EΓ½1fjðx, y0Þ ≥ 0Þg� 5
�Fjjxð0Þ.
12 Throughout the paper, we use the notation EΓ to distinguish expectations taken with
respect to the sampling distribution Γ from expectations with respect to the equilibrium
distribution of matches, which we simply denote by E. Also, we use primes (0) in expecta-
tions to denote random variables with respect to which expectations are taken.
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In appendix A1, we solve equation (1) in closed form for h(x, y). On
the basis of h(x, y), we can derive the equilibrium conditional density of
job types y, given employed worker types x:

h yjxð Þ 5 d1 jðx, yÞ ≥ 0f g
�Fjjxð0Þ � d 1 l1

�Fjjxð0Þð ÞgðyÞ
d1 l1

�Fjjx jðx, yÞð Þð Þ2 5
gjjx jðx, yÞð Þ
fjjx jðx, yÞð Þ �gðyÞ, (3)

where for any s ∈ R, gjjxðsÞ is the equilibriumdensity of flow surplus among
employed workers of type x, corresponding to the cdf GjjxðsÞ.13 We use this
conditional density hðyjxÞ to define our measure of sorting below.
IV. Measuring and Decomposing
Equilibrium Sorting

A. Measuring Sorting
We first specify a measure of sorting in this multi-D environment under
frictions. A criterion that has been proposed for multi-D PAM in a fric-
tionless context is that the Jacobian matrix of the equilibrium matching
function be a P-matrix, meaning that all its principal minors are positive
(Lindenlaub 2017). This criterion captures the way in which a worker’s
job type y improves or deteriorates as one varies the worker’s skills x when
matching is pure, that is, when any two workers with the same skill bundle
are matched to the exact same type of job. By contrast, in our frictional
environment with random search, the equilibrium assignment is gener-
ally not pure—there is mismatch. A natural extension of this measure
of sorting to our environment is to consider changes in the quantiles of
the conditional matching distribution of job types y as one varies worker
type x.14

Formally, let HjðyjxÞ denote the marginal cdf of yj (the jth component
of job attribute vector y) conditional on workers having skill bundle x.
Using equation (3), we can express this as
13 The equilibrium cdf of flow surplus among employed workers of type x is

GjjxðsÞ ≔ 1 2
d 1 l1

�Fjjxð0Þ
�Fjjxð0Þ �

�FjjxðsÞ
d 1 l1

�FjjxðsÞ 5
d FjjxðsÞ 2 Fjjxð0Þð Þ
�Fjjxð0Þ d 1 l1

�FjjxðsÞð Þ ,

an expression that is familiar from 1-D job ladder models. In particular, because of on-the-
job search, Gjjx first-order stochastically dominates the sampling cdf of flow surplus Fjjx.

14 We choose to analyze the equilibrium matching distribution of y given x and not that
of x given y for the following reason. While workers sample job types from an exogenous
sampling distribution g, jobs “sample” workers from an endogenous distribution (the dis-
tribution of workers across employment statuses and job types), which in itself is a complex
equilibrium object. The acceptance decisions of firms would affect and be affected by the
distribution of x across employment statuses and job types. Analyzing the matching distri-
butions of x given y would therefore require us to deal with a complicated fixed-point prob-
lem, which proved intractable.
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HjðyjxÞ 5

ð
1 y0j ≤ y
� �

h y0jxð Þ dy0

5
d d 1 l1

�Fjjxð0Þð Þ
�Fjjxð0Þ

ð
1 jðx, y0Þ ≥ 0f g � 1 y0j ≤ y

� �
d 1 l1

�Fjjx jðx, y0Þð Þð Þ2 gðy0Þ dy0:
(4)

We are interested in signing, for each job attribute j, the elements of the gra-
dient ∇HjðyjxÞ 5 ð∂HjðyjxÞ=∂x1,⋯, ∂HjðyjxÞ=∂xX Þ⊤, that is, the Jacobian
matrix of H ðyjxÞ. A situation of particular interest is when a component
of this matrix, ∂HjðyjxÞ=∂xk , has a constant sign over the support of yj. If that
sign is negative (positive), then Hjð⋅jxÞ is increasing (decreasing) in xk in
the sense of FOSD: PAM (NAM) then occurs in dimension (yj, xk), as a
worker with higher type-k skill (for a given level of skills other than xk) is
matched to jobs with stochastically greater type-j skill requirement, com-
pared to a worker with lower skill xk.15 For instance, if k 5 j 5 1 indicates
the cognitive dimension, thenpositive (negative) sorting in (y1, x1) captures
the intuitive notion that workers with more cognitive skill x1 are matched
to jobs with higher (lower) cognitive-skill requirement y1. Formally, we use
the following definitionof sorting, whichdescribes the association of skills
and job attributes dimension by dimension:16

Definition 1 (PAM and NAM). Matching is positive (negative) as-
sortative in dimension (yj, xk) if and only if ∂HjðyjxÞ=∂xk is negative (pos-
itive) for all y ∈ ½y

j , �yj �, strictly so on a nonzero measure set of y, and for all
x ∈ X .
To avoid duplication, we focus on positive sorting throughout most of

the paper.
B. A Decomposition Result
We begin our analysis by showing how equilibrium sorting can be de-
composed into sorting on the unemployment-to-employment (UE) mar-
gin and on the employment-to-employment (EE) margin. As we show in
appendix A2, a typical element of the gradient of HjðyjxÞ, which we use
to characterize sorting patterns (definition 1), has two parts, indicating
that a marginal increase in the worker’s skill xk affects his equilibrium dis-
tribution of job types yj in two ways:17
15 FOSD has been used to define sorting under frictions and 1-D types (e.g., Chade 2006
and Lentz 2010).

16 Note that definition 1 is “global,” in the sense that it imposes a sign restriction on
∂HjðyjxÞ=∂xk for all skill bundles x ∈ X . Alternatively, we could have opted for a “local” def-
inition by imposing only the weaker condition that ∂HjðyjxÞ=∂xk be positive or negative at a
given skill bundle x. In what follows, we use the global version of this definition, as sorting
is commonly envisaged as a global property in the literature.

17 There are two technical notes. First, PΓfAg is used to denote the probability of A oc-
curring following a random draw of a job type y from the sampling distribution g; second,
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∂HjðyjxÞ
∂xk

5 CUE|{z}
ð1Þ UE margin

1 CEE|{z},
ð2Þ EE margin

(DEC)

where components CUE and CEE are given by

CUE ≔ gjjxð0Þ EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 0

� ��

�
ð1∞

0

gjjxðsÞ½PΓ y0j ≤ yjjðx, y0Þ 5 0
� �

2 PΓ y0j ≤ yjjðx, y0Þ 5 s
� �� ds

1 PΓ y0j ≤ yjjðx, y0Þ 5 0
� �	

EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 0, y0j ≤ y

� �

2 EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 0

� �
�
,

CEE ≔ l1

ð1∞

0

2fjjxðsÞgjjxðsÞ
d 1 l1

�FjjxðsÞ � PΓ y0j ≤ yjjðx, y0Þ 5 s
� �

� EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ5 s, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ5 s

� �� �
ds:

The first term of decomposition (DEC), CUE, reflects selection on the UE
margin. A marginal increase in skill xk can affect the set of job types y
such that jðx, yÞ ≥ 0, for example, by rendering profitable somematches
between unemployed workers and jobs that were unprofitable before.
Note that, if there are no marginally profitable matches (gjjxð0Þ 5 0) be-
cause all potential matches involving type-x workers have strictly positive
surplus to begin with, jðx, yÞ > 0 for all y, then CUE 5 0 and sorting on
the UE margin is shut down.
The second term of (DEC), CEE, reflects selection on the EEmargin. A

marginal increase in xk affects the job acceptance probability of em-
ployed workers of type x by having an impact on the surplus comparison
between any current and incoming job: for any two job types (y, y0), the
difference jðx, y0Þ 2 jðx, yÞ generally varies with xk. This, in turn, affects
the reallocation of workers through on-the-job search.
If we shut down sorting on theUEmargin—for example, by assuming that

jðx, yÞ > 0 for all (x, y)—then ∂HjðyjxÞ=∂xk 5 CEE. If we shut down sort-
ing on the EE margin—for example, by setting l1 5 0—then ∂HjðyjxÞ=
∂xk 5 CUE. In what follows, we say that PAM occurs on the EE margin
whenever CEE is negative and that PAM occurs on the UE margin when-
everCUE is negative.We thus analyze sorting on the EEmargin “as if” sorting
it may be that the joint event fjðx, y0Þ 5 s, y0j ≤ yg, on which some of the expectations in
(DEC) are conditioned, has zero probability in g. As explained in the appendix, we set ex-
pectations conditional on zero-probability events to zero by convention.



3512 journal of political economy
on the UE margin were shut down, and vice versa. This is mainly for expo-
sition. In general, both margins of sorting are present, and the contribu-
tions to overall sorting of both terms CUE and CEE must be signed in order
to determine the sign of ∂HjðyjxÞ=∂xk , as indicated by (DEC). Yet it is useful,
from an analytical and applied standpoint, to consider sorting and mis-
match on those two margins separately, and we provide the tools to do so.
To offer some intuition on the drivers of sorting in (DEC), consider

the EE margin first. A sufficient condition for PAM (i.e., CEE ≤ 0) is that
EΓ½∂jðx, y0Þ=∂xk jjðx, y0Þ 5 s, y0j ≤ y� 2 EΓ½∂jðx, y0Þ=∂xkjjðx, y0Þ 5 s� be neg-
ative for all (s, y). This will be true if the first conditional expectation is
increasing in y, hinting at a form of complementarity between xk and yj in
surplus function j. The notion that complementarities between firm and
worker attributes are key drivers of sorting patterns is familiar from the
analysis of sorting in a variety of settings. The fact that a similar difference
in conditional expectations appears in the term CUE (last line) indicates
that complementarities in the surplus function drive sorting on the UE
margin, too.18

Beyond this basic intuition about the driving forces of sorting on theUE
and EEmargins, those two margins involve complex interactions between
the technology j and the sampling distribution of job types g. This implies
that terms CUE and CEE in (DEC) cannot easily be signed without further
assumptions on the primitives. In order to make progress toward a char-
acterization of the sign of sorting, we focus in the next section on a class
of technologies for which we can derive clean and (with one exception)
distribution-free conditions for positive sorting, ∂HjðyjxÞ=∂xk ≤ 0. We inves-
tigate generalizations in the following section and the online appendix.
V. Equilibrium Sorting in the Baseline Model

A. The Bilinear Technology
In the main body of this paper, we focus on the case of a bilinear technol-
ogy. This assumption simplifies decomposition (DEC) considerably and
produces easily interpretable results.
Assumption 1.

a) The production function p(x, y) is bilinear in (x, y):

pðx, yÞ 5 ðx 1 aÞ⊤Qy 5 o
X

k51
o
Y

j51

qkjðxk 1 akÞyj ,
18 We note that in the 1-D (Y 5 1) case, if in addition j is monotone in the single y, the
difference EΓ½∂jðx, y0Þ=∂xk jjðx, y0Þ 5 s, y0 ≤ y� 2 EΓ½∂jðx, y0Þ=∂xk jjðx, y0Þ 5 s� is always zero.
This is because j is invertible with respect to y and thus the conditioning event,
jðx, y0Þ 5 s, pins down a unique y0. This resembles the known result that there is no sorting
on the EE margin in 1-D job ladder models of this type.
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whereQ 5 ðqkjÞ 1 ≤ k ≤ X

1 ≤ j ≤ Y

is anX � Y matrix and a 5 ða1,⋯, aX Þ⊤ ∈

RX
11 is a fixed vector;

b) the nonemployment income function p0(x) is linear in x:

p0ðxÞ 5 ðx 1 aÞ⊤Qb 5 o
X

k51
o
Y

j51

qkjðxk 1 akÞbj ,

where b 5 ðb1,⋯, bY Þ⊤ ∈ RY is a fixed vector; and
c) there exists j ∈ f1,⋯, Y g such that pjðxÞ ≔ ∂pðx, yÞ=∂yj 5

oX
k51qkjðxk 1 akÞ > 0 for all x ∈ X ; to fix the notation, we assume

without loss of generality that pY ðxÞ > 0.
Assumptions 1a and 1b restrict the production technology in such a
way that the flow-surplus function j(x, y) is bilinear in (x, y). Indeed,
they imply that

jðx, yÞ 5 pðx, yÞ 2 p0ðxÞ 5 ðx 1 aÞ⊤Qðy 2 bÞ:

The technology matrix Q captures the complementarity structure be-
tween all job and worker characteristics and will be crucial to our analysis
of sorting. We interpret vector b as the production technology of the un-
employed. In turn, we interpret vector a, which is a technological param-
eter, as the baseline productivity of workers, noting that a⊤Qy is the out-
put of a type-y job filled with the least skilled worker, x 5 01�X . We
assume that a > 0 (assumption 1a). This ensures that the worker’s total
input into production, x 1 a, is strictly positive in all dimensions. While
not strictly necessary for our analysis, this restriction ensures that our
sorting results do not change with the sign of x 1 a. Finally, assump-
tion 1c ensures that, for any level of worker skills, there is at least one
job attribute, here denoted yY, that affects output positively. Note that
we do not impose monotonicity of the production function in all job attri-
butes. Nor do we restrict themonotonicity of the production or flow-surplus
function in worker skills x.
Furthermore, in our baseline model, we focus on two-dimensional

heterogeneity:
Assumption 2. Each job has Y 5 2 attributes, y ∈ Y ⊂ R2

1, and each
worker has X 5 2 skills, x ∈ X ⊂ R2

1.
The results in the next subsections are established under assump-

tions 1 and 2 (our baseline model). We chose to focus on this 2 � 2 bi-
linear specification in the text to facilitate the exposition and provide
clear intuitions. In section VI and the online appendix, we provide gen-
eralizations of our results to other production functions and to higher
dimensions of heterogeneity.
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B. The Sign of Sorting in a Given Dimension
We now investigate the sign of sorting along both the EE andUEmargins,
based on decomposition result (DEC). We first focus on sorting “dimen-
sion by dimension,” or “ceteris paribus,” and analyze the sign of sorting
between a given skill xk and job attribute yj, keeping all other skills fixed.
1. The EE Margin
We begin with the following result on the conditions for positive sorting
on the EE margin.
Theorem 1. Under assumptions 1 and 2, PAM occurs in dimension

(y1, xk) along the EE margin if and only if, for all y ∈ Y,
∂
∂xk

∂pðx, yÞ=∂y1
∂pðx, yÞ=∂y2

� �
> 0, or, equivalently,

∂
∂xk

p1ðxÞ
p2ðxÞ

� �
> 0: (SC-2D)

Condition (SC-2D) is a single-crossing property of the production func-
tion (the Spence-Mirrlees condition, in this differential form). Technically,
we prove that (SC-2D) is sufficient for the conditional expectation of
the marginal surplus EΓ½∂jðx, y0Þ=∂xkjjðx, y0Þ 5 s, y01 5 y� in term CEE of
(DEC)—which decomposes the Jacobian element ∂H1ðyjxÞ=∂xk that we
aim to sign—to be increasing in y (see app. B2). More specifically, the
worker-job complementarities in technology p, assumed in (SC-2D), give
rise to worker-job complementarities in surplus function j. This renders CEE

negative, implying PAM on the EE margin. Intuitively, single-crossing prop-
erty (SC-2D) captures stronger complementarities in dimension (y1, xk), rel-
ative to (y2, xk). This induces workers with higher levels of skill xk to match
with jobs that have higher levels of y1, as we also illustrated with our exam-
ple in section II.
To further demonstrate the intuition behind our single-crossing con-

dition and its implications, we consider two workers with skill bundles
x0 5 ðx 0

1, x
0
2Þ and x00 5 ðx 00

1 , x
00
2 Þ, such that x 00

1 > x 0
1 and x 00

2 5 x 0
2. To fix ideas,

we refer to dimension 1 as “cognitive” and dimension 2 as “manual,” so the
second worker has more cognitive skills but the two have equal amounts
of manual skills. In figure 1, we plot for each worker the locus of jobs that
render the same output as the job with attribute bundle A. Single-crossing
condition (SC-2D) implies that the marginal rate of substitution between
(y1, y2) is increasing inworker skill x1. Thus, the isoquant of themore skilled
worker is steeper, and the two isoquants cross only once (at point A). Con-
sider point A a benchmark with no sorting (both workers are matched
to the same type of job). Then, under condition (SC-2D), if the worker
with fewer cognitive skills weakly prefers job B over job A, where B has a
lower manual skill requirement y2 but higher cognitive content y1, then
the worker with more cognitive skills strictly prefers job B. This is depicted



in the figure: for the worker with more cognitive skills, the job with attri-
bute bundle B lies on a higher isoquant than job A. As a result, workers
with more cognitive skills tend to be matched to jobs with greater cognitive-
skill requirements (in the FOSD sense).
Single-crossing properties have been shown to guarantee positive sort-

ing in a variety of 1-D matching problems.19 The analysis of our multi-D
matching model with search frictions further highlights the importance of
single crossing as a driving force toward positive sorting.
2. The UE Margin
The next result establishes conditions for positive sorting along the UE
margin.
Theorem 2. Under assumptions 1 and 2, if, for all x ∈ X ,

1. single-crossing condition (SC-2D) is satisfied;
2. p(x, ⋅) is increasing in all elements of y;
3. along all level curves of p(x, ⋅) (i.e., at all y such that pðx, yÞ 5 C for

some fixed C ≥ 0),

p2ðxÞ ∂
2 ln g

∂y1∂y2
2 p1ðxÞ ∂

2 ln g

∂y22
≥ 0; (UE-2D)
FIG. 1.—Single-crossing property.
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19 In an important paper, Legros andNewman (2007) show that a single-crossing property
is sufficient to guarantee PAM in frictionless 1-D problems with imperfectly transferable util-
ity (ITU). Chade, Eeckhout, and Smith (2017) then demonstrate that several 1-D matching
problems with transferable utility in both environments with and environments without fric-
tions can be recast as ITU, frictionless matching problems. After finding the associated ITU
problem, the Legros-Newman condition can be applied and guarantees PAM.
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4. at the lower endpoint of the support of g (denoted y 5 ðy1, y2Þ),
y
2 ≥ b2 and y

1 < b1,
then PAM occurs in dimension (y1, xk) along the UE margin. Moreover,
(SC-2D) is also necessary for PAM to occur generically under any sampling
distribution g.

Theorem2 also highlights the importance of single crossing for positive
sortingon theUEmargin.Technically, single-crossing condition (SC-2D)en-
sures that the conditional expectation EΓ½∂jðx, y0Þ=∂xkjjðx, y0Þ 5 0, y01 5 y�
increases in y, making the second line of CUE in (DEC) negative. In turn,
condition (UE-2D) ensures that the first line of CUE is negative, while the
boundary restriction in condition 4of the theoremensures that gjjxð0Þ > 0,
that is, that there are some marginally profitable matches with zero sur-
plus, jðx, yÞ 5 0, to begin with.20 Together, these conditions guarantee that
CUE is negative, implying PAM on the UE margin. Details of the proof are
in appendix B3, but it is evident from this brief sketch that, contrary to
the EE margin, single crossing alone is not sufficient for PAM on the UE
margin (it is not sufficient for signing the first line of CUE). Additional re-
strictions on the sampling distribution g are needed.
To provide some economic intuition, we go back to our interpreta-

tion of k 5 1 as the cognitive dimension and k 5 2 as the manual one. As
above, we compare two workers x0 and x00, who are characterized by cog-
nitive skills x 00

1 > x 0
1 and the same amount of manual skills x 00

2 5 x 0
2. They

have different boundaries of marginally profitable (zero-surplus) jobs, given
by y2 2 b2 1 ðp1ðxÞ=p2ðxÞÞðy1 2 b1Þ 5 0, with y2 > b2 and y1 < b1 (by con-
dition 4). Workers with different skills break even with different types of
jobs. The reason is that under (SC-2D), whereby p1ðxÞ=p2ðxÞ is increasing
in x1, productive complementarities are stronger between x1 and y1 thanbe-
tween x1 and y2. Therefore, for a givenmanual skill requirement y2, workers
with higher cognitive skills x1 need jobs with higher cognitive attributes y1
to generate nonnegative surplus. Similar to the EEmargin, single crossing
is a force toward PAM.
However, complementarities in production alone are not enough to

ensure PAM on the UEmargin. The main reason is that there may be dis-
tributional obstructions to positive sorting. If job attributes y1 and y2 are
strongly negatively correlated, then workers with higher cognitive skill
x1 may prefer matching with jobs of lower cognitive content y1, if cognitive-
intensive jobs have too little manual content y2 for the surplus to be
20 Recall that sorting on the UE margin occurs only when an increase in skill xk affects
the boundary of the set of profitable matches, which can be the case only if there are some
matches on that boundary, i.e., if gjjxð0Þ > 0. Because, under condition 4 of theorem 2,
y
2 ≥ b2, it has to be the case that y1 < b1 for surplus to equal zero.
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positive. To rein in this force toward NAM, we assume a sufficient degree of
positive association between y1 and y2 in g. This is the content of the distri-
butional restriction in condition 3 of theorem 2, which supports PAM.21

Figure B1 supplements our explanations with an in-depth analysis of
how the boundary of marginally profitable matches shifts with x1 under
the assumptions of theorem 2, and helps visualize the role of both single
crossing and distributional restrictions in that theorem.
3. Taking Stock
Our firstmain insight is that in thismulti-D setting, sufficiently strong com-
plementarities in a certain dimension (e.g., between (y1, x1)), captured by a
single-crossing property of technology, are the key driver of positive sort-
ing. They induce workers with higher skill x1 to match with jobs that have
stochastically better attribute y1—on both the UE and EE margins.
That sorting arises in a model without firm capacity constraints may

seem surprising at first sight. It is well known that in a comparable model
with 1-D heterogeneity, there is no sorting along the EEmargin. The strat-
egy of firms is to accept any worker who generates positive (flow) surplus,
while the strategy of workers is to accept all jobs that yield a higher surplus
than their current one. The assumption that the flow surplus is increasing
in y (the 1-D version of assumption 1c) then implies that all workers rank
firms in the same way. They all climb a single economy-wide job ladder,
which rules out sorting. Moreover, regarding the UEmargin, there would
again be no sorting in the 1-D model, since any match in which the job
productivity is too low (y < b) would not form, independent of the work-
er’s skill.
With multi-D heterogeneity, however, workers are not just looking for

jobs that are more productive in any dimension. Instead, a given worker
aims for jobs that require much of the skill in which he is particularly
strong. Thus, workers with different skill bundles rank jobs differently
and therefore accept and reject different types of jobs. In short, they climb
different job ladders. The heterogeneity of job ladders induced by the
single-crossing condition in the presence of multiple skill dimensions is
the reason why sorting arises in our setting.
C. Interrelation of Sorting Patterns across Dimensions
In the previous section, we approached the question of sorting dimension
by dimension, focusing on the equilibrium relation between a given skill
21 Sufficient conditions on the sampling distribution for (UE-2D) are provided in “Re-
marks” in app. B3.
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xk and a given job attribute yj. In this section, we investigate the interde-
pendence of sorting patterns across dimensions of worker skills and job at-
tributes. Formally, we show that the signs of the entries of the conditional
matching distribution’s Jacobian matrix,

∂H ðyjxÞ
∂x⊤ 5

∂H1ðyjxÞ
∂x1

∂H1ðyjxÞ
∂x2

∂H2ðyjxÞ
∂x1

∂H2ðyjxÞ
∂x2

0
BBB@

1
CCCA, (5)

are systematically interrelated across rows and columns. This will com-
plete our analysis of equilibrium sorting and generate several empirically
testable predictions.
1. Sorting on Comparative Advantage
and Sorting Trade-Offs
We present two results, one about sorting on absolute versus comparative
advantage and the other about sorting trade-offs in a multi-D world, as
illustrated with our example in section II. Both can be derived from the-
orem 3, which links sorting patterns between a given job attribute yj and
different skills and is based on the simultaneous expansion of all skills:
Theorem 3. Under assumptions 1 and 2, 8 j ∈ f1, 2g:

ðx 1 aÞ⊤ ∇Hj yjxð Þ 5 0;

that is, the function ðx 1 aÞ↦HjðyjxÞ is homogeneous of degree 0 in
ðx 1 aÞ for all j.
We use this result to shed light on the nature of sorting in our setting,

that is, whether workers sort on comparative or absolute advantage. To
this end, consider a generic skill expansion in x, namely, an increase
of a worker’s skills from (x1, x2) to ðx1 1 Δx1, x2 1 Δx2Þ, where we impose
assumptions on primitives that guarantee PAM in dimension (y1, x1),
∂H1ðyjxÞ=∂x1 ≤ 0.22 Using theorem 3, we compute the change in jobs
22 Assumptions that ensure PAM are thatQ is a positive matrix with detQ > 0; that g is bi-
variate normal and truncated over Y with positive covariance; and that y2 2 b2 ≥ 0 > y

1 2 b1.
Condition (SC-2D), from theorems 1 and 2, reads ðx2 1 a2Þ detQ > 0, which holds here by
assumption.Hence, the example has PAMon the EEmargin. Next, because x 1 a is a positive
vector andQ a positive matrix, p(x, y) is increasing in both y1 and y2, satisfying condition 2 of
theorem 2. The truncated normal with positive covariance satisfies condition 3 (see app. B3),
and condition 4 from theorem 2 is satisfied by assumption. PAM thus also occurs on the UE
margin.
In contrast to this generic expansion in x, theorem 3 considers an expansion of all skills

such that the sum x 1 a is scaled up; i.e., it considers an expansion in the direction of
x 1 a. The theorem says that if two workers x and x0 are such that one is twice as productive
as the other in all jobs, x0 1 a 5 2ðx 1 aÞ, then both workers are matched to the same distri-
bution of jobs in equilibrium, irrespective of the complementarities in production.
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held in response to this skill expansion. The resulting change in the dis-
tribution of the first job attribute, H1ðyjxÞ, is given by

ΔH1ðyjxÞ ≃ ðx1 1 a1Þ ∂H1ðyjxÞ
∂x1

Δ x1
x1 1 a1

2
Δ x2

x2 1 a2

� �
: (6)

A major implication of equation (6) is that under a proportional increase
in both skills (Δx1=x1 5 Δx2=x2), ΔH1ðyjxÞ < 0 if and only if x1=x2 > a1=a2.
In words, scaling up all skills leads to a stochastically better distribution of
job matches in the first dimension, in which the worker is specialized rel-
ative to the baseline productivity vector a. By contrast, scaling up all skills
leads to a deterioration of the distribution of job matches in the second di-
mension, ΔH2ðyjxÞ > 0, which can be obtained from the analogue of equa-
tion (6) for job attribute y2. Scaling up all of a worker’s skills simultaneously
thus has a nonuniform effect on his distribution of jobs across dimensions,
which depends on his specialization. Our interpretation is that this multi-D
model does not feature any hierarchical sorting based on absolute advan-
tage but instead features sorting based on specialization or comparative
advantage.23

The result that uniformly better workers select into jobs that are not
uniformly more productive suggests that there are sorting trade-offs in
our multi-D setting. We now explore those trade-offs, starting with the fol-
lowing corollary of theorem 3, which addresses the interrelation of sorting
patterns between a given job attribute yj and different skills. That is, we
focus on signing each row j of Jacobian matrix (5).
Corollary. 1. Under assumptions 1 and 2, if PAM occurs in dimen-

sion (yj, xk), then NAM occurs in (yj, xk0), k ≠ k 0.
The intuition behind corollary 1 is most transparent when the UEmar-

gin is shut down.We first focus on job dimension y1 (i.e., the cognitive job
content) and how cognitive skills x1 and manual skills x2 relate to it. Sup-
pose that single-crossing condition (SC-2D) holds, ∂ðp1ðxÞ=p2ðxÞÞ=∂x1 >
0 ⇔ detQ > 0, which implies PAM in the cognitive dimension (y1, x1).
Now, detQ > 0 also implies that ∂ðp1ðxÞ=p2ðxÞÞ=∂x2 < 0, which leads to
NAMbetween the cognitive job trait andmanual skill, (y1, x2). By the same
argument, we can analyze how the second (manual) job dimension y2
comoves with the two skills. The single-crossing condition, detQ > 0, im-
plies PAM within the manual dimension, (y2, x2) but NAM “between” di-
mensions, (y2, x1).
This illustrates that for a given job attribute yj, PAM cannot arise across

both skill dimensions because the (necessary and sufficient) single-crossing
conditions cannot hold simultaneously for both x1 and x2. Intuitively,
23 To fix ideas, we focus in the text on a proportional increase in all skills. But from
eq. (6) it is clear that sorting on comparative advantage also materializes under a nonpro-
portional expansion of skills.
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detQ > 0 says that productive complementarities in (y1, x1) and (y2, x2)
dominate complementarities in (y1, x2) and (y2, x1). This is why PAM oc-
curs within the cognitive task (dimension 1) and within the manual task
(dimension 2) but NAM occurs between those dimensions. These sorting
trade-offs occur for purely technological reasons, independent of the sam-
pling distribution.
Note that in this 2 � 2 case, corollary 1 also characterizes the sorting

trade-offs across job attributes y1 and y2, for a given skill xk (in each col-
umn k of matrix [5]). In particular, sorting cannot be simultaneously pos-
itive between a given skill and all job attributes, echoing the sorting trade-
offs across skills for a given job attribute, described above. The reason why
corollary 1 pins down the sign pattern of the entire Jacobian matrix (5) is
that the characterization of sorting across both rows of the Jacobian auto-
matically determines the sorting patterns across both columns. Beyond the
two-dimensional case, however, corollary 1 does not fully describe the sort-
ing trade-offs across job attributes (for a given skill). We address the gen-
eral case in theorem O4 and corollary O3, in appendix OA.3. See also the
generalizations of the baseline model in section VI.
2. Taking Stock
This section conveys twomain predictions, both of which derive from the-
orem3 and are empirically testable. First, sorting cannot be simultaneously
positive between a given job dimension and all skill dimensions. Instead,
there are sorting trade-offs. Agents need to decide which skill dimension
to “sacrifice” andbase that decision on the relative strength of complemen-
tarities in the technology. PAM arises between a job attribute and a skill
with relatively strong complementarities, but NAM arises in the remaining
dimension, where complementarities are weaker. In a similar way, sorting
cannot be simultaneously positive between a given skill dimension and all
job dimensions.
Second, these trade-offs play an important role for the sorting patterns

that arise when we vary all skills simultaneously. We show that uniformly
better workers match not with uniformly better jobs but instead with jobs
that suit their skill mix. An improvement in the job dimension in which
the worker is relatively strong goes hand in hand with a deterioration of
the job dimension in which he is relatively weak. Our model thus predicts
that multi-D sorting under random search is based on comparative advan-
tage instead of absolute advantage.24
24 The content of these results is again different when skills are 1-D. Consider theorem 3
for the 1-D case X 5 1, so that x and a are scalars x and a, Q is a 1 � 2 row vector,
~y 5 Qðy 2 bÞ is a scalar, and the flow-surplus function is jðx, yÞ 5 ðx 1 aÞ~y. In this case,
theorem 3 again echoes the known result that there cannot be sorting, ∂HjðyjxÞ=∂x 5 0:
traits x and yj, j ∈ f1, 2g are independent in the population of worker-job matches.
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Similar to section V.B, the underlying cause of these sorting patterns is
that workers with different skill bundles rank jobs differently and climb
different job ladders. Here, we illustrate more clearly how a worker’s en-
tire skill bundle matters for sorting.
VI. Equilibrium Sorting in More
General Environments
We now show that our results on equilibrium sorting generalize to a wide
range of environments: arbitrary numbers of job and worker attributes,
various broad classes of technology, and all commonly used wage-setting
protocols. Departing from the baseline case of two-dimensional heteroge-
neity and bilinear technology complicates the analysis because, with few
exceptions, the characterization of sorting requires restrictions on the
sampling distribution. Yet across all of our environments, a single-crossing
condition on the production technology that guarantees sufficiently strong
complementarities is the linchpin of positive sorting under random search.
These generalizations are technically involved. To keep the text focused

on the baseline model that conveys the full intuition, we state our gener-
alized theorems, along with a detailed discussion, in appendix OA and
give only a brief overview here.
A. Higher Dimensions of Heterogeneity
with a Bilinear Technology
We begin by noting that almost none of the results depend on there being
only two dimensions of worker skills, X 5 2. Our results extend verbatim
to the case of X > 2 (with Y 5 2).25 Additional complications arise only
for more than two job attributes, Y > 2.
Regarding the sign of sorting, in appendix OA we provide sufficient

conditions for positive sorting under the bilinear technology for an unre-
stricted number of heterogeneity dimensions in corollary O2 (EE mar-
gin) and theorem O2 (UE margin), generalizing theorems 1 and 2. Sim-
ilar to our baseline model, a generalized single-crossing condition is at
the core of these results. Single crossing implies stronger complementar-
ities between job attribute–worker skill pairs (yj, xk) for all j < Y than be-
tween (yY, xk), pushing toward positive sorting in all pairs (yj, xk) except
(yY, xk). But in thismore general environment, assortativematching further
requires restrictions on the sampling distribution g. This is to prevent dis-
tributional obstructions to positive sorting that could arise from negatively
correlated job attributes. Intuitively, sorting skill xkpositively along a certain
25 The only complication from X > 2 is that single-crossing condition (SC-2D) is no lon-
ger equivalent to detQ > 0 and now depends on x.
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job dimension yj may not be beneficial for a worker if yj is negatively corre-
lated with some other job attribute y‘, which would cause negative sorting
between (y‘, xk). This type of distributional barrier to sorting is irrelevant
under 1-D heterogeneity, which is why distribution-free conditions are more
commonly obtained in those contexts.
Regarding the interrelation of sorting patterns across dimensions, the-

orem 3 on sorting across skills readily generalizes to higher dimensions.
Also, corollary 1 generalizes to the statement that sorting cannot be simul-
taneously positive between a given yj and all xk, k ∈ f1,⋯, Xg: there are
sorting trade-offs. Finally, theoremO4 and corollary O3, in appendix OA,
establish additional results about the interrelation of sorting across job
attributes yj, j ∈ f1,⋯, Y g, for a given skill xk, once again highlighting how
agents trade off sorting across various dimensions.
B. Non-Bilinear Technology
Regarding the sign of sorting, theorem O1, in appendix OA, establishes
sufficient conditions for positive sorting on the EE margin, generalizing
theorem 1 to the case of nonlinear technologies that are strictly mono-
tone in at least one job attribute yj, with arbitrary dimensions of x and y.
Once again, the key ingredient of our results is a generalized single-crossing
condition. Theorem O1 is our most general result on EE sorting and nests
several special cases of interest. It nests not only theorem 1 but also the con-
ditions for sorting under nonlinear surplus functions with Y 5 2 (corol-
lary O1, in app. OA) as well as under bilinear surplus functions with Y > 2
(corollary O2, in app. OA, discussed above).
These generalized results highlight that under higher-dimensional job

heterogeneity (Y > 2), the conditions for sorting generally involve not
only single crossing of the technology but also restrictions on the sam-
pling distribution g, echoing the case of bilinear technologies with Y > 2
above. Yet we can provide distribution-free results for the broad class of
separable technologies, where skill xk complements only a single yj and
is neither complement nor substitute for any other job attribute yj 0 (for-
mally, ∂2pðx, yÞ=∂xk∂yj > 0, but ∂2pðx, yÞ=∂xk∂yj 0 5 0 for j 0 ≠ j).26 In appen-
dix OA, theorem O3, we show that PAM arises on the EE margin in the
pair (yj, xk) for such technologies.
Regarding the interrelation of sorting patterns across dimensions, we

show in the appendix (see “Remarks” in sec. B4) that theorem 3 general-
izes to technologies beyond the bilinear one.
26 The separable class includes the popular specification of Tinbergen (1956), pðx, yÞ 5
c0 2 oX

i51ciðxi 2 yiÞ2, where X 5 Y and where the ci are strictly positive numbers. In this
example, each job has an ideal skill bundle, given by x 5 y, and output is a decreasing func-
tion of the distance between the worker’s skill bundle x and that ideal skill bundle. Another
example is the bilinear technology with only “within” complementarities.
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C. Alternative Wage-Setting Protocols
Our focus on surplus splitting via sequential auctions without worker bar-
gaining power is for expositional clarity only. We show in appendixOC that
our results on the sign of sorting hold for other wage-setting rules, such as
Nash bargaining (Mortensen and Pissarides 1994; Moscarini 2001), wage/
contract posting (Burdett and Mortensen 1998; Moscarini and Postel-Vinay
2013), or sequential auctions with worker bargaining power (Cahuc, Postel-
Vinay, and Robin 2006).
VII. Discussion
We now discuss two important assumptions of our model: the lack of ca-
pacity constraints on the firm side and multi-D heterogeneity of workers
and jobs.
A. Lack of Capacity Constraint
The assumption that firms lack capacity constraints—essentially, an as-
sumption of constant returns to labor with free entry of firms on the search
market—is widely used in the quantitative macro-labor literature. One of
the main reasons is tractability.
Tractability is also a bigmotive for us to assume away capacity constraints.

The lack of capacity constraints affords two simplifications in our analysis.
First, our measure of sorting (FOSD monotonicity of the job type distri-
bution conditional on worker types,HjðyjxÞ) is tractable because workers
always sample jobs from an exogenous and invariant distribution g. The
invariant job-sampling distribution naturally arises under no capacity con-
straint because filling a job at a firm does not change the availability of
that job to other workers. If instead each firm had a fixed number of jobs,
then workers would sample job types from an endogenous distribution,
on which we could not impose any restrictions. Second, in the absence
of capacity constraints, a firm’s vacancy value is zero, and the match sur-
plus depends on job characteristics y only through the technology. As a
consequence, the comparison of match surpluses between two different
jobs y and y 0 for a given worker of type x boils down to comparing flow
surpluses (determined by technology). Instead, with capacity constraints,
match surplus depends on the value of a vacant job, which is positive (as
there is an option value of rejecting a suboptimal worker and waiting for
a better one) and depends on y. This creates a wedge between surplus and
flow-surplus comparisons and makes it difficult to characterize sorting in
terms of primitives.
The first issue (endogenous sampling distribution) could be circum-

vented by means of a “cloning” assumption, according to which any vacant
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job that is filled is immediately replaced by an identical one, essentially ren-
dering g exogenous.27 But the second issue (positive value of a vacant job)
would still be present in this case.
While the absence of firm capacity constraints provides us with the nec-

essary tractability, we note that most existing studies of sorting—in both
frictionless and frictional settings—heavily rely on capacity constraints. They
induce scarcity, making agents more selective, which strengthens the de-
sire to sort. Even if all workers produce the most output with the best firm,
if the best firm has only one job, then productive workers can outbid less
productive ones in the competition for that job (given that there are worker-
job complementarities).
The scarcity mechanism is shut down if there are no capacity constraints,

making it more difficult to obtain sorting. Indeed, as discussed above, un-
der 1-D heterogeneity and in settings that otherwise resemble ours (notably,
in settings with monotonicity of the technology in agents’ 1-D characteris-
tics and without endogenous worker search effort), the lack of capacity
constraints rules out sorting. The reason is that all workers, regardless of
their 1-D type, move up the same job ladder toward more productive firms
at the same speed.28

By contrast, under multi-D heterogeneity, sorting can arise in equilib-
rium even with monotone technologies and exogenous search effort and
without capacity constraints. The reason is that, in general, different multi-D
worker types rank multi-D job types differently. Heterogenous rankings
of firms across workers induce their job acceptance decisions to differ, gen-
erating sorting even if all firms accept all workers.
B. Multi-D Heterogeneity
One natural question is whether multi-D heterogeneity can be mapped
into 1-D heterogeneity without loss of generality. If that were the case,
1-D models would provide all the tools we need for the analysis of sort-
ing. However, we now show that generically, this cannot be done in a way
that preserves minimal regularity properties of the surplus function.
We formalize that question in the context of our model by asking

whether there exist (twice-differentiable) functions ~j :R1 � R1 →R,
I :RX

1 →R1, and J :RY
1 →R1, where I and J are the worker and firm sin-

gle indices, such that for all (x, y), jðx, yÞ 5 ~jðI ðxÞ, J ðyÞÞ. In words, there
exists a single-index representation if workers’ skill bundles and jobs’
27 We thank an anonymous referee for this suggestion.
28 Things differ in the 1-D job ladder model by Lentz (2010) and Bagger and Lentz

(2019), featuring endogenous search intensity and sorting, because differently skilled
workers climb the same job ladder (meaning that all workers have the same ranking of
firms) at different speeds; see our discussion of the literature in sec. I.
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attribute bundles can be collapsed into 1-D indices without changing the
surplus of any match (i.e., without changing the mapping from worker
and job inputs to match surplus). In appendix B6, we prove the following
result, which can be used as the base of a simple theory-based test to assess
the single-index representation in the data (see Lindenlaub and Postel-
Vinay 2022):
Theorem 4. Under assumption 1, a single-index representation of the

multi-D heterogeneity exists if and only if Q has rank (at most) one.
In the two-dimensional case, rank Q ≤ 1 is equivalent to detQ 5 0,

which in turn is equivalent to the failure of the single-crossing condition.
Thus, in our baseline model, the single-index representation is valid only
in rare cases, in which detQ 5 0. This knife-edge result arises despite im-
posing few restrictions on indices I and J; for example, we allow them to be
noninjective (and indeed, they fail to be injective in our model if the single-
index representation exists).
More generally, and beyond the context of ourmodel, multiple dimen-

sions cannot be mapped into a single dimension while preserving basic
regularity properties. When agents’ attributes are continuously distributed
(as in this paper), there exists no continuous bijective map ofmulti-D het-
erogeneity to 1-D heterogeneity. We base this statement on well-known
results from topology about space-filling curves. A space-filling curve is a
continuous function from the unit interval into the two-dimensional unit
square (or,more generally, to anN-dimensional unit hypercube).29

The concept of a space-filling curve is closely related to the question
whether multi-D heterogeneity can be collapsed to 1-D heterogeneity, since
its inverse—if it exists—is what we are interested in: a continuous function
that maps the entire multi-D to the 1-D space. Although it is well known that
bijections between these spaces exist (Cantor 1878), a continuous bijec-
tion does not.30 Continuity is one of the minimal regularity properties a
dimension-reduction mapping should have. Points that are close together
in the multi-D space should be associated with points that are close together
on a line.
Thus, the property of continuitymakes the distinction betweenmulti-D

and 1-Dheterogeneitymeaningful, regardless of any other property of the
surplus function. In addition, another desirable property—monotonicity
of the surplus function in types—cannot be guaranteed when mapping
29 Peano (1890) was the first to construct a space-filling curve, the “Peano curve,” using
an iterative process until a single line fills the entire square, thus proving existence of a
surjective continuous function ½0, 1�→ ½0, 1�2.

30 This result goes back to Netto (1879), who proves that a continuous surjective map
f :½0, 1�→ ½0, 1�2 cannot be injective. In particular, continuous space-filling curves cannot
be inverted. Dispensing with surjectivity does not help. There also exists no continuous
one-to-one map from multi-D to 1-D heterogeneity, which follows from the Invariance of
Domain Theorem by Brouwer (1912) and its corollary, the Topological Invariance of Di-
mension; see, for instance, Terence Tao’s (2011) discussion.
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multi-D to 1-D (for an illustrative example, see appendixOD). The lack of
monotonicity would pose a challenge for the literature that aims to iden-
tify models with 1-D unobserved heterogeneity (which is generally used as
a single index that proxies the underlying multi-D heterogeneity): Hage-
dorn, Law, and Manovksii (2017) assume monotonicity of output in worker
and firm types, and so do Lamadon et al. (2014), as well as Bagger and
Lentz (2019). In turn, Abowd, Kramarz, andMargolis (1999) assumemono-
tonicity of wages in the firms’ unobserved type; Sorkin (2018) assumes
monotonicity of the workers’ value of a job in firm type. We are not aware
of identification arguments for unobserved scalar heterogeneity in the ab-
sence of any monotonicity assumption.31

We conclude that generically, both in the context of our model and be-
yond, it is challenging to map multi-D heterogeneity into 1-D heterogeneity
in a meaningful way.
VIII. Conclusion
We generalize one of the workhorse models for labor market analysis—a
job ladder model with random search—by incorporating the empirically
relevant feature of multidimensional (multi-D) heterogeneity of workers
and jobs. The goal of our analysis is to understand sorting between work-
ers and jobs in this environment.
To describe the possibly complex sorting patterns that can arise, we first

define notions of multi-D PAM and NAM in this frictional environment,
based on FOSD monotonicity of the equilibrium matching distribution.
Using this notion of sorting, we highlight three main results. First, in all

the environments we study, the key restrictiononprimitives for positive sort-
ing between a given worker skill and a given job attribute is a single-crossing
condition on the technology. It guarantees that the skill and job attribute un-
der consideration are sufficiently complementary in production relative to
other skills and job attributes, triggering the desire to sort.
Second, sorting patterns across the various dimensions of heterogene-

ity are interrelated. There are significant sorting trade-offs, in the sense
that positive sorting occurs along the dimensions of skills and job attri-
butes that are strong complements in production, relative to other di-
mensions. But negative sorting tends to arise in the dimension of weakest
complementarity.
31 An example of an application with discrete types is Bonhomme, Lamadon, and Man-
resa (2019), who assign firms to a fixed number of classes using k-means clustering based
on similarity in within-firm wage distributions. Their identification relies on the assump-
tion that any two firm classes have different wage distributions, something that tends to fail
with horizontal heterogeneity, where both production and surplus are nonmonotone in
firm types and the optimal firm type varies with worker types (see, e.g., Gautier, Teulings,
and van Vuuren 2006, 2010).
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Third, and related to these trade-offs, sorting in multiple dimensions
is based on comparative rather than absolute advantage. Workers with
uniformly higher skills do not sort into jobs with uniformly higher skill
requirements. Rather, they sort into jobs with a higher requirement for
the skill in which they are relatively strong, at the cost of lower require-
ments for the other skills.
That sorting arises in our setting, in which jobs face no capacity con-

straints, is surprising at first glance. It is well known that in comparable
1-D models, all workers share the same ranking of firms and thus face the
same job ladder. They all climb this ladder at the same speed, which pre-
vents sorting. By contrast, the sorting patterns that we describe arise be-
cause workers with different skill specializations accept different kinds of
jobs, meaning that they move up and down different job ladders. Multi-
D heterogeneity is itself a source of sorting.
Our theory provides useful tools for the analysis of multi-D sorting and

mismatch in applied work, as illustrated in a companion paper, Lindenlaub
and Postel-Vinay (2022). In that paper, we build on our multi-D frame-
work to develop a theory-based, empirical protocol that detects the num-
ber and types of surplus-relevant worker and job characteristics in the
data. Implementing this method on US data, we find that both worker
heterogeneity and job heterogeneity are multi-D and that workers with
different skill bundles climb different job ladders.
Our framework, along with these relevant worker and job characteris-

tics, can be used to quantify multi-D mismatch and to assess the errors in
the measurement of mismatch that are caused by imposing the 1-D assump-
tion when the data-generating process is really multi-D. This is something
we leave for future work.
Appendix A

Derivations

A1. Derivation of h(x, y)

Substituting the definition of Fjjx (i.e., �FjjxðsÞ 5 E½1fjðx, y0Þ > sg�) into equation (1),
we see that h(x, y) can be written as hðx, yÞ 5 xðx, jðx, yÞÞgðyÞ, where the func-
tion x solves

d 1 l1
�FjjxðsÞð Þxðx, sÞfjjxðsÞ 5 l0fjjxðsÞ1 s ≥ 0f guðxÞ 1 l1fjjxðsÞ

ðs

0

xðx, s0Þ dFjjx s0ð Þ:

This ordinary differential equation solves as

d 1 l1
�FjjxðsÞð Þ

ðs

0

xðx, s0Þ dFjjx s 0ð Þ 5 l01 s ≥ 0f guðxÞ FjjxðsÞ 2 Fjjxð0Þð Þ:

In other words, by differentiation,
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hðx, yÞ 5 l01 jðx, yÞ ≥ 0f guðxÞ d 1 l1
�Fjjxð0Þ

d 1 l1
�Fjjx jðx, yÞð Þð Þ2 gðyÞ:

Finally, recalling from the flow-balance equations that l0
�Fjjxð0ÞuðxÞ 5 dð‘ðxÞ2

uðxÞÞ and substituting out u(x) yields the expression of h(x, y), from which we
derive hðyjxÞ (eq. [3]) in the text.
A2. Derivation of Decomposition (DEC)

Recall equation (4):

HjðyjxÞ 5 d d 1 l1
�Fjjxð0Þð Þ

�Fjjxð0Þ
ð
1 jðx, y0Þ ≥ 0f g � 1 y0j ≤ y

� �
d 1 l1

�Fjjx jðx, y0Þð Þð Þ2 gðy0Þ dy0:

Differentiating yields

∂HjðyjxÞ
∂xk

5 2
d ∂�Fjjxð0Þ=∂xkð Þ

�Fjjxð0Þ d 1 l1
�Fjjxð0Þð ÞHjðyjxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

1
d d 1 l1

�Fjjxð0Þð Þ
�Fjjxð0Þ �

ð
∂jðx, y0Þ=∂xkð Þ � 1fjðx, y0Þ 5 0g � 1fy0j ≤ yg

d 1 l1
�Fjjx jðx, y0Þð Þð Þ2 gðy0Þ dy0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð2Þ

2
d d1 l1

�Fjjxð0Þð Þ
�Fjjxð0Þ �

ð
2l11fjðx, y0Þ ≥ 0g� 1fy0j ≤ yg

d 1 l1
�Fjjx jðx, y0Þð Þð Þ3 � ∂

∂xk
12 Fjjx jðx, y0Þð Þð Þgðy0Þdy0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð3Þ

:

We examine those three terms in turn.
First, the definition �FjjxðsÞ ≔ 1 2 FjjxðsÞ 5

Ð
1fjðx, y0Þ ≥ sggðy0Þ dy0 implies

∂
∂xk

1 2 FjjxðsÞð Þ 5

ð
1 jðx, y0Þ 5 sf g ∂jðx, y

0Þ
∂xk

gðy0Þ dy0

5 EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 s

� �
� fjjxðsÞ:

(7)

Replacing into term 1 yields

1ð Þ 5 2
dfjjxð0Þ

�Fjjxð0Þ d 1 l1
�Fjjxð0Þð Þ � EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 0

� �
� HjðyjxÞ

5 2gjjxð0Þ � EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 0

� �
� HjðyjxÞ,

where we used the density gjjxðsÞ, corresponding to the cdf

GjjxðsÞ ≔ 1 2
d 1 l1

�Fjjxð0Þ
�Fjjxð0Þ �

�FjjxðsÞ
d 1 l1

�FjjxðsÞ :
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Next, term 2 can be rewritten as

2ð Þ 5
d

�Fjjxð0Þ d 1 l1
�Fjjxð0Þð Þ �

ð
∂jðx, y0Þ

∂xk
� 1fjðx, y0Þ 5 0g � 1fy0j ≤ yggðy0Þ dy0

5
d d1l1

�Fjjxð0Þð Þ
�Fjjxð0Þ �

ð
1fjðx, y0Þ5 0g� 1fy0j ≤ yg

d 1 l1
�Fjjxð0Þð Þ2 gðy0Þdy0�EΓ

∂jðx, y0Þ
∂xk

jjðx, y0Þ5 0, y0j ≤ y

� �

5
∂Kjðy, 0jxÞ

∂s
� EΓ

∂jðx, y0Þ
∂xk

jjðx, y0Þ 5 0, y0j ≤ y

� �
,

where Kjðy, sjxÞ is the joint cdf of job attribute yj and match flow surplus s, con-
ditional on worker type x, in the population of employed workers, given by

Kjðy, sjxÞ 5

ð
1 y0j ≤ y
� � � 1 jðx, y0Þ ≤ sf gh y0jxð Þ dy0

5
d d 1 l1

�Fjjxð0Þð Þ
�Fjjxð0Þ

ð
1 0 ≤ jðx, y0Þ ≤ sf g � 1 y0j ≤ y

� �
d 1 l1

�Fjjx jðx, y0Þð Þð Þ2 gðy0Þ dy0,
(8)

which is the probability that a randomly chosen type-x employed worker is in a
job whose jth attribute is less than y and generates a flow surplus less than s. Note
that HjðyjxÞ and GjjxðsÞ are the marginal cdfs of Kjðy, sjxÞ, so that Kjðy,1∞jxÞ 5
HjðyjxÞ and Kjð1∞, sjxÞ 5 GjjxðsÞ, and, moreover,

∂Kjðy, sjxÞ
∂s

5 gjjxðsÞ � PΓ y0j ≤ yjjðx, y0Þ 5 s
� �

:

Therefore,

2ð Þ 5 gjjxð0Þ � PΓ y0j ≤ yjjðx, y0Þ 5 0
� � � EΓ

∂jðx, y0Þ
∂xk

jjðx, y0Þ 5 0, y0j ≤ y

� �
:

Now on to term 3. Again from equation (7), we have that

∂
∂xk

1 2 Fjjx jðx, y0Þð Þð Þ 5 fjjx jðx, y0Þð Þ

� EΓ

∂jðx, y00Þ
∂xk

����jðx, y00Þ 5 jðx, y0Þ
� �

2
∂jðx, y0Þ

∂xk

	 

:

Substituting into term 3,

3ð Þ 5 d d 1 l1
�Fjjxð0Þð Þ

�Fjjxð0Þ �
ð
2l11 jðx, y0Þ ≥ 0f g � 1 y0j ≤ y

� � � fjjx jðx, y0Þð Þ
d 1 l1

�Fjjx jðx, y0Þð Þð Þ3

� ∂jðx, y0Þ
∂xk

2 EΓ

∂jðx, y00Þ
∂xk

����jðx, y00Þ5 jðx, y0Þ
� �	 


gðy0Þdy0,

which can be recast as32
32 A technical note: strictly speaking, the correct integration bounds in the following for-
mula are

s ∈ max 0, miny0∈Y,y0j≤yjðx, y0Þ
� �

, maxy0∈Y,y0j≤yjðx, y0Þ
� 

:

rather than ½0,1∞Þ. To avoid cluttering the formula with these unwieldy integration bounds,
we write it as an integral over all s ≥ 0. As a consequence, it may be that the joint event
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3ð Þ 5
d d 1 l1

�Fjjxð0Þð Þ
�Fjjxð0Þ �

ð1∞

0

2l1fjjxðsÞ
d 1 l1

�FjjxðsÞð Þ�
ð
1fjðx, y0Þ5 sg� 1fy0j ≤ yg

d 1 l1
�FjjxðsÞ½ �2 gðy0Þdy0

� EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 s, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 s

� �	 

ds

5

ð1∞

0

2l1fjjxðsÞ
d 1 l1

�FjjxðsÞð Þ �
∂Kjðy, sjxÞ

∂s

� EΓ

∂jðx, yÞ
∂xk

���� jðx, y0Þ 5 s, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 s

� �	 

ds:

Combining terms 1–3 and substituting the definitions of gjjxð0Þ and ∂Kjðy, 0jxÞ=∂s
proves that

∂HjðyjxÞ
∂xk

5 gjjxð0Þ � PΓfy0j ≤ yjjðx, y0Þ 5 0g � EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 0, y0j ≤ y

� �	

2 HjðyjxÞ � EΓ

∂jðx, y0Þ
∂xk

���� jðx, y0Þ 5 0

� � 


1

ð1∞

0

2l1fjjxðsÞ
d 1 l1

�FjjxðsÞ � gjjxðsÞ � PΓfy0j ≤ yjjðx, y0Þ 5 sg

� EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ5 s, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ5 s

� �	 

ds,

where we incorporated the identity ∂Kjðy, sjxÞ=∂s 5 gjjxðsÞ � PΓfy0j ≤ yjjðx, y0Þ 5
sg. Further, add and subtract

gjjxð0Þ � PΓ y0j ≤ yjjðx, y0Þ 5 0
� � � EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 0

� �
,

to obtain

∂HjðyjxÞ
∂xk

5 gjjxð0Þ � EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 0

� �
� PrΓfy0j ≤ yjjðx, y0Þ 5 0g 2 HjðyjxÞ

� �	

1 PrΓfy0j ≤ yjjðx, y0Þ 5 0g

� EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ5 0, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ5 0

� �� �


1

ð1∞

0

2l1fjjxðsÞ
d 1 l1

�FjjxðsÞ � gjjxðsÞ � PΓfy0j ≤ yjjðx, y0Þ 5 sg

� EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 s, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 s

� �	 

ds :

Finally, use the identity HjðyjxÞ 5
Ð 1∞
0 gjjxðsÞPΓfy0j ≤ yjjðx, y0Þ 5 sg ds to reformu-

late the term in the first two lines as
ðjðx, y0Þ 5 s, y0j ≤ yÞ, on which some of the expectations are conditioned, has zero probability
for some values of (s, y). Yet in those cases,

Ð
1fjðx, y0Þ 5 sg � 1fy0j ≤ yggðy0Þ dy0 5 0. The

formula thus remains correct with ½0,1∞Þ as integration bounds if we adopt the convention
that any expectation conditioned on a zero-probability event is equal to zero.
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EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 0

� �

�
ð1∞

0

gjjxðsÞ PΓ y0j ≤ yjjðx, y0Þ 5 0
� �

2 PΓ y0j ≤ yjjðx, y0Þ 5 s
� �� 

ds,

which gives (DEC).
Appendix B

Proofs

B1. An Ancillary Lemma

We begin by stating a lemma to better understand the nature of decomposition
(DEC). This will help us specify conditions on primitives under which sorting
arises.

Lemma 1. If, for all s ≥ 0 and y such that PΓfy0j ≤ yjjðx, y0Þ 5 sg > 0,

y ↦ EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 s, y0j 5 y

� �
(CMP)

is strictly increasing (decreasing), then term 2 in (DEC) is strictly negative (posi-
tive) for all y; that is, PAM (NAM)occurs in dimension (yj, xk) along the EEmargin.

The proof follows directly from inspecting term 2 in (DEC). QED
Lemma 1 implies that, if the UE margin is shut down (i.e., if jðx, yÞ ≥ 0 for all

y) and if condition (CMP)—our label for complementarity—holds, then the
marginal distribution of job attribute yj of employed workers of type x, Hjð⋅jxÞ,
is monotone with respect to worker skill xk in the FOSD sense; that is, there is
PAM in dimension (yj, xk).

Condition (CMP) can be interpreted as imposing a strong form of comple-
mentarity (or substitutability, in the decreasing case) between job attribute j
and worker skill k, as is typical of models of sorting. It imposes, loosely speaking,
that j(x, y) be supermodular along all of its level sets, which amounts to a restric-
tion involving not only the technology but generally also the sampling distribu-
tion of job types.

B2. Proof of Theorem 1

The objective is to find conditions for PAM in dimension (y1, xk). Generally, in or-
der to obtain sufficient conditions we want to specify conditions under which con-
dition (CMP) in lemma 1 holds, that is, under which EΓ½ð∂jðx, y0Þ=∂xkÞjjðx, y0Þ 5
s, y0j 5 y� is strictly increasing in y. In the case of bilinear technology with Y 5 2,
however, we can circumvent this sufficient condition and compute term 2 in ex-
pression (DEC) explicitly. This allows us to state necessary conditions as well.

First, note that assumption 1 implies invertibility of the surplus function, so
that

jðx, yÞ 5 s ⇔ y2 2 b2 5
s

p2ðxÞ 2
p1ðxÞ
p2ðxÞ ðy1 2 b1Þ ≔ Rðs, y1Þ:
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Then, we can express

EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 s, y01 ≤ y

� �
5 Ems,x

∂j x, y01, Rðs, y01Þð Þð Þ
∂xk

����y01 ≤ y

� �
, (9)

where ms,xðy1Þ is the sampling density of y1 conditional on x and on jðx, yÞ 5 s:

ms,xðy1Þ 5 g y1, Rðs, y1Þð Þ∂Rðs, y1Þ=∂sð
g y01, Rðs, y01Þð Þ∂Rðs, y01Þ=∂s dy01

:

Note that ∂Rðs, y1Þ=∂s is a constant when p is bilinear and thus drops from ms,x.
Finally, assumption 1 implies ∂jðx, yÞ=∂xk 5 o2

j51qkjðyj 2 bjÞ, so that

∂j x, y1, Rðs, y1Þð Þð Þ
∂xk

5
qk2

p2ðxÞ s 1
qk1p2ðxÞ 2 qk2p1ðxÞ

p2ðxÞ ðy1 2 b1Þ:

It follows that

Ems,x

∂j x, y01, Rðs, y01Þð Þð Þ
∂xk

jy01 ≤ y

� �
5

qk2
p2ðxÞ s

1
qk1p2ðxÞ 2 qk2p1ðxÞ

p2ðxÞ Ems,x
y01 2 b1jy01 ≤ y½ �:

Hence, term 2 in expression (DEC) is equal to

2
qk1p2ðxÞ 2 qk2p1ðxÞ

p2ðxÞ
ð1∞

0

2l1fjjxðsÞgjjxðsÞ
d 1 l1

�FjjxðsÞ
� PΓfy01 ≤ yjjðx, y0Þ 5 sg � Ems,x

½y01 2 b1� 2 Ems,x
y01 2 b1jy01 ≤ y½ �ð Þ ds:

(10)

Both p2(x) (by assumption) and the difference in expectations (by construction)
are positive. Condition (SC-2D), which here implies qk1p2ðxÞ 2 qk2p1ðxÞ > 0 (or
detQ > 0), is therefore necessary and sufficient for equation (10) (which is equiva-
lent to term 2 in [DEC]) to be negative, that is, it is a necessary and sufficient for
PAM in (y1, xk). QED

Remark.—Note that, even though we stated theorem 1 for the 2 � 2 case to ease
exposition, nothing in the proof hinges on X 5 2, and thus the theorem and proof
readily apply to the case of X ≥ 2.

B3. Proof of Theorem 2

B3.1. Sufficiency

We have to sign term 1 in decomposition (DEC), which, as explained in the main
text, reflects sorting along the UEmargin. Whenever gjjxð0Þ > 0, said term 1 has the
sign of

PΓfy0j ≤ yjjðx, y0Þ5 0g� EΓ

∂jðx, y0Þ
∂xk

jjðx, y0Þ5 0, y0j ≤ y

� �
2 EΓ

∂jðx, y0Þ
∂xk

jjðx, y0Þ5 0

� �� �

1EΓ

∂jðx, y0Þ
∂xk

jjðx, y0Þ5 0

� �
�
ð1∞

0

gjjxðsÞ PΓfy0j ≤ yjjðx, y0Þ5 0g2PΓfy0j ≤ yjjðx, y0Þ5 sg� 
ds :

(11)
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In the case of Y 5 2, the first line in expression (11) is negative under the assumed
condition (SC-2D) (see proof of theorem 1). We thus focus on showing that the sec-
ond line is negative. We proceed in two steps.

First, we find conditions under which PΓfy01 ≤ yjjðx, y0Þ 5 sg is decreasing in s,
implying that ½PΓfy01 ≤ yjjðx, y0Þ 5 0g 2 PΓfy01 ≤ yjjðx, y0Þ 5 sg� ≥ 0. Equivalently,
we want to derive conditions under which, for any sH > sL ≥ 0,

ð
y
1

y

g y01, sH=p2ðxÞð Þ 1 b2 2 p1ðxÞ=p2ðxÞð Þðy01 2 b1Þð Þ dy01ð
y
1

�y1

g y01, sH=p2ðxÞð Þ 1 b2 2 p1ðxÞ=p2ðxÞð Þðy01 2 b1Þð Þ dy01

≤

ð
y
1

y

g y01, sL=p2ðxÞð Þ 1 b2 2 p1ðxÞ=p2ðxÞð Þðy01 2 b1Þð Þ dy01ð
y
1

�y1

g y01, sL=p2ðxÞð Þ 1 b2 2 p1ðxÞ=p2ðxÞð Þðy01 2 b1Þð Þ dy01
:

Defining

g ðy, sÞ ≔
ð
y
1

y

g y01,
s

p2ðxÞ 1 b2 2
p1ðxÞ
p2ðxÞ ðy

0
1 2 b1Þ

� �
dy01

and rearranging the previous inequality gives g ð�y1, sLÞg ðy, sHÞ ≤ g ðy, sLÞg ð�y1, sHÞ.
Since y ≤ �y1, this inequality holds if g is log-supermodular in (y, s). To show when
this is the case, define—similar to the proof of theorem 1—the joint distribution
of y1 and s (conditional on x) as

mxðy1, sÞ 5 g y1,
s

p2ðxÞ 1 b2 2
p1ðxÞ
p2ðxÞ ðy1 2 b1Þ

� �

and rewrite g ðy, sÞ 5 Ð
1fy01 < ygmxðy01, sÞ dy01. Note that

1. the support of mx (y1, s) is a lattice (for more details, see the proof of the-
orem O2 [and in particular footnote 4] in appendix OB.4);

2. the joint distribution mx (y1, s) is log-supermodular in (y1, s) if

p2ðxÞ ∂
2 ln g

∂y2∂y1
2 p1ðxÞ ∂

2 ln g

∂y22
≥ 0; (12)

3. the indicator function, 1fy01 < yg, is log-supermodular in ðy, y01Þ.

Therefore, the product 1fy01 < ygmxðy01, sÞ is log-supermodular in ðy, y01, sÞ, since
the product of log-supermodular functions is log-supermodular. In turn, this im-
plies that g is log-supermodular in (y, s), since log-supermodularity is preserved
under integration.

Thus, if condition (12) holds (stated as condition [UE-2D] in theorem 2),
then PΓfy01 ≤ yjjðx, y0Þ 5 sg is decreasing in s.

Second, we derive conditions such that EΓ½ð∂jðx, y0Þ=∂xkÞjjðx, y0Þ 5 0� ≤ 0. Note
that under assumptions 1 and 2,
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EΓ

∂jðx, y0Þ
∂xk

����jðx, y0Þ 5 0

� �
5 p1ðxÞ qk1

p1ðxÞ 2
qk2

p2ðxÞ
� �

EΓ y
0
1 2 b1jjðx, y0Þ 5 0½ �:

The term outside the expectation is strictly positive by single-crossing condition
(SC-2D), and the expectation is negative if y2 ≥ b2 and p1ðxÞ > 0 (stated as condi-
tions 2 and 4 in theorem 2), since

EΓ y
0
1 2 b1jjðx, y0Þ 5 0½ � 5 EΓ y01jy01 5 2ðy02 2 b2Þ p2ðxÞ

p1ðxÞ 1 b1

� �
2 b1:

Thus, EΓ½ð∂jðx, y0Þ=∂xkÞjjðx, y0Þ 5 0� ≤ 0 under the conditions from theorem 2,
proving that those conditions are sufficient for expression (11) (and thus, term 1
in decomposition [DEC]) to be negative and hence sufficient for PAM on the UE
margin.

B3.2. Necessity

To show that single-crossing condition (SC-2D) is also necessary for PAM when
considering all possible sampling distributions g, recall that there is PAM in di-
mension (y1, xk) on theUEmargin if and only if expression (11) is negative. It thus
suffices to show that there exists a sampling distribution g under which condition
(SC-2D) is necessary for expression (11) to be negative.

We again focus on bilinear technology and Y 5 2. First, note that the first line
in expression (11) is negative if and only if condition (SC-2D) holds (by an argu-
ment analogous to theorem 1). Second, note that if g is log-supermodular with
log-concave marginals, then ½PΓfy01 ≤ yjjðx, y0Þ 5 0g 2 PΓfy01 ≤ yjjðx, y0Þ 5 sg�
≥ 0; see section B3.1. Hence, if g is uniform with independent marginals then
∂2 ln g=∂y1∂y2 5 0 and ∂2 lng=∂y22 5 0, so that ½PΓfy01 ≤ yjjðx, y0Þ5 0g2PΓfy01 ≤
yjjðx, y0Þ5sg� 5 0 for all (y, s). Only the first line in expression (11) remains,
which is negative only if condition (SC-2D) holds. QED

Remarks.—First, note that, even though we stated theorem 2 for the 2 � 2 case
to ease exposition, nothing in the proof hinges on X 5 2, and thus the theorem
and proof readily apply to the case of X ≥ 2.

Second, sufficient conditions on the samplingdistribution for condition (UE-2D)
to hold are that the density g be log-supermodular and its marginals log-concave.
This class of distributions is quite broad. For instance, any bivariate distribution
of independent randomvariables that has log-concavemarginals (e.g., the uniform
distribution with independent random variables) satisfies condition (UE-2D). Other
examples of log-supermodular densities with log-concave marginals are the (trun-
cated) bivariateGaussianwith positive covariance and themultivariateGammadistri-
bution. Themultivariate Gamma distribution is that of a linear combination of inde-
pendent standard Gamma-distributed random variables. Log-supermodularity of the
multivariate Gamma density is implied by Karlin and Rinott (1980, proposition 3.8)
and log-concavity by Shapiro, Dentcheva, and Ruszczyński (2009, theorem 4.26).

B3.3. Supplementary Graphical Analysis

Figure B1 supplements our explanations from themain text with an in-depth anal-
ysis of how the boundary of marginally profitable matches shifts with xk under the
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assumptions of theorem 2. It helps visualize the role of both single crossing and
distributional restrictions in that theorem.

FIG. B1.—Sorting along the UE margin.

Figure B1 represents the (y1, y2) plane, where the origin is placed at b 5 ðb1, b2Þ.
The area above y2 and to the right of y1 materializesY, the support of g: the (lower)
boundaries of Y are the horizontal line at y2 5 y

2 and the vertical line at y1 5 y
1,

which are placed in compliance with condition 4 in theorem 2. The oblique lines
are zero-level curves of j(x, ⋅), which under the assumed linear technology are
given by y2 5 b2 2 ðp1ðxÞ=p2ðxÞÞðy1 2 b1Þ. By condition 2 in theorem 2, such lines
are downward sloping and go through point y 5 b. The boundary of feasible
matches for a given skill bundle x is at the intersection between the zero-level curve
of j(x, ⋅) andY (the thickened line segment). Note that this boundary lies entirely
in the region of Y where y1 < b1: because it is assumed that y2 ≥ b2, it has to be the
case that y1 < b1 for the surplus to equal zero.

Those zero-level curves are drawn for two workers x0 and x00 with x 00
k > x 0

k (and
with the same amount of the other skill). The higher-x 00

k curve is steeper than
the lower-x 0

k one,meaning that for a given y2, themore skilled worker needs a higher
y1 to generate nonnegative surplus. The reason is as follows: by the single-crossing
property condition (SC-2D), complementarities in production are stronger be-
tween xk and y1 than between xk and y2. Thus, the jobs under consideration (with
y1 < b1) are prone to generate surplus losses, especially for those workers with
high xk. In the figure, this means that all job types between the two solid lines
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can be profitably matched with the low-skilled (x 0
k) worker. But they produce neg-

ative surpluswith thehigh-skilled (x 00
k ) worker, and therefore the jobs with relatively

low attribute y1 drop out of his equilibriummatching set. In conclusion, for a given
y2, workers with higher xk need jobs with higher y1 to generate nonnegative surplus,
which is clearly a force toward PAM.

However, complementarities in production alone are not enough to ensure
PAM on the UE margin. To see this, consider points A–D on the figure. After in-
creasing skill k from x 0

k to x 00
k , a worker no longer breaks even with a job at A. More-

over, jobs around B (with higher y1 but lower y2) are also made unprofitable, while
jobs around C, with lower y1 but higher y2 compared to those around A, remain
profitable. Therefore, if sampling distribution g hasmost of its mass concentrated
around points A–C (i.e., there is a negative correlation between y1 and y2), then
workers with higher xk will be matched to jobs with lower y1 (since jobs around B
with higher y1 have too little of y2, leading to negative surplus)—a force toward
NAM. To prevent this, we assume a sufficient degree of positive association be-
tween y1 and y2 in g to ensure that more mass is concentrated around points A
andD. This is the content of condition 3 of theorem 2.Note that the distributional
barrier to PAM arising from a negative association of (y1, y2) becomes more severe
the larger is the positive impact of y2 on the surplus (i.e., the larger is p2(x), which
makes the zero-surplus lines flatter).
B4. Proof of Theorem 3

To economize on notation, we use the identity ∂Kjðy, sjxÞ=∂s 5 gjjxðsÞ � PΓfy0j ≤ yj
jðx, y0Þ 5 sg throughout the proof (see eq. [8] for its derivation).

From decomposition (DEC) applied to the case of bilinear production func-
tion, we obtain

ðx 1 aÞ⊤ ∇Hj ðyjxÞ 5 o
2

k51

ðxk 1 akÞ ∂Hj ðyjxÞ
∂xk

5 EΓ ðx 1 aÞ⊤∇xjðx, y0Þjjðx, y0Þ 5 0, y0j ≤ y
�  ∂Kj ðy, 0jxÞ

∂s
2 EΓ ðx 1 aÞ⊤∇xjðx, y0Þjjðx, y0Þ 5 0½ �Hj ðyjxÞgjjxð0Þ

1

ð1∞

0

2l1fjjxðsÞ
d 1 l1

�FjjxðsÞ �
∂Kj ðy, sjxÞ

∂s

� EΓ ðx1 aÞ⊤∇xjðx, y0Þjjðx, y0Þ5 s, y0j ≤ y
� 

2 EΓ ðx1 aÞ⊤∇xjðx, y0Þjjðx, y0Þ5 s½ �� �
ds:

But then linearity of the flow-surplus function j in (x 1 a) implies that
ðx 1 aÞ⊤∇xjðx, yÞ 5 jðx, yÞ. Substitution into the latter equation yields the follow-
ing equation, whose right-hand-side terms are all equal to zero:

ðx 1 aÞ⊤ ∇Hj ðyjxÞ 5 EΓ jðx, y0Þjjðx, y0Þ 5 0, y0j ≤ y
�  � ∂Kj ðy, 0jxÞ

∂s
2 EΓ jðx, y0Þjjðx, y0Þ 5 0½ �Hj ðyjxÞgjjxð0Þ

1

ð1∞

0

2l1fjjxðsÞ
d 1 l1

�FjjxðsÞ�
∂Kj ðy, sjxÞ

∂s
� EΓ jðx, y0Þjjðx, y0Þ 5 s, y0j ≤ y

� 
2EΓ jðx, y0Þjjðx, y0Þ5 s½ �� �

ds:

QED
Remarks.—First, even though theorem 3 is stated for the case of Y 5 X 5 2 to

streamline the exposition, both the theorem and the proof readily apply more
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generally if Y ≥ 2 and X ≥ 2. Second, note that the proof above is virtually un-
changed if, instead of assuming that j(⋅) is linear in ðx 1 aÞ, one assumes only
that it is homogeneous in (x 1 a). In that case, ðx 1 aÞ⊤∇xjðx, yÞ 5 ajðx, yÞ,
where a is the degree of homogeneity (a constant), and the proof goes through
as above.

B5. Proof of Corollary 1

The proof follows from theorem 3. If for a given yj, ∂HjðyjxÞ=∂xk < 0 for all
k ∈ f1,⋯, XgnfKg (PAM), then in order for ðx 1 aÞ⊤ ∇ HjðyjxÞ 5 0 to hold it
must be that ∂HjðyjxÞ=∂xK > 0 (NAM). QED

Remark.—In order to streamline our results in the text, we stated this corollary
for the case of Y 5 X 5 2. But it readily applies to the case of Y ≥ 2, X ≥ 2, as
the proof shows.

B6. Proof of Theorem 4

Suppose that there exist three twice-differentiable functions ~j :R2 →R, I :RX
1 →

R1, and J :R
Y
1 →R1 such that for all ðx, yÞ ∈ X � Y, jðx, yÞ 5 ~jðI ðxÞ, J ðyÞÞ. Then,

differentiating the latter identity with respect to (xk, yj) and recalling that the sur-
plus function j is a bilinear form, one has

∂2~j

∂I ∂J
⋅
∂I
∂xk

⋅
∂J
∂yj

5 qkj :

This implies that for all k ≠ k 0 and j ≠ j 0, qkj qk0 j 0 2 qk 0j qkj 0 5 0; that is, the determi-
nants of all 2 � 2 submatrices ofQ are zero, which in turn implies that the deter-
minant of the largest square submatrix of Q is zero. Hence, under the single-
index representation the matrix Q has rank of at most 1.

Conversely, if Q has rank 1, then it can be written asQ 5 qxq
⊤
y , where qx ∈ RX

and qy ∈ RY are column vectors, and the surplus function becomes jðx, yÞ 5
½q⊤

x ðx 1 aÞ�⊤ðq⊤
y yÞ, a function of the scalar indices x 5 q⊤

x x and y 5 q⊤
y y. QED

Remark.—In the two-dimensional case, Q having rank at most 1 is equivalent
to detQ 5 0, which in turn is equivalent to the single-crossing condition failing
to hold.
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